1 | /**************************************************************************/ |
2 | /* geometry_3d.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef GEOMETRY_3D_H |
32 | #define GEOMETRY_3D_H |
33 | |
34 | #include "core/math/face3.h" |
35 | #include "core/object/object.h" |
36 | #include "core/templates/local_vector.h" |
37 | #include "core/templates/vector.h" |
38 | |
39 | class Geometry3D { |
40 | public: |
41 | static void get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt); |
42 | static real_t get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1); |
43 | |
44 | static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { |
45 | Vector3 e1 = p_v1 - p_v0; |
46 | Vector3 e2 = p_v2 - p_v0; |
47 | Vector3 h = p_dir.cross(e2); |
48 | real_t a = e1.dot(h); |
49 | if (Math::is_zero_approx(a)) { // Parallel test. |
50 | return false; |
51 | } |
52 | |
53 | real_t f = 1.0f / a; |
54 | |
55 | Vector3 s = p_from - p_v0; |
56 | real_t u = f * s.dot(h); |
57 | |
58 | if ((u < 0.0f) || (u > 1.0f)) { |
59 | return false; |
60 | } |
61 | |
62 | Vector3 q = s.cross(e1); |
63 | |
64 | real_t v = f * p_dir.dot(q); |
65 | |
66 | if ((v < 0.0f) || (u + v > 1.0f)) { |
67 | return false; |
68 | } |
69 | |
70 | // At this stage we can compute t to find out where |
71 | // the intersection point is on the line. |
72 | real_t t = f * e2.dot(q); |
73 | |
74 | if (t > 0.00001f) { // ray intersection |
75 | if (r_res) { |
76 | *r_res = p_from + p_dir * t; |
77 | } |
78 | return true; |
79 | } else { // This means that there is a line intersection but not a ray intersection. |
80 | return false; |
81 | } |
82 | } |
83 | |
84 | static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { |
85 | Vector3 rel = p_to - p_from; |
86 | Vector3 e1 = p_v1 - p_v0; |
87 | Vector3 e2 = p_v2 - p_v0; |
88 | Vector3 h = rel.cross(e2); |
89 | real_t a = e1.dot(h); |
90 | if (Math::is_zero_approx(a)) { // Parallel test. |
91 | return false; |
92 | } |
93 | |
94 | real_t f = 1.0f / a; |
95 | |
96 | Vector3 s = p_from - p_v0; |
97 | real_t u = f * s.dot(h); |
98 | |
99 | if ((u < 0.0f) || (u > 1.0f)) { |
100 | return false; |
101 | } |
102 | |
103 | Vector3 q = s.cross(e1); |
104 | |
105 | real_t v = f * rel.dot(q); |
106 | |
107 | if ((v < 0.0f) || (u + v > 1.0f)) { |
108 | return false; |
109 | } |
110 | |
111 | // At this stage we can compute t to find out where |
112 | // the intersection point is on the line. |
113 | real_t t = f * e2.dot(q); |
114 | |
115 | if (t > (real_t)CMP_EPSILON && t <= 1.0f) { // Ray intersection. |
116 | if (r_res) { |
117 | *r_res = p_from + rel * t; |
118 | } |
119 | return true; |
120 | } else { // This means that there is a line intersection but not a ray intersection. |
121 | return false; |
122 | } |
123 | } |
124 | |
125 | static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { |
126 | Vector3 sphere_pos = p_sphere_pos - p_from; |
127 | Vector3 rel = (p_to - p_from); |
128 | real_t rel_l = rel.length(); |
129 | if (rel_l < (real_t)CMP_EPSILON) { |
130 | return false; // Both points are the same. |
131 | } |
132 | Vector3 normal = rel / rel_l; |
133 | |
134 | real_t sphere_d = normal.dot(sphere_pos); |
135 | |
136 | real_t ray_distance = sphere_pos.distance_to(normal * sphere_d); |
137 | |
138 | if (ray_distance >= p_sphere_radius) { |
139 | return false; |
140 | } |
141 | |
142 | real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance; |
143 | real_t inters_d = sphere_d; |
144 | |
