1 | /**************************************************************************/ |
2 | /* audio_effect_pitch_shift.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "audio_effect_pitch_shift.h" |
32 | |
33 | #include "core/math/math_funcs.h" |
34 | #include "servers/audio_server.h" |
35 | |
36 | /* Thirdparty code, so disable clang-format with Godot style */ |
37 | /* clang-format off */ |
38 | |
39 | /**************************************************************************** |
40 | * |
41 | * NAME: smbPitchShift.cpp |
42 | * VERSION: 1.2 |
43 | * HOME URL: https://blogs.zynaptiq.com/bernsee |
44 | * KNOWN BUGS: none |
45 | * |
46 | * SYNOPSIS: Routine for doing pitch shifting while maintaining |
47 | * duration using the Short Time Fourier Transform. |
48 | * |
49 | * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5 |
50 | * (one octave down) and 2. (one octave up). A value of exactly 1 does not change |
51 | * the pitch. numSampsToProcess tells the routine how many samples in indata[0... |
52 | * numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ... |
53 | * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the |
54 | * data in-place). fftFrameSize defines the FFT frame size used for the |
55 | * processing. Typical values are 1024, 2048 and 4096. It may be any value <= |
56 | * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT |
57 | * oversampling factor which also determines the overlap between adjacent STFT |
58 | * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is |
59 | * recommended for best quality. sampleRate takes the sample rate for the signal |
60 | * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in |
61 | * indata[] should be in the range [-1.0, 1.0), which is also the output range |
62 | * for the data, make sure you scale the data accordingly (for 16bit signed integers |
63 | * you would have to divide (and multiply) by 32768). |
64 | * |
65 | * COPYRIGHT 1999-2015 Stephan M. Bernsee <s.bernsee [AT] zynaptiq [DOT] com> |
66 | * |
67 | * The Wide Open License (WOL) |
68 | * |
69 | * Permission to use, copy, modify, distribute and sell this software and its |
70 | * documentation for any purpose is hereby granted without fee, provided that |
71 | * the above copyright notice and this license appear in all source copies. |
72 | * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF |
73 | * ANY KIND. See https://dspguru.com/wide-open-license/ for more information. |
74 | * |
75 | *****************************************************************************/ |
76 | |
77 | void SMBPitchShift::PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata,int stride) { |
78 | |
79 | |
80 | /* |
81 | Routine smbPitchShift(). See top of file for explanation |
82 | Purpose: doing pitch shifting while maintaining duration using the Short |
83 | Time Fourier Transform. |
84 | Author: (c)1999-2015 Stephan M. Bernsee <s.bernsee [AT] zynaptiq [DOT] com> |
85 | */ |
86 | |
87 | double magn, phase, tmp, window, real, imag; |
88 | double freqPerBin, expct; |
89 | long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2; |
90 | |
91 | /* set up some handy variables */ |
92 | fftFrameSize2 = fftFrameSize/2; |
93 | stepSize = fftFrameSize/osamp; |
94 | freqPerBin = sampleRate/(double)fftFrameSize; |
95 | expct = 2.*Math_PI*(double)stepSize/(double)fftFrameSize; |
