1 | /* Originally written by Bodo Moeller for the OpenSSL project. |
2 | * ==================================================================== |
3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in |
14 | * the documentation and/or other materials provided with the |
15 | * distribution. |
16 | * |
17 | * 3. All advertising materials mentioning features or use of this |
18 | * software must display the following acknowledgment: |
19 | * "This product includes software developed by the OpenSSL Project |
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
21 | * |
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
23 | * endorse or promote products derived from this software without |
24 | * prior written permission. For written permission, please contact |
25 | * openssl-core@openssl.org. |
26 | * |
27 | * 5. Products derived from this software may not be called "OpenSSL" |
28 | * nor may "OpenSSL" appear in their names without prior written |
29 | * permission of the OpenSSL Project. |
30 | * |
31 | * 6. Redistributions of any form whatsoever must retain the following |
32 | * acknowledgment: |
33 | * "This product includes software developed by the OpenSSL Project |
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
35 | * |
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
48 | * ==================================================================== |
49 | * |
50 | * This product includes cryptographic software written by Eric Young |
51 | * (eay@cryptsoft.com). This product includes software written by Tim |
52 | * Hudson (tjh@cryptsoft.com). |
53 | * |
54 | */ |
55 | /* ==================================================================== |
56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
57 | * |
58 | * Portions of the attached software ("Contribution") are developed by |
59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
60 | * |
61 | * The Contribution is licensed pursuant to the OpenSSL open source |
62 | * license provided above. |
63 | * |
64 | * The elliptic curve binary polynomial software is originally written by |
65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
66 | * Laboratories. */ |
67 | |
68 | #include <openssl/ec.h> |
69 | |
70 | #include <assert.h> |
71 | #include <string.h> |
72 | |
73 | #include <openssl/bn.h> |
74 | #include <openssl/err.h> |
75 | #include <openssl/mem.h> |
76 | #include <openssl/nid.h> |
77 | |
78 | #include "internal.h" |
79 | #include "../../internal.h" |
80 | #include "../bn/internal.h" |
81 | #include "../delocate.h" |
82 | |
83 | |
84 | static void ec_point_free(EC_POINT *point, int free_group); |
85 | |
86 | static const uint8_t kP224Params[6 * 28] = { |
87 | // p |
88 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
89 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
90 | 0x00, 0x00, 0x00, 0x01, |
91 | // a |
92 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
93 | 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
94 | 0xFF, 0xFF, 0xFF, 0xFE, |
95 | // b |
96 | 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56, |
97 | 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43, |
98 | 0x23, 0x55, 0xFF, 0xB4, |
99 | // x |
100 | 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9, |
101 | 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6, |
102 | 0x11, 0x5C, 0x1D, 0x21, |
103 | // y |
104 | 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6, |
105 | 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99, |
106 | 0x85, 0x00, 0x7e, 0x34, |
107 | // order |
108 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
109 | 0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45, |
110 | 0x5C, 0x5C, 0x2A, 0x3D, |
111 | }; |
112 | |
113 | static const uint8_t kP256Params[6 * 32] = { |
114 | // p |
115 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, |
116 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
117 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
118 | // a |
119 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, |
120 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
121 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, |
122 | // b |
123 | 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55, |
124 | 0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6, |
125 | 0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B, |
126 | // x |
127 | 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, |
128 | 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, |
129 | 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96, |
130 | // y |
131 | 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, |
132 | 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, |
133 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
134 | // order |
