1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/GrDrawOpAtlas.h" |
9 | |
10 | #include <memory> |
11 | |
12 | #include "src/core/SkOpts.h" |
13 | #include "src/gpu/GrOnFlushResourceProvider.h" |
14 | #include "src/gpu/GrOpFlushState.h" |
15 | #include "src/gpu/GrProxyProvider.h" |
16 | #include "src/gpu/GrResourceProvider.h" |
17 | #include "src/gpu/GrResourceProviderPriv.h" |
18 | #include "src/gpu/GrSurfaceProxyPriv.h" |
19 | #include "src/gpu/GrTexture.h" |
20 | #include "src/gpu/GrTracing.h" |
21 | |
22 | #ifdef DUMP_ATLAS_DATA |
23 | static bool gDumpAtlasData = false; |
24 | #endif |
25 | |
26 | std::array<uint16_t, 4> GrDrawOpAtlas::AtlasLocator::getUVs() const { |
27 | |
28 | // We pack the 2bit page index in the low bit of the u and v texture coords |
29 | uint32_t pageIndex = this->pageIndex(); |
30 | auto [left, top] = PackIndexInTexCoords(fRect.fLeft, fRect.fTop, pageIndex); |
31 | auto [right, bottom] = PackIndexInTexCoords(fRect.fRight, fRect.fBottom, pageIndex); |
32 | return { left, top, right, bottom }; |
33 | } |
34 | |
35 | #ifdef SK_DEBUG |
36 | void GrDrawOpAtlas::AtlasLocator::validate(const GrDrawOpAtlas* drawOpAtlas) const { |
37 | // Verify that the plotIndex stored in the PlotLocator is consistent with the glyph rectangle |
38 | int numPlotsX = drawOpAtlas->fTextureWidth / drawOpAtlas->fPlotWidth; |
39 | int numPlotsY = drawOpAtlas->fTextureHeight / drawOpAtlas->fPlotHeight; |
40 | |
41 | int plotIndex = this->plotIndex(); |
42 | int plotX = fRect.fLeft / drawOpAtlas->fPlotWidth; |
43 | int plotY = fRect.fTop / drawOpAtlas->fPlotHeight; |
44 | SkASSERT(plotIndex == (numPlotsY - plotY - 1) * numPlotsX + (numPlotsX - plotX - 1)); |
45 | } |
46 | #endif |
47 | |
48 | // When proxy allocation is deferred until flush time the proxies acting as atlases require |
49 | // special handling. This is because the usage that can be determined from the ops themselves |
50 | // isn't sufficient. Independent of the ops there will be ASAP and inline uploads to the |
51 | // atlases. Extending the usage interval of any op that uses an atlas to the start of the |
52 | // flush (as is done for proxies that are used for sw-generated masks) also won't work because |
53 | // the atlas persists even beyond the last use in an op - for a given flush. Given this, atlases |
54 | // must explicitly manage the lifetime of their backing proxies via the onFlushCallback system |
55 | // (which calls this method). |
56 | void GrDrawOpAtlas::instantiate(GrOnFlushResourceProvider* onFlushResourceProvider) { |
57 | for (uint32_t i = 0; i < fNumActivePages; ++i) { |
58 | // All the atlas pages are now instantiated at flush time in the activeNewPage method. |
59 | SkASSERT(fViews[i].proxy() && fViews[i].proxy()->isInstantiated()); |
60 | } |
61 | } |
62 | |
63 | std::unique_ptr<GrDrawOpAtlas> GrDrawOpAtlas::Make(GrProxyProvider* proxyProvider, |
64 | const GrBackendFormat& format, |
65 | GrColorType colorType, int width, |
66 | int height, int plotWidth, int plotHeight, |
67 | GenerationCounter* generationCounter, |
68 | AllowMultitexturing allowMultitexturing, |
69 | EvictionCallback* evictor) { |
70 | if (!format.isValid()) { |
71 | return nullptr; |
72 | } |
73 | |
74 | std::unique_ptr<GrDrawOpAtlas> atlas(new GrDrawOpAtlas(proxyProvider, format, colorType, |
75 | width, height, plotWidth, plotHeight, |
76 | generationCounter, |
77 | allowMultitexturing)); |
78 | if (!atlas->getViews()[0].proxy()) { |
79 | return nullptr; |
80 | } |
81 | |
82 | if (evictor != nullptr) { |
83 | atlas->fEvictionCallbacks.emplace_back(evictor); |
84 | } |
85 | return atlas; |
86 | } |
87 | |
88 | // The two bits that make up the texture index are packed into the lower bits of the u and v |
89 | // coordinate respectively. |
