1 | /* $Id: ClpSimplex.cpp 1871 2012-07-30 10:21:53Z forrest $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | //#undef NDEBUG |
7 | |
8 | #include "ClpConfig.h" |
9 | |
10 | #include "CoinPragma.hpp" |
11 | #include <math.h> |
12 | |
13 | #if SLIM_CLP==2 |
14 | #define SLIM_NOIO |
15 | #endif |
16 | #include "CoinHelperFunctions.hpp" |
17 | #include "CoinFloatEqual.hpp" |
18 | #include "ClpSimplex.hpp" |
19 | #include "ClpFactorization.hpp" |
20 | #include "ClpPackedMatrix.hpp" |
21 | #include "CoinIndexedVector.hpp" |
22 | #include "ClpDualRowDantzig.hpp" |
23 | #include "ClpDualRowSteepest.hpp" |
24 | #include "ClpPrimalColumnDantzig.hpp" |
25 | #include "ClpPrimalColumnSteepest.hpp" |
26 | #include "ClpNonLinearCost.hpp" |
27 | #include "ClpMessage.hpp" |
28 | #include "ClpEventHandler.hpp" |
29 | #include "ClpLinearObjective.hpp" |
30 | #include "ClpHelperFunctions.hpp" |
31 | #include "CoinModel.hpp" |
32 | #include "CoinLpIO.hpp" |
33 | #include <cfloat> |
34 | |
35 | #include <string> |
36 | #include <stdio.h> |
37 | #include <iostream> |
38 | //############################################################################# |
39 | |
40 | ClpSimplex::ClpSimplex (bool emptyMessages) : |
41 | |
42 | ClpModel(emptyMessages), |
43 | bestPossibleImprovement_(0.0), |
44 | zeroTolerance_(1.0e-13), |
45 | columnPrimalSequence_(-2), |
46 | rowPrimalSequence_(-2), |
47 | bestObjectiveValue_(-COIN_DBL_MAX), |
48 | moreSpecialOptions_(2), |
49 | baseIteration_(0), |
50 | primalToleranceToGetOptimal_(-1.0), |
51 | largeValue_(1.0e15), |
52 | largestPrimalError_(0.0), |
53 | largestDualError_(0.0), |
54 | alphaAccuracy_(-1.0), |
55 | dualBound_(1.0e10), |
56 | alpha_(0.0), |
57 | theta_(0.0), |
58 | lowerIn_(0.0), |
59 | valueIn_(0.0), |
60 | upperIn_(-COIN_DBL_MAX), |
61 | dualIn_(0.0), |
62 | lowerOut_(-1), |
63 | valueOut_(-1), |
64 | upperOut_(-1), |
65 | dualOut_(-1), |
66 | dualTolerance_(1.0e-7), |
67 | primalTolerance_(1.0e-7), |
68 | sumDualInfeasibilities_(0.0), |
69 | sumPrimalInfeasibilities_(0.0), |
70 | infeasibilityCost_(1.0e10), |
71 | sumOfRelaxedDualInfeasibilities_(0.0), |
72 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
73 | acceptablePivot_(1.0e-8), |
74 | lower_(NULL), |
75 | rowLowerWork_(NULL), |
76 | columnLowerWork_(NULL), |
77 | upper_(NULL), |
78 | rowUpperWork_(NULL), |
79 | columnUpperWork_(NULL), |
80 | cost_(NULL), |
81 | rowObjectiveWork_(NULL), |
82 | objectiveWork_(NULL), |
83 | sequenceIn_(-1), |
84 | directionIn_(-1), |
85 | sequenceOut_(-1), |
86 | directionOut_(-1), |
87 | pivotRow_(-1), |
88 | lastGoodIteration_(-100), |
89 | dj_(NULL), |
90 | rowReducedCost_(NULL), |
91 | reducedCostWork_(NULL), |
92 | solution_(NULL), |
93 | rowActivityWork_(NULL), |
94 | columnActivityWork_(NULL), |
95 | numberDualInfeasibilities_(0), |
96 | numberDualInfeasibilitiesWithoutFree_(0), |
97 | numberPrimalInfeasibilities_(100), |
98 | numberRefinements_(0), |
99 | pivotVariable_(NULL), |
100 | factorization_(NULL), |
101 | savedSolution_(NULL), |
102 | numberTimesOptimal_(0), |
103 | disasterArea_(NULL), |
104 | changeMade_(1), |
105 | algorithm_(0), |
106 | forceFactorization_(-1), |
107 | perturbation_(100), |
108 | nonLinearCost_(NULL), |
109 | lastBadIteration_(-999999), |
110 | lastFlaggedIteration_(-999999), |
111 | numberFake_(0), |
112 | numberChanged_(0), |
113 | progressFlag_(0), |
114 | firstFree_(-1), |
115 | numberExtraRows_(0), |
116 | maximumBasic_(0), |
117 | dontFactorizePivots_(0), |
118 | incomingInfeasibility_(1.0), |
119 | allowedInfeasibility_(10.0), |
120 | automaticScale_(0), |
121 | maximumPerturbationSize_(0), |
122 | perturbationArray_(NULL), |
123 | baseModel_(NULL) |
124 | { |
125 | int i; |
126 | for (i = 0; i < 6; i++) { |
127 | rowArray_[i] = NULL; |
128 | columnArray_[i] = NULL; |
129 | } |
130 | for (i = 0; i < 4; i++) { |
131 | spareIntArray_[i] = 0; |
132 | spareDoubleArray_[i] = 0.0; |
133 | } |
134 | saveStatus_ = NULL; |
135 | // get an empty factorization so we can set tolerances etc |
136 | getEmptyFactorization(); |
137 | // Say sparse |
138 | factorization_->sparseThreshold(1); |
139 | // say Steepest pricing |
140 | dualRowPivot_ = new ClpDualRowSteepest(); |
141 | // say Steepest pricing |
142 | primalColumnPivot_ = new ClpPrimalColumnSteepest(); |
143 | solveType_ = 1; // say simplex based life form |
144 | |
145 | } |
146 | |
147 | // Subproblem constructor |
148 | ClpSimplex::ClpSimplex ( const ClpModel * rhs, |
149 | int numberRows, const int * whichRow, |
150 | int numberColumns, const int * whichColumn, |
151 | bool dropNames, bool dropIntegers, bool fixOthers) |
152 | : ClpModel(rhs, numberRows, whichRow, |
153 | numberColumns, whichColumn, dropNames, dropIntegers), |
154 | bestPossibleImprovement_(0.0), |
155 | zeroTolerance_(1.0e-13), |
156 | columnPrimalSequence_(-2), |
157 | rowPrimalSequence_(-2), |
158 | bestObjectiveValue_(-COIN_DBL_MAX), |
159 | moreSpecialOptions_(2), |
160 | baseIteration_(0), |
161 | primalToleranceToGetOptimal_(-1.0), |
162 | largeValue_(1.0e15), |
163 | largestPrimalError_(0.0), |
164 | largestDualError_(0.0), |
165 | alphaAccuracy_(-1.0), |
166 | dualBound_(1.0e10), |
167 | alpha_(0.0), |
168 | theta_(0.0), |
169 | lowerIn_(0.0), |
170 | valueIn_(0.0), |
171 | upperIn_(-COIN_DBL_MAX), |
172 | dualIn_(0.0), |
173 | lowerOut_(-1), |
174 | valueOut_(-1), |
175 | upperOut_(-1), |
176 | dualOut_(-1), |
177 | dualTolerance_(1.0e-7), |
178 | primalTolerance_(1.0e-7), |
179 | sumDualInfeasibilities_(0.0), |
180 | sumPrimalInfeasibilities_(0.0), |
181 | infeasibilityCost_(1.0e10), |
182 | sumOfRelaxedDualInfeasibilities_(0.0), |
183 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
184 | acceptablePivot_(1.0e-8), |
185 | lower_(NULL), |
186 | rowLowerWork_(NULL), |
187 | columnLowerWork_(NULL), |
188 | upper_(NULL), |
189 | rowUpperWork_(NULL), |
190 | columnUpperWork_(NULL), |
191 | cost_(NULL), |
192 | rowObjectiveWork_(NULL), |
193 | objectiveWork_(NULL), |
194 | sequenceIn_(-1), |
195 | directionIn_(-1), |
196 | sequenceOut_(-1), |
197 | directionOut_(-1), |
198 | pivotRow_(-1), |
199 | lastGoodIteration_(-100), |
200 | dj_(NULL), |
201 | rowReducedCost_(NULL), |
202 | reducedCostWork_(NULL), |
203 | solution_(NULL), |
204 | rowActivityWork_(NULL), |
205 | columnActivityWork_(NULL), |
206 | numberDualInfeasibilities_(0), |
207 | numberDualInfeasibilitiesWithoutFree_(0), |
208 | numberPrimalInfeasibilities_(100), |
209 | numberRefinements_(0), |
210 | pivotVariable_(NULL), |
211 | factorization_(NULL), |
212 | savedSolution_(NULL), |
213 | numberTimesOptimal_(0), |
214 | disasterArea_(NULL), |
215 | changeMade_(1), |
216 | algorithm_(0), |
217 | forceFactorization_(-1), |
218 | perturbation_(100), |
219 | nonLinearCost_(NULL), |
220 | lastBadIteration_(-999999), |
221 | lastFlaggedIteration_(-999999), |
222 | numberFake_(0), |
223 | numberChanged_(0), |
224 | progressFlag_(0), |
225 | firstFree_(-1), |
226 | numberExtraRows_(0), |
227 | maximumBasic_(0), |
228 | dontFactorizePivots_(0), |
229 | incomingInfeasibility_(1.0), |
230 | allowedInfeasibility_(10.0), |
231 | automaticScale_(0), |
232 | maximumPerturbationSize_(0), |
233 | perturbationArray_(NULL), |
234 | baseModel_(NULL) |
235 | { |
236 | int i; |
237 | for (i = 0; i < 6; i++) { |
238 | rowArray_[i] = NULL; |
239 | columnArray_[i] = NULL; |
240 | } |
241 | for (i = 0; i < 4; i++) { |
242 | spareIntArray_[i] = 0; |
243 | spareDoubleArray_[i] = 0.0; |
244 | } |
245 | saveStatus_ = NULL; |
246 | // get an empty factorization so we can set tolerances etc |
247 | getEmptyFactorization(); |
248 | // say Steepest pricing |
249 | dualRowPivot_ = new ClpDualRowSteepest(); |
250 | // say Steepest pricing |
251 | primalColumnPivot_ = new ClpPrimalColumnSteepest(); |
252 | solveType_ = 1; // say simplex based life form |
253 | if (fixOthers) { |
254 | int numberOtherColumns = rhs->numberColumns(); |
255 | int numberOtherRows = rhs->numberRows(); |
256 | double * solution = new double [numberOtherColumns]; |
257 | CoinZeroN(solution, numberOtherColumns); |
258 | int i; |
259 | for (i = 0; i < numberColumns; i++) { |
260 | int iColumn = whichColumn[i]; |
261 | if (solution[iColumn]) |
262 | fixOthers = false; // duplicates |
263 | solution[iColumn] = 1.0; |
264 | } |
265 | if (fixOthers) { |
266 | const double * otherSolution = rhs->primalColumnSolution(); |
267 | const double * objective = rhs->objective(); |
268 | double offset = 0.0; |
269 | for (i = 0; i < numberOtherColumns; i++) { |
270 | if (solution[i]) { |
271 | solution[i] = 0.0; // in |
272 | } else { |
273 | solution[i] = otherSolution[i]; |
274 | offset += objective[i] * otherSolution[i]; |
275 | } |
276 | } |
277 | double * rhsModification = new double [numberOtherRows]; |
278 | CoinZeroN(rhsModification, numberOtherRows); |
279 | rhs->matrix()->times(solution, rhsModification) ; |
280 | for ( i = 0; i < numberRows; i++) { |
281 | int iRow = whichRow[i]; |
282 | if (rowLower_[i] > -1.0e20) |
283 | rowLower_[i] -= rhsModification[iRow]; |
284 | if (rowUpper_[i] < 1.0e20) |
285 | rowUpper_[i] -= rhsModification[iRow]; |
286 | } |
287 | delete [] rhsModification; |
288 | setObjectiveOffset(rhs->objectiveOffset() - offset); |
289 | // And set objective value to match |
290 | setObjectiveValue(rhs->objectiveValue()); |
291 | } |
292 | delete [] solution; |
293 | } |
294 | } |
295 | // Subproblem constructor |
296 | ClpSimplex::ClpSimplex ( const ClpSimplex * rhs, |
297 | int numberRows, const int * whichRow, |
298 | int numberColumns, const int * whichColumn, |
299 | bool dropNames, bool dropIntegers, bool fixOthers) |
300 | : ClpModel(rhs, numberRows, whichRow, |
301 | numberColumns, whichColumn, dropNames, dropIntegers), |
302 | bestPossibleImprovement_(0.0), |
303 | zeroTolerance_(1.0e-13), |
304 | columnPrimalSequence_(-2), |
305 | rowPrimalSequence_(-2), |
306 | bestObjectiveValue_(-COIN_DBL_MAX), |
307 | moreSpecialOptions_(2), |
308 | baseIteration_(0), |
309 | primalToleranceToGetOptimal_(-1.0), |
310 | largeValue_(1.0e15), |
311 | largestPrimalError_(0.0), |
312 | largestDualError_(0.0), |
313 | alphaAccuracy_(-1.0), |
314 | dualBound_(1.0e10), |
315 | alpha_(0.0), |
316 | theta_(0.0), |
317 | lowerIn_(0.0), |
318 | valueIn_(0.0), |
319 | upperIn_(-COIN_DBL_MAX), |
320 | dualIn_(0.0), |
321 | lowerOut_(-1), |
322 | valueOut_(-1), |
323 | upperOut_(-1), |
324 | dualOut_(-1), |
325 | dualTolerance_(rhs->dualTolerance_), |
326 | primalTolerance_(rhs->primalTolerance_), |
327 | sumDualInfeasibilities_(0.0), |
328 | sumPrimalInfeasibilities_(0.0), |
329 | infeasibilityCost_(1.0e10), |
330 | sumOfRelaxedDualInfeasibilities_(0.0), |
331 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
332 | acceptablePivot_(1.0e-8), |
333 | lower_(NULL), |
334 | rowLowerWork_(NULL), |
335 | columnLowerWork_(NULL), |
336 | upper_(NULL), |
337 | rowUpperWork_(NULL), |
338 | columnUpperWork_(NULL), |
339 | cost_(NULL), |
340 | rowObjectiveWork_(NULL), |
341 | objectiveWork_(NULL), |
342 | sequenceIn_(-1), |
343 | directionIn_(-1), |
344 | sequenceOut_(-1), |
345 | directionOut_(-1), |
346 | pivotRow_(-1), |
347 | lastGoodIteration_(-100), |
348 | dj_(NULL), |
349 | rowReducedCost_(NULL), |
350 | reducedCostWork_(NULL), |
351 | solution_(NULL), |
352 | rowActivityWork_(NULL), |
353 | columnActivityWork_(NULL), |
354 | numberDualInfeasibilities_(0), |
355 | numberDualInfeasibilitiesWithoutFree_(0), |
356 | numberPrimalInfeasibilities_(100), |
357 | numberRefinements_(0), |
358 | pivotVariable_(NULL), |
359 | factorization_(NULL), |
360 | savedSolution_(NULL), |
361 | numberTimesOptimal_(0), |
362 | disasterArea_(NULL), |
363 | changeMade_(1), |
364 | algorithm_(0), |
365 | forceFactorization_(-1), |
366 | perturbation_(100), |
367 | nonLinearCost_(NULL), |
368 | lastBadIteration_(-999999), |
369 | lastFlaggedIteration_(-999999), |
370 | numberFake_(0), |
371 | numberChanged_(0), |
372 | progressFlag_(0), |
373 | firstFree_(-1), |
374 | numberExtraRows_(0), |
375 | maximumBasic_(0), |
376 | dontFactorizePivots_(0), |
377 | incomingInfeasibility_(1.0), |
378 | allowedInfeasibility_(10.0), |
379 | automaticScale_(0), |
380 | maximumPerturbationSize_(0), |
381 | perturbationArray_(NULL), |
382 | baseModel_(NULL) |
383 | { |
384 | int i; |
385 | for (i = 0; i < 6; i++) { |
386 | rowArray_[i] = NULL; |
387 | columnArray_[i] = NULL; |
388 | } |
389 | for (i = 0; i < 4; i++) { |
390 | spareIntArray_[i] = 0; |
391 | spareDoubleArray_[i] = 0.0; |
392 | } |
393 | saveStatus_ = NULL; |
394 | factorization_ = new ClpFactorization(*rhs->factorization_, -numberRows_); |
395 | //factorization_ = new ClpFactorization(*rhs->factorization_, |
396 | // rhs->factorization_->goDenseThreshold()); |
397 | ClpDualRowDantzig * pivot = |
398 | dynamic_cast< ClpDualRowDantzig*>(rhs->dualRowPivot_); |
399 | // say Steepest pricing |
400 | if (!pivot) |
401 | dualRowPivot_ = new ClpDualRowSteepest(); |
402 | else |
403 | dualRowPivot_ = new ClpDualRowDantzig(); |
404 | // say Steepest pricing |
405 | primalColumnPivot_ = new ClpPrimalColumnSteepest(); |
406 | solveType_ = 1; // say simplex based life form |
407 | if (fixOthers) { |
408 | int numberOtherColumns = rhs->numberColumns(); |
409 | int numberOtherRows = rhs->numberRows(); |
410 | double * solution = new double [numberOtherColumns]; |
411 | CoinZeroN(solution, numberOtherColumns); |
412 | int i; |
413 | for (i = 0; i < numberColumns; i++) { |
414 | int iColumn = whichColumn[i]; |
415 | if (solution[iColumn]) |
416 | fixOthers = false; // duplicates |
417 | solution[iColumn] = 1.0; |
418 | } |
419 | if (fixOthers) { |
420 | const double * otherSolution = rhs->primalColumnSolution(); |
421 | const double * objective = rhs->objective(); |
422 | double offset = 0.0; |
423 | for (i = 0; i < numberOtherColumns; i++) { |
424 | if (solution[i]) { |
425 | solution[i] = 0.0; // in |
426 | } else { |
427 | solution[i] = otherSolution[i]; |
428 | offset += objective[i] * otherSolution[i]; |
429 | } |
430 | } |
431 | double * rhsModification = new double [numberOtherRows]; |
432 | CoinZeroN(rhsModification, numberOtherRows); |
433 | rhs->matrix()->times(solution, rhsModification) ; |
434 | for ( i = 0; i < numberRows; i++) { |
435 | int iRow = whichRow[i]; |
436 | if (rowLower_[i] > -1.0e20) |
437 | rowLower_[i] -= rhsModification[iRow]; |
438 | if (rowUpper_[i] < 1.0e20) |
439 | rowUpper_[i] -= rhsModification[iRow]; |
440 | } |
441 | delete [] rhsModification; |
442 | setObjectiveOffset(rhs->objectiveOffset() - offset); |
443 | // And set objective value to match |
444 | setObjectiveValue(rhs->objectiveValue()); |
445 | } |
446 | delete [] solution; |
447 | } |
448 | if (rhs->maximumPerturbationSize_) { |
449 | maximumPerturbationSize_ = 2 * numberColumns; |
450 | perturbationArray_ = new double [maximumPerturbationSize_]; |
451 | for (i = 0; i < numberColumns; i++) { |
452 | int iColumn = whichColumn[i]; |
453 | perturbationArray_[2*i] = rhs->perturbationArray_[2*iColumn]; |
454 | perturbationArray_[2*i+1] = rhs->perturbationArray_[2*iColumn+1]; |
455 | } |
456 | } |
457 | } |
458 | // Puts solution back small model |
459 | void |
460 | ClpSimplex::getbackSolution(const ClpSimplex & smallModel, const int * whichRow, const int * whichColumn) |
461 | { |
462 | setSumDualInfeasibilities(smallModel.sumDualInfeasibilities()); |
463 | setNumberDualInfeasibilities(smallModel.numberDualInfeasibilities()); |
464 | setSumPrimalInfeasibilities(smallModel.sumPrimalInfeasibilities()); |
465 | setNumberPrimalInfeasibilities(smallModel.numberPrimalInfeasibilities()); |
466 | setNumberIterations(smallModel.numberIterations()); |
467 | setProblemStatus(smallModel.status()); |
468 | setObjectiveValue(smallModel.objectiveValue()); |
469 | const double * solution2 = smallModel.primalColumnSolution(); |
470 | int i; |
471 | int numberRows2 = smallModel.numberRows(); |
472 | int numberColumns2 = smallModel.numberColumns(); |
473 | const double * dj2 = smallModel.dualColumnSolution(); |
474 | for ( i = 0; i < numberColumns2; i++) { |
475 | int iColumn = whichColumn[i]; |
476 | columnActivity_[iColumn] = solution2[i]; |
477 | reducedCost_[iColumn] = dj2[i]; |
478 | setStatus(iColumn, smallModel.getStatus(i)); |
479 | } |
480 | const double * dual2 = smallModel.dualRowSolution(); |
481 | memset(dual_, 0, numberRows_ * sizeof(double)); |
482 | for (i = 0; i < numberRows2; i++) { |
483 | int iRow = whichRow[i]; |
484 | setRowStatus(iRow, smallModel.getRowStatus(i)); |
485 | dual_[iRow] = dual2[i]; |
486 | } |
487 | CoinZeroN(rowActivity_, numberRows_); |
488 | #if 0 |
489 | if (!problemStatus_) { |
490 | ClpDisjointCopyN(smallModel.objective(), smallModel.numberColumns_, smallModel.reducedCost_); |
491 | smallModel.matrix_->transposeTimes(-1.0, smallModel.dual_, smallModel.reducedCost_); |
492 | for (int i = 0; i < smallModel.numberColumns_; i++) { |
493 | if (smallModel.getColumnStatus(i) == basic) |
494 | assert (fabs(smallModel.reducedCost_[i]) < 1.0e-5); |
495 | } |
496 | ClpDisjointCopyN(objective(), numberColumns_, reducedCost_); |
497 | matrix_->transposeTimes(-1.0, dual_, reducedCost_); |
498 | for (int i = 0; i < numberColumns_; i++) { |
499 | if (getColumnStatus(i) == basic) |
500 | assert (fabs(reducedCost_[i]) < 1.0e-5); |
501 | } |
502 | } |
503 | #endif |
504 | matrix()->times(columnActivity_, rowActivity_) ; |
505 | } |
506 | |
507 | //----------------------------------------------------------------------------- |
508 | |
509 | ClpSimplex::~ClpSimplex () |
510 | { |
511 | setPersistenceFlag(0); |
512 | gutsOfDelete(0); |
513 | delete nonLinearCost_; |
514 | } |
515 | //############################################################################# |
516 | void ClpSimplex::setLargeValue( double value) |
517 | { |
518 | if (value > 0.0 && value < COIN_DBL_MAX) |
519 | largeValue_ = value; |
520 | } |
521 | int |
522 | ClpSimplex::gutsOfSolution ( double * givenDuals, |
523 | const double * givenPrimals, |
524 | bool valuesPass) |
525 | { |
526 | |
527 | |
528 | // if values pass, save values of basic variables |
529 | double * save = NULL; |
530 | double oldValue = 0.0; |
531 | if (valuesPass) { |
532 | assert(algorithm_ > 0); // only primal at present |
533 | assert(nonLinearCost_); |
534 | int iRow; |
535 | checkPrimalSolution( rowActivityWork_, columnActivityWork_); |
536 | // get correct bounds on all variables |
537 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
538 | oldValue = nonLinearCost_->largestInfeasibility(); |
539 | save = new double[numberRows_]; |
540 | for (iRow = 0; iRow < numberRows_; iRow++) { |
541 | int iPivot = pivotVariable_[iRow]; |
542 | save[iRow] = solution_[iPivot]; |
543 | } |
544 | } |
545 | // do work |
546 | computePrimals(rowActivityWork_, columnActivityWork_); |
547 | // If necessary - override results |
548 | if (givenPrimals) { |
549 | CoinMemcpyN(givenPrimals, numberColumns_, columnActivityWork_); |
550 | memset(rowActivityWork_, 0, numberRows_ * sizeof(double)); |
551 | times(-1.0, columnActivityWork_, rowActivityWork_); |
552 | } |
553 | double objectiveModification = 0.0; |
554 | if (algorithm_ > 0 && nonLinearCost_ != NULL) { |
555 | // primal algorithm |
556 | // get correct bounds on all variables |
557 | // If 4 bit set - Force outgoing variables to exact bound (primal) |
558 | if ((specialOptions_ & 4) == 0) |
559 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
560 | else |
561 | nonLinearCost_->checkInfeasibilities(0.0); |
562 | objectiveModification += nonLinearCost_->changeInCost(); |
563 | if (nonLinearCost_->numberInfeasibilities()) |
564 | if (handler_->detail(CLP_SIMPLEX_NONLINEAR, messages_) < 100) { |
565 | handler_->message(CLP_SIMPLEX_NONLINEAR, messages_) |
566 | << nonLinearCost_->changeInCost() |
567 | << nonLinearCost_->numberInfeasibilities() |
568 | << CoinMessageEol; |
569 | } |
570 | } |
571 | if (valuesPass) { |
572 | double badInfeasibility = nonLinearCost_->largestInfeasibility(); |
573 | #ifdef CLP_DEBUG |
574 | std::cout << "Largest given infeasibility " << oldValue |
575 | << " now " << nonLinearCost_->largestInfeasibility() << std::endl; |
576 | #endif |
577 | int numberOut = 0; |
578 | // But may be very large rhs etc |
579 | double useError = CoinMin(largestPrimalError_, |
580 | 1.0e5 / maximumAbsElement(solution_, numberRows_ + numberColumns_)); |
581 | if ((oldValue < incomingInfeasibility_ || badInfeasibility > |
582 | (CoinMax(10.0 * allowedInfeasibility_, 100.0 * oldValue))) |
583 | && (badInfeasibility > CoinMax(incomingInfeasibility_, allowedInfeasibility_) || |
584 | useError > 1.0e-3)) { |
585 | //printf("Original largest infeas %g, now %g, primalError %g\n", |
586 | // oldValue,nonLinearCost_->largestInfeasibility(), |
587 | // largestPrimalError_); |
588 | // throw out up to 1000 structurals |
589 | int iRow; |
590 | int * sort = new int[numberRows_]; |
591 | // first put back solution and store difference |
592 | for (iRow = 0; iRow < numberRows_; iRow++) { |
593 | int iPivot = pivotVariable_[iRow]; |
594 | double difference = fabs(solution_[iPivot] - save[iRow]); |
595 | solution_[iPivot] = save[iRow]; |
596 | save[iRow] = difference; |
597 | } |
598 | int numberBasic = 0; |
599 | for (iRow = 0; iRow < numberRows_; iRow++) { |
600 | int iPivot = pivotVariable_[iRow]; |
601 | |
602 | if (iPivot < numberColumns_) { |
603 | // column |
604 | double difference = save[iRow]; |
605 | if (difference > 1.0e-4) { |
606 | sort[numberOut] = iRow; |
607 | save[numberOut++] = -difference; |
608 | if (getStatus(iPivot) == basic) |
609 | numberBasic++; |
610 | } |
611 | } |
612 | } |
613 | if (!numberBasic) { |
614 | //printf("no errors on basic - going to all slack - numberOut %d\n",numberOut); |
615 | #if 0 |
616 | allSlackBasis(true); |
617 | CoinIotaN(pivotVariable_, numberRows_, numberColumns_); |
618 | #else |
619 | // allow |
620 | numberOut = 0; |
621 | #endif |
622 | } |
623 | CoinSort_2(save, save + numberOut, sort); |
624 | numberOut = CoinMin(1000, numberOut); |
625 | for (iRow = 0; iRow < numberOut; iRow++) { |
626 | int jRow = sort[iRow]; |
627 | int iColumn = pivotVariable_[jRow]; |
628 | setColumnStatus(iColumn, superBasic); |
629 | setRowStatus(jRow, basic); |
630 | pivotVariable_[jRow] = jRow + numberColumns_; |
631 | if (fabs(solution_[iColumn]) > 1.0e10) { |
632 | if (upper_[iColumn] < 0.0) { |
633 | solution_[iColumn] = upper_[iColumn]; |
634 | } else if (lower_[iColumn] > 0.0) { |
635 | solution_[iColumn] = lower_[iColumn]; |
636 | } else { |
637 | solution_[iColumn] = 0.0; |
638 | } |
639 | } |
640 | } |
641 | delete [] sort; |
642 | } |
643 | delete [] save; |
644 | if (numberOut) |
645 | return numberOut; |
646 | } |
647 | if ((moreSpecialOptions_ & 128) != 0 && !numberIterations_) { |
648 | //printf("trying feas pump\n"); |
649 | const char * integerType = integerInformation(); |
650 | assert (integerType); |
651 | assert (perturbationArray_); |
652 | CoinZeroN(cost_, numberRows_ + numberColumns_); |
653 | for (int i = 0; i < numberRows_ - numberRows_; i++) { |
654 | int iSequence = pivotVariable_[i]; |
655 | if (iSequence < numberColumns_ && integerType[iSequence]) { |
656 | double lower = lower_[iSequence]; |
657 | double upper = upper_[iSequence]; |
658 | double value = solution_[iSequence]; |
659 | if (value >= lower - primalTolerance_ && |
660 | value <= upper + primalTolerance_) { |
661 | double sign; |
662 | if (value - lower < upper - value) |
663 | sign = 1.0; |
664 | else |
665 | sign = -1.0; |
666 | cost_[iSequence] = sign * perturbationArray_[iSequence]; |
667 | } |
668 | } |
669 | } |
670 | } |
671 | computeDuals(givenDuals); |
672 | if ((moreSpecialOptions_ & 128) != 0 && !numberIterations_) { |
673 | const char * integerType = integerInformation(); |
674 | // Need to do columns and rows to stay dual feasible |
675 | for (int iSequence = 0; iSequence < numberColumns_; iSequence++) { |
676 | if (integerType[iSequence] && getStatus(iSequence) != basic) { |
677 | double djValue = dj_[iSequence]; |
678 | double change = 0.0; |
679 | if (getStatus(iSequence) == atLowerBound) |
680 | change = CoinMax(-djValue, 10.0 * perturbationArray_[iSequence]); |
681 | else if (getStatus(iSequence) == atUpperBound) |
682 | change = CoinMin(-djValue, -10.0 * perturbationArray_[iSequence]); |
683 | cost_[iSequence] = change; |
684 | dj_[iSequence] += change; |
685 | } |
686 | } |
687 | } |
688 | |
689 | // now check solutions |
690 | //checkPrimalSolution( rowActivityWork_, columnActivityWork_); |
691 | //checkDualSolution(); |
692 | checkBothSolutions(); |
693 | objectiveValue_ += objectiveModification / (objectiveScale_ * rhsScale_); |
694 | if (handler_->logLevel() > 3 || (largestPrimalError_ > 1.0e-2 || |
695 | largestDualError_ > 1.0e-2)) |
696 | handler_->message(CLP_SIMPLEX_ACCURACY, messages_) |
697 | << largestPrimalError_ |
698 | << largestDualError_ |
699 | << CoinMessageEol; |
700 | if (largestPrimalError_ > 1.0e-1 && numberRows_ > 100 && numberIterations_) { |
701 | // Change factorization tolerance |
702 | if (factorization_->zeroTolerance() > 1.0e-18) |
703 | factorization_->zeroTolerance(1.0e-18); |
704 | } |
705 | // Switch off false values pass indicator |
706 | if (!valuesPass && algorithm_ > 0) |
707 | firstFree_ = -1; |
708 | return 0; |
709 | } |
710 | void |
711 | ClpSimplex::computePrimals ( const double * rowActivities, |
712 | const double * columnActivities) |
713 | { |
714 | |
715 | //work space |
716 | CoinIndexedVector * workSpace = rowArray_[0]; |
717 | |
718 | CoinIndexedVector * arrayVector = rowArray_[1]; |
719 | arrayVector->clear(); |
720 | CoinIndexedVector * previousVector = rowArray_[2]; |
721 | previousVector->clear(); |
722 | // accumulate non basic stuff |
723 | |
724 | int iRow; |
725 | // order is this way for scaling |
726 | if (columnActivities != columnActivityWork_) |
727 | ClpDisjointCopyN(columnActivities, numberColumns_, columnActivityWork_); |
728 | if (rowActivities != rowActivityWork_) |
729 | ClpDisjointCopyN(rowActivities, numberRows_, rowActivityWork_); |
730 | double * array = arrayVector->denseVector(); |
731 | int * index = arrayVector->getIndices(); |
732 | int number = 0; |
733 | const double * rhsOffset = matrix_->rhsOffset(this, false, true); |
734 | if (!rhsOffset) { |
735 | // Use whole matrix every time to make it easier for ClpMatrixBase |
736 | // So zero out basic |
737 | for (iRow = 0; iRow < numberRows_; iRow++) { |
738 | int iPivot = pivotVariable_[iRow]; |
739 | assert (iPivot >= 0); |
740 | solution_[iPivot] = 0.0; |
741 | #ifdef CLP_INVESTIGATE |
742 | assert (getStatus(iPivot) == basic); |
743 | #endif |
744 | } |
745 | // Extended solution before "update" |
746 | matrix_->primalExpanded(this, 0); |
747 | times(-1.0, columnActivityWork_, array); |
748 | for (iRow = 0; iRow < numberRows_; iRow++) { |
749 | double value = array[iRow] + rowActivityWork_[iRow]; |
750 | if (value) { |
751 | array[iRow] = value; |
752 | index[number++] = iRow; |
753 | } else { |
754 | array[iRow] = 0.0; |
755 | } |
756 | } |
757 | } else { |
758 | // we have an effective rhs lying around |
759 | // zero out basic (really just for slacks) |
760 | for (iRow = 0; iRow < numberRows_; iRow++) { |
761 | int iPivot = pivotVariable_[iRow]; |
762 | solution_[iPivot] = 0.0; |
763 | } |
764 | for (iRow = 0; iRow < numberRows_; iRow++) { |
765 | double value = rhsOffset[iRow] + rowActivityWork_[iRow]; |
766 | if (value) { |
767 | array[iRow] = value; |
768 | index[number++] = iRow; |
769 | } else { |
770 | array[iRow] = 0.0; |
771 | } |
772 | } |
773 | } |
774 | arrayVector->setNumElements(number); |
775 | #ifdef CLP_DEBUG |
776 | if (numberIterations_ == -3840) { |
777 | int i; |
778 | for (i = 0; i < numberRows_ + numberColumns_; i++) |
779 | printf("%d status %d\n" , i, status_[i]); |
780 | printf("xxxxx1\n" ); |
781 | for (i = 0; i < numberRows_; i++) |
782 | if (array[i]) |
783 | printf("%d rhs %g\n" , i, array[i]); |
784 | printf("xxxxx2\n" ); |
785 | for (i = 0; i < numberRows_ + numberColumns_; i++) |
786 | if (getStatus(i) != basic) |
787 | printf("%d non basic %g %g %g\n" , i, lower_[i], solution_[i], upper_[i]); |
788 | printf("xxxxx3\n" ); |
789 | } |
790 | #endif |
791 | // Ftran adjusted RHS and iterate to improve accuracy |
792 | double lastError = COIN_DBL_MAX; |
793 | int iRefine; |
794 | CoinIndexedVector * thisVector = arrayVector; |
795 | CoinIndexedVector * lastVector = previousVector; |
796 | if (number) |
797 | factorization_->updateColumn(workSpace, thisVector); |
798 | double * work = workSpace->denseVector(); |
799 | #ifdef CLP_DEBUG |
