| 1 | /**************************************************************************/ | 
|---|
| 2 | /*  geometry_3d.h                                                         */ | 
|---|
| 3 | /**************************************************************************/ | 
|---|
| 4 | /*                         This file is part of:                          */ | 
|---|
| 5 | /*                             GODOT ENGINE                               */ | 
|---|
| 6 | /*                        https://godotengine.org                         */ | 
|---|
| 7 | /**************************************************************************/ | 
|---|
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ | 
|---|
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */ | 
|---|
| 10 | /*                                                                        */ | 
|---|
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining  */ | 
|---|
| 12 | /* a copy of this software and associated documentation files (the        */ | 
|---|
| 13 | /* "Software"), to deal in the Software without restriction, including    */ | 
|---|
| 14 | /* without limitation the rights to use, copy, modify, merge, publish,    */ | 
|---|
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to     */ | 
|---|
| 16 | /* permit persons to whom the Software is furnished to do so, subject to  */ | 
|---|
| 17 | /* the following conditions:                                              */ | 
|---|
| 18 | /*                                                                        */ | 
|---|
| 19 | /* The above copyright notice and this permission notice shall be         */ | 
|---|
| 20 | /* included in all copies or substantial portions of the Software.        */ | 
|---|
| 21 | /*                                                                        */ | 
|---|
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */ | 
|---|
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */ | 
|---|
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ | 
|---|
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */ | 
|---|
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */ | 
|---|
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */ | 
|---|
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */ | 
|---|
| 29 | /**************************************************************************/ | 
|---|
| 30 |  | 
|---|
| 31 | #ifndef GEOMETRY_3D_H | 
|---|
| 32 | #define GEOMETRY_3D_H | 
|---|
| 33 |  | 
|---|
| 34 | #include "core/math/face3.h" | 
|---|
| 35 | #include "core/object/object.h" | 
|---|
| 36 | #include "core/templates/local_vector.h" | 
|---|
| 37 | #include "core/templates/vector.h" | 
|---|
| 38 |  | 
|---|
| 39 | class Geometry3D { | 
|---|
| 40 | public: | 
|---|
| 41 | static void get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt); | 
|---|
| 42 | static real_t get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1); | 
|---|
| 43 |  | 
|---|
| 44 | static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { | 
|---|
| 45 | Vector3 e1 = p_v1 - p_v0; | 
|---|
| 46 | Vector3 e2 = p_v2 - p_v0; | 
|---|
| 47 | Vector3 h = p_dir.cross(e2); | 
|---|
| 48 | real_t a = e1.dot(h); | 
|---|
| 49 | if (Math::is_zero_approx(a)) { // Parallel test. | 
|---|
| 50 | return false; | 
|---|
| 51 | } | 
|---|
| 52 |  | 
|---|
| 53 | real_t f = 1.0f / a; | 
|---|
| 54 |  | 
|---|
| 55 | Vector3 s = p_from - p_v0; | 
|---|
| 56 | real_t u = f * s.dot(h); | 
|---|
| 57 |  | 
|---|
| 58 | if ((u < 0.0f) || (u > 1.0f)) { | 
|---|
| 59 | return false; | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | Vector3 q = s.cross(e1); | 
|---|
| 63 |  | 
|---|
| 64 | real_t v = f * p_dir.dot(q); | 
|---|
| 65 |  | 
|---|
| 66 | if ((v < 0.0f) || (u + v > 1.0f)) { | 
|---|
| 67 | return false; | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | // At this stage we can compute t to find out where | 
|---|
| 71 | // the intersection point is on the line. | 
|---|
| 72 | real_t t = f * e2.dot(q); | 
|---|
| 73 |  | 
|---|
| 74 | if (t > 0.00001f) { // ray intersection | 
|---|
| 75 | if (r_res) { | 
|---|
| 76 | *r_res = p_from + p_dir * t; | 
|---|
| 77 | } | 
|---|
| 78 | return true; | 
|---|
| 79 | } else { // This means that there is a line intersection but not a ray intersection. | 
|---|
| 80 | return false; | 
|---|
| 81 | } | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { | 
|---|
| 85 | Vector3 rel = p_to - p_from; | 
|---|
