| 1 | /**************************************************************************/ |
| 2 | /* geometry_3d.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef GEOMETRY_3D_H |
| 32 | #define GEOMETRY_3D_H |
| 33 | |
| 34 | #include "core/math/face3.h" |
| 35 | #include "core/object/object.h" |
| 36 | #include "core/templates/local_vector.h" |
| 37 | #include "core/templates/vector.h" |
| 38 | |
| 39 | class Geometry3D { |
| 40 | public: |
| 41 | static void get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt); |
| 42 | static real_t get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1); |
| 43 | |
| 44 | static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { |
| 45 | Vector3 e1 = p_v1 - p_v0; |
| 46 | Vector3 e2 = p_v2 - p_v0; |
| 47 | Vector3 h = p_dir.cross(e2); |
| 48 | real_t a = e1.dot(h); |
| 49 | if (Math::is_zero_approx(a)) { // Parallel test. |
| 50 | return false; |
| 51 | } |
| 52 | |
| 53 | real_t f = 1.0f / a; |
| 54 | |
| 55 | Vector3 s = p_from - p_v0; |
| 56 | real_t u = f * s.dot(h); |
| 57 | |
| 58 | if ((u < 0.0f) || (u > 1.0f)) { |
| 59 | return false; |
| 60 | } |
| 61 | |
| 62 | Vector3 q = s.cross(e1); |
| 63 | |
| 64 | real_t v = f * p_dir.dot(q); |
| 65 | |
| 66 | if ((v < 0.0f) || (u + v > 1.0f)) { |
| 67 | return false; |
| 68 | } |
| 69 | |
| 70 | // At this stage we can compute t to find out where |
| 71 | // the intersection point is on the line. |
| 72 | real_t t = f * e2.dot(q); |
| 73 | |
| 74 | if (t > 0.00001f) { // ray intersection |
| 75 | if (r_res) { |
| 76 | *r_res = p_from + p_dir * t; |
| 77 | } |
| 78 | return true; |
| 79 | } else { // This means that there is a line intersection but not a ray intersection. |
| 80 | return false; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { |
| 85 | Vector3 rel = p_to - p_from; |
| 86 | Vector3 e1 = p_v1 - p_v0; |
| 87 | Vector3 e2 = p_v2 - p_v0; |
| 88 | Vector3 h = rel.cross(e2); |
| 89 | real_t a = e1.dot(h); |
| 90 | if (Math::is_zero_approx(a)) { // Parallel test. |
| 91 | return false; |
| 92 | } |
| 93 | |
| 94 | real_t f = 1.0f / a; |
| 95 | |
| 96 | Vector3 s = p_from - p_v0; |
| 97 | real_t u = f * s.dot(h); |
| 98 | |
| 99 | if ((u < 0.0f) || (u > 1.0f)) { |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | Vector3 q = s.cross(e1); |
| 104 | |
| 105 | real_t v = f * rel.dot(q); |
| 106 | |
| 107 | if ((v < 0.0f) || (u + v > 1.0f)) { |
| 108 | return false; |
| 109 | } |
| 110 | |
| 111 | // At this stage we can compute t to find out where |
| 112 | // the intersection point is on the line. |
| 113 | real_t t = f * e2.dot(q); |
| 114 | |
| 115 | if (t > (real_t)CMP_EPSILON && t <= 1.0f) { // Ray intersection. |
| 116 | if (r_res) { |
| 117 | *r_res = p_from + rel * t; |
| 118 | } |
| 119 | return true; |
| 120 | } else { // This means that there is a line intersection but not a ray intersection. |
| 121 | return false; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { |
| 126 | Vector3 sphere_pos = p_sphere_pos - p_from; |
| 127 | Vector3 rel = (p_to - p_from); |
| 128 | real_t rel_l = rel.length(); |
| 129 | if (rel_l < (real_t)CMP_EPSILON) { |
| 130 | return false; // Both points are the same. |
| 131 | } |
| 132 | Vector3 normal = rel / rel_l; |
