1 | /**************************************************************************/ |
2 | /* godot_slider_joint_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | /* |
32 | Adapted to Godot from the Bullet library. |
33 | */ |
34 | |
35 | /* |
36 | Bullet Continuous Collision Detection and Physics Library |
37 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
38 | |
39 | This software is provided 'as-is', without any express or implied warranty. |
40 | In no event will the authors be held liable for any damages arising from the use of this software. |
41 | Permission is granted to anyone to use this software for any purpose, |
42 | including commercial applications, and to alter it and redistribute it freely, |
43 | subject to the following restrictions: |
44 | |
45 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
46 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
47 | 3. This notice may not be removed or altered from any source distribution. |
48 | */ |
49 | |
50 | /* |
51 | Added by Roman Ponomarev (rponom@gmail.com) |
52 | April 04, 2008 |
53 | |
54 | */ |
55 | |
56 | #include "godot_slider_joint_3d.h" |
57 | |
58 | //----------------------------------------------------------------------------- |
59 | |
60 | GodotSliderJoint3D::GodotSliderJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &frameInA, const Transform3D &frameInB) : |
61 | GodotJoint3D(_arr, 2), |
62 | m_frameInA(frameInA), |
63 | m_frameInB(frameInB) { |
64 | A = rbA; |
65 | B = rbB; |
66 | |
67 | A->add_constraint(this, 0); |
68 | B->add_constraint(this, 1); |
69 | } |
70 | |
71 | //----------------------------------------------------------------------------- |
72 | |
73 | bool GodotSliderJoint3D::setup(real_t p_step) { |
74 | dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
75 | dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
76 | |
77 | if (!dynamic_A && !dynamic_B) { |
78 | return false; |
79 | } |
80 | |
81 | //calculate transforms |
82 | m_calculatedTransformA = A->get_transform() * m_frameInA; |
83 | m_calculatedTransformB = B->get_transform() * m_frameInB; |
84 | m_realPivotAInW = m_calculatedTransformA.origin; |
85 | m_realPivotBInW = m_calculatedTransformB.origin; |
86 | m_sliderAxis = m_calculatedTransformA.basis.get_column(0); // along X |
87 | m_delta = m_realPivotBInW - m_realPivotAInW; |
88 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
89 | m_relPosA = m_projPivotInW - A->get_transform().origin; |
90 | m_relPosB = m_realPivotBInW - B->get_transform().origin; |
91 | Vector3 normalWorld; |
92 | int i; |
93 | //linear part |
94 | for (i = 0; i < 3; i++) { |
95 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
96 | memnew_placement( |
97 | &m_jacLin[i], |
98 | GodotJacobianEntry3D( |
99 | A->get_principal_inertia_axes().transposed(), |
100 | B->get_principal_inertia_axes().transposed(), |
101 | m_relPosA - A->get_center_of_mass(), |
102 | m_relPosB - B->get_center_of_mass(), |
103 | normalWorld, |
104 | A->get_inv_inertia(), |
105 | A->get_inv_mass(), |
106 | B->get_inv_inertia(), |
107 | B->get_inv_mass())); |
108 | m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal(); |
109 | m_depth[i] = m_delta.dot(normalWorld); |
110 | } |
111 | testLinLimits(); |
112 | // angular part |
113 | for (i = 0; i < 3; i++) { |
114 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
115 | memnew_placement( |
116 | &m_jacAng[i], |
117 | GodotJacobianEntry3D( |
118 | normalWorld, |
119 | A->get_principal_inertia_axes().transposed(), |
120 | B->get_principal_inertia_axes().transposed(), |
121 | A->get_inv_inertia(), |
122 | B->get_inv_inertia())); |
123 | } |
124 | testAngLimits(); |
125 | Vector3 axisA = m_calculatedTransformA.basis.get_column(0); |
126 | m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); |
127 | // clear accumulator for motors |
128 | m_accumulatedLinMotorImpulse = real_t(0.0); |
129 | m_accumulatedAngMotorImpulse = real_t(0.0); |
130 | |
131 | return true; |
132 | } |
133 | |
134 | //----------------------------------------------------------------------------- |
135 | |
136 | void GodotSliderJoint3D::solve(real_t p_step) { |
137 | int i; |
138 | // linear |
139 | Vector3 velA = A->get_velocity_in_local_point(m_relPosA); |
140 | Vector3 velB = B->get_velocity_in_local_point(m_relPosB); |
141 | Vector3 vel = velA - velB; |
142 | for (i = 0; i < 3; i++) { |
