| 1 | /**************************************************************************/ |
| 2 | /* godot_slider_joint_3d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | /* |
| 32 | Adapted to Godot from the Bullet library. |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | Bullet Continuous Collision Detection and Physics Library |
| 37 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
| 38 | |
| 39 | This software is provided 'as-is', without any express or implied warranty. |
| 40 | In no event will the authors be held liable for any damages arising from the use of this software. |
| 41 | Permission is granted to anyone to use this software for any purpose, |
| 42 | including commercial applications, and to alter it and redistribute it freely, |
| 43 | subject to the following restrictions: |
| 44 | |
| 45 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
| 46 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
| 47 | 3. This notice may not be removed or altered from any source distribution. |
| 48 | */ |
| 49 | |
| 50 | /* |
| 51 | Added by Roman Ponomarev (rponom@gmail.com) |
| 52 | April 04, 2008 |
| 53 | |
| 54 | */ |
| 55 | |
| 56 | #include "godot_slider_joint_3d.h" |
| 57 | |
| 58 | //----------------------------------------------------------------------------- |
| 59 | |
| 60 | GodotSliderJoint3D::GodotSliderJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &frameInA, const Transform3D &frameInB) : |
| 61 | GodotJoint3D(_arr, 2), |
| 62 | m_frameInA(frameInA), |
| 63 | m_frameInB(frameInB) { |
| 64 | A = rbA; |
| 65 | B = rbB; |
| 66 | |
| 67 | A->add_constraint(this, 0); |
| 68 | B->add_constraint(this, 1); |
| 69 | } |
| 70 | |
| 71 | //----------------------------------------------------------------------------- |
| 72 | |
| 73 | bool GodotSliderJoint3D::setup(real_t p_step) { |
| 74 | dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
| 75 | dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
| 76 | |
| 77 | if (!dynamic_A && !dynamic_B) { |
| 78 | return false; |
| 79 | } |
| 80 | |
| 81 | //calculate transforms |
| 82 | m_calculatedTransformA = A->get_transform() * m_frameInA; |
| 83 | m_calculatedTransformB = B->get_transform() * m_frameInB; |
| 84 | m_realPivotAInW = m_calculatedTransformA.origin; |
| 85 | m_realPivotBInW = m_calculatedTransformB.origin; |
| 86 | m_sliderAxis = m_calculatedTransformA.basis.get_column(0); // along X |
| 87 | m_delta = m_realPivotBInW - m_realPivotAInW; |
| 88 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
| 89 | m_relPosA = m_projPivotInW - A->get_transform().origin; |
| 90 | m_relPosB = m_realPivotBInW - B->get_transform().origin; |
| 91 | Vector3 normalWorld; |
| 92 | int i; |
| 93 | //linear part |
| 94 | for (i = 0; i < 3; i++) { |
| 95 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
| 96 | memnew_placement( |
| 97 | &m_jacLin[i], |
| 98 | GodotJacobianEntry3D( |
| 99 | A->get_principal_inertia_axes().transposed(), |
| 100 | B->get_principal_inertia_axes().transposed(), |
| 101 | m_relPosA - A->get_center_of_mass(), |
| 102 | m_relPosB - B->get_center_of_mass(), |
| 103 | normalWorld, |
| 104 | A->get_inv_inertia(), |
| 105 | A->get_inv_mass(), |
| 106 | B->get_inv_inertia(), |
| 107 | B->get_inv_mass())); |
| 108 | m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal(); |
| 109 | m_depth[i] = m_delta.dot(normalWorld); |
| 110 | } |
| 111 | testLinLimits(); |
| 112 | // angular part |
| 113 | for (i = 0; i < 3; i++) { |
| 114 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
| 115 | memnew_placement( |
| 116 | &m_jacAng[i], |
| 117 | GodotJacobianEntry3D( |
| 118 | normalWorld, |
| 119 | A->get_principal_inertia_axes().transposed(), |
| 120 | B->get_principal_inertia_axes().transposed(), |
| 121 | A->get_inv_inertia(), |
| 122 | B->get_inv_inertia())); |
| 123 | } |
| 124 | testAngLimits(); |
| 125 | Vector3 axisA = m_calculatedTransformA.basis.get_column(0); |
| 126 | m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); |
| 127 | // clear accumulator for motors |
| 128 | m_accumulatedLinMotorImpulse = real_t(0.0); |
| 129 | m_accumulatedAngMotorImpulse = real_t(0.0); |
| 130 | |
| 131 | return true; |
| 132 | } |
| 133 | |
| 134 | //----------------------------------------------------------------------------- |
| 135 | |
| 136 | void GodotSliderJoint3D::solve(real_t p_step) { |
| 137 | int i; |
| 138 | // linear |
| 139 | Vector3 velA = A->get_velocity_in_local_point(m_relPosA); |
| 140 | Vector3 velB = B->get_velocity_in_local_point(m_relPosB); |
| 141 | Vector3 vel = velA - velB; |
| 142 | for (i = 0; i < 3; i++) { |