90 | std::pair<uint16_t, uint16_t> GrDrawOpAtlas::PackIndexInTexCoords(uint16_t u, uint16_t v, |
91 | int pageIndex) { |
92 | SkASSERT(pageIndex >= 0 && pageIndex < 4); |
93 | uint16_t uBit = (pageIndex >> 1u) & 0x1u; |
94 | uint16_t vBit = pageIndex & 0x1u; |
95 | u <<= 1u; |
96 | u |= uBit; |
97 | v <<= 1u; |
98 | v |= vBit; |
99 | return std::make_pair(u, v); |
100 | } |
101 | |
102 | std::tuple<uint16_t, uint16_t, int> GrDrawOpAtlas::UnpackIndexFromTexCoords(uint16_t u, |
103 | uint16_t v) { |
104 | int pageIndex = 0; |
105 | if (u & 0x1) { |
106 | pageIndex |= 0x2; |
107 | } |
108 | if (v & 0x1) { |
109 | pageIndex |= 0x1; |
110 | } |
111 | return std::make_tuple(u >> 1, v >> 1, pageIndex); |
112 | } |
113 | |
114 | //////////////////////////////////////////////////////////////////////////////// |
115 | GrDrawOpAtlas::Plot::Plot(int pageIndex, int plotIndex, GenerationCounter* generationCounter, |
116 | int offX, int offY, int width, int height, GrColorType colorType) |
117 | : fLastUpload(GrDeferredUploadToken::AlreadyFlushedToken()) |
118 | , fLastUse(GrDeferredUploadToken::AlreadyFlushedToken()) |
119 | , fFlushesSinceLastUse(0) |
120 | , fPageIndex(pageIndex) |
121 | , fPlotIndex(plotIndex) |
122 | , fGenerationCounter(generationCounter) |
123 | , fGenID(fGenerationCounter->next()) |
124 | , fPlotLocator(fPageIndex, fPlotIndex, fGenID) |
125 | , fData(nullptr) |
126 | , fWidth(width) |
127 | , fHeight(height) |
128 | , fX(offX) |
129 | , fY(offY) |
130 | , fRectanizer(width, height) |
131 | , fOffset(SkIPoint16::Make(fX * fWidth, fY * fHeight)) |
132 | , fColorType(colorType) |
133 | , fBytesPerPixel(GrColorTypeBytesPerPixel(colorType)) |
134 | #ifdef SK_DEBUG |
135 | , fDirty(false) |
136 | #endif |
137 | { |
138 | // We expect the allocated dimensions to be a multiple of 4 bytes |
139 | SkASSERT(((width*fBytesPerPixel) & 0x3) == 0); |
140 | // The padding for faster uploads only works for 1, 2 and 4 byte texels |
141 | SkASSERT(fBytesPerPixel != 3 && fBytesPerPixel <= 4); |
142 | fDirtyRect.setEmpty(); |
143 | } |
144 | |
145 | GrDrawOpAtlas::Plot::~Plot() { |
146 | sk_free(fData); |
147 | } |
148 | |
149 | bool GrDrawOpAtlas::Plot::addSubImage(int width, int height, const void* image, GrIRect16* rect) { |
150 | SkASSERT(width <= fWidth && height <= fHeight); |
151 | |
152 | SkIPoint16 loc; |
153 | if (!fRectanizer.addRect(width, height, &loc)) { |
154 | return false; |
155 | } |
156 | |
157 | *rect = GrIRect16::MakeXYWH(loc.fX, loc.fY, width, height); |
158 | |
159 | if (!fData) { |
160 | fData = reinterpret_cast<unsigned char*>(sk_calloc_throw(fBytesPerPixel * fWidth * |
161 | fHeight)); |
162 | } |
163 | size_t rowBytes = width * fBytesPerPixel; |
164 | const unsigned char* imagePtr = (const unsigned char*)image; |
165 | // point ourselves at the right starting spot |
166 | unsigned char* dataPtr = fData; |
167 | dataPtr += fBytesPerPixel * fWidth * rect->fTop; |
168 | dataPtr += fBytesPerPixel * rect->fLeft; |
169 | // copy into the data buffer, swizzling as we go if this is ARGB data |
170 | if (4 == fBytesPerPixel && kN32_SkColorType == kBGRA_8888_SkColorType) { |
171 | for (int i = 0; i < height; ++i) { |
172 | SkOpts::RGBA_to_BGRA((uint32_t*)dataPtr, (const uint32_t*)imagePtr, width); |
173 | dataPtr += fBytesPerPixel * fWidth; |
174 | imagePtr += rowBytes; |
175 | } |
176 | } else { |
177 | for (int i = 0; i < height; ++i) { |
178 | memcpy(dataPtr, imagePtr, rowBytes); |
179 | dataPtr += fBytesPerPixel * fWidth; |
180 | imagePtr += rowBytes; |
181 | } |
182 | } |
183 | |
184 | fDirtyRect.join({rect->fLeft, rect->fTop, rect->fRight, rect->fBottom}); |
185 | |
186 | rect->offset(fOffset.fX, fOffset.fY); |
187 | SkDEBUGCODE(fDirty = true;) |
188 | |
189 | return true; |
190 | } |
