| 1 | /**************************************************************************/ | 
| 2 | /*  godot_generic_6dof_joint_3d.cpp                                       */ | 
| 3 | /**************************************************************************/ | 
| 4 | /*                         This file is part of:                          */ | 
| 5 | /*                             GODOT ENGINE                               */ | 
| 6 | /*                        https://godotengine.org                         */ | 
| 7 | /**************************************************************************/ | 
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ | 
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */ | 
| 10 | /*                                                                        */ | 
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining  */ | 
| 12 | /* a copy of this software and associated documentation files (the        */ | 
| 13 | /* "Software"), to deal in the Software without restriction, including    */ | 
| 14 | /* without limitation the rights to use, copy, modify, merge, publish,    */ | 
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to     */ | 
| 16 | /* permit persons to whom the Software is furnished to do so, subject to  */ | 
| 17 | /* the following conditions:                                              */ | 
| 18 | /*                                                                        */ | 
| 19 | /* The above copyright notice and this permission notice shall be         */ | 
| 20 | /* included in all copies or substantial portions of the Software.        */ | 
| 21 | /*                                                                        */ | 
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */ | 
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */ | 
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ | 
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */ | 
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */ | 
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */ | 
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */ | 
| 29 | /**************************************************************************/ | 
| 30 |  | 
| 31 | /* | 
| 32 | Adapted to Godot from the Bullet library. | 
| 33 | */ | 
| 34 |  | 
| 35 | /* | 
| 36 | Bullet Continuous Collision Detection and Physics Library | 
| 37 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
| 38 |  | 
| 39 | This software is provided 'as-is', without any express or implied warranty. | 
| 40 | In no event will the authors be held liable for any damages arising from the use of this software. | 
| 41 | Permission is granted to anyone to use this software for any purpose, | 
| 42 | including commercial applications, and to alter it and redistribute it freely, | 
| 43 | subject to the following restrictions: | 
| 44 |  | 
| 45 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
| 46 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
| 47 | 3. This notice may not be removed or altered from any source distribution. | 
| 48 | */ | 
| 49 |  | 
| 50 | /* | 
| 51 | 2007-09-09 | 
| 52 | GodotGeneric6DOFJoint3D Refactored by Francisco Le?n | 
| 53 | email: projectileman@yahoo.com | 
| 54 | http://gimpact.sf.net | 
| 55 | */ | 
| 56 |  | 
| 57 | #include "godot_generic_6dof_joint_3d.h" | 
| 58 |  | 
| 59 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 | 
| 60 |  | 
| 61 | //////////////////////////// GodotG6DOFRotationalLimitMotor3D //////////////////////////////////// | 
| 62 |  | 
| 63 | int GodotG6DOFRotationalLimitMotor3D::testLimitValue(real_t test_value) { | 