145 | if (inters_d2 >= (real_t)CMP_EPSILON) { |
146 | inters_d -= Math::sqrt(inters_d2); |
147 | } |
148 | |
149 | // Check in segment. |
150 | if (inters_d < 0 || inters_d > rel_l) { |
151 | return false; |
152 | } |
153 | |
154 | Vector3 result = p_from + normal * inters_d; |
155 | |
156 | if (r_res) { |
157 | *r_res = result; |
158 | } |
159 | if (r_norm) { |
160 | *r_norm = (result - p_sphere_pos).normalized(); |
161 | } |
162 | |
163 | return true; |
164 | } |
165 | |
166 | static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) { |
167 | Vector3 rel = (p_to - p_from); |
168 | real_t rel_l = rel.length(); |
169 | if (rel_l < (real_t)CMP_EPSILON) { |
170 | return false; // Both points are the same. |
171 | } |
172 | |
173 | ERR_FAIL_COND_V(p_cylinder_axis < 0, false); |
174 | ERR_FAIL_COND_V(p_cylinder_axis > 2, false); |
175 | Vector3 cylinder_axis; |
176 | cylinder_axis[p_cylinder_axis] = 1.0f; |
177 | |
178 | // First check if they are parallel. |
179 | Vector3 normal = (rel / rel_l); |
180 | Vector3 crs = normal.cross(cylinder_axis); |
181 | real_t crs_l = crs.length(); |
182 | |
183 | Vector3 axis_dir; |
184 | |
185 | if (crs_l < (real_t)CMP_EPSILON) { |
186 | Vector3 side_axis; |
187 | side_axis[(p_cylinder_axis + 1) % 3] = 1.0f; // Any side axis OK. |
188 | axis_dir = side_axis; |
189 | } else { |
190 | axis_dir = crs / crs_l; |
191 | } |
192 | |
193 | real_t dist = axis_dir.dot(p_from); |
194 | |
195 | if (dist >= p_radius) { |
196 | return false; // Too far away. |
197 | } |
198 | |
199 | // Convert to 2D. |
200 | real_t w2 = p_radius * p_radius - dist * dist; |
201 | if (w2 < (real_t)CMP_EPSILON) { |
202 | return false; // Avoid numerical error. |
203 | } |
204 | Size2 size(Math::sqrt(w2), p_height * 0.5f); |
205 | |
206 | Vector3 side_dir = axis_dir.cross(cylinder_axis).normalized(); |
207 | |
208 | Vector2 from2D(side_dir.dot(p_from), p_from[p_cylinder_axis]); |
209 | Vector2 to2D(side_dir.dot(p_to), p_to[p_cylinder_axis]); |
210 | |
211 | real_t min = 0, max = 1; |
212 | |
213 | int axis = -1; |
214 | |
215 | for (int i = 0; i < 2; i++) { |
216 | real_t seg_from = from2D[i]; |
217 | real_t seg_to = to2D[i]; |
218 | real_t box_begin = -size[i]; |
219 | real_t box_end = size[i]; |
220 | real_t cmin, cmax; |
221 | |
222 | if (seg_from < seg_to) { |
223 | if (seg_from > box_end || seg_to < box_begin) { |
224 | return false; |
225 | } |
226 | real_t length = seg_to - seg_from; |
227 | cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; |
228 | cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; |
229 | |
230 | } else { |
231 | if (seg_to > box_end || seg_from < box_begin) { |
232 | return false; |
233 | } |
234 | real_t length = seg_to - seg_from; |
235 | cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; |
236 | cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; |
237 | } |
238 | |
239 | if (cmin > min) { |
240 | min = cmin; |
241 | axis = i; |
242 | } |
243 | if (cmax < max) { |
244 | max = cmax; |
245 | } |
246 | if (max < min) { |
247 | return false; |
248 | } |
249 | } |
250 | |
251 | // Convert to 3D again. |
252 | Vector3 result = p_from + (rel * min); |
253 | Vector3 res_normal = result; |
254 | |
255 | if (axis == 0) { |
256 | res_normal[p_cylinder_axis] = 0; |
257 | } else { |
258 | int axis_side = (p_cylinder_axis + 1) % 3; |
259 | res_normal[axis_side] = 0; |
260 | axis_side = (axis_side + 1) % 3; |
261 | res_normal[axis_side] = 0; |
262 | } |
263 | |
264 | res_normal.normalize(); |
265 | |
