| 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkString.h" |
| 9 | #include "include/private/SkNx.h" |
| 10 | #include "src/core/SkArenaAlloc.h" |
| 11 | #include "src/core/SkAutoBlitterChoose.h" |
| 12 | #include "src/core/SkConvertPixels.h" |
| 13 | #include "src/core/SkCoreBlitters.h" |
| 14 | #include "src/core/SkDraw.h" |
| 15 | #include "src/core/SkMatrixProvider.h" |
| 16 | #include "src/core/SkRasterClip.h" |
| 17 | #include "src/core/SkRasterPipeline.h" |
| 18 | #include "src/core/SkScan.h" |
| 19 | #include "src/core/SkVertState.h" |
| 20 | #include "src/core/SkVerticesPriv.h" |
| 21 | #include "src/shaders/SkComposeShader.h" |
| 22 | #include "src/shaders/SkShaderBase.h" |
| 23 | |
| 24 | // Compute the crossing point (across zero) for the two values, expressed as a |
| 25 | // normalized 0...1 value. If curr is 0, returns 0. If next is 0, returns 1. |
| 26 | // |
| 27 | static float compute_t(float curr, float next) { |
| 28 | SkASSERT((curr > 0 && next <= 0) || (curr <= 0 && next > 0)); |
| 29 | float t = curr / (curr - next); |
| 30 | SkASSERT(t >= 0 && t <= 1); |
| 31 | return t; |
| 32 | } |
| 33 | |
| 34 | static SkPoint3 lerp(SkPoint3 curr, SkPoint3 next, float t) { |
| 35 | return curr + t * (next - curr); |
| 36 | } |
| 37 | |
| 38 | // tol is the nudge away from zero, to keep the numerics nice. |
| 39 | // Think of it as our near-clipping-plane (or w-plane). |
| 40 | static SkPoint3 clip(SkPoint3 curr, SkPoint3 next, float tol) { |
| 41 | // Return the point between curr and next where the fZ value corses tol. |
| 42 | // To be (really) perspective correct, we should be computing baesd on 1/Z, not Z. |
| 43 | // For now, this is close enough (and faster). |
| 44 | return lerp(curr, next, compute_t(curr.fZ - tol, next.fZ - tol)); |
| 45 | } |
| 46 | |
| 47 | constexpr int kMaxClippedTrianglePointCount = 4; |
| 48 | // Clip a triangle (based on its homogeneous W values), and return the projected polygon. |
| 49 | // Since we only clip against one "edge"/plane, the max number of points in the clipped |
| 50 | // polygon is 4. |
| 51 | static int clip_triangle(SkPoint dst[], const int idx[3], const SkPoint3 pts[]) { |
| 52 | SkPoint3 outPoints[4]; |
| 53 | SkPoint3* outP = outPoints; |
| 54 | const float tol = 0.05f; |
| 55 | |
| 56 | for (int i = 0; i < 3; ++i) { |
| 57 | int curr = idx[i]; |
| 58 | int next = idx[(i + 1) % 3]; |
| 59 | if (pts[curr].fZ > tol) { |
| 60 | *outP++ = pts[curr]; |
| 61 | if (pts[next].fZ <= tol) { // curr is IN, next is OUT |
| 62 | *outP++ = clip(pts[curr], pts[next], tol); |
| 63 | } |
| 64 | } else { |
| 65 | if (pts[next].fZ > tol) { // curr is OUT, next is IN |
| 66 | *outP++ = clip(pts[curr], pts[next], tol); |
| 67 | } |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | const int count = outP - outPoints; |
| 72 | SkASSERT(count == 0 || count == 3 || count == 4); |
| 73 | for (int i = 0; i < count; ++i) { |
| 74 | float scale = 1.0f / outPoints[i].fZ; |
| 75 | dst[i].set(outPoints[i].fX * scale, outPoints[i].fY * scale); |
| 76 | } |
| 77 | return count; |
| 78 | } |
| 79 | |
| 80 | struct Matrix43 { |