| 133 | |
| 134 | real_t sphere_d = normal.dot(sphere_pos); |
| 135 | |
| 136 | real_t ray_distance = sphere_pos.distance_to(normal * sphere_d); |
| 137 | |
| 138 | if (ray_distance >= p_sphere_radius) { |
| 139 | return false; |
| 140 | } |
| 141 | |
| 142 | real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance; |
| 143 | real_t inters_d = sphere_d; |
| 144 | |
| 145 | if (inters_d2 >= (real_t)CMP_EPSILON) { |
| 146 | inters_d -= Math::sqrt(inters_d2); |
| 147 | } |
| 148 | |
| 149 | // Check in segment. |
| 150 | if (inters_d < 0 || inters_d > rel_l) { |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | Vector3 result = p_from + normal * inters_d; |
| 155 | |
| 156 | if (r_res) { |
| 157 | *r_res = result; |
| 158 | } |
| 159 | if (r_norm) { |
| 160 | *r_norm = (result - p_sphere_pos).normalized(); |
| 161 | } |
| 162 | |
| 163 | return true; |
| 164 | } |
| 165 | |
| 166 | static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) { |
| 167 | Vector3 rel = (p_to - p_from); |
| 168 | real_t rel_l = rel.length(); |
| 169 | if (rel_l < (real_t)CMP_EPSILON) { |
| 170 | return false; // Both points are the same. |
| 171 | } |
| 172 | |
| 173 | ERR_FAIL_COND_V(p_cylinder_axis < 0, false); |
| 174 | ERR_FAIL_COND_V(p_cylinder_axis > 2, false); |
| 175 | Vector3 cylinder_axis; |
| 176 | cylinder_axis[p_cylinder_axis] = 1.0f; |
| 177 | |
| 178 | // First check if they are parallel. |
| 179 | Vector3 normal = (rel / rel_l); |
| 180 | Vector3 crs = normal.cross(cylinder_axis); |
| 181 | real_t crs_l = crs.length(); |
| 182 | |
| 183 | Vector3 axis_dir; |
| 184 | |
| 185 | if (crs_l < (real_t)CMP_EPSILON) { |
| 186 | Vector3 side_axis; |
| 187 | side_axis[(p_cylinder_axis + 1) % 3] = 1.0f; // Any side axis OK. |
| 188 | axis_dir = side_axis; |
| 189 | } else { |
| 190 | axis_dir = crs / crs_l; |
| 191 | } |
| 192 | |
| 193 | real_t dist = axis_dir.dot(p_from); |
| 194 | |
| 195 | if (dist >= p_radius) { |
| 196 | return false; // Too far away. |
| 197 | } |
| 198 | |
| 199 | // Convert to 2D. |
| 200 | real_t w2 = p_radius * p_radius - dist * dist; |
| 201 | if (w2 < (real_t)CMP_EPSILON) { |
| 202 | return false; // Avoid numerical error. |
| 203 | } |
| 204 | Size2 size(Math::sqrt(w2), p_height * 0.5f); |
| 205 | |
| 206 | Vector3 side_dir = axis_dir.cross(cylinder_axis).normalized(); |
| 207 | |
| 208 | Vector2 from2D(side_dir.dot(p_from), p_from[p_cylinder_axis]); |
| 209 | Vector2 to2D(side_dir.dot(p_to), p_to[p_cylinder_axis]); |
| 210 | |
| 211 | real_t min = 0, max = 1; |
| 212 | |
| 213 | int axis = -1; |
| 214 | |
| 215 | for (int i = 0; i < 2; i++) { |
| 216 | real_t seg_from = from2D[i]; |
| 217 | real_t seg_to = to2D[i]; |
| 218 | real_t box_begin = -size[i]; |
| 219 | real_t box_end = size[i]; |
| 220 | real_t cmin, cmax; |
| 221 | |
| 222 | if (seg_from < seg_to) { |
| 223 | if (seg_from > box_end || seg_to < box_begin) { |
| 224 | return false; |
| 225 | } |
| 226 | real_t length = seg_to - seg_from; |
| 227 | cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; |
| 228 | cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; |
| 229 | |
| 230 | } else { |
| 231 | if (seg_to > box_end || seg_from < box_begin) { |
| 232 | return false; |
| 233 | } |