191 | |
192 | void GrDrawOpAtlas::Plot::uploadToTexture(GrDeferredTextureUploadWritePixelsFn& writePixels, |
193 | GrTextureProxy* proxy) { |
194 | // We should only be issuing uploads if we are in fact dirty |
195 | SkASSERT(fDirty && fData && proxy && proxy->peekTexture()); |
196 | TRACE_EVENT0("skia.gpu" , TRACE_FUNC); |
197 | size_t rowBytes = fBytesPerPixel * fWidth; |
198 | const unsigned char* dataPtr = fData; |
199 | // Clamp to 4-byte aligned boundaries |
200 | unsigned int clearBits = 0x3 / fBytesPerPixel; |
201 | fDirtyRect.fLeft &= ~clearBits; |
202 | fDirtyRect.fRight += clearBits; |
203 | fDirtyRect.fRight &= ~clearBits; |
204 | SkASSERT(fDirtyRect.fRight <= fWidth); |
205 | // Set up dataPtr |
206 | dataPtr += rowBytes * fDirtyRect.fTop; |
207 | dataPtr += fBytesPerPixel * fDirtyRect.fLeft; |
208 | |
209 | writePixels(proxy, fOffset.fX + fDirtyRect.fLeft, fOffset.fY + fDirtyRect.fTop, |
210 | fDirtyRect.width(), fDirtyRect.height(), fColorType, dataPtr, rowBytes); |
211 | fDirtyRect.setEmpty(); |
212 | SkDEBUGCODE(fDirty = false;) |
213 | } |
214 | |
215 | void GrDrawOpAtlas::Plot::resetRects() { |
216 | fRectanizer.reset(); |
217 | |
218 | fGenID = fGenerationCounter->next(); |
219 | fPlotLocator = PlotLocator(fPageIndex, fPlotIndex, fGenID); |
220 | fLastUpload = GrDeferredUploadToken::AlreadyFlushedToken(); |
221 | fLastUse = GrDeferredUploadToken::AlreadyFlushedToken(); |
222 | |
223 | // zero out the plot |
224 | if (fData) { |
225 | sk_bzero(fData, fBytesPerPixel * fWidth * fHeight); |
226 | } |
227 | |
228 | fDirtyRect.setEmpty(); |
229 | SkDEBUGCODE(fDirty = false;) |
230 | } |
231 | |
232 | /////////////////////////////////////////////////////////////////////////////// |
233 | |
234 | GrDrawOpAtlas::GrDrawOpAtlas(GrProxyProvider* proxyProvider, const GrBackendFormat& format, |
235 | GrColorType colorType, int width, int height, |
236 | int plotWidth, int plotHeight, GenerationCounter* generationCounter, |
237 | AllowMultitexturing allowMultitexturing) |
238 | : fFormat(format) |
239 | , fColorType(colorType) |
240 | , fTextureWidth(width) |
241 | , fTextureHeight(height) |
242 | , fPlotWidth(plotWidth) |
243 | , fPlotHeight(plotHeight) |
244 | , fGenerationCounter(generationCounter) |
245 | , fAtlasGeneration(fGenerationCounter->next()) |
246 | , fPrevFlushToken(GrDeferredUploadToken::AlreadyFlushedToken()) |
247 | , fFlushesSinceLastUse(0) |
248 | , fMaxPages(AllowMultitexturing::kYes == allowMultitexturing ? kMaxMultitexturePages : 1) |
249 | , fNumActivePages(0) { |
250 | int numPlotsX = width/plotWidth; |
251 | int numPlotsY = height/plotHeight; |
252 | SkASSERT(numPlotsX * numPlotsY <= GrDrawOpAtlas::kMaxPlots); |
253 | SkASSERT(fPlotWidth * numPlotsX == fTextureWidth); |
254 | SkASSERT(fPlotHeight * numPlotsY == fTextureHeight); |
255 | |
256 | fNumPlots = numPlotsX * numPlotsY; |
257 | |
258 | this->createPages(proxyProvider, generationCounter); |
259 | } |
260 | |
261 | inline void GrDrawOpAtlas::processEviction(PlotLocator plotLocator) { |
262 | for (EvictionCallback* evictor : fEvictionCallbacks) { |
263 | evictor->evict(plotLocator); |
264 | } |
265 | |
266 | fAtlasGeneration = fGenerationCounter->next(); |
267 | } |
268 | |
269 | inline bool GrDrawOpAtlas::updatePlot(GrDeferredUploadTarget* target, |
270 | AtlasLocator* atlasLocator, Plot* plot) { |
271 | int pageIdx = plot->pageIndex(); |
272 | this->makeMRU(plot, pageIdx); |
273 | |
274 | // If our most recent upload has already occurred then we have to insert a new |
275 | // upload. Otherwise, we already have a scheduled upload that hasn't yet ocurred. |
276 | // This new update will piggy back on that previously scheduled update. |
277 | if (plot->lastUploadToken() < target->tokenTracker()->nextTokenToFlush()) { |
