1 | /* |
2 | * Copyright 2014 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/GrResourceCache.h" |
9 | #include <atomic> |
10 | #include "include/gpu/GrDirectContext.h" |
11 | #include "include/private/GrSingleOwner.h" |
12 | #include "include/private/SkTo.h" |
13 | #include "include/utils/SkRandom.h" |
14 | #include "src/core/SkMessageBus.h" |
15 | #include "src/core/SkOpts.h" |
16 | #include "src/core/SkScopeExit.h" |
17 | #include "src/core/SkTSort.h" |
18 | #include "src/gpu/GrCaps.h" |
19 | #include "src/gpu/GrContextPriv.h" |
20 | #include "src/gpu/GrGpuResourceCacheAccess.h" |
21 | #include "src/gpu/GrProxyProvider.h" |
22 | #include "src/gpu/GrTexture.h" |
23 | #include "src/gpu/GrTextureProxyCacheAccess.h" |
24 | #include "src/gpu/GrTracing.h" |
25 | #include "src/gpu/SkGr.h" |
26 | |
27 | DECLARE_SKMESSAGEBUS_MESSAGE(GrUniqueKeyInvalidatedMessage); |
28 | |
29 | DECLARE_SKMESSAGEBUS_MESSAGE(GrTextureFreedMessage); |
30 | |
31 | #define ASSERT_SINGLE_OWNER GR_ASSERT_SINGLE_OWNER(fSingleOwner) |
32 | |
33 | ////////////////////////////////////////////////////////////////////////////// |
34 | |
35 | GrScratchKey::ResourceType GrScratchKey::GenerateResourceType() { |
36 | static std::atomic<int32_t> nextType{INHERITED::kInvalidDomain + 1}; |
37 | |
38 | int32_t type = nextType++; |
39 | if (type > SkTo<int32_t>(UINT16_MAX)) { |
40 | SK_ABORT("Too many Resource Types" ); |
41 | } |
42 | |
43 | return static_cast<ResourceType>(type); |
44 | } |
45 | |
46 | GrUniqueKey::Domain GrUniqueKey::GenerateDomain() { |
47 | static std::atomic<int32_t> nextDomain{INHERITED::kInvalidDomain + 1}; |
48 | |
49 | int32_t domain = nextDomain++; |
50 | if (domain > SkTo<int32_t>(UINT16_MAX)) { |
51 | SK_ABORT("Too many GrUniqueKey Domains" ); |
52 | } |
53 | |
54 | return static_cast<Domain>(domain); |
55 | } |
56 | |
57 | uint32_t GrResourceKeyHash(const uint32_t* data, size_t size) { |
58 | return SkOpts::hash(data, size); |
59 | } |
60 | |
61 | ////////////////////////////////////////////////////////////////////////////// |
62 | |
63 | class GrResourceCache::AutoValidate : ::SkNoncopyable { |
64 | public: |
65 | AutoValidate(GrResourceCache* cache) : fCache(cache) { cache->validate(); } |
66 | ~AutoValidate() { fCache->validate(); } |
67 | private: |
68 | GrResourceCache* fCache; |
69 | }; |
70 | |
71 | ////////////////////////////////////////////////////////////////////////////// |
72 | |
73 | inline GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref() = default; |
74 | |
75 | inline GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref(GrTexture* texture) |
76 | : fTexture(texture), fNumUnrefs(1) {} |
77 | |
78 | inline GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref(TextureAwaitingUnref&& that) { |
79 | fTexture = std::exchange(that.fTexture, nullptr); |
80 | fNumUnrefs = std::exchange(that.fNumUnrefs, 0); |
81 | } |
82 | |
83 | inline GrResourceCache::TextureAwaitingUnref& GrResourceCache::TextureAwaitingUnref::operator=( |
84 | TextureAwaitingUnref&& that) { |
85 | fTexture = std::exchange(that.fTexture, nullptr); |
86 | fNumUnrefs = std::exchange(that.fNumUnrefs, 0); |
87 | return *this; |
88 | } |
89 | |
90 | inline GrResourceCache::TextureAwaitingUnref::~TextureAwaitingUnref() { |
91 | if (fTexture) { |
92 | for (int i = 0; i < fNumUnrefs; ++i) { |
93 | fTexture->unref(); |
94 | } |
95 | } |
96 | } |
97 | |
98 | inline void GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref::addRef() { ++fNumUnrefs; } |
99 | |
100 | inline void GrResourceCache::TextureAwaitingUnref::unref() { |
101 | SkASSERT(fNumUnrefs > 0); |
102 | fTexture->unref(); |
103 | --fNumUnrefs; |
104 | } |
105 | |
106 | inline bool GrResourceCache::TextureAwaitingUnref::finished() { return !fNumUnrefs; } |
107 | |
108 | ////////////////////////////////////////////////////////////////////////////// |
109 | |
110 | GrResourceCache::GrResourceCache(const GrCaps* caps, GrSingleOwner* singleOwner, |
111 | uint32_t contextUniqueID) |
112 | : fInvalidUniqueKeyInbox(contextUniqueID) |
113 | , fFreedTextureInbox(contextUniqueID) |
114 | , fContextUniqueID(contextUniqueID) |
115 | , fSingleOwner(singleOwner) |
116 | , fPreferVRAMUseOverFlushes(caps->preferVRAMUseOverFlushes()) { |
117 | SkASSERT(contextUniqueID != SK_InvalidUniqueID); |
118 | } |
119 | |
120 | GrResourceCache::~GrResourceCache() { |
121 | this->releaseAll(); |
122 | } |
123 | |
124 | void GrResourceCache::setLimit(size_t bytes) { |
125 | fMaxBytes = bytes; |
126 | this->purgeAsNeeded(); |
127 | } |
128 | |
129 | void GrResourceCache::insertResource(GrGpuResource* resource) { |
130 | ASSERT_SINGLE_OWNER |
131 | SkASSERT(resource); |
132 | SkASSERT(!this->isInCache(resource)); |
