1 | /**************************************************************************/ |
2 | /* godot_collision_solver_2d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "godot_collision_solver_2d.h" |
32 | #include "godot_collision_solver_2d_sat.h" |
33 | |
34 | #define collision_solver sat_2d_calculate_penetration |
35 | //#define collision_solver gjk_epa_calculate_penetration |
36 | |
37 | bool GodotCollisionSolver2D::solve_static_world_boundary(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { |
38 | const GodotWorldBoundaryShape2D *world_boundary = static_cast<const GodotWorldBoundaryShape2D *>(p_shape_A); |
39 | if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) { |
40 | return false; |
41 | } |
42 | |
43 | Vector2 n = p_transform_A.basis_xform(world_boundary->get_normal()).normalized(); |
44 | Vector2 p = p_transform_A.xform(world_boundary->get_normal() * world_boundary->get_d()); |
45 | real_t d = n.dot(p); |
46 | |
47 | Vector2 supports[2]; |
48 | int support_count; |
49 | |
50 | p_shape_B->get_supports(p_transform_B.affine_inverse().basis_xform(-n).normalized(), supports, support_count); |
51 | |
52 | bool found = false; |
53 | |
54 | for (int i = 0; i < support_count; i++) { |
55 | supports[i] += p_margin * supports[i].normalized(); |
56 | supports[i] = p_transform_B.xform(supports[i]); |
57 | supports[i] += p_motion_B; |
58 | real_t pd = n.dot(supports[i]); |
59 | if (pd >= d) { |
60 | continue; |
61 | } |
62 | found = true; |
63 | |
64 | Vector2 support_A = supports[i] - n * (pd - d); |
65 | |
66 | if (p_result_callback) { |
67 | if (p_swap_result) { |
68 | p_result_callback(supports[i], support_A, p_userdata); |
69 | } else { |
70 | p_result_callback(support_A, supports[i], p_userdata); |
71 | } |
72 | } |
73 | } |
74 | |
75 | return found; |
76 | } |
77 | |
78 | bool GodotCollisionSolver2D::solve_separation_ray(const GodotShape2D *p_shape_A, const Vector2 &p_motion_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin) { |
79 | const GodotSeparationRayShape2D *ray = static_cast<const GodotSeparationRayShape2D *>(p_shape_A); |
80 | if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_SEPARATION_RAY) { |
81 | return false; |
82 | } |
83 | |
84 | Vector2 from = p_transform_A.get_origin(); |
85 | Vector2 to = from + p_transform_A[1] * (ray->get_length() + p_margin); |
86 | if (p_motion_A != Vector2()) { |
87 | //not the best but should be enough |
88 | Vector2 normal = (to - from).normalized(); |
89 | to += normal * MAX(0.0, normal.dot(p_motion_A)); |
90 | } |
91 | Vector2 support_A = to; |
92 | |
93 | Transform2D invb = p_transform_B.affine_inverse(); |
94 | from = invb.xform(from); |
95 | to = invb.xform(to); |
96 | |
97 | Vector2 p, n; |
98 | if (!p_shape_B->intersect_segment(from, to, p, n)) { |
99 | if (r_sep_axis) { |
100 | *r_sep_axis = p_transform_A[1].normalized(); |
101 | } |
102 | return false; |
103 | } |
104 | |
105 | // Discard contacts when the ray is fully contained inside the shape. |
106 | if (n == Vector2()) { |
107 | if (r_sep_axis) { |
108 | *r_sep_axis = p_transform_A[1].normalized(); |
109 | } |
110 | return false; |
111 | } |
112 | |
113 | // Discard contacts in the wrong direction. |
114 | if (n.dot(from - to) < CMP_EPSILON) { |
115 | if (r_sep_axis) { |
116 | *r_sep_axis = p_transform_A[1].normalized(); |
117 | } |
118 | return false; |
119 | } |
120 | |
121 | Vector2 support_B = p_transform_B.xform(p); |
122 | if (ray->get_slide_on_slope()) { |
123 | Vector2 global_n = invb.basis_xform_inv(n).normalized(); |
124 | support_B = support_A + (support_B - support_A).length() * global_n; |
125 | } |
126 | |
127 | if (p_result_callback) { |
128 | if (p_swap_result) { |
129 | p_result_callback(support_B, support_A, p_userdata); |
130 | } else { |
131 | p_result_callback(support_A, support_B, p_userdata); |
132 | } |
133 | } |
134 | return true; |
135 | } |
136 | |
137 | struct _ConcaveCollisionInfo2D { |
138 | const Transform2D *transform_A = nullptr; |
139 | const GodotShape2D *shape_A = nullptr; |
140 | const Transform2D *transform_B = nullptr; |
141 | Vector2 motion_A; |
142 | Vector2 motion_B; |
143 | real_t margin_A = 0.0; |
144 | real_t margin_B = 0.0; |
145 | GodotCollisionSolver2D::CallbackResult result_callback = nullptr; |
146 | void *userdata = nullptr; |
147 | bool swap_result = false; |
148 | bool collided = false; |
149 | int aabb_tests = 0; |
150 | int collisions = 0; |
151 | Vector2 *sep_axis = nullptr; |
152 | }; |