| 64 | 	if (m_loLimit > m_hiLimit) { | 
| 65 | 		m_currentLimit = 0; //Free from violation | 
| 66 | 		return 0; | 
| 67 | 	} | 
| 68 |  | 
| 69 | 	if (test_value < m_loLimit) { | 
| 70 | 		m_currentLimit = 1; //low limit violation | 
| 71 | 		m_currentLimitError = test_value - m_loLimit; | 
| 72 | 		return 1; | 
| 73 | 	} else if (test_value > m_hiLimit) { | 
| 74 | 		m_currentLimit = 2; //High limit violation | 
| 75 | 		m_currentLimitError = test_value - m_hiLimit; | 
| 76 | 		return 2; | 
| 77 | 	}; | 
| 78 |  | 
| 79 | 	m_currentLimit = 0; //Free from violation | 
| 80 | 	return 0; | 
| 81 | } | 
| 82 |  | 
| 83 | real_t GodotG6DOFRotationalLimitMotor3D::solveAngularLimits( | 
| 84 | 		real_t timeStep, Vector3 &axis, real_t jacDiagABInv, | 
| 85 | 		GodotBody3D *body0, GodotBody3D *body1, bool p_body0_dynamic, bool p_body1_dynamic) { | 
| 86 | 	if (!needApplyTorques()) { | 
| 87 | 		return 0.0f; | 
| 88 | 	} | 
| 89 |  | 
| 90 | 	real_t target_velocity = m_targetVelocity; | 
| 91 | 	real_t maxMotorForce = m_maxMotorForce; | 
| 92 |  | 
| 93 | 	//current error correction | 
| 94 | 	if (m_currentLimit != 0) { | 
| 95 | 		target_velocity = -m_ERP * m_currentLimitError / (timeStep); | 
| 96 | 		maxMotorForce = m_maxLimitForce; | 
| 97 | 	} | 
| 98 |  | 
| 99 | 	maxMotorForce *= timeStep; | 
| 100 |  | 
| 101 | 	// current velocity difference | 
| 102 | 	Vector3 vel_diff = body0->get_angular_velocity(); | 
| 103 | 	if (body1) { | 
| 104 | 		vel_diff -= body1->get_angular_velocity(); | 
| 105 | 	} | 
| 106 |  | 
| 107 | 	real_t rel_vel = axis.dot(vel_diff); | 
| 108 |  | 
| 109 | 	// correction velocity | 
| 110 | 	real_t motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel); | 
| 111 |  | 
| 112 | 	if (Math::is_zero_approx(motor_relvel)) { | 
| 113 | 		return 0.0f; //no need for applying force | 
| 114 | 	} | 
| 115 |  | 
| 116 | 	// correction impulse | 
| 117 | 	real_t unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv; | 
| 118 |  | 
| 119 | 	// clip correction impulse | 
| 120 | 	real_t clippedMotorImpulse; | 
| 121 |  | 
| 122 | 	///@todo: should clip against accumulated impulse | 
| 123 | 	if (unclippedMotorImpulse > 0.0f) { | 
| 124 | 		clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse; | 
| 125 | 	} else { | 
| 126 | 		clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse; | 
| 127 | 	} | 
| 128 |  | 
| 129 | 	// sort with accumulated impulses | 
| 130 | 	real_t lo = real_t(-1e30); | 
| 131 | 	real_t hi = real_t(1e30); | 
| 132 |  | 
| 133 | 	real_t oldaccumImpulse = m_accumulatedImpulse; | 
| 134 | 	real_t sum = oldaccumImpulse + clippedMotorImpulse; | 
| 135 | 	m_accumulatedImpulse = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum); | 
| 136 |  | 
| 137 | 	clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; | 
| 138 |  | 
| 139 | 	Vector3 motorImp = clippedMotorImpulse * axis; | 
| 140 |  | 
| 141 | 	if (p_body0_dynamic) { | 
| 142 | 		body0->apply_torque_impulse(motorImp); | 
| 143 | 	} | 
| 144 | 	if (body1 && p_body1_dynamic) { | 
| 145 | 		body1->apply_torque_impulse(-motorImp); | 
| 146 | 	} | 
| 147 |  | 
| 148 | 	return clippedMotorImpulse; | 
| 149 | } | 
| 150 |  | 
| 151 | //////////////////////////// GodotG6DOFTranslationalLimitMotor3D //////////////////////////////////// | 
| 152 |  | 
| 153 | real_t GodotG6DOFTranslationalLimitMotor3D::solveLinearAxis( | 
| 154 | 		real_t timeStep, | 
| 155 | 		real_t jacDiagABInv, | 
| 156 | 		GodotBody3D *body1, const Vector3 &pointInA, | 
| 157 | 		GodotBody3D *body2, const Vector3 &pointInB, | 
| 158 | 		bool p_body1_dynamic, bool p_body2_dynamic, | 
