| 1 | /**************************************************************************/ | 
| 2 | /*  basis.cpp                                                             */ | 
| 3 | /**************************************************************************/ | 
| 4 | /*                         This file is part of:                          */ | 
| 5 | /*                             GODOT ENGINE                               */ | 
| 6 | /*                        https://godotengine.org                         */ | 
| 7 | /**************************************************************************/ | 
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ | 
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */ | 
| 10 | /*                                                                        */ | 
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining  */ | 
| 12 | /* a copy of this software and associated documentation files (the        */ | 
| 13 | /* "Software"), to deal in the Software without restriction, including    */ | 
| 14 | /* without limitation the rights to use, copy, modify, merge, publish,    */ | 
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to     */ | 
| 16 | /* permit persons to whom the Software is furnished to do so, subject to  */ | 
| 17 | /* the following conditions:                                              */ | 
| 18 | /*                                                                        */ | 
| 19 | /* The above copyright notice and this permission notice shall be         */ | 
| 20 | /* included in all copies or substantial portions of the Software.        */ | 
| 21 | /*                                                                        */ | 
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */ | 
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */ | 
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ | 
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */ | 
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */ | 
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */ | 
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */ | 
| 29 | /**************************************************************************/ | 
| 30 |  | 
| 31 | #include "basis.h" | 
| 32 |  | 
| 33 | #include "core/math/math_funcs.h" | 
| 34 | #include "core/string/ustring.h" | 
| 35 |  | 
| 36 | #define cofac(row1, col1, row2, col2) \ | 
| 37 | 	(rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1]) | 
| 38 |  | 
| 39 | void Basis::invert() { | 
| 40 | 	real_t co[3] = { | 
| 41 | 		cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) | 
| 42 | 	}; | 
| 43 | 	real_t det = rows[0][0] * co[0] + | 
| 44 | 			rows[0][1] * co[1] + | 
| 45 | 			rows[0][2] * co[2]; | 
| 46 | #ifdef MATH_CHECKS | 
| 47 | 	ERR_FAIL_COND(det == 0); | 
| 48 | #endif | 
| 49 | 	real_t s = 1.0f / det; | 
| 50 |  | 
| 51 | 	set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, | 
| 52 | 			co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, | 
| 53 | 			co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); | 
| 54 | } | 
| 55 |  | 
| 56 | void Basis::orthonormalize() { | 
| 57 | 	// Gram-Schmidt Process | 
| 58 |  | 
| 59 | 	Vector3 x = get_column(0); | 
| 60 | 	Vector3 y = get_column(1); | 
| 61 | 	Vector3 z = get_column(2); | 
| 62 |  | 
| 63 | 	x.normalize(); | 
| 64 | 	y = (y - x * (x.dot(y))); | 
| 65 | 	y.normalize(); | 
| 66 | 	z = (z - x * (x.dot(z)) - y * (y.dot(z))); | 
| 67 | 	z.normalize(); | 
| 68 |  | 
| 69 | 	set_column(0, x); | 
| 70 | 	set_column(1, y); | 
| 71 | 	set_column(2, z); | 
| 72 | } | 
| 73 |  | 
| 74 | Basis Basis::orthonormalized() const { | 
| 75 | 	Basis c = *this; | 
| 76 | 	c.orthonormalize(); | 
| 77 | 	return c; | 
| 78 | } | 
| 79 |  | 
| 80 | void Basis::orthogonalize() { | 
| 81 | 	Vector3 scl = get_scale(); | 
| 82 | 	orthonormalize(); | 
| 83 | 	scale_local(scl); | 
| 84 | } | 
| 85 |  | 
| 86 | Basis Basis::orthogonalized() const { | 
| 87 | 	Basis c = *this; | 
| 88 | 	c.orthogonalize(); | 
| 89 | 	return c; | 
| 90 | } | 
| 91 |  | 
| 92 | bool Basis::is_orthogonal() const { | 
| 93 | 	Basis identity; | 
| 94 | 	Basis m = (*this) * transposed(); | 
| 95 |  | 
| 96 | 	return m.is_equal_approx(identity); | 
| 97 | } | 
| 98 |  | 
| 99 | bool Basis::is_diagonal() const { | 
| 100 | 	return ( | 
| 101 | 			Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && | 
| 102 | 			Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) && | 
| 103 | 			Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); | 
| 104 | } | 
| 105 |  | 
| 106 | bool Basis::is_rotation() const { | 
| 107 | 	return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); | 
| 108 | } | 
| 109 |  | 
| 110 | #ifdef MATH_CHECKS | 
| 111 | // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. | 
| 112 | bool Basis::is_symmetric() const { | 
| 113 | 	if (!Math::is_equal_approx(rows[0][1], rows[1][0])) { | 
| 114 | 		return false; | 
| 115 | 	} | 
| 116 | 	if (!Math::is_equal_approx(rows[0][2], rows[2][0])) { | 
| 117 | 		return false; | 
| 118 | 	} | 
| 119 | 	if (!Math::is_equal_approx(rows[1][2], rows[2][1])) { | 
| 120 | 		return false; | 