| 234 | real_t length = seg_to - seg_from; |
| 235 | cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; |
| 236 | cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; |
| 237 | } |
| 238 | |
| 239 | if (cmin > min) { |
| 240 | min = cmin; |
| 241 | axis = i; |
| 242 | } |
| 243 | if (cmax < max) { |
| 244 | max = cmax; |
| 245 | } |
| 246 | if (max < min) { |
| 247 | return false; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | // Convert to 3D again. |
| 252 | Vector3 result = p_from + (rel * min); |
| 253 | Vector3 res_normal = result; |
| 254 | |
| 255 | if (axis == 0) { |
| 256 | res_normal[p_cylinder_axis] = 0; |
| 257 | } else { |
| 258 | int axis_side = (p_cylinder_axis + 1) % 3; |
| 259 | res_normal[axis_side] = 0; |
| 260 | axis_side = (axis_side + 1) % 3; |
| 261 | res_normal[axis_side] = 0; |
| 262 | } |
| 263 | |
| 264 | res_normal.normalize(); |
| 265 | |
| 266 | if (r_res) { |
| 267 | *r_res = result; |
| 268 | } |
| 269 | if (r_norm) { |
| 270 | *r_norm = res_normal; |
| 271 | } |
| 272 | |
| 273 | return true; |
| 274 | } |
| 275 | |
| 276 | static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) { |
| 277 | real_t min = -1e20, max = 1e20; |
| 278 | |
| 279 | Vector3 rel = p_to - p_from; |
| 280 | real_t rel_l = rel.length(); |
| 281 | |
| 282 | if (rel_l < (real_t)CMP_EPSILON) { |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | Vector3 dir = rel / rel_l; |
| 287 | |
| 288 | int min_index = -1; |
| 289 | |
| 290 | for (int i = 0; i < p_plane_count; i++) { |
| 291 | const Plane &p = p_planes[i]; |
| 292 | |
| 293 | real_t den = p.normal.dot(dir); |
| 294 | |
| 295 | if (Math::abs(den) <= (real_t)CMP_EPSILON) { |
| 296 | continue; // Ignore parallel plane. |
| 297 | } |
| 298 | |
| 299 | real_t dist = -p.distance_to(p_from) / den; |
| 300 | |
| 301 | if (den > 0) { |
| 302 | // Backwards facing plane. |
| 303 | if (dist < max) { |
| 304 | max = dist; |
| 305 | } |
| 306 | } else { |
| 307 | // Front facing plane. |
| 308 | if (dist > min) { |
| 309 | min = dist; |
| 310 | min_index = i; |
| 311 | } |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions. |
| 316 | return false; // No intersection. |
| 317 | } |
| 318 | |
| 319 | if (p_res) { |
| 320 | *p_res = p_from + dir * min; |
| 321 | } |
| 322 | if (p_norm) { |
| 323 | *p_norm = p_planes[min_index].normal; |
| 324 | } |
| 325 | |
| 326 | return true; |
| 327 | } |
| 328 | |
| 329 | static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) { |
| 330 | Vector3 p = p_point - p_segment[0]; |
| 331 | Vector3 n = p_segment[1] - p_segment[0]; |
| 332 | real_t l2 = n.length_squared(); |
| 333 | if (l2 < 1e-20f) { |
| 334 | return p_segment[0]; // Both points are the same, just give any. |
| 335 | } |
| 336 | |
| 337 | real_t d = n.dot(p) / l2; |
| 338 | |
| 339 | if (d <= 0.0f) { |
| 340 | return p_segment[0]; // Before first point. |
| 341 | } else if (d >= 1.0f) { |
| 342 | return p_segment[1]; // After first point. |
| 343 | } else { |
| 344 | return p_segment[0] + n * d; // Inside. |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) { |
| 349 | Vector3 p = p_point - p_segment[0]; |
| 350 | Vector3 n = p_segment[1] - p_segment[0]; |
| 351 | real_t l2 = n.length_squared(); |
