1 | /**************************************************************************/ |
2 | /* convex_hull.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | /* |
32 | * Based on Godot's patched VHACD-version of Bullet's btConvexHullComputer. |
33 | * See /thirdparty/vhacd/btConvexHullComputer.cpp at 64403ddcab9f1dca2408f0a412a22d899708bbb1 |
34 | * In turn, based on /src/LinearMath/btConvexHullComputer.cpp in <https://github.com/bulletphysics/bullet3> |
35 | * at 73b217fb07e7e3ce126caeb28ab3c9ddd0718467 |
36 | * |
37 | * Changes: |
38 | * - int32_t is consistently used instead of int in some cases |
39 | * - integrated patch db0d6c92927f5a1358b887f2645c11f3014f0e8a from Bullet (CWE-190 integer overflow in btConvexHullComputer) |
40 | * - adapted to Godot's code style |
41 | * - replaced Bullet's types (e.g. vectors) with Godot's |
42 | * - replaced custom Pool implementation with PagedAllocator |
43 | */ |
44 | |
45 | /* |
46 | Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net |
47 | |
48 | This software is provided 'as-is', without any express or implied warranty. |
49 | In no event will the authors be held liable for any damages arising from the use of this software. |
50 | Permission is granted to anyone to use this software for any purpose, |
51 | including commercial applications, and to alter it and redistribute it freely, |
52 | subject to the following restrictions: |
53 | |
54 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
55 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
56 | 3. This notice may not be removed or altered from any source distribution. |
57 | */ |
58 | |
59 | #include "convex_hull.h" |
60 | |
61 | #include "core/error/error_macros.h" |
62 | #include "core/math/aabb.h" |
63 | #include "core/math/math_defs.h" |
64 | #include "core/os/memory.h" |
65 | #include "core/templates/oa_hash_map.h" |
66 | #include "core/templates/paged_allocator.h" |
67 | |
68 | #include <string.h> |
69 | |
70 | //#define DEBUG_CONVEX_HULL |
71 | //#define SHOW_ITERATIONS |
72 | |
73 | // -- GODOT start -- |
74 | // Assembly optimizations are not used at the moment. |
75 | //#define USE_X86_64_ASM |
76 | // -- GODOT end -- |
77 | |
78 | #ifdef DEBUG_ENABLED |
79 | #define CHULL_ASSERT(m_cond) \ |
80 | do { \ |
81 | if (unlikely(!(m_cond))) { \ |
82 | ERR_PRINT("Assertion \"" _STR(m_cond) "\" failed."); \ |
83 | } \ |
84 | } while (0) |
85 | #else |
86 | #define CHULL_ASSERT(m_cond) \ |
87 | do { \ |
88 | } while (0) |
89 | #endif |
90 | |
91 | #if defined(DEBUG_CONVEX_HULL) || defined(SHOW_ITERATIONS) |
92 | #include <stdio.h> |
93 | #endif |
94 | |
95 | // Convex hull implementation based on Preparata and Hong |
96 | // Ole Kniemeyer, MAXON Computer GmbH |
97 | class ConvexHullInternal { |
98 | public: |
99 | class Point64 { |
100 | public: |
101 | int64_t x; |
102 | int64_t y; |
103 | int64_t z; |
104 | |
105 | Point64(int64_t p_x, int64_t p_y, int64_t p_z) { |
106 | x = p_x; |
107 | y = p_y; |
108 | z = p_z; |
109 | } |
110 | |
111 | bool is_zero() { |
112 | return (x == 0) && (y == 0) && (z == 0); |
113 | } |
114 | |
115 | int64_t dot(const Point64 &b) const { |
116 | return x * b.x + y * b.y + z * b.z; |
117 | } |
118 | }; |
119 | |
120 | class Point32 { |
121 | public: |
122 | int32_t x = 0; |
123 | int32_t y = 0; |
124 | int32_t z = 0; |
125 | int32_t index = -1; |
126 | |
127 | Point32() { |
128 | } |
129 | |
130 | Point32(int32_t p_x, int32_t p_y, int32_t p_z) { |
131 | x = p_x; |
132 | y = p_y; |
133 | z = p_z; |
134 | } |
135 | |
136 | bool operator==(const Point32 &b) const { |
137 | return (x == b.x) && (y == b.y) && (z == b.z); |
138 | } |
139 | |
140 | bool operator!=(const Point32 &b) const { |
141 | return (x != b.x) || (y != b.y) || (z != b.z); |
142 | } |
143 | |
144 | bool is_zero() { |
145 | return (x == 0) && (y == 0) && (z == 0); |
146 | } |
147 | |
148 | Point64 cross(const Point32 &b) const { |
149 | return Point64((int64_t)y * b.z - (int64_t)z * b.y, (int64_t)z * b.x - (int64_t)x * b.z, (int64_t)x * b.y - (int64_t)y * b.x); |
150 | } |
151 | |
152 | Point64 cross(const Point64 &b) const { |
153 | return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); |
154 | } |
155 | |
156 | int64_t dot(const Point32 &b) const { |
157 | return (int64_t)x * b.x + (int64_t)y * b.y + (int64_t)z * b.z; |
158 | } |
159 | |
160 | int64_t dot(const Point64 &b) const { |
161 | return x * b.x + y * b.y + z * b.z; |
162 | } |
163 | |
164 | Point32 operator+(const Point32 &b) const { |
165 | return Point32(x + b.x, y + b.y, z + b.z); |
166 | } |
167 | |
168 | Point32 operator-(const Point32 &b) const { |
169 | return Point32(x - b.x, y - b.y, z - b.z); |
170 | } |
171 | }; |
172 | |
173 | class Int128 { |
174 | public: |
175 | uint64_t low = 0; |
176 | uint64_t high = 0; |
177 | |
178 | Int128() { |
179 | } |
180 | |
181 | Int128(uint64_t p_low, uint64_t p_high) { |
182 | low = p_low; |
183 | high = p_high; |
184 | } |
185 | |
186 | Int128(uint64_t p_low) { |
187 | low = p_low; |
188 | high = 0; |
189 | } |
190 | |
191 | Int128(int64_t p_value) { |
192 | low = p_value; |
193 | if (p_value >= 0) { |
194 | high = 0; |
195 | } else { |
196 | high = (uint64_t)-1LL; |
197 | } |
198 | } |
199 | |
200 | static Int128 mul(int64_t a, int64_t b); |
201 | |
202 | static Int128 mul(uint64_t a, uint64_t b); |
203 | |
204 | Int128 operator-() const { |
205 | return Int128((uint64_t) - (int64_t)low, ~high + (low == 0)); |
206 | } |
207 | |
208 | Int128 operator+(const Int128 &b) const { |
209 | #ifdef USE_X86_64_ASM |
210 | Int128 result; |
211 | __asm__("addq %[bl], %[rl]\n\t" |
212 | "adcq %[bh], %[rh]\n\t" |
213 | : [rl] "=r" (result.low), [rh] "=r" (result.high) |
214 | : "0" (low), "1" (high), [bl] "g" (b.low), [bh] "g" (b.high) |
215 | : "cc" ); |
216 | return result; |
217 | #else |
218 | uint64_t lo = low + b.low; |
219 | return Int128(lo, high + b.high + (lo < low)); |
220 | #endif |
221 | } |
222 | |
223 | Int128 operator-(const Int128 &b) const { |
224 | #ifdef USE_X86_64_ASM |
225 | Int128 result; |
226 | __asm__("subq %[bl], %[rl]\n\t" |
227 | "sbbq %[bh], %[rh]\n\t" |
228 | : [rl] "=r" (result.low), [rh] "=r" (result.high) |
229 | : "0" (low), "1" (high), [bl] "g" (b.low), [bh] "g" (b.high) |
230 | : "cc" ); |
231 | return result; |
232 | #else |
233 | return *this + -b; |
234 | #endif |
235 | } |
236 | |
237 | Int128 &operator+=(const Int128 &b) { |
238 | #ifdef USE_X86_64_ASM |
239 | __asm__("addq %[bl], %[rl]\n\t" |
240 | "adcq %[bh], %[rh]\n\t" |
241 | : [rl] "=r" (low), [rh] "=r" (high) |
242 | : "0" (low), "1" (high), [bl] "g" (b.low), [bh] "g" (b.high) |
243 | : "cc" ); |
244 | #else |
245 | uint64_t lo = low + b.low; |
246 | if (lo < low) { |
247 | ++high; |
248 | } |
249 | low = lo; |
250 | high += b.high; |
251 | #endif |
252 | return *this; |
253 | } |
254 | |
255 | Int128 &operator++() { |
256 | if (++low == 0) { |
257 | ++high; |
258 | } |
259 | return *this; |
260 | } |
261 | |
262 | Int128 operator*(int64_t b) const; |
263 | |
264 | real_t to_scalar() const { |
265 | return ((int64_t)high >= 0) ? real_t(high) * (real_t(0x100000000LL) * real_t(0x100000000LL)) + real_t(low) : -(-*this).to_scalar(); |
266 | } |
267 | |
268 | int32_t get_sign() const { |
269 | return ((int64_t)high < 0) ? -1 : ((high || low) ? 1 : 0); |
270 | } |
271 | |
272 | bool operator<(const Int128 &b) const { |
273 | return (high < b.high) || ((high == b.high) && (low < b.low)); |
274 | } |
275 | |
276 | int32_t ucmp(const Int128 &b) const { |
277 | if (high < b.high) { |
278 | return -1; |
279 | } |
280 | if (high > b.high) { |
281 | return 1; |
282 | } |
283 | if (low < b.low) { |
284 | return -1; |
285 | } |
286 | if (low > b.low) { |
287 | return 1; |
288 | } |
289 | return 0; |
290 | } |
291 | }; |
292 | |
293 | class Rational64 { |
294 | private: |
295 | uint64_t numerator; |
296 | uint64_t denominator; |
297 | int32_t sign; |
298 | |
299 | public: |
300 | Rational64(int64_t p_numerator, int64_t p_denominator) { |
301 | if (p_numerator > 0) { |
302 | sign = 1; |
303 | numerator = (uint64_t)p_numerator; |
304 | } else if (p_numerator < 0) { |
305 | sign = -1; |
306 | numerator = (uint64_t)-p_numerator; |
307 | } else { |
308 | sign = 0; |
309 | numerator = 0; |
310 | } |
311 | if (p_denominator > 0) { |
312 | denominator = (uint64_t)p_denominator; |
313 | } else if (p_denominator < 0) { |
314 | sign = -sign; |
315 | denominator = (uint64_t)-p_denominator; |
316 | } else { |
317 | denominator = 0; |
318 | } |
319 | } |
320 | |
321 | bool is_negative_infinity() const { |
322 | return (sign < 0) && (denominator == 0); |
323 | } |
324 | |
325 | bool is_nan() const { |
326 | return (sign == 0) && (denominator == 0); |
327 | } |
328 | |
329 | int32_t compare(const Rational64 &b) const; |
330 | |
331 | real_t to_scalar() const { |
332 | return sign * ((denominator == 0) ? FLT_MAX : (real_t)numerator / denominator); |
333 | } |
334 | }; |
335 | |
336 | class Rational128 { |
337 | private: |
