1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkCanvas.h" |
9 | #include "include/core/SkPath.h" |
10 | #include "include/core/SkPoint.h" |
11 | #include "include/core/SkString.h" |
12 | #include "src/gpu/geometry/GrPathUtils.h" |
13 | #include "src/gpu/ops/GrAAConvexTessellator.h" |
14 | |
15 | // Next steps: |
16 | // add an interactive sample app slide |
17 | // add debug check that all points are suitably far apart |
18 | // test more degenerate cases |
19 | |
20 | // The tolerance for fusing vertices and eliminating colinear lines (It is in device space). |
21 | static const SkScalar kClose = (SK_Scalar1 / 16); |
22 | static const SkScalar kCloseSqd = kClose * kClose; |
23 | |
24 | // tesselation tolerance values, in device space pixels |
25 | static const SkScalar kQuadTolerance = 0.2f; |
26 | static const SkScalar kCubicTolerance = 0.2f; |
27 | static const SkScalar kConicTolerance = 0.25f; |
28 | |
29 | // dot product below which we use a round cap between curve segments |
30 | static const SkScalar kRoundCapThreshold = 0.8f; |
31 | |
32 | // dot product above which we consider two adjacent curves to be part of the "same" curve |
33 | static const SkScalar kCurveConnectionThreshold = 0.8f; |
34 | |
35 | static bool intersect(const SkPoint& p0, const SkPoint& n0, |
36 | const SkPoint& p1, const SkPoint& n1, |
37 | SkScalar* t) { |
38 | const SkPoint v = p1 - p0; |
39 | SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
40 | if (SkScalarNearlyZero(perpDot)) { |
41 | return false; |
42 | } |
43 | *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
44 | SkASSERT(SkScalarIsFinite(*t)); |
45 | return true; |
46 | } |
47 | |
48 | // This is a special case version of intersect where we have the vector |
49 | // perpendicular to the second line rather than the vector parallel to it. |
50 | static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
51 | const SkPoint& p1, const SkPoint& perp) { |
52 | const SkPoint v = p1 - p0; |
53 | SkScalar perpDot = n0.dot(perp); |
54 | return v.dot(perp) / perpDot; |
55 | } |
56 | |
57 | static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
58 | SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1); |
59 | return distSq < kCloseSqd; |
60 | } |
61 | |
62 | static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b, |
63 | const SkPoint& c, float* accumError) { |
64 | // First check distance from b to the infinite line through a, c |
65 | SkVector aToC = c - a; |
66 | SkVector n = {aToC.fY, -aToC.fX}; |
67 | n.normalize(); |
68 | |
69 | SkScalar distBToLineAC = SkScalarAbs(n.dot(b) - n.dot(a)); |
70 | if (*accumError + distBToLineAC >= kClose || aToC.dot(b - a) <= 0.f || aToC.dot(c - b) <= 0.f) { |
71 | // Too far from the line or not between the line segment from a to c |
72 | return false; |
73 | } else { |
74 | // Accumulate the distance from b to |ac| that goes "away" when this near-colinear point |
75 | // is removed to simplify the path. |
76 | *accumError += distBToLineAC; |
77 | return true; |
78 | } |
79 | } |
80 | |
81 | int GrAAConvexTessellator::addPt(const SkPoint& pt, |
82 | SkScalar depth, |
83 | SkScalar coverage, |
84 | bool movable, |
85 | CurveState curve) { |
86 | SkASSERT(pt.isFinite()); |
87 | this->validate(); |
88 | |
89 | int index = fPts.count(); |
90 | *fPts.push() = pt; |
91 | *fCoverages.push() = coverage; |
92 | *fMovable.push() = movable; |
93 | *fCurveState.push() = curve; |
94 | |
95 | this->validate(); |
96 | return index; |
97 | } |
98 | |
99 | void GrAAConvexTessellator::popLastPt() { |
100 | this->validate(); |
101 | |
102 | fPts.pop(); |
103 | fCoverages.pop(); |
104 | fMovable.pop(); |
105 | fCurveState.pop(); |
106 | |
107 | this->validate(); |
108 | } |
109 | |
110 | void GrAAConvexTessellator::popFirstPtShuffle() { |
111 | this->validate(); |
112 | |
113 | fPts.removeShuffle(0); |
114 | fCoverages.removeShuffle(0); |
115 | fMovable.removeShuffle(0); |
116 | fCurveState.removeShuffle(0); |
117 | |
118 | this->validate(); |
119 | } |
120 | |
121 | void GrAAConvexTessellator::updatePt(int index, |
122 | const SkPoint& pt, |
123 | SkScalar depth, |
124 | SkScalar coverage) { |
125 | this->validate(); |
126 | SkASSERT(fMovable[index]); |
127 | |
128 | fPts[index] = pt; |
129 | fCoverages[index] = coverage; |
130 | } |
131 | |
132 | void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
133 | if (i0 == i1 || i1 == i2 || i2 == i0) { |
134 | return; |
135 | } |
136 | |
137 | *fIndices.push() = i0; |
138 | *fIndices.push() = i1; |
139 | *fIndices.push() = i2; |
140 | } |
141 | |
142 | void GrAAConvexTessellator::rewind() { |
143 | fPts.rewind(); |
144 | fCoverages.rewind(); |
145 | fMovable.rewind(); |
146 | fIndices.rewind(); |
147 | fNorms.rewind(); |
148 | fCurveState.rewind(); |
149 | fInitialRing.rewind(); |
150 | fCandidateVerts.rewind(); |
151 | #if GR_AA_CONVEX_TESSELLATOR_VIZ |
152 | fRings.rewind(); // TODO: leak in this case! |
153 | #else |
154 | fRings[0].rewind(); |
155 | fRings[1].rewind(); |
156 | #endif |
157 | } |
158 | |
159 | void GrAAConvexTessellator::computeNormals() { |
160 | auto normalToVector = [this](SkVector v) { |
161 | SkVector n = SkPointPriv::MakeOrthog(v, fSide); |