| 352 | if (l2 < 1e-20f) { |
| 353 | return p_segment[0]; // Both points are the same, just give any. |
| 354 | } |
| 355 | |
| 356 | real_t d = n.dot(p) / l2; |
| 357 | |
| 358 | return p_segment[0] + n * d; // Inside. |
| 359 | } |
| 360 | |
| 361 | static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) { |
| 362 | Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2); |
| 363 | |
| 364 | Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2); |
| 365 | |
| 366 | if (face_n.dot(n1) < 0) { |
| 367 | return false; |
| 368 | } |
| 369 | |
| 370 | Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point); |
| 371 | |
| 372 | if (face_n.dot(n2) < 0) { |
| 373 | return false; |
| 374 | } |
| 375 | |
| 376 | Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2); |
| 377 | |
| 378 | if (face_n.dot(n3) < 0) { |
| 379 | return false; |
| 380 | } |
| 381 | |
| 382 | return true; |
| 383 | } |
| 384 | |
| 385 | static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) { |
| 386 | real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]); |
| 387 | |
| 388 | if (d > p_sphere_radius || d < -p_sphere_radius) { |
| 389 | // Not touching the plane of the face, return. |
| 390 | return false; |
| 391 | } |
| 392 | |
| 393 | Vector3 contact = p_sphere_pos - (p_normal * d); |
| 394 | |
| 395 | /** 2nd) TEST INSIDE TRIANGLE **/ |
| 396 | |
| 397 | if (Geometry3D::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) { |
| 398 | r_triangle_contact = contact; |
| 399 | r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius; |
| 400 | //printf("solved inside triangle\n"); |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | /** 3rd TEST INSIDE EDGE CYLINDERS **/ |
| 405 | |
| 406 | const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly |
| 407 | |
| 408 | for (int i = 0; i < 3; i++) { |
| 409 | // Check edge cylinder. |
| 410 | |
| 411 | Vector3 n1 = verts[i] - verts[i + 1]; |
| 412 | Vector3 n2 = p_sphere_pos - verts[i + 1]; |
| 413 | |
| 414 | ///@TODO Maybe discard by range here to make the algorithm quicker. |
| 415 | |
| 416 | // Check point within cylinder radius. |
| 417 | Vector3 axis = n1.cross(n2).cross(n1); |
| 418 | axis.normalize(); |
| 419 | |
| 420 | real_t ad = axis.dot(n2); |
| 421 | |
| 422 | if (ABS(ad) > p_sphere_radius) { |
| 423 | // No chance with this edge, too far away. |
| 424 | continue; |
| 425 | } |
| 426 | |
| 427 | // Check point within edge capsule cylinder. |
| 428 | /** 4th TEST INSIDE EDGE POINTS **/ |
| 429 | |
| 430 | real_t sphere_at = n1.dot(n2); |
| 431 | |
| 432 | if (sphere_at >= 0 && sphere_at < n1.dot(n1)) { |
| 433 | r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2)); |
| 434 | r_sphere_contact = p_sphere_pos - axis * p_sphere_radius; |
| 435 | // Point inside here. |
| 436 | return true; |
| 437 | } |
| 438 | |
| 439 | real_t r2 = p_sphere_radius * p_sphere_radius; |
| 440 | |
| 441 | if (n2.length_squared() < r2) { |
| 442 | Vector3 n = (p_sphere_pos - verts[i + 1]).normalized(); |
| 443 | |
| 444 | r_triangle_contact = verts[i + 1]; |
| 445 | r_sphere_contact = p_sphere_pos - n * p_sphere_radius; |
| 446 | return true; |
| 447 | } |
| 448 | |
| 449 | if (n2.distance_squared_to(n1) < r2) { |
