1 | /**************************************************************************/ |
2 | /* basis.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "basis.h" |
32 | |
33 | #include "core/math/math_funcs.h" |
34 | #include "core/string/ustring.h" |
35 | |
36 | #define cofac(row1, col1, row2, col2) \ |
37 | (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1]) |
38 | |
39 | void Basis::invert() { |
40 | real_t co[3] = { |
41 | cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) |
42 | }; |
43 | real_t det = rows[0][0] * co[0] + |
44 | rows[0][1] * co[1] + |
45 | rows[0][2] * co[2]; |
46 | #ifdef MATH_CHECKS |
47 | ERR_FAIL_COND(det == 0); |
48 | #endif |
49 | real_t s = 1.0f / det; |
50 | |
51 | set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, |
52 | co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, |
53 | co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); |
54 | } |
55 | |
56 | void Basis::orthonormalize() { |
57 | // Gram-Schmidt Process |
58 | |
59 | Vector3 x = get_column(0); |
60 | Vector3 y = get_column(1); |
61 | Vector3 z = get_column(2); |
62 | |
63 | x.normalize(); |
64 | y = (y - x * (x.dot(y))); |
65 | y.normalize(); |
66 | z = (z - x * (x.dot(z)) - y * (y.dot(z))); |
67 | z.normalize(); |
68 | |
69 | set_column(0, x); |
70 | set_column(1, y); |
71 | set_column(2, z); |
72 | } |
73 | |
74 | Basis Basis::orthonormalized() const { |
75 | Basis c = *this; |
76 | c.orthonormalize(); |
77 | return c; |
78 | } |
79 | |
80 | void Basis::orthogonalize() { |
81 | Vector3 scl = get_scale(); |
82 | orthonormalize(); |
83 | scale_local(scl); |
84 | } |
85 | |
86 | Basis Basis::orthogonalized() const { |
87 | Basis c = *this; |
88 | c.orthogonalize(); |
89 | return c; |
90 | } |
91 | |
92 | bool Basis::is_orthogonal() const { |
93 | Basis identity; |
94 | Basis m = (*this) * transposed(); |
95 | |
96 | return m.is_equal_approx(identity); |
97 | } |
98 | |
99 | bool Basis::is_diagonal() const { |
100 | return ( |
101 | Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && |
102 | Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) && |
103 | Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); |
104 | } |
105 | |
106 | bool Basis::is_rotation() const { |
107 | return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); |
108 | } |
109 | |
110 | #ifdef MATH_CHECKS |
111 | // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. |
112 | bool Basis::is_symmetric() const { |
113 | if (!Math::is_equal_approx(rows[0][1], rows[1][0])) { |
114 | return false; |
115 | } |
116 | if (!Math::is_equal_approx(rows[0][2], rows[2][0])) { |
117 | return false; |
118 | } |
119 | if (!Math::is_equal_approx(rows[1][2], rows[2][1])) { |
120 | return false; |
121 | } |
122 | |
123 | return true; |
124 | } |
125 | #endif |
126 | |
127 | Basis Basis::diagonalize() { |
128 | // NOTE: only implemented for symmetric matrices |
129 | // with the Jacobi iterative method |
130 | #ifdef MATH_CHECKS |
131 | ERR_FAIL_COND_V(!is_symmetric(), Basis()); |
132 | #endif |
133 | const int ite_max = 1024; |
134 | |
135 | real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2]; |
136 | |
137 | int ite = 0; |
138 | Basis acc_rot; |
139 | while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) { |
140 | real_t el01_2 = rows[0][1] * rows[0][1]; |
141 | real_t el02_2 = rows[0][2] * rows[0][2]; |
142 | real_t el12_2 = rows[1][2] * rows[1][2]; |
143 | // Find the pivot element |
144 | int i, j; |
145 | if (el01_2 > el02_2) { |
146 | if (el12_2 > el01_2) { |
147 | i = 1; |
148 | j = 2; |
149 | } else { |
150 | i = 0; |
151 | j = 1; |
152 | } |
153 | } else { |
154 | if (el12_2 > el02_2) { |
155 | i = 1; |
156 | j = 2; |
157 | } else { |
158 | i = 0; |
159 | j = 2; |
160 | } |
161 | } |
162 | |
163 | // Compute the rotation angle |
164 | real_t angle; |
165 | if (Math::is_equal_approx(rows[j][j], rows[i][i])) { |
166 | angle = Math_PI / 4; |
167 | } else { |
168 | angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); |
169 | } |
170 | |
171 | // Compute the rotation matrix |
172 | Basis rot; |
173 | rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle); |
174 | rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle)); |
175 | |
176 | // Update the off matrix norm |
177 | off_matrix_norm_2 -= rows[i][j] * rows[i][j]; |