135 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
136 | 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, |
137 | 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51, |
138 | }; |
139 | |
140 | static const uint8_t kP384Params[6 * 48] = { |
141 | // p |
142 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
143 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
144 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
145 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
146 | // a |
147 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
148 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
149 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
150 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC, |
151 | // b |
152 | 0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, |
153 | 0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12, |
154 | 0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D, |
155 | 0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF, |
156 | // x |
157 | 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, |
158 | 0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98, |
159 | 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D, |
160 | 0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7, |
161 | // y |
162 | 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, |
163 | 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, |
164 | 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, |
165 | 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f, |
166 | // order |
167 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
168 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
169 | 0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2, |
170 | 0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73, |
171 | }; |
172 | |
173 | static const uint8_t kP521Params[6 * 66] = { |
174 | // p |
175 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
176 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
177 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
178 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
179 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
180 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
181 | // a |
182 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
183 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
184 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
185 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
186 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
187 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, |
188 | // b |
189 | 0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, 0x92, 0x9A, |
190 | 0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3, |
191 | 0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19, |
192 | 0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1, |
193 | 0xBF, 0x07, 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45, |
194 | 0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00, |
195 | // x |
196 | 0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E, |
197 | 0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F, |
198 | 0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B, |
199 | 0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF, |
200 | 0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E, |
201 | 0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66, |
202 | // y |
203 | 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, |
204 | 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, |
205 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, |
206 | 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, |
207 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, |
208 | 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50, |
209 | // order |
210 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
211 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
212 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86, |
213 | 0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, |
214 | 0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F, |
215 | 0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09, |
216 | }; |
217 | |
218 | DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) { |
219 | // 1.3.132.0.35 |
220 | static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23}; |
221 | out->curves[0].nid = NID_secp521r1; |
222 | out->curves[0].oid = kOIDP521; |
223 | out->curves[0].oid_len = sizeof(kOIDP521); |
224 | out->curves[0].comment = "NIST P-521" ; |
225 | out->curves[0].param_len = 66; |
226 | out->curves[0].params = kP521Params; |
227 | out->curves[0].method = EC_GFp_mont_method(); |
228 | |
229 | // 1.3.132.0.34 |
230 | static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22}; |