| 86 | Vector3 e1 = p_v1 - p_v0; | 
|---|
| 87 | Vector3 e2 = p_v2 - p_v0; | 
|---|
| 88 | Vector3 h = rel.cross(e2); | 
|---|
| 89 | real_t a = e1.dot(h); | 
|---|
| 90 | if (Math::is_zero_approx(a)) { // Parallel test. | 
|---|
| 91 | return false; | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | real_t f = 1.0f / a; | 
|---|
| 95 |  | 
|---|
| 96 | Vector3 s = p_from - p_v0; | 
|---|
| 97 | real_t u = f * s.dot(h); | 
|---|
| 98 |  | 
|---|
| 99 | if ((u < 0.0f) || (u > 1.0f)) { | 
|---|
| 100 | return false; | 
|---|
| 101 | } | 
|---|
| 102 |  | 
|---|
| 103 | Vector3 q = s.cross(e1); | 
|---|
| 104 |  | 
|---|
| 105 | real_t v = f * rel.dot(q); | 
|---|
| 106 |  | 
|---|
| 107 | if ((v < 0.0f) || (u + v > 1.0f)) { | 
|---|
| 108 | return false; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | // At this stage we can compute t to find out where | 
|---|
| 112 | // the intersection point is on the line. | 
|---|
| 113 | real_t t = f * e2.dot(q); | 
|---|
| 114 |  | 
|---|
| 115 | if (t > (real_t)CMP_EPSILON && t <= 1.0f) { // Ray intersection. | 
|---|
| 116 | if (r_res) { | 
|---|
| 117 | *r_res = p_from + rel * t; | 
|---|
| 118 | } | 
|---|
| 119 | return true; | 
|---|
| 120 | } else { // This means that there is a line intersection but not a ray intersection. | 
|---|
| 121 | return false; | 
|---|
| 122 | } | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { | 
|---|
| 126 | Vector3 sphere_pos = p_sphere_pos - p_from; | 
|---|
| 127 | Vector3 rel = (p_to - p_from); | 
|---|
| 128 | real_t rel_l = rel.length(); | 
|---|
| 129 | if (rel_l < (real_t)CMP_EPSILON) { | 
|---|
| 130 | return false; // Both points are the same. | 
|---|
| 131 | } | 
|---|
| 132 | Vector3 normal = rel / rel_l; | 
|---|
| 133 |  | 
|---|
| 134 | real_t sphere_d = normal.dot(sphere_pos); | 
|---|
| 135 |  | 
|---|
| 136 | real_t ray_distance = sphere_pos.distance_to(normal * sphere_d); | 
|---|
| 137 |  | 
|---|
| 138 | if (ray_distance >= p_sphere_radius) { | 
|---|
| 139 | return false; | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance; | 
|---|
| 143 | real_t inters_d = sphere_d; | 
|---|
| 144 |  | 
|---|
| 145 | if (inters_d2 >= (real_t)CMP_EPSILON) { | 
|---|
| 146 | inters_d -= Math::sqrt(inters_d2); | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | // Check in segment. | 
|---|
| 150 | if (inters_d < 0 || inters_d > rel_l) { | 
|---|
| 151 | return false; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | Vector3 result = p_from + normal * inters_d; | 
|---|
| 155 |  | 
|---|
| 156 | if (r_res) { | 
|---|
| 157 | *r_res = result; | 
|---|
| 158 | } | 
|---|
| 159 | if (r_norm) { | 
|---|
| 160 | *r_norm = (result - p_sphere_pos).normalized(); | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | return true; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) { | 
|---|
| 167 | Vector3 rel = (p_to - p_from); | 
|---|
| 168 | real_t rel_l = rel.length(); | 
|---|
| 169 | if (rel_l < (real_t)CMP_EPSILON) { | 
|---|
| 170 | return false; // Both points are the same. | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | ERR_FAIL_COND_V(p_cylinder_axis < 0, false); | 
|---|
| 174 | ERR_FAIL_COND_V(p_cylinder_axis > 2, false); | 
|---|
| 175 | Vector3 cylinder_axis; | 
|---|
| 176 | cylinder_axis[p_cylinder_axis] = 1.0f; | 
|---|
| 177 |  | 
|---|
| 178 | // First check if they are parallel. | 
|---|
| 179 | Vector3 normal = (rel / rel_l); | 
|---|
| 180 | Vector3 crs = normal.cross(cylinder_axis); | 
|---|
| 181 | real_t crs_l = crs.length(); | 
|---|
| 182 |  | 
|---|
| 183 | Vector3 axis_dir; | 
|---|
| 184 |  | 
|---|
| 185 | if (crs_l < (real_t)CMP_EPSILON) { | 
|---|
| 186 | Vector3 side_axis; | 
|---|
| 187 | side_axis[(p_cylinder_axis + 1) % 3] = 1.0f; // Any side axis OK. | 
|---|
| 188 | axis_dir = side_axis; | 
|---|
| 189 | } else { | 
|---|
| 190 | axis_dir = crs / crs_l; | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | real_t dist = axis_dir.dot(p_from); | 
|---|
| 194 |  | 
|---|
| 195 | if (dist >= p_radius) { | 
|---|
| 196 | return false; // Too far away. | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | // Convert to 2D. | 
|---|
| 200 | real_t w2 = p_radius * p_radius - dist * dist; | 
|---|
| 201 | if (w2 < (real_t)CMP_EPSILON) { | 
|---|
| 202 | return false; // Avoid numerical error. | 
|---|
| 203 | } | 
|---|
| 204 | Size2 size(Math::sqrt(w2), p_height * 0.5f); | 
|---|
| 205 |  | 
|---|
| 206 | Vector3 side_dir = axis_dir.cross(cylinder_axis).normalized(); | 