| 159 | 		int limit_index, | 
| 160 | 		const Vector3 &axis_normal_on_a, | 
| 161 | 		const Vector3 &anchorPos) { | 
| 162 | 	///find relative velocity | 
| 163 | 	//    Vector3 rel_pos1 = pointInA - body1->get_transform().origin; | 
| 164 | 	//    Vector3 rel_pos2 = pointInB - body2->get_transform().origin; | 
| 165 | 	Vector3 rel_pos1 = anchorPos - body1->get_transform().origin; | 
| 166 | 	Vector3 rel_pos2 = anchorPos - body2->get_transform().origin; | 
| 167 |  | 
| 168 | 	Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1); | 
| 169 | 	Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2); | 
| 170 | 	Vector3 vel = vel1 - vel2; | 
| 171 |  | 
| 172 | 	real_t rel_vel = axis_normal_on_a.dot(vel); | 
| 173 |  | 
| 174 | 	/// apply displacement correction | 
| 175 |  | 
| 176 | 	//positional error (zeroth order error) | 
| 177 | 	real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a); | 
| 178 | 	real_t lo = real_t(-1e30); | 
| 179 | 	real_t hi = real_t(1e30); | 
| 180 |  | 
| 181 | 	real_t minLimit = m_lowerLimit[limit_index]; | 
| 182 | 	real_t maxLimit = m_upperLimit[limit_index]; | 
| 183 |  | 
| 184 | 	//handle the limits | 
| 185 | 	if (minLimit < maxLimit) { | 
| 186 | 		{ | 
| 187 | 			if (depth > maxLimit) { | 
| 188 | 				depth -= maxLimit; | 
| 189 | 				lo = real_t(0.); | 
| 190 |  | 
| 191 | 			} else { | 
| 192 | 				if (depth < minLimit) { | 
| 193 | 					depth -= minLimit; | 
| 194 | 					hi = real_t(0.); | 
| 195 | 				} else { | 
| 196 | 					return 0.0f; | 
| 197 | 				} | 
| 198 | 			} | 
| 199 | 		} | 
| 200 | 	} | 
| 201 |  | 
| 202 | 	real_t normalImpulse = m_limitSoftness[limit_index] * (m_restitution[limit_index] * depth / timeStep - m_damping[limit_index] * rel_vel) * jacDiagABInv; | 
| 203 |  | 
| 204 | 	real_t oldNormalImpulse = m_accumulatedImpulse[limit_index]; | 
| 205 | 	real_t sum = oldNormalImpulse + normalImpulse; | 
| 206 | 	m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum); | 
| 207 | 	normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; | 
| 208 |  | 
| 209 | 	Vector3 impulse_vector = axis_normal_on_a * normalImpulse; | 
| 210 | 	if (p_body1_dynamic) { | 
| 211 | 		body1->apply_impulse(impulse_vector, rel_pos1); | 
| 212 | 	} | 
| 213 | 	if (p_body2_dynamic) { | 
| 214 | 		body2->apply_impulse(-impulse_vector, rel_pos2); | 
| 215 | 	} | 
| 216 | 	return normalImpulse; | 
| 217 | } | 
| 218 |  | 
| 219 | //////////////////////////// GodotGeneric6DOFJoint3D //////////////////////////////////// | 
| 220 |  | 
| 221 | GodotGeneric6DOFJoint3D::GodotGeneric6DOFJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &frameInA, const Transform3D &frameInB, bool useLinearReferenceFrameA) : | 
| 222 | 		GodotJoint3D(_arr, 2), | 
| 223 | 		m_frameInA(frameInA), | 
| 224 | 		m_frameInB(frameInB), | 
| 225 | 		m_useLinearReferenceFrameA(useLinearReferenceFrameA) { | 
| 226 | 	A = rbA; | 
| 227 | 	B = rbB; | 
| 228 | 	A->add_constraint(this, 0); | 
| 229 | 	B->add_constraint(this, 1); | 
| 230 | } | 
| 231 |  | 
| 232 | void GodotGeneric6DOFJoint3D::calculateAngleInfo() { | 
| 233 | 	Basis relative_frame = m_calculatedTransformB.basis.inverse() * m_calculatedTransformA.basis; | 
| 234 |  | 
| 235 | 	m_calculatedAxisAngleDiff = relative_frame.get_euler(EulerOrder::XYZ); | 
| 236 |  | 
| 237 | 	// in euler angle mode we do not actually constrain the angular velocity | 
| 238 | 	// along the axes axis[0] and axis[2] (although we do use axis[1]) : | 
| 239 | 	// | 
| 240 | 	//    to get			constrain w2-w1 along		...not | 
| 241 | 	//    ------			---------------------		------ | 