| 143 | const Vector3 &normal = m_jacLin[i].m_linearJointAxis; |
| 144 | real_t rel_vel = normal.dot(vel); |
| 145 | // calculate positional error |
| 146 | real_t depth = m_depth[i]; |
| 147 | // get parameters |
| 148 | real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); |
| 149 | real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); |
| 150 | real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); |
| 151 | // Calculate and apply impulse. |
| 152 | real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i]; |
| 153 | Vector3 impulse_vector = normal * normalImpulse; |
| 154 | if (dynamic_A) { |
| 155 | A->apply_impulse(impulse_vector, m_relPosA); |
| 156 | } |
| 157 | if (dynamic_B) { |
| 158 | B->apply_impulse(-impulse_vector, m_relPosB); |
| 159 | } |
| 160 | if (m_poweredLinMotor && (!i)) { // apply linear motor |
| 161 | if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) { |
| 162 | real_t desiredMotorVel = m_targetLinMotorVelocity; |
| 163 | real_t motor_relvel = desiredMotorVel + rel_vel; |
| 164 | normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; |
| 165 | // clamp accumulated impulse |
| 166 | real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse); |
| 167 | if (new_acc > m_maxLinMotorForce) { |
| 168 | new_acc = m_maxLinMotorForce; |
| 169 | } |
| 170 | real_t del = new_acc - m_accumulatedLinMotorImpulse; |
| 171 | if (normalImpulse < real_t(0.0)) { |
| 172 | normalImpulse = -del; |
| 173 | } else { |
| 174 | normalImpulse = del; |
| 175 | } |
| 176 | m_accumulatedLinMotorImpulse = new_acc; |
| 177 | // apply clamped impulse |
| 178 | impulse_vector = normal * normalImpulse; |
| 179 | if (dynamic_A) { |
| 180 | A->apply_impulse(impulse_vector, m_relPosA); |
| 181 | } |
| 182 | if (dynamic_B) { |
| 183 | B->apply_impulse(-impulse_vector, m_relPosB); |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | // angular |
| 189 | // get axes in world space |
| 190 | Vector3 axisA = m_calculatedTransformA.basis.get_column(0); |
| 191 | Vector3 axisB = m_calculatedTransformB.basis.get_column(0); |
| 192 | |
| 193 | const Vector3 &angVelA = A->get_angular_velocity(); |
| 194 | const Vector3 &angVelB = B->get_angular_velocity(); |
| 195 | |
| 196 | Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); |
| 197 | Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); |
| 198 | |
| 199 | Vector3 angAorthog = angVelA - angVelAroundAxisA; |
| 200 | Vector3 angBorthog = angVelB - angVelAroundAxisB; |
| 201 | Vector3 velrelOrthog = angAorthog - angBorthog; |
| 202 | //solve orthogonal angular velocity correction |
| 203 | real_t len = velrelOrthog.length(); |
| 204 | if (len > real_t(0.00001)) { |
| 205 | Vector3 normal = velrelOrthog.normalized(); |
| 206 | real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); |
| 207 | velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng; |
| 208 | } |
| 209 | //solve angular positional correction |
| 210 | Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step); |
| 211 | real_t len2 = angularError.length(); |
| 212 | if (len2 > real_t(0.00001)) { |
| 213 | Vector3 normal2 = angularError.normalized(); |
| 214 | real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); |
| 215 | angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; |
| 216 | } |
| 217 | // apply impulse |
| 218 | if (dynamic_A) { |
| 219 | A->apply_torque_impulse(-velrelOrthog + angularError); |
| 220 | } |
| 221 | if (dynamic_B) { |
| 222 | B->apply_torque_impulse(velrelOrthog - angularError); |
| 223 | } |
| 224 | real_t impulseMag; |
| 225 | //solve angular limits |
| 226 | if (m_solveAngLim) { |
| 227 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step; |
| 228 | impulseMag *= m_kAngle * m_softnessLimAng; |
| 229 | } else { |
| 230 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step; |
| 231 | impulseMag *= m_kAngle * m_softnessDirAng; |
| 232 | } |
| 233 | Vector3 impulse = axisA * impulseMag; |
| 234 | if (dynamic_A) { |
| 235 | A->apply_torque_impulse(impulse); |
| 236 | } |
| 237 | if (dynamic_B) { |
| 238 | B->apply_torque_impulse(-impulse); |
| 239 | } |
| 240 | //apply angular motor |
| 241 | if (m_poweredAngMotor) { |
| 242 | if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) { |
| 243 | Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB; |
| 244 | real_t projRelVel = velrel.dot(axisA); |
| 245 | |
| 246 | real_t desiredMotorVel = m_targetAngMotorVelocity; |
| 247 | real_t motor_relvel = desiredMotorVel - projRelVel; |
| 248 | |
| 249 | real_t angImpulse = m_kAngle * motor_relvel; |
| 250 | // clamp accumulated impulse |