133 | SkASSERT(!resource->wasDestroyed()); |
134 | SkASSERT(!resource->resourcePriv().isPurgeable()); |
135 | |
136 | // We must set the timestamp before adding to the array in case the timestamp wraps and we wind |
137 | // up iterating over all the resources that already have timestamps. |
138 | resource->cacheAccess().setTimestamp(this->getNextTimestamp()); |
139 | |
140 | this->addToNonpurgeableArray(resource); |
141 | |
142 | size_t size = resource->gpuMemorySize(); |
143 | SkDEBUGCODE(++fCount;) |
144 | fBytes += size; |
145 | #if GR_CACHE_STATS |
146 | fHighWaterCount = std::max(this->getResourceCount(), fHighWaterCount); |
147 | fHighWaterBytes = std::max(fBytes, fHighWaterBytes); |
148 | #endif |
149 | if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) { |
150 | ++fBudgetedCount; |
151 | fBudgetedBytes += size; |
152 | TRACE_COUNTER2("skia.gpu.cache" , "skia budget" , "used" , |
153 | fBudgetedBytes, "free" , fMaxBytes - fBudgetedBytes); |
154 | #if GR_CACHE_STATS |
155 | fBudgetedHighWaterCount = std::max(fBudgetedCount, fBudgetedHighWaterCount); |
156 | fBudgetedHighWaterBytes = std::max(fBudgetedBytes, fBudgetedHighWaterBytes); |
157 | #endif |
158 | } |
159 | if (resource->resourcePriv().getScratchKey().isValid() && |
160 | !resource->getUniqueKey().isValid()) { |
161 | SkASSERT(!resource->resourcePriv().refsWrappedObjects()); |
162 | fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource); |
163 | } |
164 | |
165 | this->purgeAsNeeded(); |
166 | } |
167 | |
168 | void GrResourceCache::removeResource(GrGpuResource* resource) { |
169 | ASSERT_SINGLE_OWNER |
170 | this->validate(); |
171 | SkASSERT(this->isInCache(resource)); |
172 | |
173 | size_t size = resource->gpuMemorySize(); |
174 | if (resource->resourcePriv().isPurgeable()) { |
175 | fPurgeableQueue.remove(resource); |
176 | fPurgeableBytes -= size; |
177 | } else { |
178 | this->removeFromNonpurgeableArray(resource); |
179 | } |
180 | |
181 | SkDEBUGCODE(--fCount;) |
182 | fBytes -= size; |
183 | if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) { |
184 | --fBudgetedCount; |
185 | fBudgetedBytes -= size; |
186 | TRACE_COUNTER2("skia.gpu.cache" , "skia budget" , "used" , |
187 | fBudgetedBytes, "free" , fMaxBytes - fBudgetedBytes); |
188 | } |
189 | |
190 | if (resource->resourcePriv().getScratchKey().isValid() && |
191 | !resource->getUniqueKey().isValid()) { |
192 | fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource); |
193 | } |
194 | if (resource->getUniqueKey().isValid()) { |
195 | fUniqueHash.remove(resource->getUniqueKey()); |
196 | } |
197 | this->validate(); |
198 | } |
199 | |
200 | void GrResourceCache::abandonAll() { |
201 | AutoValidate av(this); |
202 | |
203 | // We need to make sure to free any resources that were waiting on a free message but never |
204 | // received one. |
205 | fTexturesAwaitingUnref.reset(); |
206 | |
207 | while (fNonpurgeableResources.count()) { |
208 | GrGpuResource* back = *(fNonpurgeableResources.end() - 1); |
209 | SkASSERT(!back->wasDestroyed()); |
210 | back->cacheAccess().abandon(); |
211 | } |
212 | |
213 | while (fPurgeableQueue.count()) { |
214 | GrGpuResource* top = fPurgeableQueue.peek(); |
215 | SkASSERT(!top->wasDestroyed()); |
216 | top->cacheAccess().abandon(); |
217 | } |
218 | |
219 | SkASSERT(!fScratchMap.count()); |
220 | SkASSERT(!fUniqueHash.count()); |
221 | SkASSERT(!fCount); |
222 | SkASSERT(!this->getResourceCount()); |
223 | SkASSERT(!fBytes); |
224 | SkASSERT(!fBudgetedCount); |
225 | SkASSERT(!fBudgetedBytes); |
226 | SkASSERT(!fPurgeableBytes); |
227 | SkASSERT(!fTexturesAwaitingUnref.count()); |
228 | } |
229 | |
230 | void GrResourceCache::releaseAll() { |
231 | AutoValidate av(this); |
232 | |
233 | this->processFreedGpuResources(); |
234 | |
235 | // We need to make sure to free any resources that were waiting on a free message but never |
236 | // received one. |
237 | fTexturesAwaitingUnref.reset(); |
238 | |
239 | SkASSERT(fProxyProvider); // better have called setProxyProvider |
240 | // We must remove the uniqueKeys from the proxies here. While they possess a uniqueKey |
241 | // they also have a raw pointer back to this class (which is presumably going away)! |
242 | fProxyProvider->removeAllUniqueKeys(); |
243 | |
244 | while (fNonpurgeableResources.count()) { |
245 | GrGpuResource* back = *(fNonpurgeableResources.end() - 1); |
246 | SkASSERT(!back->wasDestroyed()); |
247 | back->cacheAccess().release(); |
248 | } |
249 | |
250 | while (fPurgeableQueue.count()) { |
251 | GrGpuResource* top = fPurgeableQueue.peek(); |
252 | SkASSERT(!top->wasDestroyed()); |
253 | top->cacheAccess().release(); |
254 | } |
255 | |
256 | SkASSERT(!fScratchMap.count()); |