162 | SkAssertResult(n.normalize()); |
163 | SkASSERT(SkScalarNearlyEqual(1.0f, n.length())); |
164 | return n; |
165 | }; |
166 | |
167 | // Check the cross product of the final trio |
168 | fNorms.append(fPts.count()); |
169 | fNorms[0] = fPts[1] - fPts[0]; |
170 | fNorms.top() = fPts[0] - fPts.top(); |
171 | SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
172 | fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side; |
173 | fNorms[0] = normalToVector(fNorms[0]); |
174 | for (int cur = 1; cur < fNorms.count() - 1; ++cur) { |
175 | fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]); |
176 | } |
177 | fNorms.top() = normalToVector(fNorms.top()); |
178 | } |
179 | |
180 | void GrAAConvexTessellator::computeBisectors() { |
181 | fBisectors.setCount(fNorms.count()); |
182 | |
183 | int prev = fBisectors.count() - 1; |
184 | for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { |
185 | fBisectors[cur] = fNorms[cur] + fNorms[prev]; |
186 | if (!fBisectors[cur].normalize()) { |
187 | fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) + |
188 | SkPointPriv::MakeOrthog(fNorms[prev], fSide); |
189 | SkAssertResult(fBisectors[cur].normalize()); |
190 | } else { |
191 | fBisectors[cur].negate(); // make the bisector face in |
192 | } |
193 | if (fCurveState[prev] == kIndeterminate_CurveState) { |
194 | if (fCurveState[cur] == kSharp_CurveState) { |
195 | fCurveState[prev] = kSharp_CurveState; |
196 | } else { |
197 | if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) { |
198 | fCurveState[prev] = kCurve_CurveState; |
199 | fCurveState[cur] = kCurve_CurveState; |
200 | } else { |
201 | fCurveState[prev] = kSharp_CurveState; |
202 | fCurveState[cur] = kSharp_CurveState; |
203 | } |
204 | } |
205 | } |
206 | |
207 | SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
208 | } |
209 | } |
210 | |
211 | // Create as many rings as we need to (up to a predefined limit) to reach the specified target |
212 | // depth. If we are in fill mode, the final ring will automatically be fanned. |
213 | bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth, |
214 | SkScalar initialCoverage, SkScalar targetDepth, |
215 | SkScalar targetCoverage, Ring** finalRing) { |
216 | static const int kMaxNumRings = 8; |
217 | |
218 | if (previousRing.numPts() < 3) { |
219 | return false; |
220 | } |
221 | Ring* currentRing = &previousRing; |
222 | int i; |
223 | for (i = 0; i < kMaxNumRings; ++i) { |
224 | Ring* nextRing = this->getNextRing(currentRing); |
225 | SkASSERT(nextRing != currentRing); |
226 | |
227 | bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage, |
228 | targetDepth, targetCoverage, i == 0); |
229 | currentRing = nextRing; |
230 | if (done) { |
231 | break; |
232 | } |
233 | currentRing->init(*this); |
234 | } |
235 | |
236 | if (kMaxNumRings == i) { |
237 | // Bail if we've exceeded the amount of time we want to throw at this. |
238 | this->terminate(*currentRing); |
239 | return false; |
240 | } |
241 | bool done = currentRing->numPts() >= 3; |
242 | if (done) { |
243 | currentRing->init(*this); |
244 | } |
245 | *finalRing = currentRing; |
246 | return done; |
247 | } |
248 | |
249 | // The general idea here is to, conceptually, start with the original polygon and slide |
250 | // the vertices along the bisectors until the first intersection. At that |
251 | // point two of the edges collapse and the process repeats on the new polygon. |
252 | // The polygon state is captured in the Ring class while the GrAAConvexTessellator |
253 | // controls the iteration. The CandidateVerts holds the formative points for the |
254 | // next ring. |
255 | bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
256 | if (!this->extractFromPath(m, path)) { |
257 | return false; |
258 | } |
259 | |
260 | SkScalar coverage = 1.0f; |
261 | SkScalar scaleFactor = 0.0f; |
262 | |
263 | if (SkStrokeRec::kStrokeAndFill_Style == fStyle) { |
264 | SkASSERT(m.isSimilarity()); |
265 | scaleFactor = m.getMaxScale(); // x and y scale are the same |
266 | SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; |
267 | Ring outerStrokeAndAARing; |
268 | this->createOuterRing(fInitialRing, |
269 | effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0, |
270 | &outerStrokeAndAARing); |
271 | |
272 | // discard all the triangles added between the originating ring and the new outer ring |
273 | fIndices.rewind(); |
274 | |
275 | outerStrokeAndAARing.init(*this); |
276 | |
277 | outerStrokeAndAARing.makeOriginalRing(); |
278 | |
279 | // Add the outer stroke ring's normals to the originating ring's normals |
280 | // so it can also act as an originating ring |
281 | fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts()); |
282 | for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) { |
283 | SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count()); |
284 | fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i); |
285 | } |
286 | |
287 | // the bisectors are only needed for the computation of the outer ring |
288 | fBisectors.rewind(); |
289 | |
290 | Ring* insetAARing; |
291 | this->createInsetRings(outerStrokeAndAARing, |
292 | 0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f, |