231 | out->curves[1].nid = NID_secp384r1; |
232 | out->curves[1].oid = kOIDP384; |
233 | out->curves[1].oid_len = sizeof(kOIDP384); |
234 | out->curves[1].comment = "NIST P-384" ; |
235 | out->curves[1].param_len = 48; |
236 | out->curves[1].params = kP384Params; |
237 | out->curves[1].method = EC_GFp_mont_method(); |
238 | |
239 | // 1.2.840.10045.3.1.7 |
240 | static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce, |
241 | 0x3d, 0x03, 0x01, 0x07}; |
242 | out->curves[2].nid = NID_X9_62_prime256v1; |
243 | out->curves[2].oid = kOIDP256; |
244 | out->curves[2].oid_len = sizeof(kOIDP256); |
245 | out->curves[2].comment = "NIST P-256" ; |
246 | out->curves[2].param_len = 32; |
247 | out->curves[2].params = kP256Params; |
248 | out->curves[2].method = |
249 | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
250 | !defined(OPENSSL_SMALL) |
251 | EC_GFp_nistz256_method(); |
252 | #else |
253 | EC_GFp_nistp256_method(); |
254 | #endif |
255 | |
256 | // 1.3.132.0.33 |
257 | static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21}; |
258 | out->curves[3].nid = NID_secp224r1; |
259 | out->curves[3].oid = kOIDP224; |
260 | out->curves[3].oid_len = sizeof(kOIDP224); |
261 | out->curves[3].comment = "NIST P-224" ; |
262 | out->curves[3].param_len = 28; |
263 | out->curves[3].params = kP224Params; |
264 | out->curves[3].method = |
265 | #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) |
266 | EC_GFp_nistp224_method(); |
267 | #else |
268 | EC_GFp_mont_method(); |
269 | #endif |
270 | } |
271 | |
272 | EC_GROUP *ec_group_new(const EC_METHOD *meth) { |
273 | EC_GROUP *ret; |
274 | |
275 | if (meth == NULL) { |
276 | OPENSSL_PUT_ERROR(EC, EC_R_SLOT_FULL); |
277 | return NULL; |
278 | } |
279 | |
280 | if (meth->group_init == 0) { |
281 | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
282 | return NULL; |
283 | } |
284 | |
285 | ret = OPENSSL_malloc(sizeof(EC_GROUP)); |
286 | if (ret == NULL) { |
287 | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
288 | return NULL; |
289 | } |
290 | OPENSSL_memset(ret, 0, sizeof(EC_GROUP)); |
291 | |
292 | ret->references = 1; |
293 | ret->meth = meth; |
294 | BN_init(&ret->order); |
295 | |
296 | if (!meth->group_init(ret)) { |
297 | OPENSSL_free(ret); |
298 | return NULL; |
299 | } |
300 | |
301 | return ret; |
302 | } |
303 | |
304 | static void ec_group_set0_generator(EC_GROUP *group, EC_POINT *generator) { |
305 | assert(group->generator == NULL); |
306 | assert(group == generator->group); |
307 | |
308 | // Avoid a reference cycle. |group->generator| does not maintain an owning |
309 | // pointer to |group|. |
310 | group->generator = generator; |
311 | int is_zero = CRYPTO_refcount_dec_and_test_zero(&group->references); |
312 | |
313 | assert(!is_zero); |
314 | (void)is_zero; |
315 | } |
316 | |
317 | EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, |
318 | const BIGNUM *b, BN_CTX *ctx) { |
319 | if (BN_num_bytes(p) > EC_MAX_BYTES) { |
320 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
321 | return NULL; |
322 | } |
323 | |
324 | EC_GROUP *ret = ec_group_new(EC_GFp_mont_method()); |
325 | if (ret == NULL) { |
326 | return NULL; |
327 | } |
328 | |
329 | if (ret->meth->group_set_curve == NULL) { |
330 | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
331 | EC_GROUP_free(ret); |
332 | return NULL; |
333 | } |
334 | if (!ret->meth->group_set_curve(ret, p, a, b, ctx)) { |
335 | EC_GROUP_free(ret); |
336 | return NULL; |
337 | } |
338 | return ret; |
339 | } |
340 | |
341 | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, |
342 | const BIGNUM *order, const BIGNUM *cofactor) { |
343 | if (group->curve_name != NID_undef || group->generator != NULL || |
344 | generator->group != group) { |
345 | // |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by |
346 | // |EC_GROUP_new_curve_GFp| and may only used once on each group. |
347 | // |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a |
348 | // copy, so that |generator->group->generator| is set correctly. |
349 | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
350 | return 0; |
351 | } |
352 | |
353 | if (BN_num_bytes(order) > EC_MAX_BYTES) { |
354 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
355 | return 0; |
356 | } |
357 | |
358 | // Require a cofactor of one for custom curves, which implies prime order. |
359 | if (!BN_is_one(cofactor)) { |
360 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR); |
361 | return 0; |
362 | } |
363 | |
364 | // Require that p < 2×order. This simplifies some ECDSA operations. |
365 | // |
366 | // Note any curve which did not satisfy this must have been invalid or use a |
367 | // tiny prime (less than 17). See the proof in |field_element_to_scalar| in |
368 | // the ECDSA implementation. |