338 | Int128 numerator; |
339 | Int128 denominator; |
340 | int32_t sign; |
341 | bool is_int_64; |
342 | |
343 | public: |
344 | Rational128(int64_t p_value) { |
345 | if (p_value > 0) { |
346 | sign = 1; |
347 | this->numerator = p_value; |
348 | } else if (p_value < 0) { |
349 | sign = -1; |
350 | this->numerator = -p_value; |
351 | } else { |
352 | sign = 0; |
353 | this->numerator = (uint64_t)0; |
354 | } |
355 | this->denominator = (uint64_t)1; |
356 | is_int_64 = true; |
357 | } |
358 | |
359 | Rational128(const Int128 &p_numerator, const Int128 &p_denominator) { |
360 | sign = p_numerator.get_sign(); |
361 | if (sign >= 0) { |
362 | this->numerator = p_numerator; |
363 | } else { |
364 | this->numerator = -p_numerator; |
365 | } |
366 | int32_t dsign = p_denominator.get_sign(); |
367 | if (dsign >= 0) { |
368 | this->denominator = p_denominator; |
369 | } else { |
370 | sign = -sign; |
371 | this->denominator = -p_denominator; |
372 | } |
373 | is_int_64 = false; |
374 | } |
375 | |
376 | int32_t compare(const Rational128 &b) const; |
377 | |
378 | int32_t compare(int64_t b) const; |
379 | |
380 | real_t to_scalar() const { |
381 | return sign * ((denominator.get_sign() == 0) ? FLT_MAX : numerator.to_scalar() / denominator.to_scalar()); |
382 | } |
383 | }; |
384 | |
385 | class PointR128 { |
386 | public: |
387 | Int128 x; |
388 | Int128 y; |
389 | Int128 z; |
390 | Int128 denominator; |
391 | |
392 | PointR128() { |
393 | } |
394 | |
395 | PointR128(Int128 p_x, Int128 p_y, Int128 p_z, Int128 p_denominator) { |
396 | x = p_x; |
397 | y = p_y; |
398 | z = p_z; |
399 | denominator = p_denominator; |
400 | } |
401 | |
402 | real_t xvalue() const { |
403 | return x.to_scalar() / denominator.to_scalar(); |
404 | } |
405 | |
406 | real_t yvalue() const { |
407 | return y.to_scalar() / denominator.to_scalar(); |
408 | } |
409 | |
410 | real_t zvalue() const { |
411 | return z.to_scalar() / denominator.to_scalar(); |
412 | } |
413 | }; |
414 | |
415 | class Edge; |
416 | class Face; |
417 | |
418 | class Vertex { |
419 | public: |
420 | Vertex *next = nullptr; |
421 | Vertex *prev = nullptr; |
422 | Edge *edges = nullptr; |
423 | Face *first_nearby_face = nullptr; |
424 | Face *last_nearby_face = nullptr; |
425 | PointR128 point128; |
426 | Point32 point; |
427 | int32_t copy = -1; |
428 | |
429 | Vertex() { |
430 | } |
431 | |
432 | #ifdef DEBUG_CONVEX_HULL |
433 | void print() { |
434 | printf("V%d (%d, %d, %d)" , point.index, point.x, point.y, point.z); |
435 | } |
436 | |
437 | void print_graph(); |
438 | #endif |
439 | |
440 | Point32 operator-(const Vertex &b) const { |
441 | return point - b.point; |
442 | } |
443 | |
444 | Rational128 dot(const Point64 &b) const { |
445 | return (point.index >= 0) ? Rational128(point.dot(b)) : Rational128(point128.x * b.x + point128.y * b.y + point128.z * b.z, point128.denominator); |
446 | } |
447 | |
448 | real_t xvalue() const { |
449 | return (point.index >= 0) ? real_t(point.x) : point128.xvalue(); |
450 | } |
451 | |
452 | real_t yvalue() const { |
453 | return (point.index >= 0) ? real_t(point.y) : point128.yvalue(); |
454 | } |
455 | |
456 | real_t zvalue() const { |
457 | return (point.index >= 0) ? real_t(point.z) : point128.zvalue(); |
458 | } |
459 | |
460 | void receive_nearby_faces(Vertex *p_src) { |
461 | if (last_nearby_face) { |
462 | last_nearby_face->next_with_same_nearby_vertex = p_src->first_nearby_face; |
463 | } else { |
464 | first_nearby_face = p_src->first_nearby_face; |
465 | } |
466 | if (p_src->last_nearby_face) { |
467 | last_nearby_face = p_src->last_nearby_face; |
468 | } |
469 | for (Face *f = p_src->first_nearby_face; f; f = f->next_with_same_nearby_vertex) { |
470 | CHULL_ASSERT(f->nearby_vertex == p_src); |
471 | f->nearby_vertex = this; |
472 | } |
473 | p_src->first_nearby_face = nullptr; |
474 | p_src->last_nearby_face = nullptr; |
475 | } |
476 | }; |
477 | |
478 | class Edge { |
479 | public: |
480 | Edge *next = nullptr; |
481 | Edge *prev = nullptr; |
482 | Edge *reverse = nullptr; |
483 | Vertex *target = nullptr; |
484 | Face *face = nullptr; |
485 | int32_t copy = -1; |
486 | |
487 | void link(Edge *n) { |
488 | CHULL_ASSERT(reverse->target == n->reverse->target); |
489 | next = n; |
490 | n->prev = this; |
491 | } |
492 | |
493 | #ifdef DEBUG_CONVEX_HULL |
494 | void print() { |
495 | printf("E%p : %d -> %d, n=%p p=%p (0 %d\t%d\t%d) -> (%d %d %d)" , this, reverse->target->point.index, target->point.index, next, prev, |
496 | reverse->target->point.x, reverse->target->point.y, reverse->target->point.z, target->point.x, target->point.y, target->point.z); |
497 | } |
498 | #endif |
499 | }; |
500 | |
501 | class Face { |
502 | public: |
503 | Face *next = nullptr; |
504 | Vertex *nearby_vertex = nullptr; |
505 | Face *next_with_same_nearby_vertex = nullptr; |
506 | Point32 origin; |
507 | Point32 dir0; |
508 | Point32 dir1; |
509 | |
510 | Face() { |
511 | } |
512 | |
513 | void init(Vertex *p_a, const Vertex *p_b, const Vertex *p_c) { |
514 | nearby_vertex = p_a; |
515 | origin = p_a->point; |
516 | dir0 = *p_b - *p_a; |
517 | dir1 = *p_c - *p_a; |
518 | if (p_a->last_nearby_face) { |
519 | p_a->last_nearby_face->next_with_same_nearby_vertex = this; |
520 | } else { |
521 | p_a->first_nearby_face = this; |
522 | } |
523 | p_a->last_nearby_face = this; |
524 | } |
525 | |
526 | Point64 get_normal() { |
527 | return dir0.cross(dir1); |
528 | } |
529 | }; |
530 | |
531 | template <typename UWord, typename UHWord> |
532 | class DMul { |
533 | private: |
534 | static uint32_t high(uint64_t p_value) { |
535 | return (uint32_t)(p_value >> 32); |
536 | } |
537 | |
538 | static uint32_t low(uint64_t p_value) { |
539 | return (uint32_t)p_value; |
540 | } |
541 | |
542 | static uint64_t mul(uint32_t a, uint32_t b) { |
543 | return (uint64_t)a * (uint64_t)b; |
544 | } |
545 | |
546 | static void shl_half(uint64_t &p_value) { |
547 | p_value <<= 32; |
548 | } |
549 | |
550 | static uint64_t high(Int128 p_value) { |
551 | return p_value.high; |
552 | } |
553 | |
554 | static uint64_t low(Int128 p_value) { |
555 | return p_value.low; |
556 | } |
557 | |
558 | static Int128 mul(uint64_t a, uint64_t b) { |
559 | return Int128::mul(a, b); |
560 | } |
561 | |
562 | static void shl_half(Int128 &p_value) { |
563 | p_value.high = p_value.low; |
564 | p_value.low = 0; |
565 | } |
566 | |
567 | public: |
568 | static void mul(UWord p_a, UWord p_b, UWord &r_low, UWord &r_high) { |
569 | UWord p00 = mul(low(p_a), low(p_b)); |
570 | UWord p01 = mul(low(p_a), high(p_b)); |
571 | UWord p10 = mul(high(p_a), low(p_b)); |
572 | UWord p11 = mul(high(p_a), high(p_b)); |
573 | UWord p0110 = UWord(low(p01)) + UWord(low(p10)); |
574 | p11 += high(p01); |
575 | p11 += high(p10); |
576 | p11 += high(p0110); |
577 | shl_half(p0110); |
578 | p00 += p0110; |
579 | if (p00 < p0110) { |
580 | ++p11; |
581 | } |
582 | r_low = p00; |
583 | r_high = p11; |
584 | } |
585 | }; |
586 | |
587 | private: |
588 | class IntermediateHull { |
589 | public: |
590 | Vertex *min_xy = nullptr; |
591 | Vertex *max_xy = nullptr; |
592 | Vertex *min_yx = nullptr; |
593 | Vertex *max_yx = nullptr; |
594 | |
595 | IntermediateHull() { |
596 | } |
597 | }; |
598 | |
599 | enum Orientation { ORIENTATION_NONE, |
600 | ORIENTATION_CLOCKWISE, |
601 | ORIENTATION_COUNTER_CLOCKWISE }; |
602 | |
603 | Vector3 scaling; |
604 | Vector3 center; |
605 | PagedAllocator<Vertex> vertex_pool; |
606 | PagedAllocator<Edge> edge_pool; |
607 | PagedAllocator<Face> face_pool; |
608 | LocalVector<Vertex *> original_vertices; |
609 | int32_t merge_stamp = 0; |
610 | Vector3::Axis min_axis = Vector3::Axis::AXIS_X; |
611 | Vector3::Axis med_axis = Vector3::Axis::AXIS_X; |
612 | Vector3::Axis max_axis = Vector3::Axis::AXIS_X; |
613 | int32_t used_edge_pairs = 0; |
614 | int32_t max_used_edge_pairs = 0; |
615 | |
616 | static Orientation get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t); |
617 | Edge *find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_ssxrxs, Rational64 &p_min_cot); |
618 | void find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, const Vertex *p_stop0, const Vertex *p_stop1); |
619 | |
620 | Edge *new_edge_pair(Vertex *p_from, Vertex *p_to); |
621 | |
622 | void remove_edge_pair(Edge *p_edge) { |
623 | Edge *n = p_edge->next; |
624 | Edge *r = p_edge->reverse; |
625 | |
626 | CHULL_ASSERT(p_edge->target && r->target); |
627 | |
628 | if (n != p_edge) { |
629 | n->prev = p_edge->prev; |
630 | p_edge->prev->next = n; |
631 | r->target->edges = n; |
632 | } else { |
633 | r->target->edges = nullptr; |
634 | } |
635 | |
636 | n = r->next; |
637 | |
638 | if (n != r) { |
639 | n->prev = r->prev; |
640 | r->prev->next = n; |
641 | p_edge->target->edges = n; |
642 | } else { |
643 | p_edge->target->edges = nullptr; |
644 | } |
645 | |
646 | edge_pool.free(p_edge); |
647 | edge_pool.free(r); |
648 | used_edge_pairs--; |
649 | } |
650 | |
651 | void compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result); |