|---|
| 207 |  | 
|---|
| 208 | Vector2 from2D(side_dir.dot(p_from), p_from[p_cylinder_axis]); | 
|---|
| 209 | Vector2 to2D(side_dir.dot(p_to), p_to[p_cylinder_axis]); | 
|---|
| 210 |  | 
|---|
| 211 | real_t min = 0, max = 1; | 
|---|
| 212 |  | 
|---|
| 213 | int axis = -1; | 
|---|
| 214 |  | 
|---|
| 215 | for (int i = 0; i < 2; i++) { | 
|---|
| 216 | real_t seg_from = from2D[i]; | 
|---|
| 217 | real_t seg_to = to2D[i]; | 
|---|
| 218 | real_t box_begin = -size[i]; | 
|---|
| 219 | real_t box_end = size[i]; | 
|---|
| 220 | real_t cmin, cmax; | 
|---|
| 221 |  | 
|---|
| 222 | if (seg_from < seg_to) { | 
|---|
| 223 | if (seg_from > box_end || seg_to < box_begin) { | 
|---|
| 224 | return false; | 
|---|
| 225 | } | 
|---|
| 226 | real_t length = seg_to - seg_from; | 
|---|
| 227 | cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; | 
|---|
| 228 | cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; | 
|---|
| 229 |  | 
|---|
| 230 | } else { | 
|---|
| 231 | if (seg_to > box_end || seg_from < box_begin) { | 
|---|
| 232 | return false; | 
|---|
| 233 | } | 
|---|
| 234 | real_t length = seg_to - seg_from; | 
|---|
| 235 | cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; | 
|---|
| 236 | cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | if (cmin > min) { | 
|---|
| 240 | min = cmin; | 
|---|
| 241 | axis = i; | 
|---|
| 242 | } | 
|---|
| 243 | if (cmax < max) { | 
|---|
| 244 | max = cmax; | 
|---|
| 245 | } | 
|---|
| 246 | if (max < min) { | 
|---|
| 247 | return false; | 
|---|
| 248 | } | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | // Convert to 3D again. | 
|---|
| 252 | Vector3 result = p_from + (rel * min); | 
|---|
| 253 | Vector3 res_normal = result; | 
|---|
| 254 |  | 
|---|
| 255 | if (axis == 0) { | 
|---|
| 256 | res_normal[p_cylinder_axis] = 0; | 
|---|
| 257 | } else { | 
|---|
| 258 | int axis_side = (p_cylinder_axis + 1) % 3; | 
|---|
| 259 | res_normal[axis_side] = 0; | 
|---|
| 260 | axis_side = (axis_side + 1) % 3; | 
|---|
| 261 | res_normal[axis_side] = 0; | 
|---|
| 262 | } | 
|---|
| 263 |  | 
|---|
| 264 | res_normal.normalize(); | 
|---|
| 265 |  | 
|---|
| 266 | if (r_res) { | 
|---|
| 267 | *r_res = result; | 
|---|
| 268 | } | 
|---|
| 269 | if (r_norm) { | 
|---|
| 270 | *r_norm = res_normal; | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | return true; | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) { | 
|---|
| 277 | real_t min = -1e20, max = 1e20; | 
|---|
| 278 |  | 
|---|
| 279 | Vector3 rel = p_to - p_from; | 
|---|
| 280 | real_t rel_l = rel.length(); | 
|---|
| 281 |  | 
|---|
| 282 | if (rel_l < (real_t)CMP_EPSILON) { | 
|---|
| 283 | return false; | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | Vector3 dir = rel / rel_l; | 
|---|
| 287 |  | 
|---|
| 288 | int min_index = -1; | 
|---|
| 289 |  | 
|---|
| 290 | for (int i = 0; i < p_plane_count; i++) { | 
|---|
| 291 | const Plane &p = p_planes[i]; | 
|---|
| 292 |  | 
|---|
| 293 | real_t den = p.normal.dot(dir); | 
|---|
| 294 |  | 
|---|
| 295 | if (Math::abs(den) <= (real_t)CMP_EPSILON) { | 
|---|
| 296 | continue; // Ignore parallel plane. | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | real_t dist = -p.distance_to(p_from) / den; | 
|---|
| 300 |  | 
|---|
| 301 | if (den > 0) { | 
|---|
| 302 | // Backwards facing plane. | 
|---|
| 303 | if (dist < max) { | 
|---|
| 304 | max = dist; | 
|---|
| 305 | } | 
|---|
| 306 | } else { | 
|---|
| 307 | // Front facing plane. | 
|---|
| 308 | if (dist > min) { | 
|---|
| 309 | min = dist; | 
|---|
| 310 | min_index = i; | 
|---|
| 311 | } | 
|---|
| 312 | } | 
|---|
| 313 | } | 
|---|
| 314 |  | 
|---|
| 315 | if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions. | 
|---|
| 316 | return false; // No intersection. | 
|---|
| 317 | } | 
|---|
| 318 |  | 
|---|
| 319 | if (p_res) { | 
|---|
| 320 | *p_res = p_from + dir * min; | 
|---|
| 321 | } | 
|---|
| 322 | if (p_norm) { | 
|---|
| 323 | *p_norm = p_planes[min_index].normal; | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | return true; | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) { | 
|---|
| 330 | Vector3 p = p_point - p_segment[0]; | 
|---|
| 331 | Vector3 n = p_segment[1] - p_segment[0]; | 
|---|
| 332 | real_t l2 = n.length_squared(); | 
|---|
| 333 | if (l2 < 1e-20f) { | 
|---|
| 334 | return p_segment[0]; // Both points are the same, just give any. | 
|---|
| 335 | } | 
|---|
| 336 |  | 
|---|