| 242 | 	//    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0] | 
| 243 | 	//    d(angle[1])/dt = 0	ax[1] | 
| 244 | 	//    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2] | 
| 245 | 	// | 
| 246 | 	// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. | 
| 247 | 	// to prove the result for angle[0], write the expression for angle[0] from | 
| 248 | 	// GetInfo1 then take the derivative. to prove this for angle[2] it is | 
| 249 | 	// easier to take the euler rate expression for d(angle[2])/dt with respect | 
| 250 | 	// to the components of w and set that to 0. | 
| 251 |  | 
| 252 | 	Vector3 axis0 = m_calculatedTransformB.basis.get_column(0); | 
| 253 | 	Vector3 axis2 = m_calculatedTransformA.basis.get_column(2); | 
| 254 |  | 
| 255 | 	m_calculatedAxis[1] = axis2.cross(axis0); | 
| 256 | 	m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); | 
| 257 | 	m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); | 
| 258 |  | 
| 259 | 	/* | 
| 260 | 	if(m_debugDrawer) | 
| 261 | 	{ | 
| 262 | 		char buff[300]; | 
| 263 | 		sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ", | 
| 264 | 		m_calculatedAxisAngleDiff[0], | 
| 265 | 		m_calculatedAxisAngleDiff[1], | 
| 266 | 		m_calculatedAxisAngleDiff[2]); | 
| 267 | 		m_debugDrawer->reportErrorWarning(buff); | 
| 268 | 	} | 
| 269 | 	*/ | 
| 270 | } | 
| 271 |  | 
| 272 | void GodotGeneric6DOFJoint3D::calculateTransforms() { | 
| 273 | 	m_calculatedTransformA = A->get_transform() * m_frameInA; | 
| 274 | 	m_calculatedTransformB = B->get_transform() * m_frameInB; | 
| 275 |  | 
| 276 | 	calculateAngleInfo(); | 
| 277 | } | 
| 278 |  | 
| 279 | void GodotGeneric6DOFJoint3D::buildLinearJacobian( | 
| 280 | 		GodotJacobianEntry3D &jacLinear, const Vector3 &normalWorld, | 
| 281 | 		const Vector3 &pivotAInW, const Vector3 &pivotBInW) { | 
| 282 | 	memnew_placement( | 
| 283 | 			&jacLinear, | 
| 284 | 			GodotJacobianEntry3D( | 
| 285 | 					A->get_principal_inertia_axes().transposed(), | 
| 286 | 					B->get_principal_inertia_axes().transposed(), | 
| 287 | 					pivotAInW - A->get_transform().origin - A->get_center_of_mass(), | 
| 288 | 					pivotBInW - B->get_transform().origin - B->get_center_of_mass(), | 
| 289 | 					normalWorld, | 
| 290 | 					A->get_inv_inertia(), | 
| 291 | 					A->get_inv_mass(), | 
| 292 | 					B->get_inv_inertia(), | 
| 293 | 					B->get_inv_mass())); | 
| 294 | } | 
| 295 |  | 
| 296 | void GodotGeneric6DOFJoint3D::buildAngularJacobian( | 
| 297 | 		GodotJacobianEntry3D &jacAngular, const Vector3 &jointAxisW) { | 
| 298 | 	memnew_placement( | 
| 299 | 			&jacAngular, | 
| 300 | 			GodotJacobianEntry3D( | 
| 301 | 					jointAxisW, | 
| 302 | 					A->get_principal_inertia_axes().transposed(), | 
| 303 | 					B->get_principal_inertia_axes().transposed(), | 
| 304 | 					A->get_inv_inertia(), | 
| 305 | 					B->get_inv_inertia())); | 
| 306 | } | 
| 307 |  | 
| 308 | bool GodotGeneric6DOFJoint3D::testAngularLimitMotor(int axis_index) { | 
| 309 | 	real_t angle = m_calculatedAxisAngleDiff[axis_index]; | 
| 310 |  | 
| 311 | 	//test limits | 
| 312 | 	m_angularLimits[axis_index].testLimitValue(angle); | 
| 313 | 	return m_angularLimits[axis_index].needApplyTorques(); | 
| 314 | } | 
| 315 |  | 
| 316 | bool GodotGeneric6DOFJoint3D::setup(real_t p_timestep) { | 
| 317 | 	dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); | 
| 318 | 	dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); | 
| 319 |  | 
| 320 | 	if (!dynamic_A && !dynamic_B) { | 
| 321 | 		return false; | 
| 322 | 	} | 
| 323 |  | 
| 324 | 	// Clear accumulated impulses for the next simulation step | 