| 121 | 	} | 
| 122 |  | 
| 123 | 	return true; | 
| 124 | } | 
| 125 | #endif | 
| 126 |  | 
| 127 | Basis Basis::diagonalize() { | 
| 128 | // NOTE: only implemented for symmetric matrices | 
| 129 | // with the Jacobi iterative method | 
| 130 | #ifdef MATH_CHECKS | 
| 131 | 	ERR_FAIL_COND_V(!is_symmetric(), Basis()); | 
| 132 | #endif | 
| 133 | 	const int ite_max = 1024; | 
| 134 |  | 
| 135 | 	real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2]; | 
| 136 |  | 
| 137 | 	int ite = 0; | 
| 138 | 	Basis acc_rot; | 
| 139 | 	while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) { | 
| 140 | 		real_t el01_2 = rows[0][1] * rows[0][1]; | 
| 141 | 		real_t el02_2 = rows[0][2] * rows[0][2]; | 
| 142 | 		real_t el12_2 = rows[1][2] * rows[1][2]; | 
| 143 | 		// Find the pivot element | 
| 144 | 		int i, j; | 
| 145 | 		if (el01_2 > el02_2) { | 
| 146 | 			if (el12_2 > el01_2) { | 
| 147 | 				i = 1; | 
| 148 | 				j = 2; | 
| 149 | 			} else { | 
| 150 | 				i = 0; | 
| 151 | 				j = 1; | 
| 152 | 			} | 
| 153 | 		} else { | 
| 154 | 			if (el12_2 > el02_2) { | 
| 155 | 				i = 1; | 
| 156 | 				j = 2; | 
| 157 | 			} else { | 
| 158 | 				i = 0; | 
| 159 | 				j = 2; | 
| 160 | 			} | 
| 161 | 		} | 
| 162 |  | 
| 163 | 		// Compute the rotation angle | 
| 164 | 		real_t angle; | 
| 165 | 		if (Math::is_equal_approx(rows[j][j], rows[i][i])) { | 
| 166 | 			angle = Math_PI / 4; | 
| 167 | 		} else { | 
| 168 | 			angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); | 
| 169 | 		} | 
| 170 |  | 
| 171 | 		// Compute the rotation matrix | 
| 172 | 		Basis rot; | 
| 173 | 		rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle); | 
| 174 | 		rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle)); | 
| 175 |  | 
| 176 | 		// Update the off matrix norm | 
| 177 | 		off_matrix_norm_2 -= rows[i][j] * rows[i][j]; | 
| 178 |  | 
| 179 | 		// Apply the rotation | 
| 180 | 		*this = rot * *this * rot.transposed(); | 
| 181 | 		acc_rot = rot * acc_rot; | 
| 182 | 	} | 
| 183 |  | 
| 184 | 	return acc_rot; | 
| 185 | } | 
| 186 |  | 
| 187 | Basis Basis::inverse() const { | 
| 188 | 	Basis inv = *this; | 
| 189 | 	inv.invert(); | 
| 190 | 	return inv; | 
| 191 | } | 
| 192 |  | 
| 193 | void Basis::transpose() { | 
| 194 | 	SWAP(rows[0][1], rows[1][0]); | 
| 195 | 	SWAP(rows[0][2], rows[2][0]); | 
| 196 | 	SWAP(rows[1][2], rows[2][1]); | 
| 197 | } | 
| 198 |  | 
| 199 | Basis Basis::transposed() const { | 
| 200 | 	Basis tr = *this; | 
| 201 | 	tr.transpose(); | 
| 202 | 	return tr; | 
| 203 | } | 
| 204 |  | 
| 205 | Basis Basis::from_scale(const Vector3 &p_scale) { | 
| 206 | 	return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z); | 
| 207 | } | 
| 208 |  | 
| 209 | // Multiplies the matrix from left by the scaling matrix: M -> S.M | 
| 210 | // See the comment for Basis::rotated for further explanation. | 
| 211 | void Basis::scale(const Vector3 &p_scale) { | 
| 212 | 	rows[0][0] *= p_scale.x; | 
| 213 | 	rows[0][1] *= p_scale.x; | 
| 214 | 	rows[0][2] *= p_scale.x; | 
| 215 | 	rows[1][0] *= p_scale.y; | 
| 216 | 	rows[1][1] *= p_scale.y; | 
| 217 | 	rows[1][2] *= p_scale.y; | 
| 218 | 	rows[2][0] *= p_scale.z; | 
| 219 | 	rows[2][1] *= p_scale.z; | 
| 220 | 	rows[2][2] *= p_scale.z; | 
| 221 | } | 
| 222 |  | 
| 223 | Basis Basis::scaled(const Vector3 &p_scale) const { | 
| 224 | 	Basis m = *this; | 
| 225 | 	m.scale(p_scale); | 
| 226 | 	return m; | 
| 227 | } | 
| 228 |  | 
| 229 | void Basis::scale_local(const Vector3 &p_scale) { | 
| 230 | 	// performs a scaling in object-local coordinate system: | 
| 231 | 	// M -> (M.S.Minv).M = M.S. | 
| 232 | 	*this = scaled_local(p_scale); | 
| 233 | } | 
| 234 |  | 
| 235 | void Basis::scale_orthogonal(const Vector3 &p_scale) { | 
| 236 | 	*this = scaled_orthogonal(p_scale); | 
| 237 | } | 
| 238 |  | 
| 239 | Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const { | 
| 240 | 	Basis m = *this; | 
| 241 | 	Vector3 s = Vector3(-1, -1, -1) + p_scale; | 
| 242 | 	bool sign = signbit(s.x + s.y + s.z); | 
| 243 | 	Basis b = m.orthonormalized(); | 
| 244 | 	s = b.xform_inv(s); | 
| 245 | 	Vector3 dots; | 
| 246 | 	for (int i = 0; i < 3; i++) { | 
| 247 | 		for (int j = 0; j < 3; j++) { | 
| 248 | 			dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j))); | 
| 249 | 		} | 
| 250 | 	} | 
| 251 | 	if (sign != signbit(dots.x + dots.y + dots.z)) { | 
| 252 | 		dots = -dots; | 
| 253 | 	} | 
| 254 | 	m.scale_local(Vector3(1, 1, 1) + dots); | 
| 255 | 	return m; | 
| 256 | } | 
| 257 |  | 
| 258 | float Basis::get_uniform_scale() const { | 
| 259 | 	return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; | 
| 260 | } | 
| 261 |  | 
| 262 | Basis Basis::scaled_local(const Vector3 &p_scale) const { | 
| 263 | 	return (*this) * Basis::from_scale(p_scale); | 
| 264 | } | 
| 265 |  | 
| 266 | Vector3 Basis::get_scale_abs() const { | 
| 267 | 	return Vector3( | 
| 268 | 			Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), | 
| 269 | 			Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), | 
| 270 | 			Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); | 
| 271 | } | 
| 272 |  | 
| 273 | Vector3 Basis::get_scale_local() const { | 