143 | const Vector3 &normal = m_jacLin[i].m_linearJointAxis; |
144 | real_t rel_vel = normal.dot(vel); |
145 | // calculate positional error |
146 | real_t depth = m_depth[i]; |
147 | // get parameters |
148 | real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); |
149 | real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); |
150 | real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); |
151 | // Calculate and apply impulse. |
152 | real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i]; |
153 | Vector3 impulse_vector = normal * normalImpulse; |
154 | if (dynamic_A) { |
155 | A->apply_impulse(impulse_vector, m_relPosA); |
156 | } |
157 | if (dynamic_B) { |
158 | B->apply_impulse(-impulse_vector, m_relPosB); |
159 | } |
160 | if (m_poweredLinMotor && (!i)) { // apply linear motor |
161 | if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) { |
162 | real_t desiredMotorVel = m_targetLinMotorVelocity; |
163 | real_t motor_relvel = desiredMotorVel + rel_vel; |
164 | normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; |
165 | // clamp accumulated impulse |
166 | real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse); |
167 | if (new_acc > m_maxLinMotorForce) { |
168 | new_acc = m_maxLinMotorForce; |
169 | } |
170 | real_t del = new_acc - m_accumulatedLinMotorImpulse; |
171 | if (normalImpulse < real_t(0.0)) { |
172 | normalImpulse = -del; |
173 | } else { |
174 | normalImpulse = del; |
175 | } |
176 | m_accumulatedLinMotorImpulse = new_acc; |
177 | // apply clamped impulse |
178 | impulse_vector = normal * normalImpulse; |
179 | if (dynamic_A) { |
180 | A->apply_impulse(impulse_vector, m_relPosA); |
181 | } |
182 | if (dynamic_B) { |
183 | B->apply_impulse(-impulse_vector, m_relPosB); |
184 | } |
185 | } |
186 | } |
187 | } |
188 | // angular |
189 | // get axes in world space |
190 | Vector3 axisA = m_calculatedTransformA.basis.get_column(0); |
191 | Vector3 axisB = m_calculatedTransformB.basis.get_column(0); |
192 | |
193 | const Vector3 &angVelA = A->get_angular_velocity(); |
194 | const Vector3 &angVelB = B->get_angular_velocity(); |
195 | |
196 | Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); |
197 | Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); |
198 | |
199 | Vector3 angAorthog = angVelA - angVelAroundAxisA; |
200 | Vector3 angBorthog = angVelB - angVelAroundAxisB; |
201 | Vector3 velrelOrthog = angAorthog - angBorthog; |
202 | //solve orthogonal angular velocity correction |
203 | real_t len = velrelOrthog.length(); |
204 | if (len > real_t(0.00001)) { |
205 | Vector3 normal = velrelOrthog.normalized(); |
206 | real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); |
207 | velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng; |
208 | } |
209 | //solve angular positional correction |
210 | Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step); |
211 | real_t len2 = angularError.length(); |
212 | if (len2 > real_t(0.00001)) { |
213 | Vector3 normal2 = angularError.normalized(); |
214 | real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); |
215 | angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; |
216 | } |
217 | // apply impulse |
218 | if (dynamic_A) { |
219 | A->apply_torque_impulse(-velrelOrthog + angularError); |
220 | } |
221 | if (dynamic_B) { |
222 | B->apply_torque_impulse(velrelOrthog - angularError); |
223 | } |
224 | real_t impulseMag; |
225 | //solve angular limits |
226 | if (m_solveAngLim) { |
227 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step; |
228 | impulseMag *= m_kAngle * m_softnessLimAng; |
229 | } else { |
230 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step; |
231 | impulseMag *= m_kAngle * m_softnessDirAng; |
232 | } |
233 | Vector3 impulse = axisA * impulseMag; |
234 | if (dynamic_A) { |
235 | A->apply_torque_impulse(impulse); |
236 | } |
237 | if (dynamic_B) { |
238 | B->apply_torque_impulse(-impulse); |
239 | } |
240 | //apply angular motor |
241 | if (m_poweredAngMotor) { |
242 | if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) { |
243 | Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB; |
244 | real_t projRelVel = velrel.dot(axisA); |
245 | |
246 | real_t desiredMotorVel = m_targetAngMotorVelocity; |
247 | real_t motor_relvel = desiredMotorVel - projRelVel; |
248 | |
249 | real_t angImpulse = m_kAngle * motor_relvel; |