652 | |
653 | bool merge_projection(IntermediateHull &p_h0, IntermediateHull &p_h1, Vertex *&r_c0, Vertex *&r_c1); |
654 | |
655 | void merge(IntermediateHull &p_h0, IntermediateHull &p_h1); |
656 | |
657 | Vector3 to_gd_vector(const Point32 &p_v); |
658 | |
659 | Vector3 get_gd_normal(Face *p_face); |
660 | |
661 | bool shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> &p_stack); |
662 | |
663 | public: |
664 | ~ConvexHullInternal() { |
665 | vertex_pool.reset(true); |
666 | edge_pool.reset(true); |
667 | face_pool.reset(true); |
668 | } |
669 | |
670 | Vertex *vertex_list = nullptr; |
671 | |
672 | void compute(const Vector3 *p_coords, int32_t p_count); |
673 | |
674 | Vector3 get_coordinates(const Vertex *p_v); |
675 | |
676 | real_t shrink(real_t amount, real_t p_clamp_amount); |
677 | }; |
678 | |
679 | ConvexHullInternal::Int128 ConvexHullInternal::Int128::operator*(int64_t b) const { |
680 | bool negative = (int64_t)high < 0; |
681 | Int128 a = negative ? -*this : *this; |
682 | if (b < 0) { |
683 | negative = !negative; |
684 | b = -b; |
685 | } |
686 | Int128 result = mul(a.low, (uint64_t)b); |
687 | result.high += a.high * (uint64_t)b; |
688 | return negative ? -result : result; |
689 | } |
690 | |
691 | ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(int64_t a, int64_t b) { |
692 | Int128 result; |
693 | |
694 | #ifdef USE_X86_64_ASM |
695 | __asm__("imulq %[b]" |
696 | : "=a" (result.low), "=d" (result.high) |
697 | : "0" (a), [b] "r" (b) |
698 | : "cc" ); |
699 | return result; |
700 | |
701 | #else |
702 | bool negative = a < 0; |
703 | if (negative) { |
704 | a = -a; |
705 | } |
706 | if (b < 0) { |
707 | negative = !negative; |
708 | b = -b; |
709 | } |
710 | DMul<uint64_t, uint32_t>::mul((uint64_t)a, (uint64_t)b, result.low, result.high); |
711 | return negative ? -result : result; |
712 | #endif |
713 | } |
714 | |
715 | ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(uint64_t a, uint64_t b) { |
716 | Int128 result; |
717 | |
718 | #ifdef USE_X86_64_ASM |
719 | __asm__("mulq %[b]" |
720 | : "=a" (result.low), "=d" (result.high) |
721 | : "0" (a), [b] "r" (b) |
722 | : "cc" ); |
723 | |
724 | #else |
725 | DMul<uint64_t, uint32_t>::mul(a, b, result.low, result.high); |
726 | #endif |
727 | |
728 | return result; |
729 | } |
730 | |
731 | int32_t ConvexHullInternal::Rational64::compare(const Rational64 &b) const { |
732 | if (sign != b.sign) { |
733 | return sign - b.sign; |
734 | } else if (sign == 0) { |
735 | return 0; |
736 | } |
737 | |
738 | #ifdef USE_X86_64_ASM |
739 | |
740 | int32_t result; |
741 | int64_t tmp; |
742 | int64_t dummy; |
743 | __asm__("mulq %[bn]\n\t" |
744 | "movq %%rax, %[tmp]\n\t" |
745 | "movq %%rdx, %%rbx\n\t" |
746 | "movq %[tn], %%rax\n\t" |
747 | "mulq %[bd]\n\t" |
748 | "subq %[tmp], %%rax\n\t" |
749 | "sbbq %%rbx, %%rdx\n\t" // rdx:rax contains 128-bit-difference "numerator*b.denominator - b.numerator*denominator" |
750 | "setnsb %%bh\n\t" // bh=1 if difference is non-negative, bh=0 otherwise |
751 | "orq %%rdx, %%rax\n\t" |
752 | "setnzb %%bl\n\t" // bl=1 if difference if non-zero, bl=0 if it is zero |
753 | "decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference) |
754 | "shll $16, %%ebx\n\t" // ebx has same sign as difference |
755 | : "=&b" (result), [tmp] "=&r" (tmp), "=a" (dummy) |
756 | : "a" (denominator), [bn] "g" (b.numerator), [tn] "g" (numerator), [bd] "g" (b.denominator) |
757 | : "%rdx" , "cc" ); |
758 | // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero) |
759 | // if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero) |
760 | return result ? result ^ sign : 0; |
761 | |
762 | #else |
763 | |
764 | return sign * Int128::mul(numerator, b.denominator).ucmp(Int128::mul(denominator, b.numerator)); |
765 | |
766 | #endif |
767 | } |
768 | |
769 | int32_t ConvexHullInternal::Rational128::compare(const Rational128 &b) const { |
770 | if (sign != b.sign) { |
771 | return sign - b.sign; |
772 | } else if (sign == 0) { |
773 | return 0; |
774 | } |
775 | if (is_int_64) { |
776 | return -b.compare(sign * (int64_t)numerator.low); |
777 | } |
778 | |
779 | Int128 nbd_low, nbd_high, dbn_low, dbn_high; |
780 | DMul<Int128, uint64_t>::mul(numerator, b.denominator, nbd_low, nbd_high); |
781 | DMul<Int128, uint64_t>::mul(denominator, b.numerator, dbn_low, dbn_high); |
782 | |
783 | int32_t cmp = nbd_high.ucmp(dbn_high); |
784 | if (cmp) { |
785 | return cmp * sign; |
786 | } |
787 | return nbd_low.ucmp(dbn_low) * sign; |
788 | } |
789 | |
790 | int32_t ConvexHullInternal::Rational128::compare(int64_t b) const { |
791 | if (is_int_64) { |
792 | int64_t a = sign * (int64_t)numerator.low; |
793 | return (a > b) ? 1 : ((a < b) ? -1 : 0); |
794 | } |
795 | if (b > 0) { |
796 | if (sign <= 0) { |
797 | return -1; |
798 | } |
799 | } else if (b < 0) { |
800 | if (sign >= 0) { |
801 | return 1; |
802 | } |
803 | b = -b; |
804 | } else { |
805 | return sign; |
806 | } |
807 | |
808 | return numerator.ucmp(denominator * b) * sign; |
809 | } |
810 | |
811 | ConvexHullInternal::Edge *ConvexHullInternal::new_edge_pair(Vertex *p_from, Vertex *p_to) { |
812 | CHULL_ASSERT(p_from && p_to); |
813 | Edge *e = edge_pool.alloc(); |
814 | Edge *r = edge_pool.alloc(); |
815 | e->reverse = r; |
816 | r->reverse = e; |
817 | e->copy = merge_stamp; |
818 | r->copy = merge_stamp; |
819 | e->target = p_to; |
820 | r->target = p_from; |
821 | e->face = nullptr; |
822 | r->face = nullptr; |
823 | used_edge_pairs++; |
824 | if (used_edge_pairs > max_used_edge_pairs) { |
825 | max_used_edge_pairs = used_edge_pairs; |
826 | } |
827 | return e; |
828 | } |
829 | |
830 | bool ConvexHullInternal::merge_projection(IntermediateHull &r_h0, IntermediateHull &r_h1, Vertex *&r_c0, Vertex *&r_c1) { |
831 | Vertex *v0 = r_h0.max_yx; |
832 | Vertex *v1 = r_h1.min_yx; |
833 | if ((v0->point.x == v1->point.x) && (v0->point.y == v1->point.y)) { |
834 | CHULL_ASSERT(v0->point.z < v1->point.z); |
835 | Vertex *v1p = v1->prev; |
836 | if (v1p == v1) { |
837 | r_c0 = v0; |
838 | if (v1->edges) { |
839 | CHULL_ASSERT(v1->edges->next == v1->edges); |
840 | v1 = v1->edges->target; |
841 | CHULL_ASSERT(v1->edges->next == v1->edges); |
842 | } |
843 | r_c1 = v1; |
844 | return false; |
845 | } |
846 | Vertex *v1n = v1->next; |
847 | v1p->next = v1n; |
848 | v1n->prev = v1p; |
849 | if (v1 == r_h1.min_xy) { |
850 | if ((v1n->point.x < v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y < v1p->point.y))) { |
851 | r_h1.min_xy = v1n; |
852 | } else { |
853 | r_h1.min_xy = v1p; |
854 | } |
855 | } |
856 | if (v1 == r_h1.max_xy) { |
857 | if ((v1n->point.x > v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y > v1p->point.y))) { |
858 | r_h1.max_xy = v1n; |
859 | } else { |
860 | r_h1.max_xy = v1p; |
861 | } |
862 | } |
863 | } |
864 | |
865 | v0 = r_h0.max_xy; |
866 | v1 = r_h1.max_xy; |
867 | Vertex *v00 = nullptr; |
868 | Vertex *v10 = nullptr; |
869 | int32_t sign = 1; |
870 | |
871 | for (int32_t side = 0; side <= 1; side++) { |
872 | int32_t dx = (v1->point.x - v0->point.x) * sign; |
873 | if (dx > 0) { |
874 | while (true) { |
875 | int32_t dy = v1->point.y - v0->point.y; |
876 | |
877 | Vertex *w0 = side ? v0->next : v0->prev; |
878 | if (w0 != v0) { |
879 | int32_t dx0 = (w0->point.x - v0->point.x) * sign; |
880 | int32_t dy0 = w0->point.y - v0->point.y; |
881 | if ((dy0 <= 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx <= dy * dx0)))) { |
882 | v0 = w0; |
883 | dx = (v1->point.x - v0->point.x) * sign; |
884 | continue; |
885 | } |
886 | } |
887 | |
888 | Vertex *w1 = side ? v1->next : v1->prev; |
889 | if (w1 != v1) { |
890 | int32_t dx1 = (w1->point.x - v1->point.x) * sign; |
891 | int32_t dy1 = w1->point.y - v1->point.y; |
892 | int32_t dxn = (w1->point.x - v0->point.x) * sign; |
893 | if ((dxn > 0) && (dy1 < 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx < dy * dx1)))) { |
894 | v1 = w1; |
895 | dx = dxn; |
896 | continue; |
897 | } |
898 | } |
899 | |
900 | break; |
901 | } |
902 | } else if (dx < 0) { |
903 | while (true) { |
904 | int32_t dy = v1->point.y - v0->point.y; |
905 | |
906 | Vertex *w1 = side ? v1->prev : v1->next; |
907 | if (w1 != v1) { |
908 | int32_t dx1 = (w1->point.x - v1->point.x) * sign; |
909 | int32_t dy1 = w1->point.y - v1->point.y; |
910 | if ((dy1 >= 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx <= dy * dx1)))) { |
911 | v1 = w1; |
912 | dx = (v1->point.x - v0->point.x) * sign; |
913 | continue; |
914 | } |
915 | } |
916 | |
917 | Vertex *w0 = side ? v0->prev : v0->next; |
918 | if (w0 != v0) { |
919 | int32_t dx0 = (w0->point.x - v0->point.x) * sign; |
920 | int32_t dy0 = w0->point.y - v0->point.y; |
921 | int32_t dxn = (v1->point.x - w0->point.x) * sign; |
922 | if ((dxn < 0) && (dy0 > 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx < dy * dx0)))) { |
923 | v0 = w0; |
924 | dx = dxn; |
925 | continue; |
926 | } |
927 | } |
928 | |
929 | break; |
930 | } |