266 | if (r_res) { |
267 | *r_res = result; |
268 | } |
269 | if (r_norm) { |
270 | *r_norm = res_normal; |
271 | } |
272 | |
273 | return true; |
274 | } |
275 | |
276 | static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) { |
277 | real_t min = -1e20, max = 1e20; |
278 | |
279 | Vector3 rel = p_to - p_from; |
280 | real_t rel_l = rel.length(); |
281 | |
282 | if (rel_l < (real_t)CMP_EPSILON) { |
283 | return false; |
284 | } |
285 | |
286 | Vector3 dir = rel / rel_l; |
287 | |
288 | int min_index = -1; |
289 | |
290 | for (int i = 0; i < p_plane_count; i++) { |
291 | const Plane &p = p_planes[i]; |
292 | |
293 | real_t den = p.normal.dot(dir); |
294 | |
295 | if (Math::abs(den) <= (real_t)CMP_EPSILON) { |
296 | continue; // Ignore parallel plane. |
297 | } |
298 | |
299 | real_t dist = -p.distance_to(p_from) / den; |
300 | |
301 | if (den > 0) { |
302 | // Backwards facing plane. |
303 | if (dist < max) { |
304 | max = dist; |
305 | } |
306 | } else { |
307 | // Front facing plane. |
308 | if (dist > min) { |
309 | min = dist; |
310 | min_index = i; |
311 | } |
312 | } |
313 | } |
314 | |
315 | if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions. |
316 | return false; // No intersection. |
317 | } |
318 | |
319 | if (p_res) { |
320 | *p_res = p_from + dir * min; |
321 | } |
322 | if (p_norm) { |
323 | *p_norm = p_planes[min_index].normal; |
324 | } |
325 | |
326 | return true; |
327 | } |
328 | |
329 | static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) { |
330 | Vector3 p = p_point - p_segment[0]; |
331 | Vector3 n = p_segment[1] - p_segment[0]; |
332 | real_t l2 = n.length_squared(); |
333 | if (l2 < 1e-20f) { |
334 | return p_segment[0]; // Both points are the same, just give any. |
335 | } |
336 | |
337 | real_t d = n.dot(p) / l2; |
338 | |
339 | if (d <= 0.0f) { |
340 | return p_segment[0]; // Before first point. |
341 | } else if (d >= 1.0f) { |
342 | return p_segment[1]; // After first point. |
343 | } else { |
344 | return p_segment[0] + n * d; // Inside. |
345 | } |
346 | } |
347 | |
348 | static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) { |
349 | Vector3 p = p_point - p_segment[0]; |
350 | Vector3 n = p_segment[1] - p_segment[0]; |
351 | real_t l2 = n.length_squared(); |
352 | if (l2 < 1e-20f) { |
353 | return p_segment[0]; // Both points are the same, just give any. |
354 | } |
355 | |
356 | real_t d = n.dot(p) / l2; |
357 | |
358 | return p_segment[0] + n * d; // Inside. |
359 | } |
360 | |
361 | static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) { |
362 | Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2); |
363 | |
364 | Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2); |
365 | |
366 | if (face_n.dot(n1) < 0) { |
367 | return false; |
368 | } |
369 | |
370 | Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point); |
371 | |
372 | if (face_n.dot(n2) < 0) { |
373 | return false; |
374 | } |
375 | |
376 | Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2); |
377 | |
378 | if (face_n.dot(n3) < 0) { |
379 | return false; |
380 | } |
381 | |
382 | return true; |
383 | } |
384 | |
385 | static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) { |
386 | real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]); |
387 | |
388 | if (d > p_sphere_radius || d < -p_sphere_radius) { |
389 | // Not touching the plane of the face, return. |
390 | return false; |
391 | } |
392 | |
393 | Vector3 contact = p_sphere_pos - (p_normal * d); |
394 | |