293 | &insetAARing); |
294 | |
295 | SkDEBUGCODE(this->validate();) |
296 | return true; |
297 | } |
298 | |
299 | if (SkStrokeRec::kStroke_Style == fStyle) { |
300 | SkASSERT(fStrokeWidth >= 0.0f); |
301 | SkASSERT(m.isSimilarity()); |
302 | scaleFactor = m.getMaxScale(); // x and y scale are the same |
303 | SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; |
304 | Ring outerStrokeRing; |
305 | this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius, |
306 | coverage, &outerStrokeRing); |
307 | outerStrokeRing.init(*this); |
308 | Ring outerAARing; |
309 | this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing); |
310 | } else { |
311 | Ring outerAARing; |
312 | this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing); |
313 | } |
314 | |
315 | // the bisectors are only needed for the computation of the outer ring |
316 | fBisectors.rewind(); |
317 | if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) { |
318 | SkASSERT(fStrokeWidth >= 0.0f); |
319 | SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; |
320 | Ring* insetStrokeRing; |
321 | SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius; |
322 | if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage, |
323 | &insetStrokeRing)) { |
324 | Ring* insetAARing; |
325 | this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth + |
326 | kAntialiasingRadius * 2, 0.0f, &insetAARing); |
327 | } |
328 | } else { |
329 | Ring* insetAARing; |
330 | this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing); |
331 | } |
332 | |
333 | SkDEBUGCODE(this->validate();) |
334 | return true; |
335 | } |
336 | |
337 | SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { |
338 | SkASSERT(edgeIdx < fNorms.count()); |
339 | |
340 | SkPoint v = p - fPts[edgeIdx]; |
341 | SkScalar depth = -fNorms[edgeIdx].dot(v); |
342 | return depth; |
343 | } |
344 | |
345 | // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies |
346 | // along the 'bisector' from the 'startIdx'-th point. |
347 | bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
348 | const SkVector& bisector, |
349 | int edgeIdx, |
350 | SkScalar desiredDepth, |
351 | SkPoint* result) const { |
352 | const SkPoint& norm = fNorms[edgeIdx]; |
353 | |
354 | // First find the point where the edge and the bisector intersect |
355 | SkPoint newP; |
356 | |
357 | SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
358 | if (SkScalarNearlyEqual(t, 0.0f)) { |
359 | // the start point was one of the original ring points |
360 | SkASSERT(startIdx < fPts.count()); |
361 | newP = fPts[startIdx]; |
362 | } else if (t < 0.0f) { |
363 | newP = bisector; |
364 | newP.scale(t); |
365 | newP += fPts[startIdx]; |
366 | } else { |
367 | return false; |
368 | } |
369 | |
370 | // Then offset along the bisector from that point the correct distance |
371 | SkScalar dot = bisector.dot(norm); |
372 | t = -desiredDepth / dot; |
373 | *result = bisector; |
374 | result->scale(t); |
375 | *result += newP; |
376 | |
377 | return true; |
378 | } |
379 | |
380 | bool GrAAConvexTessellator::(const SkMatrix& m, const SkPath& path) { |
381 | SkASSERT(SkPathConvexityType::kConvex == path.getConvexityType()); |
382 | |
383 | SkRect bounds = path.getBounds(); |
384 | m.mapRect(&bounds); |
385 | if (!bounds.isFinite()) { |
386 | // We could do something smarter here like clip the path based on the bounds of the dst. |
387 | // We'd have to be careful about strokes to ensure we don't draw something wrong. |
388 | return false; |
389 | } |
390 | |
391 | // Outer ring: 3*numPts |
392 | // Middle ring: numPts |
393 | // Presumptive inner ring: numPts |
394 | this->reservePts(5*path.countPoints()); |
395 | // Outer ring: 12*numPts |
396 | // Middle ring: 0 |
397 | // Presumptive inner ring: 6*numPts + 6 |
398 | fIndices.setReserve(18*path.countPoints() + 6); |
399 | |
400 | // Reset the accumulated error for all the future lineTo() calls when iterating over the path. |
401 | fAccumLinearError = 0.f; |
402 | // TODO: is there a faster way to extract the points from the path? Perhaps |
403 | // get all the points via a new entry point, transform them all in bulk |
404 | // and then walk them to find duplicates? |
405 | SkPathEdgeIter iter(path); |
406 | while (auto e = iter.next()) { |
407 | switch (e.fEdge) { |
408 | case SkPathEdgeIter::Edge::kLine: |
409 | if (!SkPathPriv::AllPointsEq(e.fPts, 2)) { |
410 | this->lineTo(m, e.fPts[1], kSharp_CurveState); |
411 | } |
412 | break; |
413 | case SkPathEdgeIter::Edge::kQuad: |
414 | if (!SkPathPriv::AllPointsEq(e.fPts, 3)) { |
415 | this->quadTo(m, e.fPts); |
416 | } |
417 | break; |
418 | case SkPathEdgeIter::Edge::kCubic: |
419 | if (!SkPathPriv::AllPointsEq(e.fPts, 4)) { |
420 | this->cubicTo(m, e.fPts); |
421 | } |
422 | break; |
423 | case SkPathEdgeIter::Edge::kConic: |
424 | if (!SkPathPriv::AllPointsEq(e.fPts, 3)) { |
425 | this->conicTo(m, e.fPts, iter.conicWeight()); |
426 | } |
427 | break; |
428 | } |
429 | } |
430 | |
431 | if (this->numPts() < 2) { |
432 | return false; |
433 | } |
434 | |
435 | // check if last point is a duplicate of the first point. If so, remove it. |
436 | if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { |
437 | this->popLastPt(); |
438 | } |
439 | |
440 | // Remove any lingering colinear points where the path wraps around |
441 | fAccumLinearError = 0.f; |
442 | bool noRemovalsToDo = false; |
443 | while (!noRemovalsToDo && this->numPts() >= 3) { |
444 | if (points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), fPts[0], |
445 | &fAccumLinearError)) { |
446 | this->popLastPt(); |
447 | } else if (points_are_colinear_and_b_is_middle(fPts.top(), fPts[0], fPts[1], |
448 | &fAccumLinearError)) { |
449 | this->popFirstPtShuffle(); |
450 | } else { |
451 | noRemovalsToDo = true; |
452 | } |
453 | } |
454 | |
455 | // Compute the normals and bisectors. |
456 | SkASSERT(fNorms.empty()); |
457 | if (this->numPts() >= 3) { |
458 | this->computeNormals(); |
459 | this->computeBisectors(); |
460 | } else if (this->numPts() == 2) { |
461 | // We've got two points, so we're degenerate. |
462 | if (fStyle == SkStrokeRec::kFill_Style) { |
463 | // it's a fill, so we don't need to worry about degenerate paths |
464 | return false; |
465 | } |
466 | // For stroking, we still need to process the degenerate path, so fix it up |
467 | fSide = SkPointPriv::kLeft_Side; |
468 | |
469 | fNorms.append(2); |
470 | fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide); |
471 | fNorms[0].normalize(); |
472 | fNorms[1] = -fNorms[0]; |
473 | SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
474 | // we won't actually use the bisectors, so just push zeroes |
475 | fBisectors.push_back(SkPoint::Make(0.0, 0.0)); |
476 | fBisectors.push_back(SkPoint::Make(0.0, 0.0)); |
477 | } else { |
478 | return false; |
479 | } |
480 | |
481 | fCandidateVerts.setReserve(this->numPts()); |
482 | fInitialRing.setReserve(this->numPts()); |
483 | for (int i = 0; i < this->numPts(); ++i) { |
484 | fInitialRing.addIdx(i, i); |
485 | } |
486 | fInitialRing.init(fNorms, fBisectors); |
487 | |
488 | this->validate(); |
489 | return true; |
490 | } |
491 | |
492 | GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { |
493 | #if GR_AA_CONVEX_TESSELLATOR_VIZ |
494 | Ring* ring = *fRings.push() = new Ring; |
495 | ring->setReserve(fInitialRing.numPts()); |
496 | ring->rewind(); |
497 | return ring; |
498 | #else |
499 | // Flip flop back and forth between fRings[0] & fRings[1] |
500 | int nextRing = (lastRing == &fRings[0]) ? 1 : 0; |
501 | fRings[nextRing].setReserve(fInitialRing.numPts()); |
502 | fRings[nextRing].rewind(); |
503 | return &fRings[nextRing]; |
504 | #endif |
505 | } |
506 | |
507 | void GrAAConvexTessellator::fanRing(const Ring& ring) { |
508 | // fan out from point 0 |
509 | int startIdx = ring.index(0); |
510 | for (int cur = ring.numPts() - 2; cur >= 0; --cur) { |
511 | this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); |
512 | } |
513 | } |
514 | |
515 | void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset, |
516 | SkScalar coverage, Ring* nextRing) { |
517 | const int numPts = previousRing.numPts(); |
518 | if (numPts == 0) { |
519 | return; |
520 | } |
521 | |
522 | int prev = numPts - 1; |
523 | int lastPerpIdx = -1, firstPerpIdx = -1; |
524 | |
525 | const SkScalar outsetSq = outset * outset; |
526 | SkScalar miterLimitSq = outset * fMiterLimit; |
527 | miterLimitSq = miterLimitSq * miterLimitSq; |
528 | for (int cur = 0; cur < numPts; ++cur) { |
529 | int originalIdx = previousRing.index(cur); |
530 | // For each vertex of the original polygon we add at least two points to the |
531 | // outset polygon - one extending perpendicular to each impinging edge. Connecting these |
532 | // two points yields a bevel join. We need one additional point for a mitered join, and |
533 | // a round join requires one or more points depending upon curvature. |
534 | |
535 | // The perpendicular point for the last edge |
536 | SkPoint normal1 = previousRing.norm(prev); |
537 | SkPoint perp1 = normal1; |
538 | perp1.scale(outset); |
539 | perp1 += this->point(originalIdx); |
540 | |
541 | // The perpendicular point for the next edge. |
542 | SkPoint normal2 = previousRing.norm(cur); |
543 | SkPoint perp2 = normal2; |
544 | perp2.scale(outset); |
545 | perp2 += fPts[originalIdx]; |
546 | |
547 | CurveState curve = fCurveState[originalIdx]; |
548 | |
549 | // We know it isn't a duplicate of the prior point (since it and this |
550 | // one are just perpendicular offsets from the non-merged polygon points) |
551 | int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve); |
552 | nextRing->addIdx(perp1Idx, originalIdx); |
553 | |
554 | int perp2Idx; |
555 | // For very shallow angles all the corner points could fuse. |
556 | if (duplicate_pt(perp2, this->point(perp1Idx))) { |
557 | perp2Idx = perp1Idx; |
558 | } else { |
559 | perp2Idx = this->addPt(perp2, -outset, coverage, false, curve); |
560 | } |
561 | |
562 | if (perp2Idx != perp1Idx) { |
563 | if (curve == kCurve_CurveState) { |
564 | // bevel or round depending upon curvature |
565 | SkScalar dotProd = normal1.dot(normal2); |
566 | if (dotProd < kRoundCapThreshold) { |
567 | // Currently we "round" by creating a single extra point, which produces |
568 | // good results for common cases. For thick strokes with high curvature, we will |