257 | SkASSERT(!fUniqueHash.count()); |
258 | SkASSERT(!fCount); |
259 | SkASSERT(!this->getResourceCount()); |
260 | SkASSERT(!fBytes); |
261 | SkASSERT(!fBudgetedCount); |
262 | SkASSERT(!fBudgetedBytes); |
263 | SkASSERT(!fPurgeableBytes); |
264 | SkASSERT(!fTexturesAwaitingUnref.count()); |
265 | } |
266 | |
267 | void GrResourceCache::refResource(GrGpuResource* resource) { |
268 | SkASSERT(resource); |
269 | SkASSERT(resource->getContext()->priv().getResourceCache() == this); |
270 | if (resource->cacheAccess().hasRef()) { |
271 | resource->ref(); |
272 | } else { |
273 | this->refAndMakeResourceMRU(resource); |
274 | } |
275 | this->validate(); |
276 | } |
277 | |
278 | class GrResourceCache::AvailableForScratchUse { |
279 | public: |
280 | AvailableForScratchUse() { } |
281 | |
282 | bool operator()(const GrGpuResource* resource) const { |
283 | SkASSERT(!resource->getUniqueKey().isValid() && |
284 | resource->resourcePriv().getScratchKey().isValid()); |
285 | |
286 | // isScratch() also tests that the resource is budgeted. |
287 | if (resource->internalHasRef() || !resource->cacheAccess().isScratch()) { |
288 | return false; |
289 | } |
290 | return true; |
291 | } |
292 | }; |
293 | |
294 | GrGpuResource* GrResourceCache::findAndRefScratchResource(const GrScratchKey& scratchKey) { |
295 | SkASSERT(scratchKey.isValid()); |
296 | |
297 | GrGpuResource* resource = fScratchMap.find(scratchKey, AvailableForScratchUse()); |
298 | if (resource) { |
299 | this->refAndMakeResourceMRU(resource); |
300 | this->validate(); |
301 | } |
302 | return resource; |
303 | } |
304 | |
305 | void GrResourceCache::willRemoveScratchKey(const GrGpuResource* resource) { |
306 | ASSERT_SINGLE_OWNER |
307 | SkASSERT(resource->resourcePriv().getScratchKey().isValid()); |
308 | if (!resource->getUniqueKey().isValid()) { |
309 | fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource); |
310 | } |
311 | } |
312 | |
313 | void GrResourceCache::removeUniqueKey(GrGpuResource* resource) { |
314 | ASSERT_SINGLE_OWNER |
315 | // Someone has a ref to this resource in order to have removed the key. When the ref count |
316 | // reaches zero we will get a ref cnt notification and figure out what to do with it. |
317 | if (resource->getUniqueKey().isValid()) { |
318 | SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey())); |
319 | fUniqueHash.remove(resource->getUniqueKey()); |
320 | } |
321 | resource->cacheAccess().removeUniqueKey(); |
322 | if (resource->resourcePriv().getScratchKey().isValid()) { |
323 | fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource); |
324 | } |
325 | |
326 | // Removing a unique key from a kUnbudgetedCacheable resource would make the resource |
327 | // require purging. However, the resource must be ref'ed to get here and therefore can't |
328 | // be purgeable. We'll purge it when the refs reach zero. |
329 | SkASSERT(!resource->resourcePriv().isPurgeable()); |
330 | this->validate(); |
331 | } |
332 | |
333 | void GrResourceCache::changeUniqueKey(GrGpuResource* resource, const GrUniqueKey& newKey) { |
334 | ASSERT_SINGLE_OWNER |
335 | SkASSERT(resource); |
336 | SkASSERT(this->isInCache(resource)); |
337 | |
338 | // If another resource has the new key, remove its key then install the key on this resource. |
339 | if (newKey.isValid()) { |
340 | if (GrGpuResource* old = fUniqueHash.find(newKey)) { |
341 | // If the old resource using the key is purgeable and is unreachable, then remove it. |
342 | if (!old->resourcePriv().getScratchKey().isValid() && |
343 | old->resourcePriv().isPurgeable()) { |
344 | old->cacheAccess().release(); |
345 | } else { |
346 | // removeUniqueKey expects an external owner of the resource. |
347 | this->removeUniqueKey(sk_ref_sp(old).get()); |
348 | } |
349 | } |
350 | SkASSERT(nullptr == fUniqueHash.find(newKey)); |
351 | |
352 | // Remove the entry for this resource if it already has a unique key. |
353 | if (resource->getUniqueKey().isValid()) { |
354 | SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey())); |
355 | fUniqueHash.remove(resource->getUniqueKey()); |
356 | SkASSERT(nullptr == fUniqueHash.find(resource->getUniqueKey())); |
357 | } else { |
358 | // 'resource' didn't have a valid unique key before so it is switching sides. Remove it |
359 | // from the ScratchMap |
360 | if (resource->resourcePriv().getScratchKey().isValid()) { |
361 | fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource); |
362 | } |
363 | } |
364 | |
365 | resource->cacheAccess().setUniqueKey(newKey); |
366 | fUniqueHash.add(resource); |
367 | } else { |
368 | this->removeUniqueKey(resource); |
369 | } |
370 | |
371 | this->validate(); |
372 | } |
373 | |
