| 1 | /**************************************************************************/ |
| 2 | /* transform_3d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "transform_3d.h" |
| 32 | |
| 33 | #include "core/math/math_funcs.h" |
| 34 | #include "core/string/ustring.h" |
| 35 | |
| 36 | void Transform3D::affine_invert() { |
| 37 | basis.invert(); |
| 38 | origin = basis.xform(-origin); |
| 39 | } |
| 40 | |
| 41 | Transform3D Transform3D::affine_inverse() const { |
| 42 | Transform3D ret = *this; |
| 43 | ret.affine_invert(); |
| 44 | return ret; |
| 45 | } |
| 46 | |
| 47 | void Transform3D::invert() { |
| 48 | basis.transpose(); |
| 49 | origin = basis.xform(-origin); |
| 50 | } |
| 51 | |
| 52 | Transform3D Transform3D::inverse() const { |
| 53 | // FIXME: this function assumes the basis is a rotation matrix, with no scaling. |
| 54 | // Transform3D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. |
| 55 | Transform3D ret = *this; |
| 56 | ret.invert(); |
| 57 | return ret; |
| 58 | } |
| 59 | |
| 60 | void Transform3D::rotate(const Vector3 &p_axis, real_t p_angle) { |
| 61 | *this = rotated(p_axis, p_angle); |
| 62 | } |
| 63 | |
| 64 | Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_angle) const { |
| 65 | // Equivalent to left multiplication |
| 66 | Basis p_basis(p_axis, p_angle); |
| 67 | return Transform3D(p_basis * basis, p_basis.xform(origin)); |
| 68 | } |
| 69 | |
| 70 | Transform3D Transform3D::rotated_local(const Vector3 &p_axis, real_t p_angle) const { |
| 71 | // Equivalent to right multiplication |
| 72 | Basis p_basis(p_axis, p_angle); |
| 73 | return Transform3D(basis * p_basis, origin); |
| 74 | } |
| 75 | |
| 76 | void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) { |
| 77 | basis.rotate(p_axis, p_angle); |
| 78 | } |
| 79 | |
| 80 | Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) const { |
| 81 | #ifdef MATH_CHECKS |
| 82 | ERR_FAIL_COND_V_MSG(origin.is_equal_approx(p_target), Transform3D(), "The transform's origin and target can't be equal." ); |
| 83 | #endif |
| 84 | Transform3D t = *this; |
| 85 | t.basis = Basis::looking_at(p_target - origin, p_up, p_use_model_front); |
| 86 | return t; |
| 87 | } |
| 88 | |
| 89 | void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) { |
| 90 | #ifdef MATH_CHECKS |
| 91 | ERR_FAIL_COND_MSG(p_eye.is_equal_approx(p_target), "The eye and target vectors can't be equal." ); |
| 92 | #endif |
| 93 | basis = Basis::looking_at(p_target - p_eye, p_up, p_use_model_front); |
| 94 | origin = p_eye; |
| 95 | } |
| 96 | |
| 97 | Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const { |
| 98 | Transform3D interp; |
| 99 | |
| 100 | Vector3 src_scale = basis.get_scale(); |
| 101 | Quaternion src_rot = basis.get_rotation_quaternion(); |
| 102 | Vector3 src_loc = origin; |
| 103 | |
| 104 | Vector3 dst_scale = p_transform.basis.get_scale(); |
| 105 | Quaternion dst_rot = p_transform.basis.get_rotation_quaternion(); |
| 106 | Vector3 dst_loc = p_transform.origin; |
| 107 | |
| 108 | interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c)); |
| 109 | interp.origin = src_loc.lerp(dst_loc, p_c); |
| 110 | |
| 111 | return interp; |
| 112 | } |
| 113 | |
| 114 | void Transform3D::scale(const Vector3 &p_scale) { |
| 115 | basis.scale(p_scale); |
| 116 | origin *= p_scale; |
| 117 | } |
| 118 | |
| 119 | Transform3D Transform3D::scaled(const Vector3 &p_scale) const { |
| 120 | // Equivalent to left multiplication |
| 121 | return Transform3D(basis.scaled(p_scale), origin * p_scale); |
| 122 | } |
| 123 | |
| 124 | Transform3D Transform3D::scaled_local(const Vector3 &p_scale) const { |
| 125 | // Equivalent to right multiplication |
| 126 | return Transform3D(basis.scaled_local(p_scale), origin); |