| 325 | 	m_linearLimits.m_accumulatedImpulse = Vector3(real_t(0.), real_t(0.), real_t(0.)); | 
| 326 | 	int i; | 
| 327 | 	for (i = 0; i < 3; i++) { | 
| 328 | 		m_angularLimits[i].m_accumulatedImpulse = real_t(0.); | 
| 329 | 	} | 
| 330 | 	//calculates transform | 
| 331 | 	calculateTransforms(); | 
| 332 |  | 
| 333 | 	//  const Vector3& pivotAInW = m_calculatedTransformA.origin; | 
| 334 | 	//  const Vector3& pivotBInW = m_calculatedTransformB.origin; | 
| 335 | 	calcAnchorPos(); | 
| 336 | 	Vector3 pivotAInW = m_AnchorPos; | 
| 337 | 	Vector3 pivotBInW = m_AnchorPos; | 
| 338 |  | 
| 339 | 	// not used here | 
| 340 | 	//    Vector3 rel_pos1 = pivotAInW - A->get_transform().origin; | 
| 341 | 	//    Vector3 rel_pos2 = pivotBInW - B->get_transform().origin; | 
| 342 |  | 
| 343 | 	Vector3 normalWorld; | 
| 344 | 	//linear part | 
| 345 | 	for (i = 0; i < 3; i++) { | 
| 346 | 		if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) { | 
| 347 | 			if (m_useLinearReferenceFrameA) { | 
| 348 | 				normalWorld = m_calculatedTransformA.basis.get_column(i); | 
| 349 | 			} else { | 
| 350 | 				normalWorld = m_calculatedTransformB.basis.get_column(i); | 
| 351 | 			} | 
| 352 |  | 
| 353 | 			buildLinearJacobian( | 
| 354 | 					m_jacLinear[i], normalWorld, | 
| 355 | 					pivotAInW, pivotBInW); | 
| 356 | 		} | 
| 357 | 	} | 
| 358 |  | 
| 359 | 	// angular part | 
| 360 | 	for (i = 0; i < 3; i++) { | 
| 361 | 		//calculates error angle | 
| 362 | 		if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i)) { | 
| 363 | 			normalWorld = this->getAxis(i); | 
| 364 | 			// Create angular atom | 
| 365 | 			buildAngularJacobian(m_jacAng[i], normalWorld); | 
| 366 | 		} | 
| 367 | 	} | 
| 368 |  | 
| 369 | 	return true; | 
| 370 | } | 
| 371 |  | 
| 372 | void GodotGeneric6DOFJoint3D::solve(real_t p_timestep) { | 
| 373 | 	m_timeStep = p_timestep; | 
| 374 |  | 
| 375 | 	//calculateTransforms(); | 
| 376 |  | 
| 377 | 	int i; | 
| 378 |  | 
| 379 | 	// linear | 
| 380 |  | 
| 381 | 	Vector3 pointInA = m_calculatedTransformA.origin; | 
| 382 | 	Vector3 pointInB = m_calculatedTransformB.origin; | 
| 383 |  | 
| 384 | 	real_t jacDiagABInv; | 
| 385 | 	Vector3 linear_axis; | 
| 386 | 	for (i = 0; i < 3; i++) { | 
| 387 | 		if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) { | 
| 388 | 			jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal(); | 
| 389 |  | 
| 390 | 			if (m_useLinearReferenceFrameA) { | 
| 391 | 				linear_axis = m_calculatedTransformA.basis.get_column(i); | 
| 392 | 			} else { | 
| 393 | 				linear_axis = m_calculatedTransformB.basis.get_column(i); | 
| 394 | 			} | 
| 395 |  | 
| 396 | 			m_linearLimits.solveLinearAxis( | 
| 397 | 					m_timeStep, | 
| 398 | 					jacDiagABInv, | 
| 399 | 					A, pointInA, | 
| 400 | 					B, pointInB, | 
| 401 | 					dynamic_A, dynamic_B, | 
| 402 | 					i, linear_axis, m_AnchorPos); | 
| 403 | 		} | 
| 404 | 	} | 
| 405 |  | 
| 406 | 	// angular | 
| 407 | 	Vector3 angular_axis; | 
| 408 | 	real_t angularJacDiagABInv; | 
| 409 | 	for (i = 0; i < 3; i++) { | 
| 410 | 		if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques()) { | 
| 411 | 			// get axis | 
| 412 | 			angular_axis = getAxis(i); | 
| 413 |  | 
| 414 | 			angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal(); | 
| 415 |  | 
| 416 | 			m_angularLimits[i].solveAngularLimits(m_timeStep, angular_axis, angularJacDiagABInv, A, B, dynamic_A, dynamic_B); | 
| 417 | 		} | 
| 418 | 	} | 
| 419 | } | 
| 420 |  | 
| 421 | void GodotGeneric6DOFJoint3D::updateRHS(real_t timeStep) { | 
| 422 | 	(void)timeStep; | 
| 423 | } | 
| 424 |  | 