931 | } else { |
932 | int32_t x = v0->point.x; |
933 | int32_t y0 = v0->point.y; |
934 | Vertex *w0 = v0; |
935 | Vertex *t; |
936 | while (((t = side ? w0->next : w0->prev) != v0) && (t->point.x == x) && (t->point.y <= y0)) { |
937 | w0 = t; |
938 | y0 = t->point.y; |
939 | } |
940 | v0 = w0; |
941 | |
942 | int32_t y1 = v1->point.y; |
943 | Vertex *w1 = v1; |
944 | while (((t = side ? w1->prev : w1->next) != v1) && (t->point.x == x) && (t->point.y >= y1)) { |
945 | w1 = t; |
946 | y1 = t->point.y; |
947 | } |
948 | v1 = w1; |
949 | } |
950 | |
951 | if (side == 0) { |
952 | v00 = v0; |
953 | v10 = v1; |
954 | |
955 | v0 = r_h0.min_xy; |
956 | v1 = r_h1.min_xy; |
957 | sign = -1; |
958 | } |
959 | } |
960 | |
961 | v0->prev = v1; |
962 | v1->next = v0; |
963 | |
964 | v00->next = v10; |
965 | v10->prev = v00; |
966 | |
967 | if (r_h1.min_xy->point.x < r_h0.min_xy->point.x) { |
968 | r_h0.min_xy = r_h1.min_xy; |
969 | } |
970 | if (r_h1.max_xy->point.x >= r_h0.max_xy->point.x) { |
971 | r_h0.max_xy = r_h1.max_xy; |
972 | } |
973 | |
974 | r_h0.max_yx = r_h1.max_yx; |
975 | |
976 | r_c0 = v00; |
977 | r_c1 = v10; |
978 | |
979 | return true; |
980 | } |
981 | |
982 | void ConvexHullInternal::compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result) { |
983 | int32_t n = p_end - p_start; |
984 | switch (n) { |
985 | case 0: |
986 | r_result.min_xy = nullptr; |
987 | r_result.max_xy = nullptr; |
988 | r_result.min_yx = nullptr; |
989 | r_result.max_yx = nullptr; |
990 | return; |
991 | case 2: { |
992 | Vertex *v = original_vertices[p_start]; |
993 | Vertex *w = original_vertices[p_start + 1]; |
994 | if (v->point != w->point) { |
995 | int32_t dx = v->point.x - w->point.x; |
996 | int32_t dy = v->point.y - w->point.y; |
997 | |
998 | if ((dx == 0) && (dy == 0)) { |
999 | if (v->point.z > w->point.z) { |
1000 | Vertex *t = w; |
1001 | w = v; |
1002 | v = t; |
1003 | } |
1004 | CHULL_ASSERT(v->point.z < w->point.z); |
1005 | v->next = v; |
1006 | v->prev = v; |
1007 | r_result.min_xy = v; |
1008 | r_result.max_xy = v; |
1009 | r_result.min_yx = v; |
1010 | r_result.max_yx = v; |
1011 | } else { |
1012 | v->next = w; |
1013 | v->prev = w; |
1014 | w->next = v; |
1015 | w->prev = v; |
1016 | |
1017 | if ((dx < 0) || ((dx == 0) && (dy < 0))) { |
1018 | r_result.min_xy = v; |
1019 | r_result.max_xy = w; |
1020 | } else { |
1021 | r_result.min_xy = w; |
1022 | r_result.max_xy = v; |
1023 | } |
1024 | |
1025 | if ((dy < 0) || ((dy == 0) && (dx < 0))) { |
1026 | r_result.min_yx = v; |
1027 | r_result.max_yx = w; |
1028 | } else { |
1029 | r_result.min_yx = w; |
1030 | r_result.max_yx = v; |
1031 | } |
1032 | } |
1033 | |
1034 | Edge *e = new_edge_pair(v, w); |
1035 | e->link(e); |
1036 | v->edges = e; |
1037 | |
1038 | e = e->reverse; |
1039 | e->link(e); |
1040 | w->edges = e; |
1041 | |
1042 | return; |
1043 | } |
1044 | [[fallthrough]]; |
1045 | } |
1046 | case 1: { |
1047 | Vertex *v = original_vertices[p_start]; |
1048 | v->edges = nullptr; |
1049 | v->next = v; |
1050 | v->prev = v; |
1051 | |
1052 | r_result.min_xy = v; |
1053 | r_result.max_xy = v; |
1054 | r_result.min_yx = v; |
1055 | r_result.max_yx = v; |
1056 | |
1057 | return; |
1058 | } |
1059 | } |
1060 | |
1061 | int32_t split0 = p_start + n / 2; |
1062 | Point32 p = original_vertices[split0 - 1]->point; |
1063 | int32_t split1 = split0; |
1064 | while ((split1 < p_end) && (original_vertices[split1]->point == p)) { |
1065 | split1++; |
1066 | } |
1067 | compute_internal(p_start, split0, r_result); |
1068 | IntermediateHull hull1; |
1069 | compute_internal(split1, p_end, hull1); |
1070 | #ifdef DEBUG_CONVEX_HULL |
1071 | printf("\n\nMerge\n" ); |
1072 | r_result.print(); |
1073 | hull1.print(); |
1074 | #endif |
1075 | merge(r_result, hull1); |
1076 | #ifdef DEBUG_CONVEX_HULL |
1077 | printf("\n Result\n" ); |
1078 | r_result.print(); |
1079 | #endif |
1080 | } |
1081 | |
1082 | #ifdef DEBUG_CONVEX_HULL |
1083 | void ConvexHullInternal::IntermediateHull::print() { |
1084 | printf(" Hull\n" ); |
1085 | for (Vertex *v = min_xy; v;) { |
1086 | printf(" " ); |
1087 | v->print(); |
1088 | if (v == max_xy) { |
1089 | printf(" max_xy" ); |
1090 | } |
1091 | if (v == min_yx) { |
1092 | printf(" min_yx" ); |
1093 | } |
1094 | if (v == max_yx) { |
1095 | printf(" max_yx" ); |
1096 | } |
1097 | if (v->next->prev != v) { |
1098 | printf(" Inconsistency" ); |
1099 | } |
1100 | printf("\n" ); |
1101 | v = v->next; |
1102 | if (v == min_xy) { |
1103 | break; |
1104 | } |
1105 | } |
1106 | if (min_xy) { |
1107 | min_xy->copy = (min_xy->copy == -1) ? -2 : -1; |
1108 | min_xy->print_graph(); |
1109 | } |
1110 | } |
1111 | |
1112 | void ConvexHullInternal::Vertex::print_graph() { |
1113 | print(); |
1114 | printf("\nEdges\n" ); |
1115 | Edge *e = edges; |
1116 | if (e) { |
1117 | do { |
1118 | e->print(); |
1119 | printf("\n" ); |
1120 | e = e->next; |
1121 | } while (e != edges); |
1122 | do { |
1123 | Vertex *v = e->target; |
1124 | if (v->copy != copy) { |
1125 | v->copy = copy; |
1126 | v->print_graph(); |
1127 | } |
1128 | e = e->next; |
1129 | } while (e != edges); |
1130 | } |
1131 | } |
1132 | #endif |
1133 | |
1134 | ConvexHullInternal::Orientation ConvexHullInternal::get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t) { |
1135 | CHULL_ASSERT(p_prev->reverse->target == p_next->reverse->target); |
1136 | if (p_prev->next == p_next) { |
1137 | if (p_prev->prev == p_next) { |
1138 | Point64 n = p_t.cross(p_s); |
1139 | Point64 m = (*p_prev->target - *p_next->reverse->target).cross(*p_next->target - *p_next->reverse->target); |
1140 | CHULL_ASSERT(!m.is_zero()); |
1141 | int64_t dot = n.dot(m); |
1142 | CHULL_ASSERT(dot != 0); |
1143 | return (dot > 0) ? ORIENTATION_COUNTER_CLOCKWISE : ORIENTATION_CLOCKWISE; |
1144 | } |
1145 | return ORIENTATION_COUNTER_CLOCKWISE; |
1146 | } else if (p_prev->prev == p_next) { |
1147 | return ORIENTATION_CLOCKWISE; |
1148 | } else { |
1149 | return ORIENTATION_NONE; |
1150 | } |
1151 | } |
1152 | |
1153 | ConvexHullInternal::Edge *ConvexHullInternal::find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_sxrxs, Rational64 &p_min_cot) { |
1154 | Edge *min_edge = nullptr; |
1155 | |
1156 | #ifdef DEBUG_CONVEX_HULL |
1157 | printf("find max edge for %d\n" , p_start->point.index); |
1158 | #endif |
1159 | Edge *e = p_start->edges; |
1160 | if (e) { |
1161 | do { |
1162 | if (e->copy > merge_stamp) { |
1163 | Point32 t = *e->target - *p_start; |
1164 | Rational64 cot(t.dot(p_sxrxs), t.dot(p_rxs)); |
1165 | #ifdef DEBUG_CONVEX_HULL |
1166 | printf(" Angle is %f (%d) for " , Math::atan(cot.to_scalar()), (int32_t)cot.is_nan()); |
1167 | e->print(); |
1168 | #endif |
1169 | if (cot.is_nan()) { |
1170 | CHULL_ASSERT(p_ccw ? (t.dot(p_s) < 0) : (t.dot(p_s) > 0)); |
1171 | } else { |
1172 | int32_t cmp; |
1173 | if (min_edge == nullptr) { |
1174 | p_min_cot = cot; |
1175 | min_edge = e; |
1176 | } else if ((cmp = cot.compare(p_min_cot)) < 0) { |
1177 | p_min_cot = cot; |
1178 | min_edge = e; |
1179 | } else if ((cmp == 0) && (p_ccw == (get_orientation(min_edge, e, p_s, t) == ORIENTATION_COUNTER_CLOCKWISE))) { |
1180 | min_edge = e; |
1181 | } |
1182 | } |
1183 | #ifdef DEBUG_CONVEX_HULL |
1184 | printf("\n" ); |
1185 | #endif |
1186 | } |
1187 | e = e->next; |
1188 | } while (e != p_start->edges); |
1189 | } |
1190 | return min_edge; |
1191 | } |
1192 | |
1193 | void ConvexHullInternal::find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, const Vertex *p_stop0, const Vertex *p_stop1) { |
1194 | Edge *start0 = p_e0; |
1195 | Edge *start1 = p_e1; |
1196 | Point32 et0 = start0 ? start0->target->point : p_c0->point; |
1197 | Point32 et1 = start1 ? start1->target->point : p_c1->point; |
1198 | Point32 s = p_c1->point - p_c0->point; |
1199 | Point64 normal = ((start0 ? start0 : start1)->target->point - p_c0->point).cross(s); |
1200 | int64_t dist = p_c0->point.dot(normal); |
1201 | CHULL_ASSERT(!start1 || (start1->target->point.dot(normal) == dist)); |
1202 | Point64 perp = s.cross(normal); |
1203 | CHULL_ASSERT(!perp.is_zero()); |
1204 | |
1205 | #ifdef DEBUG_CONVEX_HULL |
1206 | printf(" Advancing %d %d (%p %p, %d %d)\n" , p_c0->point.index, p_c1->point.index, start0, start1, start0 ? start0->target->point.index : -1, start1 ? start1->target->point.index : -1); |
1207 | #endif |
1208 | |
1209 | int64_t max_dot0 = et0.dot(perp); |
1210 | if (p_e0) { |
1211 | while (p_e0->target != p_stop0) { |
1212 | Edge *e = p_e0->reverse->prev; |
1213 | if (e->target->point.dot(normal) < dist) { |
1214 | break; |
1215 | } |
1216 | CHULL_ASSERT(e->target->point.dot(normal) == dist); |
1217 | if (e->copy == merge_stamp) { |
1218 | break; |
1219 | } |
1220 | int64_t dot = e->target->point.dot(perp); |
1221 | if (dot <= max_dot0) { |
1222 | break; |
1223 | } |
1224 | max_dot0 = dot; |
1225 | p_e0 = e; |
1226 | et0 = e->target->point; |
1227 | } |
1228 | } |
1229 | |
1230 | int64_t max_dot1 = et1.dot(perp); |
1231 | if (p_e1) { |