369 | int ret = 0; |
370 | EC_POINT *copy = NULL; |
371 | BIGNUM *tmp = BN_new(); |
372 | if (tmp == NULL || |
373 | !BN_lshift1(tmp, order)) { |
374 | goto err; |
375 | } |
376 | if (BN_cmp(tmp, &group->field) <= 0) { |
377 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
378 | goto err; |
379 | } |
380 | |
381 | copy = EC_POINT_new(group); |
382 | if (copy == NULL || |
383 | !EC_POINT_copy(copy, generator) || |
384 | !BN_copy(&group->order, order)) { |
385 | goto err; |
386 | } |
387 | // Store the order in minimal form, so it can be used with |BN_ULONG| arrays. |
388 | bn_set_minimal_width(&group->order); |
389 | |
390 | BN_MONT_CTX_free(group->order_mont); |
391 | group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, NULL); |
392 | if (group->order_mont == NULL) { |
393 | goto err; |
394 | } |
395 | |
396 | group->field_greater_than_order = BN_cmp(&group->field, &group->order) > 0; |
397 | if (group->field_greater_than_order) { |
398 | if (!BN_sub(tmp, &group->field, &group->order) || |
399 | !bn_copy_words(group->field_minus_order.words, group->field.width, |
400 | tmp)) { |
401 | goto err; |
402 | } |
403 | } |
404 | |
405 | ec_group_set0_generator(group, copy); |
406 | copy = NULL; |
407 | ret = 1; |
408 | |
409 | err: |
410 | EC_POINT_free(copy); |
411 | BN_free(tmp); |
412 | return ret; |
413 | } |
414 | |
415 | static EC_GROUP *ec_group_new_from_data(const struct built_in_curve *curve) { |
416 | EC_GROUP *group = NULL; |
417 | EC_POINT *P = NULL; |
418 | BIGNUM *p = NULL, *a = NULL, *b = NULL, *x = NULL, *y = NULL; |
419 | int ok = 0; |
420 | |
421 | BN_CTX *ctx = BN_CTX_new(); |
422 | if (ctx == NULL) { |
423 | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
424 | goto err; |
425 | } |
426 | |
427 | const unsigned param_len = curve->param_len; |
428 | const uint8_t *params = curve->params; |
429 | |
430 | if (!(p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) || |
431 | !(a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) || |
432 | !(b = BN_bin2bn(params + 2 * param_len, param_len, NULL))) { |
433 | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
434 | goto err; |
435 | } |
436 | |
437 | group = ec_group_new(curve->method); |
438 | if (group == NULL || |
439 | !group->meth->group_set_curve(group, p, a, b, ctx)) { |
440 | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
441 | goto err; |
442 | } |
443 | |
444 | if ((P = EC_POINT_new(group)) == NULL) { |
445 | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
446 | goto err; |
447 | } |
448 | |
449 | if (!(x = BN_bin2bn(params + 3 * param_len, param_len, NULL)) || |
450 | !(y = BN_bin2bn(params + 4 * param_len, param_len, NULL))) { |
451 | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
452 | goto err; |
453 | } |
454 | |
455 | if (!EC_POINT_set_affine_coordinates_GFp(group, P, x, y, ctx)) { |
456 | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
457 | goto err; |
458 | } |
459 | if (!BN_bin2bn(params + 5 * param_len, param_len, &group->order)) { |
460 | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
461 | goto err; |
462 | } |
463 | |
464 | group->field_greater_than_order = BN_cmp(&group->field, &group->order) > 0; |
465 | if (group->field_greater_than_order) { |
466 | if (!BN_sub(p, &group->field, &group->order) || |
467 | !bn_copy_words(group->field_minus_order.words, group->field.width, p)) { |
468 | goto err; |
469 | } |
470 | } |
471 | |
472 | group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, ctx); |
473 | if (group->order_mont == NULL) { |
474 | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
475 | goto err; |
476 | } |
477 | |
478 | ec_group_set0_generator(group, P); |
479 | P = NULL; |
480 | ok = 1; |
481 | |
482 | err: |
483 | if (!ok) { |
484 | EC_GROUP_free(group); |
485 | group = NULL; |
486 | } |
487 | EC_POINT_free(P); |
488 | BN_CTX_free(ctx); |
489 | BN_free(p); |
490 | BN_free(a); |
491 | BN_free(b); |
492 | BN_free(x); |
493 | BN_free(y); |
494 | return group; |
495 | } |
496 | |
497 | // Built-in groups are allocated lazily and static once allocated. |
498 | // TODO(davidben): Make these actually static. https://crbug.com/boringssl/20. |
499 | struct built_in_groups_st { |
500 | EC_GROUP *groups[OPENSSL_NUM_BUILT_IN_CURVES]; |
501 | }; |
502 | DEFINE_BSS_GET(struct built_in_groups_st, built_in_groups) |
503 | DEFINE_STATIC_MUTEX(built_in_groups_lock) |
504 | |
505 | EC_GROUP *EC_GROUP_new_by_curve_name(int nid) { |
506 | struct built_in_groups_st *groups = built_in_groups_bss_get(); |
507 | EC_GROUP **group_ptr = NULL; |
508 | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
509 | const struct built_in_curve *curve = NULL; |
510 | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
511 | if (curves->curves[i].nid == nid) { |