569 | // need to add more points; for the time being we simply fall back to software |
570 | // rendering for thick strokes. |
571 | SkPoint miter = previousRing.bisector(cur); |
572 | miter.setLength(-outset); |
573 | miter += fPts[originalIdx]; |
574 | |
575 | // For very shallow angles all the corner points could fuse |
576 | if (!duplicate_pt(miter, this->point(perp1Idx))) { |
577 | int miterIdx; |
578 | miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState); |
579 | nextRing->addIdx(miterIdx, originalIdx); |
580 | // The two triangles for the corner |
581 | this->addTri(originalIdx, perp1Idx, miterIdx); |
582 | this->addTri(originalIdx, miterIdx, perp2Idx); |
583 | } |
584 | } else { |
585 | this->addTri(originalIdx, perp1Idx, perp2Idx); |
586 | } |
587 | } else { |
588 | switch (fJoin) { |
589 | case SkPaint::Join::kMiter_Join: { |
590 | // The bisector outset point |
591 | SkPoint miter = previousRing.bisector(cur); |
592 | SkScalar dotProd = normal1.dot(normal2); |
593 | // The max is because this could go slightly negative if precision causes |
594 | // us to become slightly concave. |
595 | SkScalar sinHalfAngleSq = std::max(SkScalarHalf(SK_Scalar1 + dotProd), 0.f); |
596 | SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq); |
597 | if (lengthSq > miterLimitSq) { |
598 | // just bevel it |
599 | this->addTri(originalIdx, perp1Idx, perp2Idx); |
600 | break; |
601 | } |
602 | miter.setLength(-SkScalarSqrt(lengthSq)); |
603 | miter += fPts[originalIdx]; |
604 | |
605 | // For very shallow angles all the corner points could fuse |
606 | if (!duplicate_pt(miter, this->point(perp1Idx))) { |
607 | int miterIdx; |
608 | miterIdx = this->addPt(miter, -outset, coverage, false, |
609 | kSharp_CurveState); |
610 | nextRing->addIdx(miterIdx, originalIdx); |
611 | // The two triangles for the corner |
612 | this->addTri(originalIdx, perp1Idx, miterIdx); |
613 | this->addTri(originalIdx, miterIdx, perp2Idx); |
614 | } else { |
615 | // ignore the miter point as it's so close to perp1/perp2 and simply |
616 | // bevel. |
617 | this->addTri(originalIdx, perp1Idx, perp2Idx); |
618 | } |
619 | break; |
620 | } |
621 | case SkPaint::Join::kBevel_Join: |
622 | this->addTri(originalIdx, perp1Idx, perp2Idx); |
623 | break; |
624 | default: |
625 | // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is |
626 | // only willing to draw mitered or beveled, so we should never get here. |
627 | SkASSERT(false); |
628 | } |
629 | } |
630 | |
631 | nextRing->addIdx(perp2Idx, originalIdx); |
632 | } |
633 | |
634 | if (0 == cur) { |
635 | // Store the index of the first perpendicular point to finish up |
636 | firstPerpIdx = perp1Idx; |
637 | SkASSERT(-1 == lastPerpIdx); |
638 | } else { |
639 | // The triangles for the previous edge |
640 | int prevIdx = previousRing.index(prev); |
641 | this->addTri(prevIdx, perp1Idx, originalIdx); |
642 | this->addTri(prevIdx, lastPerpIdx, perp1Idx); |
643 | } |
644 | |
645 | // Track the last perpendicular outset point so we can construct the |
646 | // trailing edge triangles. |
647 | lastPerpIdx = perp2Idx; |
648 | prev = cur; |
649 | } |
650 | |
651 | // pick up the final edge rect |
652 | int lastIdx = previousRing.index(numPts - 1); |
653 | this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); |
654 | this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); |
655 | |
656 | this->validate(); |
657 | } |
658 | |
659 | // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead |
660 | // and fan it. |
661 | void GrAAConvexTessellator::terminate(const Ring& ring) { |
662 | if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) { |
663 | this->fanRing(ring); |
664 | } |
665 | } |
666 | |
667 | static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage, |
668 | SkScalar targetDepth, SkScalar targetCoverage) { |
669 | if (SkScalarNearlyEqual(initialDepth, targetDepth)) { |
670 | return targetCoverage; |
671 | } |
672 | SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * |
673 | (targetCoverage - initialCoverage) + initialCoverage; |
674 | return SkTPin(result, 0.0f, 1.0f); |
675 | } |
676 | |
677 | // return true when processing is complete |
678 | bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing, |
679 | SkScalar initialDepth, SkScalar initialCoverage, |
680 | SkScalar targetDepth, SkScalar targetCoverage, |
681 | bool forceNew) { |
682 | bool done = false; |
683 | |
684 | fCandidateVerts.rewind(); |
685 | |
686 | // Loop through all the points in the ring and find the intersection with the smallest depth |
687 | SkScalar minDist = SK_ScalarMax, minT = 0.0f; |
688 | int minEdgeIdx = -1; |
689 | |
690 | for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
691 | int next = (cur + 1) % lastRing.numPts(); |
692 | |
693 | SkScalar t; |
694 | bool result = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), |
695 | this->point(lastRing.index(next)), lastRing.bisector(next), |
696 | &t); |
697 | // The bisectors may be parallel (!result) or the previous ring may have become slightly |
698 | // concave due to accumulated error (t <= 0). |
699 | if (!result || t <= 0) { |
700 | continue; |
701 | } |