800 | if (numberIterations_ == -3840) { |
801 | int i; |
802 | for (i = 0; i < numberRows_; i++) |
803 | if (array[i]) |
804 | printf("%d after rhs %g\n" , i, array[i]); |
805 | printf("xxxxx4\n" ); |
806 | } |
807 | #endif |
808 | bool goodSolution = true; |
809 | for (iRefine = 0; iRefine < numberRefinements_ + 1; iRefine++) { |
810 | |
811 | int numberIn = thisVector->getNumElements(); |
812 | int * indexIn = thisVector->getIndices(); |
813 | double * arrayIn = thisVector->denseVector(); |
814 | // put solution in correct place |
815 | if (!rhsOffset) { |
816 | int j; |
817 | for (j = 0; j < numberIn; j++) { |
818 | iRow = indexIn[j]; |
819 | int iPivot = pivotVariable_[iRow]; |
820 | solution_[iPivot] = arrayIn[iRow]; |
821 | //assert (fabs(solution_[iPivot])<1.0e100); |
822 | } |
823 | } else { |
824 | for (iRow = 0; iRow < numberRows_; iRow++) { |
825 | int iPivot = pivotVariable_[iRow]; |
826 | solution_[iPivot] = arrayIn[iRow]; |
827 | //assert (fabs(solution_[iPivot])<1.0e100); |
828 | } |
829 | } |
830 | // Extended solution after "update" |
831 | matrix_->primalExpanded(this, 1); |
832 | // check Ax == b (for all) |
833 | // signal column generated matrix to just do basic (and gub) |
834 | unsigned int saveOptions = specialOptions(); |
835 | setSpecialOptions(16); |
836 | times(-1.0, columnActivityWork_, work); |
837 | setSpecialOptions(saveOptions); |
838 | largestPrimalError_ = 0.0; |
839 | double multiplier = 131072.0; |
840 | for (iRow = 0; iRow < numberRows_; iRow++) { |
841 | double value = work[iRow] + rowActivityWork_[iRow]; |
842 | work[iRow] = value * multiplier; |
843 | if (fabs(value) > largestPrimalError_) { |
844 | largestPrimalError_ = fabs(value); |
845 | } |
846 | } |
847 | if (largestPrimalError_ >= lastError) { |
848 | // restore |
849 | CoinIndexedVector * temp = thisVector; |
850 | thisVector = lastVector; |
851 | lastVector = temp; |
852 | goodSolution = false; |
853 | break; |
854 | } |
855 | if (iRefine < numberRefinements_ && largestPrimalError_ > 1.0e-10) { |
856 | // try and make better |
857 | // save this |
858 | CoinIndexedVector * temp = thisVector; |
859 | thisVector = lastVector; |
860 | lastVector = temp; |
861 | int * indexOut = thisVector->getIndices(); |
862 | int number = 0; |
863 | array = thisVector->denseVector(); |
864 | thisVector->clear(); |
865 | for (iRow = 0; iRow < numberRows_; iRow++) { |
866 | double value = work[iRow]; |
867 | if (value) { |
868 | array[iRow] = value; |
869 | indexOut[number++] = iRow; |
870 | work[iRow] = 0.0; |
871 | } |
872 | } |
873 | thisVector->setNumElements(number); |
874 | lastError = largestPrimalError_; |
875 | factorization_->updateColumn(workSpace, thisVector); |
876 | multiplier = 1.0 / multiplier; |
877 | double * previous = lastVector->denseVector(); |
878 | number = 0; |
879 | for (iRow = 0; iRow < numberRows_; iRow++) { |
880 | double value = previous[iRow] + multiplier * array[iRow]; |
881 | if (value) { |
882 | array[iRow] = value; |
883 | indexOut[number++] = iRow; |
884 | } else { |
885 | array[iRow] = 0.0; |
886 | } |
887 | } |
888 | thisVector->setNumElements(number); |
889 | } else { |
890 | break; |
891 | } |
892 | } |
893 | |
894 | // solution as accurate as we are going to get |
895 | ClpFillN(work, numberRows_, 0.0); |
896 | if (!goodSolution) { |
897 | array = thisVector->denseVector(); |
898 | // put solution in correct place |
899 | for (iRow = 0; iRow < numberRows_; iRow++) { |
900 | int iPivot = pivotVariable_[iRow]; |
901 | solution_[iPivot] = array[iRow]; |
902 | //assert (fabs(solution_[iPivot])<1.0e100); |
903 | } |
904 | } |
905 | arrayVector->clear(); |
906 | previousVector->clear(); |
907 | #ifdef CLP_DEBUG |
908 | if (numberIterations_ == -3840) { |
909 | exit(77); |
910 | } |
911 | #endif |
912 | } |
913 | // now dual side |
914 | void |
915 | ClpSimplex::computeDuals(double * givenDjs) |
916 | { |
917 | #ifndef SLIM_CLP |
918 | if (objective_->type() == 1 || !objective_->activated()) { |
919 | #endif |
920 | // Linear |
921 | //work space |
922 | CoinIndexedVector * workSpace = rowArray_[0]; |
923 | |
924 | CoinIndexedVector * arrayVector = rowArray_[1]; |
925 | arrayVector->clear(); |
926 | CoinIndexedVector * previousVector = rowArray_[2]; |
927 | previousVector->clear(); |
928 | int iRow; |
929 | #ifdef CLP_DEBUG |
930 | workSpace->checkClear(); |
931 | #endif |
932 | double * array = arrayVector->denseVector(); |
933 | int * index = arrayVector->getIndices(); |
934 | int number = 0; |
935 | if (!givenDjs) { |
936 | for (iRow = 0; iRow < numberRows_; iRow++) { |
937 | int iPivot = pivotVariable_[iRow]; |
938 | double value = cost_[iPivot]; |
939 | if (value) { |
940 | array[iRow] = value; |
941 | index[number++] = iRow; |
942 | } |
943 | } |
944 | } else { |
945 | // dual values pass - djs may not be zero |
946 | for (iRow = 0; iRow < numberRows_; iRow++) { |
947 | int iPivot = pivotVariable_[iRow]; |
948 | // make sure zero if done |
949 | if (!pivoted(iPivot)) |
950 | givenDjs[iPivot] = 0.0; |
951 | double value = cost_[iPivot] - givenDjs[iPivot]; |
952 | if (value) { |
953 | array[iRow] = value; |
954 | index[number++] = iRow; |
955 | } |
956 | } |
957 | } |
958 | arrayVector->setNumElements(number); |
959 | // Extended duals before "updateTranspose" |
960 | matrix_->dualExpanded(this, arrayVector, givenDjs, 0); |
961 | |
962 | // Btran basic costs and get as accurate as possible |
963 | double lastError = COIN_DBL_MAX; |
964 | int iRefine; |
965 | double * work = workSpace->denseVector(); |
966 | CoinIndexedVector * thisVector = arrayVector; |
967 | CoinIndexedVector * lastVector = previousVector; |
968 | factorization_->updateColumnTranspose(workSpace, thisVector); |
969 | |
970 | for (iRefine = 0; iRefine < numberRefinements_ + 1; iRefine++) { |
971 | // check basic reduced costs zero |
972 | largestDualError_ = 0.0; |
973 | if (!numberExtraRows_) { |
974 | // Just basic |
975 | int * index2 = workSpace->getIndices(); |
976 | // use reduced costs for slacks as work array |
977 | double * work2 = reducedCostWork_ + numberColumns_; |
978 | int numberStructurals = 0; |
979 | for (iRow = 0; iRow < numberRows_; iRow++) { |
980 | int iPivot = pivotVariable_[iRow]; |
981 | if (iPivot < numberColumns_) |
982 | index2[numberStructurals++] = iPivot; |
983 | } |
984 | matrix_->listTransposeTimes(this, array, index2, numberStructurals, work2); |
985 | numberStructurals = 0; |
986 | if (!givenDjs) { |
987 | for (iRow = 0; iRow < numberRows_; iRow++) { |
988 | int iPivot = pivotVariable_[iRow]; |
989 | double value; |
990 | if (iPivot >= numberColumns_) { |
991 | // slack |
992 | value = rowObjectiveWork_[iPivot-numberColumns_] |
993 | + array[iPivot-numberColumns_]; |
994 | } else { |
995 | // column |
996 | value = objectiveWork_[iPivot] - work2[numberStructurals++]; |
997 | } |
998 | work[iRow] = value; |
999 | if (fabs(value) > largestDualError_) { |
1000 | largestDualError_ = fabs(value); |
1001 | } |
1002 | } |
1003 | } else { |
1004 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1005 | int iPivot = pivotVariable_[iRow]; |
1006 | if (iPivot >= numberColumns_) { |
1007 | // slack |
1008 | work[iRow] = rowObjectiveWork_[iPivot-numberColumns_] |
1009 | + array[iPivot-numberColumns_] - givenDjs[iPivot]; |
1010 | } else { |
1011 | // column |
1012 | work[iRow] = objectiveWork_[iPivot] - work2[numberStructurals++] |
1013 | - givenDjs[iPivot]; |
1014 | } |
1015 | if (fabs(work[iRow]) > largestDualError_) { |
1016 | largestDualError_ = fabs(work[iRow]); |
1017 | //assert (largestDualError_<1.0e-7); |
1018 | //if (largestDualError_>1.0e-7) |
1019 | //printf("large dual error %g\n",largestDualError_); |
1020 | } |
1021 | } |
1022 | } |
1023 | } else { |
1024 | // extra rows - be more careful |
1025 | #if 1 |
1026 | // would be faster to do just for basic but this reduces code |
1027 | ClpDisjointCopyN(objectiveWork_, numberColumns_, reducedCostWork_); |
1028 | transposeTimes(-1.0, array, reducedCostWork_); |
1029 | #else |
1030 | // Just basic |
1031 | int * index2 = workSpace->getIndices(); |
1032 | int numberStructurals = 0; |
1033 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1034 | int iPivot = pivotVariable_[iRow]; |
1035 | if (iPivot < numberColumns_) |
1036 | index2[numberStructurals++] = iPivot; |
1037 | } |
1038 | matrix_->listTransposeTimes(this, array, index2, numberStructurals, work); |
1039 | for (iRow = 0; iRow < numberStructurals; iRow++) { |
1040 | int iPivot = index2[iRow]; |
1041 | reducedCostWork_[iPivot] = objectiveWork_[iPivot] - work[iRow]; |
1042 | } |
1043 | #endif |
1044 | // update by duals on sets |
1045 | matrix_->dualExpanded(this, NULL, NULL, 1); |
1046 | if (!givenDjs) { |
1047 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1048 | int iPivot = pivotVariable_[iRow]; |
1049 | double value; |
1050 | if (iPivot >= numberColumns_) { |
1051 | // slack |
1052 | value = rowObjectiveWork_[iPivot-numberColumns_] |
1053 | + array[iPivot-numberColumns_]; |
1054 | } else { |
1055 | // column |
1056 | value = reducedCostWork_[iPivot]; |
1057 | } |
1058 | work[iRow] = value; |
1059 | if (fabs(value) > largestDualError_) { |
1060 | largestDualError_ = fabs(value); |
1061 | } |
1062 | } |
1063 | } else { |
1064 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1065 | int iPivot = pivotVariable_[iRow]; |
1066 | if (iPivot >= numberColumns_) { |
1067 | // slack |
1068 | work[iRow] = rowObjectiveWork_[iPivot-numberColumns_] |
1069 | + array[iPivot-numberColumns_] - givenDjs[iPivot]; |
1070 | } else { |
1071 | // column |
1072 | work[iRow] = reducedCostWork_[iPivot] - givenDjs[iPivot]; |
1073 | } |
1074 | if (fabs(work[iRow]) > largestDualError_) { |
1075 | largestDualError_ = fabs(work[iRow]); |
1076 | //assert (largestDualError_<1.0e-7); |
1077 | //if (largestDualError_>1.0e-7) |
1078 | //printf("large dual error %g\n",largestDualError_); |
1079 | } |
1080 | } |
1081 | } |
1082 | } |
1083 | if (largestDualError_ >= lastError) { |
1084 | // restore |
1085 | CoinIndexedVector * temp = thisVector; |
1086 | thisVector = lastVector; |
1087 | lastVector = temp; |
1088 | break; |
1089 | } |
1090 | if (iRefine < numberRefinements_ && largestDualError_ > 1.0e-10 |
1091 | && !givenDjs) { |
1092 | // try and make better |
1093 | // save this |
1094 | CoinIndexedVector * temp = thisVector; |
1095 | thisVector = lastVector; |
1096 | lastVector = temp; |
1097 | int * indexOut = thisVector->getIndices(); |
1098 | int number = 0; |
1099 | array = thisVector->denseVector(); |
1100 | thisVector->clear(); |
1101 | double multiplier = 131072.0; |
1102 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1103 | double value = multiplier * work[iRow]; |
1104 | if (value) { |
1105 | array[iRow] = value; |
1106 | indexOut[number++] = iRow; |
1107 | work[iRow] = 0.0; |
1108 | } |
1109 | work[iRow] = 0.0; |
1110 | } |
1111 | thisVector->setNumElements(number); |
1112 | lastError = largestDualError_; |
1113 | factorization_->updateColumnTranspose(workSpace, thisVector); |
1114 | multiplier = 1.0 / multiplier; |
1115 | double * previous = lastVector->denseVector(); |
1116 | number = 0; |
1117 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1118 | double value = previous[iRow] + multiplier * array[iRow]; |
1119 | if (value) { |
1120 | array[iRow] = value; |
1121 | indexOut[number++] = iRow; |
1122 | } else { |
1123 | array[iRow] = 0.0; |
1124 | } |
1125 | } |
1126 | thisVector->setNumElements(number); |
1127 | } else { |
1128 | break; |
1129 | } |
1130 | } |
1131 | // now look at dual solution |
1132 | array = thisVector->denseVector(); |
1133 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1134 | // slack |
1135 | double value = array[iRow]; |
1136 | dual_[iRow] = value; |
1137 | value += rowObjectiveWork_[iRow]; |
1138 | rowReducedCost_[iRow] = value; |
1139 | } |
1140 | // can use work if problem scaled (for better cache) |
1141 | ClpPackedMatrix* clpMatrix = |
1142 | dynamic_cast< ClpPackedMatrix*>(matrix_); |
1143 | double * saveRowScale = rowScale_; |
1144 | //double * saveColumnScale = columnScale_; |
1145 | if (scaledMatrix_) { |
1146 | rowScale_ = NULL; |
1147 | clpMatrix = scaledMatrix_; |
1148 | } |
1149 | if (clpMatrix && (clpMatrix->flags() & 2) == 0) { |
1150 | CoinIndexedVector * cVector = columnArray_[0]; |
1151 | int * whichColumn = cVector->getIndices(); |
1152 | assert (!cVector->getNumElements()); |
1153 | int n = 0; |
1154 | for (int i = 0; i < numberColumns_; i++) { |
1155 | if (getColumnStatus(i) != basic) { |
1156 | whichColumn[n++] = i; |
1157 | reducedCostWork_[i] = objectiveWork_[i]; |
1158 | } else { |
1159 | reducedCostWork_[i] = 0.0; |
1160 | } |
1161 | } |
1162 | if (numberRows_ > 4000) |
1163 | clpMatrix->transposeTimesSubset(n, whichColumn, dual_, reducedCostWork_, |
1164 | rowScale_, columnScale_, work); |
1165 | else |
1166 | clpMatrix->transposeTimesSubset(n, whichColumn, dual_, reducedCostWork_, |
1167 | rowScale_, columnScale_, NULL); |
1168 | } else { |
1169 | ClpDisjointCopyN(objectiveWork_, numberColumns_, reducedCostWork_); |
1170 | if (numberRows_ > 4000) |
1171 | matrix_->transposeTimes(-1.0, dual_, reducedCostWork_, |
1172 | rowScale_, columnScale_, work); |
1173 | else |
1174 | matrix_->transposeTimes(-1.0, dual_, reducedCostWork_, |
1175 | rowScale_, columnScale_, NULL); |
1176 | } |
1177 | rowScale_ = saveRowScale; |
1178 | //columnScale_ = saveColumnScale; |
1179 | ClpFillN(work, numberRows_, 0.0); |
1180 | // Extended duals and check dual infeasibility |
1181 | if (!matrix_->skipDualCheck() || algorithm_ < 0 || problemStatus_ != -2) |
1182 | matrix_->dualExpanded(this, NULL, NULL, 2); |
1183 | // If necessary - override results |
1184 | if (givenDjs) { |
1185 | // restore accurate duals |
1186 | CoinMemcpyN(dj_, (numberRows_ + numberColumns_), givenDjs); |
1187 | } |
1188 | arrayVector->clear(); |
1189 | previousVector->clear(); |
1190 | #ifndef SLIM_CLP |
1191 | } else { |
1192 | // Nonlinear |
1193 | objective_->reducedGradient(this, dj_, false); |
1194 | // get dual_ by moving from reduced costs for slacks |
1195 | CoinMemcpyN(dj_ + numberColumns_, numberRows_, dual_); |
1196 | } |
1197 | #endif |
1198 | } |
1199 | /* Given an existing factorization computes and checks |
1200 | primal and dual solutions. Uses input arrays for variables at |
1201 | bounds. Returns feasibility states */ |
1202 | int ClpSimplex::getSolution ( const double * /*rowActivities*/, |
1203 | const double * /*columnActivities*/) |
1204 | { |
1205 | if (!factorization_->status()) { |
1206 | // put in standard form |
1207 | createRim(7 + 8 + 16 + 32, false, -1); |
1208 | if (pivotVariable_[0] < 0) |
1209 | internalFactorize(0); |
1210 | // do work |
1211 | gutsOfSolution ( NULL, NULL); |
1212 | // release extra memory |
1213 | deleteRim(0); |
1214 | } |
1215 | return factorization_->status(); |
1216 | } |
1217 | /* Given an existing factorization computes and checks |
1218 | primal and dual solutions. Uses current problem arrays for |
1219 | bounds. Returns feasibility states */ |
1220 | int ClpSimplex::getSolution ( ) |
1221 | { |
1222 | double * rowActivities = new double[numberRows_]; |
1223 | double * columnActivities = new double[numberColumns_]; |
1224 | ClpDisjointCopyN ( rowActivityWork_, numberRows_ , rowActivities); |
1225 | ClpDisjointCopyN ( columnActivityWork_, numberColumns_ , columnActivities); |
1226 | int status = getSolution( rowActivities, columnActivities); |
1227 | delete [] rowActivities; |
1228 | delete [] columnActivities; |
1229 | return status; |
1230 | } |
1231 | // Factorizes using current basis. This is for external use |
1232 | // Return codes are as from ClpFactorization |
1233 | int ClpSimplex::factorize () |
1234 | { |
1235 | // put in standard form |
1236 | createRim(7 + 8 + 16 + 32, false); |
1237 | // do work |
1238 | int status = internalFactorize(-1); |
1239 | // release extra memory |
1240 | deleteRim(0); |
1241 | |
1242 | return status; |
1243 | } |
1244 | // Clean up status |
1245 | void |
1246 | ClpSimplex::cleanStatus() |
1247 | { |
1248 | int iRow, iColumn; |
1249 | int numberBasic = 0; |
1250 | // make row activities correct |
1251 | memset(rowActivityWork_, 0, numberRows_ * sizeof(double)); |
1252 | times(1.0, columnActivityWork_, rowActivityWork_); |
1253 | if (!status_) |
1254 | createStatus(); |
1255 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1256 | if (getRowStatus(iRow) == basic) |
1257 | numberBasic++; |
1258 | else { |
1259 | setRowStatus(iRow, superBasic); |
1260 | // but put to bound if close |
1261 | if (fabs(rowActivityWork_[iRow] - rowLowerWork_[iRow]) |
1262 | <= primalTolerance_) { |
1263 | rowActivityWork_[iRow] = rowLowerWork_[iRow]; |
1264 | setRowStatus(iRow, atLowerBound); |
1265 | } else if (fabs(rowActivityWork_[iRow] - rowUpperWork_[iRow]) |
1266 | <= primalTolerance_) { |
1267 | rowActivityWork_[iRow] = rowUpperWork_[iRow]; |
1268 | setRowStatus(iRow, atUpperBound); |
1269 | } |
1270 | } |
1271 | } |
1272 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1273 | if (getColumnStatus(iColumn) == basic) { |
1274 | if (numberBasic == numberRows_) { |
1275 | // take out of basis |
1276 | setColumnStatus(iColumn, superBasic); |
1277 | // but put to bound if close |
1278 | if (fabs(columnActivityWork_[iColumn] - columnLowerWork_[iColumn]) |
1279 | <= primalTolerance_) { |
1280 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1281 | setColumnStatus(iColumn, atLowerBound); |
1282 | } else if (fabs(columnActivityWork_[iColumn] |
1283 | - columnUpperWork_[iColumn]) |
1284 | <= primalTolerance_) { |
1285 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1286 | setColumnStatus(iColumn, atUpperBound); |
1287 | } |
1288 | } else |
1289 | numberBasic++; |
1290 | } else { |
1291 | setColumnStatus(iColumn, superBasic); |
1292 | // but put to bound if close |
1293 | if (fabs(columnActivityWork_[iColumn] - columnLowerWork_[iColumn]) |
1294 | <= primalTolerance_) { |
1295 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1296 | setColumnStatus(iColumn, atLowerBound); |
1297 | } else if (fabs(columnActivityWork_[iColumn] |
1298 | - columnUpperWork_[iColumn]) |
1299 | <= primalTolerance_) { |
1300 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1301 | setColumnStatus(iColumn, atUpperBound); |
1302 | } |
1303 | } |
1304 | } |
1305 | } |
1306 | |
1307 | /* Factorizes using current basis. |
1308 | solveType - 1 iterating, 0 initial, -1 external |
1309 | - 2 then iterating but can throw out of basis |
1310 | If 10 added then in primal values pass |
1311 | Return codes are as from ClpFactorization unless initial factorization |
1312 | when total number of singularities is returned. |
1313 | Special case is numberRows_+1 -> all slack basis. |
1314 | */ |
1315 | int ClpSimplex::internalFactorize ( int solveType) |
1316 | { |
1317 | int iRow, iColumn; |
1318 | int totalSlacks = numberRows_; |
1319 | if (!status_) |
1320 | createStatus(); |
1321 | |
1322 | bool valuesPass = false; |
1323 | if (solveType >= 10) { |
1324 | valuesPass = true; |
1325 | solveType -= 10; |
1326 | } |
1327 | #ifdef CLP_DEBUG |
1328 | if (solveType > 0) { |
1329 | int numberFreeIn = 0, numberFreeOut = 0; |
1330 | double biggestDj = 0.0; |
1331 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1332 | switch(getColumnStatus(iColumn)) { |
1333 | |
1334 | case basic: |
1335 | if (columnLower_[iColumn] < -largeValue_ |
1336 | && columnUpper_[iColumn] > largeValue_) |
1337 | numberFreeIn++; |
1338 | break; |
1339 | default: |
1340 | if (columnLower_[iColumn] < -largeValue_ |
1341 | && columnUpper_[iColumn] > largeValue_) { |
1342 | numberFreeOut++; |
1343 | biggestDj = CoinMax(fabs(dj_[iColumn]), biggestDj); |
1344 | } |
1345 | break; |
1346 | } |
1347 | } |
1348 | if (numberFreeIn + numberFreeOut) |
1349 | printf("%d in basis, %d out - largest dj %g\n" , |
1350 | numberFreeIn, numberFreeOut, biggestDj); |
1351 | } |
1352 | #endif |
1353 | if (solveType <= 0) { |
1354 | // Make sure everything is clean |
1355 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1356 | if(getRowStatus(iRow) == isFixed) { |
1357 | // double check fixed |
1358 | if (rowUpperWork_[iRow] > rowLowerWork_[iRow]) |
1359 | setRowStatus(iRow, atLowerBound); |
1360 | } else if (getRowStatus(iRow) == isFree) { |
1361 | // may not be free after all |
1362 | if (rowLowerWork_[iRow] > -largeValue_ || rowUpperWork_[iRow] < largeValue_) |
1363 | setRowStatus(iRow, superBasic); |
1364 | } |
1365 | } |
1366 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1367 | if(getColumnStatus(iColumn) == isFixed) { |
1368 | // double check fixed |
1369 | if (columnUpperWork_[iColumn] > columnLowerWork_[iColumn]) |
1370 | setColumnStatus(iColumn, atLowerBound); |
1371 | } else if (getColumnStatus(iColumn) == isFree) { |
1372 | // may not be free after all |
1373 | if (columnLowerWork_[iColumn] > -largeValue_ || columnUpperWork_[iColumn] < largeValue_) |
1374 | setColumnStatus(iColumn, superBasic); |
1375 | } |
1376 | } |
1377 | if (!valuesPass) { |
1378 | // not values pass so set to bounds |
1379 | bool allSlack = true; |
1380 | if (status_) { |
1381 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1382 | if (getRowStatus(iRow) != basic) { |
1383 | allSlack = false; |
1384 | break; |
1385 | } |
1386 | } |
1387 | } |
1388 | if (!allSlack) { |
1389 | //#define CLP_INVESTIGATE2 |
1390 | #ifdef CLP_INVESTIGATE3 |
1391 | int numberTotal = numberRows_ + numberColumns_; |
1392 | double * saveSol = valuesPass ? |
1393 | CoinCopyOfArray(solution_, numberTotal) : NULL; |
1394 | #endif |
1395 | // set values from warm start (if sensible) |
1396 | int numberBasic = 0; |
1397 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1398 | switch(getRowStatus(iRow)) { |
1399 | |
1400 | case basic: |
1401 | numberBasic++; |
1402 | break; |
1403 | case atUpperBound: |
1404 | rowActivityWork_[iRow] = rowUpperWork_[iRow]; |
1405 | if (rowActivityWork_[iRow] > largeValue_) { |
1406 | if (rowLowerWork_[iRow] > -largeValue_) { |
1407 | rowActivityWork_[iRow] = rowLowerWork_[iRow]; |
1408 | setRowStatus(iRow, atLowerBound); |
1409 | } else { |
1410 | // say free |
1411 | setRowStatus(iRow, isFree); |
1412 | rowActivityWork_[iRow] = 0.0; |
1413 | } |
1414 | } |
1415 | break; |
1416 | case ClpSimplex::isFixed: |
1417 | case atLowerBound: |
1418 | rowActivityWork_[iRow] = rowLowerWork_[iRow]; |
1419 | if (rowActivityWork_[iRow] < -largeValue_) { |
1420 | if (rowUpperWork_[iRow] < largeValue_) { |
1421 | rowActivityWork_[iRow] = rowUpperWork_[iRow]; |
1422 | setRowStatus(iRow, atUpperBound); |
1423 | } else { |
1424 | // say free |
1425 | setRowStatus(iRow, isFree); |
1426 | rowActivityWork_[iRow] = 0.0; |
1427 | } |
1428 | } |
1429 | break; |
1430 | case isFree: |
1431 | break; |
1432 | // not really free - fall through to superbasic |
1433 | case superBasic: |
1434 | if (rowUpperWork_[iRow] > largeValue_) { |
1435 | if (rowLowerWork_[iRow] > -largeValue_) { |
1436 | rowActivityWork_[iRow] = rowLowerWork_[iRow]; |
1437 | setRowStatus(iRow, atLowerBound); |
1438 | } else { |
1439 | // say free |
1440 | setRowStatus(iRow, isFree); |
1441 | rowActivityWork_[iRow] = 0.0; |
1442 | } |
1443 | } else { |
1444 | if (rowLowerWork_[iRow] > -largeValue_) { |
1445 | // set to nearest |
1446 | if (fabs(rowActivityWork_[iRow] - rowLowerWork_[iRow]) |
1447 | < fabs(rowActivityWork_[iRow] - rowLowerWork_[iRow])) { |
1448 | rowActivityWork_[iRow] = rowLowerWork_[iRow]; |
1449 | setRowStatus(iRow, atLowerBound); |
1450 | } else { |
1451 | rowActivityWork_[iRow] = rowUpperWork_[iRow]; |
1452 | setRowStatus(iRow, atUpperBound); |
1453 | } |
1454 | } else { |
1455 | rowActivityWork_[iRow] = rowUpperWork_[iRow]; |
1456 | setRowStatus(iRow, atUpperBound); |
1457 | } |
1458 | } |
1459 | break; |
1460 | } |
1461 | } |
1462 | totalSlacks = numberBasic; |
1463 | |
1464 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1465 | switch(getColumnStatus(iColumn)) { |
1466 | |
1467 | case basic: |
1468 | if (numberBasic == maximumBasic_) { |
1469 | // take out of basis |
1470 | if (columnLowerWork_[iColumn] > -largeValue_) { |
1471 | if (columnActivityWork_[iColumn] - columnLowerWork_[iColumn] < |
1472 | columnUpperWork_[iColumn] - columnActivityWork_[iColumn]) { |
1473 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1474 | setColumnStatus(iColumn, atLowerBound); |
1475 | } else { |
1476 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1477 | setColumnStatus(iColumn, atUpperBound); |
1478 | } |
1479 | } else if (columnUpperWork_[iColumn] < largeValue_) { |
1480 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1481 | setColumnStatus(iColumn, atUpperBound); |
1482 | } else { |
1483 | columnActivityWork_[iColumn] = 0.0; |
1484 | setColumnStatus(iColumn, isFree); |
1485 | } |
1486 | } else { |
1487 | numberBasic++; |
1488 | } |
1489 | break; |
1490 | case atUpperBound: |
1491 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1492 | if (columnActivityWork_[iColumn] > largeValue_) { |
1493 | if (columnLowerWork_[iColumn] < -largeValue_) { |
1494 | columnActivityWork_[iColumn] = 0.0; |
1495 | setColumnStatus(iColumn, isFree); |
1496 | } else { |
1497 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1498 | setColumnStatus(iColumn, atLowerBound); |
1499 | } |
1500 | } |
1501 | break; |
1502 | case isFixed: |
1503 | case atLowerBound: |
1504 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1505 | if (columnActivityWork_[iColumn] < -largeValue_) { |
1506 | if (columnUpperWork_[iColumn] > largeValue_) { |
1507 | columnActivityWork_[iColumn] = 0.0; |
1508 | setColumnStatus(iColumn, isFree); |
1509 | } else { |
1510 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1511 | setColumnStatus(iColumn, atUpperBound); |
1512 | } |
1513 | } |
1514 | break; |
1515 | case isFree: |
1516 | break; |
1517 | // not really free - fall through to superbasic |
1518 | case superBasic: |
1519 | if (columnUpperWork_[iColumn] > largeValue_) { |
1520 | if (columnLowerWork_[iColumn] > -largeValue_) { |
1521 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1522 | setColumnStatus(iColumn, atLowerBound); |
1523 | } else { |
1524 | // say free |
1525 | setColumnStatus(iColumn, isFree); |
1526 | columnActivityWork_[iColumn] = 0.0; |
1527 | } |
1528 | } else { |
1529 | if (columnLowerWork_[iColumn] > -largeValue_) { |
1530 | // set to nearest |
1531 | if (fabs(columnActivityWork_[iColumn] - columnLowerWork_[iColumn]) |
1532 | < fabs(columnActivityWork_[iColumn] - columnLowerWork_[iColumn])) { |
1533 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1534 | setColumnStatus(iColumn, atLowerBound); |
1535 | } else { |
1536 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1537 | setColumnStatus(iColumn, atUpperBound); |
1538 | } |
1539 | } else { |
1540 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1541 | setColumnStatus(iColumn, atUpperBound); |
1542 | } |
1543 | } |
1544 | break; |
1545 | } |
1546 | } |
1547 | #ifdef CLP_INVESTIGATE3 |
1548 | if (saveSol) { |
1549 | int numberChanged = 0; |
1550 | double largestChanged = 0.0; |
1551 | for (int i = 0; i < numberTotal; i++) { |
1552 | double difference = fabs(solution_[i] - saveSol[i]); |
1553 | if (difference > 1.0e-7) { |
1554 | numberChanged++; |
1555 | if (difference > largestChanged) |
1556 | largestChanged = difference; |
1557 | } |
1558 | } |
1559 | if (numberChanged) |
1560 | printf("%d changed, largest %g\n" , numberChanged, largestChanged); |
1561 | delete [] saveSol; |
1562 | } |
1563 | #endif |
1564 | #if 0 |
1565 | if (numberBasic < numberRows_) { |
1566 | // add some slacks in case odd warmstart |
1567 | #ifdef CLP_INVESTIGATE |
1568 | printf("BAD %d basic, %d rows %d slacks\n" , |
1569 | numberBasic, numberRows_, totalSlacks); |
1570 | #endif |
1571 | int iRow = numberRows_ - 1; |
1572 | while (numberBasic < numberRows_) { |
1573 | if (getRowStatus(iRow) != basic) { |
1574 | setRowStatus(iRow, basic); |
1575 | numberBasic++; |
1576 | totalSlacks++; |
1577 | iRow--; |
1578 | } else { |
1579 | break; |
1580 | } |
1581 | } |
1582 | } |
1583 | #endif |
1584 | } else { |
1585 | // all slack basis |
1586 | int numberBasic = 0; |
1587 | if (!status_) { |
1588 | createStatus(); |
1589 | } |
1590 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1591 | double lower = rowLowerWork_[iRow]; |
1592 | double upper = rowUpperWork_[iRow]; |
1593 | if (lower > -largeValue_ || upper < largeValue_) { |
1594 | if (fabs(lower) <= fabs(upper)) { |
1595 | rowActivityWork_[iRow] = lower; |
1596 | } else { |
1597 | rowActivityWork_[iRow] = upper; |
1598 | } |
1599 | } else { |
1600 | rowActivityWork_[iRow] = 0.0; |