178 | |
179 | // Apply the rotation |
180 | *this = rot * *this * rot.transposed(); |
181 | acc_rot = rot * acc_rot; |
182 | } |
183 | |
184 | return acc_rot; |
185 | } |
186 | |
187 | Basis Basis::inverse() const { |
188 | Basis inv = *this; |
189 | inv.invert(); |
190 | return inv; |
191 | } |
192 | |
193 | void Basis::transpose() { |
194 | SWAP(rows[0][1], rows[1][0]); |
195 | SWAP(rows[0][2], rows[2][0]); |
196 | SWAP(rows[1][2], rows[2][1]); |
197 | } |
198 | |
199 | Basis Basis::transposed() const { |
200 | Basis tr = *this; |
201 | tr.transpose(); |
202 | return tr; |
203 | } |
204 | |
205 | Basis Basis::from_scale(const Vector3 &p_scale) { |
206 | return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z); |
207 | } |
208 | |
209 | // Multiplies the matrix from left by the scaling matrix: M -> S.M |
210 | // See the comment for Basis::rotated for further explanation. |
211 | void Basis::scale(const Vector3 &p_scale) { |
212 | rows[0][0] *= p_scale.x; |
213 | rows[0][1] *= p_scale.x; |
214 | rows[0][2] *= p_scale.x; |
215 | rows[1][0] *= p_scale.y; |
216 | rows[1][1] *= p_scale.y; |
217 | rows[1][2] *= p_scale.y; |
218 | rows[2][0] *= p_scale.z; |
219 | rows[2][1] *= p_scale.z; |
220 | rows[2][2] *= p_scale.z; |
221 | } |
222 | |
223 | Basis Basis::scaled(const Vector3 &p_scale) const { |
224 | Basis m = *this; |
225 | m.scale(p_scale); |
226 | return m; |
227 | } |
228 | |
229 | void Basis::scale_local(const Vector3 &p_scale) { |
230 | // performs a scaling in object-local coordinate system: |
231 | // M -> (M.S.Minv).M = M.S. |
232 | *this = scaled_local(p_scale); |
233 | } |
234 | |
235 | void Basis::scale_orthogonal(const Vector3 &p_scale) { |
236 | *this = scaled_orthogonal(p_scale); |
237 | } |
238 | |
239 | Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const { |
240 | Basis m = *this; |
241 | Vector3 s = Vector3(-1, -1, -1) + p_scale; |
242 | bool sign = signbit(s.x + s.y + s.z); |
243 | Basis b = m.orthonormalized(); |
244 | s = b.xform_inv(s); |
245 | Vector3 dots; |
246 | for (int i = 0; i < 3; i++) { |
247 | for (int j = 0; j < 3; j++) { |
248 | dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j))); |
249 | } |
250 | } |
251 | if (sign != signbit(dots.x + dots.y + dots.z)) { |
252 | dots = -dots; |
253 | } |
254 | m.scale_local(Vector3(1, 1, 1) + dots); |
255 | return m; |
256 | } |
257 | |
258 | float Basis::get_uniform_scale() const { |
259 | return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; |
260 | } |
261 | |
262 | Basis Basis::scaled_local(const Vector3 &p_scale) const { |
263 | return (*this) * Basis::from_scale(p_scale); |
264 | } |
265 | |
266 | Vector3 Basis::get_scale_abs() const { |
267 | return Vector3( |
268 | Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), |
269 | Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), |
270 | Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); |
271 | } |
272 | |
273 | Vector3 Basis::get_scale_local() const { |
274 | real_t det_sign = SIGN(determinant()); |
275 | return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); |
276 | } |
277 | |
278 | // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. |
279 | Vector3 Basis::get_scale() const { |
280 | // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. |
281 | // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and |
282 | // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). |
283 | // |
284 | // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition |
285 | // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where |
286 | // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, |
287 | // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, |
288 | // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. |
289 | // Therefore, we are going to do this decomposition by sticking to a particular convention. |
290 | // This may lead to confusion for some users though. |
291 | // |
292 | // The convention we use here is to absorb the sign flip into the scaling matrix. |
293 | // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ... |
294 | // |
295 | // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) |
296 | // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the |
297 | // matrix elements. |
298 | // |