| 274 | 	real_t det_sign = SIGN(determinant()); | 
| 275 | 	return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); | 
| 276 | } | 
| 277 |  | 
| 278 | // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. | 
| 279 | Vector3 Basis::get_scale() const { | 
| 280 | 	// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. | 
| 281 | 	// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and | 
| 282 | 	// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). | 
| 283 | 	// | 
| 284 | 	// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition | 
| 285 | 	// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where | 
| 286 | 	// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, | 
| 287 | 	// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, | 
| 288 | 	// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. | 
| 289 | 	// Therefore, we are going to do this decomposition by sticking to a particular convention. | 
| 290 | 	// This may lead to confusion for some users though. | 
| 291 | 	// | 
| 292 | 	// The convention we use here is to absorb the sign flip into the scaling matrix. | 
| 293 | 	// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ... | 
| 294 | 	// | 
| 295 | 	// A proper way to get rid of this issue would be to store the scaling values (or at least their signs) | 
| 296 | 	// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the | 
| 297 | 	// matrix elements. | 
| 298 | 	// | 
| 299 | 	// The rotation part of this decomposition is returned by get_rotation* functions. | 
| 300 | 	real_t det_sign = SIGN(determinant()); | 
| 301 | 	return det_sign * get_scale_abs(); | 
| 302 | } | 
| 303 |  | 
| 304 | // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. | 
| 305 | // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3. | 
| 306 | // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so. | 
| 307 | Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { | 
| 308 | #ifdef MATH_CHECKS | 
| 309 | 	ERR_FAIL_COND_V(determinant() == 0, Vector3()); | 
| 310 |  | 
| 311 | 	Basis m = transposed() * (*this); | 
| 312 | 	ERR_FAIL_COND_V(!m.is_diagonal(), Vector3()); | 
| 313 | #endif | 
| 314 | 	Vector3 scale = get_scale(); | 
| 315 | 	Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale | 
| 316 | 	rotref = (*this) * inv_scale; | 
| 317 |  | 
| 318 | #ifdef MATH_CHECKS | 
| 319 | 	ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3()); | 
| 320 | #endif | 
| 321 | 	return scale.abs(); | 
| 322 | } | 
| 323 |  | 
| 324 | // Multiplies the matrix from left by the rotation matrix: M -> R.M | 
| 325 | // Note that this does *not* rotate the matrix itself. | 
| 326 | // | 
| 327 | // The main use of Basis is as Transform.basis, which is used by the transformation matrix | 
| 328 | // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), | 
| 329 | // not the matrix itself (which is R * (*this) * R.transposed()). | 
| 330 | Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const { | 
| 331 | 	return Basis(p_axis, p_angle) * (*this); | 
| 332 | } | 
| 333 |  | 
| 334 | void Basis::rotate(const Vector3 &p_axis, real_t p_angle) { | 
| 335 | 	*this = rotated(p_axis, p_angle); | 
| 336 | } | 
| 337 |  | 
| 338 | void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) { | 
| 339 | 	// performs a rotation in object-local coordinate system: | 
| 340 | 	// M -> (M.R.Minv).M = M.R. | 
| 341 | 	*this = rotated_local(p_axis, p_angle); | 
| 342 | } | 
| 343 |  | 
| 344 | Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const { | 
| 345 | 	return (*this) * Basis(p_axis, p_angle); | 
| 346 | } | 
| 347 |  | 
| 348 | Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const { | 
| 349 | 	return Basis::from_euler(p_euler, p_order) * (*this); | 
| 350 | } | 
| 351 |  | 
| 352 | void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) { | 
| 353 | 	*this = rotated(p_euler, p_order); | 
| 354 | } | 
| 355 |  | 
| 356 | Basis Basis::rotated(const Quaternion &p_quaternion) const { | 
| 357 | 	return Basis(p_quaternion) * (*this); | 
| 358 | } | 
| 359 |  | 
| 360 | void Basis::rotate(const Quaternion &p_quaternion) { | 
| 361 | 	*this = rotated(p_quaternion); | 
| 362 | } | 
| 363 |  | 
| 364 | Vector3 Basis::get_euler_normalized(EulerOrder p_order) const { | 
| 365 | 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, | 
| 366 | 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale(). | 
| 367 | 	// See the comment in get_scale() for further information. | 
| 368 | 	Basis m = orthonormalized(); | 
| 369 | 	real_t det = m.determinant(); | 
| 370 | 	if (det < 0) { | 
| 371 | 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. | 
| 372 | 		m.scale(Vector3(-1, -1, -1)); | 
| 373 | 	} | 
| 374 |  | 
| 375 | 	return m.get_euler(p_order); | 
| 376 | } | 
| 377 |  | 
| 378 | Quaternion Basis::get_rotation_quaternion() const { | 
| 379 | 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, | 
| 380 | 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale(). | 
| 381 | 	// See the comment in get_scale() for further information. | 
| 382 | 	Basis m = orthonormalized(); | 
| 383 | 	real_t det = m.determinant(); | 
| 384 | 	if (det < 0) { | 