1601 | } |
1602 | setRowStatus(iRow, basic); |
1603 | numberBasic++; |
1604 | } |
1605 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1606 | double lower = columnLowerWork_[iColumn]; |
1607 | double upper = columnUpperWork_[iColumn]; |
1608 | double big_bound = largeValue_; |
1609 | if (lower > -big_bound || upper < big_bound) { |
1610 | if ((getColumnStatus(iColumn) == atLowerBound && |
1611 | columnActivityWork_[iColumn] == lower) || |
1612 | (getColumnStatus(iColumn) == atUpperBound && |
1613 | columnActivityWork_[iColumn] == upper)) { |
1614 | // status looks plausible |
1615 | } else { |
1616 | // set to sensible |
1617 | if (fabs(lower) <= fabs(upper)) { |
1618 | setColumnStatus(iColumn, atLowerBound); |
1619 | columnActivityWork_[iColumn] = lower; |
1620 | } else { |
1621 | setColumnStatus(iColumn, atUpperBound); |
1622 | columnActivityWork_[iColumn] = upper; |
1623 | } |
1624 | } |
1625 | } else { |
1626 | setColumnStatus(iColumn, isFree); |
1627 | columnActivityWork_[iColumn] = 0.0; |
1628 | } |
1629 | } |
1630 | } |
1631 | } else { |
1632 | // values pass has less coding |
1633 | // make row activities correct and clean basis a bit |
1634 | cleanStatus(); |
1635 | if (status_) { |
1636 | int numberBasic = 0; |
1637 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1638 | if (getRowStatus(iRow) == basic) |
1639 | numberBasic++; |
1640 | } |
1641 | totalSlacks = numberBasic; |
1642 | #if 0 |
1643 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1644 | if (getColumnStatus(iColumn) == basic) |
1645 | numberBasic++; |
1646 | } |
1647 | #endif |
1648 | } else { |
1649 | // all slack basis |
1650 | int numberBasic = 0; |
1651 | if (!status_) { |
1652 | createStatus(); |
1653 | } |
1654 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1655 | setRowStatus(iRow, basic); |
1656 | numberBasic++; |
1657 | } |
1658 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1659 | setColumnStatus(iColumn, superBasic); |
1660 | // but put to bound if close |
1661 | if (fabs(columnActivityWork_[iColumn] - columnLowerWork_[iColumn]) |
1662 | <= primalTolerance_) { |
1663 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1664 | setColumnStatus(iColumn, atLowerBound); |
1665 | } else if (fabs(columnActivityWork_[iColumn] |
1666 | - columnUpperWork_[iColumn]) |
1667 | <= primalTolerance_) { |
1668 | columnActivityWork_[iColumn] = columnUpperWork_[iColumn]; |
1669 | setColumnStatus(iColumn, atUpperBound); |
1670 | } |
1671 | } |
1672 | } |
1673 | } |
1674 | numberRefinements_ = 1; |
1675 | // set fixed if they are |
1676 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1677 | if (getRowStatus(iRow) != basic ) { |
1678 | if (rowLowerWork_[iRow] == rowUpperWork_[iRow]) { |
1679 | rowActivityWork_[iRow] = rowLowerWork_[iRow]; |
1680 | setRowStatus(iRow, isFixed); |
1681 | } |
1682 | } |
1683 | } |
1684 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
1685 | if (getColumnStatus(iColumn) != basic ) { |
1686 | if (columnLowerWork_[iColumn] == columnUpperWork_[iColumn]) { |
1687 | columnActivityWork_[iColumn] = columnLowerWork_[iColumn]; |
1688 | setColumnStatus(iColumn, isFixed); |
1689 | } |
1690 | } |
1691 | } |
1692 | } |
1693 | //for (iRow=0;iRow<numberRows_+numberColumns_;iRow++) { |
1694 | //if (fabs(solution_[iRow])>1.0e10) { |
1695 | // printf("large %g at %d - status %d\n", |
1696 | // solution_[iRow],iRow,status_[iRow]); |
1697 | //} |
1698 | //} |
1699 | # ifndef _MSC_VER |
1700 | // The local static var k is a problem when trying to build a DLL. Since this is |
1701 | // just for debugging (likely done on *nix), just hide it from Windows |
1702 | // -- lh, 101016 -- |
1703 | if (0) { |
1704 | static int k = 0; |
1705 | printf("start basis\n" ); |
1706 | int i; |
1707 | for (i = 0; i < numberRows_; i++) |
1708 | printf ("xx %d %d\n" , i, pivotVariable_[i]); |
1709 | for (i = 0; i < numberRows_ + numberColumns_; i++) |
1710 | if (getColumnStatus(i) == basic) |
1711 | printf ("yy %d basic\n" , i); |
1712 | if (k > 20) |
1713 | exit(0); |
1714 | k++; |
1715 | } |
1716 | # endif |
1717 | int status = factorization_->factorize(this, solveType, valuesPass); |
1718 | if (status) { |
1719 | handler_->message(CLP_SIMPLEX_BADFACTOR, messages_) |
1720 | << status |
1721 | << CoinMessageEol; |
1722 | return -1; |
1723 | } else if (!solveType) { |
1724 | // Initial basis - return number of singularities |
1725 | int numberSlacks = 0; |
1726 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1727 | if (getRowStatus(iRow) == basic) |
1728 | numberSlacks++; |
1729 | } |
1730 | status = CoinMax(numberSlacks - totalSlacks, 0); |
1731 | // special case if all slack |
1732 | if (numberSlacks == numberRows_) { |
1733 | status = numberRows_ + 1; |
1734 | } |
1735 | } |
1736 | |
1737 | // sparse methods |
1738 | //if (factorization_->sparseThreshold()) { |
1739 | // get default value |
1740 | factorization_->sparseThreshold(0); |
1741 | if (!(moreSpecialOptions_&1024)) |
1742 | factorization_->goSparse(); |
1743 | //} |
1744 | |
1745 | return status; |
1746 | } |
1747 | /* |
1748 | This does basis housekeeping and does values for in/out variables. |
1749 | Can also decide to re-factorize |
1750 | */ |
1751 | int |
1752 | ClpSimplex::housekeeping(double objectiveChange) |
1753 | { |
1754 | // save value of incoming and outgoing |
1755 | double oldIn = solution_[sequenceIn_]; |
1756 | double oldOut = solution_[sequenceOut_]; |
1757 | numberIterations_++; |
1758 | changeMade_++; // something has happened |
1759 | // incoming variable |
1760 | if (handler_->logLevel() > 7) { |
1761 | //if (handler_->detail(CLP_SIMPLEX_HOUSE1,messages_)<100) { |
1762 | handler_->message(CLP_SIMPLEX_HOUSE1, messages_) |
1763 | << directionOut_ |
1764 | << directionIn_ << theta_ |
1765 | << dualOut_ << dualIn_ << alpha_ |
1766 | << CoinMessageEol; |
1767 | if (getStatus(sequenceIn_) == isFree) { |
1768 | handler_->message(CLP_SIMPLEX_FREEIN, messages_) |
1769 | << sequenceIn_ |
1770 | << CoinMessageEol; |
1771 | } |
1772 | } |
1773 | #if 0 |
1774 | printf("h1 %d %d %g %g %g %g" , |
1775 | directionOut_ |
1776 | , directionIn_, theta_ |
1777 | , dualOut_, dualIn_, alpha_); |
1778 | #endif |
1779 | // change of incoming |
1780 | char rowcol[] = {'R', 'C'}; |
1781 | if (pivotRow_ >= 0) |
1782 | pivotVariable_[pivotRow_] = sequenceIn(); |
1783 | if (upper_[sequenceIn_] > 1.0e20 && lower_[sequenceIn_] < -1.0e20) |
1784 | progressFlag_ |= 2; // making real progress |
1785 | solution_[sequenceIn_] = valueIn_; |
1786 | if (upper_[sequenceOut_] - lower_[sequenceOut_] < 1.0e-12) |
1787 | progressFlag_ |= 1; // making real progress |
1788 | if (sequenceIn_ != sequenceOut_) { |
1789 | if (alphaAccuracy_ > 0.0) { |
1790 | double value = fabs(alpha_); |
1791 | if (value > 1.0) |
1792 | alphaAccuracy_ *= value; |
1793 | else |
1794 | alphaAccuracy_ /= value; |
1795 | } |
1796 | //assert( getStatus(sequenceOut_)== basic); |
1797 | setStatus(sequenceIn_, basic); |
1798 | if (upper_[sequenceOut_] - lower_[sequenceOut_] > 0) { |
1799 | // As Nonlinear costs may have moved bounds (to more feasible) |
1800 | // Redo using value |
1801 | if (fabs(valueOut_ - lower_[sequenceOut_]) < fabs(valueOut_ - upper_[sequenceOut_])) { |
1802 | // going to lower |
1803 | setStatus(sequenceOut_, atLowerBound); |
1804 | oldOut = lower_[sequenceOut_]; |
1805 | } else { |
1806 | // going to upper |
1807 | setStatus(sequenceOut_, atUpperBound); |
1808 | oldOut = upper_[sequenceOut_]; |
1809 | } |
1810 | } else { |
1811 | // fixed |
1812 | setStatus(sequenceOut_, isFixed); |
1813 | } |
1814 | solution_[sequenceOut_] = valueOut_; |
1815 | } else { |
1816 | //if (objective_->type()<2) |
1817 | //assert (fabs(theta_)>1.0e-13); |
1818 | // flip from bound to bound |
1819 | // As Nonlinear costs may have moved bounds (to more feasible) |
1820 | // Redo using value |
1821 | if (fabs(valueIn_ - lower_[sequenceIn_]) < fabs(valueIn_ - upper_[sequenceIn_])) { |
1822 | // as if from upper bound |
1823 | setStatus(sequenceIn_, atLowerBound); |
1824 | } else { |
1825 | // as if from lower bound |
1826 | setStatus(sequenceIn_, atUpperBound); |
1827 | } |
1828 | } |
1829 | |
1830 | // Update hidden stuff e.g. effective RHS and gub |
1831 | int invertNow=matrix_->updatePivot(this, oldIn, oldOut); |
1832 | objectiveValue_ += objectiveChange / (objectiveScale_ * rhsScale_); |
1833 | if (handler_->logLevel() > 7) { |
1834 | //if (handler_->detail(CLP_SIMPLEX_HOUSE2,messages_)<100) { |
1835 | handler_->message(CLP_SIMPLEX_HOUSE2, messages_) |
1836 | << numberIterations_ << objectiveValue() |
1837 | << rowcol[isColumn(sequenceIn_)] << sequenceWithin(sequenceIn_) |
1838 | << rowcol[isColumn(sequenceOut_)] << sequenceWithin(sequenceOut_); |
1839 | handler_->printing(algorithm_ < 0) << dualOut_ << theta_; |
1840 | handler_->printing(algorithm_ > 0) << dualIn_ << theta_; |
1841 | handler_->message() << CoinMessageEol; |
1842 | } |
1843 | #if 0 |
1844 | if (numberIterations_ > 10000) |
1845 | printf(" it %d %g %c%d %c%d\n" |
1846 | , numberIterations_, objectiveValue() |
1847 | , rowcol[isColumn(sequenceIn_)], sequenceWithin(sequenceIn_) |
1848 | , rowcol[isColumn(sequenceOut_)], sequenceWithin(sequenceOut_)); |
1849 | #endif |
1850 | if (trustedUserPointer_ && trustedUserPointer_->typeStruct == 1) { |
1851 | if (algorithm_ > 0 && integerType_ && !nonLinearCost_->numberInfeasibilities()) { |
1852 | if (fabs(theta_) > 1.0e-6 || !numberIterations_) { |
1853 | // For saving solutions |
1854 | typedef struct { |
1855 | int numberSolutions; |
1856 | int maximumSolutions; |
1857 | int numberColumns; |
1858 | double ** solution; |
1859 | int * numberUnsatisfied; |
1860 | } clpSolution; |
1861 | clpSolution * solution = reinterpret_cast<clpSolution *> (trustedUserPointer_->data); |
1862 | if (solution->numberSolutions == solution->maximumSolutions) { |
1863 | int n = solution->maximumSolutions; |
1864 | int n2 = (n * 3) / 2 + 10; |
1865 | solution->maximumSolutions = n2; |
1866 | double ** temp = new double * [n2]; |
1867 | for (int i = 0; i < n; i++) |
1868 | temp[i] = solution->solution[i]; |
1869 | delete [] solution->solution; |
1870 | solution->solution = temp; |
1871 | int * tempN = new int [n2]; |
1872 | for (int i = 0; i < n; i++) |
1873 | tempN[i] = solution->numberUnsatisfied[i]; |
1874 | delete [] solution->numberUnsatisfied; |
1875 | solution->numberUnsatisfied = tempN; |
1876 | } |
1877 | assert (numberColumns_ == solution->numberColumns); |
1878 | double * sol = new double [numberColumns_]; |
1879 | solution->solution[solution->numberSolutions] = sol; |
1880 | int numberFixed = 0; |
1881 | int numberUnsat = 0; |
1882 | int numberSat = 0; |
1883 | double sumUnsat = 0.0; |
1884 | double tolerance = 10.0 * primalTolerance_; |
1885 | double mostAway = 0.0; |
1886 | for (int i = 0; i < numberColumns_; i++) { |
1887 | // Save anyway |
1888 | sol[i] = columnScale_ ? solution_[i] * columnScale_[i] : solution_[i]; |
1889 | // rest is optional |
1890 | if (upper_[i] > lower_[i]) { |
1891 | double value = solution_[i]; |
1892 | if (value > lower_[i] + tolerance && |
1893 | value < upper_[i] - tolerance && integerType_[i]) { |
1894 | // may have to modify value if scaled |
1895 | if (columnScale_) |
1896 | value *= columnScale_[i]; |
1897 | double closest = floor(value + 0.5); |
1898 | // problem may be perturbed so relax test |
1899 | if (fabs(value - closest) > 1.0e-4) { |
1900 | numberUnsat++; |
1901 | sumUnsat += fabs(value - closest); |
1902 | if (mostAway < fabs(value - closest)) { |
1903 | mostAway = fabs(value - closest); |
1904 | } |
1905 | } else { |
1906 | numberSat++; |
1907 | } |
1908 | } else { |
1909 | numberSat++; |
1910 | } |
1911 | } else { |
1912 | numberFixed++; |
1913 | } |
1914 | } |
1915 | solution->numberUnsatisfied[solution->numberSolutions++] = numberUnsat; |
1916 | COIN_DETAIL_PRINT(printf("iteration %d, %d unsatisfied (%g,%g), %d fixed, %d satisfied\n" , |
1917 | numberIterations_, numberUnsat, sumUnsat, mostAway, numberFixed, numberSat)); |
1918 | } |
1919 | } |
1920 | } |
1921 | if (hitMaximumIterations()) |
1922 | return 2; |
1923 | #if 1 |
1924 | //if (numberIterations_>14000) |
1925 | //handler_->setLogLevel(63); |
1926 | //if (numberIterations_>24000) |
1927 | //exit(77); |
1928 | // check for small cycles |
1929 | int in = sequenceIn_; |
1930 | int out = sequenceOut_; |
1931 | matrix_->correctSequence(this, in, out); |
1932 | int cycle = progress_.cycle(in, out, |
1933 | directionIn_, directionOut_); |
1934 | if (cycle > 0 && objective_->type() < 2 && matrix_->type() < 15) { |
1935 | //if (cycle>0) { |
1936 | if (handler_->logLevel() >= 63) |
1937 | printf("Cycle of %d\n" , cycle); |
1938 | // reset |
1939 | progress_.startCheck(); |
1940 | double random = randomNumberGenerator_.randomDouble(); |
1941 | int = static_cast<int> (9.999 * random); |
1942 | int off[] = {1, 1, 1, 1, 2, 2, 2, 3, 3, 4}; |
1943 | if (factorization_->pivots() > cycle) { |
1944 | forceFactorization_ = CoinMax(1, cycle - off[extra]); |
1945 | } else { |
1946 | /* need to reject something |
1947 | should be better if don't reject incoming |
1948 | as it is in basis */ |
1949 | int iSequence; |
1950 | //if (algorithm_ > 0) |
1951 | // iSequence = sequenceIn_; |
1952 | //else |
1953 | iSequence = sequenceOut_; |
1954 | char x = isColumn(iSequence) ? 'C' : 'R'; |
1955 | if (handler_->logLevel() >= 63) |
1956 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
1957 | << x << sequenceWithin(iSequence) |
1958 | << CoinMessageEol; |
1959 | setFlagged(iSequence); |
1960 | //printf("flagging %d\n",iSequence); |
1961 | } |
1962 | return 1; |
1963 | } |
1964 | #endif |
1965 | // only time to re-factorize if one before real time |
1966 | // this is so user won't be surprised that maximumPivots has exact meaning |
1967 | int numberPivots = factorization_->pivots(); |
1968 | int maximumPivots = factorization_->maximumPivots(); |
1969 | int numberDense = factorization_->numberDense(); |
1970 | bool dontInvert = ((specialOptions_ & 16384) != 0 && numberIterations_ * 3 > |
1971 | 2 * maximumIterations()); |
1972 | if (numberPivots == maximumPivots || |
1973 | maximumPivots < 2) { |
1974 | // If dense then increase |
1975 | if (maximumPivots > 100 && numberDense > 1.5 * maximumPivots) { |
1976 | factorization_->maximumPivots(numberDense); |
1977 | dualRowPivot_->maximumPivotsChanged(); |
1978 | primalColumnPivot_->maximumPivotsChanged(); |
1979 | // and redo arrays |
1980 | for (int iRow = 0; iRow < 4; iRow++) { |
1981 | int length = rowArray_[iRow]->capacity() + numberDense - maximumPivots; |
1982 | rowArray_[iRow]->reserve(length); |
1983 | } |
1984 | } |
1985 | return 1; |
1986 | } else if ((factorization_->timeToRefactorize() && !dontInvert) |
1987 | ||invertNow) { |
1988 | //printf("ret after %d pivots\n",factorization_->pivots()); |
1989 | return 1; |
1990 | } else if (forceFactorization_ > 0 && |
1991 | factorization_->pivots() == forceFactorization_) { |
1992 | // relax |
1993 | forceFactorization_ = (3 + 5 * forceFactorization_) / 4; |
1994 | if (forceFactorization_ > factorization_->maximumPivots()) |
1995 | forceFactorization_ = -1; //off |
1996 | return 1; |
1997 | } else if (numberIterations_ > 1000 + 10 * (numberRows_ + (numberColumns_ >> 2)) && matrix_->type()<15) { |
1998 | // A bit worried problem may be cycling - lets factorize at random intervals for a short period |
1999 | int numberTooManyIterations = numberIterations_ - 10 * (numberRows_ + (numberColumns_ >> 2)); |
2000 | double random = randomNumberGenerator_.randomDouble(); |
2001 | int window = numberTooManyIterations%5000; |
2002 | if (window<2*maximumPivots) |
2003 | random = 0.2*random+0.8; // randomly re-factorize but not too soon |
2004 | else |
2005 | random=1.0; // switch off if not in window of opportunity |
2006 | int maxNumber = (forceFactorization_ < 0) ? maximumPivots : CoinMin(forceFactorization_, maximumPivots); |
2007 | if (factorization_->pivots() >= random * maxNumber) { |
2008 | return 1; |
2009 | } else if (numberIterations_ > 1000000 + 10 * (numberRows_ + (numberColumns_ >> 2)) && |
2010 | numberIterations_ < 1001000 + 10 * (numberRows_ + (numberColumns_ >> 2))) { |
2011 | return 1; |
2012 | } else { |
2013 | // carry on iterating |
2014 | return 0; |
2015 | } |
2016 | } else { |
2017 | // carry on iterating |
2018 | return 0; |
2019 | } |
2020 | } |
2021 | // Copy constructor. |
2022 | ClpSimplex::ClpSimplex(const ClpSimplex &rhs, int scalingMode) : |
2023 | ClpModel(rhs, scalingMode), |
2024 | bestPossibleImprovement_(0.0), |
2025 | zeroTolerance_(1.0e-13), |
2026 | columnPrimalSequence_(-2), |
2027 | rowPrimalSequence_(-2), |
2028 | bestObjectiveValue_(rhs.bestObjectiveValue_), |
2029 | moreSpecialOptions_(2), |
2030 | baseIteration_(0), |
2031 | primalToleranceToGetOptimal_(-1.0), |
2032 | largeValue_(1.0e15), |
2033 | largestPrimalError_(0.0), |
2034 | largestDualError_(0.0), |
2035 | alphaAccuracy_(-1.0), |
2036 | dualBound_(1.0e10), |
2037 | alpha_(0.0), |
2038 | theta_(0.0), |
2039 | lowerIn_(0.0), |
2040 | valueIn_(0.0), |
2041 | upperIn_(-COIN_DBL_MAX), |
2042 | dualIn_(0.0), |
2043 | lowerOut_(-1), |
2044 | valueOut_(-1), |
2045 | upperOut_(-1), |
2046 | dualOut_(-1), |
2047 | dualTolerance_(1.0e-7), |
2048 | primalTolerance_(1.0e-7), |
2049 | sumDualInfeasibilities_(0.0), |
2050 | sumPrimalInfeasibilities_(0.0), |
2051 | infeasibilityCost_(1.0e10), |
2052 | sumOfRelaxedDualInfeasibilities_(0.0), |
2053 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
2054 | acceptablePivot_(1.0e-8), |
2055 | lower_(NULL), |
2056 | rowLowerWork_(NULL), |
2057 | columnLowerWork_(NULL), |
2058 | upper_(NULL), |
2059 | rowUpperWork_(NULL), |
2060 | columnUpperWork_(NULL), |
2061 | cost_(NULL), |
2062 | rowObjectiveWork_(NULL), |
2063 | objectiveWork_(NULL), |
2064 | sequenceIn_(-1), |
2065 | directionIn_(-1), |
2066 | sequenceOut_(-1), |
2067 | directionOut_(-1), |
2068 | pivotRow_(-1), |
2069 | lastGoodIteration_(-100), |
2070 | dj_(NULL), |
2071 | rowReducedCost_(NULL), |
2072 | reducedCostWork_(NULL), |
2073 | solution_(NULL), |
2074 | rowActivityWork_(NULL), |
2075 | columnActivityWork_(NULL), |
2076 | numberDualInfeasibilities_(0), |
2077 | numberDualInfeasibilitiesWithoutFree_(0), |
2078 | numberPrimalInfeasibilities_(100), |
2079 | numberRefinements_(0), |
2080 | pivotVariable_(NULL), |
2081 | factorization_(NULL), |
2082 | savedSolution_(NULL), |
2083 | numberTimesOptimal_(0), |
2084 | disasterArea_(NULL), |
2085 | changeMade_(1), |
2086 | algorithm_(0), |
2087 | forceFactorization_(-1), |
2088 | perturbation_(100), |
2089 | nonLinearCost_(NULL), |
2090 | lastBadIteration_(-999999), |
2091 | lastFlaggedIteration_(-999999), |
2092 | numberFake_(0), |
2093 | numberChanged_(0), |
2094 | progressFlag_(0), |
2095 | firstFree_(-1), |
2096 | numberExtraRows_(0), |
2097 | maximumBasic_(0), |
2098 | dontFactorizePivots_(0), |
2099 | incomingInfeasibility_(1.0), |
2100 | allowedInfeasibility_(10.0), |
2101 | automaticScale_(0), |
2102 | maximumPerturbationSize_(0), |
2103 | perturbationArray_(NULL), |
2104 | baseModel_(NULL) |
2105 | { |
2106 | int i; |
2107 | for (i = 0; i < 6; i++) { |
2108 | rowArray_[i] = NULL; |
2109 | columnArray_[i] = NULL; |
2110 | } |
2111 | for (i = 0; i < 4; i++) { |
2112 | spareIntArray_[i] = 0; |
2113 | spareDoubleArray_[i] = 0.0; |
2114 | } |
2115 | saveStatus_ = NULL; |
2116 | factorization_ = NULL; |
2117 | dualRowPivot_ = NULL; |
2118 | primalColumnPivot_ = NULL; |
2119 | gutsOfDelete(0); |
2120 | delete nonLinearCost_; |
2121 | nonLinearCost_ = NULL; |
2122 | gutsOfCopy(rhs); |
2123 | solveType_ = 1; // say simplex based life form |
2124 | } |
2125 | // Copy constructor from model |
2126 | ClpSimplex::ClpSimplex(const ClpModel &rhs, int scalingMode) : |
2127 | ClpModel(rhs, scalingMode), |
2128 | bestPossibleImprovement_(0.0), |
2129 | zeroTolerance_(1.0e-13), |
2130 | columnPrimalSequence_(-2), |
2131 | rowPrimalSequence_(-2), |
2132 | bestObjectiveValue_(-COIN_DBL_MAX), |
2133 | moreSpecialOptions_(2), |
2134 | baseIteration_(0), |
2135 | primalToleranceToGetOptimal_(-1.0), |
2136 | largeValue_(1.0e15), |
2137 | largestPrimalError_(0.0), |
2138 | largestDualError_(0.0), |
2139 | alphaAccuracy_(-1.0), |
2140 | dualBound_(1.0e10), |
2141 | alpha_(0.0), |
2142 | theta_(0.0), |
2143 | lowerIn_(0.0), |
2144 | valueIn_(0.0), |
2145 | upperIn_(-COIN_DBL_MAX), |
2146 | dualIn_(0.0), |
2147 | lowerOut_(-1), |
2148 | valueOut_(-1), |
2149 | upperOut_(-1), |
2150 | dualOut_(-1), |
2151 | dualTolerance_(1.0e-7), |
2152 | primalTolerance_(1.0e-7), |
2153 | sumDualInfeasibilities_(0.0), |
2154 | sumPrimalInfeasibilities_(0.0), |
2155 | infeasibilityCost_(1.0e10), |
2156 | sumOfRelaxedDualInfeasibilities_(0.0), |
2157 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
2158 | acceptablePivot_(1.0e-8), |
2159 | lower_(NULL), |
2160 | rowLowerWork_(NULL), |
2161 | columnLowerWork_(NULL), |
2162 | upper_(NULL), |
2163 | rowUpperWork_(NULL), |
2164 | columnUpperWork_(NULL), |
2165 | cost_(NULL), |
2166 | rowObjectiveWork_(NULL), |
2167 | objectiveWork_(NULL), |
2168 | sequenceIn_(-1), |
2169 | directionIn_(-1), |
2170 | sequenceOut_(-1), |
2171 | directionOut_(-1), |
2172 | pivotRow_(-1), |
2173 | lastGoodIteration_(-100), |
2174 | dj_(NULL), |
2175 | rowReducedCost_(NULL), |
2176 | reducedCostWork_(NULL), |
2177 | solution_(NULL), |
2178 | rowActivityWork_(NULL), |
2179 | columnActivityWork_(NULL), |
2180 | numberDualInfeasibilities_(0), |
2181 | numberDualInfeasibilitiesWithoutFree_(0), |
2182 | numberPrimalInfeasibilities_(100), |
2183 | numberRefinements_(0), |
2184 | pivotVariable_(NULL), |
2185 | factorization_(NULL), |
2186 | savedSolution_(NULL), |
2187 | numberTimesOptimal_(0), |
2188 | disasterArea_(NULL), |
2189 | changeMade_(1), |
2190 | algorithm_(0), |
2191 | forceFactorization_(-1), |
2192 | perturbation_(100), |
2193 | nonLinearCost_(NULL), |
2194 | lastBadIteration_(-999999), |
2195 | lastFlaggedIteration_(-999999), |
2196 | numberFake_(0), |
2197 | numberChanged_(0), |
2198 | progressFlag_(0), |
2199 | firstFree_(-1), |
2200 | numberExtraRows_(0), |
2201 | maximumBasic_(0), |
2202 | dontFactorizePivots_(0), |
2203 | incomingInfeasibility_(1.0), |
2204 | allowedInfeasibility_(10.0), |
2205 | automaticScale_(0), |
2206 | maximumPerturbationSize_(0), |
2207 | perturbationArray_(NULL), |
2208 | baseModel_(NULL) |
2209 | { |
2210 | int i; |
2211 | for (i = 0; i < 6; i++) { |
2212 | rowArray_[i] = NULL; |
2213 | columnArray_[i] = NULL; |
2214 | } |
2215 | for (i = 0; i < 4; i++) { |
2216 | spareIntArray_[i] = 0; |
2217 | spareDoubleArray_[i] = 0.0; |
2218 | } |
2219 | saveStatus_ = NULL; |
2220 | // get an empty factorization so we can set tolerances etc |
2221 | getEmptyFactorization(); |
2222 | // say Steepest pricing |
2223 | dualRowPivot_ = new ClpDualRowSteepest(); |
2224 | // say Steepest pricing |
2225 | primalColumnPivot_ = new ClpPrimalColumnSteepest(); |
2226 | solveType_ = 1; // say simplex based life form |
2227 | |
2228 | } |
2229 | // Assignment operator. This copies the data |
2230 | ClpSimplex & |
2231 | ClpSimplex::operator=(const ClpSimplex & rhs) |
2232 | { |
2233 | if (this != &rhs) { |
2234 | gutsOfDelete(0); |
2235 | delete nonLinearCost_; |
2236 | nonLinearCost_ = NULL; |
2237 | ClpModel::operator=(rhs); |
2238 | gutsOfCopy(rhs); |
2239 | } |
2240 | return *this; |
2241 | } |
2242 | void |
2243 | ClpSimplex::gutsOfCopy(const ClpSimplex & rhs) |
2244 | { |
2245 | assert (numberRows_ == rhs.numberRows_); |
2246 | assert (numberColumns_ == rhs.numberColumns_); |
2247 | numberExtraRows_ = rhs.numberExtraRows_; |
2248 | maximumBasic_ = rhs.maximumBasic_; |
2249 | dontFactorizePivots_ = rhs.dontFactorizePivots_; |
2250 | int numberRows2 = numberRows_ + numberExtraRows_; |
2251 | moreSpecialOptions_ = rhs.moreSpecialOptions_; |
2252 | if ((whatsChanged_ & 1) != 0) { |
2253 | int numberTotal = numberColumns_ + numberRows2; |
2254 | if ((specialOptions_ & 65536) != 0 && maximumRows_ >= 0) { |
2255 | assert (maximumInternalRows_ >= numberRows2); |
2256 | assert (maximumInternalColumns_ >= numberColumns_); |
2257 | numberTotal = 2 * (maximumInternalColumns_ + maximumInternalRows_); |
2258 | } |
2259 | lower_ = ClpCopyOfArray(rhs.lower_, numberTotal); |
2260 | rowLowerWork_ = lower_ + numberColumns_; |
2261 | columnLowerWork_ = lower_; |
2262 | upper_ = ClpCopyOfArray(rhs.upper_, numberTotal); |
2263 | rowUpperWork_ = upper_ + numberColumns_; |
2264 | columnUpperWork_ = upper_; |
2265 | cost_ = ClpCopyOfArray(rhs.cost_, numberTotal); |
2266 | objectiveWork_ = cost_; |
2267 | rowObjectiveWork_ = cost_ + numberColumns_; |
2268 | dj_ = ClpCopyOfArray(rhs.dj_, numberTotal); |
2269 | if (dj_) { |
2270 | reducedCostWork_ = dj_; |
2271 | rowReducedCost_ = dj_ + numberColumns_; |
2272 | } |
2273 | solution_ = ClpCopyOfArray(rhs.solution_, numberTotal); |
2274 | if (solution_) { |
2275 | columnActivityWork_ = solution_; |
2276 | rowActivityWork_ = solution_ + numberColumns_; |
2277 | } |
2278 | if (rhs.pivotVariable_) { |
2279 | pivotVariable_ = new int[numberRows2]; |
2280 | CoinMemcpyN ( rhs.pivotVariable_, numberRows2 , pivotVariable_); |
2281 | } else { |
2282 | pivotVariable_ = NULL; |
2283 | } |
2284 | savedSolution_ = ClpCopyOfArray(rhs.savedSolution_, numberTotal); |
2285 | int i; |
2286 | for (i = 0; i < 6; i++) { |
2287 | rowArray_[i] = NULL; |
2288 | if (rhs.rowArray_[i]) |
2289 | rowArray_[i] = new CoinIndexedVector(*rhs.rowArray_[i]); |
2290 | columnArray_[i] = NULL; |
2291 | if (rhs.columnArray_[i]) |
2292 | columnArray_[i] = new CoinIndexedVector(*rhs.columnArray_[i]); |
2293 | } |
2294 | if (rhs.saveStatus_) { |
2295 | saveStatus_ = ClpCopyOfArray( rhs.saveStatus_, numberTotal); |
2296 | } |
2297 | } else { |
2298 | lower_ = NULL; |
2299 | rowLowerWork_ = NULL; |
2300 | columnLowerWork_ = NULL; |
2301 | upper_ = NULL; |
2302 | rowUpperWork_ = NULL; |
2303 | columnUpperWork_ = NULL; |
2304 | cost_ = NULL; |
2305 | objectiveWork_ = NULL; |
2306 | rowObjectiveWork_ = NULL; |
2307 | dj_ = NULL; |
2308 | reducedCostWork_ = NULL; |
2309 | rowReducedCost_ = NULL; |
2310 | solution_ = NULL; |
2311 | columnActivityWork_ = NULL; |
2312 | rowActivityWork_ = NULL; |
2313 | pivotVariable_ = NULL; |
2314 | savedSolution_ = NULL; |
2315 | int i; |
2316 | for (i = 0; i < 6; i++) { |
2317 | rowArray_[i] = NULL; |
2318 | columnArray_[i] = NULL; |
2319 | } |
2320 | saveStatus_ = NULL; |
2321 | } |
2322 | if (rhs.factorization_) { |
2323 | setFactorization(*rhs.factorization_); |
2324 | } else { |
2325 | delete factorization_; |
2326 | factorization_ = NULL; |
2327 | } |
2328 | bestPossibleImprovement_ = rhs.bestPossibleImprovement_; |
2329 | columnPrimalSequence_ = rhs.columnPrimalSequence_; |
2330 | zeroTolerance_ = rhs.zeroTolerance_; |
2331 | rowPrimalSequence_ = rhs.rowPrimalSequence_; |
2332 | bestObjectiveValue_ = rhs.bestObjectiveValue_; |
2333 | baseIteration_ = rhs.baseIteration_; |
2334 | primalToleranceToGetOptimal_ = rhs.primalToleranceToGetOptimal_; |
2335 | largeValue_ = rhs.largeValue_; |
2336 | largestPrimalError_ = rhs.largestPrimalError_; |
2337 | largestDualError_ = rhs.largestDualError_; |
2338 | alphaAccuracy_ = rhs.alphaAccuracy_; |
2339 | dualBound_ = rhs.dualBound_; |
2340 | alpha_ = rhs.alpha_; |
2341 | theta_ = rhs.theta_; |
2342 | lowerIn_ = rhs.lowerIn_; |
2343 | valueIn_ = rhs.valueIn_; |
2344 | upperIn_ = rhs.upperIn_; |
2345 | dualIn_ = rhs.dualIn_; |
2346 | sequenceIn_ = rhs.sequenceIn_; |
2347 | directionIn_ = rhs.directionIn_; |
2348 | lowerOut_ = rhs.lowerOut_; |
2349 | valueOut_ = rhs.valueOut_; |
2350 | upperOut_ = rhs.upperOut_; |
2351 | dualOut_ = rhs.dualOut_; |
2352 | sequenceOut_ = rhs.sequenceOut_; |
2353 | directionOut_ = rhs.directionOut_; |
2354 | pivotRow_ = rhs.pivotRow_; |
2355 | lastGoodIteration_ = rhs.lastGoodIteration_; |
2356 | numberRefinements_ = rhs.numberRefinements_; |
2357 | dualTolerance_ = rhs.dualTolerance_; |
2358 | primalTolerance_ = rhs.primalTolerance_; |
2359 | sumDualInfeasibilities_ = rhs.sumDualInfeasibilities_; |
2360 | numberDualInfeasibilities_ = rhs.numberDualInfeasibilities_; |
2361 | numberDualInfeasibilitiesWithoutFree_ = |
2362 | rhs.numberDualInfeasibilitiesWithoutFree_; |
2363 | sumPrimalInfeasibilities_ = rhs.sumPrimalInfeasibilities_; |
2364 | numberPrimalInfeasibilities_ = rhs.numberPrimalInfeasibilities_; |
2365 | dualRowPivot_ = rhs.dualRowPivot_->clone(true); |
2366 | dualRowPivot_->setModel(this); |
2367 | primalColumnPivot_ = rhs.primalColumnPivot_->clone(true); |
2368 | primalColumnPivot_->setModel(this); |