299 | // The rotation part of this decomposition is returned by get_rotation* functions. |
300 | real_t det_sign = SIGN(determinant()); |
301 | return det_sign * get_scale_abs(); |
302 | } |
303 | |
304 | // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. |
305 | // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3. |
306 | // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so. |
307 | Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { |
308 | #ifdef MATH_CHECKS |
309 | ERR_FAIL_COND_V(determinant() == 0, Vector3()); |
310 | |
311 | Basis m = transposed() * (*this); |
312 | ERR_FAIL_COND_V(!m.is_diagonal(), Vector3()); |
313 | #endif |
314 | Vector3 scale = get_scale(); |
315 | Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale |
316 | rotref = (*this) * inv_scale; |
317 | |
318 | #ifdef MATH_CHECKS |
319 | ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3()); |
320 | #endif |
321 | return scale.abs(); |
322 | } |
323 | |
324 | // Multiplies the matrix from left by the rotation matrix: M -> R.M |
325 | // Note that this does *not* rotate the matrix itself. |
326 | // |
327 | // The main use of Basis is as Transform.basis, which is used by the transformation matrix |
328 | // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), |
329 | // not the matrix itself (which is R * (*this) * R.transposed()). |
330 | Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const { |
331 | return Basis(p_axis, p_angle) * (*this); |
332 | } |
333 | |
334 | void Basis::rotate(const Vector3 &p_axis, real_t p_angle) { |
335 | *this = rotated(p_axis, p_angle); |
336 | } |
337 | |
338 | void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) { |
339 | // performs a rotation in object-local coordinate system: |
340 | // M -> (M.R.Minv).M = M.R. |
341 | *this = rotated_local(p_axis, p_angle); |
342 | } |
343 | |
344 | Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const { |
345 | return (*this) * Basis(p_axis, p_angle); |
346 | } |
347 | |
348 | Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const { |
349 | return Basis::from_euler(p_euler, p_order) * (*this); |
350 | } |
351 | |
352 | void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) { |
353 | *this = rotated(p_euler, p_order); |
354 | } |
355 | |
356 | Basis Basis::rotated(const Quaternion &p_quaternion) const { |
357 | return Basis(p_quaternion) * (*this); |
358 | } |
359 | |
360 | void Basis::rotate(const Quaternion &p_quaternion) { |
361 | *this = rotated(p_quaternion); |
362 | } |
363 | |
364 | Vector3 Basis::get_euler_normalized(EulerOrder p_order) const { |
365 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
366 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
367 | // See the comment in get_scale() for further information. |
368 | Basis m = orthonormalized(); |
369 | real_t det = m.determinant(); |
370 | if (det < 0) { |
371 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
372 | m.scale(Vector3(-1, -1, -1)); |
373 | } |
374 | |
375 | return m.get_euler(p_order); |
376 | } |
377 | |
378 | Quaternion Basis::get_rotation_quaternion() const { |
379 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
380 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
381 | // See the comment in get_scale() for further information. |
382 | Basis m = orthonormalized(); |
383 | real_t det = m.determinant(); |
384 | if (det < 0) { |
385 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
386 | m.scale(Vector3(-1, -1, -1)); |
387 | } |
388 | |
389 | return m.get_quaternion(); |
390 | } |
391 | |
392 | void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) { |
393 | // Takes two vectors and rotates the basis from the first vector to the second vector. |
394 | // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 |
395 | const Vector3 axis = p_start_direction.cross(p_end_direction).normalized(); |
396 | if (axis.length_squared() != 0) { |
397 | real_t dot = p_start_direction.dot(p_end_direction); |
398 | dot = CLAMP(dot, -1.0f, 1.0f); |
399 | const real_t angle_rads = Math::acos(dot); |
400 | *this = Basis(axis, angle_rads) * (*this); |
401 | } |
402 | } |
403 | |
404 | void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { |
405 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