| 81 | float fMat[12]; // column major |
| 82 | |
| 83 | Sk4f map(float x, float y) const { |
| 84 | return Sk4f::Load(&fMat[0]) * x + Sk4f::Load(&fMat[4]) * y + Sk4f::Load(&fMat[8]); |
| 85 | } |
| 86 | |
| 87 | // Pass a by value, so we don't have to worry about aliasing with this |
| 88 | void setConcat(const Matrix43 a, const SkMatrix& b) { |
| 89 | SkASSERT(!b.hasPerspective()); |
| 90 | |
| 91 | fMat[ 0] = a.dot(0, b.getScaleX(), b.getSkewY()); |
| 92 | fMat[ 1] = a.dot(1, b.getScaleX(), b.getSkewY()); |
| 93 | fMat[ 2] = a.dot(2, b.getScaleX(), b.getSkewY()); |
| 94 | fMat[ 3] = a.dot(3, b.getScaleX(), b.getSkewY()); |
| 95 | |
| 96 | fMat[ 4] = a.dot(0, b.getSkewX(), b.getScaleY()); |
| 97 | fMat[ 5] = a.dot(1, b.getSkewX(), b.getScaleY()); |
| 98 | fMat[ 6] = a.dot(2, b.getSkewX(), b.getScaleY()); |
| 99 | fMat[ 7] = a.dot(3, b.getSkewX(), b.getScaleY()); |
| 100 | |
| 101 | fMat[ 8] = a.dot(0, b.getTranslateX(), b.getTranslateY()) + a.fMat[ 8]; |
| 102 | fMat[ 9] = a.dot(1, b.getTranslateX(), b.getTranslateY()) + a.fMat[ 9]; |
| 103 | fMat[10] = a.dot(2, b.getTranslateX(), b.getTranslateY()) + a.fMat[10]; |
| 104 | fMat[11] = a.dot(3, b.getTranslateX(), b.getTranslateY()) + a.fMat[11]; |
| 105 | } |
| 106 | |
| 107 | private: |
| 108 | float dot(int index, float x, float y) const { |
| 109 | return fMat[index + 0] * x + fMat[index + 4] * y; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | static bool SK_WARN_UNUSED_RESULT |
| 114 | texture_to_matrix(const VertState& state, const SkPoint verts[], const SkPoint texs[], |
| 115 | SkMatrix* matrix) { |
| 116 | SkPoint src[3], dst[3]; |
| 117 | |
| 118 | src[0] = texs[state.f0]; |
| 119 | src[1] = texs[state.f1]; |
| 120 | src[2] = texs[state.f2]; |
| 121 | dst[0] = verts[state.f0]; |
| 122 | dst[1] = verts[state.f1]; |
| 123 | dst[2] = verts[state.f2]; |
| 124 | return matrix->setPolyToPoly(src, dst, 3); |
| 125 | } |
| 126 | |
| 127 | class SkTriColorShader : public SkShaderBase { |
| 128 | public: |
| 129 | SkTriColorShader(bool isOpaque, bool usePersp) : fIsOpaque(isOpaque), fUsePersp(usePersp) {} |
| 130 | |
| 131 | // This gets called for each triangle, without re-calling onAppendStages. |
| 132 | bool update(const SkMatrix& ctmInv, const SkPoint pts[], const SkPMColor4f colors[], |
| 133 | int index0, int index1, int index2); |
| 134 | |
| 135 | protected: |
| 136 | #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| 137 | Context* onMakeContext(const ContextRec& rec, SkArenaAlloc* alloc) const override { |
| 138 | return nullptr; |
| 139 | } |
| 140 | #endif |
| 141 | bool onAppendStages(const SkStageRec& rec) const override { |
| 142 | rec.fPipeline->append(SkRasterPipeline::seed_shader); |
| 143 | if (fUsePersp) { |
| 144 | rec.fPipeline->append(SkRasterPipeline::matrix_perspective, &fM33); |
| 145 | } |
| 146 | rec.fPipeline->append(SkRasterPipeline::matrix_4x3, &fM43); |
| 147 | return true; |
| 148 | } |
| 149 | |
| 150 | private: |
| 151 | bool isOpaque() const override { return fIsOpaque; } |
| 152 | // For serialization. This will never be called. |
| 153 | Factory getFactory() const override { return nullptr; } |