| 425 | Vector3 GodotGeneric6DOFJoint3D::getAxis(int axis_index) const { | 
| 426 | 	return m_calculatedAxis[axis_index]; | 
| 427 | } | 
| 428 |  | 
| 429 | real_t GodotGeneric6DOFJoint3D::getAngle(int axis_index) const { | 
| 430 | 	return m_calculatedAxisAngleDiff[axis_index]; | 
| 431 | } | 
| 432 |  | 
| 433 | void GodotGeneric6DOFJoint3D::calcAnchorPos() { | 
| 434 | 	real_t imA = A->get_inv_mass(); | 
| 435 | 	real_t imB = B->get_inv_mass(); | 
| 436 | 	real_t weight; | 
| 437 | 	if (imB == real_t(0.0)) { | 
| 438 | 		weight = real_t(1.0); | 
| 439 | 	} else { | 
| 440 | 		weight = imA / (imA + imB); | 
| 441 | 	} | 
| 442 | 	const Vector3 &pA = m_calculatedTransformA.origin; | 
| 443 | 	const Vector3 &pB = m_calculatedTransformB.origin; | 
| 444 | 	m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight); | 
| 445 | } | 
| 446 |  | 
| 447 | void GodotGeneric6DOFJoint3D::set_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param, real_t p_value) { | 
| 448 | 	ERR_FAIL_INDEX(p_axis, 3); | 
| 449 | 	switch (p_param) { | 
| 450 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: { | 
| 451 | 			m_linearLimits.m_lowerLimit[p_axis] = p_value; | 
| 452 | 		} break; | 
| 453 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: { | 
| 454 | 			m_linearLimits.m_upperLimit[p_axis] = p_value; | 
| 455 |  | 
| 456 | 		} break; | 
| 457 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: { | 
| 458 | 			m_linearLimits.m_limitSoftness[p_axis] = p_value; | 
| 459 |  | 
| 460 | 		} break; | 
| 461 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: { | 
| 462 | 			m_linearLimits.m_restitution[p_axis] = p_value; | 
| 463 |  | 
| 464 | 		} break; | 
| 465 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: { | 
| 466 | 			m_linearLimits.m_damping[p_axis] = p_value; | 
| 467 |  | 
| 468 | 		} break; | 
| 469 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: { | 
| 470 | 			m_angularLimits[p_axis].m_loLimit = p_value; | 
| 471 |  | 
| 472 | 		} break; | 
| 473 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: { | 
| 474 | 			m_angularLimits[p_axis].m_hiLimit = p_value; | 
| 475 |  | 
| 476 | 		} break; | 
| 477 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: { | 
| 478 | 			m_angularLimits[p_axis].m_limitSoftness = p_value; | 
| 479 |  | 
| 480 | 		} break; | 
| 481 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: { | 
| 482 | 			m_angularLimits[p_axis].m_damping = p_value; | 
| 483 |  | 
| 484 | 		} break; | 
| 485 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: { | 
| 486 | 			m_angularLimits[p_axis].m_bounce = p_value; | 
| 487 |  | 
| 488 | 		} break; | 
| 489 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: { | 
| 490 | 			m_angularLimits[p_axis].m_maxLimitForce = p_value; | 
| 491 |  | 
| 492 | 		} break; | 
| 493 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: { | 
| 494 | 			m_angularLimits[p_axis].m_ERP = p_value; | 
| 495 |  | 
| 496 | 		} break; | 
| 497 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: { | 
| 498 | 			m_angularLimits[p_axis].m_targetVelocity = p_value; | 
| 499 |  | 
| 500 | 		} break; | 
| 501 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: { | 
| 502 | 			m_angularLimits[p_axis].m_maxLimitForce = p_value; | 
| 503 |  | 
| 504 | 		} break; | 
| 505 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: { | 
| 506 | 			// Not implemented in GodotPhysics3D backend | 
| 507 | 		} break; | 
| 508 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: { | 
| 509 | 			// Not implemented in GodotPhysics3D backend | 
| 510 | 		} break; | 
| 511 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: { | 