1232 | while (p_e1->target != p_stop1) { |
1233 | Edge *e = p_e1->reverse->next; |
1234 | if (e->target->point.dot(normal) < dist) { |
1235 | break; |
1236 | } |
1237 | CHULL_ASSERT(e->target->point.dot(normal) == dist); |
1238 | if (e->copy == merge_stamp) { |
1239 | break; |
1240 | } |
1241 | int64_t dot = e->target->point.dot(perp); |
1242 | if (dot <= max_dot1) { |
1243 | break; |
1244 | } |
1245 | max_dot1 = dot; |
1246 | p_e1 = e; |
1247 | et1 = e->target->point; |
1248 | } |
1249 | } |
1250 | |
1251 | #ifdef DEBUG_CONVEX_HULL |
1252 | printf(" Starting at %d %d\n" , et0.index, et1.index); |
1253 | #endif |
1254 | |
1255 | int64_t dx = max_dot1 - max_dot0; |
1256 | if (dx > 0) { |
1257 | while (true) { |
1258 | int64_t dy = (et1 - et0).dot(s); |
1259 | |
1260 | if (p_e0 && (p_e0->target != p_stop0)) { |
1261 | Edge *f0 = p_e0->next->reverse; |
1262 | if (f0->copy > merge_stamp) { |
1263 | int64_t dx0 = (f0->target->point - et0).dot(perp); |
1264 | int64_t dy0 = (f0->target->point - et0).dot(s); |
1265 | if ((dx0 == 0) ? (dy0 < 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) >= 0))) { |
1266 | et0 = f0->target->point; |
1267 | dx = (et1 - et0).dot(perp); |
1268 | p_e0 = (p_e0 == start0) ? nullptr : f0; |
1269 | continue; |
1270 | } |
1271 | } |
1272 | } |
1273 | |
1274 | if (p_e1 && (p_e1->target != p_stop1)) { |
1275 | Edge *f1 = p_e1->reverse->next; |
1276 | if (f1->copy > merge_stamp) { |
1277 | Point32 d1 = f1->target->point - et1; |
1278 | if (d1.dot(normal) == 0) { |
1279 | int64_t dx1 = d1.dot(perp); |
1280 | int64_t dy1 = d1.dot(s); |
1281 | int64_t dxn = (f1->target->point - et0).dot(perp); |
1282 | if ((dxn > 0) && ((dx1 == 0) ? (dy1 < 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) > 0)))) { |
1283 | p_e1 = f1; |
1284 | et1 = p_e1->target->point; |
1285 | dx = dxn; |
1286 | continue; |
1287 | } |
1288 | } else { |
1289 | CHULL_ASSERT((p_e1 == start1) && (d1.dot(normal) < 0)); |
1290 | } |
1291 | } |
1292 | } |
1293 | |
1294 | break; |
1295 | } |
1296 | } else if (dx < 0) { |
1297 | while (true) { |
1298 | int64_t dy = (et1 - et0).dot(s); |
1299 | |
1300 | if (p_e1 && (p_e1->target != p_stop1)) { |
1301 | Edge *f1 = p_e1->prev->reverse; |
1302 | if (f1->copy > merge_stamp) { |
1303 | int64_t dx1 = (f1->target->point - et1).dot(perp); |
1304 | int64_t dy1 = (f1->target->point - et1).dot(s); |
1305 | if ((dx1 == 0) ? (dy1 > 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) <= 0))) { |
1306 | et1 = f1->target->point; |
1307 | dx = (et1 - et0).dot(perp); |
1308 | p_e1 = (p_e1 == start1) ? nullptr : f1; |
1309 | continue; |
1310 | } |
1311 | } |
1312 | } |
1313 | |
1314 | if (p_e0 && (p_e0->target != p_stop0)) { |
1315 | Edge *f0 = p_e0->reverse->prev; |
1316 | if (f0->copy > merge_stamp) { |
1317 | Point32 d0 = f0->target->point - et0; |
1318 | if (d0.dot(normal) == 0) { |
1319 | int64_t dx0 = d0.dot(perp); |
1320 | int64_t dy0 = d0.dot(s); |
1321 | int64_t dxn = (et1 - f0->target->point).dot(perp); |
1322 | if ((dxn < 0) && ((dx0 == 0) ? (dy0 > 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) < 0)))) { |
1323 | p_e0 = f0; |
1324 | et0 = p_e0->target->point; |
1325 | dx = dxn; |
1326 | continue; |
1327 | } |
1328 | } else { |
1329 | CHULL_ASSERT((p_e0 == start0) && (d0.dot(normal) < 0)); |
1330 | } |
1331 | } |
1332 | } |
1333 | |
1334 | break; |
1335 | } |
1336 | } |
1337 | #ifdef DEBUG_CONVEX_HULL |
1338 | printf(" Advanced edges to %d %d\n" , et0.index, et1.index); |
1339 | #endif |
1340 | } |
1341 | |
1342 | void ConvexHullInternal::merge(IntermediateHull &p_h0, IntermediateHull &p_h1) { |
1343 | if (!p_h1.max_xy) { |
1344 | return; |
1345 | } |
1346 | if (!p_h0.max_xy) { |
1347 | p_h0 = p_h1; |
1348 | return; |
1349 | } |
1350 | |
1351 | merge_stamp--; |
1352 | |
1353 | Vertex *c0 = nullptr; |
1354 | Edge *to_prev0 = nullptr; |
1355 | Edge *first_new0 = nullptr; |
1356 | Edge *pending_head0 = nullptr; |
1357 | Edge *pending_tail0 = nullptr; |
1358 | Vertex *c1 = nullptr; |
1359 | Edge *to_prev1 = nullptr; |
1360 | Edge *first_new1 = nullptr; |
1361 | Edge *pending_head1 = nullptr; |
1362 | Edge *pending_tail1 = nullptr; |
1363 | Point32 prev_point; |
1364 | |
1365 | if (merge_projection(p_h0, p_h1, c0, c1)) { |
1366 | Point32 s = *c1 - *c0; |
1367 | Point64 normal = Point32(0, 0, -1).cross(s); |
1368 | Point64 t = s.cross(normal); |
1369 | CHULL_ASSERT(!t.is_zero()); |
1370 | |
1371 | Edge *e = c0->edges; |
1372 | Edge *start0 = nullptr; |
1373 | if (e) { |
1374 | do { |
1375 | int64_t dot = (*e->target - *c0).dot(normal); |
1376 | CHULL_ASSERT(dot <= 0); |
1377 | if ((dot == 0) && ((*e->target - *c0).dot(t) > 0)) { |
1378 | if (!start0 || (get_orientation(start0, e, s, Point32(0, 0, -1)) == ORIENTATION_CLOCKWISE)) { |
1379 | start0 = e; |
1380 | } |
1381 | } |
1382 | e = e->next; |
1383 | } while (e != c0->edges); |
1384 | } |
1385 | |
1386 | e = c1->edges; |
1387 | Edge *start1 = nullptr; |
1388 | if (e) { |
1389 | do { |
1390 | int64_t dot = (*e->target - *c1).dot(normal); |
1391 | CHULL_ASSERT(dot <= 0); |
1392 | if ((dot == 0) && ((*e->target - *c1).dot(t) > 0)) { |
1393 | if (!start1 || (get_orientation(start1, e, s, Point32(0, 0, -1)) == ORIENTATION_COUNTER_CLOCKWISE)) { |
1394 | start1 = e; |
1395 | } |
1396 | } |
1397 | e = e->next; |
1398 | } while (e != c1->edges); |
1399 | } |
1400 | |
1401 | if (start0 || start1) { |
1402 | find_edge_for_coplanar_faces(c0, c1, start0, start1, nullptr, nullptr); |
1403 | if (start0) { |
1404 | c0 = start0->target; |
1405 | } |
1406 | if (start1) { |
1407 | c1 = start1->target; |
1408 | } |
1409 | } |
1410 | |
1411 | prev_point = c1->point; |
1412 | prev_point.z++; |
1413 | } else { |
1414 | prev_point = c1->point; |
1415 | prev_point.x++; |
1416 | } |
1417 | |
1418 | Vertex *first0 = c0; |
1419 | Vertex *first1 = c1; |
1420 | bool first_run = true; |
1421 | |
1422 | while (true) { |
1423 | Point32 s = *c1 - *c0; |
1424 | Point32 r = prev_point - c0->point; |
1425 | Point64 rxs = r.cross(s); |
1426 | Point64 sxrxs = s.cross(rxs); |
1427 | |
1428 | #ifdef DEBUG_CONVEX_HULL |
1429 | printf("\n Checking %d %d\n" , c0->point.index, c1->point.index); |
1430 | #endif |
1431 | Rational64 min_cot0(0, 0); |
1432 | Edge *min0 = find_max_angle(false, c0, s, rxs, sxrxs, min_cot0); |
1433 | Rational64 min_cot1(0, 0); |
1434 | Edge *min1 = find_max_angle(true, c1, s, rxs, sxrxs, min_cot1); |
1435 | if (!min0 && !min1) { |
1436 | Edge *e = new_edge_pair(c0, c1); |
1437 | e->link(e); |
1438 | c0->edges = e; |
1439 | |
1440 | e = e->reverse; |
1441 | e->link(e); |
1442 | c1->edges = e; |
1443 | return; |
1444 | } else { |
1445 | int32_t cmp = !min0 ? 1 : (!min1 ? -1 : min_cot0.compare(min_cot1)); |
1446 | #ifdef DEBUG_CONVEX_HULL |
1447 | printf(" -> Result %d\n" , cmp); |
1448 | #endif |
1449 | if (first_run || ((cmp >= 0) ? !min_cot1.is_negative_infinity() : !min_cot0.is_negative_infinity())) { |
1450 | Edge *e = new_edge_pair(c0, c1); |
1451 | if (pending_tail0) { |
1452 | pending_tail0->prev = e; |
1453 | } else { |
1454 | pending_head0 = e; |
1455 | } |
1456 | e->next = pending_tail0; |
1457 | pending_tail0 = e; |
1458 | |
1459 | e = e->reverse; |
1460 | if (pending_tail1) { |
1461 | pending_tail1->next = e; |
1462 | } else { |
1463 | pending_head1 = e; |
1464 | } |
1465 | e->prev = pending_tail1; |
1466 | pending_tail1 = e; |
1467 | } |
1468 | |
1469 | Edge *e0 = min0; |
1470 | Edge *e1 = min1; |
1471 | |
1472 | #ifdef DEBUG_CONVEX_HULL |
1473 | printf(" Found min edges to %d %d\n" , e0 ? e0->target->point.index : -1, e1 ? e1->target->point.index : -1); |
1474 | #endif |
1475 | |
1476 | if (cmp == 0) { |
1477 | find_edge_for_coplanar_faces(c0, c1, e0, e1, nullptr, nullptr); |
1478 | } |
1479 | |
1480 | if ((cmp >= 0) && e1) { |
1481 | if (to_prev1) { |
1482 | for (Edge *e = to_prev1->next, *n = nullptr; e != min1; e = n) { |
1483 | n = e->next; |
1484 | remove_edge_pair(e); |
1485 | } |
1486 | } |
1487 | |
1488 | if (pending_tail1) { |
1489 | if (to_prev1) { |
1490 | to_prev1->link(pending_head1); |
1491 | } else { |
1492 | min1->prev->link(pending_head1); |
1493 | first_new1 = pending_head1; |
1494 | } |
1495 | pending_tail1->link(min1); |
1496 | pending_head1 = nullptr; |
1497 | pending_tail1 = nullptr; |
1498 | } else if (!to_prev1) { |
1499 | first_new1 = min1; |
1500 | } |
1501 | |
1502 | prev_point = c1->point; |
1503 | c1 = e1->target; |
1504 | to_prev1 = e1->reverse; |
1505 | } |
1506 | |
1507 | if ((cmp <= 0) && e0) { |
1508 | if (to_prev0) { |
1509 | for (Edge *e = to_prev0->prev, *n = nullptr; e != min0; e = n) { |
1510 | n = e->prev; |
1511 | remove_edge_pair(e); |
1512 | } |
1513 | } |
1514 | |
1515 | if (pending_tail0) { |
1516 | if (to_prev0) { |
1517 | pending_head0->link(to_prev0); |
1518 | } else { |
1519 | pending_head0->link(min0->next); |
1520 | first_new0 = pending_head0; |
1521 | } |
1522 | min0->link(pending_tail0); |
1523 | pending_head0 = nullptr; |
1524 | pending_tail0 = nullptr; |
1525 | } else if (!to_prev0) { |