512 | curve = &curves->curves[i]; |
513 | group_ptr = &groups->groups[i]; |
514 | break; |
515 | } |
516 | } |
517 | |
518 | if (curve == NULL) { |
519 | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
520 | return NULL; |
521 | } |
522 | |
523 | CRYPTO_STATIC_MUTEX_lock_read(built_in_groups_lock_bss_get()); |
524 | EC_GROUP *ret = *group_ptr; |
525 | CRYPTO_STATIC_MUTEX_unlock_read(built_in_groups_lock_bss_get()); |
526 | if (ret != NULL) { |
527 | return ret; |
528 | } |
529 | |
530 | ret = ec_group_new_from_data(curve); |
531 | if (ret == NULL) { |
532 | return NULL; |
533 | } |
534 | |
535 | EC_GROUP *to_free = NULL; |
536 | CRYPTO_STATIC_MUTEX_lock_write(built_in_groups_lock_bss_get()); |
537 | if (*group_ptr == NULL) { |
538 | *group_ptr = ret; |
539 | // Filling in |ret->curve_name| makes |EC_GROUP_free| and |EC_GROUP_dup| |
540 | // into no-ops. At this point, |ret| is considered static. |
541 | ret->curve_name = nid; |
542 | } else { |
543 | to_free = ret; |
544 | ret = *group_ptr; |
545 | } |
546 | CRYPTO_STATIC_MUTEX_unlock_write(built_in_groups_lock_bss_get()); |
547 | |
548 | EC_GROUP_free(to_free); |
549 | return ret; |
550 | } |
551 | |
552 | void EC_GROUP_free(EC_GROUP *group) { |
553 | if (group == NULL || |
554 | // Built-in curves are static. |
555 | group->curve_name != NID_undef || |
556 | !CRYPTO_refcount_dec_and_test_zero(&group->references)) { |
557 | return; |
558 | } |
559 | |
560 | if (group->meth->group_finish != NULL) { |
561 | group->meth->group_finish(group); |
562 | } |
563 | |
564 | ec_point_free(group->generator, 0 /* don't free group */); |
565 | BN_free(&group->order); |
566 | BN_MONT_CTX_free(group->order_mont); |
567 | |
568 | OPENSSL_free(group); |
569 | } |
570 | |
571 | EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { |
572 | if (a == NULL || |
573 | // Built-in curves are static. |
574 | a->curve_name != NID_undef) { |
575 | return (EC_GROUP *)a; |
576 | } |
577 | |
578 | // Groups are logically immutable (but for |EC_GROUP_set_generator| which must |
579 | // be called early on), so we simply take a reference. |
580 | EC_GROUP *group = (EC_GROUP *)a; |
581 | CRYPTO_refcount_inc(&group->references); |
582 | return group; |
583 | } |
584 | |
585 | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) { |
586 | // Note this function returns 0 if equal and non-zero otherwise. |
587 | if (a == b) { |
588 | return 0; |
589 | } |
590 | if (a->curve_name != b->curve_name) { |
591 | return 1; |
592 | } |
593 | if (a->curve_name != NID_undef) { |
594 | // Built-in curves may be compared by curve name alone. |
595 | return 0; |
596 | } |
597 | |
598 | // |a| and |b| are both custom curves. We compare the entire curve |
599 | // structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes, |
600 | // custom curve construction is sadly done in two parts) but otherwise not the |
601 | // same object, we consider them always unequal. |
602 | return a->meth != b->meth || |
603 | a->generator == NULL || |
604 | b->generator == NULL || |
605 | BN_cmp(&a->order, &b->order) != 0 || |
606 | BN_cmp(&a->field, &b->field) != 0 || |
607 | !ec_felem_equal(a, &a->a, &b->a) || |
608 | !ec_felem_equal(a, &a->b, &b->b) || |
609 | ec_GFp_simple_cmp(a, &a->generator->raw, &b->generator->raw) != 0; |
610 | } |
611 | |
612 | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { |
613 | return group->generator; |
614 | } |
615 | |
616 | const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { |
617 | assert(!BN_is_zero(&group->order)); |
618 | return &group->order; |
619 | } |
620 | |
621 | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { |
622 | if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) { |
623 | return 0; |
624 | } |
625 | return 1; |
626 | } |
627 | |
628 | int EC_GROUP_order_bits(const EC_GROUP *group) { |
629 | return BN_num_bits(&group->order); |
630 | } |
631 | |
632 | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, |
633 | BN_CTX *ctx) { |
634 | // All |EC_GROUP|s have cofactor 1. |
635 | return BN_set_word(cofactor, 1); |
636 | } |
637 | |
638 | int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a, |
639 | BIGNUM *out_b, BN_CTX *ctx) { |
640 | return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b); |
641 | } |
642 | |
643 | int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } |
644 | |
645 | unsigned EC_GROUP_get_degree(const EC_GROUP *group) { |
646 | return BN_num_bits(&group->field); |
647 | } |
648 | |
649 | const char *EC_curve_nid2nist(int nid) { |
650 | switch (nid) { |
651 | case NID_secp224r1: |
652 | return "P-224" ; |
653 | case NID_X9_62_prime256v1: |
654 | return "P-256" ; |
655 | case NID_secp384r1: |
656 | return "P-384" ; |
657 | case NID_secp521r1: |
658 | return "P-521" ; |
659 | } |
660 | return NULL; |
661 | } |