| 154 | const char* getTypeName() const override { return nullptr; } |
| 155 | |
| 156 | // If fUsePersp, we need both of these matrices, |
| 157 | // otherwise we can combine them, and only use fM43 |
| 158 | |
| 159 | Matrix43 fM43; |
| 160 | SkMatrix fM33; |
| 161 | const bool fIsOpaque; |
| 162 | const bool fUsePersp; // controls our stages, and what we do in update() |
| 163 | |
| 164 | typedef SkShaderBase INHERITED; |
| 165 | }; |
| 166 | |
| 167 | bool SkTriColorShader::update(const SkMatrix& ctmInv, const SkPoint pts[], |
| 168 | const SkPMColor4f colors[], int index0, int index1, int index2) { |
| 169 | SkMatrix m, im; |
| 170 | m.reset(); |
| 171 | m.set(0, pts[index1].fX - pts[index0].fX); |
| 172 | m.set(1, pts[index2].fX - pts[index0].fX); |
| 173 | m.set(2, pts[index0].fX); |
| 174 | m.set(3, pts[index1].fY - pts[index0].fY); |
| 175 | m.set(4, pts[index2].fY - pts[index0].fY); |
| 176 | m.set(5, pts[index0].fY); |
| 177 | if (!m.invert(&im)) { |
| 178 | return false; |
| 179 | } |
| 180 | |
| 181 | fM33.setConcat(im, ctmInv); |
| 182 | |
| 183 | Sk4f c0 = Sk4f::Load(colors[index0].vec()), |
| 184 | c1 = Sk4f::Load(colors[index1].vec()), |
| 185 | c2 = Sk4f::Load(colors[index2].vec()); |
| 186 | |
| 187 | (c1 - c0).store(&fM43.fMat[0]); |
| 188 | (c2 - c0).store(&fM43.fMat[4]); |
| 189 | c0.store(&fM43.fMat[8]); |
| 190 | |
| 191 | if (!fUsePersp) { |
| 192 | fM43.setConcat(fM43, fM33); |
| 193 | } |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | // Convert the SkColors into float colors. The conversion depends on some conditions: |
| 198 | // - If the pixmap has a dst colorspace, we have to be "color-correct". |
| 199 | // Do we map into dst-colorspace before or after we interpolate? |
| 200 | // - We have to decide when to apply per-color alpha (before or after we interpolate) |
| 201 | // |
| 202 | // For now, we will take a simple approach, but recognize this is just a start: |
| 203 | // - convert colors into dst colorspace before interpolation (matches gradients) |
| 204 | // - apply per-color alpha before interpolation (matches old version of vertices) |
| 205 | // |
| 206 | static SkPMColor4f* convert_colors(const SkColor src[], int count, SkColorSpace* deviceCS, |
| 207 | SkArenaAlloc* alloc) { |
| 208 | SkPMColor4f* dst = alloc->makeArray<SkPMColor4f>(count); |
| 209 | SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType, |
| 210 | kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB()); |
| 211 | SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType, |
| 212 | kPremul_SkAlphaType, sk_ref_sp(deviceCS)); |
| 213 | SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0); |
| 214 | return dst; |
| 215 | } |
| 216 | |
| 217 | static bool compute_is_opaque(const SkColor colors[], int count) { |
| 218 | uint32_t c = ~0; |
| 219 | for (int i = 0; i < count; ++i) { |
| 220 | c &= colors[i]; |
| 221 | } |
| 222 | return SkColorGetA(c) == 0xFF; |
| 223 | } |
| 224 | |
| 225 | static void fill_triangle_2(const VertState& state, SkBlitter* blitter, const SkRasterClip& rc, |
| 226 | const SkPoint dev2[]) { |
| 227 | SkPoint tmp[] = { |