| 337 | real_t d = n.dot(p) / l2; | 
|---|
| 338 |  | 
|---|
| 339 | if (d <= 0.0f) { | 
|---|
| 340 | return p_segment[0]; // Before first point. | 
|---|
| 341 | } else if (d >= 1.0f) { | 
|---|
| 342 | return p_segment[1]; // After first point. | 
|---|
| 343 | } else { | 
|---|
| 344 | return p_segment[0] + n * d; // Inside. | 
|---|
| 345 | } | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) { | 
|---|
| 349 | Vector3 p = p_point - p_segment[0]; | 
|---|
| 350 | Vector3 n = p_segment[1] - p_segment[0]; | 
|---|
| 351 | real_t l2 = n.length_squared(); | 
|---|
| 352 | if (l2 < 1e-20f) { | 
|---|
| 353 | return p_segment[0]; // Both points are the same, just give any. | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | real_t d = n.dot(p) / l2; | 
|---|
| 357 |  | 
|---|
| 358 | return p_segment[0] + n * d; // Inside. | 
|---|
| 359 | } | 
|---|
| 360 |  | 
|---|
| 361 | static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) { | 
|---|
| 362 | Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2); | 
|---|
| 363 |  | 
|---|
| 364 | Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2); | 
|---|
| 365 |  | 
|---|
| 366 | if (face_n.dot(n1) < 0) { | 
|---|
| 367 | return false; | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point); | 
|---|
| 371 |  | 
|---|
| 372 | if (face_n.dot(n2) < 0) { | 
|---|
| 373 | return false; | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2); | 
|---|
| 377 |  | 
|---|
| 378 | if (face_n.dot(n3) < 0) { | 
|---|
| 379 | return false; | 
|---|
| 380 | } | 
|---|
| 381 |  | 
|---|
| 382 | return true; | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) { | 
|---|
| 386 | real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]); | 
|---|
| 387 |  | 
|---|
| 388 | if (d > p_sphere_radius || d < -p_sphere_radius) { | 
|---|
| 389 | // Not touching the plane of the face, return. | 
|---|
| 390 | return false; | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 | Vector3 contact = p_sphere_pos - (p_normal * d); | 
|---|
| 394 |  | 
|---|
| 395 | /** 2nd) TEST INSIDE TRIANGLE **/ | 
|---|
| 396 |  | 
|---|
| 397 | if (Geometry3D::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) { | 
|---|
| 398 | r_triangle_contact = contact; | 
|---|
| 399 | r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius; | 
|---|
| 400 | //printf("solved inside triangle\n"); | 
|---|
| 401 | return true; | 
|---|
| 402 | } | 
|---|
| 403 |  | 
|---|
| 404 | /** 3rd TEST INSIDE EDGE CYLINDERS **/ | 
|---|
| 405 |  | 
|---|
| 406 | const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly | 
|---|
| 407 |  | 
|---|
| 408 | for (int i = 0; i < 3; i++) { | 
|---|
| 409 | // Check edge cylinder. | 
|---|
| 410 |  | 
|---|
| 411 | Vector3 n1 = verts[i] - verts[i + 1]; | 
|---|
| 412 | Vector3 n2 = p_sphere_pos - verts[i + 1]; | 
|---|
| 413 |  | 
|---|
| 414 | ///@TODO Maybe discard by range here to make the algorithm quicker. | 
|---|
| 415 |  | 
|---|
| 416 | // Check point within cylinder radius. | 
|---|
| 417 | Vector3 axis = n1.cross(n2).cross(n1); | 
|---|
| 418 | axis.normalize(); | 
|---|
| 419 |  | 
|---|
| 420 | real_t ad = axis.dot(n2); | 
|---|
| 421 |  | 
|---|
| 422 | if (ABS(ad) > p_sphere_radius) { | 
|---|
| 423 | // No chance with this edge, too far away. | 
|---|
| 424 | continue; | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | // Check point within edge capsule cylinder. | 
|---|
| 428 | /** 4th TEST INSIDE EDGE POINTS **/ | 
|---|
| 429 |  | 
|---|
| 430 | real_t sphere_at = n1.dot(n2); | 
|---|
| 431 |  | 
|---|
| 432 | if (sphere_at >= 0 && sphere_at < n1.dot(n1)) { | 
|---|
| 433 | r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2)); | 
|---|
| 434 | r_sphere_contact = p_sphere_pos - axis * p_sphere_radius; | 
|---|
| 435 | // Point inside here. | 
|---|
| 436 | return true; | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 | real_t r2 = p_sphere_radius * p_sphere_radius; | 
|---|
| 440 |  | 
|---|
| 441 | if (n2.length_squared() < r2) { | 
|---|
| 442 | Vector3 n = (p_sphere_pos - verts[i + 1]).normalized(); | 
|---|
| 443 |  | 
|---|
| 444 | r_triangle_contact = verts[i + 1]; | 
|---|
| 445 | r_sphere_contact = p_sphere_pos - n * p_sphere_radius; | 
|---|
| 446 | return true; | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | if (n2.distance_squared_to(n1) < r2) { | 
|---|
| 450 | Vector3 n = (p_sphere_pos - verts[i]).normalized(); | 
|---|
| 451 |  | 
|---|
| 452 | r_triangle_contact = verts[i]; | 
|---|