395 | /** 2nd) TEST INSIDE TRIANGLE **/ |
396 | |
397 | if (Geometry3D::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) { |
398 | r_triangle_contact = contact; |
399 | r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius; |
400 | //printf("solved inside triangle\n"); |
401 | return true; |
402 | } |
403 | |
404 | /** 3rd TEST INSIDE EDGE CYLINDERS **/ |
405 | |
406 | const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly |
407 | |
408 | for (int i = 0; i < 3; i++) { |
409 | // Check edge cylinder. |
410 | |
411 | Vector3 n1 = verts[i] - verts[i + 1]; |
412 | Vector3 n2 = p_sphere_pos - verts[i + 1]; |
413 | |
414 | ///@TODO Maybe discard by range here to make the algorithm quicker. |
415 | |
416 | // Check point within cylinder radius. |
417 | Vector3 axis = n1.cross(n2).cross(n1); |
418 | axis.normalize(); |
419 | |
420 | real_t ad = axis.dot(n2); |
421 | |
422 | if (ABS(ad) > p_sphere_radius) { |
423 | // No chance with this edge, too far away. |
424 | continue; |
425 | } |
426 | |
427 | // Check point within edge capsule cylinder. |
428 | /** 4th TEST INSIDE EDGE POINTS **/ |
429 | |
430 | real_t sphere_at = n1.dot(n2); |
431 | |
432 | if (sphere_at >= 0 && sphere_at < n1.dot(n1)) { |
433 | r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2)); |
434 | r_sphere_contact = p_sphere_pos - axis * p_sphere_radius; |
435 | // Point inside here. |
436 | return true; |
437 | } |
438 | |
439 | real_t r2 = p_sphere_radius * p_sphere_radius; |
440 | |
441 | if (n2.length_squared() < r2) { |
442 | Vector3 n = (p_sphere_pos - verts[i + 1]).normalized(); |
443 | |
444 | r_triangle_contact = verts[i + 1]; |
445 | r_sphere_contact = p_sphere_pos - n * p_sphere_radius; |
446 | return true; |
447 | } |
448 | |
449 | if (n2.distance_squared_to(n1) < r2) { |
450 | Vector3 n = (p_sphere_pos - verts[i]).normalized(); |
451 | |
452 | r_triangle_contact = verts[i]; |
453 | r_sphere_contact = p_sphere_pos - n * p_sphere_radius; |
454 | return true; |
455 | } |
456 | |
457 | break; // It's pointless to continue at this point, so save some CPU cycles. |
458 | } |
459 | |
460 | return false; |
461 | } |
462 | |
463 | static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) { |
464 | enum LocationCache { |
465 | LOC_INSIDE = 1, |
466 | LOC_BOUNDARY = 0, |
467 | LOC_OUTSIDE = -1 |
468 | }; |
469 | |
470 | if (polygon.size() == 0) { |
471 | return polygon; |
472 | } |
473 | |
474 | int *location_cache = (int *)alloca(sizeof(int) * polygon.size()); |
475 | int inside_count = 0; |
476 | int outside_count = 0; |
477 | |
478 | for (int a = 0; a < polygon.size(); a++) { |
479 | real_t dist = p_plane.distance_to(polygon[a]); |
480 | if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) { |
481 | location_cache[a] = LOC_INSIDE; |
482 | inside_count++; |
483 | } else { |
484 | if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) { |
485 | location_cache[a] = LOC_OUTSIDE; |
486 | outside_count++; |
487 | } else { |
488 | location_cache[a] = LOC_BOUNDARY; |
489 | } |
490 | } |
491 | } |
492 | |
493 | if (outside_count == 0) { |
494 | return polygon; // No changes. |
495 | } else if (inside_count == 0) { |
496 | return Vector<Vector3>(); // Empty. |
497 | } |
498 | |
499 | long previous = polygon.size() - 1; |
500 | Vector<Vector3> clipped; |
501 | |
502 | for (int index = 0; index < polygon.size(); index++) { |
503 | int loc = location_cache[index]; |
504 | if (loc == LOC_OUTSIDE) { |
505 | if (location_cache[previous] == LOC_INSIDE) { |