250 | // clamp accumulated impulse |
251 | real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse); |
252 | if (new_acc > m_maxAngMotorForce) { |
253 | new_acc = m_maxAngMotorForce; |
254 | } |
255 | real_t del = new_acc - m_accumulatedAngMotorImpulse; |
256 | if (angImpulse < real_t(0.0)) { |
257 | angImpulse = -del; |
258 | } else { |
259 | angImpulse = del; |
260 | } |
261 | m_accumulatedAngMotorImpulse = new_acc; |
262 | // apply clamped impulse |
263 | Vector3 motorImp = angImpulse * axisA; |
264 | if (dynamic_A) { |
265 | A->apply_torque_impulse(motorImp); |
266 | } |
267 | if (dynamic_B) { |
268 | B->apply_torque_impulse(-motorImp); |
269 | } |
270 | } |
271 | } |
272 | } |
273 | |
274 | //----------------------------------------------------------------------------- |
275 | |
276 | void GodotSliderJoint3D::calculateTransforms() { |
277 | m_calculatedTransformA = A->get_transform() * m_frameInA; |
278 | m_calculatedTransformB = B->get_transform() * m_frameInB; |
279 | m_realPivotAInW = m_calculatedTransformA.origin; |
280 | m_realPivotBInW = m_calculatedTransformB.origin; |
281 | m_sliderAxis = m_calculatedTransformA.basis.get_column(0); // along X |
282 | m_delta = m_realPivotBInW - m_realPivotAInW; |
283 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
284 | Vector3 normalWorld; |
285 | int i; |
286 | //linear part |
287 | for (i = 0; i < 3; i++) { |
288 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
289 | m_depth[i] = m_delta.dot(normalWorld); |
290 | } |
291 | } |
292 | |
293 | //----------------------------------------------------------------------------- |
294 | |
295 | void GodotSliderJoint3D::testLinLimits() { |
296 | m_solveLinLim = false; |
297 | m_linPos = m_depth[0]; |
298 | if (m_lowerLinLimit <= m_upperLinLimit) { |
299 | if (m_depth[0] > m_upperLinLimit) { |
300 | m_depth[0] -= m_upperLinLimit; |
301 | m_solveLinLim = true; |
302 | } else if (m_depth[0] < m_lowerLinLimit) { |
303 | m_depth[0] -= m_lowerLinLimit; |
304 | m_solveLinLim = true; |
305 | } else { |
306 | m_depth[0] = real_t(0.); |
307 | } |
308 | } else { |
309 | m_depth[0] = real_t(0.); |
310 | } |
311 | } |
312 | |
313 | //----------------------------------------------------------------------------- |
314 | |
315 | void GodotSliderJoint3D::testAngLimits() { |
316 | m_angDepth = real_t(0.); |
317 | m_solveAngLim = false; |
318 | if (m_lowerAngLimit <= m_upperAngLimit) { |
319 | const Vector3 axisA0 = m_calculatedTransformA.basis.get_column(1); |
320 | const Vector3 axisA1 = m_calculatedTransformA.basis.get_column(2); |
321 | const Vector3 axisB0 = m_calculatedTransformB.basis.get_column(1); |
322 | real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
323 | if (rot < m_lowerAngLimit) { |
324 | m_angDepth = rot - m_lowerAngLimit; |
325 | m_solveAngLim = true; |
326 | } else if (rot > m_upperAngLimit) { |
327 | m_angDepth = rot - m_upperAngLimit; |
328 | m_solveAngLim = true; |
329 | } |
330 | } |
331 | } |
332 | |
333 | //----------------------------------------------------------------------------- |
334 | |
335 | Vector3 GodotSliderJoint3D::getAncorInA() { |
336 | Vector3 ancorInA; |
337 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis; |
338 | ancorInA = A->get_transform().inverse().xform(ancorInA); |
339 | return ancorInA; |
340 | } |
341 | |
342 | //----------------------------------------------------------------------------- |
343 | |
344 | Vector3 GodotSliderJoint3D::getAncorInB() { |
345 | Vector3 ancorInB; |
346 | ancorInB = m_frameInB.origin; |
347 | return ancorInB; |
348 | } |
349 | |
350 | void GodotSliderJoint3D::set_param(PhysicsServer3D::SliderJointParam p_param, real_t p_value) { |
351 | switch (p_param) { |
352 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: |
353 | m_upperLinLimit = p_value; |
354 | break; |
355 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: |
356 | m_lowerLinLimit = p_value; |
357 | break; |
358 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: |
359 | m_softnessLimLin = p_value; |
360 | break; |
361 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: |
362 | m_restitutionLimLin = p_value; |
363 | break; |
364 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: |
365 | m_dampingLimLin = p_value; |
366 | break; |
367 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: |
368 | m_softnessDirLin = p_value; |