| 127 | } |
| 128 | |
| 129 | void Transform3D::scale_basis(const Vector3 &p_scale) { |
| 130 | basis.scale(p_scale); |
| 131 | } |
| 132 | |
| 133 | void Transform3D::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) { |
| 134 | translate_local(Vector3(p_tx, p_ty, p_tz)); |
| 135 | } |
| 136 | |
| 137 | void Transform3D::translate_local(const Vector3 &p_translation) { |
| 138 | for (int i = 0; i < 3; i++) { |
| 139 | origin[i] += basis[i].dot(p_translation); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | Transform3D Transform3D::translated(const Vector3 &p_translation) const { |
| 144 | // Equivalent to left multiplication |
| 145 | return Transform3D(basis, origin + p_translation); |
| 146 | } |
| 147 | |
| 148 | Transform3D Transform3D::translated_local(const Vector3 &p_translation) const { |
| 149 | // Equivalent to right multiplication |
| 150 | return Transform3D(basis, origin + basis.xform(p_translation)); |
| 151 | } |
| 152 | |
| 153 | void Transform3D::orthonormalize() { |
| 154 | basis.orthonormalize(); |
| 155 | } |
| 156 | |
| 157 | Transform3D Transform3D::orthonormalized() const { |
| 158 | Transform3D _copy = *this; |
| 159 | _copy.orthonormalize(); |
| 160 | return _copy; |
| 161 | } |
| 162 | |
| 163 | void Transform3D::orthogonalize() { |
| 164 | basis.orthogonalize(); |
| 165 | } |
| 166 | |
| 167 | Transform3D Transform3D::orthogonalized() const { |
| 168 | Transform3D _copy = *this; |
| 169 | _copy.orthogonalize(); |
| 170 | return _copy; |
| 171 | } |
| 172 | |
| 173 | bool Transform3D::is_equal_approx(const Transform3D &p_transform) const { |
| 174 | return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin); |
| 175 | } |
| 176 | |
| 177 | bool Transform3D::is_finite() const { |
| 178 | return basis.is_finite() && origin.is_finite(); |
| 179 | } |
| 180 | |
| 181 | bool Transform3D::operator==(const Transform3D &p_transform) const { |
| 182 | return (basis == p_transform.basis && origin == p_transform.origin); |
| 183 | } |
| 184 | |
| 185 | bool Transform3D::operator!=(const Transform3D &p_transform) const { |
| 186 | return (basis != p_transform.basis || origin != p_transform.origin); |
| 187 | } |
| 188 | |
| 189 | void Transform3D::operator*=(const Transform3D &p_transform) { |
| 190 | origin = xform(p_transform.origin); |
| 191 | basis *= p_transform.basis; |
| 192 | } |
| 193 | |
| 194 | Transform3D Transform3D::operator*(const Transform3D &p_transform) const { |
| 195 | Transform3D t = *this; |
| 196 | t *= p_transform; |
| 197 | return t; |
| 198 | } |
| 199 | |
| 200 | void Transform3D::operator*=(const real_t p_val) { |
| 201 | origin *= p_val; |
| 202 | basis *= p_val; |
| 203 | } |
| 204 | |
| 205 | Transform3D Transform3D::operator*(const real_t p_val) const { |
| 206 | Transform3D ret(*this); |
| 207 | ret *= p_val; |
| 208 | return ret; |
| 209 | } |
| 210 | |
| 211 | Transform3D::operator String() const { |
| 212 | return "[X: " + basis.get_column(0).operator String() + |
| 213 | ", Y: " + basis.get_column(1).operator String() + |
| 214 | ", Z: " + basis.get_column(2).operator String() + |
| 215 | ", O: " + origin.operator String() + "]" ; |
| 216 | } |
| 217 | |
| 218 | Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) : |
| 219 | basis(p_basis), |
| 220 | origin(p_origin) { |
| 221 | } |
| 222 | |
| 223 | Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) : |
| 224 | origin(p_origin) { |
| 225 | basis.set_column(0, p_x); |
| 226 | basis.set_column(1, p_y); |
| 227 | basis.set_column(2, p_z); |
| 228 | } |
| 229 | |
| 230 | Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) { |
| 231 | basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz); |
| 232 | origin = Vector3(ox, oy, oz); |
| 233 | } |
| 234 | |