374 | void GrResourceCache::refAndMakeResourceMRU(GrGpuResource* resource) { |
375 | ASSERT_SINGLE_OWNER |
376 | SkASSERT(resource); |
377 | SkASSERT(this->isInCache(resource)); |
378 | |
379 | if (resource->resourcePriv().isPurgeable()) { |
380 | // It's about to become unpurgeable. |
381 | fPurgeableBytes -= resource->gpuMemorySize(); |
382 | fPurgeableQueue.remove(resource); |
383 | this->addToNonpurgeableArray(resource); |
384 | } else if (!resource->cacheAccess().hasRef() && |
385 | resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) { |
386 | SkASSERT(fNumBudgetedResourcesFlushWillMakePurgeable > 0); |
387 | fNumBudgetedResourcesFlushWillMakePurgeable--; |
388 | } |
389 | resource->cacheAccess().ref(); |
390 | |
391 | resource->cacheAccess().setTimestamp(this->getNextTimestamp()); |
392 | this->validate(); |
393 | } |
394 | |
395 | void GrResourceCache::notifyRefCntReachedZero(GrGpuResource* resource) { |
396 | ASSERT_SINGLE_OWNER |
397 | SkASSERT(resource); |
398 | SkASSERT(!resource->wasDestroyed()); |
399 | SkASSERT(this->isInCache(resource)); |
400 | // This resource should always be in the nonpurgeable array when this function is called. It |
401 | // will be moved to the queue if it is newly purgeable. |
402 | SkASSERT(fNonpurgeableResources[*resource->cacheAccess().accessCacheIndex()] == resource); |
403 | |
404 | #ifdef SK_DEBUG |
405 | // When the timestamp overflows validate() is called. validate() checks that resources in |
406 | // the nonpurgeable array are indeed not purgeable. However, the movement from the array to |
407 | // the purgeable queue happens just below in this function. So we mark it as an exception. |
408 | if (resource->resourcePriv().isPurgeable()) { |
409 | fNewlyPurgeableResourceForValidation = resource; |
410 | } |
411 | #endif |
412 | resource->cacheAccess().setTimestamp(this->getNextTimestamp()); |
413 | SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr); |
414 | |
415 | if (!resource->resourcePriv().isPurgeable() && |
416 | resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) { |
417 | ++fNumBudgetedResourcesFlushWillMakePurgeable; |
418 | } |
419 | |
420 | if (!resource->resourcePriv().isPurgeable()) { |
421 | this->validate(); |
422 | return; |
423 | } |
424 | |
425 | this->removeFromNonpurgeableArray(resource); |
426 | fPurgeableQueue.insert(resource); |
427 | resource->cacheAccess().setTimeWhenResourceBecomePurgeable(); |
428 | fPurgeableBytes += resource->gpuMemorySize(); |
429 | |
430 | bool hasUniqueKey = resource->getUniqueKey().isValid(); |
431 | |
432 | GrBudgetedType budgetedType = resource->resourcePriv().budgetedType(); |
433 | |
434 | if (budgetedType == GrBudgetedType::kBudgeted) { |
435 | // Purge the resource immediately if we're over budget |
436 | // Also purge if the resource has neither a valid scratch key nor a unique key. |
437 | bool hasKey = resource->resourcePriv().getScratchKey().isValid() || hasUniqueKey; |
438 | if (!this->overBudget() && hasKey) { |
439 | return; |
440 | } |
441 | } else { |
442 | // We keep unbudgeted resources with a unique key in the purgeable queue of the cache so |
443 | // they can be reused again by the image connected to the unique key. |
444 | if (hasUniqueKey && budgetedType == GrBudgetedType::kUnbudgetedCacheable) { |
445 | return; |
446 | } |
447 | // Check whether this resource could still be used as a scratch resource. |
448 | if (!resource->resourcePriv().refsWrappedObjects() && |
449 | resource->resourcePriv().getScratchKey().isValid()) { |
450 | // We won't purge an existing resource to make room for this one. |
451 | if (this->wouldFit(resource->gpuMemorySize())) { |
452 | resource->resourcePriv().makeBudgeted(); |
453 | return; |
454 | } |
455 | } |
456 | } |
457 | |
458 | SkDEBUGCODE(int beforeCount = this->getResourceCount();) |
459 | resource->cacheAccess().release(); |
460 | // We should at least free this resource, perhaps dependent resources as well. |
461 | SkASSERT(this->getResourceCount() < beforeCount); |
462 | this->validate(); |
463 | } |
464 | |
465 | void GrResourceCache::didChangeBudgetStatus(GrGpuResource* resource) { |
466 | ASSERT_SINGLE_OWNER |
467 | SkASSERT(resource); |
468 | SkASSERT(this->isInCache(resource)); |
469 | |
470 | size_t size = resource->gpuMemorySize(); |
471 | // Changing from BudgetedType::kUnbudgetedCacheable to another budgeted type could make |
472 | // resource become purgeable. However, we should never allow that transition. Wrapped |
473 | // resources are the only resources that can be in that state and they aren't allowed to |
474 | // transition from one budgeted state to another. |
475 | SkDEBUGCODE(bool wasPurgeable = resource->resourcePriv().isPurgeable()); |