1526 | first_new0 = min0; |
1527 | } |
1528 | |
1529 | prev_point = c0->point; |
1530 | c0 = e0->target; |
1531 | to_prev0 = e0->reverse; |
1532 | } |
1533 | } |
1534 | |
1535 | if ((c0 == first0) && (c1 == first1)) { |
1536 | if (to_prev0 == nullptr) { |
1537 | pending_head0->link(pending_tail0); |
1538 | c0->edges = pending_tail0; |
1539 | } else { |
1540 | for (Edge *e = to_prev0->prev, *n = nullptr; e != first_new0; e = n) { |
1541 | n = e->prev; |
1542 | remove_edge_pair(e); |
1543 | } |
1544 | if (pending_tail0) { |
1545 | pending_head0->link(to_prev0); |
1546 | first_new0->link(pending_tail0); |
1547 | } |
1548 | } |
1549 | |
1550 | if (to_prev1 == nullptr) { |
1551 | pending_tail1->link(pending_head1); |
1552 | c1->edges = pending_tail1; |
1553 | } else { |
1554 | for (Edge *e = to_prev1->next, *n = nullptr; e != first_new1; e = n) { |
1555 | n = e->next; |
1556 | remove_edge_pair(e); |
1557 | } |
1558 | if (pending_tail1) { |
1559 | to_prev1->link(pending_head1); |
1560 | pending_tail1->link(first_new1); |
1561 | } |
1562 | } |
1563 | |
1564 | return; |
1565 | } |
1566 | |
1567 | first_run = false; |
1568 | } |
1569 | } |
1570 | |
1571 | struct PointComparator { |
1572 | _FORCE_INLINE_ bool operator()(const ConvexHullInternal::Point32 &p, const ConvexHullInternal::Point32 &q) const { |
1573 | return (p.y < q.y) || ((p.y == q.y) && ((p.x < q.x) || ((p.x == q.x) && (p.z < q.z)))); |
1574 | } |
1575 | }; |
1576 | |
1577 | void ConvexHullInternal::compute(const Vector3 *p_coords, int32_t p_count) { |
1578 | AABB aabb; |
1579 | for (int32_t i = 0; i < p_count; i++) { |
1580 | Vector3 p = p_coords[i]; |
1581 | if (i == 0) { |
1582 | aabb.position = p; |
1583 | } else { |
1584 | aabb.expand_to(p); |
1585 | } |
1586 | } |
1587 | |
1588 | Vector3 s = aabb.size; |
1589 | max_axis = s.max_axis_index(); |
1590 | min_axis = s.min_axis_index(); |
1591 | if (min_axis == max_axis) { |
1592 | min_axis = Vector3::Axis((max_axis + 1) % 3); |
1593 | } |
1594 | med_axis = Vector3::Axis(3 - max_axis - min_axis); |
1595 | |
1596 | s /= real_t(10216); |
1597 | if (((med_axis + 1) % 3) != max_axis) { |
1598 | s *= -1; |
1599 | } |
1600 | scaling = s; |
1601 | |
1602 | if (s[0] != 0) { |
1603 | s[0] = real_t(1) / s[0]; |
1604 | } |
1605 | if (s[1] != 0) { |
1606 | s[1] = real_t(1) / s[1]; |
1607 | } |
1608 | if (s[2] != 0) { |
1609 | s[2] = real_t(1) / s[2]; |
1610 | } |
1611 | |
1612 | center = aabb.position; |
1613 | |
1614 | LocalVector<Point32> points; |
1615 | points.resize(p_count); |
1616 | for (int32_t i = 0; i < p_count; i++) { |
1617 | Vector3 p = p_coords[i]; |
1618 | p = (p - center) * s; |
1619 | points[i].x = (int32_t)p[med_axis]; |
1620 | points[i].y = (int32_t)p[max_axis]; |
1621 | points[i].z = (int32_t)p[min_axis]; |
1622 | points[i].index = i; |
1623 | } |
1624 | |
1625 | points.sort_custom<PointComparator>(); |
1626 | |
1627 | vertex_pool.reset(true); |
1628 | original_vertices.resize(p_count); |
1629 | for (int32_t i = 0; i < p_count; i++) { |
1630 | Vertex *v = vertex_pool.alloc(); |
1631 | v->edges = nullptr; |
1632 | v->point = points[i]; |
1633 | v->copy = -1; |
1634 | original_vertices[i] = v; |
1635 | } |
1636 | |
1637 | points.clear(); |
1638 | |
1639 | edge_pool.reset(true); |
1640 | |
1641 | used_edge_pairs = 0; |
1642 | max_used_edge_pairs = 0; |
1643 | |
1644 | merge_stamp = -3; |
1645 | |
1646 | IntermediateHull hull; |
1647 | compute_internal(0, p_count, hull); |
1648 | vertex_list = hull.min_xy; |
1649 | #ifdef DEBUG_CONVEX_HULL |
1650 | printf("max. edges %d (3v = %d)" , max_used_edge_pairs, 3 * p_count); |
1651 | #endif |
1652 | } |
1653 | |
1654 | Vector3 ConvexHullInternal::to_gd_vector(const Point32 &p_v) { |
1655 | Vector3 p; |
1656 | p[med_axis] = real_t(p_v.x); |
1657 | p[max_axis] = real_t(p_v.y); |
1658 | p[min_axis] = real_t(p_v.z); |
1659 | return p * scaling; |
1660 | } |
1661 | |
1662 | Vector3 ConvexHullInternal::get_gd_normal(Face *p_face) { |
1663 | return to_gd_vector(p_face->dir0).cross(to_gd_vector(p_face->dir1)).normalized(); |
1664 | } |
1665 | |
1666 | Vector3 ConvexHullInternal::get_coordinates(const Vertex *p_v) { |
1667 | Vector3 p; |
1668 | p[med_axis] = p_v->xvalue(); |
1669 | p[max_axis] = p_v->yvalue(); |
1670 | p[min_axis] = p_v->zvalue(); |
1671 | return p * scaling + center; |
1672 | } |
1673 | |
1674 | real_t ConvexHullInternal::shrink(real_t p_amount, real_t p_clamp_amount) { |
1675 | if (!vertex_list) { |
1676 | return 0; |
1677 | } |
1678 | int32_t stamp = --merge_stamp; |
1679 | LocalVector<Vertex *> stack; |
1680 | vertex_list->copy = stamp; |
1681 | stack.push_back(vertex_list); |
1682 | LocalVector<Face *> faces; |
1683 | |
1684 | Point32 ref = vertex_list->point; |
1685 | Int128 hull_center_x(0, 0); |
1686 | Int128 hull_center_y(0, 0); |
1687 | Int128 hull_center_z(0, 0); |
1688 | Int128 volume(0, 0); |
1689 | |
1690 | while (stack.size() > 0) { |
1691 | Vertex *v = stack[stack.size() - 1]; |
1692 | stack.remove_at(stack.size() - 1); |
1693 | Edge *e = v->edges; |
1694 | if (e) { |
1695 | do { |
1696 | if (e->target->copy != stamp) { |
1697 | e->target->copy = stamp; |
1698 | stack.push_back(e->target); |
1699 | } |
1700 | if (e->copy != stamp) { |
1701 | Face *face = face_pool.alloc(); |
1702 | face->init(e->target, e->reverse->prev->target, v); |
1703 | faces.push_back(face); |
1704 | Edge *f = e; |
1705 | |
1706 | Vertex *a = nullptr; |
1707 | Vertex *b = nullptr; |
1708 | do { |
1709 | if (a && b) { |
1710 | int64_t vol = (v->point - ref).dot((a->point - ref).cross(b->point - ref)); |
1711 | CHULL_ASSERT(vol >= 0); |
1712 | Point32 c = v->point + a->point + b->point + ref; |
1713 | hull_center_x += vol * c.x; |
1714 | hull_center_y += vol * c.y; |
1715 | hull_center_z += vol * c.z; |
1716 | volume += vol; |
1717 | } |
1718 | |
1719 | CHULL_ASSERT(f->copy != stamp); |
1720 | f->copy = stamp; |
1721 | f->face = face; |
1722 | |
1723 | a = b; |
1724 | b = f->target; |
1725 | |
1726 | f = f->reverse->prev; |
1727 | } while (f != e); |
1728 | } |
1729 | e = e->next; |
1730 | } while (e != v->edges); |
1731 | } |
1732 | } |
1733 | |
1734 | if (volume.get_sign() <= 0) { |
1735 | return 0; |
1736 | } |
1737 | |
1738 | Vector3 hull_center; |
1739 | hull_center[med_axis] = hull_center_x.to_scalar(); |
1740 | hull_center[max_axis] = hull_center_y.to_scalar(); |
1741 | hull_center[min_axis] = hull_center_z.to_scalar(); |
1742 | hull_center /= 4 * volume.to_scalar(); |
1743 | hull_center *= scaling; |
1744 | |
1745 | int32_t face_count = faces.size(); |
1746 | |
1747 | if (p_clamp_amount > 0) { |
1748 | real_t min_dist = FLT_MAX; |
1749 | for (int32_t i = 0; i < face_count; i++) { |
1750 | Vector3 normal = get_gd_normal(faces[i]); |
1751 | real_t dist = normal.dot(to_gd_vector(faces[i]->origin) - hull_center); |
1752 | if (dist < min_dist) { |
1753 | min_dist = dist; |
1754 | } |
1755 | } |
1756 | |
1757 | if (min_dist <= 0) { |
1758 | return 0; |
1759 | } |
1760 | |
1761 | p_amount = MIN(p_amount, min_dist * p_clamp_amount); |
1762 | } |
1763 | |
1764 | uint32_t seed = 243703; |
1765 | for (int32_t i = 0; i < face_count; i++, seed = 1664525 * seed + 1013904223) { |
1766 | SWAP(faces[i], faces[seed % face_count]); |
1767 | } |
1768 | |
1769 | for (int32_t i = 0; i < face_count; i++) { |
1770 | if (!shift_face(faces[i], p_amount, stack)) { |
1771 | return -p_amount; |
1772 | } |
1773 | } |
1774 | |
1775 | return p_amount; |
1776 | } |
1777 | |
1778 | bool ConvexHullInternal::shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> &p_stack) { |
1779 | Vector3 orig_shift = get_gd_normal(p_face) * -p_amount; |
1780 | if (scaling[0] != 0) { |
1781 | orig_shift[0] /= scaling[0]; |
1782 | } |
1783 | if (scaling[1] != 0) { |
1784 | orig_shift[1] /= scaling[1]; |
1785 | } |
1786 | if (scaling[2] != 0) { |
1787 | orig_shift[2] /= scaling[2]; |
1788 | } |
1789 | Point32 shift((int32_t)orig_shift[med_axis], (int32_t)orig_shift[max_axis], (int32_t)orig_shift[min_axis]); |
1790 | if (shift.is_zero()) { |
1791 | return true; |
1792 | } |
1793 | Point64 normal = p_face->get_normal(); |
1794 | #ifdef DEBUG_CONVEX_HULL |
1795 | printf("\nShrinking p_face (%d %d %d) (%d %d %d) (%d %d %d) by (%d %d %d)\n" , |
1796 | p_face->origin.x, p_face->origin.y, p_face->origin.z, p_face->dir0.x, p_face->dir0.y, p_face->dir0.z, p_face->dir1.x, p_face->dir1.y, p_face->dir1.z, shift.x, shift.y, shift.z); |
1797 | #endif |
1798 | int64_t orig_dot = p_face->origin.dot(normal); |
1799 | Point32 shifted_origin = p_face->origin + shift; |
1800 | int64_t shifted_dot = shifted_origin.dot(normal); |
1801 | CHULL_ASSERT(shifted_dot <= orig_dot); |
1802 | if (shifted_dot >= orig_dot) { |
1803 | return false; |
1804 | } |
1805 | |
1806 | Edge *intersection = nullptr; |
1807 | |
1808 | Edge *start_edge = p_face->nearby_vertex->edges; |
1809 | #ifdef DEBUG_CONVEX_HULL |
1810 | printf("Start edge is " ); |
1811 | start_edge->print(); |
1812 | printf(", normal is (%lld %lld %lld), shifted dot is %lld\n" , normal.x, normal.y, normal.z, shifted_dot); |