153 | |
154 | bool GodotCollisionSolver2D::concave_callback(void *p_userdata, GodotShape2D *p_convex) { |
155 | _ConcaveCollisionInfo2D &cinfo = *(static_cast<_ConcaveCollisionInfo2D *>(p_userdata)); |
156 | cinfo.aabb_tests++; |
157 | |
158 | bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex, *cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, cinfo.sep_axis, cinfo.margin_A, cinfo.margin_B); |
159 | if (!collided) { |
160 | return false; |
161 | } |
162 | |
163 | cinfo.collided = true; |
164 | cinfo.collisions++; |
165 | |
166 | // Stop at first collision if contacts are not needed. |
167 | return !cinfo.result_callback; |
168 | } |
169 | |
170 | bool GodotCollisionSolver2D::solve_concave(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { |
171 | const GodotConcaveShape2D *concave_B = static_cast<const GodotConcaveShape2D *>(p_shape_B); |
172 | |
173 | _ConcaveCollisionInfo2D cinfo; |
174 | cinfo.transform_A = &p_transform_A; |
175 | cinfo.shape_A = p_shape_A; |
176 | cinfo.transform_B = &p_transform_B; |
177 | cinfo.motion_A = p_motion_A; |
178 | cinfo.result_callback = p_result_callback; |
179 | cinfo.userdata = p_userdata; |
180 | cinfo.swap_result = p_swap_result; |
181 | cinfo.collided = false; |
182 | cinfo.collisions = 0; |
183 | cinfo.sep_axis = r_sep_axis; |
184 | cinfo.margin_A = p_margin_A; |
185 | cinfo.margin_B = p_margin_B; |
186 | |
187 | cinfo.aabb_tests = 0; |
188 | |
189 | Transform2D rel_transform = p_transform_A; |
190 | rel_transform.columns[2] -= p_transform_B.get_origin(); |
191 | |
192 | //quickly compute a local Rect2 |
193 | |
194 | Rect2 local_aabb; |
195 | for (int i = 0; i < 2; i++) { |
196 | Vector2 axis(p_transform_B.columns[i]); |
197 | real_t axis_scale = 1.0 / axis.length(); |
198 | axis *= axis_scale; |
199 | |
200 | real_t smin = 0.0, smax = 0.0; |
201 | p_shape_A->project_rangev(axis, rel_transform, smin, smax); |
202 | smin *= axis_scale; |
203 | smax *= axis_scale; |
204 | |
205 | local_aabb.position[i] = smin; |
206 | local_aabb.size[i] = smax - smin; |
207 | } |
208 | |
209 | concave_B->cull(local_aabb, concave_callback, &cinfo); |
210 | |
211 | return cinfo.collided; |
212 | } |
213 | |
214 | bool GodotCollisionSolver2D::solve(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { |
215 | PhysicsServer2D::ShapeType type_A = p_shape_A->get_type(); |
216 | PhysicsServer2D::ShapeType type_B = p_shape_B->get_type(); |
217 | bool concave_A = p_shape_A->is_concave(); |
218 | bool concave_B = p_shape_B->is_concave(); |
219 | real_t margin_A = p_margin_A, margin_B = p_margin_B; |
220 | |
221 | bool swap = false; |
222 | |
223 | if (type_A > type_B) { |
224 | SWAP(type_A, type_B); |
225 | SWAP(concave_A, concave_B); |
226 | SWAP(margin_A, margin_B); |
227 | swap = true; |
228 | } |
229 | |
230 | if (type_A == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) { |
231 | if (type_B == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) { |
232 | WARN_PRINT_ONCE("Collisions between world boundaries are not supported." ); |
233 | return false; |
234 | } |
235 | |
236 | if (swap) { |
237 | return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, p_margin_A); |
238 | } else { |
239 | return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, p_margin_B); |
240 | } |
241 | |
242 | } else if (type_A == PhysicsServer2D::SHAPE_SEPARATION_RAY) { |
243 | if (type_B == PhysicsServer2D::SHAPE_SEPARATION_RAY) { |
244 | WARN_PRINT_ONCE("Collisions between two rays are not supported." ); |
245 | return false; //no ray-ray |
246 | } |
247 | |
248 | if (swap) { |
249 | return solve_separation_ray(p_shape_B, p_motion_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, r_sep_axis, p_margin_B); |
250 | } else { |
251 | return solve_separation_ray(p_shape_A, p_motion_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A); |
252 | } |
253 | |
254 | } else if (concave_B) { |
255 | if (concave_A) { |
256 | WARN_PRINT_ONCE("Collisions between two concave shapes are not supported." ); |
257 | return false; |
258 | } |
259 | |
260 | if (!swap) { |
261 | return solve_concave(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B); |
262 | } else { |
263 | return solve_concave(p_shape_B, p_transform_B, p_motion_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, r_sep_axis, margin_A, margin_B); |
264 | } |
265 | |
266 | } else { |
267 | return collision_solver(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B); |
268 | } |
269 | } |
270 | |