406 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
407 | // See the comment in get_scale() for further information. |
408 | Basis m = orthonormalized(); |
409 | real_t det = m.determinant(); |
410 | if (det < 0) { |
411 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
412 | m.scale(Vector3(-1, -1, -1)); |
413 | } |
414 | |
415 | m.get_axis_angle(p_axis, p_angle); |
416 | } |
417 | |
418 | void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { |
419 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
420 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
421 | // See the comment in get_scale() for further information. |
422 | Basis m = transposed(); |
423 | m.orthonormalize(); |
424 | real_t det = m.determinant(); |
425 | if (det < 0) { |
426 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
427 | m.scale(Vector3(-1, -1, -1)); |
428 | } |
429 | |
430 | m.get_axis_angle(p_axis, p_angle); |
431 | p_angle = -p_angle; |
432 | } |
433 | |
434 | Vector3 Basis::get_euler(EulerOrder p_order) const { |
435 | switch (p_order) { |
436 | case EulerOrder::XYZ: { |
437 | // Euler angles in XYZ convention. |
438 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
439 | // |
440 | // rot = cy*cz -cy*sz sy |
441 | // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
442 | // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
443 | |
444 | Vector3 euler; |
445 | real_t sy = rows[0][2]; |
446 | if (sy < (1.0f - (real_t)CMP_EPSILON)) { |
447 | if (sy > -(1.0f - (real_t)CMP_EPSILON)) { |
448 | // is this a pure Y rotation? |
449 | if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { |
450 | // return the simplest form (human friendlier in editor and scripts) |
451 | euler.x = 0; |
452 | euler.y = atan2(rows[0][2], rows[0][0]); |
453 | euler.z = 0; |
454 | } else { |
455 | euler.x = Math::atan2(-rows[1][2], rows[2][2]); |
456 | euler.y = Math::asin(sy); |
457 | euler.z = Math::atan2(-rows[0][1], rows[0][0]); |
458 | } |
459 | } else { |
460 | euler.x = Math::atan2(rows[2][1], rows[1][1]); |
461 | euler.y = -Math_PI / 2.0f; |
462 | euler.z = 0.0f; |
463 | } |
464 | } else { |
465 | euler.x = Math::atan2(rows[2][1], rows[1][1]); |
466 | euler.y = Math_PI / 2.0f; |
467 | euler.z = 0.0f; |
468 | } |
469 | return euler; |
470 | } |
471 | case EulerOrder::XZY: { |
472 | // Euler angles in XZY convention. |
473 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
474 | // |
475 | // rot = cz*cy -sz cz*sy |
476 | // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx |
477 | // cy*sx*sz cz*sx cx*cy+sx*sz*sy |
478 | |
479 | Vector3 euler; |
480 | real_t sz = rows[0][1]; |
481 | if (sz < (1.0f - (real_t)CMP_EPSILON)) { |
482 | if (sz > -(1.0f - (real_t)CMP_EPSILON)) { |
483 | euler.x = Math::atan2(rows[2][1], rows[1][1]); |
484 | euler.y = Math::atan2(rows[0][2], rows[0][0]); |
485 | euler.z = Math::asin(-sz); |
486 | } else { |
487 | // It's -1 |
488 | euler.x = -Math::atan2(rows[1][2], rows[2][2]); |
489 | euler.y = 0.0f; |
490 | euler.z = Math_PI / 2.0f; |
491 | } |
492 | } else { |
493 | // It's 1 |
494 | euler.x = -Math::atan2(rows[1][2], rows[2][2]); |
495 | euler.y = 0.0f; |
496 | euler.z = -Math_PI / 2.0f; |
497 | } |
498 | return euler; |
499 | } |
500 | case EulerOrder::YXZ: { |
501 | // Euler angles in YXZ convention. |
502 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
503 | // |
504 | // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy |
505 | // cx*sz cx*cz -sx |
506 | // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx |
507 | |
508 | Vector3 euler; |
509 | |
510 | real_t m12 = rows[1][2]; |
511 | |
512 | if (m12 < (1 - (real_t)CMP_EPSILON)) { |
513 | if (m12 > -(1 - (real_t)CMP_EPSILON)) { |
514 | // is this a pure X rotation? |
515 | if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { |
516 | // return the simplest form (human friendlier in editor and scripts) |
517 | euler.x = atan2(-m12, rows[1][1]); |
518 | euler.y = 0; |
519 | euler.z = 0; |
520 | } else { |
521 | euler.x = asin(-m12); |
522 | euler.y = atan2(rows[0][2], rows[2][2]); |
523 | euler.z = atan2(rows[1][0], rows[1][1]); |
524 | } |
525 | } else { // m12 == -1 |
526 | euler.x = Math_PI * 0.5f; |
527 | euler.y = atan2(rows[0][1], rows[0][0]); |
528 | euler.z = 0; |
529 | } |
530 | } else { // m12 == 1 |