2369 | numberTimesOptimal_ = rhs.numberTimesOptimal_; |
2370 | disasterArea_ = NULL; |
2371 | changeMade_ = rhs.changeMade_; |
2372 | algorithm_ = rhs.algorithm_; |
2373 | forceFactorization_ = rhs.forceFactorization_; |
2374 | perturbation_ = rhs.perturbation_; |
2375 | infeasibilityCost_ = rhs.infeasibilityCost_; |
2376 | lastBadIteration_ = rhs.lastBadIteration_; |
2377 | lastFlaggedIteration_ = rhs.lastFlaggedIteration_; |
2378 | numberFake_ = rhs.numberFake_; |
2379 | numberChanged_ = rhs.numberChanged_; |
2380 | progressFlag_ = rhs.progressFlag_; |
2381 | firstFree_ = rhs.firstFree_; |
2382 | incomingInfeasibility_ = rhs.incomingInfeasibility_; |
2383 | allowedInfeasibility_ = rhs.allowedInfeasibility_; |
2384 | automaticScale_ = rhs.automaticScale_; |
2385 | maximumPerturbationSize_ = rhs.maximumPerturbationSize_; |
2386 | if (maximumPerturbationSize_ && maximumPerturbationSize_ >= 2 * numberColumns_) { |
2387 | perturbationArray_ = CoinCopyOfArray(rhs.perturbationArray_, |
2388 | maximumPerturbationSize_); |
2389 | } else { |
2390 | maximumPerturbationSize_ = 0; |
2391 | perturbationArray_ = NULL; |
2392 | } |
2393 | if (rhs.baseModel_) { |
2394 | baseModel_ = new ClpSimplex(*rhs.baseModel_); |
2395 | } else { |
2396 | baseModel_ = NULL; |
2397 | } |
2398 | progress_ = rhs.progress_; |
2399 | for (int i = 0; i < 4; i++) { |
2400 | spareIntArray_[i] = rhs.spareIntArray_[i]; |
2401 | spareDoubleArray_[i] = rhs.spareDoubleArray_[i]; |
2402 | } |
2403 | sumOfRelaxedDualInfeasibilities_ = rhs.sumOfRelaxedDualInfeasibilities_; |
2404 | sumOfRelaxedPrimalInfeasibilities_ = rhs.sumOfRelaxedPrimalInfeasibilities_; |
2405 | acceptablePivot_ = rhs.acceptablePivot_; |
2406 | if (rhs.nonLinearCost_ != NULL) |
2407 | nonLinearCost_ = new ClpNonLinearCost(*rhs.nonLinearCost_); |
2408 | else |
2409 | nonLinearCost_ = NULL; |
2410 | solveType_ = rhs.solveType_; |
2411 | } |
2412 | // type == 0 do everything, most + pivot data, 2 factorization data as well |
2413 | void |
2414 | ClpSimplex::gutsOfDelete(int type) |
2415 | { |
2416 | if (!type || (specialOptions_ & 65536) == 0) { |
2417 | maximumInternalColumns_ = -1; |
2418 | maximumInternalRows_ = -1; |
2419 | delete [] lower_; |
2420 | lower_ = NULL; |
2421 | rowLowerWork_ = NULL; |
2422 | columnLowerWork_ = NULL; |
2423 | delete [] upper_; |
2424 | upper_ = NULL; |
2425 | rowUpperWork_ = NULL; |
2426 | columnUpperWork_ = NULL; |
2427 | delete [] cost_; |
2428 | cost_ = NULL; |
2429 | objectiveWork_ = NULL; |
2430 | rowObjectiveWork_ = NULL; |
2431 | delete [] dj_; |
2432 | dj_ = NULL; |
2433 | reducedCostWork_ = NULL; |
2434 | rowReducedCost_ = NULL; |
2435 | delete [] solution_; |
2436 | solution_ = NULL; |
2437 | rowActivityWork_ = NULL; |
2438 | columnActivityWork_ = NULL; |
2439 | delete [] savedSolution_; |
2440 | savedSolution_ = NULL; |
2441 | } |
2442 | if ((specialOptions_ & 2) == 0) { |
2443 | delete nonLinearCost_; |
2444 | nonLinearCost_ = NULL; |
2445 | } |
2446 | int i; |
2447 | if ((specialOptions_ & 65536) == 0) { |
2448 | for (i = 0; i < 6; i++) { |
2449 | delete rowArray_[i]; |
2450 | rowArray_[i] = NULL; |
2451 | delete columnArray_[i]; |
2452 | columnArray_[i] = NULL; |
2453 | } |
2454 | } |
2455 | delete [] saveStatus_; |
2456 | saveStatus_ = NULL; |
2457 | if (type != 1) { |
2458 | delete rowCopy_; |
2459 | rowCopy_ = NULL; |
2460 | } |
2461 | if (!type) { |
2462 | // delete everything |
2463 | setEmptyFactorization(); |
2464 | delete [] pivotVariable_; |
2465 | pivotVariable_ = NULL; |
2466 | delete dualRowPivot_; |
2467 | dualRowPivot_ = NULL; |
2468 | delete primalColumnPivot_; |
2469 | primalColumnPivot_ = NULL; |
2470 | delete baseModel_; |
2471 | baseModel_ = NULL; |
2472 | delete [] perturbationArray_; |
2473 | perturbationArray_ = NULL; |
2474 | maximumPerturbationSize_ = 0; |
2475 | } else { |
2476 | // delete any size information in methods |
2477 | if (type > 1) { |
2478 | //assert (factorization_); |
2479 | if (factorization_) |
2480 | factorization_->clearArrays(); |
2481 | delete [] pivotVariable_; |
2482 | pivotVariable_ = NULL; |
2483 | } |
2484 | dualRowPivot_->clearArrays(); |
2485 | primalColumnPivot_->clearArrays(); |
2486 | } |
2487 | } |
2488 | // This sets largest infeasibility and most infeasible |
2489 | void |
2490 | ClpSimplex::checkPrimalSolution(const double * rowActivities, |
2491 | const double * columnActivities) |
2492 | { |
2493 | double * solution; |
2494 | int iRow, iColumn; |
2495 | |
2496 | objectiveValue_ = 0.0; |
2497 | // now look at primal solution |
2498 | solution = rowActivityWork_; |
2499 | sumPrimalInfeasibilities_ = 0.0; |
2500 | numberPrimalInfeasibilities_ = 0; |
2501 | double primalTolerance = primalTolerance_; |
2502 | double relaxedTolerance = primalTolerance_; |
2503 | // we can't really trust infeasibilities if there is primal error |
2504 | double error = CoinMin(1.0e-2, largestPrimalError_); |
2505 | // allow tolerance at least slightly bigger than standard |
2506 | relaxedTolerance = relaxedTolerance + error; |
2507 | sumOfRelaxedPrimalInfeasibilities_ = 0.0; |
2508 | for (iRow = 0; iRow < numberRows_; iRow++) { |
2509 | //assert (fabs(solution[iRow])<1.0e15||getRowStatus(iRow) == basic); |
2510 | double infeasibility = 0.0; |
2511 | objectiveValue_ += solution[iRow] * rowObjectiveWork_[iRow]; |
2512 | if (solution[iRow] > rowUpperWork_[iRow]) { |
2513 | infeasibility = solution[iRow] - rowUpperWork_[iRow]; |
2514 | } else if (solution[iRow] < rowLowerWork_[iRow]) { |
2515 | infeasibility = rowLowerWork_[iRow] - solution[iRow]; |
2516 | } |
2517 | if (infeasibility > primalTolerance) { |
2518 | sumPrimalInfeasibilities_ += infeasibility - primalTolerance_; |
2519 | if (infeasibility > relaxedTolerance) |
2520 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility - relaxedTolerance; |
2521 | numberPrimalInfeasibilities_ ++; |
2522 | } |
2523 | infeasibility = fabs(rowActivities[iRow] - solution[iRow]); |
2524 | } |
2525 | // Check any infeasibilities from dynamic rows |
2526 | matrix_->primalExpanded(this, 2); |
2527 | solution = columnActivityWork_; |
2528 | if (!matrix_->rhsOffset(this)) { |
2529 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
2530 | //assert (fabs(solution[iColumn])<1.0e15||getColumnStatus(iColumn) == basic); |
2531 | double infeasibility = 0.0; |
2532 | objectiveValue_ += objectiveWork_[iColumn] * solution[iColumn]; |
2533 | if (solution[iColumn] > columnUpperWork_[iColumn]) { |
2534 | infeasibility = solution[iColumn] - columnUpperWork_[iColumn]; |
2535 | } else if (solution[iColumn] < columnLowerWork_[iColumn]) { |
2536 | infeasibility = columnLowerWork_[iColumn] - solution[iColumn]; |
2537 | } |
2538 | if (infeasibility > primalTolerance) { |
2539 | sumPrimalInfeasibilities_ += infeasibility - primalTolerance_; |
2540 | if (infeasibility > relaxedTolerance) |
2541 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility - relaxedTolerance; |
2542 | numberPrimalInfeasibilities_ ++; |
2543 | } |
2544 | infeasibility = fabs(columnActivities[iColumn] - solution[iColumn]); |
2545 | } |
2546 | } else { |
2547 | // as we are using effective rhs we only check basics |
2548 | // But we do need to get objective |
2549 | objectiveValue_ += innerProduct(objectiveWork_, numberColumns_, solution); |
2550 | for (int j = 0; j < numberRows_; j++) { |
2551 | int iColumn = pivotVariable_[j]; |
2552 | //assert (fabs(solution[iColumn])<1.0e15||getColumnStatus(iColumn) == basic); |
2553 | double infeasibility = 0.0; |
2554 | if (solution[iColumn] > columnUpperWork_[iColumn]) { |
2555 | infeasibility = solution[iColumn] - columnUpperWork_[iColumn]; |
2556 | } else if (solution[iColumn] < columnLowerWork_[iColumn]) { |
2557 | infeasibility = columnLowerWork_[iColumn] - solution[iColumn]; |
2558 | } |
2559 | if (infeasibility > primalTolerance) { |
2560 | sumPrimalInfeasibilities_ += infeasibility - primalTolerance_; |
2561 | if (infeasibility > relaxedTolerance) |
2562 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility - relaxedTolerance; |
2563 | numberPrimalInfeasibilities_ ++; |
2564 | } |
2565 | infeasibility = fabs(columnActivities[iColumn] - solution[iColumn]); |
2566 | } |
2567 | } |
2568 | objectiveValue_ += objective_->nonlinearOffset(); |
2569 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
2570 | } |
2571 | void |
2572 | ClpSimplex::checkDualSolution() |
2573 | { |
2574 | |
2575 | int iRow, iColumn; |
2576 | sumDualInfeasibilities_ = 0.0; |
2577 | numberDualInfeasibilities_ = 0; |
2578 | numberDualInfeasibilitiesWithoutFree_ = 0; |
2579 | if (matrix_->skipDualCheck() && algorithm_ > 0 && problemStatus_ == -2) { |
2580 | // pretend we found dual infeasibilities |
2581 | sumOfRelaxedDualInfeasibilities_ = 1.0; |
2582 | sumDualInfeasibilities_ = 1.0; |
2583 | numberDualInfeasibilities_ = 1; |
2584 | return; |
2585 | } |
2586 | int firstFreePrimal = -1; |
2587 | int firstFreeDual = -1; |
2588 | int numberSuperBasicWithDj = 0; |
2589 | bestPossibleImprovement_ = 0.0; |
2590 | // we can't really trust infeasibilities if there is dual error |
2591 | double error = CoinMin(1.0e-2, largestDualError_); |
2592 | // allow tolerance at least slightly bigger than standard |
2593 | double relaxedTolerance = dualTolerance_ + error; |
2594 | // allow bigger tolerance for possible improvement |
2595 | double possTolerance = 5.0 * relaxedTolerance; |
2596 | sumOfRelaxedDualInfeasibilities_ = 0.0; |
2597 | |
2598 | // Check any djs from dynamic rows |
2599 | matrix_->dualExpanded(this, NULL, NULL, 3); |
2600 | numberDualInfeasibilitiesWithoutFree_ = numberDualInfeasibilities_; |
2601 | objectiveValue_ = 0.0; |
2602 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
2603 | objectiveValue_ += objectiveWork_[iColumn] * columnActivityWork_[iColumn]; |
2604 | if (getColumnStatus(iColumn) != basic && !flagged(iColumn)) { |
2605 | // not basic |
2606 | double distanceUp = columnUpperWork_[iColumn] - |
2607 | columnActivityWork_[iColumn]; |
2608 | double distanceDown = columnActivityWork_[iColumn] - |
2609 | columnLowerWork_[iColumn]; |
2610 | if (distanceUp > primalTolerance_) { |
2611 | double value = reducedCostWork_[iColumn]; |
2612 | // Check if "free" |
2613 | if (distanceDown > primalTolerance_) { |
2614 | if (fabs(value) > 1.0e2 * relaxedTolerance) { |
2615 | numberSuperBasicWithDj++; |
2616 | if (firstFreeDual < 0) |
2617 | firstFreeDual = iColumn; |
2618 | } |
2619 | if (firstFreePrimal < 0) |
2620 | firstFreePrimal = iColumn; |
2621 | } |
2622 | // should not be negative |
2623 | if (value < 0.0) { |
2624 | value = - value; |
2625 | if (value > dualTolerance_) { |
2626 | if (getColumnStatus(iColumn) != isFree) { |
2627 | numberDualInfeasibilitiesWithoutFree_ ++; |
2628 | sumDualInfeasibilities_ += value - dualTolerance_; |
2629 | if (value > possTolerance) |
2630 | bestPossibleImprovement_ += CoinMin(distanceUp, 1.0e10) * value; |
2631 | if (value > relaxedTolerance) |
2632 | sumOfRelaxedDualInfeasibilities_ += value - relaxedTolerance; |
2633 | numberDualInfeasibilities_ ++; |
2634 | } else { |
2635 | // free so relax a lot |
2636 | value *= 0.01; |
2637 | if (value > dualTolerance_) { |
2638 | sumDualInfeasibilities_ += value - dualTolerance_; |
2639 | if (value > possTolerance) |
2640 | bestPossibleImprovement_ = 1.0e100; |
2641 | if (value > relaxedTolerance) |
2642 | sumOfRelaxedDualInfeasibilities_ += value - relaxedTolerance; |
2643 | numberDualInfeasibilities_ ++; |
2644 | } |
2645 | } |
2646 | } |
2647 | } |
2648 | } |
2649 | if (distanceDown > primalTolerance_) { |
2650 | double value = reducedCostWork_[iColumn]; |
2651 | // should not be positive |
2652 | if (value > 0.0) { |
2653 | if (value > dualTolerance_) { |
2654 | sumDualInfeasibilities_ += value - dualTolerance_; |
2655 | if (value > possTolerance) |
2656 | bestPossibleImprovement_ += value * CoinMin(distanceDown, 1.0e10); |
2657 | if (value > relaxedTolerance) |
2658 | sumOfRelaxedDualInfeasibilities_ += value - relaxedTolerance; |
2659 | numberDualInfeasibilities_ ++; |
2660 | if (getColumnStatus(iColumn) != isFree) |
2661 | numberDualInfeasibilitiesWithoutFree_ ++; |
2662 | // maybe we can make feasible by increasing tolerance |
2663 | } |
2664 | } |
2665 | } |
2666 | } |
2667 | } |
2668 | for (iRow = 0; iRow < numberRows_; iRow++) { |
2669 | objectiveValue_ += rowActivityWork_[iRow] * rowObjectiveWork_[iRow]; |
2670 | if (getRowStatus(iRow) != basic && !flagged(iRow + numberColumns_)) { |
2671 | // not basic |
2672 | double distanceUp = rowUpperWork_[iRow] - rowActivityWork_[iRow]; |
2673 | double distanceDown = rowActivityWork_[iRow] - rowLowerWork_[iRow]; |
2674 | if (distanceUp > primalTolerance_) { |
2675 | double value = rowReducedCost_[iRow]; |
2676 | // Check if "free" |
2677 | if (distanceDown > primalTolerance_) { |
2678 | if (fabs(value) > 1.0e2 * relaxedTolerance) { |
2679 | numberSuperBasicWithDj++; |
2680 | if (firstFreeDual < 0) |
2681 | firstFreeDual = iRow + numberColumns_; |
2682 | } |
2683 | if (firstFreePrimal < 0) |
2684 | firstFreePrimal = iRow + numberColumns_; |
2685 | } |
2686 | // should not be negative |
2687 | if (value < 0.0) { |
2688 | value = - value; |
2689 | if (value > dualTolerance_) { |
2690 | sumDualInfeasibilities_ += value - dualTolerance_; |
2691 | if (value > possTolerance) |
2692 | bestPossibleImprovement_ += value * CoinMin(distanceUp, 1.0e10); |
2693 | if (value > relaxedTolerance) |
2694 | sumOfRelaxedDualInfeasibilities_ += value - relaxedTolerance; |
2695 | numberDualInfeasibilities_ ++; |
2696 | if (getRowStatus(iRow) != isFree) |
2697 | numberDualInfeasibilitiesWithoutFree_ ++; |
2698 | } |
2699 | } |
2700 | } |
2701 | if (distanceDown > primalTolerance_) { |
2702 | double value = rowReducedCost_[iRow]; |
2703 | // should not be positive |
2704 | if (value > 0.0) { |
2705 | if (value > dualTolerance_) { |
2706 | sumDualInfeasibilities_ += value - dualTolerance_; |
2707 | if (value > possTolerance) |
2708 | bestPossibleImprovement_ += value * CoinMin(distanceDown, 1.0e10); |
2709 | if (value > relaxedTolerance) |
2710 | sumOfRelaxedDualInfeasibilities_ += value - relaxedTolerance; |
2711 | numberDualInfeasibilities_ ++; |
2712 | if (getRowStatus(iRow) != isFree) |
2713 | numberDualInfeasibilitiesWithoutFree_ ++; |
2714 | // maybe we can make feasible by increasing tolerance |
2715 | } |
2716 | } |
2717 | } |
2718 | } |
2719 | } |
2720 | if (algorithm_ < 0 && firstFreeDual >= 0) { |
2721 | // dual |
2722 | firstFree_ = firstFreeDual; |
2723 | } else if (numberSuperBasicWithDj || |
2724 | (progress_.lastIterationNumber(0) <= 0)) { |
2725 | firstFree_ = firstFreePrimal; |
2726 | } |
2727 | objectiveValue_ += objective_->nonlinearOffset(); |
2728 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
2729 | } |
2730 | /* This sets sum and number of infeasibilities (Dual and Primal) */ |
2731 | void |
2732 | ClpSimplex::checkBothSolutions() |
2733 | { |
2734 | if ((matrix_->skipDualCheck() && algorithm_ > 0 && problemStatus_ == -2) || |
2735 | matrix_->rhsOffset(this)) { |
2736 | // Say may be free or superbasic |
2737 | moreSpecialOptions_ &= ~8; |
2738 | // old way |
2739 | checkPrimalSolution(rowActivityWork_, columnActivityWork_); |
2740 | checkDualSolution(); |
2741 | return; |
2742 | } |
2743 | int iSequence; |
2744 | assert (dualTolerance_ > 0.0 && dualTolerance_ < 1.0e10); |
2745 | assert (primalTolerance_ > 0.0 && primalTolerance_ < 1.0e10); |
2746 | objectiveValue_ = 0.0; |
2747 | sumPrimalInfeasibilities_ = 0.0; |
2748 | numberPrimalInfeasibilities_ = 0; |
2749 | double primalTolerance = primalTolerance_; |
2750 | double relaxedToleranceP = primalTolerance_; |
2751 | // we can't really trust infeasibilities if there is primal error |
2752 | double error = CoinMin(1.0e-2, largestPrimalError_); |
2753 | // allow tolerance at least slightly bigger than standard |
2754 | relaxedToleranceP = relaxedToleranceP + error; |
2755 | sumOfRelaxedPrimalInfeasibilities_ = 0.0; |
2756 | sumDualInfeasibilities_ = 0.0; |
2757 | numberDualInfeasibilities_ = 0; |
2758 | double dualTolerance = dualTolerance_; |
2759 | double relaxedToleranceD = dualTolerance; |
2760 | // we can't really trust infeasibilities if there is dual error |
2761 | error = CoinMin(1.0e-2, largestDualError_); |
2762 | // allow tolerance at least slightly bigger than standard |
2763 | relaxedToleranceD = relaxedToleranceD + error; |
2764 | // allow bigger tolerance for possible improvement |
2765 | double possTolerance = 5.0 * relaxedToleranceD; |
2766 | sumOfRelaxedDualInfeasibilities_ = 0.0; |
2767 | bestPossibleImprovement_ = 0.0; |
2768 | |
2769 | // Check any infeasibilities from dynamic rows |
2770 | matrix_->primalExpanded(this, 2); |
2771 | // Check any djs from dynamic rows |
2772 | matrix_->dualExpanded(this, NULL, NULL, 3); |
2773 | int numberDualInfeasibilitiesFree = 0; |
2774 | int firstFreePrimal = -1; |
2775 | int firstFreeDual = -1; |
2776 | int numberSuperBasicWithDj = 0; |
2777 | |
2778 | int numberTotal = numberRows_ + numberColumns_; |
2779 | // Say no free or superbasic |
2780 | moreSpecialOptions_ |= 8; |
2781 | //#define PRINT_INFEAS |
2782 | #ifdef PRINT_INFEAS |
2783 | int seqInf[10]; |
2784 | #endif |
2785 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
2786 | double value = solution_[iSequence]; |
2787 | #ifdef COIN_DEBUG |
2788 | if (fabs(value) > 1.0e20) |
2789 | printf("%d values %g %g %g - status %d\n" , iSequence, lower_[iSequence], |
2790 | solution_[iSequence], upper_[iSequence], status_[iSequence]); |
2791 | #endif |
2792 | objectiveValue_ += value * cost_[iSequence]; |
2793 | double distanceUp = upper_[iSequence] - value; |
2794 | double distanceDown = value - lower_[iSequence]; |
2795 | if (distanceUp < -primalTolerance) { |
2796 | double infeasibility = -distanceUp; |
2797 | sumPrimalInfeasibilities_ += infeasibility - primalTolerance_; |
2798 | if (infeasibility > relaxedToleranceP) |
2799 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility - relaxedToleranceP; |
2800 | #ifdef PRINT_INFEAS |
2801 | if (numberPrimalInfeasibilities_<10) { |
2802 | seqInf[numberPrimalInfeasibilities_]=iSequence; |
2803 | } |
2804 | #endif |
2805 | numberPrimalInfeasibilities_ ++; |
2806 | } else if (distanceDown < -primalTolerance) { |
2807 | double infeasibility = -distanceDown; |
2808 | sumPrimalInfeasibilities_ += infeasibility - primalTolerance_; |
2809 | if (infeasibility > relaxedToleranceP) |
2810 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility - relaxedToleranceP; |
2811 | #ifdef PRINT_INFEAS |
2812 | if (numberPrimalInfeasibilities_<10) { |
2813 | seqInf[numberPrimalInfeasibilities_]=iSequence; |
2814 | } |
2815 | #endif |
2816 | numberPrimalInfeasibilities_ ++; |
2817 | } else { |
2818 | // feasible (so could be free) |
2819 | if (getStatus(iSequence) != basic && !flagged(iSequence)) { |
2820 | // not basic |
2821 | double djValue = dj_[iSequence]; |
2822 | if (distanceDown < primalTolerance) { |
2823 | if (distanceUp > primalTolerance && djValue < -dualTolerance) { |
2824 | sumDualInfeasibilities_ -= djValue + dualTolerance; |
2825 | if (djValue < -possTolerance) |
2826 | bestPossibleImprovement_ -= distanceUp * djValue; |
2827 | if (djValue < -relaxedToleranceD) |
2828 | sumOfRelaxedDualInfeasibilities_ -= djValue + relaxedToleranceD; |
2829 | numberDualInfeasibilities_ ++; |
2830 | } |
2831 | } else if (distanceUp < primalTolerance) { |
2832 | if (djValue > dualTolerance) { |
2833 | sumDualInfeasibilities_ += djValue - dualTolerance; |
2834 | if (djValue > possTolerance) |
2835 | bestPossibleImprovement_ += distanceDown * djValue; |
2836 | if (djValue > relaxedToleranceD) |
2837 | sumOfRelaxedDualInfeasibilities_ += djValue - relaxedToleranceD; |
2838 | numberDualInfeasibilities_ ++; |
2839 | } |
2840 | } else { |
2841 | // may be free |
2842 | // Say free or superbasic |
2843 | moreSpecialOptions_ &= ~8; |
2844 | djValue *= 0.01; |
2845 | if (fabs(djValue) > dualTolerance) { |
2846 | if (getStatus(iSequence) == isFree) |
2847 | numberDualInfeasibilitiesFree++; |
2848 | sumDualInfeasibilities_ += fabs(djValue) - dualTolerance; |
2849 | bestPossibleImprovement_ = 1.0e100; |
2850 | numberDualInfeasibilities_ ++; |
2851 | if (fabs(djValue) > relaxedToleranceD) { |
2852 | sumOfRelaxedDualInfeasibilities_ += value - relaxedToleranceD; |
2853 | numberSuperBasicWithDj++; |
2854 | if (firstFreeDual < 0) |
2855 | firstFreeDual = iSequence; |
2856 | } |
2857 | } |
2858 | if (firstFreePrimal < 0) |
2859 | firstFreePrimal = iSequence; |
2860 | } |
2861 | } |
2862 | } |
2863 | } |
2864 | objectiveValue_ += objective_->nonlinearOffset(); |
2865 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
2866 | numberDualInfeasibilitiesWithoutFree_ = numberDualInfeasibilities_ - |
2867 | numberDualInfeasibilitiesFree; |
2868 | #ifdef PRINT_INFEAS |
2869 | if (numberPrimalInfeasibilities_<=10) { |
2870 | printf("---------------start-----------\n" ); |
2871 | if (!rowScale_) { |
2872 | for (int i=0;i<numberPrimalInfeasibilities_;i++) { |
2873 | int iSeq = seqInf[i]; |
2874 | double infeas; |
2875 | if (solution_[iSeq]<lower_[iSeq]) |
2876 | infeas = lower_[iSeq]-solution_[iSeq]; |
2877 | else |
2878 | infeas = solution_[iSeq]-upper_[iSeq]; |
2879 | if (iSeq<numberColumns_) { |
2880 | printf("INF C%d %.10g <= %.10g <= %.10g - infeas %g\n" , |
2881 | iSeq,lower_[iSeq],solution_[iSeq],upper_[iSeq],infeas); |
2882 | } else { |
2883 | printf("INF R%d %.10g <= %.10g <= %.10g - infeas %g\n" , |
2884 | iSeq-numberColumns_,lower_[iSeq],solution_[iSeq],upper_[iSeq],infeas); |
2885 | } |
2886 | } |
2887 | } else { |
2888 | for (int i=0;i<numberPrimalInfeasibilities_;i++) { |
2889 | int iSeq = seqInf[i]; |
2890 | double infeas; |
2891 | if (solution_[iSeq]<lower_[iSeq]) |
2892 | infeas = lower_[iSeq]-solution_[iSeq]; |
2893 | else |
2894 | infeas = solution_[iSeq]-upper_[iSeq]; |
2895 | double unscaled = infeas; |
2896 | if (iSeq<numberColumns_) { |
2897 | unscaled *= columnScale_[iSeq]; |
2898 | printf("INF C%d %.10g <= %.10g <= %.10g - infeas %g - unscaled %g\n" , |
2899 | iSeq,lower_[iSeq],solution_[iSeq],upper_[iSeq],infeas,unscaled); |
2900 | } else { |
2901 | unscaled /= rowScale_[iSeq-numberColumns_]; |
2902 | printf("INF R%d %.10g <= %.10g <= %.10g - infeas %g - unscaled %g\n" , |
2903 | iSeq-numberColumns_,lower_[iSeq],solution_[iSeq],upper_[iSeq],infeas,unscaled); |
2904 | } |
2905 | } |
2906 | } |
2907 | } |
2908 | #endif |
2909 | if (algorithm_ < 0 && firstFreeDual >= 0) { |
2910 | // dual |
2911 | firstFree_ = firstFreeDual; |
2912 | } else if (numberSuperBasicWithDj || |
2913 | (progress_.lastIterationNumber(0) <= 0)) { |
2914 | firstFree_ = firstFreePrimal; |
2915 | } |
2916 | } |
2917 | /* Adds multiple of a column into an array */ |
2918 | void |
2919 | ClpSimplex::add(double * array, |
2920 | int sequence, double multiplier) const |
2921 | { |
2922 | if (sequence >= numberColumns_ && sequence < numberColumns_ + numberRows_) { |
2923 | //slack |
2924 | array [sequence-numberColumns_] -= multiplier; |
2925 | } else { |
2926 | // column |
2927 | matrix_->add(this, array, sequence, multiplier); |
2928 | } |
2929 | } |
2930 | /* |
2931 | Unpacks one column of the matrix into indexed array |
2932 | */ |
2933 | void |
2934 | ClpSimplex::unpack(CoinIndexedVector * rowArray) const |
2935 | { |
2936 | rowArray->clear(); |
2937 | if (sequenceIn_ >= numberColumns_ && sequenceIn_ < numberColumns_ + numberRows_) { |
2938 | //slack |
2939 | rowArray->insert(sequenceIn_ - numberColumns_, -1.0); |
2940 | } else { |
2941 | // column |
2942 | matrix_->unpack(this, rowArray, sequenceIn_); |
2943 | } |
2944 | } |
2945 | void |
2946 | ClpSimplex::unpack(CoinIndexedVector * rowArray, int sequence) const |
2947 | { |
2948 | rowArray->clear(); |
2949 | if (sequence >= numberColumns_ && sequence < numberColumns_ + numberRows_) { |
2950 | //slack |
2951 | rowArray->insert(sequence - numberColumns_, -1.0); |
2952 | } else { |
2953 | // column |
2954 | matrix_->unpack(this, rowArray, sequence); |
2955 | } |
2956 | } |
2957 | /* |
2958 | Unpacks one column of the matrix into indexed array |
2959 | */ |
2960 | void |
2961 | ClpSimplex::unpackPacked(CoinIndexedVector * rowArray) |
2962 | { |
2963 | rowArray->clear(); |
2964 | if (sequenceIn_ >= numberColumns_ && sequenceIn_ < numberColumns_ + numberRows_) { |
2965 | //slack |
2966 | int * index = rowArray->getIndices(); |
2967 | double * array = rowArray->denseVector(); |
2968 | array[0] = -1.0; |
2969 | index[0] = sequenceIn_ - numberColumns_; |
2970 | rowArray->setNumElements(1); |
2971 | rowArray->setPackedMode(true); |
2972 | } else { |
2973 | // column |
2974 | matrix_->unpackPacked(this, rowArray, sequenceIn_); |
2975 | } |
2976 | } |
2977 | void |
2978 | ClpSimplex::unpackPacked(CoinIndexedVector * rowArray, int sequence) |
2979 | { |
2980 | rowArray->clear(); |
2981 | if (sequence >= numberColumns_ && sequence < numberColumns_ + numberRows_) { |
2982 | //slack |
2983 | int * index = rowArray->getIndices(); |
2984 | double * array = rowArray->denseVector(); |
2985 | array[0] = -1.0; |
2986 | index[0] = sequence - numberColumns_; |
2987 | rowArray->setNumElements(1); |
2988 | rowArray->setPackedMode(true); |
2989 | } else { |
2990 | // column |
2991 | matrix_->unpackPacked(this, rowArray, sequence); |
2992 | } |
2993 | } |
2994 | //static int x_gaps[4]={0,0,0,0}; |
2995 | //static int scale_times[]={0,0,0,0}; |
2996 | bool |
2997 | ClpSimplex::createRim(int what, bool makeRowCopy, int startFinishOptions) |
2998 | { |
2999 | bool goodMatrix = true; |
3000 | int saveLevel = handler_->logLevel(); |
3001 | spareIntArray_[0] = 0; |
3002 | if (!matrix_->canGetRowCopy()) |
3003 | makeRowCopy = false; // switch off row copy if can't produce |
3004 | // Arrays will be there and correct size unless what is 63 |
3005 | bool newArrays = (what == 63); |
3006 | // We may be restarting with same size |
3007 | bool keepPivots = false; |
3008 | if (startFinishOptions == -1) { |
3009 | startFinishOptions = 0; |
3010 | keepPivots = true; |
3011 | } |
3012 | bool oldMatrix = ((startFinishOptions & 4) != 0 && (whatsChanged_ & 1) != 0); |
3013 | if (what == 63) { |
3014 | pivotRow_ = -1; |
3015 | if (!status_) |
3016 | createStatus(); |
3017 | if (oldMatrix) |
3018 | newArrays = false; |
3019 | if (problemStatus_ == 10) { |
3020 | handler_->setLogLevel(0); // switch off messages |
3021 | if (rowArray_[0]) { |
3022 | // stuff is still there |
3023 | oldMatrix = true; |
3024 | newArrays = false; |
3025 | keepPivots = true; |
3026 | for (int iRow = 0; iRow < 4; iRow++) { |
3027 | rowArray_[iRow]->clear(); |
3028 | } |
3029 | for (int iColumn = 0; iColumn < 2; iColumn++) { |
3030 | columnArray_[iColumn]->clear(); |
3031 | } |
3032 | } |
3033 | } else if (factorization_) { |
3034 | // match up factorization messages |
3035 | if (handler_->logLevel() < 3) |
3036 | factorization_->messageLevel(0); |
3037 | else |
3038 | factorization_->messageLevel(CoinMax(3, factorization_->messageLevel())); |
3039 | /* Faster to keep pivots rather than re-scan matrix. Matrix may have changed |
3040 | i.e. oldMatrix false but okay as long as same number rows and status array exists |
3041 | */ |
3042 | if ((startFinishOptions & 2) != 0 && factorization_->numberRows() == numberRows_ && status_) |
3043 | keepPivots = true; |
3044 | } |
3045 | numberExtraRows_ = matrix_->generalExpanded(this, 2, maximumBasic_); |
3046 | if (numberExtraRows_ && newArrays) { |
3047 | // make sure status array large enough |
3048 | assert (status_); |
3049 | int numberOld = numberRows_ + numberColumns_; |
3050 | int numberNew = numberRows_ + numberColumns_ + numberExtraRows_; |
3051 | unsigned char * newStatus = new unsigned char [numberNew]; |
3052 | memset(newStatus + numberOld, 0, numberExtraRows_); |
3053 | CoinMemcpyN(status_, numberOld, newStatus); |
3054 | delete [] status_; |
3055 | status_ = newStatus; |
3056 | } |
3057 | } |
3058 | int numberRows2 = numberRows_ + numberExtraRows_; |
3059 | int numberTotal = numberRows2 + numberColumns_; |
3060 | if ((specialOptions_ & 65536) != 0) { |
3061 | assert (!numberExtraRows_); |
3062 | if (!cost_ || numberRows2 > maximumInternalRows_ || |
3063 | numberColumns_ > maximumInternalColumns_) { |
3064 | newArrays = true; |
3065 | keepPivots = false; |
3066 | COIN_DETAIL_PRINT(printf("createrim a %d rows, %d maximum rows %d maxinternal\n" , |
3067 | numberRows_, maximumRows_, maximumInternalRows_)); |
3068 | int oldMaximumRows = maximumInternalRows_; |
3069 | int oldMaximumColumns = maximumInternalColumns_; |
3070 | if (cost_) { |
3071 | if (numberRows2 > maximumInternalRows_) |