| 450 | Vector3 n = (p_sphere_pos - verts[i]).normalized(); |
| 451 | |
| 452 | r_triangle_contact = verts[i]; |
| 453 | r_sphere_contact = p_sphere_pos - n * p_sphere_radius; |
| 454 | return true; |
| 455 | } |
| 456 | |
| 457 | break; // It's pointless to continue at this point, so save some CPU cycles. |
| 458 | } |
| 459 | |
| 460 | return false; |
| 461 | } |
| 462 | |
| 463 | static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) { |
| 464 | enum LocationCache { |
| 465 | LOC_INSIDE = 1, |
| 466 | LOC_BOUNDARY = 0, |
| 467 | LOC_OUTSIDE = -1 |
| 468 | }; |
| 469 | |
| 470 | if (polygon.size() == 0) { |
| 471 | return polygon; |
| 472 | } |
| 473 | |
| 474 | int *location_cache = (int *)alloca(sizeof(int) * polygon.size()); |
| 475 | int inside_count = 0; |
| 476 | int outside_count = 0; |
| 477 | |
| 478 | for (int a = 0; a < polygon.size(); a++) { |
| 479 | real_t dist = p_plane.distance_to(polygon[a]); |
| 480 | if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) { |
| 481 | location_cache[a] = LOC_INSIDE; |
| 482 | inside_count++; |
| 483 | } else { |
| 484 | if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) { |
| 485 | location_cache[a] = LOC_OUTSIDE; |
| 486 | outside_count++; |
| 487 | } else { |
| 488 | location_cache[a] = LOC_BOUNDARY; |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | if (outside_count == 0) { |
| 494 | return polygon; // No changes. |
| 495 | } else if (inside_count == 0) { |
| 496 | return Vector<Vector3>(); // Empty. |
| 497 | } |
| 498 | |
| 499 | long previous = polygon.size() - 1; |
| 500 | Vector<Vector3> clipped; |
| 501 | |
| 502 | for (int index = 0; index < polygon.size(); index++) { |
| 503 | int loc = location_cache[index]; |
| 504 | if (loc == LOC_OUTSIDE) { |
| 505 | if (location_cache[previous] == LOC_INSIDE) { |
| 506 | const Vector3 &v1 = polygon[previous]; |
| 507 | const Vector3 &v2 = polygon[index]; |
| 508 | |
| 509 | Vector3 segment = v1 - v2; |
| 510 | real_t den = p_plane.normal.dot(segment); |
| 511 | real_t dist = p_plane.distance_to(v1) / den; |
| 512 | dist = -dist; |
| 513 | clipped.push_back(v1 + segment * dist); |
| 514 | } |
| 515 | } else { |
| 516 | const Vector3 &v1 = polygon[index]; |
| 517 | if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) { |
| 518 | const Vector3 &v2 = polygon[previous]; |
| 519 | Vector3 segment = v1 - v2; |
| 520 | real_t den = p_plane.normal.dot(segment); |
| 521 | real_t dist = p_plane.distance_to(v1) / den; |
| 522 | dist = -dist; |
| 523 | clipped.push_back(v1 + segment * dist); |
| 524 | } |
| 525 | |
| 526 | clipped.push_back(v1); |
| 527 | } |
| 528 | |
| 529 | previous = index; |
| 530 | } |
| 531 | |
| 532 | return clipped; |
| 533 | } |
| 534 | |
| 535 | // Create a "wrap" that encloses the given geometry. |
| 536 | static Vector<Face3> wrap_geometry(Vector<Face3> p_array, real_t *p_error = nullptr); |
| 537 | |
| 538 | struct MeshData { |
| 539 | struct Face { |
| 540 | Plane plane; |
| 541 | LocalVector<int> indices; |
| 542 | }; |
| 543 | |
| 544 | LocalVector<Face> faces; |
| 545 | |
| 546 | struct Edge { |
| 547 | int vertex_a, vertex_b; |
| 548 | int face_a, face_b; |
| 549 | }; |
| 550 | |
| 551 | LocalVector<Edge> edges; |
| 552 | |