| 228 | dev2[state.f0], dev2[state.f1], dev2[state.f2] |
| 229 | }; |
| 230 | SkScan::FillTriangle(tmp, rc, blitter); |
| 231 | } |
| 232 | |
| 233 | static void fill_triangle_3(const VertState& state, SkBlitter* blitter, const SkRasterClip& rc, |
| 234 | const SkPoint3 dev3[]) { |
| 235 | SkPoint tmp[kMaxClippedTrianglePointCount]; |
| 236 | int idx[] = { state.f0, state.f1, state.f2 }; |
| 237 | if (int n = clip_triangle(tmp, idx, dev3)) { |
| 238 | // TODO: SkScan::FillConvexPoly(tmp, n, ...); |
| 239 | SkASSERT(n == 3 || n == 4); |
| 240 | SkScan::FillTriangle(tmp, rc, blitter); |
| 241 | if (n == 4) { |
| 242 | tmp[1] = tmp[2]; |
| 243 | tmp[2] = tmp[3]; |
| 244 | SkScan::FillTriangle(tmp, rc, blitter); |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | static void fill_triangle(const VertState& state, SkBlitter* blitter, const SkRasterClip& rc, |
| 249 | const SkPoint dev2[], const SkPoint3 dev3[]) { |
| 250 | if (dev3) { |
| 251 | fill_triangle_3(state, blitter, rc, dev3); |
| 252 | } else { |
| 253 | fill_triangle_2(state, blitter, rc, dev2); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | void SkDraw::draw_fixed_vertices(const SkVertices* vertices, SkBlendMode bmode, |
| 258 | const SkPaint& paint, const SkMatrix& ctmInv, |
| 259 | const SkPoint dev2[], const SkPoint3 dev3[], |
| 260 | SkArenaAlloc* outerAlloc) const { |
| 261 | SkVerticesPriv info(vertices->priv()); |
| 262 | SkASSERT(!info.hasCustomData()); |
| 263 | |
| 264 | const int vertexCount = info.vertexCount(); |
| 265 | const int indexCount = info.indexCount(); |
| 266 | const SkPoint* positions = info.positions(); |
| 267 | const SkPoint* textures = info.texCoords(); |
| 268 | const uint16_t* indices = info.indices(); |
| 269 | const SkColor* colors = info.colors(); |
| 270 | |
| 271 | // No need for texCoords without shader. If shader is present without explicit texCoords, |
| 272 | // use positions instead. |
| 273 | SkShader* shader = paint.getShader(); |
| 274 | if (!shader) { |
| 275 | textures = nullptr; |
| 276 | } else if (!textures) { |
| 277 | textures = positions; |
| 278 | } |
| 279 | |
| 280 | // We can simplify things for certain blendmodes. This is for speed, and SkComposeShader |
| 281 | // itself insists we don't pass kSrc or kDst to it. |
| 282 | // |
| 283 | if (colors && textures) { |
| 284 | switch (bmode) { |
| 285 | case SkBlendMode::kSrc: |
| 286 | colors = nullptr; |
| 287 | break; |
| 288 | case SkBlendMode::kDst: |
| 289 | textures = nullptr; |
| 290 | break; |
| 291 | default: break; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | // we don't use the shader if there are no textures |
| 296 | if (!textures) { |
| 297 | shader = nullptr; |
| 298 | } |
| 299 | |
| 300 | /* We need to know if we have perspective or not, so we can know what stage(s) we will need, |
| 301 | and how to prep our "uniforms" before each triangle in the tricolorshader. |
| 302 | |
| 303 | We could just check the matrix on each triangle to decide, but we have to be sure to always |
| 304 | make the same decision, since we create 1 or 2 stages only once for the entire patch. |