531 | euler.x = -Math_PI * 0.5f; |
532 | euler.y = -atan2(rows[0][1], rows[0][0]); |
533 | euler.z = 0; |
534 | } |
535 | |
536 | return euler; |
537 | } |
538 | case EulerOrder::YZX: { |
539 | // Euler angles in YZX convention. |
540 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
541 | // |
542 | // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx |
543 | // sz cz*cx -cz*sx |
544 | // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx |
545 | |
546 | Vector3 euler; |
547 | real_t sz = rows[1][0]; |
548 | if (sz < (1.0f - (real_t)CMP_EPSILON)) { |
549 | if (sz > -(1.0f - (real_t)CMP_EPSILON)) { |
550 | euler.x = Math::atan2(-rows[1][2], rows[1][1]); |
551 | euler.y = Math::atan2(-rows[2][0], rows[0][0]); |
552 | euler.z = Math::asin(sz); |
553 | } else { |
554 | // It's -1 |
555 | euler.x = Math::atan2(rows[2][1], rows[2][2]); |
556 | euler.y = 0.0f; |
557 | euler.z = -Math_PI / 2.0f; |
558 | } |
559 | } else { |
560 | // It's 1 |
561 | euler.x = Math::atan2(rows[2][1], rows[2][2]); |
562 | euler.y = 0.0f; |
563 | euler.z = Math_PI / 2.0f; |
564 | } |
565 | return euler; |
566 | } break; |
567 | case EulerOrder::ZXY: { |
568 | // Euler angles in ZXY convention. |
569 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
570 | // |
571 | // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx |
572 | // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx |
573 | // -cx*sy sx cx*cy |
574 | Vector3 euler; |
575 | real_t sx = rows[2][1]; |
576 | if (sx < (1.0f - (real_t)CMP_EPSILON)) { |
577 | if (sx > -(1.0f - (real_t)CMP_EPSILON)) { |
578 | euler.x = Math::asin(sx); |
579 | euler.y = Math::atan2(-rows[2][0], rows[2][2]); |
580 | euler.z = Math::atan2(-rows[0][1], rows[1][1]); |
581 | } else { |
582 | // It's -1 |
583 | euler.x = -Math_PI / 2.0f; |
584 | euler.y = Math::atan2(rows[0][2], rows[0][0]); |
585 | euler.z = 0; |
586 | } |
587 | } else { |
588 | // It's 1 |
589 | euler.x = Math_PI / 2.0f; |
590 | euler.y = Math::atan2(rows[0][2], rows[0][0]); |
591 | euler.z = 0; |
592 | } |
593 | return euler; |
594 | } break; |
595 | case EulerOrder::ZYX: { |
596 | // Euler angles in ZYX convention. |
597 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
598 | // |
599 | // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy |
600 | // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx |
601 | // -sy cy*sx cy*cx |
602 | Vector3 euler; |
603 | real_t sy = rows[2][0]; |
604 | if (sy < (1.0f - (real_t)CMP_EPSILON)) { |
605 | if (sy > -(1.0f - (real_t)CMP_EPSILON)) { |
606 | euler.x = Math::atan2(rows[2][1], rows[2][2]); |
607 | euler.y = Math::asin(-sy); |
608 | euler.z = Math::atan2(rows[1][0], rows[0][0]); |
609 | } else { |
610 | // It's -1 |
611 | euler.x = 0; |
612 | euler.y = Math_PI / 2.0f; |
613 | euler.z = -Math::atan2(rows[0][1], rows[1][1]); |
614 | } |
615 | } else { |
616 | // It's 1 |
617 | euler.x = 0; |
618 | euler.y = -Math_PI / 2.0f; |
619 | euler.z = -Math::atan2(rows[0][1], rows[1][1]); |
620 | } |
621 | return euler; |
622 | } |
623 | default: { |
624 | ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)" ); |
625 | } |
626 | } |
627 | return Vector3(); |
628 | } |
629 | |
630 | void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { |
631 | real_t c, s; |
632 | |
633 | c = Math::cos(p_euler.x); |
634 | s = Math::sin(p_euler.x); |
635 | Basis xmat(1, 0, 0, 0, c, -s, 0, s, c); |
636 | |
637 | c = Math::cos(p_euler.y); |
638 | s = Math::sin(p_euler.y); |
639 | Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c); |
640 | |
641 | c = Math::cos(p_euler.z); |
642 | s = Math::sin(p_euler.z); |
643 | Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1); |
644 | |
645 | switch (p_order) { |
646 | case EulerOrder::XYZ: { |
647 | *this = xmat * (ymat * zmat); |
648 | } break; |
649 | case EulerOrder::XZY: { |
650 | *this = xmat * zmat * ymat; |
651 | } break; |
652 | case EulerOrder::YXZ: { |
653 | *this = ymat * xmat * zmat; |
654 | } break; |
655 | case EulerOrder::YZX: { |
656 | *this = ymat * zmat * xmat; |
657 | } break; |
658 | case EulerOrder::ZXY: { |
659 | *this = zmat * xmat * ymat; |
660 | } break; |
661 | case EulerOrder::ZYX: { |
662 | *this = zmat * ymat * xmat; |
663 | } break; |
664 | default: { |
665 | ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)" ); |