| 453 | r_sphere_contact = p_sphere_pos - n * p_sphere_radius; | 
|---|
| 454 | return true; | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | break; // It's pointless to continue at this point, so save some CPU cycles. | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | return false; | 
|---|
| 461 | } | 
|---|
| 462 |  | 
|---|
| 463 | static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) { | 
|---|
| 464 | enum LocationCache { | 
|---|
| 465 | LOC_INSIDE = 1, | 
|---|
| 466 | LOC_BOUNDARY = 0, | 
|---|
| 467 | LOC_OUTSIDE = -1 | 
|---|
| 468 | }; | 
|---|
| 469 |  | 
|---|
| 470 | if (polygon.size() == 0) { | 
|---|
| 471 | return polygon; | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 | int *location_cache = (int *)alloca(sizeof(int) * polygon.size()); | 
|---|
| 475 | int inside_count = 0; | 
|---|
| 476 | int outside_count = 0; | 
|---|
| 477 |  | 
|---|
| 478 | for (int a = 0; a < polygon.size(); a++) { | 
|---|
| 479 | real_t dist = p_plane.distance_to(polygon[a]); | 
|---|
| 480 | if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) { | 
|---|
| 481 | location_cache[a] = LOC_INSIDE; | 
|---|
| 482 | inside_count++; | 
|---|
| 483 | } else { | 
|---|
| 484 | if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) { | 
|---|
| 485 | location_cache[a] = LOC_OUTSIDE; | 
|---|
| 486 | outside_count++; | 
|---|
| 487 | } else { | 
|---|
| 488 | location_cache[a] = LOC_BOUNDARY; | 
|---|
| 489 | } | 
|---|
| 490 | } | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | if (outside_count == 0) { | 
|---|
| 494 | return polygon; // No changes. | 
|---|
| 495 | } else if (inside_count == 0) { | 
|---|
| 496 | return Vector<Vector3>(); // Empty. | 
|---|
| 497 | } | 
|---|
| 498 |  | 
|---|
| 499 | long previous = polygon.size() - 1; | 
|---|
| 500 | Vector<Vector3> clipped; | 
|---|
| 501 |  | 
|---|
| 502 | for (int index = 0; index < polygon.size(); index++) { | 
|---|
| 503 | int loc = location_cache[index]; | 
|---|
| 504 | if (loc == LOC_OUTSIDE) { | 
|---|
| 505 | if (location_cache[previous] == LOC_INSIDE) { | 
|---|
| 506 | const Vector3 &v1 = polygon[previous]; | 
|---|
| 507 | const Vector3 &v2 = polygon[index]; | 
|---|
| 508 |  | 
|---|
| 509 | Vector3 segment = v1 - v2; | 
|---|
| 510 | real_t den = p_plane.normal.dot(segment); | 
|---|
| 511 | real_t dist = p_plane.distance_to(v1) / den; | 
|---|
| 512 | dist = -dist; | 
|---|
| 513 | clipped.push_back(v1 + segment * dist); | 
|---|
| 514 | } | 
|---|
| 515 | } else { | 
|---|
| 516 | const Vector3 &v1 = polygon[index]; | 
|---|
| 517 | if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) { | 
|---|
| 518 | const Vector3 &v2 = polygon[previous]; | 
|---|
| 519 | Vector3 segment = v1 - v2; | 
|---|
| 520 | real_t den = p_plane.normal.dot(segment); | 
|---|
| 521 | real_t dist = p_plane.distance_to(v1) / den; | 
|---|
| 522 | dist = -dist; | 
|---|
| 523 | clipped.push_back(v1 + segment * dist); | 
|---|
| 524 | } | 
|---|
| 525 |  | 
|---|
| 526 | clipped.push_back(v1); | 
|---|
| 527 | } | 
|---|
| 528 |  | 
|---|
| 529 | previous = index; | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 | return clipped; | 
|---|
| 533 | } | 
|---|
| 534 |  | 
|---|
| 535 | // Create a "wrap" that encloses the given geometry. | 
|---|
| 536 | static Vector<Face3> wrap_geometry(Vector<Face3> p_array, real_t *p_error = nullptr); | 
|---|
| 537 |  | 
|---|
| 538 | struct MeshData { | 
|---|
| 539 | struct Face { | 
|---|
| 540 | Plane plane; | 
|---|
| 541 | LocalVector<int> indices; | 
|---|
| 542 | }; | 
|---|
| 543 |  | 
|---|
| 544 | LocalVector<Face> faces; | 
|---|
| 545 |  | 
|---|
| 546 | struct Edge { | 
|---|
| 547 | int vertex_a, vertex_b; | 
|---|
| 548 | int face_a, face_b; | 
|---|
| 549 | }; | 
|---|
| 550 |  | 
|---|
| 551 | LocalVector<Edge> edges; | 
|---|
| 552 |  | 
|---|
| 553 | LocalVector<Vector3> vertices; | 
|---|
| 554 |  | 
|---|
| 555 | void optimize_vertices(); | 
|---|
| 556 | }; | 
|---|
| 557 |  | 
|---|
| 558 | static MeshData build_convex_mesh(const Vector<Plane> &p_planes); | 
|---|
| 559 | static Vector<Plane> build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z); | 
|---|
| 560 | static Vector<Plane> build_box_planes(const Vector3 &p_extents); | 
|---|
| 561 | static Vector<Plane> build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z); | 
|---|
| 562 | static Vector<Plane> build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z); | 
|---|
| 563 |  | 
|---|