278 | // With c+14 we could move sk_sp into lamba to only ref once. |
279 | sk_sp<Plot> plotsp(SkRef(plot)); |
280 | |
281 | GrTextureProxy* proxy = fViews[pageIdx].asTextureProxy(); |
282 | SkASSERT(proxy && proxy->isInstantiated()); // This is occurring at flush time |
283 | |
284 | GrDeferredUploadToken lastUploadToken = target->addASAPUpload( |
285 | [plotsp, proxy](GrDeferredTextureUploadWritePixelsFn& writePixels) { |
286 | plotsp->uploadToTexture(writePixels, proxy); |
287 | }); |
288 | plot->setLastUploadToken(lastUploadToken); |
289 | } |
290 | atlasLocator->fPlotLocator = plot->plotLocator(); |
291 | SkDEBUGCODE(atlasLocator->validate(this);) |
292 | return true; |
293 | } |
294 | |
295 | bool GrDrawOpAtlas::uploadToPage(const GrCaps& caps, unsigned int pageIdx, |
296 | GrDeferredUploadTarget* target, int width, int height, |
297 | const void* image, AtlasLocator* atlasLocator) { |
298 | SkASSERT(fViews[pageIdx].proxy() && fViews[pageIdx].proxy()->isInstantiated()); |
299 | |
300 | // look through all allocated plots for one we can share, in Most Recently Refed order |
301 | PlotList::Iter plotIter; |
302 | plotIter.init(fPages[pageIdx].fPlotList, PlotList::Iter::kHead_IterStart); |
303 | |
304 | for (Plot* plot = plotIter.get(); plot; plot = plotIter.next()) { |
305 | SkASSERT(caps.bytesPerPixel(fViews[pageIdx].proxy()->backendFormat()) == plot->bpp()); |
306 | |
307 | if (plot->addSubImage(width, height, image, &atlasLocator->fRect)) { |
308 | return this->updatePlot(target, atlasLocator, plot); |
309 | } |
310 | } |
311 | |
312 | return false; |
313 | } |
314 | |
315 | // Number of atlas-related flushes beyond which we consider a plot to no longer be in use. |
316 | // |
317 | // This value is somewhat arbitrary -- the idea is to keep it low enough that |
318 | // a page with unused plots will get removed reasonably quickly, but allow it |
319 | // to hang around for a bit in case it's needed. The assumption is that flushes |
320 | // are rare; i.e., we are not continually refreshing the frame. |
321 | static constexpr auto kPlotRecentlyUsedCount = 32; |
322 | static constexpr auto kAtlasRecentlyUsedCount = 128; |
323 | |
324 | GrDrawOpAtlas::ErrorCode GrDrawOpAtlas::addToAtlas(GrResourceProvider* resourceProvider, |
325 | GrDeferredUploadTarget* target, |
326 | int width, int height, const void* image, |
327 | AtlasLocator* atlasLocator) { |
328 | if (width > fPlotWidth || height > fPlotHeight) { |
329 | return ErrorCode::kError; |
330 | } |
331 | |
332 | const GrCaps& caps = *resourceProvider->caps(); |
333 | |
334 | // Look through each page to see if we can upload without having to flush |
335 | // We prioritize this upload to the first pages, not the most recently used, to make it easier |
336 | // to remove unused pages in reverse page order. |
337 | for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { |
338 | if (this->uploadToPage(caps, pageIdx, target, width, height, image, atlasLocator)) { |
339 | return ErrorCode::kSucceeded; |
340 | } |
341 | } |
342 | |
343 | // If the above fails, then see if the least recently used plot per page has already been |
344 | // flushed to the gpu if we're at max page allocation, or if the plot has aged out otherwise. |
345 | // We wait until we've grown to the full number of pages to begin evicting already flushed |
346 | // plots so that we can maximize the opportunity for reuse. |
347 | // As before we prioritize this upload to the first pages, not the most recently used. |
348 | if (fNumActivePages == this->maxPages()) { |
349 | for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) { |
350 | Plot* plot = fPages[pageIdx].fPlotList.tail(); |
351 | SkASSERT(plot); |
352 | if (plot->lastUseToken() < target->tokenTracker()->nextTokenToFlush()) { |