3072 | maximumInternalRows_ = numberRows2; |
3073 | if (numberColumns_ > maximumInternalColumns_) |
3074 | maximumInternalColumns_ = numberColumns_; |
3075 | } else { |
3076 | maximumInternalRows_ = numberRows2; |
3077 | maximumInternalColumns_ = numberColumns_; |
3078 | } |
3079 | assert(maximumInternalRows_ == maximumRows_); |
3080 | assert(maximumInternalColumns_ == maximumColumns_); |
3081 | COIN_DETAIL_PRINT(printf("createrim b %d rows, %d maximum rows, %d maxinternal\n" , |
3082 | numberRows_, maximumRows_, maximumInternalRows_)); |
3083 | int numberTotal2 = (maximumInternalRows_ + maximumInternalColumns_) * 2; |
3084 | delete [] cost_; |
3085 | cost_ = new double[numberTotal2]; |
3086 | delete [] lower_; |
3087 | delete [] upper_; |
3088 | lower_ = new double[numberTotal2]; |
3089 | upper_ = new double[numberTotal2]; |
3090 | delete [] dj_; |
3091 | dj_ = new double[numberTotal2]; |
3092 | delete [] solution_; |
3093 | solution_ = new double[numberTotal2]; |
3094 | // ***** should be non NULL but seems to be too much |
3095 | //printf("resize %d savedRowScale %x\n",maximumRows_,savedRowScale_); |
3096 | if (savedRowScale_) { |
3097 | assert (oldMaximumRows > 0); |
3098 | double * temp; |
3099 | temp = new double [4*maximumRows_]; |
3100 | CoinFillN(temp, 4 * maximumRows_, 1.0); |
3101 | CoinMemcpyN(savedRowScale_, numberRows_, temp); |
3102 | CoinMemcpyN(savedRowScale_ + oldMaximumRows, numberRows_, temp + maximumRows_); |
3103 | CoinMemcpyN(savedRowScale_ + 2 * oldMaximumRows, numberRows_, temp + 2 * maximumRows_); |
3104 | CoinMemcpyN(savedRowScale_ + 3 * oldMaximumRows, numberRows_, temp + 3 * maximumRows_); |
3105 | delete [] savedRowScale_; |
3106 | savedRowScale_ = temp; |
3107 | temp = new double [4*maximumColumns_]; |
3108 | CoinFillN(temp, 4 * maximumColumns_, 1.0); |
3109 | CoinMemcpyN(savedColumnScale_, numberColumns_, temp); |
3110 | CoinMemcpyN(savedColumnScale_ + oldMaximumColumns, numberColumns_, temp + maximumColumns_); |
3111 | CoinMemcpyN(savedColumnScale_ + 2 * oldMaximumColumns, numberColumns_, temp + 2 * maximumColumns_); |
3112 | CoinMemcpyN(savedColumnScale_ + 3 * oldMaximumColumns, numberColumns_, temp + 3 * maximumColumns_); |
3113 | delete [] savedColumnScale_; |
3114 | savedColumnScale_ = temp; |
3115 | } |
3116 | } |
3117 | } |
3118 | int i; |
3119 | bool doSanityCheck = true; |
3120 | if (what == 63) { |
3121 | // We may want to switch stuff off for speed |
3122 | if ((specialOptions_ & 256) != 0) |
3123 | makeRowCopy = false; // no row copy |
3124 | if ((specialOptions_ & 128) != 0) |
3125 | doSanityCheck = false; // no sanity check |
3126 | //check matrix |
3127 | if (!matrix_) |
3128 | matrix_ = new ClpPackedMatrix(); |
3129 | int checkType = (doSanityCheck) ? 15 : 14; |
3130 | if (oldMatrix) |
3131 | checkType = 14; |
3132 | bool inCbcOrOther = (specialOptions_ & 0x03000000) != 0; |
3133 | if (inCbcOrOther) |
3134 | checkType -= 4; // don't check for duplicates |
3135 | if (!matrix_->allElementsInRange(this, smallElement_, 1.0e20, checkType)) { |
3136 | problemStatus_ = 4; |
3137 | secondaryStatus_ = 8; |
3138 | //goodMatrix= false; |
3139 | return false; |
3140 | } |
3141 | bool rowCopyIsScaled; |
3142 | if (makeRowCopy) { |
3143 | if(!oldMatrix || !rowCopy_) { |
3144 | delete rowCopy_; |
3145 | // may return NULL if can't give row copy |
3146 | rowCopy_ = matrix_->reverseOrderedCopy(); |
3147 | rowCopyIsScaled = false; |
3148 | } else { |
3149 | rowCopyIsScaled = true; |
3150 | } |
3151 | } |
3152 | #if 0 |
3153 | if (what == 63) { |
3154 | int k = rowScale_ ? 1 : 0; |
3155 | if (oldMatrix) |
3156 | k += 2; |
3157 | scale_times[k]++; |
3158 | if ((scale_times[0] + scale_times[1] + scale_times[2] + scale_times[3]) % 1000 == 0) |
3159 | printf("scale counts %d %d %d %d\n" , |
3160 | scale_times[0], scale_times[1], scale_times[2], scale_times[3]); |
3161 | } |
3162 | #endif |
3163 | // do scaling if needed |
3164 | if (!oldMatrix && scalingFlag_ < 0) { |
3165 | if (scalingFlag_ < 0 && rowScale_) { |
3166 | //if (handler_->logLevel()>0) |
3167 | printf("How did we get scalingFlag_ %d and non NULL rowScale_? - switching off scaling\n" , |
3168 | scalingFlag_); |
3169 | scalingFlag_ = 0; |
3170 | } |
3171 | delete [] rowScale_; |
3172 | delete [] columnScale_; |
3173 | rowScale_ = NULL; |
3174 | columnScale_ = NULL; |
3175 | } |
3176 | inverseRowScale_ = NULL; |
3177 | inverseColumnScale_ = NULL; |
3178 | if (scalingFlag_ > 0 && !rowScale_) { |
3179 | if ((specialOptions_ & 65536) != 0) { |
3180 | assert (!rowScale_); |
3181 | rowScale_ = savedRowScale_; |
3182 | columnScale_ = savedColumnScale_; |
3183 | // put back original |
3184 | if (savedRowScale_) { |
3185 | inverseRowScale_ = savedRowScale_ + maximumInternalRows_; |
3186 | inverseColumnScale_ = savedColumnScale_ + maximumInternalColumns_; |
3187 | CoinMemcpyN(savedRowScale_ + 2 * maximumInternalRows_, |
3188 | numberRows2, savedRowScale_); |
3189 | CoinMemcpyN(savedRowScale_ + 3 * maximumInternalRows_, |
3190 | numberRows2, inverseRowScale_); |
3191 | CoinMemcpyN(savedColumnScale_ + 2 * maximumColumns_, |
3192 | numberColumns_, savedColumnScale_); |
3193 | CoinMemcpyN(savedColumnScale_ + 3 * maximumColumns_, |
3194 | numberColumns_, inverseColumnScale_); |
3195 | } |
3196 | } |
3197 | if (matrix_->scale(this)) |
3198 | scalingFlag_ = -scalingFlag_; // not scaled after all |
3199 | if (rowScale_ && automaticScale_) { |
3200 | // try automatic scaling |
3201 | double smallestObj = 1.0e100; |
3202 | double largestObj = 0.0; |
3203 | double largestRhs = 0.0; |
3204 | const double * obj = objective(); |
3205 | for (i = 0; i < numberColumns_; i++) { |
3206 | double value = fabs(obj[i]); |
3207 | value *= columnScale_[i]; |
3208 | if (value && columnLower_[i] != columnUpper_[i]) { |
3209 | smallestObj = CoinMin(smallestObj, value); |
3210 | largestObj = CoinMax(largestObj, value); |
3211 | } |
3212 | if (columnLower_[i] > 0.0 || columnUpper_[i] < 0.0) { |
3213 | double scale = 1.0 * inverseColumnScale_[i]; |
3214 | //printf("%d %g %g %g %g\n",i,scale,lower_[i],upper_[i],largestRhs); |
3215 | if (columnLower_[i] > 0) |
3216 | largestRhs = CoinMax(largestRhs, columnLower_[i] * scale); |
3217 | if (columnUpper_[i] < 0.0) |
3218 | largestRhs = CoinMax(largestRhs, -columnUpper_[i] * scale); |
3219 | } |
3220 | } |
3221 | for (i = 0; i < numberRows_; i++) { |
3222 | if (rowLower_[i] > 0.0 || rowUpper_[i] < 0.0) { |
3223 | double scale = rowScale_[i]; |
3224 | //printf("%d %g %g %g %g\n",i,scale,lower_[i],upper_[i],largestRhs); |
3225 | if (rowLower_[i] > 0) |
3226 | largestRhs = CoinMax(largestRhs, rowLower_[i] * scale); |
3227 | if (rowUpper_[i] < 0.0) |
3228 | largestRhs = CoinMax(largestRhs, -rowUpper_[i] * scale); |
3229 | } |
3230 | } |
3231 | COIN_DETAIL_PRINT(printf("small obj %g, large %g - rhs %g\n" , smallestObj, largestObj, largestRhs)); |
3232 | bool scalingDone = false; |
3233 | // look at element range |
3234 | double smallestNegative; |
3235 | double largestNegative; |
3236 | double smallestPositive; |
3237 | double largestPositive; |
3238 | matrix_->rangeOfElements(smallestNegative, largestNegative, |
3239 | smallestPositive, largestPositive); |
3240 | smallestPositive = CoinMin(fabs(smallestNegative), smallestPositive); |
3241 | largestPositive = CoinMax(fabs(largestNegative), largestPositive); |
3242 | if (largestObj) { |
3243 | double ratio = largestObj / smallestObj; |
3244 | double scale = 1.0; |
3245 | if (ratio < 1.0e8) { |
3246 | // reasonable |
3247 | if (smallestObj < 1.0e-4) { |
3248 | // may as well scale up |
3249 | scalingDone = true; |
3250 | scale = 1.0e-3 / smallestObj; |
3251 | } else if (largestObj < 1.0e6 || (algorithm_ > 0 && largestObj < 1.0e-4 * infeasibilityCost_)) { |
3252 | //done=true; |
3253 | } else { |
3254 | scalingDone = true; |
3255 | if (algorithm_ < 0) { |
3256 | scale = 1.0e6 / largestObj; |
3257 | } else { |
3258 | scale = CoinMax(1.0e6, 1.0e-4 * infeasibilityCost_) / largestObj; |
3259 | } |
3260 | } |
3261 | } else if (ratio < 1.0e12) { |
3262 | // not so good |
3263 | if (smallestObj < 1.0e-7) { |
3264 | // may as well scale up |
3265 | scalingDone = true; |
3266 | scale = 1.0e-6 / smallestObj; |
3267 | } else if (largestObj < 1.0e7 || (algorithm_ > 0 && largestObj < 1.0e-3 * infeasibilityCost_)) { |
3268 | //done=true; |
3269 | } else { |
3270 | scalingDone = true; |
3271 | if (algorithm_ < 0) { |
3272 | scale = 1.0e7 / largestObj; |
3273 | } else { |
3274 | scale = CoinMax(1.0e7, 1.0e-3 * infeasibilityCost_) / largestObj; |
3275 | } |
3276 | } |
3277 | } else { |
3278 | // Really nasty problem |
3279 | if (smallestObj < 1.0e-8) { |
3280 | // may as well scale up |
3281 | scalingDone = true; |
3282 | scale = 1.0e-7 / smallestObj; |
3283 | largestObj *= scale; |
3284 | } |
3285 | if (largestObj < 1.0e7 || (algorithm_ > 0 && largestObj < 1.0e-3 * infeasibilityCost_)) { |
3286 | //done=true; |
3287 | } else { |
3288 | scalingDone = true; |
3289 | if (algorithm_ < 0) { |
3290 | scale = 1.0e7 / largestObj; |
3291 | } else { |
3292 | scale = CoinMax(1.0e7, 1.0e-3 * infeasibilityCost_) / largestObj; |
3293 | } |
3294 | } |
3295 | } |
3296 | objectiveScale_ = scale; |
3297 | } |
3298 | if (largestRhs > 1.0e12) { |
3299 | scalingDone = true; |
3300 | rhsScale_ = 1.0e9 / largestRhs; |
3301 | } else if (largestPositive > 1.0e-14 * smallestPositive && largestRhs > 1.0e6) { |
3302 | scalingDone = true; |
3303 | rhsScale_ = 1.0e6 / largestRhs; |
3304 | } else { |
3305 | rhsScale_ = 1.0; |
3306 | } |
3307 | if (scalingDone) { |
3308 | handler_->message(CLP_RIM_SCALE, messages_) |
3309 | << objectiveScale_ << rhsScale_ |
3310 | << CoinMessageEol; |
3311 | } |
3312 | } |
3313 | } else if (makeRowCopy && scalingFlag_ > 0 && !rowCopyIsScaled) { |
3314 | matrix_->scaleRowCopy(this); |
3315 | } |
3316 | if (rowScale_ && !savedRowScale_) { |
3317 | inverseRowScale_ = rowScale_ + numberRows2; |
3318 | inverseColumnScale_ = columnScale_ + numberColumns_; |
3319 | } |
3320 | // See if we can try for faster row copy |
3321 | if (makeRowCopy && !oldMatrix) { |
3322 | ClpPackedMatrix* clpMatrix = |
3323 | dynamic_cast< ClpPackedMatrix*>(matrix_); |
3324 | if (clpMatrix && numberThreads_) |
3325 | clpMatrix->specialRowCopy(this, rowCopy_); |
3326 | if (clpMatrix) |
3327 | clpMatrix->specialColumnCopy(this); |
3328 | } |
3329 | } |
3330 | if (what == 63) { |
3331 | #if 0 |
3332 | { |
3333 | x_gaps[0]++; |
3334 | ClpPackedMatrix* clpMatrix = |
3335 | dynamic_cast< ClpPackedMatrix*>(matrix_); |
3336 | if (clpMatrix) { |
3337 | if (!clpMatrix->getPackedMatrix()->hasGaps()) |
3338 | x_gaps[1]++; |
3339 | if ((clpMatrix->flags() & 2) == 0) |
3340 | x_gaps[3]++; |
3341 | } else { |
3342 | x_gaps[2]++; |
3343 | } |
3344 | if ((x_gaps[0] % 1000) == 0) |
3345 | printf("create %d times, no gaps %d times - not clp %d times - flagged %d\n" , |
3346 | x_gaps[0], x_gaps[1], x_gaps[2], x_gaps[3]); |
3347 | } |
3348 | #endif |
3349 | if (newArrays && (specialOptions_ & 65536) == 0) { |
3350 | delete [] cost_; |
3351 | cost_ = new double[2*numberTotal]; |
3352 | delete [] lower_; |
3353 | delete [] upper_; |
3354 | lower_ = new double[numberTotal]; |
3355 | upper_ = new double[numberTotal]; |
3356 | delete [] dj_; |
3357 | dj_ = new double[numberTotal]; |
3358 | delete [] solution_; |
3359 | solution_ = new double[numberTotal]; |
3360 | } |
3361 | reducedCostWork_ = dj_; |
3362 | rowReducedCost_ = dj_ + numberColumns_; |
3363 | columnActivityWork_ = solution_; |
3364 | rowActivityWork_ = solution_ + numberColumns_; |
3365 | objectiveWork_ = cost_; |
3366 | rowObjectiveWork_ = cost_ + numberColumns_; |
3367 | rowLowerWork_ = lower_ + numberColumns_; |
3368 | columnLowerWork_ = lower_; |
3369 | rowUpperWork_ = upper_ + numberColumns_; |
3370 | columnUpperWork_ = upper_; |
3371 | } |
3372 | if ((what & 4) != 0) { |
3373 | double direction = optimizationDirection_ * objectiveScale_; |
3374 | const double * obj = objective(); |
3375 | const double * rowScale = rowScale_; |
3376 | const double * columnScale = columnScale_; |
3377 | // and also scale by scale factors |
3378 | if (rowScale) { |
3379 | if (rowObjective_) { |
3380 | for (i = 0; i < numberRows_; i++) |
3381 | rowObjectiveWork_[i] = rowObjective_[i] * direction / rowScale[i]; |
3382 | } else { |
3383 | memset(rowObjectiveWork_, 0, numberRows_ * sizeof(double)); |
3384 | } |
3385 | // If scaled then do all columns later in one loop |
3386 | if (what != 63) { |
3387 | for (i = 0; i < numberColumns_; i++) { |
3388 | CoinAssert(fabs(obj[i]) < 1.0e25); |
3389 | objectiveWork_[i] = obj[i] * direction * columnScale[i]; |
3390 | } |
3391 | } |
3392 | } else { |
3393 | if (rowObjective_) { |
3394 | for (i = 0; i < numberRows_; i++) |
3395 | rowObjectiveWork_[i] = rowObjective_[i] * direction; |
3396 | } else { |
3397 | memset(rowObjectiveWork_, 0, numberRows_ * sizeof(double)); |
3398 | } |
3399 | for (i = 0; i < numberColumns_; i++) { |
3400 | CoinAssert(fabs(obj[i]) < 1.0e25); |
3401 | objectiveWork_[i] = obj[i] * direction; |
3402 | } |
3403 | } |
3404 | } |
3405 | if ((what & 1) != 0) { |
3406 | const double * rowScale = rowScale_; |
3407 | // clean up any mismatches on infinity |
3408 | // and fix any variables with tiny gaps |
3409 | double primalTolerance = dblParam_[ClpPrimalTolerance]; |
3410 | if(rowScale) { |
3411 | // If scaled then do all columns later in one loop |
3412 | if (what != 63) { |
3413 | const double * inverseScale = inverseColumnScale_; |
3414 | for (i = 0; i < numberColumns_; i++) { |
3415 | double multiplier = rhsScale_ * inverseScale[i]; |
3416 | double lowerValue = columnLower_[i]; |
3417 | double upperValue = columnUpper_[i]; |
3418 | if (lowerValue > -1.0e20) { |
3419 | columnLowerWork_[i] = lowerValue * multiplier; |
3420 | if (upperValue >= 1.0e20) { |
3421 | columnUpperWork_[i] = COIN_DBL_MAX; |
3422 | } else { |
3423 | columnUpperWork_[i] = upperValue * multiplier; |
3424 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
3425 | if (columnLowerWork_[i] >= 0.0) { |
3426 | columnUpperWork_[i] = columnLowerWork_[i]; |
3427 | } else if (columnUpperWork_[i] <= 0.0) { |
3428 | columnLowerWork_[i] = columnUpperWork_[i]; |
3429 | } else { |
3430 | columnUpperWork_[i] = 0.0; |
3431 | columnLowerWork_[i] = 0.0; |
3432 | } |
3433 | } |
3434 | } |
3435 | } else if (upperValue < 1.0e20) { |
3436 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3437 | columnUpperWork_[i] = upperValue * multiplier; |
3438 | } else { |
3439 | // free |
3440 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3441 | columnUpperWork_[i] = COIN_DBL_MAX; |
3442 | } |
3443 | } |
3444 | } |
3445 | for (i = 0; i < numberRows_; i++) { |
3446 | double multiplier = rhsScale_ * rowScale[i]; |
3447 | double lowerValue = rowLower_[i]; |
3448 | double upperValue = rowUpper_[i]; |
3449 | if (lowerValue > -1.0e20) { |
3450 | rowLowerWork_[i] = lowerValue * multiplier; |
3451 | if (upperValue >= 1.0e20) { |
3452 | rowUpperWork_[i] = COIN_DBL_MAX; |
3453 | } else { |
3454 | rowUpperWork_[i] = upperValue * multiplier; |
3455 | if (fabs(rowUpperWork_[i] - rowLowerWork_[i]) <= primalTolerance) { |
3456 | if (rowLowerWork_[i] >= 0.0) { |
3457 | rowUpperWork_[i] = rowLowerWork_[i]; |
3458 | } else if (rowUpperWork_[i] <= 0.0) { |
3459 | rowLowerWork_[i] = rowUpperWork_[i]; |
3460 | } else { |
3461 | rowUpperWork_[i] = 0.0; |
3462 | rowLowerWork_[i] = 0.0; |
3463 | } |
3464 | } |
3465 | } |
3466 | } else if (upperValue < 1.0e20) { |
3467 | rowLowerWork_[i] = -COIN_DBL_MAX; |
3468 | rowUpperWork_[i] = upperValue * multiplier; |
3469 | } else { |
3470 | // free |
3471 | rowLowerWork_[i] = -COIN_DBL_MAX; |
3472 | rowUpperWork_[i] = COIN_DBL_MAX; |
3473 | } |
3474 | } |
3475 | } else if (rhsScale_ != 1.0) { |
3476 | for (i = 0; i < numberColumns_; i++) { |
3477 | double lowerValue = columnLower_[i]; |
3478 | double upperValue = columnUpper_[i]; |
3479 | if (lowerValue > -1.0e20) { |
3480 | columnLowerWork_[i] = lowerValue * rhsScale_; |
3481 | if (upperValue >= 1.0e20) { |
3482 | columnUpperWork_[i] = COIN_DBL_MAX; |
3483 | } else { |
3484 | columnUpperWork_[i] = upperValue * rhsScale_; |
3485 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
3486 | if (columnLowerWork_[i] >= 0.0) { |
3487 | columnUpperWork_[i] = columnLowerWork_[i]; |
3488 | } else if (columnUpperWork_[i] <= 0.0) { |
3489 | columnLowerWork_[i] = columnUpperWork_[i]; |
3490 | } else { |
3491 | columnUpperWork_[i] = 0.0; |
3492 | columnLowerWork_[i] = 0.0; |
3493 | } |
3494 | } |
3495 | } |
3496 | } else if (upperValue < 1.0e20) { |
3497 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3498 | columnUpperWork_[i] = upperValue * rhsScale_; |
3499 | } else { |
3500 | // free |
3501 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3502 | columnUpperWork_[i] = COIN_DBL_MAX; |
3503 | } |
3504 | } |
3505 | for (i = 0; i < numberRows_; i++) { |
3506 | double lowerValue = rowLower_[i]; |
3507 | double upperValue = rowUpper_[i]; |
3508 | if (lowerValue > -1.0e20) { |
3509 | rowLowerWork_[i] = lowerValue * rhsScale_; |
3510 | if (upperValue >= 1.0e20) { |
3511 | rowUpperWork_[i] = COIN_DBL_MAX; |
3512 | } else { |
3513 | rowUpperWork_[i] = upperValue * rhsScale_; |
3514 | if (fabs(rowUpperWork_[i] - rowLowerWork_[i]) <= primalTolerance) { |
3515 | if (rowLowerWork_[i] >= 0.0) { |
3516 | rowUpperWork_[i] = rowLowerWork_[i]; |
3517 | } else if (rowUpperWork_[i] <= 0.0) { |
3518 | rowLowerWork_[i] = rowUpperWork_[i]; |
3519 | } else { |
3520 | rowUpperWork_[i] = 0.0; |
3521 | rowLowerWork_[i] = 0.0; |
3522 | } |
3523 | } |
3524 | } |
3525 | } else if (upperValue < 1.0e20) { |
3526 | rowLowerWork_[i] = -COIN_DBL_MAX; |
3527 | rowUpperWork_[i] = upperValue * rhsScale_; |
3528 | } else { |
3529 | // free |
3530 | rowLowerWork_[i] = -COIN_DBL_MAX; |
3531 | rowUpperWork_[i] = COIN_DBL_MAX; |
3532 | } |
3533 | } |
3534 | } else { |
3535 | for (i = 0; i < numberColumns_; i++) { |
3536 | double lowerValue = columnLower_[i]; |
3537 | double upperValue = columnUpper_[i]; |
3538 | if (lowerValue > -1.0e20) { |
3539 | columnLowerWork_[i] = lowerValue; |
3540 | if (upperValue >= 1.0e20) { |
3541 | columnUpperWork_[i] = COIN_DBL_MAX; |
3542 | } else { |
3543 | columnUpperWork_[i] = upperValue; |
3544 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
3545 | if (columnLowerWork_[i] >= 0.0) { |
3546 | columnUpperWork_[i] = columnLowerWork_[i]; |
3547 | } else if (columnUpperWork_[i] <= 0.0) { |
3548 | columnLowerWork_[i] = columnUpperWork_[i]; |
3549 | } else { |
3550 | columnUpperWork_[i] = 0.0; |
3551 | columnLowerWork_[i] = 0.0; |
3552 | } |
3553 | } |
3554 | } |
3555 | } else if (upperValue < 1.0e20) { |
3556 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3557 | columnUpperWork_[i] = upperValue; |
3558 | } else { |
3559 | // free |
3560 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3561 | columnUpperWork_[i] = COIN_DBL_MAX; |
3562 | } |
3563 | } |
3564 | for (i = 0; i < numberRows_; i++) { |
3565 | double lowerValue = rowLower_[i]; |
3566 | double upperValue = rowUpper_[i]; |
3567 | if (lowerValue > -1.0e20) { |
3568 | rowLowerWork_[i] = lowerValue; |
3569 | if (upperValue >= 1.0e20) { |
3570 | rowUpperWork_[i] = COIN_DBL_MAX; |
3571 | } else { |
3572 | rowUpperWork_[i] = upperValue; |
3573 | if (fabs(rowUpperWork_[i] - rowLowerWork_[i]) <= primalTolerance) { |
3574 | if (rowLowerWork_[i] >= 0.0) { |
3575 | rowUpperWork_[i] = rowLowerWork_[i]; |
3576 | } else if (rowUpperWork_[i] <= 0.0) { |
3577 | rowLowerWork_[i] = rowUpperWork_[i]; |
3578 | } else { |
3579 | rowUpperWork_[i] = 0.0; |
3580 | rowLowerWork_[i] = 0.0; |
3581 | } |
3582 | } |
3583 | } |
3584 | } else if (upperValue < 1.0e20) { |
3585 | rowLowerWork_[i] = -COIN_DBL_MAX; |
3586 | rowUpperWork_[i] = upperValue; |
3587 | } else { |
3588 | // free |
3589 | rowLowerWork_[i] = -COIN_DBL_MAX; |
3590 | rowUpperWork_[i] = COIN_DBL_MAX; |
3591 | } |
3592 | } |
3593 | } |
3594 | } |
3595 | if (what == 63) { |
3596 | // move information to work arrays |
3597 | double direction = optimizationDirection_; |
3598 | // direction is actually scale out not scale in |
3599 | if (direction) |
3600 | direction = 1.0 / direction; |
3601 | if (direction != 1.0) { |
3602 | // reverse all dual signs |
3603 | for (i = 0; i < numberColumns_; i++) |
3604 | reducedCost_[i] *= direction; |
3605 | for (i = 0; i < numberRows_; i++) |
3606 | dual_[i] *= direction; |
3607 | } |
3608 | for (i = 0; i < numberRows_ + numberColumns_; i++) { |
3609 | setFakeBound(i, noFake); |
3610 | } |
3611 | if (rowScale_) { |
3612 | const double * obj = objective(); |
3613 | double direction = optimizationDirection_ * objectiveScale_; |
3614 | // clean up any mismatches on infinity |
3615 | // and fix any variables with tiny gaps |
3616 | double primalTolerance = dblParam_[ClpPrimalTolerance]; |
3617 | // on entry |
3618 | const double * inverseScale = inverseColumnScale_; |
3619 | for (i = 0; i < numberColumns_; i++) { |
3620 | CoinAssert(fabs(obj[i]) < 1.0e25); |
3621 | double scaleFactor = columnScale_[i]; |
3622 | double multiplier = rhsScale_ * inverseScale[i]; |
3623 | scaleFactor *= direction; |
3624 | objectiveWork_[i] = obj[i] * scaleFactor; |
3625 | reducedCostWork_[i] = reducedCost_[i] * scaleFactor; |
3626 | double lowerValue = columnLower_[i]; |
3627 | double upperValue = columnUpper_[i]; |
3628 | if (lowerValue > -1.0e20) { |
3629 | columnLowerWork_[i] = lowerValue * multiplier; |
3630 | if (upperValue >= 1.0e20) { |
3631 | columnUpperWork_[i] = COIN_DBL_MAX; |
3632 | } else { |
3633 | columnUpperWork_[i] = upperValue * multiplier; |
3634 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
3635 | if (columnLowerWork_[i] >= 0.0) { |
3636 | columnUpperWork_[i] = columnLowerWork_[i]; |
3637 | } else if (columnUpperWork_[i] <= 0.0) { |
3638 | columnLowerWork_[i] = columnUpperWork_[i]; |
3639 | } else { |
3640 | columnUpperWork_[i] = 0.0; |
3641 | columnLowerWork_[i] = 0.0; |
3642 | } |
3643 | } |
3644 | } |
3645 | } else if (upperValue < 1.0e20) { |
3646 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3647 | columnUpperWork_[i] = upperValue * multiplier; |
3648 | } else { |
3649 | // free |
3650 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3651 | columnUpperWork_[i] = COIN_DBL_MAX; |
3652 | } |
3653 | double value = columnActivity_[i] * multiplier; |
3654 | if (fabs(value) > 1.0e20) { |
3655 | //printf("bad value of %g for column %d\n",value,i); |
3656 | setColumnStatus(i, superBasic); |
3657 | if (columnUpperWork_[i] < 0.0) { |
3658 | value = columnUpperWork_[i]; |
3659 | } else if (columnLowerWork_[i] > 0.0) { |
3660 | value = columnLowerWork_[i]; |
3661 | } else { |
3662 | value = 0.0; |
3663 | } |
3664 | } |
3665 | columnActivityWork_[i] = value; |
3666 | } |
3667 | inverseScale = inverseRowScale_; |
3668 | for (i = 0; i < numberRows_; i++) { |
3669 | dual_[i] *= inverseScale[i]; |
3670 | dual_[i] *= objectiveScale_; |
3671 | rowReducedCost_[i] = dual_[i]; |
3672 | double multiplier = rhsScale_ * rowScale_[i]; |
3673 | double value = rowActivity_[i] * multiplier; |
3674 | if (fabs(value) > 1.0e20) { |
3675 | //printf("bad value of %g for row %d\n",value,i); |
3676 | setRowStatus(i, superBasic); |
3677 | if (rowUpperWork_[i] < 0.0) { |
3678 | value = rowUpperWork_[i]; |
3679 | } else if (rowLowerWork_[i] > 0.0) { |
3680 | value = rowLowerWork_[i]; |
3681 | } else { |
3682 | value = 0.0; |
3683 | } |
3684 | } |
3685 | rowActivityWork_[i] = value; |
3686 | } |
3687 | } else if (objectiveScale_ != 1.0 || rhsScale_ != 1.0) { |
3688 | // on entry |
3689 | for (i = 0; i < numberColumns_; i++) { |
3690 | double value = columnActivity_[i]; |
3691 | value *= rhsScale_; |
3692 | if (fabs(value) > 1.0e20) { |
3693 | //printf("bad value of %g for column %d\n",value,i); |
3694 | setColumnStatus(i, superBasic); |
3695 | if (columnUpperWork_[i] < 0.0) { |
3696 | value = columnUpperWork_[i]; |
3697 | } else if (columnLowerWork_[i] > 0.0) { |
3698 | value = columnLowerWork_[i]; |
3699 | } else { |
3700 | value = 0.0; |
3701 | } |
3702 | } |
3703 | columnActivityWork_[i] = value; |
3704 | reducedCostWork_[i] = reducedCost_[i] * objectiveScale_; |
3705 | } |
3706 | for (i = 0; i < numberRows_; i++) { |
3707 | double value = rowActivity_[i]; |
3708 | value *= rhsScale_; |
3709 | if (fabs(value) > 1.0e20) { |
3710 | //printf("bad value of %g for row %d\n",value,i); |
3711 | setRowStatus(i, superBasic); |
3712 | if (rowUpperWork_[i] < 0.0) { |
3713 | value = rowUpperWork_[i]; |
3714 | } else if (rowLowerWork_[i] > 0.0) { |
3715 | value = rowLowerWork_[i]; |
3716 | } else { |
3717 | value = 0.0; |
3718 | } |
3719 | } |
3720 | rowActivityWork_[i] = value; |
3721 | dual_[i] *= objectiveScale_; |
3722 | rowReducedCost_[i] = dual_[i]; |
3723 | } |
3724 | } else { |
3725 | // on entry |
3726 | for (i = 0; i < numberColumns_; i++) { |
3727 | double value = columnActivity_[i]; |
3728 | if (fabs(value) > 1.0e20) { |
3729 | //printf("bad value of %g for column %d\n",value,i); |
3730 | setColumnStatus(i, superBasic); |
3731 | if (columnUpperWork_[i] < 0.0) { |
3732 | value = columnUpperWork_[i]; |
3733 | } else if (columnLowerWork_[i] > 0.0) { |
3734 | value = columnLowerWork_[i]; |
3735 | } else { |
3736 | value = 0.0; |
3737 | } |
3738 | } |
3739 | columnActivityWork_[i] = value; |
3740 | reducedCostWork_[i] = reducedCost_[i]; |
3741 | } |
3742 | for (i = 0; i < numberRows_; i++) { |
3743 | double value = rowActivity_[i]; |
3744 | if (fabs(value) > 1.0e20) { |
3745 | //printf("bad value of %g for row %d\n",value,i); |
3746 | setRowStatus(i, superBasic); |
3747 | if (rowUpperWork_[i] < 0.0) { |
3748 | value = rowUpperWork_[i]; |
3749 | } else if (rowLowerWork_[i] > 0.0) { |
3750 | value = rowLowerWork_[i]; |
3751 | } else { |
3752 | value = 0.0; |
3753 | } |
3754 | } |
3755 | rowActivityWork_[i] = value; |
3756 | rowReducedCost_[i] = dual_[i]; |
3757 | } |
3758 | } |
3759 | } |
3760 | |
3761 | if (what == 63 && doSanityCheck) { |
3762 | // check rim of problem okay |
3763 | if (!sanityCheck()) |
3764 | goodMatrix = false; |
3765 | } |
3766 | // we need to treat matrix as if each element by rowScaleIn and columnScaleout?? |
3767 | // maybe we need to move scales to SimplexModel for factorization? |
3768 | if ((what == 63 && !pivotVariable_) || (newArrays && !keepPivots)) { |
3769 | delete [] pivotVariable_; |
3770 | pivotVariable_ = new int[numberRows2]; |
3771 | for (int i = 0; i < numberRows2; i++) |
3772 | pivotVariable_[i] = -1; |
3773 | } else if (what == 63 && !keepPivots) { |
3774 | // just reset |
3775 | for (int i = 0; i < numberRows2; i++) |
3776 | pivotVariable_[i] = -1; |
3777 | } else if (what == 63) { |
3778 | // check pivots |
3779 | for (int i = 0; i < numberRows2; i++) { |
3780 | int iSequence = pivotVariable_[i]; |
3781 | if (iSequence < numberRows_ + numberColumns_ && |
3782 | getStatus(iSequence) != basic) { |
3783 | keepPivots = false; |
3784 | break; |
3785 | } |
3786 | } |
3787 | if (!keepPivots) { |
3788 | // reset |
3789 | for (int i = 0; i < numberRows2; i++) |
3790 | pivotVariable_[i] = -1; |
3791 | } else { |
3792 | // clean |
3793 | for (int i = 0; i < numberColumns_ + numberRows_; i++) { |
3794 | Status status = getStatus(i); |
3795 | if (status != basic) { |
3796 | if (upper_[i] == lower_[i]) { |
3797 | setStatus(i, isFixed); |
3798 | solution_[i] = lower_[i]; |
3799 | } else if (status == atLowerBound) { |
3800 | if (lower_[i] > -1.0e20) { |
3801 | solution_[i] = lower_[i]; |
3802 | } else { |
3803 | //printf("seq %d at lower of %g\n",i,lower_[i]); |
3804 | if (upper_[i] < 1.0e20) { |
3805 | solution_[i] = upper_[i]; |
3806 | setStatus(i, atUpperBound); |
3807 | } else { |
3808 | setStatus(i, isFree); |
3809 | } |
3810 | } |
3811 | } else if (status == atUpperBound) { |
3812 | if (upper_[i] < 1.0e20) { |
3813 | solution_[i] = upper_[i]; |
3814 | } else { |
3815 | //printf("seq %d at upper of %g\n",i,upper_[i]); |
3816 | if (lower_[i] > -1.0e20) { |
3817 | solution_[i] = lower_[i]; |
3818 | setStatus(i, atLowerBound); |
3819 | } else { |
3820 | setStatus(i, isFree); |
3821 | } |
3822 | } |
3823 | } else if (status == isFixed && upper_[i] > lower_[i]) { |
3824 | // was fixed - not now |
3825 | if (solution_[i] <= lower_[i]) { |
3826 | setStatus(i, atLowerBound); |
3827 | } else if (solution_[i] >= upper_[i]) { |
3828 | setStatus(i, atUpperBound); |
3829 | } else { |
3830 | setStatus(i, superBasic); |
3831 | } |
3832 | } |
3833 | } |
3834 | } |
3835 | } |
3836 | } |
3837 | |
3838 | if (what == 63) { |
3839 | if (newArrays) { |
3840 | // get some arrays |
3841 | int iRow, iColumn; |