1813 | #endif |
1814 | Rational128 opt_dot = p_face->nearby_vertex->dot(normal); |
1815 | int32_t cmp = opt_dot.compare(shifted_dot); |
1816 | #ifdef SHOW_ITERATIONS |
1817 | int32_t n = 0; |
1818 | #endif |
1819 | if (cmp >= 0) { |
1820 | Edge *e = start_edge; |
1821 | do { |
1822 | #ifdef SHOW_ITERATIONS |
1823 | n++; |
1824 | #endif |
1825 | Rational128 dot = e->target->dot(normal); |
1826 | CHULL_ASSERT(dot.compare(orig_dot) <= 0); |
1827 | #ifdef DEBUG_CONVEX_HULL |
1828 | printf("Moving downwards, edge is " ); |
1829 | e->print(); |
1830 | printf(", dot is %f (%f %lld)\n" , (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot); |
1831 | #endif |
1832 | if (dot.compare(opt_dot) < 0) { |
1833 | int32_t c = dot.compare(shifted_dot); |
1834 | opt_dot = dot; |
1835 | e = e->reverse; |
1836 | start_edge = e; |
1837 | if (c < 0) { |
1838 | intersection = e; |
1839 | break; |
1840 | } |
1841 | cmp = c; |
1842 | } |
1843 | e = e->prev; |
1844 | } while (e != start_edge); |
1845 | |
1846 | if (!intersection) { |
1847 | return false; |
1848 | } |
1849 | } else { |
1850 | Edge *e = start_edge; |
1851 | do { |
1852 | #ifdef SHOW_ITERATIONS |
1853 | n++; |
1854 | #endif |
1855 | Rational128 dot = e->target->dot(normal); |
1856 | CHULL_ASSERT(dot.compare(orig_dot) <= 0); |
1857 | #ifdef DEBUG_CONVEX_HULL |
1858 | printf("Moving upwards, edge is " ); |
1859 | e->print(); |
1860 | printf(", dot is %f (%f %lld)\n" , (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot); |
1861 | #endif |
1862 | if (dot.compare(opt_dot) > 0) { |
1863 | cmp = dot.compare(shifted_dot); |
1864 | if (cmp >= 0) { |
1865 | intersection = e; |
1866 | break; |
1867 | } |
1868 | opt_dot = dot; |
1869 | e = e->reverse; |
1870 | start_edge = e; |
1871 | } |
1872 | e = e->prev; |
1873 | } while (e != start_edge); |
1874 | |
1875 | if (!intersection) { |
1876 | return true; |
1877 | } |
1878 | } |
1879 | |
1880 | #ifdef SHOW_ITERATIONS |
1881 | printf("Needed %d iterations to find initial intersection\n" , n); |
1882 | #endif |
1883 | |
1884 | if (cmp == 0) { |
1885 | Edge *e = intersection->reverse->next; |
1886 | #ifdef SHOW_ITERATIONS |
1887 | n = 0; |
1888 | #endif |
1889 | while (e->target->dot(normal).compare(shifted_dot) <= 0) { |
1890 | #ifdef SHOW_ITERATIONS |
1891 | n++; |
1892 | #endif |
1893 | e = e->next; |
1894 | if (e == intersection->reverse) { |
1895 | return true; |
1896 | } |
1897 | #ifdef DEBUG_CONVEX_HULL |
1898 | printf("Checking for outwards edge, current edge is " ); |
1899 | e->print(); |
1900 | printf("\n" ); |
1901 | #endif |
1902 | } |
1903 | #ifdef SHOW_ITERATIONS |
1904 | printf("Needed %d iterations to check for complete containment\n" , n); |
1905 | #endif |
1906 | } |
1907 | |
1908 | Edge *first_intersection = nullptr; |
1909 | Edge *face_edge = nullptr; |
1910 | Edge *first_face_edge = nullptr; |
1911 | |
1912 | #ifdef SHOW_ITERATIONS |
1913 | int32_t m = 0; |
1914 | #endif |
1915 | while (true) { |
1916 | #ifdef SHOW_ITERATIONS |
1917 | m++; |
1918 | #endif |
1919 | #ifdef DEBUG_CONVEX_HULL |
1920 | printf("Intersecting edge is " ); |
1921 | intersection->print(); |
1922 | printf("\n" ); |
1923 | #endif |
1924 | if (cmp == 0) { |
1925 | Edge *e = intersection->reverse->next; |
1926 | start_edge = e; |
1927 | #ifdef SHOW_ITERATIONS |
1928 | n = 0; |
1929 | #endif |
1930 | while (true) { |
1931 | #ifdef SHOW_ITERATIONS |
1932 | n++; |
1933 | #endif |
1934 | if (e->target->dot(normal).compare(shifted_dot) >= 0) { |
1935 | break; |
1936 | } |
1937 | intersection = e->reverse; |
1938 | e = e->next; |
1939 | if (e == start_edge) { |
1940 | return true; |
1941 | } |
1942 | } |
1943 | #ifdef SHOW_ITERATIONS |
1944 | printf("Needed %d iterations to advance intersection\n" , n); |
1945 | #endif |
1946 | } |
1947 | |
1948 | #ifdef DEBUG_CONVEX_HULL |
1949 | printf("Advanced intersecting edge to " ); |
1950 | intersection->print(); |
1951 | printf(", cmp = %d\n" , cmp); |
1952 | #endif |
1953 | |
1954 | if (!first_intersection) { |
1955 | first_intersection = intersection; |
1956 | } else if (intersection == first_intersection) { |
1957 | break; |
1958 | } |
1959 | |
1960 | int32_t prev_cmp = cmp; |
1961 | Edge *prev_intersection = intersection; |
1962 | Edge *prev_face_edge = face_edge; |
1963 | |
1964 | Edge *e = intersection->reverse; |
1965 | #ifdef SHOW_ITERATIONS |
1966 | n = 0; |
1967 | #endif |
1968 | while (true) { |
1969 | #ifdef SHOW_ITERATIONS |
1970 | n++; |
1971 | #endif |
1972 | e = e->reverse->prev; |
1973 | CHULL_ASSERT(e != intersection->reverse); |
1974 | cmp = e->target->dot(normal).compare(shifted_dot); |
1975 | #ifdef DEBUG_CONVEX_HULL |
1976 | printf("Testing edge " ); |
1977 | e->print(); |
1978 | printf(" -> cmp = %d\n" , cmp); |
1979 | #endif |
1980 | if (cmp >= 0) { |
1981 | intersection = e; |
1982 | break; |
1983 | } |
1984 | } |
1985 | #ifdef SHOW_ITERATIONS |
1986 | printf("Needed %d iterations to find other intersection of p_face\n" , n); |
1987 | #endif |
1988 | |
1989 | if (cmp > 0) { |
1990 | Vertex *removed = intersection->target; |
1991 | e = intersection->reverse; |
1992 | if (e->prev == e) { |
1993 | removed->edges = nullptr; |
1994 | } else { |
1995 | removed->edges = e->prev; |
1996 | e->prev->link(e->next); |
1997 | e->link(e); |
1998 | } |
1999 | #ifdef DEBUG_CONVEX_HULL |
2000 | printf("1: Removed part contains (%d %d %d)\n" , removed->point.x, removed->point.y, removed->point.z); |
2001 | #endif |
2002 | |
2003 | Point64 n0 = intersection->face->get_normal(); |
2004 | Point64 n1 = intersection->reverse->face->get_normal(); |
2005 | int64_t m00 = p_face->dir0.dot(n0); |
2006 | int64_t m01 = p_face->dir1.dot(n0); |
2007 | int64_t m10 = p_face->dir0.dot(n1); |
2008 | int64_t m11 = p_face->dir1.dot(n1); |
2009 | int64_t r0 = (intersection->face->origin - shifted_origin).dot(n0); |
2010 | int64_t r1 = (intersection->reverse->face->origin - shifted_origin).dot(n1); |
2011 | Int128 det = Int128::mul(m00, m11) - Int128::mul(m01, m10); |
2012 | CHULL_ASSERT(det.get_sign() != 0); |
2013 | Vertex *v = vertex_pool.alloc(); |
2014 | v->point.index = -1; |
2015 | v->copy = -1; |
2016 | v->point128 = PointR128(Int128::mul(p_face->dir0.x * r0, m11) - Int128::mul(p_face->dir0.x * r1, m01) + Int128::mul(p_face->dir1.x * r1, m00) - Int128::mul(p_face->dir1.x * r0, m10) + det * shifted_origin.x, |
2017 | Int128::mul(p_face->dir0.y * r0, m11) - Int128::mul(p_face->dir0.y * r1, m01) + Int128::mul(p_face->dir1.y * r1, m00) - Int128::mul(p_face->dir1.y * r0, m10) + det * shifted_origin.y, |
2018 | Int128::mul(p_face->dir0.z * r0, m11) - Int128::mul(p_face->dir0.z * r1, m01) + Int128::mul(p_face->dir1.z * r1, m00) - Int128::mul(p_face->dir1.z * r0, m10) + det * shifted_origin.z, |
2019 | det); |
2020 | v->point.x = (int32_t)v->point128.xvalue(); |
2021 | v->point.y = (int32_t)v->point128.yvalue(); |
2022 | v->point.z = (int32_t)v->point128.zvalue(); |
2023 | intersection->target = v; |
2024 | v->edges = e; |
2025 | |
2026 | p_stack.push_back(v); |
2027 | p_stack.push_back(removed); |
2028 | p_stack.push_back(nullptr); |
2029 | } |
2030 | |
2031 | if (cmp || prev_cmp || (prev_intersection->reverse->next->target != intersection->target)) { |
2032 | face_edge = new_edge_pair(prev_intersection->target, intersection->target); |
2033 | if (prev_cmp == 0) { |
2034 | face_edge->link(prev_intersection->reverse->next); |
2035 | } |
2036 | if ((prev_cmp == 0) || prev_face_edge) { |
2037 | prev_intersection->reverse->link(face_edge); |
2038 | } |
2039 | if (cmp == 0) { |
2040 | intersection->reverse->prev->link(face_edge->reverse); |
2041 | } |
2042 | face_edge->reverse->link(intersection->reverse); |
2043 | } else { |
2044 | face_edge = prev_intersection->reverse->next; |
2045 | } |
2046 | |
2047 | if (prev_face_edge) { |
2048 | if (prev_cmp > 0) { |
2049 | face_edge->link(prev_face_edge->reverse); |
2050 | } else if (face_edge != prev_face_edge->reverse) { |
2051 | p_stack.push_back(prev_face_edge->target); |
2052 | while (face_edge->next != prev_face_edge->reverse) { |
2053 | Vertex *removed = face_edge->next->target; |
2054 | remove_edge_pair(face_edge->next); |
2055 | p_stack.push_back(removed); |
2056 | #ifdef DEBUG_CONVEX_HULL |
2057 | printf("2: Removed part contains (%d %d %d)\n" , removed->point.x, removed->point.y, removed->point.z); |
2058 | #endif |
2059 | } |
2060 | p_stack.push_back(nullptr); |
2061 | } |
2062 | } |
2063 | face_edge->face = p_face; |
2064 | face_edge->reverse->face = intersection->face; |
2065 | |
2066 | if (!first_face_edge) { |
2067 | first_face_edge = face_edge; |
2068 | } |
2069 | } |
2070 | #ifdef SHOW_ITERATIONS |
2071 | printf("Needed %d iterations to process all intersections\n" , m); |
2072 | #endif |
2073 | |
2074 | if (cmp > 0) { |
2075 | first_face_edge->reverse->target = face_edge->target; |
2076 | first_intersection->reverse->link(first_face_edge); |
2077 | first_face_edge->link(face_edge->reverse); |