702 | SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
703 | |
704 | if (minDist > dist) { |
705 | minDist = dist; |
706 | minT = t; |
707 | minEdgeIdx = cur; |
708 | } |
709 | } |
710 | |
711 | if (minEdgeIdx == -1) { |
712 | return false; |
713 | } |
714 | SkPoint newPt = lastRing.bisector(minEdgeIdx); |
715 | newPt.scale(minT); |
716 | newPt += this->point(lastRing.index(minEdgeIdx)); |
717 | |
718 | SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); |
719 | if (depth >= targetDepth) { |
720 | // None of the bisectors intersect before reaching the desired depth. |
721 | // Just step them all to the desired depth |
722 | depth = targetDepth; |
723 | done = true; |
724 | } |
725 | |
726 | // 'dst' stores where each point in the last ring maps to/transforms into |
727 | // in the next ring. |
728 | SkTDArray<int> dst; |
729 | dst.setCount(lastRing.numPts()); |
730 | |
731 | // Create the first point (who compares with no one) |
732 | if (!this->computePtAlongBisector(lastRing.index(0), |
733 | lastRing.bisector(0), |
734 | lastRing.origEdgeID(0), |
735 | depth, &newPt)) { |
736 | this->terminate(lastRing); |
737 | return true; |
738 | } |
739 | dst[0] = fCandidateVerts.addNewPt(newPt, |
740 | lastRing.index(0), lastRing.origEdgeID(0), |
741 | !this->movable(lastRing.index(0))); |
742 | |
743 | // Handle the middle points (who only compare with the prior point) |
744 | for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { |
745 | if (!this->computePtAlongBisector(lastRing.index(cur), |
746 | lastRing.bisector(cur), |
747 | lastRing.origEdgeID(cur), |
748 | depth, &newPt)) { |
749 | this->terminate(lastRing); |
750 | return true; |
751 | } |
752 | if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
753 | dst[cur] = fCandidateVerts.addNewPt(newPt, |
754 | lastRing.index(cur), lastRing.origEdgeID(cur), |
755 | !this->movable(lastRing.index(cur))); |
756 | } else { |
757 | dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
758 | } |
759 | } |
760 | |
761 | // Check on the last point (handling the wrap around) |
762 | int cur = lastRing.numPts()-1; |
763 | if (!this->computePtAlongBisector(lastRing.index(cur), |
764 | lastRing.bisector(cur), |
765 | lastRing.origEdgeID(cur), |
766 | depth, &newPt)) { |
767 | this->terminate(lastRing); |
768 | return true; |
769 | } |
770 | bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
771 | bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); |
772 | |
773 | if (!dupPrev && !dupNext) { |
774 | dst[cur] = fCandidateVerts.addNewPt(newPt, |
775 | lastRing.index(cur), lastRing.origEdgeID(cur), |
776 | !this->movable(lastRing.index(cur))); |
777 | } else if (dupPrev && !dupNext) { |
778 | dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
779 | } else if (!dupPrev && dupNext) { |
780 | dst[cur] = fCandidateVerts.fuseWithNext(); |
781 | } else { |
782 | bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); |
783 | |
784 | if (!dupPrevVsNext) { |
785 | dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
786 | } else { |
787 | const int fused = fCandidateVerts.fuseWithBoth(); |
788 | dst[cur] = fused; |
789 | const int targetIdx = dst[cur - 1]; |
790 | for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) { |
791 | dst[i] = fused; |
792 | } |
793 | } |
794 | } |
795 | |
796 | // Fold the new ring's points into the global pool |
797 | for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
798 | int newIdx; |
799 | if (fCandidateVerts.needsToBeNew(i) || forceNew) { |
800 | // if the originating index is still valid then this point wasn't |
801 | // fused (and is thus movable) |
802 | SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage, |
803 | targetDepth, targetCoverage); |
804 | newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, |
805 | fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState); |
806 | } else { |
807 | SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
808 | this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth, |
809 | targetCoverage); |
810 | newIdx = fCandidateVerts.originatingIdx(i); |
811 | } |
812 | |
813 | nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
814 | } |
815 | |
816 | // 'dst' currently has indices into the ring. Remap these to be indices |
817 | // into the global pool since the triangulation operates in that space. |
818 | for (int i = 0; i < dst.count(); ++i) { |
819 | dst[i] = nextRing->index(dst[i]); |
820 | } |
821 | |
822 | for (int i = 0; i < lastRing.numPts(); ++i) { |
823 | int next = (i + 1) % lastRing.numPts(); |
824 | |
825 | this->addTri(lastRing.index(i), lastRing.index(next), dst[next]); |
826 | this->addTri(lastRing.index(i), dst[next], dst[i]); |
827 | } |
828 | |
829 | if (done && fStyle != SkStrokeRec::kStroke_Style) { |
830 | // fill or stroke-and-fill |
831 | this->fanRing(*nextRing); |
832 | } |
833 | |
834 | if (nextRing->numPts() < 3) { |
835 | done = true; |
836 | } |
837 | return done; |
838 | } |
839 | |
840 | void GrAAConvexTessellator::validate() const { |
841 | SkASSERT(fPts.count() == fMovable.count()); |
842 | SkASSERT(fPts.count() == fCoverages.count()); |
843 | SkASSERT(fPts.count() == fCurveState.count()); |