| 564 | static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count); | 
|---|
| 565 |  | 
|---|
| 566 | #define FINDMINMAX(x0, x1, x2, min, max) \ | 
|---|
| 567 | min = max = x0;                      \ | 
|---|
| 568 | if (x1 < min) {                      \ | 
|---|
| 569 | min = x1;                        \ | 
|---|
| 570 | }                                    \ | 
|---|
| 571 | if (x1 > max) {                      \ | 
|---|
| 572 | max = x1;                        \ | 
|---|
| 573 | }                                    \ | 
|---|
| 574 | if (x2 < min) {                      \ | 
|---|
| 575 | min = x2;                        \ | 
|---|
| 576 | }                                    \ | 
|---|
| 577 | if (x2 > max) {                      \ | 
|---|
| 578 | max = x2;                        \ | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { | 
|---|
| 582 | int q; | 
|---|
| 583 | Vector3 vmin, vmax; | 
|---|
| 584 | for (q = 0; q <= 2; q++) { | 
|---|
| 585 | if (normal[q] > 0.0f) { | 
|---|
| 586 | vmin[q] = -maxbox[q]; | 
|---|
| 587 | vmax[q] = maxbox[q]; | 
|---|
| 588 | } else { | 
|---|
| 589 | vmin[q] = maxbox[q]; | 
|---|
| 590 | vmax[q] = -maxbox[q]; | 
|---|
| 591 | } | 
|---|
| 592 | } | 
|---|
| 593 | if (normal.dot(vmin) + d > 0.0f) { | 
|---|
| 594 | return false; | 
|---|
| 595 | } | 
|---|
| 596 | if (normal.dot(vmax) + d >= 0.0f) { | 
|---|
| 597 | return true; | 
|---|
| 598 | } | 
|---|
| 599 |  | 
|---|
| 600 | return false; | 
|---|
| 601 | } | 
|---|
| 602 |  | 
|---|
| 603 | /*======================== X-tests ========================*/ | 
|---|
| 604 | #define AXISTEST_X01(a, b, fa, fb)                 \ | 
|---|
| 605 | p0 = a * v0.y - b * v0.z;                      \ | 
|---|
| 606 | p2 = a * v2.y - b * v2.z;                      \ | 
|---|
| 607 | if (p0 < p2) {                                 \ | 
|---|
| 608 | min = p0;                                  \ | 
|---|
| 609 | max = p2;                                  \ | 
|---|
| 610 | } else {                                       \ | 
|---|
| 611 | min = p2;                                  \ | 
|---|
| 612 | max = p0;                                  \ | 
|---|
| 613 | }                                              \ | 
|---|
| 614 | rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ | 
|---|
| 615 | if (min > rad || max < -rad) {                 \ | 
|---|
| 616 | return false;                              \ | 
|---|
| 617 | } | 
|---|
| 618 |  | 
|---|
| 619 | #define AXISTEST_X2(a, b, fa, fb)                  \ | 
|---|
| 620 | p0 = a * v0.y - b * v0.z;                      \ | 
|---|
| 621 | p1 = a * v1.y - b * v1.z;                      \ | 
|---|
| 622 | if (p0 < p1) {                                 \ | 
|---|
| 623 | min = p0;                                  \ | 
|---|
| 624 | max = p1;                                  \ | 
|---|
| 625 | } else {                                       \ | 
|---|
| 626 | min = p1;                                  \ | 
|---|
| 627 | max = p0;                                  \ | 
|---|
| 628 | }                                              \ | 
|---|
| 629 | rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ | 
|---|
| 630 | if (min > rad || max < -rad) {                 \ | 
|---|
| 631 | return false;                              \ | 
|---|
| 632 | } | 
|---|
| 633 |  | 
|---|
| 634 | /*======================== Y-tests ========================*/ | 
|---|
| 635 | #define AXISTEST_Y02(a, b, fa, fb)                 \ | 
|---|
| 636 | p0 = -a * v0.x + b * v0.z;                     \ | 
|---|
| 637 | p2 = -a * v2.x + b * v2.z;                     \ | 
|---|
| 638 | if (p0 < p2) {                                 \ | 
|---|
| 639 | min = p0;                                  \ | 
|---|
| 640 | max = p2;                                  \ | 
|---|
| 641 | } else {                                       \ | 
|---|
| 642 | min = p2;                                  \ | 
|---|
| 643 | max = p0;                                  \ | 
|---|
| 644 | }                                              \ | 
|---|
| 645 | rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ | 
|---|
| 646 | if (min > rad || max < -rad) {                 \ | 
|---|
| 647 | return false;                              \ | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | #define AXISTEST_Y1(a, b, fa, fb)                  \ | 
|---|
| 651 | p0 = -a * v0.x + b * v0.z;                     \ | 
|---|
