| 1 | /**************************************************************************/ |
| 2 | /* godot_collision_solver_2d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "godot_collision_solver_2d.h" |
| 32 | #include "godot_collision_solver_2d_sat.h" |
| 33 | |
| 34 | #define collision_solver sat_2d_calculate_penetration |
| 35 | //#define collision_solver gjk_epa_calculate_penetration |
| 36 | |
| 37 | bool GodotCollisionSolver2D::solve_static_world_boundary(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { |
| 38 | const GodotWorldBoundaryShape2D *world_boundary = static_cast<const GodotWorldBoundaryShape2D *>(p_shape_A); |
| 39 | if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) { |
| 40 | return false; |
| 41 | } |
| 42 | |
| 43 | Vector2 n = p_transform_A.basis_xform(world_boundary->get_normal()).normalized(); |
| 44 | Vector2 p = p_transform_A.xform(world_boundary->get_normal() * world_boundary->get_d()); |
| 45 | real_t d = n.dot(p); |
| 46 | |
| 47 | Vector2 supports[2]; |
| 48 | int support_count; |
| 49 | |
| 50 | p_shape_B->get_supports(p_transform_B.affine_inverse().basis_xform(-n).normalized(), supports, support_count); |
| 51 | |
| 52 | bool found = false; |
| 53 | |
| 54 | for (int i = 0; i < support_count; i++) { |
| 55 | supports[i] += p_margin * supports[i].normalized(); |
| 56 | supports[i] = p_transform_B.xform(supports[i]); |
| 57 | supports[i] += p_motion_B; |
| 58 | real_t pd = n.dot(supports[i]); |
| 59 | if (pd >= d) { |
| 60 | continue; |
| 61 | } |
| 62 | found = true; |
| 63 | |
| 64 | Vector2 support_A = supports[i] - n * (pd - d); |
| 65 | |
| 66 | if (p_result_callback) { |
| 67 | if (p_swap_result) { |
| 68 | p_result_callback(supports[i], support_A, p_userdata); |
| 69 | } else { |
| 70 | p_result_callback(support_A, supports[i], p_userdata); |
| 71 | } |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | return found; |
| 76 | } |
| 77 | |
| 78 | bool GodotCollisionSolver2D::solve_separation_ray(const GodotShape2D *p_shape_A, const Vector2 &p_motion_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin) { |
| 79 | const GodotSeparationRayShape2D *ray = static_cast<const GodotSeparationRayShape2D *>(p_shape_A); |
| 80 | if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_SEPARATION_RAY) { |
| 81 | return false; |
| 82 | } |
| 83 | |
| 84 | Vector2 from = p_transform_A.get_origin(); |
| 85 | Vector2 to = from + p_transform_A[1] * (ray->get_length() + p_margin); |
| 86 | if (p_motion_A != Vector2()) { |
| 87 | //not the best but should be enough |
| 88 | Vector2 normal = (to - from).normalized(); |
| 89 | to += normal * MAX(0.0, normal.dot(p_motion_A)); |
| 90 | } |
| 91 | Vector2 support_A = to; |
| 92 | |
| 93 | Transform2D invb = p_transform_B.affine_inverse(); |
| 94 | from = invb.xform(from); |
| 95 | to = invb.xform(to); |
| 96 | |
| 97 | Vector2 p, n; |
| 98 | if (!p_shape_B->intersect_segment(from, to, p, n)) { |
| 99 | if (r_sep_axis) { |
| 100 | *r_sep_axis = p_transform_A[1].normalized(); |
| 101 | } |
| 102 | return false; |
| 103 | } |
| 104 | |
| 105 | // Discard contacts when the ray is fully contained inside the shape. |
| 106 | if (n == Vector2()) { |
| 107 | if (r_sep_axis) { |
| 108 | *r_sep_axis = p_transform_A[1].normalized(); |
| 109 | } |
| 110 | return false; |
| 111 | } |
| 112 | |
| 113 | // Discard contacts in the wrong direction. |
| 114 | if (n.dot(from - to) < CMP_EPSILON) { |
| 115 | if (r_sep_axis) { |
| 116 | *r_sep_axis = p_transform_A[1].normalized(); |
| 117 | } |
| 118 | return false; |
| 119 | } |
| 120 | |
| 121 | Vector2 support_B = p_transform_B.xform(p); |
| 122 | if (ray->get_slide_on_slope()) { |
| 123 | Vector2 global_n = invb.basis_xform_inv(n).normalized(); |
| 124 | support_B = support_A + (support_B - support_A).length() * global_n; |
| 125 | } |
| 126 | |
| 127 | if (p_result_callback) { |
| 128 | if (p_swap_result) { |
| 129 | p_result_callback(support_B, support_A, p_userdata); |
| 130 | } else { |
| 131 | p_result_callback(support_A, support_B, p_userdata); |
| 132 | } |
| 133 | } |
| 134 | return true; |
| 135 | } |
| 136 | |
| 137 | struct _ConcaveCollisionInfo2D { |
| 138 | const Transform2D *transform_A = nullptr; |
| 139 | const GodotShape2D *shape_A = nullptr; |
| 140 | const Transform2D *transform_B = nullptr; |
| 141 | Vector2 motion_A; |
| 142 | Vector2 motion_B; |
| 143 | real_t margin_A = 0.0; |
| 144 | real_t margin_B = 0.0; |
| 145 | GodotCollisionSolver2D::CallbackResult result_callback = nullptr; |
| 146 | void *userdata = nullptr; |
| 147 | bool swap_result = false; |
| 148 | bool collided = false; |
| 149 | int aabb_tests = 0; |
| 150 | int collisions = 0; |
| 151 | Vector2 *sep_axis = nullptr; |