666 | } |
667 | } |
668 | } |
669 | |
670 | bool Basis::is_equal_approx(const Basis &p_basis) const { |
671 | return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]); |
672 | } |
673 | |
674 | bool Basis::is_finite() const { |
675 | return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite(); |
676 | } |
677 | |
678 | bool Basis::operator==(const Basis &p_matrix) const { |
679 | for (int i = 0; i < 3; i++) { |
680 | for (int j = 0; j < 3; j++) { |
681 | if (rows[i][j] != p_matrix.rows[i][j]) { |
682 | return false; |
683 | } |
684 | } |
685 | } |
686 | |
687 | return true; |
688 | } |
689 | |
690 | bool Basis::operator!=(const Basis &p_matrix) const { |
691 | return (!(*this == p_matrix)); |
692 | } |
693 | |
694 | Basis::operator String() const { |
695 | return "[X: " + get_column(0).operator String() + |
696 | ", Y: " + get_column(1).operator String() + |
697 | ", Z: " + get_column(2).operator String() + "]" ; |
698 | } |
699 | |
700 | Quaternion Basis::get_quaternion() const { |
701 | #ifdef MATH_CHECKS |
702 | ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors." ); |
703 | #endif |
704 | /* Allow getting a quaternion from an unnormalized transform */ |
705 | Basis m = *this; |
706 | real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; |
707 | real_t temp[4]; |
708 | |
709 | if (trace > 0.0f) { |
710 | real_t s = Math::sqrt(trace + 1.0f); |
711 | temp[3] = (s * 0.5f); |
712 | s = 0.5f / s; |
713 | |
714 | temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); |
715 | temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); |
716 | temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); |
717 | } else { |
718 | int i = m.rows[0][0] < m.rows[1][1] |
719 | ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1) |
720 | : (m.rows[0][0] < m.rows[2][2] ? 2 : 0); |
721 | int j = (i + 1) % 3; |
722 | int k = (i + 2) % 3; |
723 | |
724 | real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f); |
725 | temp[i] = s * 0.5f; |
726 | s = 0.5f / s; |
727 | |
728 | temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; |
729 | temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; |
730 | temp[k] = (m.rows[k][i] + m.rows[i][k]) * s; |
731 | } |
732 | |
733 | return Quaternion(temp[0], temp[1], temp[2], temp[3]); |
734 | } |
735 | |
736 | void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { |
737 | /* checking this is a bad idea, because obtaining from scaled transform is a valid use case |
738 | #ifdef MATH_CHECKS |
739 | ERR_FAIL_COND(!is_rotation()); |
740 | #endif |
741 | */ |
742 | |
743 | // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm |
744 | real_t x, y, z; // Variables for result. |
745 | if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) { |
746 | // Singularity found. |
747 | // First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms. |
748 | if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) { |
749 | // This singularity is identity matrix so angle = 0. |
750 | r_axis = Vector3(0, 1, 0); |
751 | r_angle = 0; |
752 | return; |
753 | } |
754 | // Otherwise this singularity is angle = 180. |
755 | real_t xx = (rows[0][0] + 1) / 2; |
756 | real_t yy = (rows[1][1] + 1) / 2; |
757 | real_t zz = (rows[2][2] + 1) / 2; |
758 | real_t xy = (rows[0][1] + rows[1][0]) / 4; |
759 | real_t xz = (rows[0][2] + rows[2][0]) / 4; |
760 | real_t yz = (rows[1][2] + rows[2][1]) / 4; |
761 | |
762 | if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term. |
763 | if (xx < CMP_EPSILON) { |
764 | x = 0; |
765 | y = Math_SQRT12; |
766 | z = Math_SQRT12; |
767 | } else { |
768 | x = Math::sqrt(xx); |
769 | y = xy / x; |
770 | z = xz / x; |
771 | } |
772 | } else if (yy > zz) { // rows[1][1] is the largest diagonal term. |
773 | if (yy < CMP_EPSILON) { |
774 | x = Math_SQRT12; |
775 | y = 0; |
776 | z = Math_SQRT12; |
777 | } else { |
778 | y = Math::sqrt(yy); |
779 | x = xy / y; |
780 | z = yz / y; |
781 | } |
782 | } else { // rows[2][2] is the largest diagonal term so base result on this. |
783 | if (zz < CMP_EPSILON) { |
784 | x = Math_SQRT12; |
785 | y = Math_SQRT12; |
786 | z = 0; |
787 | } else { |
788 | z = Math::sqrt(zz); |
789 | x = xz / z; |
790 | y = yz / z; |
791 | } |
792 | } |
793 | r_axis = Vector3(x, y, z); |
794 | r_angle = Math_PI; |