| 385 | 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. | 
| 386 | 		m.scale(Vector3(-1, -1, -1)); | 
| 387 | 	} | 
| 388 |  | 
| 389 | 	return m.get_quaternion(); | 
| 390 | } | 
| 391 |  | 
| 392 | void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) { | 
| 393 | 	// Takes two vectors and rotates the basis from the first vector to the second vector. | 
| 394 | 	// Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 | 
| 395 | 	const Vector3 axis = p_start_direction.cross(p_end_direction).normalized(); | 
| 396 | 	if (axis.length_squared() != 0) { | 
| 397 | 		real_t dot = p_start_direction.dot(p_end_direction); | 
| 398 | 		dot = CLAMP(dot, -1.0f, 1.0f); | 
| 399 | 		const real_t angle_rads = Math::acos(dot); | 
| 400 | 		*this = Basis(axis, angle_rads) * (*this); | 
| 401 | 	} | 
| 402 | } | 
| 403 |  | 
| 404 | void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { | 
| 405 | 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, | 
| 406 | 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale(). | 
| 407 | 	// See the comment in get_scale() for further information. | 
| 408 | 	Basis m = orthonormalized(); | 
| 409 | 	real_t det = m.determinant(); | 
| 410 | 	if (det < 0) { | 
| 411 | 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. | 
| 412 | 		m.scale(Vector3(-1, -1, -1)); | 
| 413 | 	} | 
| 414 |  | 
| 415 | 	m.get_axis_angle(p_axis, p_angle); | 
| 416 | } | 
| 417 |  | 
| 418 | void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { | 
| 419 | 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, | 
| 420 | 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale(). | 
| 421 | 	// See the comment in get_scale() for further information. | 
| 422 | 	Basis m = transposed(); | 
| 423 | 	m.orthonormalize(); | 
| 424 | 	real_t det = m.determinant(); | 
| 425 | 	if (det < 0) { | 
| 426 | 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. | 
| 427 | 		m.scale(Vector3(-1, -1, -1)); | 
| 428 | 	} | 
| 429 |  | 
| 430 | 	m.get_axis_angle(p_axis, p_angle); | 
| 431 | 	p_angle = -p_angle; | 
| 432 | } | 
| 433 |  | 
| 434 | Vector3 Basis::get_euler(EulerOrder p_order) const { | 
| 435 | 	switch (p_order) { | 
| 436 | 		case EulerOrder::XYZ: { | 
| 437 | 			// Euler angles in XYZ convention. | 
| 438 | 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix | 
| 439 | 			// | 
| 440 | 			// rot =  cy*cz          -cy*sz           sy | 
| 441 | 			//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx | 
| 442 | 			//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy | 
| 443 |  | 
| 444 | 			Vector3 euler; | 
| 445 | 			real_t sy = rows[0][2]; | 
| 446 | 			if (sy < (1.0f - (real_t)CMP_EPSILON)) { | 
| 447 | 				if (sy > -(1.0f - (real_t)CMP_EPSILON)) { | 
| 448 | 					// is this a pure Y rotation? | 
| 449 | 					if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { | 
| 450 | 						// return the simplest form (human friendlier in editor and scripts) | 
| 451 | 						euler.x = 0; | 
| 452 | 						euler.y = atan2(rows[0][2], rows[0][0]); | 
| 453 | 						euler.z = 0; | 
| 454 | 					} else { | 
| 455 | 						euler.x = Math::atan2(-rows[1][2], rows[2][2]); | 
| 456 | 						euler.y = Math::asin(sy); | 
| 457 | 						euler.z = Math::atan2(-rows[0][1], rows[0][0]); | 
| 458 | 					} | 
| 459 | 				} else { | 
| 460 | 					euler.x = Math::atan2(rows[2][1], rows[1][1]); | 
| 461 | 					euler.y = -Math_PI / 2.0f; | 
| 462 | 					euler.z = 0.0f; | 
| 463 | 				} | 
| 464 | 			} else { | 
| 465 | 				euler.x = Math::atan2(rows[2][1], rows[1][1]); | 
| 466 | 				euler.y = Math_PI / 2.0f; | 
| 467 | 				euler.z = 0.0f; | 
| 468 | 			} | 
| 469 | 			return euler; | 
| 470 | 		} | 
| 471 | 		case EulerOrder::XZY: { | 
| 472 | 			// Euler angles in XZY convention. | 
| 473 | 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix | 
| 474 | 			// | 
| 475 | 			// rot =  cz*cy             -sz             cz*sy | 
| 476 | 			//        sx*sy+cx*cy*sz    cx*cz           cx*sz*sy-cy*sx | 
| 477 | 			//        cy*sx*sz          cz*sx           cx*cy+sx*sz*sy | 
| 478 |  | 
| 479 | 			Vector3 euler; | 
| 480 | 			real_t sz = rows[0][1]; | 
| 481 | 			if (sz < (1.0f - (real_t)CMP_EPSILON)) { | 
| 482 | 				if (sz > -(1.0f - (real_t)CMP_EPSILON)) { | 
| 483 | 					euler.x = Math::atan2(rows[2][1], rows[1][1]); | 
| 484 | 					euler.y = Math::atan2(rows[0][2], rows[0][0]); | 
| 485 | 					euler.z = Math::asin(-sz); | 
| 486 | 				} else { | 
| 487 | 					// It's -1 | 
| 488 | 					euler.x = -Math::atan2(rows[1][2], rows[2][2]); | 
| 489 | 					euler.y = 0.0f; | 
| 490 | 					euler.z = Math_PI / 2.0f; | 
| 491 | 				} | 
| 492 | 			} else { | 
| 493 | 				// It's 1 | 
| 494 | 				euler.x = -Math::atan2(rows[1][2], rows[2][2]); | 
| 495 | 				euler.y = 0.0f; | 
| 496 | 				euler.z = -Math_PI / 2.0f; | 
| 497 | 			} | 
| 498 | 			return euler; | 
| 499 | 		} | 
| 500 | 		case EulerOrder::YXZ: { | 
| 501 | 			// Euler angles in YXZ convention. | 
| 502 | 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix | 
| 503 | 			// | 
| 504 | 			// rot =  cy*cz+sy*sx*sz    cz*sy*sx-cy*sz        cx*sy | 
| 505 | 			//        cx*sz             cx*cz                 -sx | 