| 305 | |
| 306 | To be safe, we just make that determination here, and pass it into the tricolorshader. |
| 307 | */ |
| 308 | SkMatrix ctm = fMatrixProvider->localToDevice(); |
| 309 | const bool usePerspective = ctm.hasPerspective(); |
| 310 | |
| 311 | VertState state(vertexCount, indices, indexCount); |
| 312 | VertState::Proc vertProc = state.chooseProc(info.mode()); |
| 313 | |
| 314 | SkTriColorShader* triShader = nullptr; |
| 315 | SkPMColor4f* dstColors = nullptr; |
| 316 | |
| 317 | if (colors) { |
| 318 | dstColors = convert_colors(colors, vertexCount, fDst.colorSpace(), outerAlloc); |
| 319 | triShader = outerAlloc->make<SkTriColorShader>(compute_is_opaque(colors, vertexCount), |
| 320 | usePerspective); |
| 321 | if (shader) { |
| 322 | shader = outerAlloc->make<SkShader_Blend>(bmode, |
| 323 | sk_ref_sp(triShader), sk_ref_sp(shader)); |
| 324 | } else { |
| 325 | shader = triShader; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | SkPaint p(paint); |
| 330 | p.setShader(sk_ref_sp(shader)); |
| 331 | |
| 332 | if (!textures) { // only tricolor shader |
| 333 | if (auto blitter = SkCreateRasterPipelineBlitter(fDst, p, *fMatrixProvider, outerAlloc, |
| 334 | this->fRC->clipShader())) { |
| 335 | while (vertProc(&state)) { |
| 336 | if (triShader && |
| 337 | !triShader->update(ctmInv, positions, dstColors, |
| 338 | state.f0, state.f1, state.f2)) { |
| 339 | continue; |
| 340 | } |
| 341 | fill_triangle(state, blitter, *fRC, dev2, dev3); |
| 342 | } |
| 343 | } |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | SkRasterPipeline pipeline(outerAlloc); |
| 348 | SkStageRec rec = { |
| 349 | &pipeline, outerAlloc, fDst.colorType(), fDst.colorSpace(), p, nullptr, *fMatrixProvider |
| 350 | }; |
| 351 | if (auto updater = as_SB(shader)->appendUpdatableStages(rec)) { |
| 352 | bool isOpaque = shader->isOpaque(); |
| 353 | if (triShader) { |
| 354 | isOpaque = false; // unless we want to walk all the colors, and see if they are |
| 355 | // all opaque (and the blendmode will keep them that way |
| 356 | } |
| 357 | |
| 358 | // Positions as texCoords? The local matrix is always identity, so update once |
| 359 | if (textures == positions) { |
| 360 | SkMatrix localM; |
| 361 | if (!updater->update(ctm, &localM)) { |
| 362 | return; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | if (auto blitter = SkCreateRasterPipelineBlitter(fDst, p, pipeline, isOpaque, outerAlloc, |
| 367 | fRC->clipShader())) { |
| 368 | while (vertProc(&state)) { |
| 369 | if (triShader && !triShader->update(ctmInv, positions, dstColors, |
| 370 | state.f0, state.f1, state.f2)) { |
| 371 | continue; |
| 372 | } |
| 373 | |
| 374 | SkMatrix localM; |
| 375 | if ((textures == positions) || |
| 376 | (texture_to_matrix(state, positions, textures, &localM) && |
| 377 | updater->update(ctm, &localM))) { |
| 378 | fill_triangle(state, blitter, *fRC, dev2, dev3); |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | } else { |
| 383 | // must rebuild pipeline for each triangle, to pass in the computed ctm |
| 384 | while (vertProc(&state)) { |
| 385 | if (triShader && !triShader->update(ctmInv, positions, dstColors, |