96 | inFifoLatency = fftFrameSize-stepSize; |
97 | if (gRover == 0) { gRover = inFifoLatency; |
98 | } |
99 | |
100 | /* initialize our static arrays */ |
101 | |
102 | /* main processing loop */ |
103 | for (i = 0; i < numSampsToProcess; i++){ |
104 | /* As long as we have not yet collected enough data just read in */ |
105 | gInFIFO[gRover] = indata[i*stride]; |
106 | outdata[i*stride] = gOutFIFO[gRover-inFifoLatency]; |
107 | gRover++; |
108 | |
109 | /* now we have enough data for processing */ |
110 | if (gRover >= fftFrameSize) { |
111 | gRover = inFifoLatency; |
112 | |
113 | /* do windowing and re,im interleave */ |
114 | for (k = 0; k < fftFrameSize;k++) { |
115 | window = -.5*cos(2.*Math_PI*(double)k/(double)fftFrameSize)+.5; |
116 | gFFTworksp[2*k] = gInFIFO[k] * window; |
117 | gFFTworksp[2*k+1] = 0.; |
118 | } |
119 | |
120 | |
121 | /* ***************** ANALYSIS ******************* */ |
122 | /* do transform */ |
123 | smbFft(gFFTworksp, fftFrameSize, -1); |
124 | |
125 | /* this is the analysis step */ |
126 | for (k = 0; k <= fftFrameSize2; k++) { |
127 | /* de-interlace FFT buffer */ |
128 | real = gFFTworksp[2*k]; |
129 | imag = gFFTworksp[2*k+1]; |
130 | |
131 | /* compute magnitude and phase */ |
132 | magn = 2.*sqrt(real*real + imag*imag); |
133 | phase = atan2(imag,real); |
134 | |
135 | /* compute phase difference */ |
136 | tmp = phase - gLastPhase[k]; |
137 | gLastPhase[k] = phase; |
138 | |
139 | /* subtract expected phase difference */ |
140 | tmp -= (double)k*expct; |
141 | |
142 | /* map delta phase into +/- Pi interval */ |
143 | qpd = tmp/Math_PI; |
144 | if (qpd >= 0) { qpd += qpd&1; |
145 | } else { qpd -= qpd&1; |
146 | } |
147 | tmp -= Math_PI*(double)qpd; |
148 | |
149 | /* get deviation from bin frequency from the +/- Pi interval */ |
150 | tmp = osamp*tmp/(2.*Math_PI); |
151 | |
152 | /* compute the k-th partials' true frequency */ |
153 | tmp = (double)k*freqPerBin + tmp*freqPerBin; |
154 | |
155 | /* store magnitude and true frequency in analysis arrays */ |
156 | gAnaMagn[k] = magn; |
157 | gAnaFreq[k] = tmp; |
158 | |
159 | } |
160 | |
161 | /* ***************** PROCESSING ******************* */ |
162 | /* this does the actual pitch shifting */ |
163 | memset(gSynMagn, 0, fftFrameSize*sizeof(float)); |
164 | memset(gSynFreq, 0, fftFrameSize*sizeof(float)); |
165 | for (k = 0; k <= fftFrameSize2; k++) { |
166 | index = k*pitchShift; |
167 | if (index <= fftFrameSize2) { |
168 | gSynMagn[index] += gAnaMagn[k]; |
169 | gSynFreq[index] = gAnaFreq[k] * pitchShift; |
170 | } |
171 | } |
172 | |
173 | /* ***************** SYNTHESIS ******************* */ |
174 | /* this is the synthesis step */ |
175 | for (k = 0; k <= fftFrameSize2; k++) { |
176 | /* get magnitude and true frequency from synthesis arrays */ |
177 | magn = gSynMagn[k]; |
178 | tmp = gSynFreq[k]; |
179 | |
180 | /* subtract bin mid frequency */ |
181 | tmp -= (double)k*freqPerBin; |
182 | |
183 | /* get bin deviation from freq deviation */ |
184 | tmp /= freqPerBin; |
185 | |
186 | /* take osamp into account */ |
187 | tmp = 2.*Math_PI*tmp/osamp; |
188 | |
189 | /* add the overlap phase advance back in */ |
190 | tmp += (double)k*expct; |
191 | |
192 | /* accumulate delta phase to get bin phase */ |
193 | gSumPhase[k] += tmp; |
194 | phase = gSumPhase[k]; |
195 | |