| 506 | 			//        cy*sx*sz-cz*sy    cy*cz*sx+sy*sz        cy*cx | 
| 507 |  | 
| 508 | 			Vector3 euler; | 
| 509 |  | 
| 510 | 			real_t m12 = rows[1][2]; | 
| 511 |  | 
| 512 | 			if (m12 < (1 - (real_t)CMP_EPSILON)) { | 
| 513 | 				if (m12 > -(1 - (real_t)CMP_EPSILON)) { | 
| 514 | 					// is this a pure X rotation? | 
| 515 | 					if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { | 
| 516 | 						// return the simplest form (human friendlier in editor and scripts) | 
| 517 | 						euler.x = atan2(-m12, rows[1][1]); | 
| 518 | 						euler.y = 0; | 
| 519 | 						euler.z = 0; | 
| 520 | 					} else { | 
| 521 | 						euler.x = asin(-m12); | 
| 522 | 						euler.y = atan2(rows[0][2], rows[2][2]); | 
| 523 | 						euler.z = atan2(rows[1][0], rows[1][1]); | 
| 524 | 					} | 
| 525 | 				} else { // m12 == -1 | 
| 526 | 					euler.x = Math_PI * 0.5f; | 
| 527 | 					euler.y = atan2(rows[0][1], rows[0][0]); | 
| 528 | 					euler.z = 0; | 
| 529 | 				} | 
| 530 | 			} else { // m12 == 1 | 
| 531 | 				euler.x = -Math_PI * 0.5f; | 
| 532 | 				euler.y = -atan2(rows[0][1], rows[0][0]); | 
| 533 | 				euler.z = 0; | 
| 534 | 			} | 
| 535 |  | 
| 536 | 			return euler; | 
| 537 | 		} | 
| 538 | 		case EulerOrder::YZX: { | 
| 539 | 			// Euler angles in YZX convention. | 
| 540 | 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix | 
| 541 | 			// | 
| 542 | 			// rot =  cy*cz             sy*sx-cy*cx*sz     cx*sy+cy*sz*sx | 
| 543 | 			//        sz                cz*cx              -cz*sx | 
| 544 | 			//        -cz*sy            cy*sx+cx*sy*sz     cy*cx-sy*sz*sx | 
| 545 |  | 
| 546 | 			Vector3 euler; | 
| 547 | 			real_t sz = rows[1][0]; | 
| 548 | 			if (sz < (1.0f - (real_t)CMP_EPSILON)) { | 
| 549 | 				if (sz > -(1.0f - (real_t)CMP_EPSILON)) { | 
| 550 | 					euler.x = Math::atan2(-rows[1][2], rows[1][1]); | 
| 551 | 					euler.y = Math::atan2(-rows[2][0], rows[0][0]); | 
| 552 | 					euler.z = Math::asin(sz); | 
| 553 | 				} else { | 
| 554 | 					// It's -1 | 
| 555 | 					euler.x = Math::atan2(rows[2][1], rows[2][2]); | 
| 556 | 					euler.y = 0.0f; | 
| 557 | 					euler.z = -Math_PI / 2.0f; | 
| 558 | 				} | 
| 559 | 			} else { | 
| 560 | 				// It's 1 | 
| 561 | 				euler.x = Math::atan2(rows[2][1], rows[2][2]); | 
| 562 | 				euler.y = 0.0f; | 
| 563 | 				euler.z = Math_PI / 2.0f; | 
| 564 | 			} | 
| 565 | 			return euler; | 
| 566 | 		} break; | 
| 567 | 		case EulerOrder::ZXY: { | 
| 568 | 			// Euler angles in ZXY convention. | 
| 569 | 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix | 
| 570 | 			// | 
| 571 | 			// rot =  cz*cy-sz*sx*sy    -cx*sz                cz*sy+cy*sz*sx | 
| 572 | 			//        cy*sz+cz*sx*sy    cz*cx                 sz*sy-cz*cy*sx | 
| 573 | 			//        -cx*sy            sx                    cx*cy | 
| 574 | 			Vector3 euler; | 
| 575 | 			real_t sx = rows[2][1]; | 
| 576 | 			if (sx < (1.0f - (real_t)CMP_EPSILON)) { | 
| 577 | 				if (sx > -(1.0f - (real_t)CMP_EPSILON)) { | 
| 578 | 					euler.x = Math::asin(sx); | 
| 579 | 					euler.y = Math::atan2(-rows[2][0], rows[2][2]); | 
| 580 | 					euler.z = Math::atan2(-rows[0][1], rows[1][1]); | 
| 581 | 				} else { | 
| 582 | 					// It's -1 | 
| 583 | 					euler.x = -Math_PI / 2.0f; | 
| 584 | 					euler.y = Math::atan2(rows[0][2], rows[0][0]); | 
| 585 | 					euler.z = 0; | 
| 586 | 				} | 
| 587 | 			} else { | 
| 588 | 				// It's 1 | 
| 589 | 				euler.x = Math_PI / 2.0f; | 
| 590 | 				euler.y = Math::atan2(rows[0][2], rows[0][0]); | 
| 591 | 				euler.z = 0; | 
| 592 | 			} | 
| 593 | 			return euler; | 
| 594 | 		} break; | 
| 595 | 		case EulerOrder::ZYX: { | 
| 596 | 			// Euler angles in ZYX convention. | 
| 597 | 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix | 
| 598 | 			// | 
| 599 | 			// rot =  cz*cy             cz*sy*sx-cx*sz        sz*sx+cz*cx*cy | 
| 600 | 			//        cy*sz             cz*cx+sz*sy*sx        cx*sz*sy-cz*sx | 
| 601 | 			//        -sy               cy*sx                 cy*cx | 
| 602 | 			Vector3 euler; | 
| 603 | 			real_t sy = rows[2][0]; | 
| 604 | 			if (sy < (1.0f - (real_t)CMP_EPSILON)) { | 
| 605 | 				if (sy > -(1.0f - (real_t)CMP_EPSILON)) { | 
| 606 | 					euler.x = Math::atan2(rows[2][1], rows[2][2]); | 
| 607 | 					euler.y = Math::asin(-sy); | 
| 608 | 					euler.z = Math::atan2(rows[1][0], rows[0][0]); | 
| 609 | 				} else { | 
| 610 | 					// It's -1 | 
| 611 | 					euler.x = 0; | 
| 612 | 					euler.y = Math_PI / 2.0f; | 
| 613 | 					euler.z = -Math::atan2(rows[0][1], rows[1][1]); | 
| 614 | 				} | 
| 615 | 			} else { | 
| 616 | 				// It's 1 | 
| 617 | 				euler.x = 0; | 
| 618 | 				euler.y = -Math_PI / 2.0f; | 
| 619 | 				euler.z = -Math::atan2(rows[0][1], rows[1][1]); | 
| 620 | 			} | 
| 621 | 			return euler; | 
| 622 | 		} | 
| 623 | 		default: { | 
| 624 | 			ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)" ); | 
| 625 | 		} | 
| 626 | 	} | 
| 627 | 	return Vector3(); | 
| 628 | } | 
| 629 |  | 
| 630 | void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { | 
| 631 | 	real_t c, s; | 
| 632 |  | 
| 633 | 	c = Math::cos(p_euler.x); | 
| 634 | 	s = Math::sin(p_euler.x); | 