| 386 | state.f0, state.f1, state.f2)) { |
| 387 | continue; |
| 388 | } |
| 389 | |
| 390 | SkSTArenaAlloc<2048> innerAlloc; |
| 391 | |
| 392 | const SkMatrixProvider* matrixProvider = fMatrixProvider; |
| 393 | SkTLazy<SkPreConcatMatrixProvider> preConcatMatrixProvider; |
| 394 | if (textures && (textures != positions)) { |
| 395 | SkMatrix localM; |
| 396 | if (!texture_to_matrix(state, positions, textures, &localM)) { |
| 397 | continue; |
| 398 | } |
| 399 | matrixProvider = preConcatMatrixProvider.init(*matrixProvider, localM); |
| 400 | } |
| 401 | |
| 402 | if (auto blitter = SkCreateRasterPipelineBlitter(fDst, p, *matrixProvider, &innerAlloc, |
| 403 | this->fRC->clipShader())) { |
| 404 | fill_triangle(state, blitter, *fRC, dev2, dev3); |
| 405 | } |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | void SkDraw::draw_vdata_vertices(const SkVertices* vt, const SkPaint& paint, |
| 411 | const SkMatrix& ctmInv, |
| 412 | const SkPoint dev2[], const SkPoint3 dev3[], |
| 413 | SkArenaAlloc* outerAlloc) const { |
| 414 | // TODO: Handle custom attributes |
| 415 | } |
| 416 | |
| 417 | void SkDraw::drawVertices(const SkVertices* vertices, SkBlendMode bmode, |
| 418 | const SkPaint& paint) const { |
| 419 | SkVerticesPriv info(vertices->priv()); |
| 420 | const int vertexCount = info.vertexCount(); |
| 421 | const int indexCount = info.indexCount(); |
| 422 | |
| 423 | // abort early if there is nothing to draw |
| 424 | if (vertexCount < 3 || (indexCount > 0 && indexCount < 3) || fRC->isEmpty()) { |
| 425 | return; |
| 426 | } |
| 427 | SkMatrix ctm = fMatrixProvider->localToDevice(); |
| 428 | SkMatrix ctmInv; |
| 429 | if (!ctm.invert(&ctmInv)) { |
| 430 | return; |
| 431 | } |
| 432 | |
| 433 | constexpr size_t kDefVertexCount = 16; |
| 434 | constexpr size_t kOuterSize = sizeof(SkTriColorShader) + |
| 435 | sizeof(SkShader_Blend) + |
| 436 | (2 * sizeof(SkPoint) + sizeof(SkColor4f)) * kDefVertexCount; |
| 437 | SkSTArenaAlloc<kOuterSize> outerAlloc; |
| 438 | |
| 439 | SkPoint* dev2 = nullptr; |
| 440 | SkPoint3* dev3 = nullptr; |
| 441 | |
| 442 | if (ctm.hasPerspective()) { |
| 443 | dev3 = outerAlloc.makeArray<SkPoint3>(vertexCount); |
| 444 | ctm.mapHomogeneousPoints(dev3, info.positions(), vertexCount); |
| 445 | // similar to the bounds check for 2d points (below) |
| 446 | if (!SkScalarsAreFinite((const SkScalar*)dev3, vertexCount * 3)) { |
| 447 | return; |
| 448 | } |
| 449 | } else { |
| 450 | dev2 = outerAlloc.makeArray<SkPoint>(vertexCount); |
| 451 | ctm.mapPoints(dev2, info.positions(), vertexCount); |
| 452 | |
| 453 | SkRect bounds; |
| 454 | // this also sets bounds to empty if we see a non-finite value |
| 455 | bounds.setBounds(dev2, vertexCount); |
| 456 | if (bounds.isEmpty()) { |
| 457 | return; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | if (!info.hasCustomData()) { |
| 462 | this->draw_fixed_vertices(vertices, bmode, paint, ctmInv, dev2, dev3, &outerAlloc); |
| 463 | } else { |
| 464 | this->draw_vdata_vertices(vertices, paint, ctmInv, dev2, dev3, &outerAlloc); |
| 465 | } |
| 466 | } |
| 467 | |