| 512 | 			// Not implemented in GodotPhysics3D backend | 
| 513 | 		} break; | 
| 514 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: { | 
| 515 | 			// Not implemented in GodotPhysics3D backend | 
| 516 | 		} break; | 
| 517 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: { | 
| 518 | 			// Not implemented in GodotPhysics3D backend | 
| 519 | 		} break; | 
| 520 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: { | 
| 521 | 			// Not implemented in GodotPhysics3D backend | 
| 522 | 		} break; | 
| 523 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: { | 
| 524 | 			// Not implemented in GodotPhysics3D backend | 
| 525 | 		} break; | 
| 526 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: { | 
| 527 | 			// Not implemented in GodotPhysics3D backend | 
| 528 | 		} break; | 
| 529 | 		case PhysicsServer3D::G6DOF_JOINT_MAX: | 
| 530 | 			break; // Can't happen, but silences warning | 
| 531 | 	} | 
| 532 | } | 
| 533 |  | 
| 534 | real_t GodotGeneric6DOFJoint3D::get_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param) const { | 
| 535 | 	ERR_FAIL_INDEX_V(p_axis, 3, 0); | 
| 536 | 	switch (p_param) { | 
| 537 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: { | 
| 538 | 			return m_linearLimits.m_lowerLimit[p_axis]; | 
| 539 | 		} break; | 
| 540 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: { | 
| 541 | 			return m_linearLimits.m_upperLimit[p_axis]; | 
| 542 |  | 
| 543 | 		} break; | 
| 544 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: { | 
| 545 | 			return m_linearLimits.m_limitSoftness[p_axis]; | 
| 546 |  | 
| 547 | 		} break; | 
| 548 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: { | 
| 549 | 			return m_linearLimits.m_restitution[p_axis]; | 
| 550 |  | 
| 551 | 		} break; | 
| 552 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: { | 
| 553 | 			return m_linearLimits.m_damping[p_axis]; | 
| 554 |  | 
| 555 | 		} break; | 
| 556 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: { | 
| 557 | 			return m_angularLimits[p_axis].m_loLimit; | 
| 558 |  | 
| 559 | 		} break; | 
| 560 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: { | 
| 561 | 			return m_angularLimits[p_axis].m_hiLimit; | 
| 562 |  | 
| 563 | 		} break; | 
| 564 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: { | 
| 565 | 			return m_angularLimits[p_axis].m_limitSoftness; | 
| 566 |  | 
| 567 | 		} break; | 
| 568 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: { | 
| 569 | 			return m_angularLimits[p_axis].m_damping; | 
| 570 |  | 
| 571 | 		} break; | 
| 572 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: { | 
| 573 | 			return m_angularLimits[p_axis].m_bounce; | 
| 574 |  | 
| 575 | 		} break; | 
| 576 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: { | 
| 577 | 			return m_angularLimits[p_axis].m_maxLimitForce; | 
| 578 |  | 
| 579 | 		} break; | 
| 580 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: { | 
| 581 | 			return m_angularLimits[p_axis].m_ERP; | 
| 582 |  | 
| 583 | 		} break; | 
| 584 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: { | 
| 585 | 			return m_angularLimits[p_axis].m_targetVelocity; | 
| 586 |  | 
| 587 | 		} break; | 
| 588 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: { | 
| 589 | 			return m_angularLimits[p_axis].m_maxMotorForce; | 
| 590 |  | 
| 591 | 		} break; | 
| 592 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: { | 
| 593 | 			// Not implemented in GodotPhysics3D backend | 
| 594 | 		} break; | 
| 595 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: { | 
| 596 | 			// Not implemented in GodotPhysics3D backend | 