| 635 | 	Basis xmat(1, 0, 0, 0, c, -s, 0, s, c); | 
| 636 |  | 
| 637 | 	c = Math::cos(p_euler.y); | 
| 638 | 	s = Math::sin(p_euler.y); | 
| 639 | 	Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c); | 
| 640 |  | 
| 641 | 	c = Math::cos(p_euler.z); | 
| 642 | 	s = Math::sin(p_euler.z); | 
| 643 | 	Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1); | 
| 644 |  | 
| 645 | 	switch (p_order) { | 
| 646 | 		case EulerOrder::XYZ: { | 
| 647 | 			*this = xmat * (ymat * zmat); | 
| 648 | 		} break; | 
| 649 | 		case EulerOrder::XZY: { | 
| 650 | 			*this = xmat * zmat * ymat; | 
| 651 | 		} break; | 
| 652 | 		case EulerOrder::YXZ: { | 
| 653 | 			*this = ymat * xmat * zmat; | 
| 654 | 		} break; | 
| 655 | 		case EulerOrder::YZX: { | 
| 656 | 			*this = ymat * zmat * xmat; | 
| 657 | 		} break; | 
| 658 | 		case EulerOrder::ZXY: { | 
| 659 | 			*this = zmat * xmat * ymat; | 
| 660 | 		} break; | 
| 661 | 		case EulerOrder::ZYX: { | 
| 662 | 			*this = zmat * ymat * xmat; | 
| 663 | 		} break; | 
| 664 | 		default: { | 
| 665 | 			ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)" ); | 
| 666 | 		} | 
| 667 | 	} | 
| 668 | } | 
| 669 |  | 
| 670 | bool Basis::is_equal_approx(const Basis &p_basis) const { | 
| 671 | 	return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]); | 
| 672 | } | 
| 673 |  | 
| 674 | bool Basis::is_finite() const { | 
| 675 | 	return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite(); | 
| 676 | } | 
| 677 |  | 
| 678 | bool Basis::operator==(const Basis &p_matrix) const { | 
| 679 | 	for (int i = 0; i < 3; i++) { | 
| 680 | 		for (int j = 0; j < 3; j++) { | 
| 681 | 			if (rows[i][j] != p_matrix.rows[i][j]) { | 
| 682 | 				return false; | 
| 683 | 			} | 
| 684 | 		} | 
| 685 | 	} | 
| 686 |  | 
| 687 | 	return true; | 
| 688 | } | 
| 689 |  | 
| 690 | bool Basis::operator!=(const Basis &p_matrix) const { | 
| 691 | 	return (!(*this == p_matrix)); | 
| 692 | } | 
| 693 |  | 
| 694 | Basis::operator String() const { | 
| 695 | 	return "[X: "  + get_column(0).operator String() + | 
| 696 | 			", Y: "  + get_column(1).operator String() + | 
| 697 | 			", Z: "  + get_column(2).operator String() + "]" ; | 
| 698 | } | 
| 699 |  | 
| 700 | Quaternion Basis::get_quaternion() const { | 
| 701 | #ifdef MATH_CHECKS | 
| 702 | 	ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors." ); | 
| 703 | #endif | 
| 704 | 	/* Allow getting a quaternion from an unnormalized transform */ | 
| 705 | 	Basis m = *this; | 
| 706 | 	real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; | 
| 707 | 	real_t temp[4]; | 
| 708 |  | 
| 709 | 	if (trace > 0.0f) { | 
| 710 | 		real_t s = Math::sqrt(trace + 1.0f); | 
| 711 | 		temp[3] = (s * 0.5f); | 
| 712 | 		s = 0.5f / s; | 
| 713 |  | 
| 714 | 		temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); | 
| 715 | 		temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); | 
| 716 | 		temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); | 
| 717 | 	} else { | 
| 718 | 		int i = m.rows[0][0] < m.rows[1][1] | 
| 719 | 				? (m.rows[1][1] < m.rows[2][2] ? 2 : 1) | 
| 720 | 				: (m.rows[0][0] < m.rows[2][2] ? 2 : 0); | 
| 721 | 		int j = (i + 1) % 3; | 
| 722 | 		int k = (i + 2) % 3; | 
| 723 |  | 
| 724 | 		real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f); | 
| 725 | 		temp[i] = s * 0.5f; | 
| 726 | 		s = 0.5f / s; | 
| 727 |  | 
| 728 | 		temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; | 
| 729 | 		temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; | 
| 730 | 		temp[k] = (m.rows[k][i] + m.rows[i][k]) * s; | 
| 731 | 	} | 
| 732 |  | 
| 733 | 	return Quaternion(temp[0], temp[1], temp[2], temp[3]); | 
| 734 | } | 
| 735 |  | 
| 736 | void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { | 
| 737 | 	/* checking this is a bad idea, because obtaining from scaled transform is a valid use case | 
| 738 | #ifdef MATH_CHECKS | 
| 739 | 	ERR_FAIL_COND(!is_rotation()); | 
| 740 | #endif | 
| 741 | 	*/ | 
| 742 |  | 
| 743 | 	// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm | 
| 744 | 	real_t x, y, z; // Variables for result. | 
| 745 | 	if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) { | 
| 746 | 		// Singularity found. | 
| 747 | 		// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms. | 
| 748 | 		if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) { | 
| 749 | 			// This singularity is identity matrix so angle = 0. | 
| 750 | 			r_axis = Vector3(0, 1, 0); | 
| 751 | 			r_angle = 0; | 
| 752 | 			return; | 
| 753 | 		} | 
| 754 | 		// Otherwise this singularity is angle = 180. | 
| 755 | 		real_t xx = (rows[0][0] + 1) / 2; | 
| 756 | 		real_t yy = (rows[1][1] + 1) / 2; | 
| 757 | 		real_t zz = (rows[2][2] + 1) / 2; | 
| 758 | 		real_t xy = (rows[0][1] + rows[1][0]) / 4; | 
| 759 | 		real_t xz = (rows[0][2] + rows[2][0]) / 4; | 
| 760 | 		real_t yz = (rows[1][2] + rows[2][1]) / 4; | 
| 761 |  | 
| 762 | 		if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term. | 
| 763 | 			if (xx < CMP_EPSILON) { | 
| 764 | 				x = 0; | 
| 765 | 				y = Math_SQRT12; | 
| 766 | 				z = Math_SQRT12; | 
| 767 | 			} else { | 
| 768 | 				x = Math::sqrt(xx); | 