662 | |
663 | int EC_curve_nist2nid(const char *name) { |
664 | if (strcmp(name, "P-224" ) == 0) { |
665 | return NID_secp224r1; |
666 | } |
667 | if (strcmp(name, "P-256" ) == 0) { |
668 | return NID_X9_62_prime256v1; |
669 | } |
670 | if (strcmp(name, "P-384" ) == 0) { |
671 | return NID_secp384r1; |
672 | } |
673 | if (strcmp(name, "P-521" ) == 0) { |
674 | return NID_secp521r1; |
675 | } |
676 | return NID_undef; |
677 | } |
678 | |
679 | EC_POINT *EC_POINT_new(const EC_GROUP *group) { |
680 | if (group == NULL) { |
681 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
682 | return NULL; |
683 | } |
684 | |
685 | EC_POINT *ret = OPENSSL_malloc(sizeof *ret); |
686 | if (ret == NULL) { |
687 | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
688 | return NULL; |
689 | } |
690 | |
691 | ret->group = EC_GROUP_dup(group); |
692 | ec_GFp_simple_point_init(&ret->raw); |
693 | return ret; |
694 | } |
695 | |
696 | static void ec_point_free(EC_POINT *point, int free_group) { |
697 | if (!point) { |
698 | return; |
699 | } |
700 | if (free_group) { |
701 | EC_GROUP_free(point->group); |
702 | } |
703 | OPENSSL_free(point); |
704 | } |
705 | |
706 | void EC_POINT_free(EC_POINT *point) { |
707 | ec_point_free(point, 1 /* free group */); |
708 | } |
709 | |
710 | void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } |
711 | |
712 | int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { |
713 | if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) { |
714 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
715 | return 0; |
716 | } |
717 | if (dest == src) { |
718 | return 1; |
719 | } |
720 | ec_GFp_simple_point_copy(&dest->raw, &src->raw); |
721 | return 1; |
722 | } |
723 | |
724 | EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { |
725 | if (a == NULL) { |
726 | return NULL; |
727 | } |
728 | |
729 | EC_POINT *ret = EC_POINT_new(group); |
730 | if (ret == NULL || |
731 | !EC_POINT_copy(ret, a)) { |
732 | EC_POINT_free(ret); |
733 | return NULL; |
734 | } |
735 | |
736 | return ret; |
737 | } |
738 | |
739 | int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { |
740 | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
741 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
742 | return 0; |
743 | } |
744 | ec_GFp_simple_point_set_to_infinity(group, &point->raw); |
745 | return 1; |
746 | } |
747 | |
748 | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { |
749 | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
750 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
751 | return 0; |
752 | } |
753 | return ec_GFp_simple_is_at_infinity(group, &point->raw); |
754 | } |
755 | |
756 | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
757 | BN_CTX *ctx) { |
758 | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
759 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
760 | return 0; |
761 | } |
762 | return ec_GFp_simple_is_on_curve(group, &point->raw); |
763 | } |
764 | |
765 | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, |
766 | BN_CTX *ctx) { |
767 | if (EC_GROUP_cmp(group, a->group, NULL) != 0 || |
768 | EC_GROUP_cmp(group, b->group, NULL) != 0) { |
769 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
770 | return -1; |
771 | } |
772 | return ec_GFp_simple_cmp(group, &a->raw, &b->raw); |
773 | } |
774 | |
775 | int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, |
776 | const EC_POINT *point, BIGNUM *x, |
777 | BIGNUM *y, BN_CTX *ctx) { |
778 | if (group->meth->point_get_affine_coordinates == 0) { |
779 | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
780 | return 0; |
781 | } |
782 | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
783 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
784 | return 0; |
785 | } |
786 | EC_FELEM x_felem, y_felem; |
787 | if (!group->meth->point_get_affine_coordinates(group, &point->raw, |
788 | x == NULL ? NULL : &x_felem, |
789 | y == NULL ? NULL : &y_felem) || |
790 | (x != NULL && !bn_set_words(x, x_felem.words, group->field.width)) || |
791 | (y != NULL && !bn_set_words(y, y_felem.words, group->field.width))) { |
792 | return 0; |
793 | } |
794 | return 1; |
795 | } |
796 | |
797 | int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, |
798 | const BIGNUM *x, const BIGNUM *y, |
799 | BN_CTX *ctx) { |
800 | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
801 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
802 | return 0; |
803 | } |
804 | if (!ec_GFp_simple_point_set_affine_coordinates(group, &point->raw, x, y)) { |
805 | return 0; |
806 | } |
807 | |
808 | if (!EC_POINT_is_on_curve(group, point, ctx)) { |
809 | // In the event of an error, defend against the caller not checking the |
810 | // return value by setting a known safe value: the base point. |