| 597 | 		} break; | 
| 598 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: { | 
| 599 | 			// Not implemented in GodotPhysics3D backend | 
| 600 | 		} break; | 
| 601 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: { | 
| 602 | 			// Not implemented in GodotPhysics3D backend | 
| 603 | 		} break; | 
| 604 | 		case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: { | 
| 605 | 			// Not implemented in GodotPhysics3D backend | 
| 606 | 		} break; | 
| 607 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: { | 
| 608 | 			// Not implemented in GodotPhysics3D backend | 
| 609 | 		} break; | 
| 610 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: { | 
| 611 | 			// Not implemented in GodotPhysics3D backend | 
| 612 | 		} break; | 
| 613 | 		case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: { | 
| 614 | 			// Not implemented in GodotPhysics3D backend | 
| 615 | 		} break; | 
| 616 | 		case PhysicsServer3D::G6DOF_JOINT_MAX: | 
| 617 | 			break; // Can't happen, but silences warning | 
| 618 | 	} | 
| 619 | 	return 0; | 
| 620 | } | 
| 621 |  | 
| 622 | void GodotGeneric6DOFJoint3D::set_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag, bool p_value) { | 
| 623 | 	ERR_FAIL_INDEX(p_axis, 3); | 
| 624 |  | 
| 625 | 	switch (p_flag) { | 
| 626 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: { | 
| 627 | 			m_linearLimits.enable_limit[p_axis] = p_value; | 
| 628 | 		} break; | 
| 629 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: { | 
| 630 | 			m_angularLimits[p_axis].m_enableLimit = p_value; | 
| 631 | 		} break; | 
| 632 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: { | 
| 633 | 			m_angularLimits[p_axis].m_enableMotor = p_value; | 
| 634 | 		} break; | 
| 635 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: { | 
| 636 | 			// Not implemented in GodotPhysics3D backend | 
| 637 | 		} break; | 
| 638 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: { | 
| 639 | 			// Not implemented in GodotPhysics3D backend | 
| 640 | 		} break; | 
| 641 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: { | 
| 642 | 			// Not implemented in GodotPhysics3D backend | 
| 643 | 		} break; | 
| 644 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX: | 
| 645 | 			break; // Can't happen, but silences warning | 
| 646 | 	} | 
| 647 | } | 
| 648 |  | 
| 649 | bool GodotGeneric6DOFJoint3D::get_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag) const { | 
| 650 | 	ERR_FAIL_INDEX_V(p_axis, 3, 0); | 
| 651 | 	switch (p_flag) { | 
| 652 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: { | 
| 653 | 			return m_linearLimits.enable_limit[p_axis]; | 
| 654 | 		} break; | 
| 655 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: { | 
| 656 | 			return m_angularLimits[p_axis].m_enableLimit; | 
| 657 | 		} break; | 
| 658 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: { | 
| 659 | 			return m_angularLimits[p_axis].m_enableMotor; | 
| 660 | 		} break; | 
| 661 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: { | 
| 662 | 			// Not implemented in GodotPhysics3D backend | 
| 663 | 		} break; | 
| 664 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: { | 
| 665 | 			// Not implemented in GodotPhysics3D backend | 
| 666 | 		} break; | 
| 667 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: { | 
| 668 | 			// Not implemented in GodotPhysics3D backend | 
| 669 | 		} break; | 
| 670 | 		case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX: | 
| 671 | 			break; // Can't happen, but silences warning | 
| 672 | 	} | 
| 673 |  | 
| 674 | 	return false; | 
| 675 | } | 
| 676 |  |