795 | return; |
796 | } |
797 | // As we have reached here there are no singularities so we can handle normally. |
798 | double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize. |
799 | |
800 | if (Math::abs(s) < CMP_EPSILON) { |
801 | // Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above. |
802 | s = 1; |
803 | } |
804 | |
805 | x = (rows[2][1] - rows[1][2]) / s; |
806 | y = (rows[0][2] - rows[2][0]) / s; |
807 | z = (rows[1][0] - rows[0][1]) / s; |
808 | |
809 | r_axis = Vector3(x, y, z); |
810 | // acos does clamping. |
811 | r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); |
812 | } |
813 | |
814 | void Basis::set_quaternion(const Quaternion &p_quaternion) { |
815 | real_t d = p_quaternion.length_squared(); |
816 | real_t s = 2.0f / d; |
817 | real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; |
818 | real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; |
819 | real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; |
820 | real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; |
821 | set(1.0f - (yy + zz), xy - wz, xz + wy, |
822 | xy + wz, 1.0f - (xx + zz), yz - wx, |
823 | xz - wy, yz + wx, 1.0f - (xx + yy)); |
824 | } |
825 | |
826 | void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) { |
827 | // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle |
828 | #ifdef MATH_CHECKS |
829 | ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized." ); |
830 | #endif |
831 | Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); |
832 | real_t cosine = Math::cos(p_angle); |
833 | rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x); |
834 | rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y); |
835 | rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z); |
836 | |
837 | real_t sine = Math::sin(p_angle); |
838 | real_t t = 1 - cosine; |
839 | |
840 | real_t xyzt = p_axis.x * p_axis.y * t; |
841 | real_t zyxs = p_axis.z * sine; |
842 | rows[0][1] = xyzt - zyxs; |
843 | rows[1][0] = xyzt + zyxs; |
844 | |
845 | xyzt = p_axis.x * p_axis.z * t; |
846 | zyxs = p_axis.y * sine; |
847 | rows[0][2] = xyzt + zyxs; |
848 | rows[2][0] = xyzt - zyxs; |
849 | |
850 | xyzt = p_axis.y * p_axis.z * t; |
851 | zyxs = p_axis.x * sine; |
852 | rows[1][2] = xyzt - zyxs; |
853 | rows[2][1] = xyzt + zyxs; |
854 | } |
855 | |
856 | void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { |
857 | _set_diagonal(p_scale); |
858 | rotate(p_axis, p_angle); |
859 | } |
860 | |
861 | void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) { |
862 | _set_diagonal(p_scale); |
863 | rotate(p_euler, p_order); |
864 | } |
865 | |
866 | void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) { |
867 | _set_diagonal(p_scale); |
868 | rotate(p_quaternion); |
869 | } |
870 | |
871 | // This also sets the non-diagonal elements to 0, which is misleading from the |
872 | // name, so we want this method to be private. Use `from_scale` externally. |
873 | void Basis::_set_diagonal(const Vector3 &p_diag) { |
874 | rows[0][0] = p_diag.x; |
875 | rows[0][1] = 0; |
876 | rows[0][2] = 0; |
877 | |
878 | rows[1][0] = 0; |
879 | rows[1][1] = p_diag.y; |
880 | rows[1][2] = 0; |
881 | |
882 | rows[2][0] = 0; |
883 | rows[2][1] = 0; |
884 | rows[2][2] = p_diag.z; |
885 | } |
886 | |
887 | Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { |
888 | Basis b; |
889 | b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight); |
890 | b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight); |
891 | b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight); |
892 | |
893 | return b; |
894 | } |
895 | |
896 | Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { |
897 | //consider scale |
898 | Quaternion from(*this); |
899 | Quaternion to(p_to); |
900 | |
901 | Basis b(from.slerp(to, p_weight)); |
902 | b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight); |
903 | b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight); |
904 | b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight); |
905 | |
906 | return b; |
907 | } |
908 | |
909 | void Basis::rotate_sh(real_t *p_values) { |
910 | // code by John Hable |
911 | // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ |
912 | // this code is Public Domain |
913 | |
914 | const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) |