3842 | // these are "indexed" arrays so we always know where nonzeros are |
3843 | /********************************************************** |
3844 | rowArray_[3] is long enough for rows+columns |
3845 | rowArray_[1] is long enough for max(rows,columns) |
3846 | *********************************************************/ |
3847 | for (iRow = 0; iRow < 4; iRow++) { |
3848 | int length = numberRows2 + factorization_->maximumPivots(); |
3849 | if (iRow == 3 || objective_->type() > 1) |
3850 | length += numberColumns_; |
3851 | else if (iRow == 1) |
3852 | length = CoinMax(length, numberColumns_); |
3853 | if ((specialOptions_ & 65536) == 0 || !rowArray_[iRow]) { |
3854 | delete rowArray_[iRow]; |
3855 | rowArray_[iRow] = new CoinIndexedVector(); |
3856 | } |
3857 | rowArray_[iRow]->reserve(length); |
3858 | } |
3859 | |
3860 | for (iColumn = 0; iColumn < 2; iColumn++) { |
3861 | if ((specialOptions_ & 65536) == 0 || !columnArray_[iColumn]) { |
3862 | delete columnArray_[iColumn]; |
3863 | columnArray_[iColumn] = new CoinIndexedVector(); |
3864 | } |
3865 | if (!iColumn) |
3866 | columnArray_[iColumn]->reserve(numberColumns_); |
3867 | else |
3868 | columnArray_[iColumn]->reserve(CoinMax(numberRows2, numberColumns_)); |
3869 | } |
3870 | } else { |
3871 | int iRow, iColumn; |
3872 | for (iRow = 0; iRow < 4; iRow++) { |
3873 | int length = numberRows2 + factorization_->maximumPivots(); |
3874 | if (iRow == 3 || objective_->type() > 1) |
3875 | length += numberColumns_; |
3876 | if(rowArray_[iRow]->capacity() >= length) { |
3877 | rowArray_[iRow]->clear(); |
3878 | } else { |
3879 | // model size or maxinv changed |
3880 | rowArray_[iRow]->reserve(length); |
3881 | } |
3882 | #ifndef NDEBUG |
3883 | rowArray_[iRow]->checkClear(); |
3884 | #endif |
3885 | } |
3886 | |
3887 | for (iColumn = 0; iColumn < 2; iColumn++) { |
3888 | int length = numberColumns_; |
3889 | if (iColumn) |
3890 | length = CoinMax(numberRows2, numberColumns_); |
3891 | if(columnArray_[iColumn]->capacity() >= length) { |
3892 | columnArray_[iColumn]->clear(); |
3893 | } else { |
3894 | // model size or maxinv changed |
3895 | columnArray_[iColumn]->reserve(length); |
3896 | } |
3897 | #ifndef NDEBUG |
3898 | columnArray_[iColumn]->checkClear(); |
3899 | #endif |
3900 | } |
3901 | } |
3902 | } |
3903 | if (problemStatus_ == 10) { |
3904 | problemStatus_ = -1; |
3905 | handler_->setLogLevel(saveLevel); // switch back messages |
3906 | } |
3907 | if ((what & 5) != 0) |
3908 | matrix_->generalExpanded(this, 9, what); // update costs and bounds if necessary |
3909 | if (goodMatrix && (specialOptions_ & 65536) != 0) { |
3910 | int save = maximumColumns_ + maximumRows_; |
3911 | CoinMemcpyN(cost_, numberTotal, cost_ + save); |
3912 | CoinMemcpyN(lower_, numberTotal, lower_ + save); |
3913 | CoinMemcpyN(upper_, numberTotal, upper_ + save); |
3914 | CoinMemcpyN(dj_, numberTotal, dj_ + save); |
3915 | CoinMemcpyN(solution_, numberTotal, solution_ + save); |
3916 | if (rowScale_ && !savedRowScale_) { |
3917 | double * temp; |
3918 | temp = new double [4*maximumRows_]; |
3919 | CoinFillN(temp, 4 * maximumRows_, 1.0); |
3920 | CoinMemcpyN(rowScale_, numberRows2, temp); |
3921 | CoinMemcpyN(rowScale_ + numberRows2, numberRows2, temp + maximumRows_); |
3922 | CoinMemcpyN(rowScale_, numberRows2, temp + 2 * maximumRows_); |
3923 | CoinMemcpyN(rowScale_ + numberRows2, numberRows2, temp + 3 * maximumRows_); |
3924 | delete [] rowScale_; |
3925 | savedRowScale_ = temp; |
3926 | rowScale_ = savedRowScale_; |
3927 | inverseRowScale_ = savedRowScale_ + maximumInternalRows_; |
3928 | temp = new double [4*maximumColumns_]; |
3929 | CoinFillN(temp, 4 * maximumColumns_, 1.0); |
3930 | CoinMemcpyN(columnScale_, numberColumns_, temp); |
3931 | CoinMemcpyN(columnScale_ + numberColumns_, numberColumns_, temp + maximumColumns_); |
3932 | CoinMemcpyN(columnScale_, numberColumns_, temp + 2 * maximumColumns_); |
3933 | CoinMemcpyN(columnScale_ + numberColumns_, numberColumns_, temp + 3 * maximumColumns_); |
3934 | delete [] columnScale_; |
3935 | savedColumnScale_ = temp; |
3936 | columnScale_ = savedColumnScale_; |
3937 | inverseColumnScale_ = savedColumnScale_ + maximumInternalColumns_; |
3938 | } |
3939 | } |
3940 | return goodMatrix; |
3941 | } |
3942 | // Does rows and columns |
3943 | void |
3944 | ClpSimplex::createRim1(bool initial) |
3945 | { |
3946 | int i; |
3947 | int numberRows2 = numberRows_ + numberExtraRows_; |
3948 | int numberTotal = numberRows2 + numberColumns_; |
3949 | if ((specialOptions_ & 65536) != 0 && true) { |
3950 | assert (!initial); |
3951 | int save = maximumColumns_ + maximumRows_; |
3952 | CoinMemcpyN(lower_ + save, numberTotal, lower_); |
3953 | CoinMemcpyN(upper_ + save, numberTotal, upper_); |
3954 | return; |
3955 | } |
3956 | const double * rowScale = rowScale_; |
3957 | // clean up any mismatches on infinity |
3958 | // and fix any variables with tiny gaps |
3959 | double primalTolerance = dblParam_[ClpPrimalTolerance]; |
3960 | if(rowScale) { |
3961 | // If scaled then do all columns later in one loop |
3962 | if (!initial) { |
3963 | const double * inverseScale = inverseColumnScale_; |
3964 | for (i = 0; i < numberColumns_; i++) { |
3965 | double multiplier = rhsScale_ * inverseScale[i]; |
3966 | double lowerValue = columnLower_[i]; |
3967 | double upperValue = columnUpper_[i]; |
3968 | if (lowerValue > -1.0e20) { |
3969 | columnLowerWork_[i] = lowerValue * multiplier; |
3970 | if (upperValue >= 1.0e20) { |
3971 | columnUpperWork_[i] = COIN_DBL_MAX; |
3972 | } else { |
3973 | columnUpperWork_[i] = upperValue * multiplier; |
3974 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
3975 | if (columnLowerWork_[i] >= 0.0) { |
3976 | columnUpperWork_[i] = columnLowerWork_[i]; |
3977 | } else if (columnUpperWork_[i] <= 0.0) { |
3978 | columnLowerWork_[i] = columnUpperWork_[i]; |
3979 | } else { |
3980 | columnUpperWork_[i] = 0.0; |
3981 | columnLowerWork_[i] = 0.0; |
3982 | } |
3983 | } |
3984 | } |
3985 | } else if (upperValue < 1.0e20) { |
3986 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3987 | columnUpperWork_[i] = upperValue * multiplier; |
3988 | } else { |
3989 | // free |
3990 | columnLowerWork_[i] = -COIN_DBL_MAX; |
3991 | columnUpperWork_[i] = COIN_DBL_MAX; |
3992 | } |
3993 | } |
3994 | } |
3995 | for (i = 0; i < numberRows_; i++) { |
3996 | double multiplier = rhsScale_ * rowScale[i]; |
3997 | double lowerValue = rowLower_[i]; |
3998 | double upperValue = rowUpper_[i]; |
3999 | if (lowerValue > -1.0e20) { |
4000 | rowLowerWork_[i] = lowerValue * multiplier; |
4001 | if (upperValue >= 1.0e20) { |
4002 | rowUpperWork_[i] = COIN_DBL_MAX; |
4003 | } else { |
4004 | rowUpperWork_[i] = upperValue * multiplier; |
4005 | if (fabs(rowUpperWork_[i] - rowLowerWork_[i]) <= primalTolerance) { |
4006 | if (rowLowerWork_[i] >= 0.0) { |
4007 | rowUpperWork_[i] = rowLowerWork_[i]; |
4008 | } else if (rowUpperWork_[i] <= 0.0) { |
4009 | rowLowerWork_[i] = rowUpperWork_[i]; |
4010 | } else { |
4011 | rowUpperWork_[i] = 0.0; |
4012 | rowLowerWork_[i] = 0.0; |
4013 | } |
4014 | } |
4015 | } |
4016 | } else if (upperValue < 1.0e20) { |
4017 | rowLowerWork_[i] = -COIN_DBL_MAX; |
4018 | rowUpperWork_[i] = upperValue * multiplier; |
4019 | } else { |
4020 | // free |
4021 | rowLowerWork_[i] = -COIN_DBL_MAX; |
4022 | rowUpperWork_[i] = COIN_DBL_MAX; |
4023 | } |
4024 | } |
4025 | } else if (rhsScale_ != 1.0) { |
4026 | for (i = 0; i < numberColumns_; i++) { |
4027 | double lowerValue = columnLower_[i]; |
4028 | double upperValue = columnUpper_[i]; |
4029 | if (lowerValue > -1.0e20) { |
4030 | columnLowerWork_[i] = lowerValue * rhsScale_; |
4031 | if (upperValue >= 1.0e20) { |
4032 | columnUpperWork_[i] = COIN_DBL_MAX; |
4033 | } else { |
4034 | columnUpperWork_[i] = upperValue * rhsScale_; |
4035 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
4036 | if (columnLowerWork_[i] >= 0.0) { |
4037 | columnUpperWork_[i] = columnLowerWork_[i]; |
4038 | } else if (columnUpperWork_[i] <= 0.0) { |
4039 | columnLowerWork_[i] = columnUpperWork_[i]; |
4040 | } else { |
4041 | columnUpperWork_[i] = 0.0; |
4042 | columnLowerWork_[i] = 0.0; |
4043 | } |
4044 | } |
4045 | } |
4046 | } else if (upperValue < 1.0e20) { |
4047 | columnLowerWork_[i] = -COIN_DBL_MAX; |
4048 | columnUpperWork_[i] = upperValue * rhsScale_; |
4049 | } else { |
4050 | // free |
4051 | columnLowerWork_[i] = -COIN_DBL_MAX; |
4052 | columnUpperWork_[i] = COIN_DBL_MAX; |
4053 | } |
4054 | } |
4055 | for (i = 0; i < numberRows_; i++) { |
4056 | double lowerValue = rowLower_[i]; |
4057 | double upperValue = rowUpper_[i]; |
4058 | if (lowerValue > -1.0e20) { |
4059 | rowLowerWork_[i] = lowerValue * rhsScale_; |
4060 | if (upperValue >= 1.0e20) { |
4061 | rowUpperWork_[i] = COIN_DBL_MAX; |
4062 | } else { |
4063 | rowUpperWork_[i] = upperValue * rhsScale_; |
4064 | if (fabs(rowUpperWork_[i] - rowLowerWork_[i]) <= primalTolerance) { |
4065 | if (rowLowerWork_[i] >= 0.0) { |
4066 | rowUpperWork_[i] = rowLowerWork_[i]; |
4067 | } else if (rowUpperWork_[i] <= 0.0) { |
4068 | rowLowerWork_[i] = rowUpperWork_[i]; |
4069 | } else { |
4070 | rowUpperWork_[i] = 0.0; |
4071 | rowLowerWork_[i] = 0.0; |
4072 | } |
4073 | } |
4074 | } |
4075 | } else if (upperValue < 1.0e20) { |
4076 | rowLowerWork_[i] = -COIN_DBL_MAX; |
4077 | rowUpperWork_[i] = upperValue * rhsScale_; |
4078 | } else { |
4079 | // free |
4080 | rowLowerWork_[i] = -COIN_DBL_MAX; |
4081 | rowUpperWork_[i] = COIN_DBL_MAX; |
4082 | } |
4083 | } |
4084 | } else { |
4085 | for (i = 0; i < numberColumns_; i++) { |
4086 | double lowerValue = columnLower_[i]; |
4087 | double upperValue = columnUpper_[i]; |
4088 | if (lowerValue > -1.0e20) { |
4089 | columnLowerWork_[i] = lowerValue; |
4090 | if (upperValue >= 1.0e20) { |
4091 | columnUpperWork_[i] = COIN_DBL_MAX; |
4092 | } else { |
4093 | columnUpperWork_[i] = upperValue; |
4094 | if (fabs(columnUpperWork_[i] - columnLowerWork_[i]) <= primalTolerance) { |
4095 | if (columnLowerWork_[i] >= 0.0) { |
4096 | columnUpperWork_[i] = columnLowerWork_[i]; |
4097 | } else if (columnUpperWork_[i] <= 0.0) { |
4098 | columnLowerWork_[i] = columnUpperWork_[i]; |
4099 | } else { |
4100 | columnUpperWork_[i] = 0.0; |
4101 | columnLowerWork_[i] = 0.0; |
4102 | } |
4103 | } |
4104 | } |
4105 | } else if (upperValue < 1.0e20) { |
4106 | columnLowerWork_[i] = -COIN_DBL_MAX; |
4107 | columnUpperWork_[i] = upperValue; |
4108 | } else { |
4109 | // free |
4110 | columnLowerWork_[i] = -COIN_DBL_MAX; |
4111 | columnUpperWork_[i] = COIN_DBL_MAX; |
4112 | } |
4113 | } |
4114 | for (i = 0; i < numberRows_; i++) { |
4115 | double lowerValue = rowLower_[i]; |
4116 | double upperValue = rowUpper_[i]; |
4117 | if (lowerValue > -1.0e20) { |
4118 | rowLowerWork_[i] = lowerValue; |
4119 | if (upperValue >= 1.0e20) { |
4120 | rowUpperWork_[i] = COIN_DBL_MAX; |
4121 | } else { |
4122 | rowUpperWork_[i] = upperValue; |
4123 | if (fabs(rowUpperWork_[i] - rowLowerWork_[i]) <= primalTolerance) { |
4124 | if (rowLowerWork_[i] >= 0.0) { |
4125 | rowUpperWork_[i] = rowLowerWork_[i]; |
4126 | } else if (rowUpperWork_[i] <= 0.0) { |
4127 | rowLowerWork_[i] = rowUpperWork_[i]; |
4128 | } else { |
4129 | rowUpperWork_[i] = 0.0; |
4130 | rowLowerWork_[i] = 0.0; |
4131 | } |
4132 | } |
4133 | } |
4134 | } else if (upperValue < 1.0e20) { |
4135 | rowLowerWork_[i] = -COIN_DBL_MAX; |
4136 | rowUpperWork_[i] = upperValue; |
4137 | } else { |
4138 | // free |
4139 | rowLowerWork_[i] = -COIN_DBL_MAX; |
4140 | rowUpperWork_[i] = COIN_DBL_MAX; |
4141 | } |
4142 | } |
4143 | } |
4144 | #ifndef NDEBUG |
4145 | if ((specialOptions_ & 65536) != 0 && false) { |
4146 | assert (!initial); |
4147 | int save = maximumColumns_ + maximumRows_; |
4148 | for (int i = 0; i < numberTotal; i++) { |
4149 | assert (fabs(lower_[i] - lower_[i+save]) < 1.0e-5); |
4150 | assert (fabs(upper_[i] - upper_[i+save]) < 1.0e-5); |
4151 | } |
4152 | } |
4153 | #endif |
4154 | } |
4155 | // Does objective |
4156 | void |
4157 | ClpSimplex::createRim4(bool initial) |
4158 | { |
4159 | int i; |
4160 | int numberRows2 = numberRows_ + numberExtraRows_; |
4161 | int numberTotal = numberRows2 + numberColumns_; |
4162 | if ((specialOptions_ & 65536) != 0 && true) { |
4163 | assert (!initial); |
4164 | int save = maximumColumns_ + maximumRows_; |
4165 | CoinMemcpyN(cost_ + save, numberTotal, cost_); |
4166 | return; |
4167 | } |
4168 | double direction = optimizationDirection_ * objectiveScale_; |
4169 | const double * obj = objective(); |
4170 | const double * rowScale = rowScale_; |
4171 | const double * columnScale = columnScale_; |
4172 | // and also scale by scale factors |
4173 | if (rowScale) { |
4174 | if (rowObjective_) { |
4175 | for (i = 0; i < numberRows_; i++) |
4176 | rowObjectiveWork_[i] = rowObjective_[i] * direction / rowScale[i]; |
4177 | } else { |
4178 | memset(rowObjectiveWork_, 0, numberRows_ * sizeof(double)); |
4179 | } |
4180 | // If scaled then do all columns later in one loop |
4181 | if (!initial) { |
4182 | for (i = 0; i < numberColumns_; i++) { |
4183 | CoinAssert(fabs(obj[i]) < 1.0e25); |
4184 | objectiveWork_[i] = obj[i] * direction * columnScale[i]; |
4185 | } |
4186 | } |
4187 | } else { |
4188 | if (rowObjective_) { |
4189 | for (i = 0; i < numberRows_; i++) |
4190 | rowObjectiveWork_[i] = rowObjective_[i] * direction; |
4191 | } else { |
4192 | memset(rowObjectiveWork_, 0, numberRows_ * sizeof(double)); |
4193 | } |
4194 | for (i = 0; i < numberColumns_; i++) { |
4195 | CoinAssert(fabs(obj[i]) < 1.0e25); |
4196 | objectiveWork_[i] = obj[i] * direction; |
4197 | } |
4198 | } |
4199 | } |
4200 | // Does rows and columns and objective |
4201 | void |
4202 | ClpSimplex::createRim5(bool initial) |
4203 | { |
4204 | createRim4(initial); |
4205 | createRim1(initial); |
4206 | } |
4207 | void |
4208 | ClpSimplex::deleteRim(int getRidOfFactorizationData) |
4209 | { |
4210 | // Just possible empty problem |
4211 | int numberRows = numberRows_; |
4212 | int numberColumns = numberColumns_; |
4213 | if (!numberRows || !numberColumns) { |
4214 | numberRows = 0; |
4215 | if (objective_->type() < 2) |
4216 | numberColumns = 0; |
4217 | } |
4218 | int i; |
4219 | if (problemStatus_ != 1 && problemStatus_ != 2) { |
4220 | delete [] ray_; |
4221 | ray_ = NULL; |
4222 | } |
4223 | // set upperOut_ to furthest away from bound so can use in dual for dualBound_ |
4224 | upperOut_ = 1.0; |
4225 | #if 0 |
4226 | { |
4227 | int nBad = 0; |
4228 | for (i = 0; i < numberColumns; i++) { |
4229 | if (lower_[i] == upper_[i] && getColumnStatus(i) == basic) |
4230 | nBad++; |
4231 | } |
4232 | if (nBad) |
4233 | printf("yy %d basic fixed\n" , nBad); |
4234 | } |
4235 | #endif |
4236 | // ray may be null if in branch and bound |
4237 | if (rowScale_) { |
4238 | // Collect infeasibilities |
4239 | int numberPrimalScaled = 0; |
4240 | int numberPrimalUnscaled = 0; |
4241 | int numberDualScaled = 0; |
4242 | int numberDualUnscaled = 0; |
4243 | double scaleC = 1.0 / objectiveScale_; |
4244 | double scaleR = 1.0 / rhsScale_; |
4245 | const double * inverseScale = inverseColumnScale_; |
4246 | for (i = 0; i < numberColumns; i++) { |
4247 | double scaleFactor = columnScale_[i]; |
4248 | double valueScaled = columnActivityWork_[i]; |
4249 | double lowerScaled = columnLowerWork_[i]; |
4250 | double upperScaled = columnUpperWork_[i]; |
4251 | if (lowerScaled > -1.0e20 || upperScaled < 1.0e20) { |
4252 | if (valueScaled < lowerScaled - primalTolerance_ || |
4253 | valueScaled > upperScaled + primalTolerance_) |
4254 | numberPrimalScaled++; |
4255 | else |
4256 | upperOut_ = CoinMax(upperOut_, CoinMin(valueScaled - lowerScaled, upperScaled - valueScaled)); |
4257 | } |
4258 | columnActivity_[i] = valueScaled * scaleFactor * scaleR; |
4259 | double value = columnActivity_[i]; |
4260 | if (value < columnLower_[i] - primalTolerance_) |
4261 | numberPrimalUnscaled++; |
4262 | else if (value > columnUpper_[i] + primalTolerance_) |
4263 | numberPrimalUnscaled++; |
4264 | double valueScaledDual = reducedCostWork_[i]; |
4265 | if (valueScaled > columnLowerWork_[i] + primalTolerance_ && valueScaledDual > dualTolerance_) |
4266 | numberDualScaled++; |
4267 | if (valueScaled < columnUpperWork_[i] - primalTolerance_ && valueScaledDual < -dualTolerance_) |
4268 | numberDualScaled++; |
4269 | reducedCost_[i] = (valueScaledDual * scaleC) * inverseScale[i]; |
4270 | double valueDual = reducedCost_[i]; |
4271 | if (value > columnLower_[i] + primalTolerance_ && valueDual > dualTolerance_) |
4272 | numberDualUnscaled++; |
4273 | if (value < columnUpper_[i] - primalTolerance_ && valueDual < -dualTolerance_) |
4274 | numberDualUnscaled++; |
4275 | } |
4276 | inverseScale = inverseRowScale_; |
4277 | for (i = 0; i < numberRows; i++) { |
4278 | double scaleFactor = rowScale_[i]; |
4279 | double valueScaled = rowActivityWork_[i]; |
4280 | double lowerScaled = rowLowerWork_[i]; |
4281 | double upperScaled = rowUpperWork_[i]; |
4282 | if (lowerScaled > -1.0e20 || upperScaled < 1.0e20) { |
4283 | if (valueScaled < lowerScaled - primalTolerance_ || |
4284 | valueScaled > upperScaled + primalTolerance_) |
4285 | numberPrimalScaled++; |
4286 | else |
4287 | upperOut_ = CoinMax(upperOut_, CoinMin(valueScaled - lowerScaled, upperScaled - valueScaled)); |
4288 | } |
4289 | rowActivity_[i] = (valueScaled * scaleR) * inverseScale[i]; |
4290 | double value = rowActivity_[i]; |
4291 | if (value < rowLower_[i] - primalTolerance_) |
4292 | numberPrimalUnscaled++; |
4293 | else if (value > rowUpper_[i] + primalTolerance_) |
4294 | numberPrimalUnscaled++; |
4295 | double valueScaledDual = dual_[i] + rowObjectiveWork_[i]; |
4296 | if (valueScaled > rowLowerWork_[i] + primalTolerance_ && valueScaledDual > dualTolerance_) |
4297 | numberDualScaled++; |
4298 | if (valueScaled < rowUpperWork_[i] - primalTolerance_ && valueScaledDual < -dualTolerance_) |
4299 | numberDualScaled++; |
4300 | dual_[i] *= scaleFactor * scaleC; |
4301 | double valueDual = dual_[i]; |
4302 | if (rowObjective_) |
4303 | valueDual += rowObjective_[i]; |
4304 | if (value > rowLower_[i] + primalTolerance_ && valueDual > dualTolerance_) |
4305 | numberDualUnscaled++; |
4306 | if (value < rowUpper_[i] - primalTolerance_ && valueDual < -dualTolerance_) |
4307 | numberDualUnscaled++; |
4308 | } |
4309 | if (!problemStatus_ && !secondaryStatus_) { |
4310 | // See if we need to set secondary status |
4311 | if (numberPrimalUnscaled) { |
4312 | if (numberDualUnscaled) |
4313 | secondaryStatus_ = 4; |
4314 | else |
4315 | secondaryStatus_ = 2; |
4316 | } else { |
4317 | if (numberDualUnscaled) |
4318 | secondaryStatus_ = 3; |
4319 | } |
4320 | } |
4321 | if (problemStatus_ == 2) { |
4322 | for (i = 0; i < numberColumns; i++) { |
4323 | ray_[i] *= columnScale_[i]; |
4324 | } |
4325 | } else if (problemStatus_ == 1 && ray_) { |
4326 | for (i = 0; i < numberRows; i++) { |
4327 | ray_[i] *= rowScale_[i]; |
4328 | } |
4329 | } |
4330 | } else if (rhsScale_ != 1.0 || objectiveScale_ != 1.0) { |
4331 | // Collect infeasibilities |
4332 | int numberPrimalScaled = 0; |
4333 | int numberPrimalUnscaled = 0; |
4334 | int numberDualScaled = 0; |
4335 | int numberDualUnscaled = 0; |
4336 | double scaleC = 1.0 / objectiveScale_; |
4337 | double scaleR = 1.0 / rhsScale_; |
4338 | for (i = 0; i < numberColumns; i++) { |
4339 | double valueScaled = columnActivityWork_[i]; |
4340 | double lowerScaled = columnLowerWork_[i]; |
4341 | double upperScaled = columnUpperWork_[i]; |
4342 | if (lowerScaled > -1.0e20 || upperScaled < 1.0e20) { |
4343 | if (valueScaled < lowerScaled - primalTolerance_ || |
4344 | valueScaled > upperScaled + primalTolerance_) |
4345 | numberPrimalScaled++; |
4346 | else |
4347 | upperOut_ = CoinMax(upperOut_, CoinMin(valueScaled - lowerScaled, upperScaled - valueScaled)); |
4348 | } |
4349 | columnActivity_[i] = valueScaled * scaleR; |
4350 | double value = columnActivity_[i]; |
4351 | if (value < columnLower_[i] - primalTolerance_) |
4352 | numberPrimalUnscaled++; |
4353 | else if (value > columnUpper_[i] + primalTolerance_) |
4354 | numberPrimalUnscaled++; |
4355 | double valueScaledDual = reducedCostWork_[i]; |
4356 | if (valueScaled > columnLowerWork_[i] + primalTolerance_ && valueScaledDual > dualTolerance_) |
4357 | numberDualScaled++; |
4358 | if (valueScaled < columnUpperWork_[i] - primalTolerance_ && valueScaledDual < -dualTolerance_) |
4359 | numberDualScaled++; |
4360 | reducedCost_[i] = valueScaledDual * scaleC; |
4361 | double valueDual = reducedCost_[i]; |
4362 | if (value > columnLower_[i] + primalTolerance_ && valueDual > dualTolerance_) |
4363 | numberDualUnscaled++; |
4364 | if (value < columnUpper_[i] - primalTolerance_ && valueDual < -dualTolerance_) |
4365 | numberDualUnscaled++; |
4366 | } |
4367 | for (i = 0; i < numberRows; i++) { |
4368 | double valueScaled = rowActivityWork_[i]; |
4369 | double lowerScaled = rowLowerWork_[i]; |
4370 | double upperScaled = rowUpperWork_[i]; |
4371 | if (lowerScaled > -1.0e20 || upperScaled < 1.0e20) { |
4372 | if (valueScaled < lowerScaled - primalTolerance_ || |
4373 | valueScaled > upperScaled + primalTolerance_) |
4374 | numberPrimalScaled++; |
4375 | else |
4376 | upperOut_ = CoinMax(upperOut_, CoinMin(valueScaled - lowerScaled, upperScaled - valueScaled)); |
4377 | } |
4378 | rowActivity_[i] = valueScaled * scaleR; |
4379 | double value = rowActivity_[i]; |
4380 | if (value < rowLower_[i] - primalTolerance_) |
4381 | numberPrimalUnscaled++; |
4382 | else if (value > rowUpper_[i] + primalTolerance_) |
4383 | numberPrimalUnscaled++; |
4384 | double valueScaledDual = dual_[i] + rowObjectiveWork_[i]; |
4385 | if (valueScaled > rowLowerWork_[i] + primalTolerance_ && valueScaledDual > dualTolerance_) |
4386 | numberDualScaled++; |
4387 | if (valueScaled < rowUpperWork_[i] - primalTolerance_ && valueScaledDual < -dualTolerance_) |
4388 | numberDualScaled++; |
4389 | dual_[i] *= scaleC; |
4390 | double valueDual = dual_[i]; |
4391 | if (rowObjective_) |
4392 | valueDual += rowObjective_[i]; |
4393 | if (value > rowLower_[i] + primalTolerance_ && valueDual > dualTolerance_) |
4394 | numberDualUnscaled++; |
4395 | if (value < rowUpper_[i] - primalTolerance_ && valueDual < -dualTolerance_) |
4396 | numberDualUnscaled++; |
4397 | } |
4398 | if (!problemStatus_ && !secondaryStatus_) { |
4399 | // See if we need to set secondary status |
4400 | if (numberPrimalUnscaled) { |
4401 | if (numberDualUnscaled) |
4402 | secondaryStatus_ = 4; |
4403 | else |
4404 | secondaryStatus_ = 2; |
4405 | } else { |
4406 | if (numberDualUnscaled) |
4407 | secondaryStatus_ = 3; |
4408 | } |
4409 | } |
4410 | } else { |
4411 | if (columnActivityWork_) { |
4412 | for (i = 0; i < numberColumns; i++) { |
4413 | double value = columnActivityWork_[i]; |
4414 | double lower = columnLowerWork_[i]; |
4415 | double upper = columnUpperWork_[i]; |
4416 | if (lower > -1.0e20 || upper < 1.0e20) { |
4417 | if (value > lower && value < upper) |
4418 | upperOut_ = CoinMax(upperOut_, CoinMin(value - lower, upper - value)); |
4419 | } |
4420 | columnActivity_[i] = columnActivityWork_[i]; |
4421 | reducedCost_[i] = reducedCostWork_[i]; |
4422 | } |
4423 | for (i = 0; i < numberRows; i++) { |
4424 | double value = rowActivityWork_[i]; |
4425 | double lower = rowLowerWork_[i]; |
4426 | double upper = rowUpperWork_[i]; |
4427 | if (lower > -1.0e20 || upper < 1.0e20) { |
4428 | if (value > lower && value < upper) |
4429 | upperOut_ = CoinMax(upperOut_, CoinMin(value - lower, upper - value)); |
4430 | } |
4431 | rowActivity_[i] = rowActivityWork_[i]; |
4432 | } |
4433 | } |
4434 | } |
4435 | // switch off scalefactor if auto |
4436 | if (automaticScale_) { |
4437 | rhsScale_ = 1.0; |
4438 | objectiveScale_ = 1.0; |
4439 | } |
4440 | if (optimizationDirection_ != 1.0) { |
4441 | // and modify all dual signs |
4442 | for (i = 0; i < numberColumns; i++) |
4443 | reducedCost_[i] *= optimizationDirection_; |
4444 | for (i = 0; i < numberRows; i++) |
4445 | dual_[i] *= optimizationDirection_; |
4446 | } |
4447 | // scaling may have been turned off |
4448 | scalingFlag_ = abs(scalingFlag_); |
4449 | if(getRidOfFactorizationData > 0) { |
4450 | gutsOfDelete(getRidOfFactorizationData + 1); |
4451 | } else { |
4452 | // at least get rid of nonLinearCost_ |
4453 | delete nonLinearCost_; |
4454 | nonLinearCost_ = NULL; |
4455 | } |
4456 | if (!rowObjective_ && problemStatus_ == 0 && objective_->type() == 1 && |
4457 | numberRows && numberColumns) { |
4458 | // Redo objective value |
4459 | double objectiveValue = 0.0; |
4460 | const double * cost = objective(); |
4461 | for (int i = 0; i < numberColumns; i++) { |
4462 | double value = columnActivity_[i]; |
4463 | objectiveValue += value * cost[i]; |
4464 | } |
4465 | //if (fabs(objectiveValue_ -objectiveValue*optimizationDirection())>1.0e-5) |
4466 | //printf("old obj %g new %g\n",objectiveValue_, objectiveValue*optimizationDirection()); |
4467 | objectiveValue_ = objectiveValue * optimizationDirection(); |
4468 | } |
4469 | // get rid of data |
4470 | matrix_->generalExpanded(this, 13, scalingFlag_); |
4471 | } |
4472 | void |
4473 | ClpSimplex::setDualBound(double value) |
4474 | { |
4475 | if (value > 0.0) |
4476 | dualBound_ = value; |
4477 | } |
4478 | void |
4479 | ClpSimplex::setInfeasibilityCost(double value) |
4480 | { |
4481 | if (value > 0.0) |
4482 | infeasibilityCost_ = value; |
4483 | } |
4484 | void ClpSimplex::setNumberRefinements( int value) |
4485 | { |
4486 | if (value >= 0 && value < 10) |
4487 | numberRefinements_ = value; |
4488 | } |
4489 | // Sets row pivot choice algorithm in dual |
4490 | void |
4491 | ClpSimplex::setDualRowPivotAlgorithm(ClpDualRowPivot & choice) |
4492 | { |
4493 | delete dualRowPivot_; |
4494 | dualRowPivot_ = choice.clone(true); |
4495 | dualRowPivot_->setModel(this); |
4496 | } |
4497 | // Sets row pivot choice algorithm in dual |
4498 | void |
4499 | ClpSimplex::setPrimalColumnPivotAlgorithm(ClpPrimalColumnPivot & choice) |
4500 | { |
4501 | delete primalColumnPivot_; |
4502 | primalColumnPivot_ = choice.clone(true); |
4503 | primalColumnPivot_->setModel(this); |
4504 | } |
4505 | void |
4506 | ClpSimplex::setFactorization( ClpFactorization & factorization) |
4507 | { |
4508 | if (factorization_) |
4509 | factorization_->setFactorization(factorization); |
4510 | else |
4511 | factorization_ = new ClpFactorization(factorization, |
4512 | numberRows_); |
4513 | } |
4514 | |
4515 | // Swaps factorization |
4516 | ClpFactorization * |
4517 | ClpSimplex::swapFactorization( ClpFactorization * factorization) |
4518 | { |
4519 | ClpFactorization * swap = factorization_; |
4520 | factorization_ = factorization; |
4521 | return swap; |
4522 | } |
4523 | // Copies in factorization to existing one |
4524 | void |
4525 | ClpSimplex::copyFactorization( ClpFactorization & factorization) |
4526 | { |
4527 | *factorization_ = factorization; |
4528 | } |
4529 | /* Perturbation: |
4530 | -50 to +50 - perturb by this power of ten (-6 sounds good) |
4531 | 100 - auto perturb if takes too long (1.0e-6 largest nonzero) |
4532 | 101 - we are perturbed |
4533 | 102 - don't try perturbing again |
4534 | default is 100 |
4535 | */ |
4536 | void |
4537 | ClpSimplex::setPerturbation(int value) |
4538 | { |
4539 | if(value <= 100 && value >= -1000) { |
4540 | perturbation_ = value; |
4541 | } |
4542 | } |
4543 | // Sparsity on or off |
4544 | bool |
4545 | ClpSimplex::sparseFactorization() const |
4546 | { |
4547 | return factorization_->sparseThreshold() != 0; |
4548 | } |
4549 | void |
4550 | ClpSimplex::setSparseFactorization(bool value) |
4551 | { |
4552 | if (value) { |
4553 | if (!factorization_->sparseThreshold()) |
4554 | factorization_->goSparse(); |
4555 | } else { |
4556 | factorization_->sparseThreshold(0); |
4557 | } |
4558 | } |
4559 | void checkCorrect(ClpSimplex * /*model*/, int iRow, |
4560 | const double * element, const int * rowStart, const int * rowLength, |
4561 | const int * column, |
4562 | const double * columnLower_, const double * columnUpper_, |
4563 | int /*infiniteUpperC*/, |
4564 | int /*infiniteLowerC*/, |
4565 | double &maximumUpC, |
4566 | double &maximumDownC) |
4567 | { |
4568 | int infiniteUpper = 0; |
4569 | int infiniteLower = 0; |
4570 | double maximumUp = 0.0; |
4571 | double maximumDown = 0.0; |
4572 | CoinBigIndex rStart = rowStart[iRow]; |
4573 | CoinBigIndex rEnd = rowStart[iRow] + rowLength[iRow]; |
4574 | CoinBigIndex j; |
4575 | double large = 1.0e15; |
4576 | int iColumn; |
4577 | // Compute possible lower and upper ranges |
4578 | |
4579 | for (j = rStart; j < rEnd; ++j) { |
4580 | double value = element[j]; |