476 | if (resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) { |
477 | ++fBudgetedCount; |
478 | fBudgetedBytes += size; |
479 | #if GR_CACHE_STATS |
480 | fBudgetedHighWaterBytes = std::max(fBudgetedBytes, fBudgetedHighWaterBytes); |
481 | fBudgetedHighWaterCount = std::max(fBudgetedCount, fBudgetedHighWaterCount); |
482 | #endif |
483 | if (!resource->resourcePriv().isPurgeable() && !resource->cacheAccess().hasRef()) { |
484 | ++fNumBudgetedResourcesFlushWillMakePurgeable; |
485 | } |
486 | this->purgeAsNeeded(); |
487 | } else { |
488 | SkASSERT(resource->resourcePriv().budgetedType() != GrBudgetedType::kUnbudgetedCacheable); |
489 | --fBudgetedCount; |
490 | fBudgetedBytes -= size; |
491 | if (!resource->resourcePriv().isPurgeable() && !resource->cacheAccess().hasRef()) { |
492 | --fNumBudgetedResourcesFlushWillMakePurgeable; |
493 | } |
494 | } |
495 | SkASSERT(wasPurgeable == resource->resourcePriv().isPurgeable()); |
496 | TRACE_COUNTER2("skia.gpu.cache" , "skia budget" , "used" , |
497 | fBudgetedBytes, "free" , fMaxBytes - fBudgetedBytes); |
498 | |
499 | this->validate(); |
500 | } |
501 | |
502 | void GrResourceCache::purgeAsNeeded() { |
503 | SkTArray<GrUniqueKeyInvalidatedMessage> invalidKeyMsgs; |
504 | fInvalidUniqueKeyInbox.poll(&invalidKeyMsgs); |
505 | if (invalidKeyMsgs.count()) { |
506 | SkASSERT(fProxyProvider); |
507 | |
508 | for (int i = 0; i < invalidKeyMsgs.count(); ++i) { |
509 | fProxyProvider->processInvalidUniqueKey(invalidKeyMsgs[i].key(), nullptr, |
510 | GrProxyProvider::InvalidateGPUResource::kYes); |
511 | SkASSERT(!this->findAndRefUniqueResource(invalidKeyMsgs[i].key())); |
512 | } |
513 | } |
514 | |
515 | this->processFreedGpuResources(); |
516 | |
517 | bool stillOverbudget = this->overBudget(); |
518 | while (stillOverbudget && fPurgeableQueue.count()) { |
519 | GrGpuResource* resource = fPurgeableQueue.peek(); |
520 | SkASSERT(resource->resourcePriv().isPurgeable()); |
521 | resource->cacheAccess().release(); |
522 | stillOverbudget = this->overBudget(); |
523 | } |
524 | |
525 | this->validate(); |
526 | } |
527 | |
528 | void GrResourceCache::purgeUnlockedResources(bool scratchResourcesOnly) { |
529 | if (!scratchResourcesOnly) { |
530 | // We could disable maintaining the heap property here, but it would add a lot of |
531 | // complexity. Moreover, this is rarely called. |
532 | while (fPurgeableQueue.count()) { |
533 | GrGpuResource* resource = fPurgeableQueue.peek(); |
534 | SkASSERT(resource->resourcePriv().isPurgeable()); |
535 | resource->cacheAccess().release(); |
536 | } |
537 | } else { |
538 | // Sort the queue |
539 | fPurgeableQueue.sort(); |
540 | |
541 | // Make a list of the scratch resources to delete |
542 | SkTDArray<GrGpuResource*> scratchResources; |
543 | for (int i = 0; i < fPurgeableQueue.count(); i++) { |
544 | GrGpuResource* resource = fPurgeableQueue.at(i); |
545 | SkASSERT(resource->resourcePriv().isPurgeable()); |
546 | if (!resource->getUniqueKey().isValid()) { |
547 | *scratchResources.append() = resource; |
548 | } |
549 | } |
550 | |
551 | // Delete the scratch resources. This must be done as a separate pass |
552 | // to avoid messing up the sorted order of the queue |
553 | for (int i = 0; i < scratchResources.count(); i++) { |
554 | scratchResources.getAt(i)->cacheAccess().release(); |
555 | } |
556 | } |
557 | |
558 | this->validate(); |
559 | } |
560 | |
561 | void GrResourceCache::purgeResourcesNotUsedSince(GrStdSteadyClock::time_point purgeTime) { |
562 | while (fPurgeableQueue.count()) { |
563 | const GrStdSteadyClock::time_point resourceTime = |
564 | fPurgeableQueue.peek()->cacheAccess().timeWhenResourceBecamePurgeable(); |
565 | if (resourceTime >= purgeTime) { |
566 | // Resources were given both LRU timestamps and tagged with a frame number when |
567 | // they first became purgeable. The LRU timestamp won't change again until the |
568 | // resource is made non-purgeable again. So, at this point all the remaining |
569 | // resources in the timestamp-sorted queue will have a frame number >= to this |
570 | // one. |
571 | break; |
572 | } |
573 | GrGpuResource* resource = fPurgeableQueue.peek(); |
574 | SkASSERT(resource->resourcePriv().isPurgeable()); |
575 | resource->cacheAccess().release(); |
576 | } |
577 | } |
578 | |
579 | void GrResourceCache::purgeUnlockedResources(size_t bytesToPurge, bool preferScratchResources) { |
580 | |
581 | const size_t tmpByteBudget = std::max((size_t)0, fBytes - bytesToPurge); |
582 | bool stillOverbudget = tmpByteBudget < fBytes; |
583 | |
584 | if (preferScratchResources && bytesToPurge < fPurgeableBytes) { |
585 | // Sort the queue |
586 | fPurgeableQueue.sort(); |
587 | |