844 | SkASSERT(0 == (fIndices.count() % 3)); |
845 | SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count()); |
846 | } |
847 | |
848 | ////////////////////////////////////////////////////////////////////////////// |
849 | void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { |
850 | this->computeNormals(tess); |
851 | this->computeBisectors(tess); |
852 | } |
853 | |
854 | void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, |
855 | const SkTDArray<SkVector>& bisectors) { |
856 | for (int i = 0; i < fPts.count(); ++i) { |
857 | fPts[i].fNorm = norms[i]; |
858 | fPts[i].fBisector = bisectors[i]; |
859 | } |
860 | } |
861 | |
862 | // Compute the outward facing normal at each vertex. |
863 | void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { |
864 | for (int cur = 0; cur < fPts.count(); ++cur) { |
865 | int next = (cur + 1) % fPts.count(); |
866 | |
867 | fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); |
868 | SkPoint::Normalize(&fPts[cur].fNorm); |
869 | fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side()); |
870 | } |
871 | } |
872 | |
873 | void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) { |
874 | int prev = fPts.count() - 1; |
875 | for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { |
876 | fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; |
877 | if (!fPts[cur].fBisector.normalize()) { |
878 | fPts[cur].fBisector = |
879 | SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) + |
880 | SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side()); |
881 | SkAssertResult(fPts[cur].fBisector.normalize()); |
882 | } else { |
883 | fPts[cur].fBisector.negate(); // make the bisector face in |
884 | } |
885 | } |
886 | } |
887 | |
888 | ////////////////////////////////////////////////////////////////////////////// |
889 | #ifdef SK_DEBUG |
890 | // Is this ring convex? |
891 | bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { |
892 | if (fPts.count() < 3) { |
893 | return true; |
894 | } |
895 | |
896 | SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
897 | SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); |
898 | SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; |
899 | SkScalar maxDot = minDot; |
900 | |
901 | prev = cur; |
902 | for (int i = 1; i < fPts.count(); ++i) { |
903 | int next = (i + 1) % fPts.count(); |
904 | |
905 | cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); |
906 | SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; |
907 | |
908 | minDot = std::min(minDot, dot); |
909 | maxDot = std::max(maxDot, dot); |
910 | |
911 | prev = cur; |
912 | } |
913 | |
914 | if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { |
915 | maxDot = 0; |
916 | } |
917 | if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { |
918 | minDot = 0; |
919 | } |
920 | return (maxDot >= 0.0f) == (minDot >= 0.0f); |
921 | } |
922 | |
923 | #endif |
924 | |
925 | void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) { |
926 | if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { |
927 | return; |
928 | } |
929 | |
930 | if (this->numPts() >= 2 && |
931 | points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), p, |
932 | &fAccumLinearError)) { |
933 | // The old last point is on the line from the second to last to the new point |
934 | this->popLastPt(); |
935 | // double-check that the new last point is not a duplicate of the new point. In an ideal |
936 | // world this wouldn't be necessary (since it's only possible for non-convex paths), but |
937 | // floating point precision issues mean it can actually happen on paths that were |
938 | // determined to be convex. |
939 | if (duplicate_pt(p, this->lastPoint())) { |
940 | return; |
941 | } |
942 | } else { |
943 | fAccumLinearError = 0.f; |
944 | } |
945 | SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f; |
946 | this->addPt(p, 0.0f, initialRingCoverage, false, curve); |
947 | } |
948 | |
949 | void GrAAConvexTessellator::lineTo(const SkMatrix& m, const SkPoint& p, CurveState curve) { |
950 | this->lineTo(m.mapXY(p.fX, p.fY), curve); |
951 | } |
952 | |
953 | void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) { |
954 | int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
955 | fPointBuffer.setCount(maxCount); |
956 | SkPoint* target = fPointBuffer.begin(); |
957 | int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
958 | kQuadTolerance, &target, maxCount); |
959 | fPointBuffer.setCount(count); |
960 | for (int i = 0; i < count - 1; i++) { |
961 | this->lineTo(fPointBuffer[i], kCurve_CurveState); |
962 | } |
963 | this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState); |
964 | } |
965 | |
966 | void GrAAConvexTessellator::quadTo(const SkMatrix& m, const SkPoint srcPts[3]) { |
967 | SkPoint pts[3]; |
968 | m.mapPoints(pts, srcPts, 3); |
969 | this->quadTo(pts); |
970 | } |
971 | |
972 | void GrAAConvexTessellator::cubicTo(const SkMatrix& m, const SkPoint srcPts[4]) { |
973 | SkPoint pts[4]; |
974 | m.mapPoints(pts, srcPts, 4); |
975 | int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
976 | fPointBuffer.setCount(maxCount); |
977 | SkPoint* target = fPointBuffer.begin(); |
978 | int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], |