| 769 | 				y = xy / x; | 
| 770 | 				z = xz / x; | 
| 771 | 			} | 
| 772 | 		} else if (yy > zz) { // rows[1][1] is the largest diagonal term. | 
| 773 | 			if (yy < CMP_EPSILON) { | 
| 774 | 				x = Math_SQRT12; | 
| 775 | 				y = 0; | 
| 776 | 				z = Math_SQRT12; | 
| 777 | 			} else { | 
| 778 | 				y = Math::sqrt(yy); | 
| 779 | 				x = xy / y; | 
| 780 | 				z = yz / y; | 
| 781 | 			} | 
| 782 | 		} else { // rows[2][2] is the largest diagonal term so base result on this. | 
| 783 | 			if (zz < CMP_EPSILON) { | 
| 784 | 				x = Math_SQRT12; | 
| 785 | 				y = Math_SQRT12; | 
| 786 | 				z = 0; | 
| 787 | 			} else { | 
| 788 | 				z = Math::sqrt(zz); | 
| 789 | 				x = xz / z; | 
| 790 | 				y = yz / z; | 
| 791 | 			} | 
| 792 | 		} | 
| 793 | 		r_axis = Vector3(x, y, z); | 
| 794 | 		r_angle = Math_PI; | 
| 795 | 		return; | 
| 796 | 	} | 
| 797 | 	// As we have reached here there are no singularities so we can handle normally. | 
| 798 | 	double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize. | 
| 799 |  | 
| 800 | 	if (Math::abs(s) < CMP_EPSILON) { | 
| 801 | 		// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above. | 
| 802 | 		s = 1; | 
| 803 | 	} | 
| 804 |  | 
| 805 | 	x = (rows[2][1] - rows[1][2]) / s; | 
| 806 | 	y = (rows[0][2] - rows[2][0]) / s; | 
| 807 | 	z = (rows[1][0] - rows[0][1]) / s; | 
| 808 |  | 
| 809 | 	r_axis = Vector3(x, y, z); | 
| 810 | 	// acos does clamping. | 
| 811 | 	r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); | 
| 812 | } | 
| 813 |  | 
| 814 | void Basis::set_quaternion(const Quaternion &p_quaternion) { | 
| 815 | 	real_t d = p_quaternion.length_squared(); | 
| 816 | 	real_t s = 2.0f / d; | 
| 817 | 	real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; | 
| 818 | 	real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; | 
| 819 | 	real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; | 
| 820 | 	real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; | 
| 821 | 	set(1.0f - (yy + zz), xy - wz, xz + wy, | 
| 822 | 			xy + wz, 1.0f - (xx + zz), yz - wx, | 
| 823 | 			xz - wy, yz + wx, 1.0f - (xx + yy)); | 
| 824 | } | 
| 825 |  | 
| 826 | void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) { | 
| 827 | // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle | 
| 828 | #ifdef MATH_CHECKS | 
| 829 | 	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized." ); | 
| 830 | #endif | 
| 831 | 	Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); | 
| 832 | 	real_t cosine = Math::cos(p_angle); | 
| 833 | 	rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x); | 
| 834 | 	rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y); | 
| 835 | 	rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z); | 
| 836 |  | 
| 837 | 	real_t sine = Math::sin(p_angle); | 
| 838 | 	real_t t = 1 - cosine; | 
| 839 |  | 
| 840 | 	real_t xyzt = p_axis.x * p_axis.y * t; | 
| 841 | 	real_t zyxs = p_axis.z * sine; | 
| 842 | 	rows[0][1] = xyzt - zyxs; | 
| 843 | 	rows[1][0] = xyzt + zyxs; | 
| 844 |  | 
| 845 | 	xyzt = p_axis.x * p_axis.z * t; | 
| 846 | 	zyxs = p_axis.y * sine; | 
| 847 | 	rows[0][2] = xyzt + zyxs; | 
| 848 | 	rows[2][0] = xyzt - zyxs; | 
| 849 |  | 
| 850 | 	xyzt = p_axis.y * p_axis.z * t; | 
| 851 | 	zyxs = p_axis.x * sine; | 
| 852 | 	rows[1][2] = xyzt - zyxs; | 
| 853 | 	rows[2][1] = xyzt + zyxs; | 
| 854 | } | 
| 855 |  | 
| 856 | void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { | 
| 857 | 	_set_diagonal(p_scale); | 
| 858 | 	rotate(p_axis, p_angle); | 
| 859 | } | 
| 860 |  | 
| 861 | void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) { | 
| 862 | 	_set_diagonal(p_scale); | 
| 863 | 	rotate(p_euler, p_order); | 
| 864 | } | 
| 865 |  | 
| 866 | void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) { | 
| 867 | 	_set_diagonal(p_scale); | 
| 868 | 	rotate(p_quaternion); | 
| 869 | } | 
| 870 |  | 
| 871 | // This also sets the non-diagonal elements to 0, which is misleading from the | 
| 872 | // name, so we want this method to be private. Use `from_scale` externally. | 
| 873 | void Basis::_set_diagonal(const Vector3 &p_diag) { | 
| 874 | 	rows[0][0] = p_diag.x; | 
| 875 | 	rows[0][1] = 0; | 
| 876 | 	rows[0][2] = 0; | 
| 877 |  | 
| 878 | 	rows[1][0] = 0; | 
| 879 | 	rows[1][1] = p_diag.y; | 
| 880 | 	rows[1][2] = 0; | 
| 881 |  | 
| 882 | 	rows[2][0] = 0; | 
| 883 | 	rows[2][1] = 0; | 
| 884 | 	rows[2][2] = p_diag.z; | 
| 885 | } | 
| 886 |  | 
| 887 | Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { | 
| 888 | 	Basis b; | 
| 889 | 	b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight); | 
| 890 | 	b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight); | 
| 891 | 	b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight); | 
| 892 |  | 
| 893 | 	return b; | 
| 894 | } | 
| 895 |  | 
| 896 | Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { | 
| 897 | 	//consider scale | 
| 898 | 	Quaternion from(*this); | 
| 899 | 	Quaternion to(p_to); | 
| 900 |  | 
| 901 | 	Basis b(from.slerp(to, p_weight)); | 
| 902 | 	b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight); | 
| 903 | 	b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight); | 