506 | const Vector3 &v1 = polygon[previous]; |
507 | const Vector3 &v2 = polygon[index]; |
508 | |
509 | Vector3 segment = v1 - v2; |
510 | real_t den = p_plane.normal.dot(segment); |
511 | real_t dist = p_plane.distance_to(v1) / den; |
512 | dist = -dist; |
513 | clipped.push_back(v1 + segment * dist); |
514 | } |
515 | } else { |
516 | const Vector3 &v1 = polygon[index]; |
517 | if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) { |
518 | const Vector3 &v2 = polygon[previous]; |
519 | Vector3 segment = v1 - v2; |
520 | real_t den = p_plane.normal.dot(segment); |
521 | real_t dist = p_plane.distance_to(v1) / den; |
522 | dist = -dist; |
523 | clipped.push_back(v1 + segment * dist); |
524 | } |
525 | |
526 | clipped.push_back(v1); |
527 | } |
528 | |
529 | previous = index; |
530 | } |
531 | |
532 | return clipped; |
533 | } |
534 | |
535 | // Create a "wrap" that encloses the given geometry. |
536 | static Vector<Face3> wrap_geometry(Vector<Face3> p_array, real_t *p_error = nullptr); |
537 | |
538 | struct MeshData { |
539 | struct Face { |
540 | Plane plane; |
541 | LocalVector<int> indices; |
542 | }; |
543 | |
544 | LocalVector<Face> faces; |
545 | |
546 | struct Edge { |
547 | int vertex_a, vertex_b; |
548 | int face_a, face_b; |
549 | }; |
550 | |
551 | LocalVector<Edge> edges; |
552 | |
553 | LocalVector<Vector3> vertices; |
554 | |
555 | void optimize_vertices(); |
556 | }; |
557 | |
558 | static MeshData build_convex_mesh(const Vector<Plane> &p_planes); |
559 | static Vector<Plane> build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z); |
560 | static Vector<Plane> build_box_planes(const Vector3 &p_extents); |
561 | static Vector<Plane> build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z); |
562 | static Vector<Plane> build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z); |
563 | |
564 | static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count); |
565 | |
566 | #define FINDMINMAX(x0, x1, x2, min, max) \ |
567 | min = max = x0; \ |
568 | if (x1 < min) { \ |
569 | min = x1; \ |
570 | } \ |
571 | if (x1 > max) { \ |
572 | max = x1; \ |
573 | } \ |
574 | if (x2 < min) { \ |
575 | min = x2; \ |
576 | } \ |
577 | if (x2 > max) { \ |
578 | max = x2; \ |
579 | } |
580 | |
581 | _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { |
582 | int q; |
583 | Vector3 vmin, vmax; |
584 | for (q = 0; q <= 2; q++) { |
585 | if (normal[q] > 0.0f) { |
586 | vmin[q] = -maxbox[q]; |
587 | vmax[q] = maxbox[q]; |
588 | } else { |
589 | vmin[q] = maxbox[q]; |
590 | vmax[q] = -maxbox[q]; |
591 | } |
592 | } |
593 | if (normal.dot(vmin) + d > 0.0f) { |
594 | return false; |
595 | } |
596 | if (normal.dot(vmax) + d >= 0.0f) { |
597 | return true; |
598 | } |
599 | |
600 | return false; |
601 | } |
602 | |
603 | /*======================== X-tests ========================*/ |
604 | #define AXISTEST_X01(a, b, fa, fb) \ |
605 | p0 = a * v0.y - b * v0.z; \ |
606 | p2 = a * v2.y - b * v2.z; \ |
607 | if (p0 < p2) { \ |
608 | min = p0; \ |
609 | max = p2; \ |
610 | } else { \ |
611 | min = p2; \ |
612 | max = p0; \ |
613 | } \ |
614 | rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ |
615 | if (min > rad || max < -rad) { \ |
616 | return false; \ |
617 | } |
618 | |
619 | #define AXISTEST_X2(a, b, fa, fb) \ |
620 | p0 = a * v0.y - b * v0.z; \ |
621 | p1 = a * v1.y - b * v1.z; \ |
622 | if (p0 < p1) { \ |
623 | min = p0; \ |
624 | max = p1; \ |
625 | } else { \ |
626 | min = p1; \ |
627 | max = p0; \ |
628 | } \ |