353 | this->processEvictionAndResetRects(plot); |
354 | SkASSERT(caps.bytesPerPixel(fViews[pageIdx].proxy()->backendFormat()) == |
355 | plot->bpp()); |
356 | SkDEBUGCODE(bool verify = )plot->addSubImage(width, height, image, |
357 | &atlasLocator->fRect); |
358 | SkASSERT(verify); |
359 | if (!this->updatePlot(target, atlasLocator, plot)) { |
360 | return ErrorCode::kError; |
361 | } |
362 | return ErrorCode::kSucceeded; |
363 | } |
364 | } |
365 | } else { |
366 | // If we haven't activated all the available pages, try to create a new one and add to it |
367 | if (!this->activateNewPage(resourceProvider)) { |
368 | return ErrorCode::kError; |
369 | } |
370 | |
371 | if (this->uploadToPage(caps, fNumActivePages-1, target, width, height, image, |
372 | atlasLocator)) { |
373 | return ErrorCode::kSucceeded; |
374 | } else { |
375 | // If we fail to upload to a newly activated page then something has gone terribly |
376 | // wrong - return an error |
377 | return ErrorCode::kError; |
378 | } |
379 | } |
380 | |
381 | if (!fNumActivePages) { |
382 | return ErrorCode::kError; |
383 | } |
384 | |
385 | // Try to find a plot that we can perform an inline upload to. |
386 | // We prioritize this upload in reverse order of pages to counterbalance the order above. |
387 | Plot* plot = nullptr; |
388 | for (int pageIdx = ((int)fNumActivePages)-1; pageIdx >= 0; --pageIdx) { |
389 | Plot* currentPlot = fPages[pageIdx].fPlotList.tail(); |
390 | if (currentPlot->lastUseToken() != target->tokenTracker()->nextDrawToken()) { |
391 | plot = currentPlot; |
392 | break; |
393 | } |
394 | } |
395 | |
396 | // If we can't find a plot that is not used in a draw currently being prepared by an op, then |
397 | // we have to fail. This gives the op a chance to enqueue the draw, and call back into this |
398 | // function. When that draw is enqueued, the draw token advances, and the subsequent call will |
399 | // continue past this branch and prepare an inline upload that will occur after the enqueued |
400 | // draw which references the plot's pre-upload content. |
401 | if (!plot) { |
402 | return ErrorCode::kTryAgain; |
403 | } |
404 | |
405 | this->processEviction(plot->plotLocator()); |
406 | int pageIdx = plot->pageIndex(); |
407 | fPages[pageIdx].fPlotList.remove(plot); |
408 | sk_sp<Plot>& newPlot = fPages[pageIdx].fPlotArray[plot->plotIndex()]; |
409 | newPlot.reset(plot->clone()); |
410 | |
411 | fPages[pageIdx].fPlotList.addToHead(newPlot.get()); |
412 | SkASSERT(caps.bytesPerPixel(fViews[pageIdx].proxy()->backendFormat()) == newPlot->bpp()); |
413 | SkDEBUGCODE(bool verify = )newPlot->addSubImage(width, height, image, &atlasLocator->fRect); |
414 | SkASSERT(verify); |
415 | |
416 | // Note that this plot will be uploaded inline with the draws whereas the |
417 | // one it displaced most likely was uploaded ASAP. |
418 | // With c++14 we could move sk_sp into lambda to only ref once. |
419 | sk_sp<Plot> plotsp(SkRef(newPlot.get())); |
420 | |
421 | GrTextureProxy* proxy = fViews[pageIdx].asTextureProxy(); |
422 | SkASSERT(proxy && proxy->isInstantiated()); |
423 | |
424 | GrDeferredUploadToken lastUploadToken = target->addInlineUpload( |
425 | [plotsp, proxy](GrDeferredTextureUploadWritePixelsFn& writePixels) { |
426 | plotsp->uploadToTexture(writePixels, proxy); |
427 | }); |
428 | newPlot->setLastUploadToken(lastUploadToken); |
429 | |
430 | atlasLocator->fPlotLocator = newPlot->plotLocator(); |
431 | SkDEBUGCODE(atlasLocator->validate(this);) |
432 | |
433 | return ErrorCode::kSucceeded; |
434 | } |
435 | |
436 | void GrDrawOpAtlas::compact(GrDeferredUploadToken startTokenForNextFlush) { |
437 | if (fNumActivePages < 1) { |
438 | fPrevFlushToken = startTokenForNextFlush; |
439 | return; |