| 904 | 	b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight); | 
| 905 |  | 
| 906 | 	return b; | 
| 907 | } | 
| 908 |  | 
| 909 | void Basis::rotate_sh(real_t *p_values) { | 
| 910 | 	// code by John Hable | 
| 911 | 	// http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ | 
| 912 | 	// this code is Public Domain | 
| 913 |  | 
| 914 | 	const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) | 
| 915 | 	const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) | 
| 916 | 	const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) | 
| 917 |  | 
| 918 | 	const static real_t s_c_scale = 1.0 / 0.91529123286551084; | 
| 919 | 	const static real_t s_c_scale_inv = 0.91529123286551084; | 
| 920 |  | 
| 921 | 	const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; | 
| 922 | 	const static real_t s_c4_div_c3 = s_c4 / s_c3; | 
| 923 | 	const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; | 
| 924 |  | 
| 925 | 	const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; | 
| 926 | 	const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; | 
| 927 |  | 
| 928 | 	const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; | 
| 929 |  | 
| 930 | 	real_t m00 = rows[0][0]; | 
| 931 | 	real_t m01 = rows[0][1]; | 
| 932 | 	real_t m02 = rows[0][2]; | 
| 933 | 	real_t m10 = rows[1][0]; | 
| 934 | 	real_t m11 = rows[1][1]; | 
| 935 | 	real_t m12 = rows[1][2]; | 
| 936 | 	real_t m20 = rows[2][0]; | 
| 937 | 	real_t m21 = rows[2][1]; | 
| 938 | 	real_t m22 = rows[2][2]; | 
| 939 |  | 
| 940 | 	p_values[0] = src[0]; | 
| 941 | 	p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; | 
| 942 | 	p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; | 
| 943 | 	p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; | 
| 944 |  | 
| 945 | 	real_t sh0 = src[7] + src[8] + src[8] - src[5]; | 
| 946 | 	real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; | 
| 947 | 	real_t sh2 = src[4]; | 
| 948 | 	real_t sh3 = -src[7]; | 
| 949 | 	real_t sh4 = -src[5]; | 
| 950 |  | 
| 951 | 	// Rotations.  R0 and R1 just use the raw matrix columns | 
| 952 | 	real_t r2x = m00 + m01; | 
| 953 | 	real_t r2y = m10 + m11; | 
| 954 | 	real_t r2z = m20 + m21; | 
| 955 |  | 
| 956 | 	real_t r3x = m00 + m02; | 
| 957 | 	real_t r3y = m10 + m12; | 
| 958 | 	real_t r3z = m20 + m22; | 
| 959 |  | 
| 960 | 	real_t r4x = m01 + m02; | 
| 961 | 	real_t r4y = m11 + m12; | 
| 962 | 	real_t r4z = m21 + m22; | 
| 963 |  | 
| 964 | 	// dense matrix multiplication one column at a time | 
| 965 |  | 
| 966 | 	// column 0 | 
| 967 | 	real_t sh0_x = sh0 * m00; | 
| 968 | 	real_t sh0_y = sh0 * m10; | 
| 969 | 	real_t d0 = sh0_x * m10; | 
| 970 | 	real_t d1 = sh0_y * m20; | 
| 971 | 	real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); | 
| 972 | 	real_t d3 = sh0_x * m20; | 
| 973 | 	real_t d4 = sh0_x * m00 - sh0_y * m10; | 
| 974 |  | 
| 975 | 	// column 1 | 
| 976 | 	real_t sh1_x = sh1 * m02; | 
| 977 | 	real_t sh1_y = sh1 * m12; | 
| 978 | 	d0 += sh1_x * m12; | 
| 979 | 	d1 += sh1_y * m22; | 
| 980 | 	d2 += sh1 * (m22 * m22 + s_c4_div_c3); | 
| 981 | 	d3 += sh1_x * m22; | 
| 982 | 	d4 += sh1_x * m02 - sh1_y * m12; | 
| 983 |  | 
| 984 | 	// column 2 | 
| 985 | 	real_t sh2_x = sh2 * r2x; | 
| 986 | 	real_t sh2_y = sh2 * r2y; | 
| 987 | 	d0 += sh2_x * r2y; | 
| 988 | 	d1 += sh2_y * r2z; | 
| 989 | 	d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); | 
| 990 | 	d3 += sh2_x * r2z; | 
| 991 | 	d4 += sh2_x * r2x - sh2_y * r2y; | 
| 992 |  | 
| 993 | 	// column 3 | 
| 994 | 	real_t sh3_x = sh3 * r3x; | 
| 995 | 	real_t sh3_y = sh3 * r3y; | 
| 996 | 	d0 += sh3_x * r3y; | 
| 997 | 	d1 += sh3_y * r3z; | 
| 998 | 	d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); | 
| 999 | 	d3 += sh3_x * r3z; | 
| 1000 | 	d4 += sh3_x * r3x - sh3_y * r3y; | 
| 1001 |  | 
| 1002 | 	// column 4 | 
| 1003 | 	real_t sh4_x = sh4 * r4x; | 
| 1004 | 	real_t sh4_y = sh4 * r4y; | 
| 1005 | 	d0 += sh4_x * r4y; | 
| 1006 | 	d1 += sh4_y * r4z; | 
| 1007 | 	d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); | 
| 1008 | 	d3 += sh4_x * r4z; | 
| 1009 | 	d4 += sh4_x * r4x - sh4_y * r4y; | 
| 1010 |  | 
| 1011 | 	// extra multipliers | 
| 1012 | 	p_values[4] = d0; | 
| 1013 | 	p_values[5] = -d1; | 
| 1014 | 	p_values[6] = d2 * s_scale_dst2; | 
| 1015 | 	p_values[7] = -d3; | 
| 1016 | 	p_values[8] = d4 * s_scale_dst4; | 
| 1017 | } | 
| 1018 |  | 
| 1019 | Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) { | 
| 1020 | #ifdef MATH_CHECKS | 
| 1021 | 	ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero." ); | 
| 1022 | 	ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero." ); | 
| 1023 | #endif | 
| 1024 | 	Vector3 v_z = p_target.normalized(); | 
| 1025 | 	if (!p_use_model_front) { | 
| 1026 | 		v_z = -v_z; | 
| 1027 | 	} | 
| 1028 | 	Vector3 v_x = p_up.cross(v_z); | 
| 1029 | #ifdef MATH_CHECKS | 
| 1030 | 	ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other." ); | 
| 1031 | #endif | 
| 1032 | 	v_x.normalize(); | 
| 1033 | 	Vector3 v_y = v_z.cross(v_x); | 
| 1034 |  | 
| 1035 | 	Basis basis; | 
| 1036 | 	basis.set_columns(v_x, v_y, v_z); | 
| 1037 | 	return basis; | 
| 1038 | } | 
| 1039 |  |