| 553 | LocalVector<Vector3> vertices; |
| 554 | |
| 555 | void optimize_vertices(); |
| 556 | }; |
| 557 | |
| 558 | static MeshData build_convex_mesh(const Vector<Plane> &p_planes); |
| 559 | static Vector<Plane> build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z); |
| 560 | static Vector<Plane> build_box_planes(const Vector3 &p_extents); |
| 561 | static Vector<Plane> build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z); |
| 562 | static Vector<Plane> build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z); |
| 563 | |
| 564 | static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count); |
| 565 | |
| 566 | #define FINDMINMAX(x0, x1, x2, min, max) \ |
| 567 | min = max = x0; \ |
| 568 | if (x1 < min) { \ |
| 569 | min = x1; \ |
| 570 | } \ |
| 571 | if (x1 > max) { \ |
| 572 | max = x1; \ |
| 573 | } \ |
| 574 | if (x2 < min) { \ |
| 575 | min = x2; \ |
| 576 | } \ |
| 577 | if (x2 > max) { \ |
| 578 | max = x2; \ |
| 579 | } |
| 580 | |
| 581 | _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { |
| 582 | int q; |
| 583 | Vector3 vmin, vmax; |
| 584 | for (q = 0; q <= 2; q++) { |
| 585 | if (normal[q] > 0.0f) { |
| 586 | vmin[q] = -maxbox[q]; |
| 587 | vmax[q] = maxbox[q]; |
| 588 | } else { |
| 589 | vmin[q] = maxbox[q]; |
| 590 | vmax[q] = -maxbox[q]; |
| 591 | } |
| 592 | } |
| 593 | if (normal.dot(vmin) + d > 0.0f) { |
| 594 | return false; |
| 595 | } |
| 596 | if (normal.dot(vmax) + d >= 0.0f) { |
| 597 | return true; |
| 598 | } |
| 599 | |
| 600 | return false; |
| 601 | } |
| 602 | |
| 603 | /*======================== X-tests ========================*/ |
| 604 | #define AXISTEST_X01(a, b, fa, fb) \ |
| 605 | p0 = a * v0.y - b * v0.z; \ |
| 606 | p2 = a * v2.y - b * v2.z; \ |
| 607 | if (p0 < p2) { \ |
| 608 | min = p0; \ |
| 609 | max = p2; \ |
| 610 | } else { \ |
| 611 | min = p2; \ |
| 612 | max = p0; \ |
| 613 | } \ |
| 614 | rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ |
| 615 | if (min > rad || max < -rad) { \ |
| 616 | return false; \ |
| 617 | } |
| 618 | |
| 619 | #define AXISTEST_X2(a, b, fa, fb) \ |
| 620 | p0 = a * v0.y - b * v0.z; \ |
| 621 | p1 = a * v1.y - b * v1.z; \ |
| 622 | if (p0 < p1) { \ |
| 623 | min = p0; \ |
| 624 | max = p1; \ |
| 625 | } else { \ |
| 626 | min = p1; \ |
| 627 | max = p0; \ |
| 628 | } \ |
| 629 | rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ |
| 630 | if (min > rad || max < -rad) { \ |
| 631 | return false; \ |
| 632 | } |
| 633 | |
| 634 | /*======================== Y-tests ========================*/ |
| 635 | #define AXISTEST_Y02(a, b, fa, fb) \ |
| 636 | p0 = -a * v0.x + b * v0.z; \ |
| 637 | p2 = -a * v2.x + b * v2.z; \ |
| 638 | if (p0 < p2) { \ |
| 639 | min = p0; \ |
| 640 | max = p2; \ |
| 641 | } else { \ |
| 642 | min = p2; \ |
| 643 | max = p0; \ |
| 644 | } \ |
| 645 | rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ |
| 646 | if (min > rad || max < -rad) { \ |
| 647 | return false; \ |
| 648 | } |
| 649 | |
| 650 | #define AXISTEST_Y1(a, b, fa, fb) \ |
| 651 | p0 = -a * v0.x + b * v0.z; \ |
| 652 | p1 = -a * v1.x + b * v1.z; \ |
| 653 | if (p0 < p1) { \ |
| 654 | min = p0; \ |
| 655 | max = p1; \ |
| 656 | } else { \ |
| 657 | min = p1; \ |
| 658 | max = p0; \ |