196 | /* get real and imag part and re-interleave */ |
197 | gFFTworksp[2*k] = magn*cos(phase); |
198 | gFFTworksp[2*k+1] = magn*sin(phase); |
199 | } |
200 | |
201 | /* zero negative frequencies */ |
202 | for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) { gFFTworksp[k] = 0.; |
203 | } |
204 | |
205 | /* do inverse transform */ |
206 | smbFft(gFFTworksp, fftFrameSize, 1); |
207 | |
208 | /* do windowing and add to output accumulator */ |
209 | for(k=0; k < fftFrameSize; k++) { |
210 | window = -.5*cos(2.*Math_PI*(double)k/(double)fftFrameSize)+.5; |
211 | gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp); |
212 | } |
213 | for (k = 0; k < stepSize; k++) { gOutFIFO[k] = gOutputAccum[k]; |
214 | } |
215 | |
216 | /* shift accumulator */ |
217 | memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float)); |
218 | |
219 | /* move input FIFO */ |
220 | for (k = 0; k < inFifoLatency; k++) { gInFIFO[k] = gInFIFO[k+stepSize]; |
221 | } |
222 | } |
223 | } |
224 | } |
225 | |
226 | |
227 | |
228 | void SMBPitchShift::smbFft(float *fftBuffer, long fftFrameSize, long sign) |
229 | /* |
230 | FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse) |
231 | Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the |
232 | time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes |
233 | and returns the cosine and sine parts in an interleaved manner, ie. |
234 | fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize |
235 | must be a power of 2. It expects a complex input signal (see footnote 2), |
236 | ie. when working with 'common' audio signals our input signal has to be |
237 | passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform |
238 | of the frequencies of interest is in fftBuffer[0...fftFrameSize]. |
239 | */ |
240 | { |
241 | float wr, wi, arg, *p1, *p2, temp; |
242 | float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i; |
243 | long i, bitm, j, le, le2, k; |
244 | |
245 | for (i = 2; i < 2*fftFrameSize-2; i += 2) { |
246 | for (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) { |
247 | if (i & bitm) { j++; |
248 | } |
249 | j <<= 1; |
250 | } |
251 | if (i < j) { |
252 | p1 = fftBuffer+i; p2 = fftBuffer+j; |
253 | temp = *p1; *(p1++) = *p2; |
254 | *(p2++) = temp; temp = *p1; |
255 | *p1 = *p2; *p2 = temp; |
256 | } |
257 | } |
258 | for (k = 0, le = 2; k < (long)(log((double)fftFrameSize)/log(2.)+.5); k++) { |
259 | le <<= 1; |
260 | le2 = le>>1; |
261 | ur = 1.0; |
262 | ui = 0.0; |
263 | arg = Math_PI / (le2>>1); |
264 | wr = cos(arg); |
265 | wi = sign*sin(arg); |
266 | for (j = 0; j < le2; j += 2) { |
267 | p1r = fftBuffer+j; p1i = p1r+1; |
268 | p2r = p1r+le2; p2i = p2r+1; |
269 | for (i = j; i < 2*fftFrameSize; i += le) { |
270 | tr = *p2r * ur - *p2i * ui; |
271 | ti = *p2r * ui + *p2i * ur; |
272 | *p2r = *p1r - tr; *p2i = *p1i - ti; |
273 | *p1r += tr; *p1i += ti; |
274 | p1r += le; p1i += le; |
275 | p2r += le; p2i += le; |
276 | } |
277 | tr = ur*wr - ui*wi; |
278 | ui = ur*wi + ui*wr; |
279 | ur = tr; |
280 | } |
281 | } |
282 | } |
283 | |
284 | |
285 | /* Godot code again */ |
286 | /* clang-format on */ |
287 | |
288 | void AudioEffectPitchShiftInstance::process(const AudioFrame *p_src_frames, AudioFrame *p_dst_frames, int p_frame_count) { |
289 | float sample_rate = AudioServer::get_singleton()->get_mix_rate(); |
290 | |