| 152 | }; |
| 153 | |
| 154 | bool GodotCollisionSolver2D::concave_callback(void *p_userdata, GodotShape2D *p_convex) { |
| 155 | _ConcaveCollisionInfo2D &cinfo = *(static_cast<_ConcaveCollisionInfo2D *>(p_userdata)); |
| 156 | cinfo.aabb_tests++; |
| 157 | |
| 158 | bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex, *cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, cinfo.sep_axis, cinfo.margin_A, cinfo.margin_B); |
| 159 | if (!collided) { |
| 160 | return false; |
| 161 | } |
| 162 | |
| 163 | cinfo.collided = true; |
| 164 | cinfo.collisions++; |
| 165 | |
| 166 | // Stop at first collision if contacts are not needed. |
| 167 | return !cinfo.result_callback; |
| 168 | } |
| 169 | |
| 170 | bool GodotCollisionSolver2D::solve_concave(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { |
| 171 | const GodotConcaveShape2D *concave_B = static_cast<const GodotConcaveShape2D *>(p_shape_B); |
| 172 | |
| 173 | _ConcaveCollisionInfo2D cinfo; |
| 174 | cinfo.transform_A = &p_transform_A; |
| 175 | cinfo.shape_A = p_shape_A; |
| 176 | cinfo.transform_B = &p_transform_B; |
| 177 | cinfo.motion_A = p_motion_A; |
| 178 | cinfo.result_callback = p_result_callback; |
| 179 | cinfo.userdata = p_userdata; |
| 180 | cinfo.swap_result = p_swap_result; |
| 181 | cinfo.collided = false; |
| 182 | cinfo.collisions = 0; |
| 183 | cinfo.sep_axis = r_sep_axis; |
| 184 | cinfo.margin_A = p_margin_A; |
| 185 | cinfo.margin_B = p_margin_B; |
| 186 | |
| 187 | cinfo.aabb_tests = 0; |
| 188 | |
| 189 | Transform2D rel_transform = p_transform_A; |
| 190 | rel_transform.columns[2] -= p_transform_B.get_origin(); |
| 191 | |
| 192 | //quickly compute a local Rect2 |
| 193 | |
| 194 | Rect2 local_aabb; |
| 195 | for (int i = 0; i < 2; i++) { |
| 196 | Vector2 axis(p_transform_B.columns[i]); |
| 197 | real_t axis_scale = 1.0 / axis.length(); |
| 198 | axis *= axis_scale; |
| 199 | |
| 200 | real_t smin = 0.0, smax = 0.0; |
| 201 | p_shape_A->project_rangev(axis, rel_transform, smin, smax); |
| 202 | smin *= axis_scale; |
| 203 | smax *= axis_scale; |
| 204 | |
| 205 | local_aabb.position[i] = smin; |
| 206 | local_aabb.size[i] = smax - smin; |
| 207 | } |
| 208 | |
| 209 | concave_B->cull(local_aabb, concave_callback, &cinfo); |
| 210 | |
| 211 | return cinfo.collided; |
| 212 | } |
| 213 | |
| 214 | bool GodotCollisionSolver2D::solve(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { |
| 215 | PhysicsServer2D::ShapeType type_A = p_shape_A->get_type(); |
| 216 | PhysicsServer2D::ShapeType type_B = p_shape_B->get_type(); |
| 217 | bool concave_A = p_shape_A->is_concave(); |
| 218 | bool concave_B = p_shape_B->is_concave(); |
| 219 | real_t margin_A = p_margin_A, margin_B = p_margin_B; |
| 220 | |
| 221 | bool swap = false; |
| 222 | |
| 223 | if (type_A > type_B) { |
| 224 | SWAP(type_A, type_B); |
| 225 | SWAP(concave_A, concave_B); |
| 226 | SWAP(margin_A, margin_B); |
| 227 | swap = true; |
| 228 | } |
| 229 | |
| 230 | if (type_A == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) { |
| 231 | if (type_B == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) { |
| 232 | WARN_PRINT_ONCE("Collisions between world boundaries are not supported." ); |
| 233 | return false; |
| 234 | } |
| 235 | |
| 236 | if (swap) { |
| 237 | return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, p_margin_A); |
| 238 | } else { |
| 239 | return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, p_margin_B); |
| 240 | } |
| 241 | |
| 242 | } else if (type_A == PhysicsServer2D::SHAPE_SEPARATION_RAY) { |
| 243 | if (type_B == PhysicsServer2D::SHAPE_SEPARATION_RAY) { |
| 244 | WARN_PRINT_ONCE("Collisions between two rays are not supported." ); |
| 245 | return false; //no ray-ray |
| 246 | } |
| 247 | |
| 248 | if (swap) { |
| 249 | return solve_separation_ray(p_shape_B, p_motion_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, r_sep_axis, p_margin_B); |
| 250 | } else { |
| 251 | return solve_separation_ray(p_shape_A, p_motion_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A); |
| 252 | } |
| 253 | |
| 254 | } else if (concave_B) { |
| 255 | if (concave_A) { |
| 256 | WARN_PRINT_ONCE("Collisions between two concave shapes are not supported." ); |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | if (!swap) { |
| 261 | return solve_concave(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B); |
| 262 | } else { |
| 263 | return solve_concave(p_shape_B, p_transform_B, p_motion_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, r_sep_axis, margin_A, margin_B); |
| 264 | } |
| 265 | |
| 266 | } else { |
| 267 | return collision_solver(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B); |
| 268 | } |
| 269 | } |
| 270 | |