629 | rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ |
630 | if (min > rad || max < -rad) { \ |
631 | return false; \ |
632 | } |
633 | |
634 | /*======================== Y-tests ========================*/ |
635 | #define AXISTEST_Y02(a, b, fa, fb) \ |
636 | p0 = -a * v0.x + b * v0.z; \ |
637 | p2 = -a * v2.x + b * v2.z; \ |
638 | if (p0 < p2) { \ |
639 | min = p0; \ |
640 | max = p2; \ |
641 | } else { \ |
642 | min = p2; \ |
643 | max = p0; \ |
644 | } \ |
645 | rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ |
646 | if (min > rad || max < -rad) { \ |
647 | return false; \ |
648 | } |
649 | |
650 | #define AXISTEST_Y1(a, b, fa, fb) \ |
651 | p0 = -a * v0.x + b * v0.z; \ |
652 | p1 = -a * v1.x + b * v1.z; \ |
653 | if (p0 < p1) { \ |
654 | min = p0; \ |
655 | max = p1; \ |
656 | } else { \ |
657 | min = p1; \ |
658 | max = p0; \ |
659 | } \ |
660 | rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ |
661 | if (min > rad || max < -rad) { \ |
662 | return false; \ |
663 | } |
664 | |
665 | /*======================== Z-tests ========================*/ |
666 | |
667 | #define AXISTEST_Z12(a, b, fa, fb) \ |
668 | p1 = a * v1.x - b * v1.y; \ |
669 | p2 = a * v2.x - b * v2.y; \ |
670 | if (p2 < p1) { \ |
671 | min = p2; \ |
672 | max = p1; \ |
673 | } else { \ |
674 | min = p1; \ |
675 | max = p2; \ |
676 | } \ |
677 | rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ |
678 | if (min > rad || max < -rad) { \ |
679 | return false; \ |
680 | } |
681 | |
682 | #define AXISTEST_Z0(a, b, fa, fb) \ |
683 | p0 = a * v0.x - b * v0.y; \ |
684 | p1 = a * v1.x - b * v1.y; \ |
685 | if (p0 < p1) { \ |
686 | min = p0; \ |
687 | max = p1; \ |
688 | } else { \ |
689 | min = p1; \ |
690 | max = p0; \ |
691 | } \ |
692 | rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ |
693 | if (min > rad || max < -rad) { \ |
694 | return false; \ |
695 | } |
696 | |
697 | _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { |
698 | /* use separating axis theorem to test overlap between triangle and box */ |
699 | /* need to test for overlap in these directions: */ |
700 | /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ |
701 | /* we do not even need to test these) */ |
702 | /* 2) normal of the triangle */ |
703 | /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ |
704 | /* this gives 3x3=9 more tests */ |
705 | Vector3 v0, v1, v2; |
706 | float min, max, d, p0, p1, p2, rad, fex, fey, fez; |
707 | Vector3 normal, e0, e1, e2; |
708 | |
709 | /* This is the fastest branch on Sun */ |
710 | /* move everything so that the boxcenter is in (0,0,0) */ |
711 | |
712 | v0 = triverts[0] - boxcenter; |
713 | v1 = triverts[1] - boxcenter; |
714 | v2 = triverts[2] - boxcenter; |
715 | |
716 | /* compute triangle edges */ |
717 | e0 = v1 - v0; /* tri edge 0 */ |
718 | e1 = v2 - v1; /* tri edge 1 */ |
719 | e2 = v0 - v2; /* tri edge 2 */ |
720 | |
721 | /* Bullet 3: */ |
722 | /* test the 9 tests first (this was faster) */ |
723 | fex = Math::abs(e0.x); |
724 | fey = Math::abs(e0.y); |
725 | fez = Math::abs(e0.z); |
726 | AXISTEST_X01(e0.z, e0.y, fez, fey); |
727 | AXISTEST_Y02(e0.z, e0.x, fez, fex); |
728 | AXISTEST_Z12(e0.y, e0.x, fey, fex); |
729 | |
730 | fex = Math::abs(e1.x); |
731 | fey = Math::abs(e1.y); |
732 | fez = Math::abs(e1.z); |
733 | AXISTEST_X01(e1.z, e1.y, fez, fey); |
734 | AXISTEST_Y02(e1.z, e1.x, fez, fex); |
735 | AXISTEST_Z0(e1.y, e1.x, fey, fex); |
736 | |
737 | fex = Math::abs(e2.x); |
738 | fey = Math::abs(e2.y); |