291 | float *in_l = (float *)p_src_frames; |
292 | float *in_r = in_l + 1; |
293 | |
294 | float *out_l = (float *)p_dst_frames; |
295 | float *out_r = out_l + 1; |
296 | |
297 | shift_l.PitchShift(base->pitch_scale, p_frame_count, fft_size, base->oversampling, sample_rate, in_l, out_l, 2); |
298 | shift_r.PitchShift(base->pitch_scale, p_frame_count, fft_size, base->oversampling, sample_rate, in_r, out_r, 2); |
299 | } |
300 | |
301 | Ref<AudioEffectInstance> AudioEffectPitchShift::instantiate() { |
302 | Ref<AudioEffectPitchShiftInstance> ins; |
303 | ins.instantiate(); |
304 | ins->base = Ref<AudioEffectPitchShift>(this); |
305 | static const int fft_sizes[FFT_SIZE_MAX] = { 256, 512, 1024, 2048, 4096 }; |
306 | ins->fft_size = fft_sizes[fft_size]; |
307 | |
308 | return ins; |
309 | } |
310 | |
311 | void AudioEffectPitchShift::set_pitch_scale(float p_pitch_scale) { |
312 | ERR_FAIL_COND(!(p_pitch_scale > 0.0)); |
313 | pitch_scale = p_pitch_scale; |
314 | } |
315 | |
316 | float AudioEffectPitchShift::get_pitch_scale() const { |
317 | return pitch_scale; |
318 | } |
319 | |
320 | void AudioEffectPitchShift::set_oversampling(int p_oversampling) { |
321 | ERR_FAIL_COND(p_oversampling < 4); |
322 | oversampling = p_oversampling; |
323 | } |
324 | |
325 | int AudioEffectPitchShift::get_oversampling() const { |
326 | return oversampling; |
327 | } |
328 | |
329 | void AudioEffectPitchShift::set_fft_size(FFTSize p_fft_size) { |
330 | ERR_FAIL_INDEX(p_fft_size, FFT_SIZE_MAX); |
331 | fft_size = p_fft_size; |
332 | } |
333 | |
334 | AudioEffectPitchShift::FFTSize AudioEffectPitchShift::get_fft_size() const { |
335 | return fft_size; |
336 | } |
337 | |
338 | void AudioEffectPitchShift::_bind_methods() { |
339 | ClassDB::bind_method(D_METHOD("set_pitch_scale" , "rate" ), &AudioEffectPitchShift::set_pitch_scale); |
340 | ClassDB::bind_method(D_METHOD("get_pitch_scale" ), &AudioEffectPitchShift::get_pitch_scale); |
341 | |
342 | ClassDB::bind_method(D_METHOD("set_oversampling" , "amount" ), &AudioEffectPitchShift::set_oversampling); |
343 | ClassDB::bind_method(D_METHOD("get_oversampling" ), &AudioEffectPitchShift::get_oversampling); |
344 | |
345 | ClassDB::bind_method(D_METHOD("set_fft_size" , "size" ), &AudioEffectPitchShift::set_fft_size); |
346 | ClassDB::bind_method(D_METHOD("get_fft_size" ), &AudioEffectPitchShift::get_fft_size); |
347 | |
348 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "pitch_scale" , PROPERTY_HINT_RANGE, "0.01,16,0.01" ), "set_pitch_scale" , "get_pitch_scale" ); |
349 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "oversampling" , PROPERTY_HINT_RANGE, "4,32,1" ), "set_oversampling" , "get_oversampling" ); |
350 | ADD_PROPERTY(PropertyInfo(Variant::INT, "fft_size" , PROPERTY_HINT_ENUM, "256,512,1024,2048,4096" ), "set_fft_size" , "get_fft_size" ); |
351 | |
352 | BIND_ENUM_CONSTANT(FFT_SIZE_256); |
353 | BIND_ENUM_CONSTANT(FFT_SIZE_512); |
354 | BIND_ENUM_CONSTANT(FFT_SIZE_1024); |
355 | BIND_ENUM_CONSTANT(FFT_SIZE_2048); |
356 | BIND_ENUM_CONSTANT(FFT_SIZE_4096); |
357 | BIND_ENUM_CONSTANT(FFT_SIZE_MAX); |
358 | } |
359 | |
360 | AudioEffectPitchShift::AudioEffectPitchShift() { |
361 | pitch_scale = 1.0; |
362 | oversampling = 4; |
363 | fft_size = FFT_SIZE_2048; |
364 | wet = 0.0; |
365 | dry = 0.0; |
366 | filter = false; |
367 | } |
368 | |