| 251 | real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse); |
| 252 | if (new_acc > m_maxAngMotorForce) { |
| 253 | new_acc = m_maxAngMotorForce; |
| 254 | } |
| 255 | real_t del = new_acc - m_accumulatedAngMotorImpulse; |
| 256 | if (angImpulse < real_t(0.0)) { |
| 257 | angImpulse = -del; |
| 258 | } else { |
| 259 | angImpulse = del; |
| 260 | } |
| 261 | m_accumulatedAngMotorImpulse = new_acc; |
| 262 | // apply clamped impulse |
| 263 | Vector3 motorImp = angImpulse * axisA; |
| 264 | if (dynamic_A) { |
| 265 | A->apply_torque_impulse(motorImp); |
| 266 | } |
| 267 | if (dynamic_B) { |
| 268 | B->apply_torque_impulse(-motorImp); |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | //----------------------------------------------------------------------------- |
| 275 | |
| 276 | void GodotSliderJoint3D::calculateTransforms() { |
| 277 | m_calculatedTransformA = A->get_transform() * m_frameInA; |
| 278 | m_calculatedTransformB = B->get_transform() * m_frameInB; |
| 279 | m_realPivotAInW = m_calculatedTransformA.origin; |
| 280 | m_realPivotBInW = m_calculatedTransformB.origin; |
| 281 | m_sliderAxis = m_calculatedTransformA.basis.get_column(0); // along X |
| 282 | m_delta = m_realPivotBInW - m_realPivotAInW; |
| 283 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
| 284 | Vector3 normalWorld; |
| 285 | int i; |
| 286 | //linear part |
| 287 | for (i = 0; i < 3; i++) { |
| 288 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
| 289 | m_depth[i] = m_delta.dot(normalWorld); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | //----------------------------------------------------------------------------- |
| 294 | |
| 295 | void GodotSliderJoint3D::testLinLimits() { |
| 296 | m_solveLinLim = false; |
| 297 | m_linPos = m_depth[0]; |
| 298 | if (m_lowerLinLimit <= m_upperLinLimit) { |
| 299 | if (m_depth[0] > m_upperLinLimit) { |
| 300 | m_depth[0] -= m_upperLinLimit; |
| 301 | m_solveLinLim = true; |
| 302 | } else if (m_depth[0] < m_lowerLinLimit) { |
| 303 | m_depth[0] -= m_lowerLinLimit; |
| 304 | m_solveLinLim = true; |
| 305 | } else { |
| 306 | m_depth[0] = real_t(0.); |
| 307 | } |
| 308 | } else { |
| 309 | m_depth[0] = real_t(0.); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | //----------------------------------------------------------------------------- |
| 314 | |
| 315 | void GodotSliderJoint3D::testAngLimits() { |
| 316 | m_angDepth = real_t(0.); |
| 317 | m_solveAngLim = false; |
| 318 | if (m_lowerAngLimit <= m_upperAngLimit) { |
| 319 | const Vector3 axisA0 = m_calculatedTransformA.basis.get_column(1); |
| 320 | const Vector3 axisA1 = m_calculatedTransformA.basis.get_column(2); |
| 321 | const Vector3 axisB0 = m_calculatedTransformB.basis.get_column(1); |
| 322 | real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
| 323 | if (rot < m_lowerAngLimit) { |
| 324 | m_angDepth = rot - m_lowerAngLimit; |
| 325 | m_solveAngLim = true; |
| 326 | } else if (rot > m_upperAngLimit) { |
| 327 | m_angDepth = rot - m_upperAngLimit; |
| 328 | m_solveAngLim = true; |
| 329 | } |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | //----------------------------------------------------------------------------- |
| 334 | |
| 335 | Vector3 GodotSliderJoint3D::getAncorInA() { |
| 336 | Vector3 ancorInA; |
| 337 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis; |
| 338 | ancorInA = A->get_transform().inverse().xform(ancorInA); |
| 339 | return ancorInA; |
| 340 | } |
| 341 | |
| 342 | //----------------------------------------------------------------------------- |
| 343 | |
| 344 | Vector3 GodotSliderJoint3D::getAncorInB() { |
| 345 | Vector3 ancorInB; |
| 346 | ancorInB = m_frameInB.origin; |
| 347 | return ancorInB; |
| 348 | } |
| 349 | |
| 350 | void GodotSliderJoint3D::set_param(PhysicsServer3D::SliderJointParam p_param, real_t p_value) { |
| 351 | switch (p_param) { |
| 352 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: |
| 353 | m_upperLinLimit = p_value; |
| 354 | break; |
| 355 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: |
| 356 | m_lowerLinLimit = p_value; |
| 357 | break; |
| 358 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: |
| 359 | m_softnessLimLin = p_value; |
| 360 | break; |
| 361 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: |
| 362 | m_restitutionLimLin = p_value; |
| 363 | break; |
| 364 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: |
| 365 | m_dampingLimLin = p_value; |
| 366 | break; |
| 367 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: |
| 368 | m_softnessDirLin = p_value; |