739 | fez = Math::abs(e2.z); |
740 | AXISTEST_X2(e2.z, e2.y, fez, fey); |
741 | AXISTEST_Y1(e2.z, e2.x, fez, fex); |
742 | AXISTEST_Z12(e2.y, e2.x, fey, fex); |
743 | |
744 | /* Bullet 1: */ |
745 | /* first test overlap in the {x,y,z}-directions */ |
746 | /* find min, max of the triangle each direction, and test for overlap in */ |
747 | /* that direction -- this is equivalent to testing a minimal AABB around */ |
748 | /* the triangle against the AABB */ |
749 | |
750 | /* test in X-direction */ |
751 | FINDMINMAX(v0.x, v1.x, v2.x, min, max); |
752 | if (min > boxhalfsize.x || max < -boxhalfsize.x) { |
753 | return false; |
754 | } |
755 | |
756 | /* test in Y-direction */ |
757 | FINDMINMAX(v0.y, v1.y, v2.y, min, max); |
758 | if (min > boxhalfsize.y || max < -boxhalfsize.y) { |
759 | return false; |
760 | } |
761 | |
762 | /* test in Z-direction */ |
763 | FINDMINMAX(v0.z, v1.z, v2.z, min, max); |
764 | if (min > boxhalfsize.z || max < -boxhalfsize.z) { |
765 | return false; |
766 | } |
767 | |
768 | /* Bullet 2: */ |
769 | /* test if the box intersects the plane of the triangle */ |
770 | /* compute plane equation of triangle: normal*x+d=0 */ |
771 | normal = e0.cross(e1); |
772 | d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ |
773 | return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ |
774 | } |
775 | |
776 | static Vector<uint32_t> generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative); |
777 | static Vector<int8_t> generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative); |
778 | |
779 | static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) { |
780 | Vector3 v0 = p_b - p_a; |
781 | Vector3 v1 = p_c - p_a; |
782 | Vector3 v2 = p_pos - p_a; |
783 | |
784 | float d00 = v0.dot(v0); |
785 | float d01 = v0.dot(v1); |
786 | float d11 = v1.dot(v1); |
787 | float d20 = v2.dot(v0); |
788 | float d21 = v2.dot(v1); |
789 | float denom = (d00 * d11 - d01 * d01); |
790 | if (denom == 0) { |
791 | return Vector3(); //invalid triangle, return empty |
792 | } |
793 | float v = (d11 * d20 - d01 * d21) / denom; |
794 | float w = (d00 * d21 - d01 * d20) / denom; |
795 | float u = 1.0f - v - w; |
796 | return Vector3(u, v, w); |
797 | } |
798 | |
799 | static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) { |
800 | Vector3 vap = p_pos - p_a; |
801 | Vector3 vbp = p_pos - p_b; |
802 | |
803 | Vector3 vab = p_b - p_a; |
804 | Vector3 vac = p_c - p_a; |
805 | Vector3 vad = p_d - p_a; |
806 | |
807 | Vector3 vbc = p_c - p_b; |
808 | Vector3 vbd = p_d - p_b; |
809 | // ScTP computes the scalar triple product |
810 | #define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c)))) |
811 | float va6 = STP(vbp, vbd, vbc); |
812 | float vb6 = STP(vap, vac, vad); |
813 | float vc6 = STP(vap, vad, vab); |
814 | float vd6 = STP(vap, vab, vac); |
815 | float v6 = 1 / STP(vab, vac, vad); |
816 | return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6); |
817 | #undef STP |
818 | } |
819 | |
820 | _FORCE_INLINE_ static Vector3 octahedron_map_decode(const Vector2 &p_uv) { |
821 | // https://twitter.com/Stubbesaurus/status/937994790553227264 |
822 | Vector2 f = p_uv * 2.0f - Vector2(1.0f, 1.0f); |
823 | Vector3 n = Vector3(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); |
824 | float t = CLAMP(-n.z, 0.0f, 1.0f); |
825 | n.x += n.x >= 0 ? -t : t; |
826 | n.y += n.y >= 0 ? -t : t; |
827 | return n.normalized(); |
828 | } |
829 | }; |
830 | |
831 | #endif // GEOMETRY_3D_H |
832 | |