440 | } |
441 | |
442 | // For all plots, reset number of flushes since used if used this frame. |
443 | PlotList::Iter plotIter; |
444 | bool atlasUsedThisFlush = false; |
445 | for (uint32_t pageIndex = 0; pageIndex < fNumActivePages; ++pageIndex) { |
446 | plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
447 | while (Plot* plot = plotIter.get()) { |
448 | // Reset number of flushes since used |
449 | if (plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { |
450 | plot->resetFlushesSinceLastUsed(); |
451 | atlasUsedThisFlush = true; |
452 | } |
453 | |
454 | plotIter.next(); |
455 | } |
456 | } |
457 | |
458 | if (atlasUsedThisFlush) { |
459 | fFlushesSinceLastUse = 0; |
460 | } else { |
461 | ++fFlushesSinceLastUse; |
462 | } |
463 | |
464 | // We only try to compact if the atlas was used in the recently completed flush or |
465 | // hasn't been used in a long time. |
466 | // This is to handle the case where a lot of text or path rendering has occurred but then just |
467 | // a blinking cursor is drawn. |
468 | if (atlasUsedThisFlush || fFlushesSinceLastUse > kAtlasRecentlyUsedCount) { |
469 | SkTArray<Plot*> availablePlots; |
470 | uint32_t lastPageIndex = fNumActivePages - 1; |
471 | |
472 | // For all plots but the last one, update number of flushes since used, and check to see |
473 | // if there are any in the first pages that the last page can safely upload to. |
474 | for (uint32_t pageIndex = 0; pageIndex < lastPageIndex; ++pageIndex) { |
475 | #ifdef DUMP_ATLAS_DATA |
476 | if (gDumpAtlasData) { |
477 | SkDebugf("page %d: " , pageIndex); |
478 | } |
479 | #endif |
480 | plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
481 | while (Plot* plot = plotIter.get()) { |
482 | // Update number of flushes since plot was last used |
483 | // We only increment the 'sinceLastUsed' count for flushes where the atlas was used |
484 | // to avoid deleting everything when we return to text drawing in the blinking |
485 | // cursor case |
486 | if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { |
487 | plot->incFlushesSinceLastUsed(); |
488 | } |
489 | |
490 | #ifdef DUMP_ATLAS_DATA |
491 | if (gDumpAtlasData) { |
492 | SkDebugf("%d " , plot->flushesSinceLastUsed()); |
493 | } |
494 | #endif |
495 | // Count plots we can potentially upload to in all pages except the last one |
496 | // (the potential compactee). |
497 | if (plot->flushesSinceLastUsed() > kPlotRecentlyUsedCount) { |
498 | availablePlots.push_back() = plot; |
499 | } |
500 | |
501 | plotIter.next(); |
502 | } |
503 | #ifdef DUMP_ATLAS_DATA |
504 | if (gDumpAtlasData) { |
505 | SkDebugf("\n" ); |
506 | } |
507 | #endif |
508 | } |
509 | |
510 | // Count recently used plots in the last page and evict any that are no longer in use. |
511 | // Since we prioritize uploading to the first pages, this will eventually |
512 | // clear out usage of this page unless we have a large need. |
513 | plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
514 | unsigned int usedPlots = 0; |
515 | #ifdef DUMP_ATLAS_DATA |
516 | if (gDumpAtlasData) { |
517 | SkDebugf("page %d: " , lastPageIndex); |
518 | } |
519 | #endif |
520 | while (Plot* plot = plotIter.get()) { |
521 | // Update number of flushes since plot was last used |
522 | if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) { |
523 | plot->incFlushesSinceLastUsed(); |
524 | } |
525 | |
526 | #ifdef DUMP_ATLAS_DATA |
527 | if (gDumpAtlasData) { |
528 | SkDebugf("%d " , plot->flushesSinceLastUsed()); |
529 | } |
530 | #endif |
531 | // If this plot was used recently |
532 | if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) { |
533 | usedPlots++; |
534 | } else if (plot->lastUseToken() != GrDeferredUploadToken::AlreadyFlushedToken()) { |