4581 | iColumn = column[j]; |
4582 | if (value > 0.0) { |
4583 | if (columnUpper_[iColumn] >= large) { |
4584 | ++infiniteUpper; |
4585 | } else { |
4586 | maximumUp += columnUpper_[iColumn] * value; |
4587 | } |
4588 | if (columnLower_[iColumn] <= -large) { |
4589 | ++infiniteLower; |
4590 | } else { |
4591 | maximumDown += columnLower_[iColumn] * value; |
4592 | } |
4593 | } else if (value < 0.0) { |
4594 | if (columnUpper_[iColumn] >= large) { |
4595 | ++infiniteLower; |
4596 | } else { |
4597 | maximumDown += columnUpper_[iColumn] * value; |
4598 | } |
4599 | if (columnLower_[iColumn] <= -large) { |
4600 | ++infiniteUpper; |
4601 | } else { |
4602 | maximumUp += columnLower_[iColumn] * value; |
4603 | } |
4604 | } |
4605 | } |
4606 | //assert (infiniteLowerC==infiniteLower); |
4607 | //assert (infiniteUpperC==infiniteUpper); |
4608 | if (fabs(maximumUp - maximumUpC) > 1.0e-12 * CoinMax(fabs(maximumUp), fabs(maximumUpC))) |
4609 | COIN_DETAIL_PRINT(printf("row %d comp up %g, true up %g\n" , iRow, |
4610 | maximumUpC, maximumUp)); |
4611 | if (fabs(maximumDown - maximumDownC) > 1.0e-12 * CoinMax(fabs(maximumDown), fabs(maximumDownC))) |
4612 | COIN_DETAIL_PRINT(printf("row %d comp down %g, true down %g\n" , iRow, |
4613 | maximumDownC, maximumDown)); |
4614 | maximumUpC = maximumUp; |
4615 | maximumDownC = maximumDown; |
4616 | } |
4617 | |
4618 | /* Tightens primal bounds to make dual faster. Unless |
4619 | fixed, bounds are slightly looser than they could be. |
4620 | This is to make dual go faster and is probably not needed |
4621 | with a presolve. Returns non-zero if problem infeasible |
4622 | |
4623 | Fudge for branch and bound - put bounds on columns of factor * |
4624 | largest value (at continuous) - should improve stability |
4625 | in branch and bound on infeasible branches (0.0 is off) |
4626 | */ |
4627 | int |
4628 | ClpSimplex::tightenPrimalBounds(double factor, int doTight, bool tightIntegers) |
4629 | { |
4630 | |
4631 | // Get a row copy in standard format |
4632 | CoinPackedMatrix copy; |
4633 | copy.setExtraGap(0.0); |
4634 | copy.setExtraMajor(0.0); |
4635 | copy.reverseOrderedCopyOf(*matrix()); |
4636 | // Matrix may have been created so get rid of it |
4637 | matrix_->releasePackedMatrix(); |
4638 | // get matrix data pointers |
4639 | const int * column = copy.getIndices(); |
4640 | const CoinBigIndex * rowStart = copy.getVectorStarts(); |
4641 | const int * rowLength = copy.getVectorLengths(); |
4642 | const double * element = copy.getElements(); |
4643 | int numberChanged = 1, iPass = 0; |
4644 | double large = largeValue(); // treat bounds > this as infinite |
4645 | #ifndef NDEBUG |
4646 | double large2 = 1.0e10 * large; |
4647 | #endif |
4648 | int numberInfeasible = 0; |
4649 | int totalTightened = 0; |
4650 | |
4651 | double tolerance = primalTolerance(); |
4652 | |
4653 | |
4654 | // Save column bounds |
4655 | double * saveLower = new double [numberColumns_]; |
4656 | CoinMemcpyN(columnLower_, numberColumns_, saveLower); |
4657 | double * saveUpper = new double [numberColumns_]; |
4658 | CoinMemcpyN(columnUpper_, numberColumns_, saveUpper); |
4659 | |
4660 | int iRow, iColumn; |
4661 | // If wanted compute a reasonable dualBound_ |
4662 | if (factor == COIN_DBL_MAX) { |
4663 | factor = 0.0; |
4664 | if (dualBound_ == 1.0e10) { |
4665 | // get largest scaled away from bound |
4666 | double largest = 1.0e-12; |
4667 | double largestScaled = 1.0e-12; |
4668 | int iRow; |
4669 | for (iRow = 0; iRow < numberRows_; iRow++) { |
4670 | double value = rowActivity_[iRow]; |
4671 | double above = value - rowLower_[iRow]; |
4672 | double below = rowUpper_[iRow] - value; |
4673 | if (above < 1.0e12) { |
4674 | largest = CoinMax(largest, above); |
4675 | } |
4676 | if (below < 1.0e12) { |
4677 | largest = CoinMax(largest, below); |
4678 | } |
4679 | if (rowScale_) { |
4680 | double multiplier = rowScale_[iRow]; |
4681 | above *= multiplier; |
4682 | below *= multiplier; |
4683 | } |
4684 | if (above < 1.0e12) { |
4685 | largestScaled = CoinMax(largestScaled, above); |
4686 | } |
4687 | if (below < 1.0e12) { |
4688 | largestScaled = CoinMax(largestScaled, below); |
4689 | } |
4690 | } |
4691 | |
4692 | int iColumn; |
4693 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
4694 | double value = columnActivity_[iColumn]; |
4695 | double above = value - columnLower_[iColumn]; |
4696 | double below = columnUpper_[iColumn] - value; |
4697 | if (above < 1.0e12) { |
4698 | largest = CoinMax(largest, above); |
4699 | } |
4700 | if (below < 1.0e12) { |
4701 | largest = CoinMax(largest, below); |
4702 | } |
4703 | if (columnScale_) { |
4704 | double multiplier = 1.0 / columnScale_[iColumn]; |
4705 | above *= multiplier; |
4706 | below *= multiplier; |
4707 | } |
4708 | if (above < 1.0e12) { |
4709 | largestScaled = CoinMax(largestScaled, above); |
4710 | } |
4711 | if (below < 1.0e12) { |
4712 | largestScaled = CoinMax(largestScaled, below); |
4713 | } |
4714 | } |
4715 | std::cout << "Largest (scaled) away from bound " << largestScaled |
4716 | << " unscaled " << largest << std::endl; |
4717 | dualBound_ = CoinMax(1.0001e7, CoinMin(100.0 * largest, 1.00001e10)); |
4718 | } |
4719 | } |
4720 | |
4721 | // If wanted - tighten column bounds using solution |
4722 | if (factor) { |
4723 | double largest = 0.0; |
4724 | if (factor > 0.0) { |
4725 | assert (factor > 1.0); |
4726 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
4727 | if (columnUpper_[iColumn] - columnLower_[iColumn] > tolerance) { |
4728 | largest = CoinMax(largest, fabs(columnActivity_[iColumn])); |
4729 | } |
4730 | } |
4731 | largest *= factor; |
4732 | } else { |
4733 | // absolute |
4734 | largest = - factor; |
4735 | } |
4736 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
4737 | if (columnUpper_[iColumn] - columnLower_[iColumn] > tolerance) { |
4738 | columnUpper_[iColumn] = CoinMin(columnUpper_[iColumn], largest); |
4739 | columnLower_[iColumn] = CoinMax(columnLower_[iColumn], -largest); |
4740 | } |
4741 | } |
4742 | } |
4743 | #define MAXPASS 10 |
4744 | |
4745 | // Loop round seeing if we can tighten bounds |
4746 | // Would be faster to have a stack of possible rows |
4747 | // and we put altered rows back on stack |
4748 | int numberCheck = -1; |
4749 | while(numberChanged > numberCheck) { |
4750 | |
4751 | numberChanged = 0; // Bounds tightened this pass |
4752 | |
4753 | if (iPass == MAXPASS) break; |
4754 | iPass++; |
4755 | |
4756 | for (iRow = 0; iRow < numberRows_; iRow++) { |
4757 | |
4758 | if (rowLower_[iRow] > -large || rowUpper_[iRow] < large) { |
4759 | |
4760 | // possible row |
4761 | int infiniteUpper = 0; |
4762 | int infiniteLower = 0; |
4763 | double maximumUp = 0.0; |
4764 | double maximumDown = 0.0; |
4765 | double newBound; |
4766 | CoinBigIndex rStart = rowStart[iRow]; |
4767 | CoinBigIndex rEnd = rowStart[iRow] + rowLength[iRow]; |
4768 | CoinBigIndex j; |
4769 | // Compute possible lower and upper ranges |
4770 | |
4771 | for (j = rStart; j < rEnd; ++j) { |
4772 | double value = element[j]; |
4773 | iColumn = column[j]; |
4774 | if (value > 0.0) { |
4775 | if (columnUpper_[iColumn] >= large) { |
4776 | ++infiniteUpper; |
4777 | } else { |
4778 | maximumUp += columnUpper_[iColumn] * value; |
4779 | } |
4780 | if (columnLower_[iColumn] <= -large) { |
4781 | ++infiniteLower; |
4782 | } else { |
4783 | maximumDown += columnLower_[iColumn] * value; |
4784 | } |
4785 | } else if (value < 0.0) { |
4786 | if (columnUpper_[iColumn] >= large) { |
4787 | ++infiniteLower; |
4788 | } else { |
4789 | maximumDown += columnUpper_[iColumn] * value; |
4790 | } |
4791 | if (columnLower_[iColumn] <= -large) { |
4792 | ++infiniteUpper; |
4793 | } else { |
4794 | maximumUp += columnLower_[iColumn] * value; |
4795 | } |
4796 | } |
4797 | } |
4798 | // Build in a margin of error |
4799 | maximumUp += 1.0e-8 * fabs(maximumUp); |
4800 | maximumDown -= 1.0e-8 * fabs(maximumDown); |
4801 | double maxUp = maximumUp + infiniteUpper * 1.0e31; |
4802 | double maxDown = maximumDown - infiniteLower * 1.0e31; |
4803 | if (maxUp <= rowUpper_[iRow] + tolerance && |
4804 | maxDown >= rowLower_[iRow] - tolerance) { |
4805 | |
4806 | // Row is redundant - make totally free |
4807 | // NO - can't do this for postsolve |
4808 | // rowLower_[iRow]=-COIN_DBL_MAX; |
4809 | // rowUpper_[iRow]=COIN_DBL_MAX; |
4810 | //printf("Redundant row in presolveX %d\n",iRow); |
4811 | |
4812 | } else { |
4813 | if (maxUp < rowLower_[iRow] - 100.0 * tolerance || |
4814 | maxDown > rowUpper_[iRow] + 100.0 * tolerance) { |
4815 | // problem is infeasible - exit at once |
4816 | numberInfeasible++; |
4817 | break; |
4818 | } |
4819 | double lower = rowLower_[iRow]; |
4820 | double upper = rowUpper_[iRow]; |
4821 | for (j = rStart; j < rEnd; ++j) { |
4822 | double value = element[j]; |
4823 | iColumn = column[j]; |
4824 | double nowLower = columnLower_[iColumn]; |
4825 | double nowUpper = columnUpper_[iColumn]; |
4826 | if (value > 0.0) { |
4827 | // positive value |
4828 | if (lower > -large) { |
4829 | if (!infiniteUpper) { |
4830 | assert(nowUpper < large2); |
4831 | newBound = nowUpper + |
4832 | (lower - maximumUp) / value; |
4833 | // relax if original was large |
4834 | if (fabs(maximumUp) > 1.0e8) |
4835 | newBound -= 1.0e-12 * fabs(maximumUp); |
4836 | } else if (infiniteUpper == 1 && nowUpper > large) { |
4837 | newBound = (lower - maximumUp) / value; |
4838 | // relax if original was large |
4839 | if (fabs(maximumUp) > 1.0e8) |
4840 | newBound -= 1.0e-12 * fabs(maximumUp); |
4841 | } else { |
4842 | newBound = -COIN_DBL_MAX; |
4843 | } |
4844 | if (newBound > nowLower + 1.0e-12 && newBound > -large) { |
4845 | // Tighten the lower bound |
4846 | numberChanged++; |
4847 | // check infeasible (relaxed) |
4848 | if (nowUpper < newBound) { |
4849 | if (nowUpper - newBound < |
4850 | -100.0 * tolerance) |
4851 | numberInfeasible++; |
4852 | else |
4853 | newBound = nowUpper; |
4854 | } |
4855 | columnLower_[iColumn] = newBound; |
4856 | // adjust |
4857 | double now; |
4858 | if (nowLower < -large) { |
4859 | now = 0.0; |
4860 | infiniteLower--; |
4861 | } else { |
4862 | now = nowLower; |
4863 | } |
4864 | maximumDown += (newBound - now) * value; |
4865 | nowLower = newBound; |
4866 | #ifdef DEBUG |
4867 | checkCorrect(this, iRow, |
4868 | element, rowStart, rowLength, |
4869 | column, |
4870 | columnLower_, columnUpper_, |
4871 | infiniteUpper, |
4872 | infiniteLower, |
4873 | maximumUp, |
4874 | maximumDown); |
4875 | #endif |
4876 | } |
4877 | } |
4878 | if (upper < large) { |
4879 | if (!infiniteLower) { |
4880 | assert(nowLower > - large2); |
4881 | newBound = nowLower + |
4882 | (upper - maximumDown) / value; |
4883 | // relax if original was large |
4884 | if (fabs(maximumDown) > 1.0e8) |
4885 | newBound += 1.0e-12 * fabs(maximumDown); |
4886 | } else if (infiniteLower == 1 && nowLower < -large) { |
4887 | newBound = (upper - maximumDown) / value; |
4888 | // relax if original was large |
4889 | if (fabs(maximumDown) > 1.0e8) |
4890 | newBound += 1.0e-12 * fabs(maximumDown); |
4891 | } else { |
4892 | newBound = COIN_DBL_MAX; |
4893 | } |
4894 | if (newBound < nowUpper - 1.0e-12 && newBound < large) { |
4895 | // Tighten the upper bound |
4896 | numberChanged++; |
4897 | // check infeasible (relaxed) |
4898 | if (nowLower > newBound) { |
4899 | if (newBound - nowLower < |
4900 | -100.0 * tolerance) |
4901 | numberInfeasible++; |
4902 | else |
4903 | newBound = nowLower; |
4904 | } |
4905 | columnUpper_[iColumn] = newBound; |
4906 | // adjust |
4907 | double now; |
4908 | if (nowUpper > large) { |
4909 | now = 0.0; |
4910 | infiniteUpper--; |
4911 | } else { |
4912 | now = nowUpper; |
4913 | } |
4914 | maximumUp += (newBound - now) * value; |
4915 | nowUpper = newBound; |
4916 | #ifdef DEBUG |
4917 | checkCorrect(this, iRow, |
4918 | element, rowStart, rowLength, |
4919 | column, |
4920 | columnLower_, columnUpper_, |
4921 | infiniteUpper, |
4922 | infiniteLower, |
4923 | maximumUp, |
4924 | maximumDown); |
4925 | #endif |
4926 | } |
4927 | } |
4928 | } else { |
4929 | // negative value |
4930 | if (lower > -large) { |
4931 | if (!infiniteUpper) { |
4932 | assert(nowLower < large2); |
4933 | newBound = nowLower + |
4934 | (lower - maximumUp) / value; |
4935 | // relax if original was large |
4936 | if (fabs(maximumUp) > 1.0e8) |
4937 | newBound += 1.0e-12 * fabs(maximumUp); |
4938 | } else if (infiniteUpper == 1 && nowLower < -large) { |
4939 | newBound = (lower - maximumUp) / value; |
4940 | // relax if original was large |
4941 | if (fabs(maximumUp) > 1.0e8) |
4942 | newBound += 1.0e-12 * fabs(maximumUp); |
4943 | } else { |
4944 | newBound = COIN_DBL_MAX; |
4945 | } |
4946 | if (newBound < nowUpper - 1.0e-12 && newBound < large) { |
4947 | // Tighten the upper bound |
4948 | numberChanged++; |
4949 | // check infeasible (relaxed) |
4950 | if (nowLower > newBound) { |
4951 | if (newBound - nowLower < |
4952 | -100.0 * tolerance) |
4953 | numberInfeasible++; |
4954 | else |
4955 | newBound = nowLower; |
4956 | } |
4957 | columnUpper_[iColumn] = newBound; |
4958 | // adjust |
4959 | double now; |
4960 | if (nowUpper > large) { |
4961 | now = 0.0; |
4962 | infiniteLower--; |
4963 | } else { |
4964 | now = nowUpper; |
4965 | } |
4966 | maximumDown += (newBound - now) * value; |
4967 | nowUpper = newBound; |
4968 | #ifdef DEBUG |
4969 | checkCorrect(this, iRow, |
4970 | element, rowStart, rowLength, |
4971 | column, |
4972 | columnLower_, columnUpper_, |
4973 | infiniteUpper, |
4974 | infiniteLower, |
4975 | maximumUp, |
4976 | maximumDown); |
4977 | #endif |
4978 | } |
4979 | } |
4980 | if (upper < large) { |
4981 | if (!infiniteLower) { |
4982 | assert(nowUpper < large2); |
4983 | newBound = nowUpper + |
4984 | (upper - maximumDown) / value; |
4985 | // relax if original was large |
4986 | if (fabs(maximumDown) > 1.0e8) |
4987 | newBound -= 1.0e-12 * fabs(maximumDown); |
4988 | } else if (infiniteLower == 1 && nowUpper > large) { |
4989 | newBound = (upper - maximumDown) / value; |
4990 | // relax if original was large |
4991 | if (fabs(maximumDown) > 1.0e8) |
4992 | newBound -= 1.0e-12 * fabs(maximumDown); |
4993 | } else { |
4994 | newBound = -COIN_DBL_MAX; |
4995 | } |
4996 | if (newBound > nowLower + 1.0e-12 && newBound > -large) { |
4997 | // Tighten the lower bound |
4998 | numberChanged++; |
4999 | // check infeasible (relaxed) |
5000 | if (nowUpper < newBound) { |
5001 | if (nowUpper - newBound < |
5002 | -100.0 * tolerance) |
5003 | numberInfeasible++; |
5004 | else |
5005 | newBound = nowUpper; |
5006 | } |
5007 | columnLower_[iColumn] = newBound; |
5008 | // adjust |
5009 | double now; |
5010 | if (nowLower < -large) { |
5011 | now = 0.0; |
5012 | infiniteUpper--; |
5013 | } else { |
5014 | now = nowLower; |
5015 | } |
5016 | maximumUp += (newBound - now) * value; |
5017 | nowLower = newBound; |
5018 | #ifdef DEBUG |
5019 | checkCorrect(this, iRow, |
5020 | element, rowStart, rowLength, |
5021 | column, |
5022 | columnLower_, columnUpper_, |
5023 | infiniteUpper, |
5024 | infiniteLower, |
5025 | maximumUp, |
5026 | maximumDown); |
5027 | #endif |
5028 | } |
5029 | } |
5030 | } |
5031 | } |
5032 | } |
5033 | } |
5034 | } |
5035 | totalTightened += numberChanged; |
5036 | if (iPass == 1) |
5037 | numberCheck = numberChanged >> 4; |
5038 | if (numberInfeasible) break; |
5039 | } |
5040 | if (!numberInfeasible) { |
5041 | handler_->message(CLP_SIMPLEX_BOUNDTIGHTEN, messages_) |
5042 | << totalTightened |
5043 | << CoinMessageEol; |
5044 | // Set bounds slightly loose |
5045 | double useTolerance = 1.0e-3; |
5046 | if (doTight > 0) { |
5047 | if (doTight > 10) { |
5048 | useTolerance = 0.0; |
5049 | } else { |
5050 | while (doTight) { |
5051 | useTolerance *= 0.1; |
5052 | doTight--; |
5053 | } |
5054 | } |
5055 | } |
5056 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5057 | if (saveUpper[iColumn] > saveLower[iColumn] + useTolerance) { |
5058 | // Make large bounds stay infinite |
5059 | if (saveUpper[iColumn] > 1.0e30 && columnUpper_[iColumn] > 1.0e10) { |
5060 | columnUpper_[iColumn] = COIN_DBL_MAX; |
5061 | } |
5062 | if (saveLower[iColumn] < -1.0e30 && columnLower_[iColumn] < -1.0e10) { |
5063 | columnLower_[iColumn] = -COIN_DBL_MAX; |
5064 | } |
5065 | #ifdef KEEP_GOING_IF_FIXED |
5066 | double multiplier = 5.0e-3 * floor(100.0 * randomNumberGenerator_.randomDouble()) + 1.0; |
5067 | multiplier *= 100.0; |
5068 | #else |
5069 | double multiplier = 100.0; |
5070 | #endif |
5071 | if (columnUpper_[iColumn] - columnLower_[iColumn] < useTolerance + 1.0e-8) { |
5072 | // relax enough so will have correct dj |
5073 | #if 1 |
5074 | columnLower_[iColumn] = CoinMax(saveLower[iColumn], |
5075 | columnLower_[iColumn] - multiplier * useTolerance); |
5076 | columnUpper_[iColumn] = CoinMin(saveUpper[iColumn], |
5077 | columnUpper_[iColumn] + multiplier * useTolerance); |
5078 | #else |
5079 | if (fabs(columnUpper_[iColumn]) < fabs(columnLower_[iColumn])) { |
5080 | if (columnUpper_[iColumn] - multiplier * useTolerance > saveLower[iColumn]) { |
5081 | columnLower_[iColumn] = columnUpper_[iColumn] - multiplier * useTolerance; |
5082 | } else { |
5083 | columnLower_[iColumn] = saveLower[iColumn]; |
5084 | columnUpper_[iColumn] = CoinMin(saveUpper[iColumn], |
5085 | saveLower[iColumn] + multiplier * useTolerance); |
5086 | } |
5087 | } else { |
5088 | if (columnLower_[iColumn] + multiplier * useTolerance < saveUpper[iColumn]) { |
5089 | columnUpper_[iColumn] = columnLower_[iColumn] + multiplier * useTolerance; |
5090 | } else { |
5091 | columnUpper_[iColumn] = saveUpper[iColumn]; |
5092 | columnLower_[iColumn] = CoinMax(saveLower[iColumn], |
5093 | saveUpper[iColumn] - multiplier * useTolerance); |
5094 | } |
5095 | } |
5096 | #endif |
5097 | } else { |
5098 | if (columnUpper_[iColumn] < saveUpper[iColumn]) { |
5099 | // relax a bit |
5100 | columnUpper_[iColumn] = CoinMin(columnUpper_[iColumn] + multiplier * useTolerance, |
5101 | saveUpper[iColumn]); |
5102 | } |
5103 | if (columnLower_[iColumn] > saveLower[iColumn]) { |
5104 | // relax a bit |
5105 | columnLower_[iColumn] = CoinMax(columnLower_[iColumn] - multiplier * useTolerance, |
5106 | saveLower[iColumn]); |
5107 | } |
5108 | } |
5109 | } |
5110 | } |
5111 | if (tightIntegers && integerType_) { |
5112 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5113 | if (integerType_[iColumn]) { |
5114 | double value; |
5115 | value = floor(columnLower_[iColumn] + 0.5); |
5116 | if (fabs(value - columnLower_[iColumn]) > primalTolerance_) |
5117 | value = ceil(columnLower_[iColumn]); |
5118 | columnLower_[iColumn] = value; |
5119 | value = floor(columnUpper_[iColumn] + 0.5); |
5120 | if (fabs(value - columnUpper_[iColumn]) > primalTolerance_) |
5121 | value = floor(columnUpper_[iColumn]); |
5122 | columnUpper_[iColumn] = value; |
5123 | if (columnLower_[iColumn] > columnUpper_[iColumn]) |
5124 | numberInfeasible++; |
5125 | } |
5126 | } |
5127 | if (numberInfeasible) { |
5128 | handler_->message(CLP_SIMPLEX_INFEASIBILITIES, messages_) |
5129 | << numberInfeasible |
5130 | << CoinMessageEol; |
5131 | // restore column bounds |
5132 | CoinMemcpyN(saveLower, numberColumns_, columnLower_); |
5133 | CoinMemcpyN(saveUpper, numberColumns_, columnUpper_); |
5134 | } |
5135 | } |
5136 | } else { |
5137 | handler_->message(CLP_SIMPLEX_INFEASIBILITIES, messages_) |
5138 | << numberInfeasible |
5139 | << CoinMessageEol; |
5140 | // restore column bounds |
5141 | CoinMemcpyN(saveLower, numberColumns_, columnLower_); |
5142 | CoinMemcpyN(saveUpper, numberColumns_, columnUpper_); |
5143 | } |
5144 | delete [] saveLower; |
5145 | delete [] saveUpper; |
5146 | return (numberInfeasible); |
5147 | } |
5148 | //#define SAVE_AND_RESTORE |
5149 | // dual |
5150 | #include "ClpSimplexDual.hpp" |
5151 | #include "ClpSimplexPrimal.hpp" |
5152 | #ifndef SAVE_AND_RESTORE |
5153 | int ClpSimplex::dual (int ifValuesPass , int startFinishOptions) |
5154 | #else |
5155 | int ClpSimplex::dual (int ifValuesPass , int startFinishOptions) |
5156 | { |
5157 | // May be empty problem |
5158 | if (numberRows_ && numberColumns_) { |
5159 | // Save on file for debug |
5160 | int returnCode; |
5161 | returnCode = saveModel("debug.sav" ); |
5162 | if (returnCode) { |
5163 | printf("** Unable to save model to debug.sav\n" ); |
5164 | abort(); |
5165 | } |
5166 | ClpSimplex temp; |
5167 | returnCode = temp.restoreModel("debug.sav" ); |
5168 | if (returnCode) { |
5169 | printf("** Unable to restore model from debug.sav\n" ); |
5170 | abort(); |
5171 | } |
5172 | temp.setLogLevel(handler_->logLevel()); |
5173 | // Now do dual |
5174 | returnCode = temp.dualDebug(ifValuesPass, startFinishOptions); |
5175 | // Move status and solution back |
5176 | int numberTotal = numberRows_ + numberColumns_; |
5177 | CoinMemcpyN(temp.statusArray(), numberTotal, status_); |
5178 | CoinMemcpyN(temp.primalColumnSolution(), numberColumns_, columnActivity_); |
5179 | CoinMemcpyN(temp.primalRowSolution(), numberRows_, rowActivity_); |
5180 | CoinMemcpyN(temp.dualColumnSolution(), numberColumns_, reducedCost_); |
5181 | CoinMemcpyN(temp.dualRowSolution(), numberRows_, dual_); |
5182 | problemStatus_ = temp.problemStatus_; |
5183 | setObjectiveValue(temp.objectiveValue()); |
5184 | setSumDualInfeasibilities(temp.sumDualInfeasibilities()); |
5185 | setNumberDualInfeasibilities(temp.numberDualInfeasibilities()); |
5186 | setSumPrimalInfeasibilities(temp.sumPrimalInfeasibilities()); |
5187 | setNumberPrimalInfeasibilities(temp.numberPrimalInfeasibilities()); |
5188 | setNumberIterations(temp.numberIterations()); |
5189 | onStopped(); // set secondary status if stopped |
5190 | return returnCode; |
5191 | } else { |
5192 | // empty |
5193 | return dualDebug(ifValuesPass, startFinishOptions); |
5194 | } |
5195 | } |
5196 | int ClpSimplex::dualDebug (int ifValuesPass , int startFinishOptions) |
5197 | #endif |
5198 | { |
5199 | //double savedPivotTolerance = factorization_->pivotTolerance(); |
5200 | int saveQuadraticActivated = 0; |
5201 | if (objective_) { |
5202 | saveQuadraticActivated = objective_->activated(); |
5203 | objective_->setActivated(0); |
5204 | } else { |
5205 | // create dummy stuff |
5206 | assert (!numberColumns_); |
5207 | if (!numberRows_) |
5208 | problemStatus_ = 0; // say optimal |
5209 | return 0; |
5210 | } |
5211 | ClpObjective * saveObjective = objective_; |
5212 | CoinAssert (ifValuesPass >= 0 && ifValuesPass < 3); |
5213 | /* Note use of "down casting". The only class the user sees is ClpSimplex. |
5214 | Classes ClpSimplexDual, ClpSimplexPrimal, (ClpSimplexNonlinear) |
5215 | and ClpSimplexOther all exist and inherit from ClpSimplex but have no |
5216 | additional data and have no destructor or (non-default) constructor. |
5217 | |
5218 | This is to stop classes becoming too unwieldy and so I (JJF) can use e.g. "perturb" |
5219 | in primal and dual. |
5220 | |
5221 | As far as I can see this is perfectly safe. |
5222 | */ |
5223 | #ifdef COIN_DEVELOP |
5224 | //#define EXPENSIVE |
5225 | #endif |
5226 | #ifdef EXPENSIVE |
5227 | static int dualCount = 0; |
5228 | static int dualCheckCount = -1; |
5229 | dualCount++; |
5230 | if (dualCount == dualCheckCount) { |
5231 | printf("Bad dual coming up\n" ); |
5232 | } |
5233 | ClpSimplex saveModel = *this; |
5234 | #endif |
5235 | int returnCode = static_cast<ClpSimplexDual *> (this)->dual(ifValuesPass, startFinishOptions); |
5236 | #ifdef EXPENSIVE |
5237 | if (problemStatus_ == 1) { |
5238 | saveModel.allSlackBasis(true); |
5239 | static_cast<ClpSimplexDual *> (&saveModel)->dual(0, 0); |
5240 | if (saveModel.problemStatus_ == 0) { |
5241 | if (saveModel.objectiveValue() < dblParam_[0] - 1.0e-8 * (1.0 + fabs(dblParam_[0]))) { |
5242 | if (objectiveValue() < dblParam_[0] - 1.0e-6 * (1.0 + fabs(dblParam_[0]))) { |
5243 | printf("BAD dual - objs %g ,savemodel %g cutoff %g at count %d\n" , |
5244 | objectiveValue(), saveModel.objectiveValue(), dblParam_[0], dualCount); |
5245 | saveModel = *this; |
5246 | saveModel.setLogLevel(63); |
5247 | static_cast<ClpSimplexDual *> (&saveModel)->dual(0, 0); |
5248 | // flatten solution and try again |
5249 | int iRow, iColumn; |
5250 | for (iRow = 0; iRow < numberRows_; iRow++) { |
5251 | if (getRowStatus(iRow) != basic) { |
5252 | setRowStatus(iRow, superBasic); |
5253 | // but put to bound if close |
5254 | if (fabs(rowActivity_[iRow] - rowLower_[iRow]) |
5255 | <= primalTolerance_) { |
5256 | rowActivity_[iRow] = rowLower_[iRow]; |
5257 | setRowStatus(iRow, atLowerBound); |
5258 | } else if (fabs(rowActivity_[iRow] - rowUpper_[iRow]) |
5259 | <= primalTolerance_) { |
5260 | rowActivity_[iRow] = rowUpper_[iRow]; |
5261 | setRowStatus(iRow, atUpperBound); |
5262 | } |
5263 | } |
5264 | } |
5265 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5266 | if (getColumnStatus(iColumn) != basic) { |
5267 | setColumnStatus(iColumn, superBasic); |
5268 | // but put to bound if close |
5269 | if (fabs(columnActivity_[iColumn] - columnLower_[iColumn]) |
5270 | <= primalTolerance_) { |
5271 | columnActivity_[iColumn] = columnLower_[iColumn]; |
5272 | setColumnStatus(iColumn, atLowerBound); |
5273 | } else if (fabs(columnActivity_[iColumn] |
5274 | - columnUpper_[iColumn]) |
5275 | <= primalTolerance_) { |
5276 | columnActivity_[iColumn] = columnUpper_[iColumn]; |
5277 | setColumnStatus(iColumn, atUpperBound); |
5278 | } |
5279 | } |
5280 | } |
5281 | static_cast<ClpSimplexPrimal *> (&saveModel)->primal(0, 0); |
5282 | } else { |
5283 | printf("bad? dual - objs %g ,savemodel %g cutoff %g at count %d\n" , |
5284 | objectiveValue(), saveModel.objectiveValue(), dblParam_[0], dualCount); |
5285 | } |
5286 | if (dualCount > dualCheckCount && dualCheckCount >= 0) |
5287 | abort(); |
5288 | } |
5289 | } |
5290 | } |
5291 | #endif |
5292 | //int lastAlgorithm = -1; |
5293 | if ((specialOptions_ & 2048) != 0 && problemStatus_ == 10 && !numberPrimalInfeasibilities_ |
5294 | && sumDualInfeasibilities_ < 1000.0 * dualTolerance_ && perturbation_ >= 100) |
5295 | problemStatus_ = 0; // ignore |
5296 | if (problemStatus_ == 10) { |
5297 | //printf("Cleaning up with primal\n"); |
5298 | #ifdef COIN_DEVELOP |
5299 | int saveNumberIterations = numberIterations_; |
5300 | #endif |
5301 | //lastAlgorithm=1; |
5302 | int savePerturbation = perturbation_; |
5303 | int saveLog = handler_->logLevel(); |
5304 | //handler_->setLogLevel(63); |
5305 | perturbation_ = 100; |
5306 | bool denseFactorization = initialDenseFactorization(); |
5307 | // It will be safe to allow dense |
5308 | setInitialDenseFactorization(true); |
5309 | // Allow for catastrophe |
5310 | int saveMax = intParam_[ClpMaxNumIteration]; |
5311 | if (numberIterations_) { |
5312 | // normal |
5313 | if (intParam_[ClpMaxNumIteration] > 100000 + numberIterations_) |
5314 | intParam_[ClpMaxNumIteration] |
5315 | = numberIterations_ + 1000 + 2 * numberRows_ + numberColumns_; |
5316 | } else { |
5317 | // Not normal allow more |
5318 | baseIteration_ += 2 * (numberRows_ + numberColumns_); |
5319 | } |
5320 | // check which algorithms allowed |
5321 | int dummy; |
5322 | ClpPackedMatrix * ordinary = |
5323 | dynamic_cast< ClpPackedMatrix*>(matrix_); |
5324 | if (problemStatus_ == 10 && saveObjective == objective_ && |
5325 | ordinary) |
5326 | startFinishOptions |= 2; |
5327 | baseIteration_ = numberIterations_; |
5328 | // Say second call |
5329 | moreSpecialOptions_ |= 256; |
5330 | if ((matrix_->generalExpanded(this, 4, dummy) & 1) != 0) |
5331 | returnCode = static_cast<ClpSimplexPrimal *> (this)->primal(1, startFinishOptions); |
5332 | else |
5333 | returnCode = static_cast<ClpSimplexDual *> (this)->dual(0, startFinishOptions); |
5334 | // Say not second call |
5335 | moreSpecialOptions_ &= ~256; |
5336 | baseIteration_ = 0; |
5337 | if (saveObjective != objective_) { |
5338 | // We changed objective to see if infeasible |
5339 | delete objective_; |
5340 | objective_ = saveObjective; |
5341 | if (!problemStatus_) { |
5342 | // carry on |
5343 | returnCode = static_cast<ClpSimplexPrimal *> (this)->primal(1, startFinishOptions); |
5344 | } |
5345 | } |
5346 | if (problemStatus_ == 3 && numberIterations_ < saveMax) { |
5347 | #ifdef COIN_DEVELOP |
5348 | if (handler_->logLevel() > 0) |
5349 | printf("looks like trouble - too many iterations in clean up - trying again\n" ); |
5350 | #endif |
5351 | // flatten solution and try again |
5352 | int iRow, iColumn; |
5353 | for (iRow = 0; iRow < numberRows_; iRow++) { |
5354 | if (getRowStatus(iRow) != basic) { |
5355 | setRowStatus(iRow, superBasic); |
5356 | // but put to bound if close |