588 | // Make a list of the scratch resources to delete |
589 | SkTDArray<GrGpuResource*> scratchResources; |
590 | size_t scratchByteCount = 0; |
591 | for (int i = 0; i < fPurgeableQueue.count() && stillOverbudget; i++) { |
592 | GrGpuResource* resource = fPurgeableQueue.at(i); |
593 | SkASSERT(resource->resourcePriv().isPurgeable()); |
594 | if (!resource->getUniqueKey().isValid()) { |
595 | *scratchResources.append() = resource; |
596 | scratchByteCount += resource->gpuMemorySize(); |
597 | stillOverbudget = tmpByteBudget < fBytes - scratchByteCount; |
598 | } |
599 | } |
600 | |
601 | // Delete the scratch resources. This must be done as a separate pass |
602 | // to avoid messing up the sorted order of the queue |
603 | for (int i = 0; i < scratchResources.count(); i++) { |
604 | scratchResources.getAt(i)->cacheAccess().release(); |
605 | } |
606 | stillOverbudget = tmpByteBudget < fBytes; |
607 | |
608 | this->validate(); |
609 | } |
610 | |
611 | // Purge any remaining resources in LRU order |
612 | if (stillOverbudget) { |
613 | const size_t cachedByteCount = fMaxBytes; |
614 | fMaxBytes = tmpByteBudget; |
615 | this->purgeAsNeeded(); |
616 | fMaxBytes = cachedByteCount; |
617 | } |
618 | } |
619 | bool GrResourceCache::requestsFlush() const { |
620 | return this->overBudget() && !fPurgeableQueue.count() && |
621 | fNumBudgetedResourcesFlushWillMakePurgeable > 0; |
622 | } |
623 | |
624 | |
625 | void GrResourceCache::insertDelayedTextureUnref(GrTexture* texture) { |
626 | texture->ref(); |
627 | uint32_t id = texture->uniqueID().asUInt(); |
628 | if (auto* data = fTexturesAwaitingUnref.find(id)) { |
629 | data->addRef(); |
630 | } else { |
631 | fTexturesAwaitingUnref.set(id, {texture}); |
632 | } |
633 | } |
634 | |
635 | void GrResourceCache::processFreedGpuResources() { |
636 | if (!fTexturesAwaitingUnref.count()) { |
637 | return; |
638 | } |
639 | |
640 | SkTArray<GrTextureFreedMessage> msgs; |
641 | fFreedTextureInbox.poll(&msgs); |
642 | for (int i = 0; i < msgs.count(); ++i) { |
643 | SkASSERT(msgs[i].fOwningUniqueID == fContextUniqueID); |
644 | uint32_t id = msgs[i].fTexture->uniqueID().asUInt(); |
645 | TextureAwaitingUnref* info = fTexturesAwaitingUnref.find(id); |
646 | // If the GrContext was released or abandoned then fTexturesAwaitingUnref should have been |
647 | // empty and we would have returned early above. Thus, any texture from a message should be |
648 | // in the list of fTexturesAwaitingUnref. |
649 | SkASSERT(info); |
650 | info->unref(); |
651 | if (info->finished()) { |
652 | fTexturesAwaitingUnref.remove(id); |
653 | } |
654 | } |
655 | } |
656 | |
657 | void GrResourceCache::addToNonpurgeableArray(GrGpuResource* resource) { |
658 | int index = fNonpurgeableResources.count(); |
659 | *fNonpurgeableResources.append() = resource; |
660 | *resource->cacheAccess().accessCacheIndex() = index; |
661 | } |
662 | |
663 | void GrResourceCache::removeFromNonpurgeableArray(GrGpuResource* resource) { |
664 | int* index = resource->cacheAccess().accessCacheIndex(); |
665 | // Fill the whole we will create in the array with the tail object, adjust its index, and |
666 | // then pop the array |
667 | GrGpuResource* tail = *(fNonpurgeableResources.end() - 1); |
668 | SkASSERT(fNonpurgeableResources[*index] == resource); |
669 | fNonpurgeableResources[*index] = tail; |
670 | *tail->cacheAccess().accessCacheIndex() = *index; |
671 | fNonpurgeableResources.pop(); |
672 | SkDEBUGCODE(*index = -1); |
673 | } |
674 | |
675 | uint32_t GrResourceCache::getNextTimestamp() { |
676 | // If we wrap then all the existing resources will appear older than any resources that get |
677 | // a timestamp after the wrap. |
678 | if (0 == fTimestamp) { |
679 | int count = this->getResourceCount(); |
680 | if (count) { |
681 | // Reset all the timestamps. We sort the resources by timestamp and then assign |
682 | // sequential timestamps beginning with 0. This is O(n*lg(n)) but it should be extremely |
683 | // rare. |
684 | SkTDArray<GrGpuResource*> sortedPurgeableResources; |
685 | sortedPurgeableResources.setReserve(fPurgeableQueue.count()); |
686 | |
687 | while (fPurgeableQueue.count()) { |
688 | *sortedPurgeableResources.append() = fPurgeableQueue.peek(); |
689 | fPurgeableQueue.pop(); |
690 | } |
691 | |
692 | SkTQSort(fNonpurgeableResources.begin(), fNonpurgeableResources.end(), |
693 | CompareTimestamp); |
694 | |
695 | // Pick resources out of the purgeable and non-purgeable arrays based on lowest |
696 | // timestamp and assign new timestamps. |
697 | int currP = 0; |
698 | int currNP = 0; |
699 | while (currP < sortedPurgeableResources.count() && |
700 | currNP < fNonpurgeableResources.count()) { |