| 659 | } \ |
| 660 | rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ |
| 661 | if (min > rad || max < -rad) { \ |
| 662 | return false; \ |
| 663 | } |
| 664 | |
| 665 | /*======================== Z-tests ========================*/ |
| 666 | |
| 667 | #define AXISTEST_Z12(a, b, fa, fb) \ |
| 668 | p1 = a * v1.x - b * v1.y; \ |
| 669 | p2 = a * v2.x - b * v2.y; \ |
| 670 | if (p2 < p1) { \ |
| 671 | min = p2; \ |
| 672 | max = p1; \ |
| 673 | } else { \ |
| 674 | min = p1; \ |
| 675 | max = p2; \ |
| 676 | } \ |
| 677 | rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ |
| 678 | if (min > rad || max < -rad) { \ |
| 679 | return false; \ |
| 680 | } |
| 681 | |
| 682 | #define AXISTEST_Z0(a, b, fa, fb) \ |
| 683 | p0 = a * v0.x - b * v0.y; \ |
| 684 | p1 = a * v1.x - b * v1.y; \ |
| 685 | if (p0 < p1) { \ |
| 686 | min = p0; \ |
| 687 | max = p1; \ |
| 688 | } else { \ |
| 689 | min = p1; \ |
| 690 | max = p0; \ |
| 691 | } \ |
| 692 | rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ |
| 693 | if (min > rad || max < -rad) { \ |
| 694 | return false; \ |
| 695 | } |
| 696 | |
| 697 | _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { |
| 698 | /* use separating axis theorem to test overlap between triangle and box */ |
| 699 | /* need to test for overlap in these directions: */ |
| 700 | /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ |
| 701 | /* we do not even need to test these) */ |
| 702 | /* 2) normal of the triangle */ |
| 703 | /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ |
| 704 | /* this gives 3x3=9 more tests */ |
| 705 | Vector3 v0, v1, v2; |
| 706 | float min, max, d, p0, p1, p2, rad, fex, fey, fez; |
| 707 | Vector3 normal, e0, e1, e2; |
| 708 | |
| 709 | /* This is the fastest branch on Sun */ |
| 710 | /* move everything so that the boxcenter is in (0,0,0) */ |
| 711 | |
| 712 | v0 = triverts[0] - boxcenter; |
| 713 | v1 = triverts[1] - boxcenter; |
| 714 | v2 = triverts[2] - boxcenter; |
| 715 | |
| 716 | /* compute triangle edges */ |
| 717 | e0 = v1 - v0; /* tri edge 0 */ |
| 718 | e1 = v2 - v1; /* tri edge 1 */ |
| 719 | e2 = v0 - v2; /* tri edge 2 */ |
| 720 | |
| 721 | /* Bullet 3: */ |
| 722 | /* test the 9 tests first (this was faster) */ |
| 723 | fex = Math::abs(e0.x); |
| 724 | fey = Math::abs(e0.y); |
| 725 | fez = Math::abs(e0.z); |
| 726 | AXISTEST_X01(e0.z, e0.y, fez, fey); |
| 727 | AXISTEST_Y02(e0.z, e0.x, fez, fex); |
| 728 | AXISTEST_Z12(e0.y, e0.x, fey, fex); |
| 729 | |
| 730 | fex = Math::abs(e1.x); |
| 731 | fey = Math::abs(e1.y); |
| 732 | fez = Math::abs(e1.z); |
| 733 | AXISTEST_X01(e1.z, e1.y, fez, fey); |
| 734 | AXISTEST_Y02(e1.z, e1.x, fez, fex); |
| 735 | AXISTEST_Z0(e1.y, e1.x, fey, fex); |
| 736 | |
| 737 | fex = Math::abs(e2.x); |
| 738 | fey = Math::abs(e2.y); |
| 739 | fez = Math::abs(e2.z); |
| 740 | AXISTEST_X2(e2.z, e2.y, fez, fey); |
| 741 | AXISTEST_Y1(e2.z, e2.x, fez, fex); |
| 742 | AXISTEST_Z12(e2.y, e2.x, fey, fex); |
| 743 | |
| 744 | /* Bullet 1: */ |
| 745 | /* first test overlap in the {x,y,z}-directions */ |
| 746 | /* find min, max of the triangle each direction, and test for overlap in */ |
| 747 | /* that direction -- this is equivalent to testing a minimal AABB around */ |