915 | const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) |
916 | const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) |
917 | |
918 | const static real_t s_c_scale = 1.0 / 0.91529123286551084; |
919 | const static real_t s_c_scale_inv = 0.91529123286551084; |
920 | |
921 | const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; |
922 | const static real_t s_c4_div_c3 = s_c4 / s_c3; |
923 | const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; |
924 | |
925 | const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; |
926 | const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; |
927 | |
928 | const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; |
929 | |
930 | real_t m00 = rows[0][0]; |
931 | real_t m01 = rows[0][1]; |
932 | real_t m02 = rows[0][2]; |
933 | real_t m10 = rows[1][0]; |
934 | real_t m11 = rows[1][1]; |
935 | real_t m12 = rows[1][2]; |
936 | real_t m20 = rows[2][0]; |
937 | real_t m21 = rows[2][1]; |
938 | real_t m22 = rows[2][2]; |
939 | |
940 | p_values[0] = src[0]; |
941 | p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; |
942 | p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; |
943 | p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; |
944 | |
945 | real_t sh0 = src[7] + src[8] + src[8] - src[5]; |
946 | real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; |
947 | real_t sh2 = src[4]; |
948 | real_t sh3 = -src[7]; |
949 | real_t sh4 = -src[5]; |
950 | |
951 | // Rotations. R0 and R1 just use the raw matrix columns |
952 | real_t r2x = m00 + m01; |
953 | real_t r2y = m10 + m11; |
954 | real_t r2z = m20 + m21; |
955 | |
956 | real_t r3x = m00 + m02; |
957 | real_t r3y = m10 + m12; |
958 | real_t r3z = m20 + m22; |
959 | |
960 | real_t r4x = m01 + m02; |
961 | real_t r4y = m11 + m12; |
962 | real_t r4z = m21 + m22; |
963 | |
964 | // dense matrix multiplication one column at a time |
965 | |
966 | // column 0 |
967 | real_t sh0_x = sh0 * m00; |
968 | real_t sh0_y = sh0 * m10; |
969 | real_t d0 = sh0_x * m10; |
970 | real_t d1 = sh0_y * m20; |
971 | real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); |
972 | real_t d3 = sh0_x * m20; |
973 | real_t d4 = sh0_x * m00 - sh0_y * m10; |
974 | |
975 | // column 1 |
976 | real_t sh1_x = sh1 * m02; |
977 | real_t sh1_y = sh1 * m12; |
978 | d0 += sh1_x * m12; |
979 | d1 += sh1_y * m22; |
980 | d2 += sh1 * (m22 * m22 + s_c4_div_c3); |
981 | d3 += sh1_x * m22; |
982 | d4 += sh1_x * m02 - sh1_y * m12; |
983 | |
984 | // column 2 |
985 | real_t sh2_x = sh2 * r2x; |
986 | real_t sh2_y = sh2 * r2y; |
987 | d0 += sh2_x * r2y; |
988 | d1 += sh2_y * r2z; |
989 | d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); |
990 | d3 += sh2_x * r2z; |
991 | d4 += sh2_x * r2x - sh2_y * r2y; |
992 | |
993 | // column 3 |
994 | real_t sh3_x = sh3 * r3x; |
995 | real_t sh3_y = sh3 * r3y; |
996 | d0 += sh3_x * r3y; |
997 | d1 += sh3_y * r3z; |
998 | d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); |
999 | d3 += sh3_x * r3z; |
1000 | d4 += sh3_x * r3x - sh3_y * r3y; |
1001 | |
1002 | // column 4 |
1003 | real_t sh4_x = sh4 * r4x; |
1004 | real_t sh4_y = sh4 * r4y; |
1005 | d0 += sh4_x * r4y; |
1006 | d1 += sh4_y * r4z; |
1007 | d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); |
1008 | d3 += sh4_x * r4z; |
1009 | d4 += sh4_x * r4x - sh4_y * r4y; |
1010 | |
1011 | // extra multipliers |
1012 | p_values[4] = d0; |
1013 | p_values[5] = -d1; |
1014 | p_values[6] = d2 * s_scale_dst2; |
1015 | p_values[7] = -d3; |
1016 | p_values[8] = d4 * s_scale_dst4; |
1017 | } |
1018 | |
1019 | Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) { |
1020 | #ifdef MATH_CHECKS |
1021 | ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero." ); |
1022 | ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero." ); |
1023 | #endif |
1024 | Vector3 v_z = p_target.normalized(); |
1025 | if (!p_use_model_front) { |
1026 | v_z = -v_z; |
1027 | } |
1028 | Vector3 v_x = p_up.cross(v_z); |
1029 | #ifdef MATH_CHECKS |
1030 | ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other." ); |
1031 | #endif |
1032 | v_x.normalize(); |
1033 | Vector3 v_y = v_z.cross(v_x); |
1034 | |
1035 | Basis basis; |
1036 | basis.set_columns(v_x, v_y, v_z); |
1037 | return basis; |
1038 | } |
1039 | |