2078 | } else if (first_face_edge != face_edge->reverse) { |
2079 | p_stack.push_back(face_edge->target); |
2080 | while (first_face_edge->next != face_edge->reverse) { |
2081 | Vertex *removed = first_face_edge->next->target; |
2082 | remove_edge_pair(first_face_edge->next); |
2083 | p_stack.push_back(removed); |
2084 | #ifdef DEBUG_CONVEX_HULL |
2085 | printf("3: Removed part contains (%d %d %d)\n" , removed->point.x, removed->point.y, removed->point.z); |
2086 | #endif |
2087 | } |
2088 | p_stack.push_back(nullptr); |
2089 | } |
2090 | |
2091 | CHULL_ASSERT(p_stack.size() > 0); |
2092 | vertex_list = p_stack[0]; |
2093 | |
2094 | #ifdef DEBUG_CONVEX_HULL |
2095 | printf("Removing part\n" ); |
2096 | #endif |
2097 | #ifdef SHOW_ITERATIONS |
2098 | n = 0; |
2099 | #endif |
2100 | uint32_t pos = 0; |
2101 | while (pos < p_stack.size()) { |
2102 | uint32_t end = p_stack.size(); |
2103 | while (pos < end) { |
2104 | Vertex *kept = p_stack[pos++]; |
2105 | #ifdef DEBUG_CONVEX_HULL |
2106 | kept->print(); |
2107 | #endif |
2108 | bool deeper = false; |
2109 | Vertex *removed; |
2110 | while ((removed = p_stack[pos++]) != nullptr) { |
2111 | #ifdef SHOW_ITERATIONS |
2112 | n++; |
2113 | #endif |
2114 | kept->receive_nearby_faces(removed); |
2115 | while (removed->edges) { |
2116 | if (!deeper) { |
2117 | deeper = true; |
2118 | p_stack.push_back(kept); |
2119 | } |
2120 | p_stack.push_back(removed->edges->target); |
2121 | remove_edge_pair(removed->edges); |
2122 | } |
2123 | } |
2124 | if (deeper) { |
2125 | p_stack.push_back(nullptr); |
2126 | } |
2127 | } |
2128 | } |
2129 | #ifdef SHOW_ITERATIONS |
2130 | printf("Needed %d iterations to remove part\n" , n); |
2131 | #endif |
2132 | |
2133 | p_stack.clear(); |
2134 | p_face->origin = shifted_origin; |
2135 | |
2136 | return true; |
2137 | } |
2138 | |
2139 | static int32_t get_vertex_copy(ConvexHullInternal::Vertex *p_vertex, LocalVector<ConvexHullInternal::Vertex *> &p_vertices) { |
2140 | int32_t index = p_vertex->copy; |
2141 | if (index < 0) { |
2142 | index = p_vertices.size(); |
2143 | p_vertex->copy = index; |
2144 | p_vertices.push_back(p_vertex); |
2145 | #ifdef DEBUG_CONVEX_HULL |
2146 | printf("Vertex %d gets index *%d\n" , p_vertex->point.index, index); |
2147 | #endif |
2148 | } |
2149 | return index; |
2150 | } |
2151 | |
2152 | real_t ConvexHullComputer::compute(const Vector3 *p_coords, int32_t p_count, real_t p_shrink, real_t p_shrink_clamp) { |
2153 | if (p_count <= 0) { |
2154 | vertices.clear(); |
2155 | edges.clear(); |
2156 | faces.clear(); |
2157 | return 0; |
2158 | } |
2159 | |
2160 | ConvexHullInternal hull; |
2161 | hull.compute(p_coords, p_count); |
2162 | |
2163 | real_t shift = 0; |
2164 | if ((p_shrink > 0) && ((shift = hull.shrink(p_shrink, p_shrink_clamp)) < 0)) { |
2165 | vertices.clear(); |
2166 | edges.clear(); |
2167 | faces.clear(); |
2168 | return shift; |
2169 | } |
2170 | |
2171 | vertices.clear(); |
2172 | edges.clear(); |
2173 | faces.clear(); |
2174 | |
2175 | LocalVector<ConvexHullInternal::Vertex *> old_vertices; |
2176 | get_vertex_copy(hull.vertex_list, old_vertices); |
2177 | int32_t copied = 0; |
2178 | while (copied < (int32_t)old_vertices.size()) { |
2179 | ConvexHullInternal::Vertex *v = old_vertices[copied]; |
2180 | vertices.push_back(hull.get_coordinates(v)); |
2181 | ConvexHullInternal::Edge *first_edge = v->edges; |
2182 | if (first_edge) { |
2183 | int32_t first_copy = -1; |
2184 | int32_t prev_copy = -1; |
2185 | ConvexHullInternal::Edge *e = first_edge; |
2186 | do { |
2187 | if (e->copy < 0) { |
2188 | int32_t s = edges.size(); |
2189 | edges.push_back(Edge()); |
2190 | edges.push_back(Edge()); |
2191 | Edge *c = &edges[s]; |
2192 | Edge *r = &edges[s + 1]; |
2193 | e->copy = s; |
2194 | e->reverse->copy = s + 1; |
2195 | c->reverse = 1; |
2196 | r->reverse = -1; |
2197 | c->target_vertex = get_vertex_copy(e->target, old_vertices); |
2198 | r->target_vertex = copied; |
2199 | #ifdef DEBUG_CONVEX_HULL |
2200 | printf(" CREATE: Vertex *%d has edge to *%d\n" , copied, c->get_target_vertex()); |
2201 | #endif |
2202 | } |
2203 | if (prev_copy >= 0) { |
2204 | edges[e->copy].next = prev_copy - e->copy; |
2205 | } else { |
2206 | first_copy = e->copy; |
2207 | } |
2208 | prev_copy = e->copy; |
2209 | e = e->next; |
2210 | } while (e != first_edge); |
2211 | edges[first_copy].next = prev_copy - first_copy; |
2212 | } |
2213 | copied++; |
2214 | } |
2215 | |
2216 | for (int32_t i = 0; i < copied; i++) { |
2217 | ConvexHullInternal::Vertex *v = old_vertices[i]; |
2218 | ConvexHullInternal::Edge *first_edge = v->edges; |
2219 | if (first_edge) { |
2220 | ConvexHullInternal::Edge *e = first_edge; |
2221 | do { |
2222 | if (e->copy >= 0) { |
2223 | #ifdef DEBUG_CONVEX_HULL |
2224 | printf("Vertex *%d has edge to *%d\n" , i, edges[e->copy].get_target_vertex()); |
2225 | #endif |
2226 | faces.push_back(e->copy); |
2227 | ConvexHullInternal::Edge *f = e; |
2228 | do { |
2229 | #ifdef DEBUG_CONVEX_HULL |
2230 | printf(" Face *%d\n" , edges[f->copy].get_target_vertex()); |
2231 | #endif |
2232 | f->copy = -1; |
2233 | f = f->reverse->prev; |
2234 | } while (f != e); |
2235 | } |
2236 | e = e->next; |
2237 | } while (e != first_edge); |
2238 | } |
2239 | } |
2240 | |
2241 | return shift; |
2242 | } |
2243 | |
2244 | Error ConvexHullComputer::convex_hull(const Vector<Vector3> &p_points, Geometry3D::MeshData &r_mesh) { |
2245 | r_mesh = Geometry3D::MeshData(); // clear |
2246 | |
2247 | if (p_points.size() == 0) { |
2248 | return FAILED; // matches QuickHull |
2249 | } |
2250 | |
2251 | ConvexHullComputer ch; |
2252 | ch.compute(p_points.ptr(), p_points.size(), -1.0, -1.0); |
2253 | |
2254 | r_mesh.vertices = ch.vertices; |
2255 | |
2256 | // Tag which face each edge belongs to |
2257 | LocalVector<int32_t> edge_faces; |
2258 | edge_faces.resize(ch.edges.size()); |
2259 | |
2260 | for (uint32_t i = 0; i < ch.edges.size(); i++) { |
2261 | edge_faces[i] = -1; |
2262 | } |
2263 | |
2264 | for (uint32_t i = 0; i < ch.faces.size(); i++) { |
2265 | const Edge *e_start = &ch.edges[ch.faces[i]]; |
2266 | const Edge *e = e_start; |
2267 | do { |
2268 | int64_t ofs = e - ch.edges.ptr(); |
2269 | edge_faces[ofs] = i; |
2270 | |
2271 | e = e->get_next_edge_of_face(); |
2272 | } while (e != e_start); |
2273 | } |
2274 | |
2275 | // Copy the edges over. There's two "half-edges" for every edge, so we pick only one of them. |
2276 | r_mesh.edges.resize(ch.edges.size() / 2); |
2277 | OAHashMap<uint64_t, int32_t> edge_map(ch.edges.size() * 4); // The higher the capacity, the faster the insert |
2278 | |
2279 | uint32_t edges_copied = 0; |
2280 | for (uint32_t i = 0; i < ch.edges.size(); i++) { |
2281 | ERR_CONTINUE(edge_faces[i] == -1); // Sanity check |
2282 | |
2283 | uint32_t a = (&ch.edges[i])->get_source_vertex(); |
2284 | uint32_t b = (&ch.edges[i])->get_target_vertex(); |
2285 | if (a < b) { // Copy only the "canonical" edge. For the reverse edge, this will be false. |
2286 | ERR_BREAK(edges_copied >= (uint32_t)r_mesh.edges.size()); |
2287 | r_mesh.edges[edges_copied].vertex_a = a; |
2288 | r_mesh.edges[edges_copied].vertex_b = b; |
2289 | r_mesh.edges[edges_copied].face_a = edge_faces[i]; |
2290 | r_mesh.edges[edges_copied].face_b = -1; |
2291 | |
2292 | uint64_t key = a; |
2293 | key <<= 32; |
2294 | key |= b; |
2295 | edge_map.insert(key, edges_copied); |
2296 | |
2297 | edges_copied++; |
2298 | } else { |
2299 | uint64_t key = b; |
2300 | key <<= 32; |
2301 | key |= a; |
2302 | int32_t index; |
2303 | if (!edge_map.lookup(key, index)) { |
2304 | ERR_PRINT("Invalid edge" ); |
2305 | } else { |
2306 | r_mesh.edges[index].face_b = edge_faces[i]; |
2307 | } |
2308 | } |
2309 | } |
2310 | |
2311 | if (edges_copied != (uint32_t)r_mesh.edges.size()) { |
2312 | ERR_PRINT("Invalid edge count." ); |
2313 | } |
2314 | |
2315 | r_mesh.faces.resize(ch.faces.size()); |
2316 | for (uint32_t i = 0; i < ch.faces.size(); i++) { |
2317 | const Edge *e_start = &ch.edges[ch.faces[i]]; |
2318 | const Edge *e = e_start; |
2319 | Geometry3D::MeshData::Face &face = r_mesh.faces[i]; |
2320 | |
2321 | do { |
2322 | face.indices.push_back(e->get_target_vertex()); |
2323 | |
2324 | e = e->get_next_edge_of_face(); |
2325 | } while (e != e_start); |
2326 | |
2327 | // reverse indices: Godot wants clockwise, but this is counter-clockwise |
2328 | if (face.indices.size() > 2) { |
2329 | // reverse all but the first index. |
2330 | int *indices = face.indices.ptr(); |
2331 | for (uint32_t c = 0; c < (face.indices.size() - 1) / 2; c++) { |
2332 | SWAP(indices[c + 1], indices[face.indices.size() - 1 - c]); |
2333 | } |
2334 | } |
2335 | |
2336 | // compute normal |
2337 | if (face.indices.size() >= 3) { |
2338 | face.plane = Plane(r_mesh.vertices[face.indices[0]], r_mesh.vertices[face.indices[1]], r_mesh.vertices[face.indices[2]]); |
2339 | } else { |
2340 | WARN_PRINT("Too few vertices per face." ); |
2341 | } |
2342 | } |
2343 | |
2344 | return OK; |
2345 | } |
2346 | |