535 | // otherwise if aged out just evict it. |
536 | this->processEvictionAndResetRects(plot); |
537 | } |
538 | plotIter.next(); |
539 | } |
540 | #ifdef DUMP_ATLAS_DATA |
541 | if (gDumpAtlasData) { |
542 | SkDebugf("\n" ); |
543 | } |
544 | #endif |
545 | |
546 | // If recently used plots in the last page are using less than a quarter of the page, try |
547 | // to evict them if there's available space in earlier pages. Since we prioritize uploading |
548 | // to the first pages, this will eventually clear out usage of this page unless we have a |
549 | // large need. |
550 | if (availablePlots.count() && usedPlots && usedPlots <= fNumPlots / 4) { |
551 | plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart); |
552 | while (Plot* plot = plotIter.get()) { |
553 | // If this plot was used recently |
554 | if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) { |
555 | // See if there's room in an earlier page and if so evict. |
556 | // We need to be somewhat harsh here so that a handful of plots that are |
557 | // consistently in use don't end up locking the page in memory. |
558 | if (availablePlots.count() > 0) { |
559 | this->processEvictionAndResetRects(plot); |
560 | this->processEvictionAndResetRects(availablePlots.back()); |
561 | availablePlots.pop_back(); |
562 | --usedPlots; |
563 | } |
564 | if (!usedPlots || !availablePlots.count()) { |
565 | break; |
566 | } |
567 | } |
568 | plotIter.next(); |
569 | } |
570 | } |
571 | |
572 | // If none of the plots in the last page have been used recently, delete it. |
573 | if (!usedPlots) { |
574 | #ifdef DUMP_ATLAS_DATA |
575 | if (gDumpAtlasData) { |
576 | SkDebugf("delete %d\n" , fNumActivePages-1); |
577 | } |
578 | #endif |
579 | this->deactivateLastPage(); |
580 | fFlushesSinceLastUse = 0; |
581 | } |
582 | } |
583 | |
584 | fPrevFlushToken = startTokenForNextFlush; |
585 | } |
586 | |
587 | bool GrDrawOpAtlas::createPages( |
588 | GrProxyProvider* proxyProvider, GenerationCounter* generationCounter) { |
589 | SkASSERT(SkIsPow2(fTextureWidth) && SkIsPow2(fTextureHeight)); |
590 | |
591 | SkISize dims = {fTextureWidth, fTextureHeight}; |
592 | |
593 | int numPlotsX = fTextureWidth/fPlotWidth; |
594 | int numPlotsY = fTextureHeight/fPlotHeight; |
595 | |
596 | for (uint32_t i = 0; i < this->maxPages(); ++i) { |
597 | GrSwizzle swizzle = proxyProvider->caps()->getReadSwizzle(fFormat, fColorType); |
598 | sk_sp<GrSurfaceProxy> proxy = proxyProvider->createProxy( |
599 | fFormat, dims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact, |
600 | SkBudgeted::kYes, GrProtected::kNo, GrInternalSurfaceFlags::kNone, |
601 | GrSurfaceProxy::UseAllocator::kNo); |
602 | if (!proxy) { |
603 | return false; |
604 | } |
605 | fViews[i] = GrSurfaceProxyView(std::move(proxy), kTopLeft_GrSurfaceOrigin, swizzle); |
606 | |
607 | // set up allocated plots |
608 | fPages[i].fPlotArray = std::make_unique<sk_sp<Plot>[]>(numPlotsX * numPlotsY); |
609 | |
610 | sk_sp<Plot>* currPlot = fPages[i].fPlotArray.get(); |
611 | for (int y = numPlotsY - 1, r = 0; y >= 0; --y, ++r) { |
612 | for (int x = numPlotsX - 1, c = 0; x >= 0; --x, ++c) { |
613 | uint32_t plotIndex = r * numPlotsX + c; |
614 | currPlot->reset(new Plot( |
615 | i, plotIndex, generationCounter, x, y, fPlotWidth, fPlotHeight, fColorType)); |
616 | |
617 | // build LRU list |
618 | fPages[i].fPlotList.addToHead(currPlot->get()); |
619 | ++currPlot; |
620 | } |
621 | } |
622 | |
623 | } |
624 | |
625 | return true; |
626 | } |
627 | |
628 | |
629 | bool GrDrawOpAtlas::activateNewPage(GrResourceProvider* resourceProvider) { |
630 | SkASSERT(fNumActivePages < this->maxPages()); |
631 | |
632 | if (!fViews[fNumActivePages].proxy()->instantiate(resourceProvider)) { |
633 | return false; |
634 | } |
635 | |