369 | break; |
370 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: |
371 | m_restitutionDirLin = p_value; |
372 | break; |
373 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: |
374 | m_dampingDirLin = p_value; |
375 | break; |
376 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: |
377 | m_softnessOrthoLin = p_value; |
378 | break; |
379 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: |
380 | m_restitutionOrthoLin = p_value; |
381 | break; |
382 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: |
383 | m_dampingOrthoLin = p_value; |
384 | break; |
385 | |
386 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: |
387 | m_upperAngLimit = p_value; |
388 | break; |
389 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: |
390 | m_lowerAngLimit = p_value; |
391 | break; |
392 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: |
393 | m_softnessLimAng = p_value; |
394 | break; |
395 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: |
396 | m_restitutionLimAng = p_value; |
397 | break; |
398 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: |
399 | m_dampingLimAng = p_value; |
400 | break; |
401 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: |
402 | m_softnessDirAng = p_value; |
403 | break; |
404 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: |
405 | m_restitutionDirAng = p_value; |
406 | break; |
407 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: |
408 | m_dampingDirAng = p_value; |
409 | break; |
410 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: |
411 | m_softnessOrthoAng = p_value; |
412 | break; |
413 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: |
414 | m_restitutionOrthoAng = p_value; |
415 | break; |
416 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: |
417 | m_dampingOrthoAng = p_value; |
418 | break; |
419 | |
420 | case PhysicsServer3D::SLIDER_JOINT_MAX: |
421 | break; // Can't happen, but silences warning |
422 | } |
423 | } |
424 | |
425 | real_t GodotSliderJoint3D::get_param(PhysicsServer3D::SliderJointParam p_param) const { |
426 | switch (p_param) { |
427 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: |
428 | return m_upperLinLimit; |
429 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: |
430 | return m_lowerLinLimit; |
431 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: |
432 | return m_softnessLimLin; |
433 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: |
434 | return m_restitutionLimLin; |
435 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: |
436 | return m_dampingLimLin; |
437 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: |
438 | return m_softnessDirLin; |
439 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: |
440 | return m_restitutionDirLin; |
441 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: |
442 | return m_dampingDirLin; |
443 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: |
444 | return m_softnessOrthoLin; |
445 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: |
446 | return m_restitutionOrthoLin; |
447 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: |
448 | return m_dampingOrthoLin; |
449 | |
450 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: |
451 | return m_upperAngLimit; |
452 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: |
453 | return m_lowerAngLimit; |
454 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: |
455 | return m_softnessLimAng; |
456 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: |
457 | return m_restitutionLimAng; |
458 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: |
459 | return m_dampingLimAng; |
460 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: |
461 | return m_softnessDirAng; |
462 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: |
463 | return m_restitutionDirAng; |
464 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: |
465 | return m_dampingDirAng; |
466 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: |
467 | return m_softnessOrthoAng; |
468 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: |
469 | return m_restitutionOrthoAng; |
470 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: |
471 | return m_dampingOrthoAng; |
472 | |
473 | case PhysicsServer3D::SLIDER_JOINT_MAX: |
474 | break; // Can't happen, but silences warning |
475 | } |
476 | |
477 | return 0; |
478 | } |
479 | |