| 652 | p1 = -a * v1.x + b * v1.z;                     \ | 
|---|
| 653 | if (p0 < p1) {                                 \ | 
|---|
| 654 | min = p0;                                  \ | 
|---|
| 655 | max = p1;                                  \ | 
|---|
| 656 | } else {                                       \ | 
|---|
| 657 | min = p1;                                  \ | 
|---|
| 658 | max = p0;                                  \ | 
|---|
| 659 | }                                              \ | 
|---|
| 660 | rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ | 
|---|
| 661 | if (min > rad || max < -rad) {                 \ | 
|---|
| 662 | return false;                              \ | 
|---|
| 663 | } | 
|---|
| 664 |  | 
|---|
| 665 | /*======================== Z-tests ========================*/ | 
|---|
| 666 |  | 
|---|
| 667 | #define AXISTEST_Z12(a, b, fa, fb)                 \ | 
|---|
| 668 | p1 = a * v1.x - b * v1.y;                      \ | 
|---|
| 669 | p2 = a * v2.x - b * v2.y;                      \ | 
|---|
| 670 | if (p2 < p1) {                                 \ | 
|---|
| 671 | min = p2;                                  \ | 
|---|
| 672 | max = p1;                                  \ | 
|---|
| 673 | } else {                                       \ | 
|---|
| 674 | min = p1;                                  \ | 
|---|
| 675 | max = p2;                                  \ | 
|---|
| 676 | }                                              \ | 
|---|
| 677 | rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ | 
|---|
| 678 | if (min > rad || max < -rad) {                 \ | 
|---|
| 679 | return false;                              \ | 
|---|
| 680 | } | 
|---|
| 681 |  | 
|---|
| 682 | #define AXISTEST_Z0(a, b, fa, fb)                  \ | 
|---|
| 683 | p0 = a * v0.x - b * v0.y;                      \ | 
|---|
| 684 | p1 = a * v1.x - b * v1.y;                      \ | 
|---|
| 685 | if (p0 < p1) {                                 \ | 
|---|
| 686 | min = p0;                                  \ | 
|---|
| 687 | max = p1;                                  \ | 
|---|
| 688 | } else {                                       \ | 
|---|
| 689 | min = p1;                                  \ | 
|---|
| 690 | max = p0;                                  \ | 
|---|
| 691 | }                                              \ | 
|---|
| 692 | rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ | 
|---|
| 693 | if (min > rad || max < -rad) {                 \ | 
|---|
| 694 | return false;                              \ | 
|---|
| 695 | } | 
|---|
| 696 |  | 
|---|
| 697 | _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { | 
|---|
| 698 | /*    use separating axis theorem to test overlap between triangle and box */ | 
|---|
| 699 | /*    need to test for overlap in these directions: */ | 
|---|
| 700 | /*    1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ | 
|---|
| 701 | /*       we do not even need to test these) */ | 
|---|
| 702 | /*    2) normal of the triangle */ | 
|---|
| 703 | /*    3) crossproduct(edge from tri, {x,y,z}-directin) */ | 
|---|
| 704 | /*       this gives 3x3=9 more tests */ | 
|---|
| 705 | Vector3 v0, v1, v2; | 
|---|
| 706 | float min, max, d, p0, p1, p2, rad, fex, fey, fez; | 
|---|
| 707 | Vector3 normal, e0, e1, e2; | 
|---|
| 708 |  | 
|---|
| 709 | /* This is the fastest branch on Sun */ | 
|---|
| 710 | /* move everything so that the boxcenter is in (0,0,0) */ | 
|---|
| 711 |  | 
|---|
| 712 | v0 = triverts[0] - boxcenter; | 
|---|
| 713 | v1 = triverts[1] - boxcenter; | 
|---|
| 714 | v2 = triverts[2] - boxcenter; | 
|---|
| 715 |  | 
|---|
| 716 | /* compute triangle edges */ | 
|---|
| 717 | e0 = v1 - v0; /* tri edge 0 */ | 
|---|
| 718 | e1 = v2 - v1; /* tri edge 1 */ | 
|---|
| 719 | e2 = v0 - v2; /* tri edge 2 */ | 
|---|
| 720 |  | 
|---|
| 721 | /* Bullet 3:  */ | 
|---|
| 722 | /*  test the 9 tests first (this was faster) */ | 
|---|
| 723 | fex = Math::abs(e0.x); | 
|---|
| 724 | fey = Math::abs(e0.y); | 
|---|
| 725 | fez = Math::abs(e0.z); | 
|---|
| 726 | AXISTEST_X01(e0.z, e0.y, fez, fey); | 
|---|
| 727 | AXISTEST_Y02(e0.z, e0.x, fez, fex); | 
|---|
| 728 | AXISTEST_Z12(e0.y, e0.x, fey, fex); | 
|---|
| 729 |  | 
|---|
| 730 | fex = Math::abs(e1.x); | 
|---|
| 731 | fey = Math::abs(e1.y); | 
|---|
| 732 | fez = Math::abs(e1.z); | 
|---|
| 733 | AXISTEST_X01(e1.z, e1.y, fez, fey); | 
|---|
| 734 | AXISTEST_Y02(e1.z, e1.x, fez, fex); | 
|---|
