1 | /**************************************************************************/ |
2 | /* vector2.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "vector2.h" |
32 | |
33 | #include "core/math/vector2i.h" |
34 | #include "core/string/ustring.h" |
35 | |
36 | real_t Vector2::angle() const { |
37 | return Math::atan2(y, x); |
38 | } |
39 | |
40 | Vector2 Vector2::from_angle(const real_t p_angle) { |
41 | return Vector2(Math::cos(p_angle), Math::sin(p_angle)); |
42 | } |
43 | |
44 | real_t Vector2::length() const { |
45 | return Math::sqrt(x * x + y * y); |
46 | } |
47 | |
48 | real_t Vector2::length_squared() const { |
49 | return x * x + y * y; |
50 | } |
51 | |
52 | void Vector2::normalize() { |
53 | real_t l = x * x + y * y; |
54 | if (l != 0) { |
55 | l = Math::sqrt(l); |
56 | x /= l; |
57 | y /= l; |
58 | } |
59 | } |
60 | |
61 | Vector2 Vector2::normalized() const { |
62 | Vector2 v = *this; |
63 | v.normalize(); |
64 | return v; |
65 | } |
66 | |
67 | bool Vector2::is_normalized() const { |
68 | // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. |
69 | return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); |
70 | } |
71 | |
72 | real_t Vector2::distance_to(const Vector2 &p_vector2) const { |
73 | return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); |
74 | } |
75 | |
76 | real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const { |
77 | return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); |
78 | } |
79 | |
80 | real_t Vector2::angle_to(const Vector2 &p_vector2) const { |
81 | return Math::atan2(cross(p_vector2), dot(p_vector2)); |
82 | } |
83 | |
84 | real_t Vector2::angle_to_point(const Vector2 &p_vector2) const { |
85 | return (p_vector2 - *this).angle(); |
86 | } |
87 | |
88 | real_t Vector2::dot(const Vector2 &p_other) const { |
89 | return x * p_other.x + y * p_other.y; |
90 | } |
91 | |
92 | real_t Vector2::cross(const Vector2 &p_other) const { |
93 | return x * p_other.y - y * p_other.x; |
94 | } |
95 | |
96 | Vector2 Vector2::sign() const { |
97 | return Vector2(SIGN(x), SIGN(y)); |
98 | } |
99 | |
100 | Vector2 Vector2::floor() const { |
101 | return Vector2(Math::floor(x), Math::floor(y)); |
102 | } |
103 | |
104 | Vector2 Vector2::ceil() const { |
105 | return Vector2(Math::ceil(x), Math::ceil(y)); |
106 | } |
107 | |
108 | Vector2 Vector2::round() const { |
109 | return Vector2(Math::round(x), Math::round(y)); |
110 | } |
111 | |
112 | Vector2 Vector2::rotated(const real_t p_by) const { |
113 | real_t sine = Math::sin(p_by); |
114 | real_t cosi = Math::cos(p_by); |
115 | return Vector2( |
116 | x * cosi - y * sine, |
117 | x * sine + y * cosi); |
118 | } |
119 | |
120 | Vector2 Vector2::posmod(const real_t p_mod) const { |
121 | return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod)); |
122 | } |
123 | |
124 | Vector2 Vector2::posmodv(const Vector2 &p_modv) const { |
125 | return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y)); |
126 | } |
127 | |
128 | Vector2 Vector2::project(const Vector2 &p_to) const { |
129 | return p_to * (dot(p_to) / p_to.length_squared()); |
130 | } |
131 | |
132 | Vector2 Vector2::clamp(const Vector2 &p_min, const Vector2 &p_max) const { |
133 | return Vector2( |
134 | CLAMP(x, p_min.x, p_max.x), |
135 | CLAMP(y, p_min.y, p_max.y)); |
136 | } |
137 | |
138 | Vector2 Vector2::snapped(const Vector2 &p_step) const { |
139 | return Vector2( |
140 | Math::snapped(x, p_step.x), |
141 | Math::snapped(y, p_step.y)); |
142 | } |
143 | |
144 | Vector2 Vector2::limit_length(const real_t p_len) const { |
145 | const real_t l = length(); |
146 | Vector2 v = *this; |
147 | if (l > 0 && p_len < l) { |
148 | v /= l; |
149 | v *= p_len; |
150 | } |
151 | |
152 | return v; |
153 | } |
154 | |
155 | Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const { |
156 | Vector2 v = *this; |
157 | Vector2 vd = p_to - v; |
158 | real_t len = vd.length(); |
159 | return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta; |
160 | } |
161 | |
162 | // slide returns the component of the vector along the given plane, specified by its normal vector. |
163 | Vector2 Vector2::slide(const Vector2 &p_normal) const { |
164 | #ifdef MATH_CHECKS |
165 | ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized." ); |
166 | #endif |
167 | return *this - p_normal * this->dot(p_normal); |
168 | } |
169 | |
170 | Vector2 Vector2::bounce(const Vector2 &p_normal) const { |
171 | return -reflect(p_normal); |
172 | } |
173 | |
174 | Vector2 Vector2::reflect(const Vector2 &p_normal) const { |
175 | #ifdef MATH_CHECKS |
176 | ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized." ); |
177 | #endif |
178 | return 2.0f * p_normal * this->dot(p_normal) - *this; |
179 | } |
180 | |
181 | bool Vector2::is_equal_approx(const Vector2 &p_v) const { |
182 | return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y); |
183 | } |
184 | |
185 | bool Vector2::is_zero_approx() const { |
186 | return Math::is_zero_approx(x) && Math::is_zero_approx(y); |
187 | } |
188 | |
189 | bool Vector2::is_finite() const { |
190 | return Math::is_finite(x) && Math::is_finite(y); |
191 | } |
192 | |
193 | Vector2::operator String() const { |
194 | return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")" ; |
195 | } |
196 | |
197 | Vector2::operator Vector2i() const { |
198 | return Vector2i(x, y); |
199 | } |
200 | |