| 748 | /* the triangle against the AABB */ |
| 749 | |
| 750 | /* test in X-direction */ |
| 751 | FINDMINMAX(v0.x, v1.x, v2.x, min, max); |
| 752 | if (min > boxhalfsize.x || max < -boxhalfsize.x) { |
| 753 | return false; |
| 754 | } |
| 755 | |
| 756 | /* test in Y-direction */ |
| 757 | FINDMINMAX(v0.y, v1.y, v2.y, min, max); |
| 758 | if (min > boxhalfsize.y || max < -boxhalfsize.y) { |
| 759 | return false; |
| 760 | } |
| 761 | |
| 762 | /* test in Z-direction */ |
| 763 | FINDMINMAX(v0.z, v1.z, v2.z, min, max); |
| 764 | if (min > boxhalfsize.z || max < -boxhalfsize.z) { |
| 765 | return false; |
| 766 | } |
| 767 | |
| 768 | /* Bullet 2: */ |
| 769 | /* test if the box intersects the plane of the triangle */ |
| 770 | /* compute plane equation of triangle: normal*x+d=0 */ |
| 771 | normal = e0.cross(e1); |
| 772 | d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ |
| 773 | return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ |
| 774 | } |
| 775 | |
| 776 | static Vector<uint32_t> generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative); |
| 777 | static Vector<int8_t> generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative); |
| 778 | |
| 779 | static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) { |
| 780 | Vector3 v0 = p_b - p_a; |
| 781 | Vector3 v1 = p_c - p_a; |
| 782 | Vector3 v2 = p_pos - p_a; |
| 783 | |
| 784 | float d00 = v0.dot(v0); |
| 785 | float d01 = v0.dot(v1); |
| 786 | float d11 = v1.dot(v1); |
| 787 | float d20 = v2.dot(v0); |
| 788 | float d21 = v2.dot(v1); |
| 789 | float denom = (d00 * d11 - d01 * d01); |
| 790 | if (denom == 0) { |
| 791 | return Vector3(); //invalid triangle, return empty |
| 792 | } |
| 793 | float v = (d11 * d20 - d01 * d21) / denom; |
| 794 | float w = (d00 * d21 - d01 * d20) / denom; |
| 795 | float u = 1.0f - v - w; |
| 796 | return Vector3(u, v, w); |
| 797 | } |
| 798 | |
| 799 | static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) { |
| 800 | Vector3 vap = p_pos - p_a; |
| 801 | Vector3 vbp = p_pos - p_b; |
| 802 | |
| 803 | Vector3 vab = p_b - p_a; |
| 804 | Vector3 vac = p_c - p_a; |
| 805 | Vector3 vad = p_d - p_a; |
| 806 | |
| 807 | Vector3 vbc = p_c - p_b; |
| 808 | Vector3 vbd = p_d - p_b; |
| 809 | // ScTP computes the scalar triple product |
| 810 | #define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c)))) |
| 811 | float va6 = STP(vbp, vbd, vbc); |
| 812 | float vb6 = STP(vap, vac, vad); |
| 813 | float vc6 = STP(vap, vad, vab); |
| 814 | float vd6 = STP(vap, vab, vac); |
| 815 | float v6 = 1 / STP(vab, vac, vad); |
| 816 | return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6); |
| 817 | #undef STP |
| 818 | } |
| 819 | |
| 820 | _FORCE_INLINE_ static Vector3 octahedron_map_decode(const Vector2 &p_uv) { |
| 821 | // https://twitter.com/Stubbesaurus/status/937994790553227264 |
| 822 | Vector2 f = p_uv * 2.0f - Vector2(1.0f, 1.0f); |
| 823 | Vector3 n = Vector3(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); |
| 824 | float t = CLAMP(-n.z, 0.0f, 1.0f); |
| 825 | n.x += n.x >= 0 ? -t : t; |
| 826 | n.y += n.y >= 0 ? -t : t; |
| 827 | return n.normalized(); |
| 828 | } |
| 829 | }; |
| 830 | |
| 831 | #endif // GEOMETRY_3D_H |
| 832 | |