| 735 | AXISTEST_Z0(e1.y, e1.x, fey, fex); | 
|---|
| 736 |  | 
|---|
| 737 | fex = Math::abs(e2.x); | 
|---|
| 738 | fey = Math::abs(e2.y); | 
|---|
| 739 | fez = Math::abs(e2.z); | 
|---|
| 740 | AXISTEST_X2(e2.z, e2.y, fez, fey); | 
|---|
| 741 | AXISTEST_Y1(e2.z, e2.x, fez, fex); | 
|---|
| 742 | AXISTEST_Z12(e2.y, e2.x, fey, fex); | 
|---|
| 743 |  | 
|---|
| 744 | /* Bullet 1: */ | 
|---|
| 745 | /*  first test overlap in the {x,y,z}-directions */ | 
|---|
| 746 | /*  find min, max of the triangle each direction, and test for overlap in */ | 
|---|
| 747 | /*  that direction -- this is equivalent to testing a minimal AABB around */ | 
|---|
| 748 | /*  the triangle against the AABB */ | 
|---|
| 749 |  | 
|---|
| 750 | /* test in X-direction */ | 
|---|
| 751 | FINDMINMAX(v0.x, v1.x, v2.x, min, max); | 
|---|
| 752 | if (min > boxhalfsize.x || max < -boxhalfsize.x) { | 
|---|
| 753 | return false; | 
|---|
| 754 | } | 
|---|
| 755 |  | 
|---|
| 756 | /* test in Y-direction */ | 
|---|
| 757 | FINDMINMAX(v0.y, v1.y, v2.y, min, max); | 
|---|
| 758 | if (min > boxhalfsize.y || max < -boxhalfsize.y) { | 
|---|
| 759 | return false; | 
|---|
| 760 | } | 
|---|
| 761 |  | 
|---|
| 762 | /* test in Z-direction */ | 
|---|
| 763 | FINDMINMAX(v0.z, v1.z, v2.z, min, max); | 
|---|
| 764 | if (min > boxhalfsize.z || max < -boxhalfsize.z) { | 
|---|
| 765 | return false; | 
|---|
| 766 | } | 
|---|
| 767 |  | 
|---|
| 768 | /* Bullet 2: */ | 
|---|
| 769 | /*  test if the box intersects the plane of the triangle */ | 
|---|
| 770 | /*  compute plane equation of triangle: normal*x+d=0 */ | 
|---|
| 771 | normal = e0.cross(e1); | 
|---|
| 772 | d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ | 
|---|
| 773 | return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ | 
|---|
| 774 | } | 
|---|
| 775 |  | 
|---|
| 776 | static Vector<uint32_t> generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative); | 
|---|
| 777 | static Vector<int8_t> generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative); | 
|---|
| 778 |  | 
|---|
| 779 | static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) { | 
|---|
| 780 | Vector3 v0 = p_b - p_a; | 
|---|
| 781 | Vector3 v1 = p_c - p_a; | 
|---|
| 782 | Vector3 v2 = p_pos - p_a; | 
|---|
| 783 |  | 
|---|
| 784 | float d00 = v0.dot(v0); | 
|---|
| 785 | float d01 = v0.dot(v1); | 
|---|
| 786 | float d11 = v1.dot(v1); | 
|---|
| 787 | float d20 = v2.dot(v0); | 
|---|
| 788 | float d21 = v2.dot(v1); | 
|---|
| 789 | float denom = (d00 * d11 - d01 * d01); | 
|---|
| 790 | if (denom == 0) { | 
|---|
| 791 | return Vector3(); //invalid triangle, return empty | 
|---|
| 792 | } | 
|---|
| 793 | float v = (d11 * d20 - d01 * d21) / denom; | 
|---|
| 794 | float w = (d00 * d21 - d01 * d20) / denom; | 
|---|
| 795 | float u = 1.0f - v - w; | 
|---|
| 796 | return Vector3(u, v, w); | 
|---|
| 797 | } | 
|---|
| 798 |  | 
|---|
| 799 | static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) { | 
|---|
| 800 | Vector3 vap = p_pos - p_a; | 
|---|
| 801 | Vector3 vbp = p_pos - p_b; | 
|---|
| 802 |  | 
|---|
| 803 | Vector3 vab = p_b - p_a; | 
|---|
| 804 | Vector3 vac = p_c - p_a; | 
|---|
| 805 | Vector3 vad = p_d - p_a; | 
|---|
| 806 |  | 
|---|
| 807 | Vector3 vbc = p_c - p_b; | 
|---|
| 808 | Vector3 vbd = p_d - p_b; | 
|---|
| 809 | // ScTP computes the scalar triple product | 
|---|
| 810 | #define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c)))) | 
|---|
| 811 | float va6 = STP(vbp, vbd, vbc); | 
|---|
| 812 | float vb6 = STP(vap, vac, vad); | 
|---|
| 813 | float vc6 = STP(vap, vad, vab); | 
|---|
| 814 | float vd6 = STP(vap, vab, vac); | 
|---|
| 815 | float v6 = 1 / STP(vab, vac, vad); | 
|---|
| 816 | return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6); | 
|---|
| 817 | #undef STP | 
|---|
| 818 | } | 
|---|
| 819 |  | 
|---|
| 820 | _FORCE_INLINE_ static Vector3 octahedron_map_decode(const Vector2 &p_uv) { | 
|---|
| 821 | // https://twitter.com/Stubbesaurus/status/937994790553227264 | 
|---|
| 822 | Vector2 f = p_uv * 2.0f - Vector2(1.0f, 1.0f); | 
|---|
| 823 | Vector3 n = Vector3(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); | 
|---|
| 824 | float t = CLAMP(-n.z, 0.0f, 1.0f); | 
|---|
| 825 | n.x += n.x >= 0 ? -t : t; | 
|---|
| 826 | n.y += n.y >= 0 ? -t : t; | 
|---|
| 827 | return n.normalized(); | 
|---|
| 828 | } | 
|---|
| 829 | }; | 
|---|
| 830 |  | 
|---|
| 831 | #endif // GEOMETRY_3D_H | 
|---|
| 832 |  | 
|---|