811 | const EC_POINT *generator = EC_GROUP_get0_generator(group); |
812 | // The generator can be missing if the caller is in the process of |
813 | // constructing an arbitrary group. In this, we give up and hope they're |
814 | // checking the return value. |
815 | if (generator) { |
816 | ec_GFp_simple_point_copy(&point->raw, &generator->raw); |
817 | } |
818 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE); |
819 | return 0; |
820 | } |
821 | |
822 | return 1; |
823 | } |
824 | |
825 | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
826 | const EC_POINT *b, BN_CTX *ctx) { |
827 | if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
828 | EC_GROUP_cmp(group, a->group, NULL) != 0 || |
829 | EC_GROUP_cmp(group, b->group, NULL) != 0) { |
830 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
831 | return 0; |
832 | } |
833 | group->meth->add(group, &r->raw, &a->raw, &b->raw); |
834 | return 1; |
835 | } |
836 | |
837 | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
838 | BN_CTX *ctx) { |
839 | if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
840 | EC_GROUP_cmp(group, a->group, NULL) != 0) { |
841 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
842 | return 0; |
843 | } |
844 | group->meth->dbl(group, &r->raw, &a->raw); |
845 | return 1; |
846 | } |
847 | |
848 | |
849 | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { |
850 | if (EC_GROUP_cmp(group, a->group, NULL) != 0) { |
851 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
852 | return 0; |
853 | } |
854 | ec_GFp_simple_invert(group, &a->raw); |
855 | return 1; |
856 | } |
857 | |
858 | static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
859 | const BIGNUM *in, BN_CTX *ctx) { |
860 | if (ec_bignum_to_scalar(group, out, in)) { |
861 | return 1; |
862 | } |
863 | |
864 | ERR_clear_error(); |
865 | |
866 | // This is an unusual input, so we do not guarantee constant-time processing. |
867 | const BIGNUM *order = &group->order; |
868 | BN_CTX_start(ctx); |
869 | BIGNUM *tmp = BN_CTX_get(ctx); |
870 | int ok = tmp != NULL && |
871 | BN_nnmod(tmp, in, order, ctx) && |
872 | ec_bignum_to_scalar(group, out, tmp); |
873 | BN_CTX_end(ctx); |
874 | return ok; |
875 | } |
876 | |
877 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
878 | const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) { |
879 | // Previously, this function set |r| to the point at infinity if there was |
880 | // nothing to multiply. But, nobody should be calling this function with |
881 | // nothing to multiply in the first place. |
882 | if ((g_scalar == NULL && p_scalar == NULL) || |
883 | (p == NULL) != (p_scalar == NULL)) { |
884 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
885 | return 0; |
886 | } |
887 | |
888 | if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
889 | (p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) { |
890 | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
891 | return 0; |
892 | } |
893 | |
894 | int ret = 0; |
895 | BN_CTX *new_ctx = NULL; |
896 | if (ctx == NULL) { |
897 | new_ctx = BN_CTX_new(); |
898 | if (new_ctx == NULL) { |
899 | goto err; |
900 | } |
901 | ctx = new_ctx; |
902 | } |
903 | |
904 | // If both |g_scalar| and |p_scalar| are non-NULL, |
905 | // |ec_point_mul_scalar_public| would share the doublings between the two |
906 | // products, which would be more efficient. However, we conservatively assume |
907 | // the caller needs a constant-time operation. (ECDSA verification does not |
908 | // use this function.) |
909 | // |
910 | // Previously, the low-level constant-time multiplication function aligned |
911 | // with this function's calling convention, but this was misleading. Curves |
912 | // which combined the two multiplications did not avoid the doubling case |
913 | // in the incomplete addition formula and were not constant-time. |
914 | |
915 | if (g_scalar != NULL) { |
916 | EC_SCALAR scalar; |
917 | if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) || |
918 | !ec_point_mul_scalar_base(group, &r->raw, &scalar)) { |
919 | goto err; |
920 | } |
921 | } |
922 | |
923 | if (p_scalar != NULL) { |
924 | EC_SCALAR scalar; |
925 | EC_RAW_POINT tmp; |
926 | if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) || |
927 | !ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) { |
928 | goto err; |
929 | } |
930 | if (g_scalar == NULL) { |
931 | OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_RAW_POINT)); |
932 | } else { |
933 | group->meth->add(group, &r->raw, &r->raw, &tmp); |
934 | } |
935 | } |
936 | |
937 | ret = 1; |
938 | |
939 | err: |
940 | BN_CTX_free(new_ctx); |
941 | return ret; |
942 | } |
943 | |
944 | int ec_point_mul_scalar_public(const EC_GROUP *group, EC_RAW_POINT *r, |
945 | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