| 369 | break; |
| 370 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: |
| 371 | m_restitutionDirLin = p_value; |
| 372 | break; |
| 373 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: |
| 374 | m_dampingDirLin = p_value; |
| 375 | break; |
| 376 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: |
| 377 | m_softnessOrthoLin = p_value; |
| 378 | break; |
| 379 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: |
| 380 | m_restitutionOrthoLin = p_value; |
| 381 | break; |
| 382 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: |
| 383 | m_dampingOrthoLin = p_value; |
| 384 | break; |
| 385 | |
| 386 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: |
| 387 | m_upperAngLimit = p_value; |
| 388 | break; |
| 389 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: |
| 390 | m_lowerAngLimit = p_value; |
| 391 | break; |
| 392 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: |
| 393 | m_softnessLimAng = p_value; |
| 394 | break; |
| 395 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: |
| 396 | m_restitutionLimAng = p_value; |
| 397 | break; |
| 398 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: |
| 399 | m_dampingLimAng = p_value; |
| 400 | break; |
| 401 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: |
| 402 | m_softnessDirAng = p_value; |
| 403 | break; |
| 404 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: |
| 405 | m_restitutionDirAng = p_value; |
| 406 | break; |
| 407 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: |
| 408 | m_dampingDirAng = p_value; |
| 409 | break; |
| 410 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: |
| 411 | m_softnessOrthoAng = p_value; |
| 412 | break; |
| 413 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: |
| 414 | m_restitutionOrthoAng = p_value; |
| 415 | break; |
| 416 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: |
| 417 | m_dampingOrthoAng = p_value; |
| 418 | break; |
| 419 | |
| 420 | case PhysicsServer3D::SLIDER_JOINT_MAX: |
| 421 | break; // Can't happen, but silences warning |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | real_t GodotSliderJoint3D::get_param(PhysicsServer3D::SliderJointParam p_param) const { |
| 426 | switch (p_param) { |
| 427 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: |
| 428 | return m_upperLinLimit; |
| 429 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: |
| 430 | return m_lowerLinLimit; |
| 431 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: |
| 432 | return m_softnessLimLin; |
| 433 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: |
| 434 | return m_restitutionLimLin; |
| 435 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: |
| 436 | return m_dampingLimLin; |
| 437 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: |
| 438 | return m_softnessDirLin; |
| 439 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: |
| 440 | return m_restitutionDirLin; |
| 441 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: |
| 442 | return m_dampingDirLin; |
| 443 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: |
| 444 | return m_softnessOrthoLin; |
| 445 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: |
| 446 | return m_restitutionOrthoLin; |
| 447 | case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: |
| 448 | return m_dampingOrthoLin; |
| 449 | |
| 450 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: |
| 451 | return m_upperAngLimit; |
| 452 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: |
| 453 | return m_lowerAngLimit; |
| 454 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: |
| 455 | return m_softnessLimAng; |
| 456 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: |
| 457 | return m_restitutionLimAng; |
| 458 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: |
| 459 | return m_dampingLimAng; |
| 460 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: |
| 461 | return m_softnessDirAng; |
| 462 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: |
| 463 | return m_restitutionDirAng; |
| 464 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: |
| 465 | return m_dampingDirAng; |
| 466 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: |
| 467 | return m_softnessOrthoAng; |
| 468 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: |
| 469 | return m_restitutionOrthoAng; |
| 470 | case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: |
| 471 | return m_dampingOrthoAng; |
| 472 | |
| 473 | case PhysicsServer3D::SLIDER_JOINT_MAX: |
| 474 | break; // Can't happen, but silences warning |
| 475 | } |
| 476 | |
| 477 | return 0; |
| 478 | } |
| 479 | |