701 | uint32_t tsP = sortedPurgeableResources[currP]->cacheAccess().timestamp(); |
702 | uint32_t tsNP = fNonpurgeableResources[currNP]->cacheAccess().timestamp(); |
703 | SkASSERT(tsP != tsNP); |
704 | if (tsP < tsNP) { |
705 | sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++); |
706 | } else { |
707 | // Correct the index in the nonpurgeable array stored on the resource post-sort. |
708 | *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP; |
709 | fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++); |
710 | } |
711 | } |
712 | |
713 | // The above loop ended when we hit the end of one array. Finish the other one. |
714 | while (currP < sortedPurgeableResources.count()) { |
715 | sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++); |
716 | } |
717 | while (currNP < fNonpurgeableResources.count()) { |
718 | *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP; |
719 | fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++); |
720 | } |
721 | |
722 | // Rebuild the queue. |
723 | for (int i = 0; i < sortedPurgeableResources.count(); ++i) { |
724 | fPurgeableQueue.insert(sortedPurgeableResources[i]); |
725 | } |
726 | |
727 | this->validate(); |
728 | SkASSERT(count == this->getResourceCount()); |
729 | |
730 | // count should be the next timestamp we return. |
731 | SkASSERT(fTimestamp == SkToU32(count)); |
732 | } |
733 | } |
734 | return fTimestamp++; |
735 | } |
736 | |
737 | void GrResourceCache::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const { |
738 | for (int i = 0; i < fNonpurgeableResources.count(); ++i) { |
739 | fNonpurgeableResources[i]->dumpMemoryStatistics(traceMemoryDump); |
740 | } |
741 | for (int i = 0; i < fPurgeableQueue.count(); ++i) { |
742 | fPurgeableQueue.at(i)->dumpMemoryStatistics(traceMemoryDump); |
743 | } |
744 | } |
745 | |
746 | #if GR_CACHE_STATS |
747 | void GrResourceCache::getStats(Stats* stats) const { |
748 | stats->reset(); |
749 | |
750 | stats->fTotal = this->getResourceCount(); |
751 | stats->fNumNonPurgeable = fNonpurgeableResources.count(); |
752 | stats->fNumPurgeable = fPurgeableQueue.count(); |
753 | |
754 | for (int i = 0; i < fNonpurgeableResources.count(); ++i) { |
755 | stats->update(fNonpurgeableResources[i]); |
756 | } |
757 | for (int i = 0; i < fPurgeableQueue.count(); ++i) { |
758 | stats->update(fPurgeableQueue.at(i)); |
759 | } |
760 | } |
761 | |
762 | #if GR_TEST_UTILS |
763 | void GrResourceCache::dumpStats(SkString* out) const { |
764 | this->validate(); |
765 | |
766 | Stats stats; |
767 | |
768 | this->getStats(&stats); |
769 | |
770 | float byteUtilization = (100.f * fBudgetedBytes) / fMaxBytes; |
771 | |
772 | out->appendf("Budget: %d bytes\n" , (int)fMaxBytes); |
773 | out->appendf("\t\tEntry Count: current %d" |
774 | " (%d budgeted, %d wrapped, %d locked, %d scratch), high %d\n" , |
775 | stats.fTotal, fBudgetedCount, stats.fWrapped, stats.fNumNonPurgeable, |
776 | stats.fScratch, fHighWaterCount); |
777 | out->appendf("\t\tEntry Bytes: current %d (budgeted %d, %.2g%% full, %d unbudgeted) high %d\n" , |
778 | SkToInt(fBytes), SkToInt(fBudgetedBytes), byteUtilization, |
779 | SkToInt(stats.fUnbudgetedSize), SkToInt(fHighWaterBytes)); |
780 | } |
781 | |
782 | void GrResourceCache::dumpStatsKeyValuePairs(SkTArray<SkString>* keys, |
783 | SkTArray<double>* values) const { |
784 | this->validate(); |
785 | |
786 | Stats stats; |
787 | this->getStats(&stats); |
788 | |
789 | keys->push_back(SkString("gpu_cache_purgable_entries" )); values->push_back(stats.fNumPurgeable); |
790 | } |
791 | #endif |
792 | |
793 | #endif |
794 | |
795 | #ifdef SK_DEBUG |
796 | void GrResourceCache::validate() const { |
797 | // Reduce the frequency of validations for large resource counts. |
798 | static SkRandom gRandom; |
799 | int mask = (SkNextPow2(fCount + 1) >> 5) - 1; |
800 | if (~mask && (gRandom.nextU() & mask)) { |
801 | return; |
802 | } |
803 | |
804 | struct Stats { |
805 | size_t fBytes; |
806 | int fBudgetedCount; |
807 | size_t fBudgetedBytes; |
808 | int fLocked; |
809 | int fScratch; |
810 | int fCouldBeScratch; |
811 | int fContent; |
812 | const ScratchMap* fScratchMap; |
813 | const UniqueHash* fUniqueHash; |
814 | |
815 | Stats(const GrResourceCache* cache) { |
816 | memset(this, 0, sizeof(*this)); |
817 | fScratchMap = &cache->fScratchMap; |
818 | fUniqueHash = &cache->fUniqueHash; |
819 | } |
820 | |
821 | void update(GrGpuResource* resource) { |
822 | fBytes += resource->gpuMemorySize(); |
823 | |
824 | if (!resource->resourcePriv().isPurgeable()) { |
825 | ++fLocked; |
826 | } |
827 | |
828 | const GrScratchKey& scratchKey = resource->resourcePriv().getScratchKey(); |
829 | const GrUniqueKey& uniqueKey = resource->getUniqueKey(); |