946 | const EC_SCALAR *p_scalar) { |
947 | if (g_scalar == NULL || p_scalar == NULL || p == NULL) { |
948 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
949 | return 0; |
950 | } |
951 | |
952 | group->meth->mul_public(group, r, g_scalar, p, p_scalar); |
953 | return 1; |
954 | } |
955 | |
956 | int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r, |
957 | const EC_RAW_POINT *p, const EC_SCALAR *scalar) { |
958 | if (p == NULL || scalar == NULL) { |
959 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
960 | return 0; |
961 | } |
962 | |
963 | group->meth->mul(group, r, p, scalar); |
964 | return 1; |
965 | } |
966 | |
967 | int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r, |
968 | const EC_SCALAR *scalar) { |
969 | if (scalar == NULL) { |
970 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
971 | return 0; |
972 | } |
973 | |
974 | group->meth->mul_base(group, r, scalar); |
975 | return 1; |
976 | } |
977 | |
978 | int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
979 | const EC_SCALAR *r) { |
980 | return group->meth->cmp_x_coordinate(group, p, r); |
981 | } |
982 | |
983 | int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, |
984 | const EC_RAW_POINT *p) { |
985 | EC_FELEM x; |
986 | // For simplicity, in case of width mismatches between |group->field| and |
987 | // |group->order|, zero any untouched words in |x|. |
988 | OPENSSL_memset(&x, 0, sizeof(x)); |
989 | if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) { |
990 | return 0; |
991 | } |
992 | |
993 | // We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we |
994 | // can reduce by performing at most one subtraction. |
995 | // |
996 | // Proof: We only work with prime order curves, so the number of points on |
997 | // the curve is the order. Thus Hasse's theorem gives: |
998 | // |
999 | // |order - (p + 1)| <= 2×sqrt(p) |
1000 | // p + 1 - order <= 2×sqrt(p) |
1001 | // p + 1 - 2×sqrt(p) <= order |
1002 | // p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17) |
1003 | // p/2 < p/2 + 1 < order |
1004 | // p < 2×order |
1005 | // |
1006 | // Additionally, one can manually check this property for built-in curves. It |
1007 | // is enforced for legacy custom curves in |EC_GROUP_set_generator|. |
1008 | |
1009 | // The above does not guarantee |group->field| is not one word larger than |
1010 | // |group->order|, so read one extra carry word. |
1011 | BN_ULONG carry = |
1012 | group->order.width < EC_MAX_WORDS ? x.words[group->order.width] : 0; |
1013 | bn_reduce_once(out->words, x.words, carry, group->order.d, |
1014 | group->order.width); |
1015 | return 1; |
1016 | } |
1017 | |
1018 | int ec_point_get_affine_coordinate_bytes(const EC_GROUP *group, uint8_t *out_x, |
1019 | uint8_t *out_y, size_t *out_len, |
1020 | size_t max_out, |
1021 | const EC_RAW_POINT *p) { |
1022 | size_t len = BN_num_bytes(&group->field); |
1023 | assert(len <= EC_MAX_BYTES); |
1024 | if (max_out < len) { |
1025 | OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
1026 | return 0; |
1027 | } |
1028 | |
1029 | EC_FELEM x, y; |
1030 | if (!group->meth->point_get_affine_coordinates( |
1031 | group, p, out_x == NULL ? NULL : &x, out_y == NULL ? NULL : &y)) { |
1032 | return 0; |
1033 | } |
1034 | |
1035 | if (out_x != NULL) { |
1036 | for (size_t i = 0; i < len; i++) { |
1037 | out_x[i] = x.bytes[len - i - 1]; |
1038 | } |
1039 | } |
1040 | if (out_y != NULL) { |
1041 | for (size_t i = 0; i < len; i++) { |
1042 | out_y[i] = y.bytes[len - i - 1]; |
1043 | } |
1044 | } |
1045 | *out_len = len; |
1046 | return 1; |
1047 | } |
1048 | |
1049 | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {} |
1050 | |
1051 | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { |
1052 | // This function exists purely to give callers a way to call |
1053 | // |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of| |
1054 | // returns NULL, so return some other garbage pointer. |
1055 | return (const EC_METHOD *)0x12340000; |
1056 | } |
1057 | |
1058 | int EC_METHOD_get_field_type(const EC_METHOD *meth) { |
1059 | return NID_X9_62_prime_field; |
1060 | } |
1061 | |
1062 | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, |
1063 | point_conversion_form_t form) { |
1064 | if (form != POINT_CONVERSION_UNCOMPRESSED) { |
1065 | abort(); |
1066 | } |
1067 | } |
1068 | |
1069 | size_t EC_get_builtin_curves(EC_builtin_curve *out_curves, |
1070 | size_t max_num_curves) { |
1071 | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
1072 | |
1073 | for (size_t i = 0; i < max_num_curves && i < OPENSSL_NUM_BUILT_IN_CURVES; |
1074 | i++) { |
1075 | out_curves[i].comment = curves->curves[i].comment; |
1076 | out_curves[i].nid = curves->curves[i].nid; |
1077 | } |
1078 | |
1079 | return OPENSSL_NUM_BUILT_IN_CURVES; |
1080 | } |
1081 | |