636 | #ifdef DUMP_ATLAS_DATA |
637 | if (gDumpAtlasData) { |
638 | SkDebugf("activated page#: %d\n" , fNumActivePages); |
639 | } |
640 | #endif |
641 | |
642 | ++fNumActivePages; |
643 | return true; |
644 | } |
645 | |
646 | |
647 | inline void GrDrawOpAtlas::deactivateLastPage() { |
648 | SkASSERT(fNumActivePages); |
649 | |
650 | uint32_t lastPageIndex = fNumActivePages - 1; |
651 | |
652 | int numPlotsX = fTextureWidth/fPlotWidth; |
653 | int numPlotsY = fTextureHeight/fPlotHeight; |
654 | |
655 | fPages[lastPageIndex].fPlotList.reset(); |
656 | for (int r = 0; r < numPlotsY; ++r) { |
657 | for (int c = 0; c < numPlotsX; ++c) { |
658 | uint32_t plotIndex = r * numPlotsX + c; |
659 | |
660 | Plot* currPlot = fPages[lastPageIndex].fPlotArray[plotIndex].get(); |
661 | currPlot->resetRects(); |
662 | currPlot->resetFlushesSinceLastUsed(); |
663 | |
664 | // rebuild the LRU list |
665 | SkDEBUGCODE(currPlot->fPrev = currPlot->fNext = nullptr); |
666 | SkDEBUGCODE(currPlot->fList = nullptr); |
667 | fPages[lastPageIndex].fPlotList.addToHead(currPlot); |
668 | } |
669 | } |
670 | |
671 | // remove ref to the backing texture |
672 | fViews[lastPageIndex].proxy()->deinstantiate(); |
673 | --fNumActivePages; |
674 | } |
675 | |
676 | GrDrawOpAtlasConfig::GrDrawOpAtlasConfig(int maxTextureSize, size_t maxBytes) { |
677 | static const SkISize kARGBDimensions[] = { |
678 | {256, 256}, // maxBytes < 2^19 |
679 | {512, 256}, // 2^19 <= maxBytes < 2^20 |
680 | {512, 512}, // 2^20 <= maxBytes < 2^21 |
681 | {1024, 512}, // 2^21 <= maxBytes < 2^22 |
682 | {1024, 1024}, // 2^22 <= maxBytes < 2^23 |
683 | {2048, 1024}, // 2^23 <= maxBytes |
684 | }; |
685 | |
686 | // Index 0 corresponds to maxBytes of 2^18, so start by dividing it by that |
687 | maxBytes >>= 18; |
688 | // Take the floor of the log to get the index |
689 | int index = maxBytes > 0 |
690 | ? SkTPin<int>(SkPrevLog2(maxBytes), 0, SK_ARRAY_COUNT(kARGBDimensions) - 1) |
691 | : 0; |
692 | |
693 | SkASSERT(kARGBDimensions[index].width() <= kMaxAtlasDim); |
694 | SkASSERT(kARGBDimensions[index].height() <= kMaxAtlasDim); |
695 | fARGBDimensions.set(std::min<int>(kARGBDimensions[index].width(), maxTextureSize), |
696 | std::min<int>(kARGBDimensions[index].height(), maxTextureSize)); |
697 | fMaxTextureSize = std::min<int>(maxTextureSize, kMaxAtlasDim); |
698 | } |
699 | |
700 | SkISize GrDrawOpAtlasConfig::atlasDimensions(GrMaskFormat type) const { |
701 | if (kA8_GrMaskFormat == type) { |
702 | // A8 is always 2x the ARGB dimensions, clamped to the max allowed texture size |
703 | return { std::min<int>(2 * fARGBDimensions.width(), fMaxTextureSize), |
704 | std::min<int>(2 * fARGBDimensions.height(), fMaxTextureSize) }; |
705 | } else { |
706 | return fARGBDimensions; |
707 | } |
708 | } |
709 | |
710 | SkISize GrDrawOpAtlasConfig::plotDimensions(GrMaskFormat type) const { |
711 | if (kA8_GrMaskFormat == type) { |
712 | SkISize atlasDimensions = this->atlasDimensions(type); |
713 | // For A8 we want to grow the plots at larger texture sizes to accept more of the |
714 | // larger SDF glyphs. Since the largest SDF glyph can be 170x170 with padding, this |
715 | // allows us to pack 3 in a 512x256 plot, or 9 in a 512x512 plot. |
716 | |
717 | // This will give us 512x256 plots for 2048x1024, 512x512 plots for 2048x2048, |
718 | // and 256x256 plots otherwise. |
719 | int plotWidth = atlasDimensions.width() >= 2048 ? 512 : 256; |
720 | int plotHeight = atlasDimensions.height() >= 2048 ? 512 : 256; |
721 | |
722 | return { plotWidth, plotHeight }; |
723 | } else { |
724 | // ARGB and LCD always use 256x256 plots -- this has been shown to be faster |
725 | return { 256, 256 }; |
726 | } |
727 | } |
728 | |
729 | constexpr int GrDrawOpAtlasConfig::kMaxAtlasDim; |
730 | |