830 | |
831 | if (resource->cacheAccess().isScratch()) { |
832 | SkASSERT(!uniqueKey.isValid()); |
833 | ++fScratch; |
834 | SkASSERT(fScratchMap->countForKey(scratchKey)); |
835 | SkASSERT(!resource->resourcePriv().refsWrappedObjects()); |
836 | } else if (scratchKey.isValid()) { |
837 | SkASSERT(GrBudgetedType::kBudgeted != resource->resourcePriv().budgetedType() || |
838 | uniqueKey.isValid()); |
839 | if (!uniqueKey.isValid()) { |
840 | ++fCouldBeScratch; |
841 | SkASSERT(fScratchMap->countForKey(scratchKey)); |
842 | } |
843 | SkASSERT(!resource->resourcePriv().refsWrappedObjects()); |
844 | } |
845 | if (uniqueKey.isValid()) { |
846 | ++fContent; |
847 | SkASSERT(fUniqueHash->find(uniqueKey) == resource); |
848 | SkASSERT(GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType() || |
849 | resource->resourcePriv().refsWrappedObjects()); |
850 | |
851 | if (scratchKey.isValid()) { |
852 | SkASSERT(!fScratchMap->has(resource, scratchKey)); |
853 | } |
854 | } |
855 | |
856 | if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) { |
857 | ++fBudgetedCount; |
858 | fBudgetedBytes += resource->gpuMemorySize(); |
859 | } |
860 | } |
861 | }; |
862 | |
863 | { |
864 | int count = 0; |
865 | fScratchMap.foreach([&](const GrGpuResource& resource) { |
866 | SkASSERT(resource.resourcePriv().getScratchKey().isValid()); |
867 | SkASSERT(!resource.getUniqueKey().isValid()); |
868 | count++; |
869 | }); |
870 | SkASSERT(count == fScratchMap.count()); |
871 | } |
872 | |
873 | Stats stats(this); |
874 | size_t purgeableBytes = 0; |
875 | int numBudgetedResourcesFlushWillMakePurgeable = 0; |
876 | |
877 | for (int i = 0; i < fNonpurgeableResources.count(); ++i) { |
878 | SkASSERT(!fNonpurgeableResources[i]->resourcePriv().isPurgeable() || |
879 | fNewlyPurgeableResourceForValidation == fNonpurgeableResources[i]); |
880 | SkASSERT(*fNonpurgeableResources[i]->cacheAccess().accessCacheIndex() == i); |
881 | SkASSERT(!fNonpurgeableResources[i]->wasDestroyed()); |
882 | if (fNonpurgeableResources[i]->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted && |
883 | !fNonpurgeableResources[i]->cacheAccess().hasRef() && |
884 | fNewlyPurgeableResourceForValidation != fNonpurgeableResources[i]) { |
885 | ++numBudgetedResourcesFlushWillMakePurgeable; |
886 | } |
887 | stats.update(fNonpurgeableResources[i]); |
888 | } |
889 | for (int i = 0; i < fPurgeableQueue.count(); ++i) { |
890 | SkASSERT(fPurgeableQueue.at(i)->resourcePriv().isPurgeable()); |
891 | SkASSERT(*fPurgeableQueue.at(i)->cacheAccess().accessCacheIndex() == i); |
892 | SkASSERT(!fPurgeableQueue.at(i)->wasDestroyed()); |
893 | stats.update(fPurgeableQueue.at(i)); |
894 | purgeableBytes += fPurgeableQueue.at(i)->gpuMemorySize(); |
895 | } |
896 | |
897 | SkASSERT(fCount == this->getResourceCount()); |
898 | SkASSERT(fBudgetedCount <= fCount); |
899 | SkASSERT(fBudgetedBytes <= fBytes); |
900 | SkASSERT(stats.fBytes == fBytes); |
901 | SkASSERT(fNumBudgetedResourcesFlushWillMakePurgeable == |
902 | numBudgetedResourcesFlushWillMakePurgeable); |
903 | SkASSERT(stats.fBudgetedBytes == fBudgetedBytes); |
904 | SkASSERT(stats.fBudgetedCount == fBudgetedCount); |
905 | SkASSERT(purgeableBytes == fPurgeableBytes); |
906 | #if GR_CACHE_STATS |
907 | SkASSERT(fBudgetedHighWaterCount <= fHighWaterCount); |
908 | SkASSERT(fBudgetedHighWaterBytes <= fHighWaterBytes); |
909 | SkASSERT(fBytes <= fHighWaterBytes); |
910 | SkASSERT(fCount <= fHighWaterCount); |
911 | SkASSERT(fBudgetedBytes <= fBudgetedHighWaterBytes); |
912 | SkASSERT(fBudgetedCount <= fBudgetedHighWaterCount); |
913 | #endif |
914 | SkASSERT(stats.fContent == fUniqueHash.count()); |
915 | SkASSERT(stats.fScratch + stats.fCouldBeScratch == fScratchMap.count()); |
916 | |
917 | // This assertion is not currently valid because we can be in recursive notifyCntReachedZero() |
918 | // calls. This will be fixed when subresource registration is explicit. |
919 | // bool overBudget = budgetedBytes > fMaxBytes || budgetedCount > fMaxCount; |
920 | // SkASSERT(!overBudget || locked == count || fPurging); |
921 | } |
922 | |
923 | bool GrResourceCache::isInCache(const GrGpuResource* resource) const { |
924 | int index = *resource->cacheAccess().accessCacheIndex(); |
925 | if (index < 0) { |
926 | return false; |
927 | } |
928 | if (index < fPurgeableQueue.count() && fPurgeableQueue.at(index) == resource) { |
929 | return true; |
930 | } |
931 | if (index < fNonpurgeableResources.count() && fNonpurgeableResources[index] == resource) { |
932 | return true; |
933 | } |
934 | SkDEBUGFAIL("Resource index should be -1 or the resource should be in the cache." ); |
935 | return false; |
936 | } |
937 | |
938 | #endif |
939 | |