979 | kCubicTolerance, &target, maxCount); |
980 | fPointBuffer.setCount(count); |
981 | for (int i = 0; i < count - 1; i++) { |
982 | this->lineTo(fPointBuffer[i], kCurve_CurveState); |
983 | } |
984 | this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState); |
985 | } |
986 | |
987 | // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h |
988 | #include "src/core/SkGeometry.h" |
989 | |
990 | void GrAAConvexTessellator::conicTo(const SkMatrix& m, const SkPoint srcPts[3], SkScalar w) { |
991 | SkPoint pts[3]; |
992 | m.mapPoints(pts, srcPts, 3); |
993 | SkAutoConicToQuads quadder; |
994 | const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
995 | SkPoint lastPoint = *(quads++); |
996 | int count = quadder.countQuads(); |
997 | for (int i = 0; i < count; ++i) { |
998 | SkPoint quadPts[3]; |
999 | quadPts[0] = lastPoint; |
1000 | quadPts[1] = quads[0]; |
1001 | quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
1002 | this->quadTo(quadPts); |
1003 | lastPoint = quadPts[2]; |
1004 | quads += 2; |
1005 | } |
1006 | } |
1007 | |
1008 | ////////////////////////////////////////////////////////////////////////////// |
1009 | #if GR_AA_CONVEX_TESSELLATOR_VIZ |
1010 | static const SkScalar kPointRadius = 0.02f; |
1011 | static const SkScalar kArrowStrokeWidth = 0.0f; |
1012 | static const SkScalar kArrowLength = 0.2f; |
1013 | static const SkScalar kEdgeTextSize = 0.1f; |
1014 | static const SkScalar kPointTextSize = 0.02f; |
1015 | |
1016 | static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { |
1017 | SkPaint paint; |
1018 | SkASSERT(paramValue <= 1.0f); |
1019 | int gs = int(255*paramValue); |
1020 | paint.setARGB(255, gs, gs, gs); |
1021 | |
1022 | canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); |
1023 | |
1024 | if (stroke) { |
1025 | SkPaint stroke; |
1026 | stroke.setColor(SK_ColorYELLOW); |
1027 | stroke.setStyle(SkPaint::kStroke_Style); |
1028 | stroke.setStrokeWidth(kPointRadius/3.0f); |
1029 | canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); |
1030 | } |
1031 | } |
1032 | |
1033 | static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { |
1034 | SkPaint p; |
1035 | p.setColor(color); |
1036 | |
1037 | canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); |
1038 | } |
1039 | |
1040 | static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, |
1041 | SkScalar len, SkColor color) { |
1042 | SkPaint paint; |
1043 | paint.setColor(color); |
1044 | paint.setStrokeWidth(kArrowStrokeWidth); |
1045 | paint.setStyle(SkPaint::kStroke_Style); |
1046 | |
1047 | canvas->drawLine(p.fX, p.fY, |
1048 | p.fX + len * n.fX, p.fY + len * n.fY, |
1049 | paint); |
1050 | } |
1051 | |
1052 | void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { |
1053 | SkPaint paint; |
1054 | paint.setTextSize(kEdgeTextSize); |
1055 | |
1056 | for (int cur = 0; cur < fPts.count(); ++cur) { |
1057 | int next = (cur + 1) % fPts.count(); |
1058 | |
1059 | draw_line(canvas, |
1060 | tess.point(fPts[cur].fIndex), |
1061 | tess.point(fPts[next].fIndex), |
1062 | SK_ColorGREEN); |
1063 | |
1064 | SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); |
1065 | mid.scale(0.5f); |
1066 | |
1067 | if (fPts.count()) { |
1068 | draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); |
1069 | mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; |
1070 | mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; |
1071 | } |
1072 | |
1073 | SkString num; |
1074 | num.printf("%d" , this->origEdgeID(cur)); |
1075 | canvas->drawString(num, mid.fX, mid.fY, paint); |
1076 | |
1077 | if (fPts.count()) { |
1078 | draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, |
1079 | kArrowLength, SK_ColorBLUE); |
1080 | } |
1081 | } |
1082 | } |
1083 | |
1084 | void GrAAConvexTessellator::draw(SkCanvas* canvas) const { |
1085 | for (int i = 0; i < fIndices.count(); i += 3) { |
1086 | SkASSERT(fIndices[i] < this->numPts()) ; |
1087 | SkASSERT(fIndices[i+1] < this->numPts()) ; |
1088 | SkASSERT(fIndices[i+2] < this->numPts()) ; |
1089 | |
1090 | draw_line(canvas, |
1091 | this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), |
1092 | SK_ColorBLACK); |
1093 | draw_line(canvas, |
1094 | this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), |
1095 | SK_ColorBLACK); |
1096 | draw_line(canvas, |
1097 | this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), |
1098 | SK_ColorBLACK); |
1099 | } |
1100 | |
1101 | fInitialRing.draw(canvas, *this); |
1102 | for (int i = 0; i < fRings.count(); ++i) { |
1103 | fRings[i]->draw(canvas, *this); |
1104 | } |
1105 | |
1106 | for (int i = 0; i < this->numPts(); ++i) { |
1107 | draw_point(canvas, |
1108 | this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)), |
1109 | !this->movable(i)); |
1110 | |
1111 | SkPaint paint; |
1112 | paint.setTextSize(kPointTextSize); |
1113 | if (this->depth(i) <= -kAntialiasingRadius) { |
1114 | paint.setColor(SK_ColorWHITE); |
1115 | } |
1116 | |
1117 | SkString num; |
1118 | num.printf("%d" , i); |
1119 | canvas->drawString(num, |
1120 | this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), |
1121 | paint); |
1122 | } |
1123 | } |
1124 | |
1125 | #endif |
1126 | |