5357 | if (fabs(rowActivity_[iRow] - rowLower_[iRow]) |
5358 | <= primalTolerance_) { |
5359 | rowActivity_[iRow] = rowLower_[iRow]; |
5360 | setRowStatus(iRow, atLowerBound); |
5361 | } else if (fabs(rowActivity_[iRow] - rowUpper_[iRow]) |
5362 | <= primalTolerance_) { |
5363 | rowActivity_[iRow] = rowUpper_[iRow]; |
5364 | setRowStatus(iRow, atUpperBound); |
5365 | } |
5366 | } |
5367 | } |
5368 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5369 | if (getColumnStatus(iColumn) != basic) { |
5370 | setColumnStatus(iColumn, superBasic); |
5371 | // but put to bound if close |
5372 | if (fabs(columnActivity_[iColumn] - columnLower_[iColumn]) |
5373 | <= primalTolerance_) { |
5374 | columnActivity_[iColumn] = columnLower_[iColumn]; |
5375 | setColumnStatus(iColumn, atLowerBound); |
5376 | } else if (fabs(columnActivity_[iColumn] |
5377 | - columnUpper_[iColumn]) |
5378 | <= primalTolerance_) { |
5379 | columnActivity_[iColumn] = columnUpper_[iColumn]; |
5380 | setColumnStatus(iColumn, atUpperBound); |
5381 | } |
5382 | } |
5383 | } |
5384 | problemStatus_ = -1; |
5385 | intParam_[ClpMaxNumIteration] = CoinMin(numberIterations_ + 1000 + |
5386 | 2 * numberRows_ + numberColumns_, saveMax); |
5387 | perturbation_ = savePerturbation; |
5388 | baseIteration_ = numberIterations_; |
5389 | // Say second call |
5390 | moreSpecialOptions_ |= 256; |
5391 | returnCode = static_cast<ClpSimplexPrimal *> (this)->primal(0, startFinishOptions); |
5392 | // Say not second call |
5393 | moreSpecialOptions_ &= ~256; |
5394 | baseIteration_ = 0; |
5395 | computeObjectiveValue(); |
5396 | // can't rely on djs either |
5397 | memset(reducedCost_, 0, numberColumns_ * sizeof(double)); |
5398 | #ifdef COIN_DEVELOP |
5399 | if (problemStatus_ == 3 && numberIterations_ < saveMax && |
5400 | handler_->logLevel() > 0) |
5401 | printf("looks like real trouble - too many iterations in second clean up - giving up\n" ); |
5402 | #endif |
5403 | } |
5404 | intParam_[ClpMaxNumIteration] = saveMax; |
5405 | |
5406 | setInitialDenseFactorization(denseFactorization); |
5407 | perturbation_ = savePerturbation; |
5408 | if (problemStatus_ == 10) { |
5409 | if (!numberPrimalInfeasibilities_) |
5410 | problemStatus_ = 0; |
5411 | else |
5412 | problemStatus_ = 4; |
5413 | } |
5414 | handler_->setLogLevel(saveLog); |
5415 | #ifdef COIN_DEVELOP |
5416 | if (numberIterations_ > 200) |
5417 | printf("after primal status %d - %d iterations (save %d)\n" , |
5418 | problemStatus_, numberIterations_, saveNumberIterations); |
5419 | #endif |
5420 | } |
5421 | objective_->setActivated(saveQuadraticActivated); |
5422 | //factorization_->pivotTolerance(savedPivotTolerance); |
5423 | onStopped(); // set secondary status if stopped |
5424 | //if (problemStatus_==1&&lastAlgorithm==1) |
5425 | //returnCode=10; // so will do primal after postsolve |
5426 | if (!problemStatus_) { |
5427 | //assert (!numberPrimalInfeasibilities_); |
5428 | //if (returnCode!=10) |
5429 | //assert (!numberDualInfeasibilities_); |
5430 | } |
5431 | return returnCode; |
5432 | } |
5433 | // primal |
5434 | int ClpSimplex::primal (int ifValuesPass , int startFinishOptions) |
5435 | { |
5436 | //double savedPivotTolerance = factorization_->pivotTolerance(); |
5437 | #ifndef SLIM_CLP |
5438 | // See if nonlinear |
5439 | if (objective_->type() > 1 && objective_->activated()) |
5440 | return reducedGradient(); |
5441 | #endif |
5442 | CoinAssert ((ifValuesPass >= 0 && ifValuesPass < 3) || |
5443 | (ifValuesPass >= 12 && ifValuesPass < 100) || |
5444 | (ifValuesPass >= 112 && ifValuesPass < 200)); |
5445 | if (ifValuesPass >= 12) { |
5446 | int numberProblems = (ifValuesPass - 10) % 100; |
5447 | ifValuesPass = (ifValuesPass < 100) ? 1 : 2; |
5448 | // Go parallel to do solve |
5449 | // Only if all slack basis |
5450 | int i; |
5451 | for ( i = 0; i < numberColumns_; i++) { |
5452 | if (getColumnStatus(i) == basic) |
5453 | break; |
5454 | } |
5455 | if (i == numberColumns_) { |
5456 | // try if vaguely feasible |
5457 | CoinZeroN(rowActivity_, numberRows_); |
5458 | const int * row = matrix_->getIndices(); |
5459 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
5460 | const int * columnLength = matrix_->getVectorLengths(); |
5461 | const double * element = matrix_->getElements(); |
5462 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5463 | CoinBigIndex j; |
5464 | double value = columnActivity_[iColumn]; |
5465 | if (value) { |
5466 | CoinBigIndex start = columnStart[iColumn]; |
5467 | CoinBigIndex end = start + columnLength[iColumn]; |
5468 | for (j = start; j < end; j++) { |
5469 | int iRow = row[j]; |
5470 | rowActivity_[iRow] += value * element[j]; |
5471 | } |
5472 | } |
5473 | } |
5474 | checkSolutionInternal(); |
5475 | if (sumPrimalInfeasibilities_ * sqrt(static_cast<double>(numberRows_)) < 1.0) { |
5476 | // Could do better if can decompose |
5477 | // correction to get feasible |
5478 | double scaleFactor = 1.0 / numberProblems; |
5479 | double * correction = new double [numberRows_]; |
5480 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
5481 | double value = rowActivity_[iRow]; |
5482 | if (value > rowUpper_[iRow]) |
5483 | value = rowUpper_[iRow] - value; |
5484 | else if (value < rowLower_[iRow]) |
5485 | value = rowLower_[iRow] - value; |
5486 | else |
5487 | value = 0.0; |
5488 | correction[iRow] = value * scaleFactor; |
5489 | } |
5490 | int numberColumns = (numberColumns_ + numberProblems - 1) / numberProblems; |
5491 | int * whichRows = new int [numberRows_]; |
5492 | for (int i = 0; i < numberRows_; i++) |
5493 | whichRows[i] = i; |
5494 | int * whichColumns = new int [numberColumns_]; |
5495 | ClpSimplex ** model = new ClpSimplex * [numberProblems]; |
5496 | int startColumn = 0; |
5497 | double * saveLower = CoinCopyOfArray(rowLower_, numberRows_); |
5498 | double * saveUpper = CoinCopyOfArray(rowUpper_, numberRows_); |
5499 | for (int i = 0; i < numberProblems; i++) { |
5500 | int endColumn = CoinMin(startColumn + numberColumns, numberColumns_); |
5501 | CoinZeroN(rowActivity_, numberRows_); |
5502 | for (int iColumn = startColumn; iColumn < endColumn; iColumn++) { |
5503 | whichColumns[iColumn-startColumn] = iColumn; |
5504 | CoinBigIndex j; |
5505 | double value = columnActivity_[iColumn]; |
5506 | if (value) { |
5507 | CoinBigIndex start = columnStart[iColumn]; |
5508 | CoinBigIndex end = start + columnLength[iColumn]; |
5509 | for (j = start; j < end; j++) { |
5510 | int iRow = row[j]; |
5511 | rowActivity_[iRow] += value * element[j]; |
5512 | } |
5513 | } |
5514 | } |
5515 | // adjust rhs |
5516 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
5517 | double value = rowActivity_[iRow] + correction[iRow]; |
5518 | if (saveUpper[iRow] < 1.0e30) |
5519 | rowUpper_[iRow] = value; |
5520 | if (saveLower[iRow] > -1.0e30) |
5521 | rowLower_[iRow] = value; |
5522 | } |
5523 | model[i] = new ClpSimplex(this, numberRows_, whichRows, |
5524 | endColumn - startColumn, whichColumns); |
5525 | //#define FEB_TRY |
5526 | #ifdef FEB_TRY |
5527 | model[i]->setPerturbation(perturbation_); |
5528 | #endif |
5529 | startColumn = endColumn; |
5530 | } |
5531 | memcpy(rowLower_, saveLower, numberRows_ * sizeof(double)); |
5532 | memcpy(rowUpper_, saveUpper, numberRows_ * sizeof(double)); |
5533 | delete [] saveLower; |
5534 | delete [] saveUpper; |
5535 | delete [] correction; |
5536 | // solve (in parallel) |
5537 | for (int i = 0; i < numberProblems; i++) { |
5538 | model[i]->primal(1/*ifValuesPass*/); |
5539 | } |
5540 | startColumn = 0; |
5541 | int numberBasic = 0; |
5542 | // use whichRows as counter |
5543 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
5544 | int startValue = 0; |
5545 | if (rowUpper_[iRow] > rowLower_[iRow]) |
5546 | startValue++; |
5547 | if (rowUpper_[iRow] > 1.0e30) |
5548 | startValue++; |
5549 | if (rowLower_[iRow] < -1.0e30) |
5550 | startValue++; |
5551 | whichRows[iRow] = 1000 * startValue; |
5552 | } |
5553 | for (int i = 0; i < numberProblems; i++) { |
5554 | int endColumn = CoinMin(startColumn + numberColumns, numberColumns_); |
5555 | ClpSimplex * simplex = model[i]; |
5556 | const double * solution = simplex->columnActivity_; |
5557 | for (int iColumn = startColumn; iColumn < endColumn; iColumn++) { |
5558 | columnActivity_[iColumn] = solution[iColumn-startColumn]; |
5559 | Status status = simplex->getColumnStatus(iColumn - startColumn); |
5560 | setColumnStatus(iColumn, status); |
5561 | if (status == basic) |
5562 | numberBasic++; |
5563 | } |
5564 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
5565 | if (simplex->getRowStatus(iRow) == basic) |
5566 | whichRows[iRow]++; |
5567 | } |
5568 | delete model[i]; |
5569 | startColumn = endColumn; |
5570 | } |
5571 | delete [] model; |
5572 | for (int iRow = 0; iRow < numberRows_; iRow++) |
5573 | setRowStatus(iRow, superBasic); |
5574 | CoinZeroN(rowActivity_, numberRows_); |
5575 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5576 | CoinBigIndex j; |
5577 | double value = columnActivity_[iColumn]; |
5578 | if (value) { |
5579 | CoinBigIndex start = columnStart[iColumn]; |
5580 | CoinBigIndex end = start + columnLength[iColumn]; |
5581 | for (j = start; j < end; j++) { |
5582 | int iRow = row[j]; |
5583 | rowActivity_[iRow] += value * element[j]; |
5584 | } |
5585 | } |
5586 | } |
5587 | checkSolutionInternal(); |
5588 | if (numberBasic < numberRows_) { |
5589 | int * order = new int [numberRows_]; |
5590 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
5591 | setRowStatus(iRow, superBasic); |
5592 | int nTimes = whichRows[iRow] % 1000; |
5593 | if (nTimes) |
5594 | nTimes += whichRows[iRow] / 500; |
5595 | whichRows[iRow] = -nTimes; |
5596 | order[iRow] = iRow; |
5597 | } |
5598 | CoinSort_2(whichRows, whichRows + numberRows_, order); |
5599 | int nPut = numberRows_ - numberBasic; |
5600 | for (int i = 0; i < nPut; i++) { |
5601 | int iRow = order[i]; |
5602 | setRowStatus(iRow, basic); |
5603 | } |
5604 | delete [] order; |
5605 | } else if (numberBasic > numberRows_) { |
5606 | double * away = new double [numberBasic]; |
5607 | numberBasic = 0; |
5608 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
5609 | if (getColumnStatus(iColumn) == basic) { |
5610 | double value = columnActivity_[iColumn]; |
5611 | value = CoinMin(value - columnLower_[iColumn], |
5612 | columnUpper_[iColumn] - value); |
5613 | away[numberBasic] = value; |
5614 | whichColumns[numberBasic++] = iColumn; |
5615 | } |
5616 | } |
5617 | CoinSort_2(away, away + numberBasic, whichColumns); |
5618 | int nPut = numberBasic - numberRows_; |
5619 | for (int i = 0; i < nPut; i++) { |
5620 | int iColumn = whichColumns[i]; |
5621 | double value = columnActivity_[iColumn]; |
5622 | if (value - columnLower_[iColumn] < |
5623 | columnUpper_[iColumn] - value) |
5624 | setColumnStatus(iColumn, atLowerBound); |
5625 | else |
5626 | setColumnStatus(iColumn, atUpperBound); |
5627 | } |
5628 | delete [] away; |
5629 | } |
5630 | delete [] whichColumns; |
5631 | delete [] whichRows; |
5632 | } |
5633 | } |
5634 | } |
5635 | //firstFree_=-1; |
5636 | /* Note use of "down casting". The only class the user sees is ClpSimplex. |
5637 | Classes ClpSimplexDual, ClpSimplexPrimal, (ClpSimplexNonlinear) |
5638 | and ClpSimplexOther all exist and inherit from ClpSimplex but have no |
5639 | additional data and have no destructor or (non-default) constructor. |
5640 | |
5641 | This is to stop classes becoming too unwieldy and so I (JJF) can use e.g. "perturb" |
5642 | in primal and dual. |
5643 | |
5644 | As far as I can see this is perfectly safe. |
5645 | */ |
5646 | int returnCode = static_cast<ClpSimplexPrimal *> (this)->primal(ifValuesPass, startFinishOptions); |
5647 | //int lastAlgorithm=1; |
5648 | if (problemStatus_ == 10) { |
5649 | //lastAlgorithm=-1; |
5650 | //printf("Cleaning up with dual\n"); |
5651 | int savePerturbation = perturbation_; |
5652 | perturbation_ = 100; |
5653 | bool denseFactorization = initialDenseFactorization(); |
5654 | // It will be safe to allow dense |
5655 | setInitialDenseFactorization(true); |
5656 | // check which algorithms allowed |
5657 | int dummy; |
5658 | baseIteration_ = numberIterations_; |
5659 | // Say second call |
5660 | moreSpecialOptions_ |= 256; |
5661 | if ((matrix_->generalExpanded(this, 4, dummy) & 2) != 0 && (specialOptions_ & 8192) == 0) { |
5662 | double saveBound = dualBound_; |
5663 | // upperOut_ has largest away from bound |
5664 | dualBound_ = CoinMin(CoinMax(2.0 * upperOut_, 1.0e8), dualBound_); |
5665 | returnCode = static_cast<ClpSimplexDual *> (this)->dual(0, startFinishOptions); |
5666 | dualBound_ = saveBound; |
5667 | } else { |
5668 | returnCode = static_cast<ClpSimplexPrimal *> (this)->primal(0, startFinishOptions); |
5669 | } |
5670 | // Say not second call |
5671 | moreSpecialOptions_ &= ~256; |
5672 | baseIteration_ = 0; |
5673 | setInitialDenseFactorization(denseFactorization); |
5674 | perturbation_ = savePerturbation; |
5675 | if (problemStatus_ == 10) { |
5676 | if (!numberPrimalInfeasibilities_) { |
5677 | problemStatus_ = 0; |
5678 | numberDualInfeasibilities_ = 0; |
5679 | } else { |
5680 | problemStatus_ = 4; |
5681 | } |
5682 | } |
5683 | } |
5684 | //factorization_->pivotTolerance(savedPivotTolerance); |
5685 | onStopped(); // set secondary status if stopped |
5686 | //if (problemStatus_==1&&lastAlgorithm==1) |
5687 | //returnCode=10; // so will do primal after postsolve |
5688 | return returnCode; |
5689 | } |
5690 | #ifndef SLIM_CLP |
5691 | #include "ClpQuadraticObjective.hpp" |
5692 | /* Dual ranging. |
5693 | This computes increase/decrease in cost for each given variable and corresponding |
5694 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
5695 | and numberColumns.. for artificials/slacks. |
5696 | For non-basic variables the sequence number will be that of the non-basic variables. |
5697 | |
5698 | Up to user to provide correct length arrays. |
5699 | |
5700 | Returns non-zero if infeasible unbounded etc |
5701 | */ |
5702 | #include "ClpSimplexOther.hpp" |
5703 | int ClpSimplex::dualRanging(int numberCheck, const int * which, |
5704 | double * costIncrease, int * sequenceIncrease, |
5705 | double * costDecrease, int * sequenceDecrease, |
5706 | double * valueIncrease, double * valueDecrease) |
5707 | { |
5708 | int savePerturbation = perturbation_; |
5709 | perturbation_ = 100; |
5710 | /*int returnCode =*/ static_cast<ClpSimplexPrimal *> (this)->primal(0, 1); |
5711 | if (problemStatus_ == 10) { |
5712 | //printf("Cleaning up with dual\n"); |
5713 | bool denseFactorization = initialDenseFactorization(); |
5714 | // It will be safe to allow dense |
5715 | setInitialDenseFactorization(true); |
5716 | // check which algorithms allowed |
5717 | int dummy; |
5718 | if ((matrix_->generalExpanded(this, 4, dummy) & 2) != 0) { |
5719 | // upperOut_ has largest away from bound |
5720 | double saveBound = dualBound_; |
5721 | if (upperOut_ > 0.0) |
5722 | dualBound_ = 2.0 * upperOut_; |
5723 | /*returnCode =*/ static_cast<ClpSimplexDual *> (this)->dual(0, 1); |
5724 | dualBound_ = saveBound; |
5725 | } else { |
5726 | /*returnCode =*/ static_cast<ClpSimplexPrimal *> (this)->primal(0, 1); |
5727 | } |
5728 | setInitialDenseFactorization(denseFactorization); |
5729 | if (problemStatus_ == 10) |
5730 | problemStatus_ = 0; |
5731 | } |
5732 | perturbation_ = savePerturbation; |
5733 | if (problemStatus_ || secondaryStatus_ == 6) { |
5734 | finish(); // get rid of arrays |
5735 | return 1; // odd status |
5736 | } |
5737 | static_cast<ClpSimplexOther *> (this)->dualRanging(numberCheck, which, |
5738 | costIncrease, sequenceIncrease, |
5739 | costDecrease, sequenceDecrease, |
5740 | valueIncrease, valueDecrease); |
5741 | finish(); // get rid of arrays |
5742 | return 0; |
5743 | } |
5744 | /* Primal ranging. |
5745 | This computes increase/decrease in value for each given variable and corresponding |
5746 | sequence numbers which would change basis. Sequence numbers are 0..numberColumns |
5747 | and numberColumns.. for artificials/slacks. |
5748 | For basic variables the sequence number will be that of the basic variables. |
5749 | |
5750 | Up to user to providen correct length arrays. |
5751 | |
5752 | Returns non-zero if infeasible unbounded etc |
5753 | */ |
5754 | int ClpSimplex::primalRanging(int numberCheck, const int * which, |
5755 | double * valueIncrease, int * sequenceIncrease, |
5756 | double * valueDecrease, int * sequenceDecrease) |
5757 | { |
5758 | int savePerturbation = perturbation_; |
5759 | perturbation_ = 100; |
5760 | /*int returnCode =*/ static_cast<ClpSimplexPrimal *> (this)->primal(0, 1); |
5761 | if (problemStatus_ == 10) { |
5762 | //printf("Cleaning up with dual\n"); |
5763 | bool denseFactorization = initialDenseFactorization(); |
5764 | // It will be safe to allow dense |
5765 | setInitialDenseFactorization(true); |
5766 | // check which algorithms allowed |
5767 | int dummy; |
5768 | if ((matrix_->generalExpanded(this, 4, dummy) & 2) != 0) { |
5769 | // upperOut_ has largest away from bound |
5770 | double saveBound = dualBound_; |
5771 | if (upperOut_ > 0.0) |
5772 | dualBound_ = 2.0 * upperOut_; |
5773 | /*returnCode =*/ static_cast<ClpSimplexDual *> (this)->dual(0, 1); |
5774 | dualBound_ = saveBound; |
5775 | } else { |
5776 | /*returnCode =*/ static_cast<ClpSimplexPrimal *> (this)->primal(0, 1); |
5777 | } |
5778 | setInitialDenseFactorization(denseFactorization); |
5779 | if (problemStatus_ == 10) |
5780 | problemStatus_ = 0; |
5781 | } |
5782 | perturbation_ = savePerturbation; |
5783 | if (problemStatus_ || secondaryStatus_ == 6) { |
5784 | finish(); // get rid of arrays |
5785 | return 1; // odd status |
5786 | } |
5787 | static_cast<ClpSimplexOther *> (this)->primalRanging(numberCheck, which, |
5788 | valueIncrease, sequenceIncrease, |
5789 | valueDecrease, sequenceDecrease); |
5790 | finish(); // get rid of arrays |
5791 | return 0; |
5792 | } |
5793 | /* Write the basis in MPS format to the specified file. |
5794 | If writeValues true writes values of structurals |
5795 | (and adds VALUES to end of NAME card) |
5796 | |
5797 | Row and column names may be null. |
5798 | formatType is |
5799 | <ul> |
5800 | <li> 0 - normal |
5801 | <li> 1 - extra accuracy |
5802 | <li> 2 - IEEE hex (later) |
5803 | </ul> |
5804 | |
5805 | Returns non-zero on I/O error |
5806 | */ |
5807 | int |
5808 | ClpSimplex::writeBasis(const char *filename, |
5809 | bool writeValues, |
5810 | int formatType) const |
5811 | { |
5812 | return static_cast<const ClpSimplexOther *> (this)->writeBasis(filename, writeValues, |
5813 | formatType); |
5814 | } |
5815 | // Read a basis from the given filename |
5816 | int |
5817 | ClpSimplex::readBasis(const char *filename) |
5818 | { |
5819 | return static_cast<ClpSimplexOther *> (this)->readBasis(filename); |
5820 | } |
5821 | #include "ClpSimplexNonlinear.hpp" |
5822 | /* Solves nonlinear problem using SLP - may be used as crash |
5823 | for other algorithms when number of iterations small |
5824 | */ |
5825 | int |
5826 | ClpSimplex::nonlinearSLP(int numberPasses, double deltaTolerance) |
5827 | { |
5828 | return static_cast<ClpSimplexNonlinear *> (this)->primalSLP(numberPasses, deltaTolerance); |
5829 | } |
5830 | /* Solves problem with nonlinear constraints using SLP - may be used as crash |
5831 | for other algorithms when number of iterations small. |
5832 | Also exits if all problematical variables are changing |
5833 | less than deltaTolerance |
5834 | */ |
5835 | int |
5836 | ClpSimplex::nonlinearSLP(int numberConstraints, ClpConstraint ** constraints, |
5837 | int numberPasses, double deltaTolerance) |
5838 | { |
5839 | return static_cast<ClpSimplexNonlinear *> (this)->primalSLP(numberConstraints, constraints, numberPasses, deltaTolerance); |
5840 | } |
5841 | // Solves non-linear using reduced gradient |
5842 | int ClpSimplex::reducedGradient(int phase) |
5843 | { |
5844 | if (objective_->type() < 2 || !objective_->activated()) { |
5845 | // no quadratic part |
5846 | return primal(0); |
5847 | } |
5848 | // get feasible |
5849 | if ((this->status() < 0 || numberPrimalInfeasibilities()) && phase == 0) { |
5850 | objective_->setActivated(0); |
5851 | double saveDirection = optimizationDirection(); |
5852 | setOptimizationDirection(0.0); |
5853 | primal(1); |
5854 | setOptimizationDirection(saveDirection); |
5855 | objective_->setActivated(1); |
5856 | // still infeasible |
5857 | if (numberPrimalInfeasibilities()) |
5858 | return 0; |
5859 | } |
5860 | // Now enter method |
5861 | int returnCode = static_cast<ClpSimplexNonlinear *> (this)->primal(); |
5862 | return returnCode; |
5863 | } |
5864 | #include "ClpPredictorCorrector.hpp" |
5865 | #include "ClpCholeskyBase.hpp" |
5866 | // Preference is WSSMP, UFL (just ordering), MUMPS, TAUCS then base |
5867 | #include "ClpCholeskyWssmp.hpp" |
5868 | #include "ClpCholeskyWssmpKKT.hpp" |
5869 | #include "ClpCholeskyUfl.hpp" |
5870 | #include "ClpCholeskyMumps.hpp" |
5871 | #if TAUCS_BARRIER |
5872 | #include "ClpCholeskyTaucs.hpp" |
5873 | #endif |
5874 | #include "ClpPresolve.hpp" |
5875 | /* Solves using barrier (assumes you have good cholesky factor code). |
5876 | Does crossover to simplex if asked*/ |
5877 | int |
5878 | ClpSimplex::barrier(bool crossover) |
5879 | { |
5880 | ClpSimplex * model2 = this; |
5881 | int savePerturbation = perturbation_; |
5882 | ClpInterior barrier; |
5883 | barrier.borrowModel(*model2); |
5884 | // See if quadratic objective |
5885 | ClpQuadraticObjective * quadraticObj = NULL; |
5886 | if (objective_->type() == 2) |
5887 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
5888 | // If Quadratic we need KKT |
5889 | bool doKKT = (quadraticObj != NULL); |
5890 | // Preference is WSSMP, UFL, MUMPS, TAUCS then base |
5891 | #ifdef WSSMP_BARRIER |
5892 | if (!doKKT) { |
5893 | ClpCholeskyWssmp * cholesky = new ClpCholeskyWssmp(CoinMax(100, model2->numberRows() / 10)); |
5894 | barrier.setCholesky(cholesky); |
5895 | } else { |
5896 | //ClpCholeskyWssmp * cholesky = new ClpCholeskyWssmp(); |
5897 | ClpCholeskyWssmpKKT * cholesky = new ClpCholeskyWssmpKKT(CoinMax(100, model2->numberRows() / 10)); |
5898 | barrier.setCholesky(cholesky); |
5899 | } |
5900 | #elif defined(COIN_HAS_AMD) || defined(COIN_HAS_CHOLMOD) |
5901 | if (!doKKT) { |
5902 | ClpCholeskyUfl * cholesky = new ClpCholeskyUfl(); |
5903 | barrier.setCholesky(cholesky); |
5904 | } else { |
5905 | ClpCholeskyBase * cholesky = new ClpCholeskyBase(); |
5906 | // not yetClpCholeskyUfl * cholesky = new ClpCholeskyUfl(); |
5907 | cholesky->setKKT(true); |
5908 | barrier.setCholesky(cholesky); |
5909 | } |
5910 | #elif TAUCS_BARRIER |
5911 | assert (!doKKT); |
5912 | ClpCholeskyTaucs * cholesky = new ClpCholeskyTaucs(); |
5913 | barrier.setCholesky(cholesky); |
5914 | #elifdef COIN_HAS_MUMPS |
5915 | if (!doKKT) { |
5916 | ClpCholeskyMumps * cholesky = new ClpCholeskyMumps(); |
5917 | barrier.setCholesky(cholesky); |
5918 | } else { |
5919 | printf("***** Unable to do Mumps with KKT\n" ); |
5920 | ClpCholeskyBase * cholesky = new ClpCholeskyBase(); |
5921 | cholesky->setKKT(true); |
5922 | barrier.setCholesky(cholesky); |
5923 | } |
5924 | #else |
5925 | if (!doKKT) { |
5926 | ClpCholeskyBase * cholesky = new ClpCholeskyBase(); |
5927 | barrier.setCholesky(cholesky); |
5928 | } else { |
5929 | ClpCholeskyBase * cholesky = new ClpCholeskyBase(); |
5930 | cholesky->setKKT(true); |
5931 | barrier.setCholesky(cholesky); |
5932 | } |
5933 | #endif |
5934 | barrier.setDiagonalPerturbation(1.0e-14); |
5935 | int numberRows = model2->numberRows(); |
5936 | int numberColumns = model2->numberColumns(); |
5937 | int saveMaxIts = model2->maximumIterations(); |
5938 | if (saveMaxIts < 1000) { |
5939 | barrier.setMaximumBarrierIterations(saveMaxIts); |
5940 | model2->setMaximumIterations(1000000); |
5941 | } |
5942 | barrier.primalDual(); |
5943 | int barrierStatus = barrier.status(); |
5944 | double gap = static_cast<double>(barrier.complementarityGap()); |
5945 | // get which variables are fixed |
5946 | double * saveLower = NULL; |
5947 | double * saveUpper = NULL; |
5948 | ClpPresolve pinfo2; |
5949 | ClpSimplex * saveModel2 = NULL; |
5950 | int numberFixed = barrier.numberFixed(); |
5951 | if (numberFixed * 20 > barrier.numberRows() && numberFixed > 5000 && crossover && 0) { |
5952 | // may as well do presolve |
5953 | int numberRows = barrier.numberRows(); |
5954 | int numberColumns = barrier.numberColumns(); |
5955 | int numberTotal = numberRows + numberColumns; |
5956 | saveLower = new double [numberTotal]; |
5957 | saveUpper = new double [numberTotal]; |
5958 | CoinMemcpyN(barrier.columnLower(), numberColumns, saveLower); |
5959 | CoinMemcpyN(barrier.rowLower(), numberRows, saveLower + numberColumns); |
5960 | CoinMemcpyN(barrier.columnUpper(), numberColumns, saveUpper); |
5961 | CoinMemcpyN(barrier.rowUpper(), numberRows, saveUpper + numberColumns); |
5962 | barrier.fixFixed(); |
5963 | saveModel2 = model2; |
5964 | } |
5965 | barrier.returnModel(*model2); |
5966 | double * rowPrimal = new double [numberRows]; |
5967 | double * columnPrimal = new double [numberColumns]; |
5968 | double * rowDual = new double [numberRows]; |
5969 | double * columnDual = new double [numberColumns]; |
5970 | // move solutions other way |
5971 | CoinMemcpyN(model2->primalRowSolution(), |
5972 | numberRows, rowPrimal); |
5973 | CoinMemcpyN(model2->dualRowSolution(), |
5974 | numberRows, rowDual); |
5975 | CoinMemcpyN(model2->primalColumnSolution(), |
5976 | numberColumns, columnPrimal); |
5977 | CoinMemcpyN(model2->dualColumnSolution(), |
5978 | numberColumns, columnDual); |
5979 | if (saveModel2) { |
5980 | // do presolve |
5981 | model2 = pinfo2.presolvedModel(*model2, 1.0e-8, |
5982 | false, 5, true); |
5983 | } |
5984 | if (barrierStatus < 4 && crossover) { |
5985 | // make sure no status left |
5986 | model2->createStatus(); |
5987 | // solve |
5988 | model2->setPerturbation(100); |
5989 | // throw some into basis |
5990 | { |
5991 | int numberRows = model2->numberRows(); |
5992 | int numberColumns = model2->numberColumns(); |
5993 | double * dsort = new double[numberColumns]; |
5994 | int * sort = new int[numberColumns]; |
5995 | int n = 0; |
5996 | const double * columnLower = model2->columnLower(); |
5997 | const double * columnUpper = model2->columnUpper(); |
5998 | const double * primalSolution = model2->primalColumnSolution(); |
5999 | double tolerance = 10.0 * primalTolerance_; |
6000 | int i; |
6001 | for ( i = 0; i < numberRows; i++) |
6002 | model2->setRowStatus(i, superBasic); |
6003 | for ( i = 0; i < numberColumns; i++) { |
6004 | double distance = CoinMin(columnUpper[i] - primalSolution[i], |
6005 | primalSolution[i] - columnLower[i]); |
6006 | if (distance > tolerance) { |
6007 | dsort[n] = -distance; |
6008 | sort[n++] = i; |
6009 | model2->setStatus(i, superBasic); |
6010 | } else if (distance > primalTolerance_) { |
6011 | model2->setStatus(i, superBasic); |
6012 | } else if (primalSolution[i] <= columnLower[i] + primalTolerance_) { |
6013 | model2->setStatus(i, atLowerBound); |
6014 | } else { |
6015 | model2->setStatus(i, atUpperBound); |
6016 | } |
6017 | } |
6018 | CoinSort_2(dsort, dsort + n, sort); |
6019 | n = CoinMin(numberRows, n); |
6020 | for ( i = 0; i < n; i++) { |
6021 | int iColumn = sort[i]; |
6022 | model2->setStatus(iColumn, basic); |
6023 | } |
6024 | delete [] sort; |
6025 | delete [] dsort; |
6026 | } |
6027 | if (gap < 1.0e-3 * (static_cast<double> (numberRows + numberColumns))) { |
6028 | int numberRows = model2->numberRows(); |
6029 | int numberColumns = model2->numberColumns(); |
6030 | // just primal values pass |
6031 | double saveScale = model2->objectiveScale(); |
6032 | model2->setObjectiveScale(1.0e-3); |
6033 | model2->primal(2); |
6034 | model2->setObjectiveScale(saveScale); |
6035 | // save primal solution and copy back dual |
6036 | CoinMemcpyN(model2->primalRowSolution(), |
6037 | numberRows, rowPrimal); |
6038 | CoinMemcpyN(rowDual, |
6039 | numberRows, model2->dualRowSolution()); |
6040 | CoinMemcpyN(model2->primalColumnSolution(), |
6041 | numberColumns, columnPrimal); |
6042 | CoinMemcpyN(columnDual, |
6043 | numberColumns, model2->dualColumnSolution()); |
6044 | //model2->primal(1); |
6045 | // clean up reduced costs and flag variables |
6046 | { |
6047 | double * dj = model2->dualColumnSolution(); |
6048 | double * cost = model2->objective(); |
6049 | double * saveCost = new double[numberColumns]; |
6050 | CoinMemcpyN(cost, numberColumns, saveCost); |
6051 | double * saveLower = new double[numberColumns]; |
6052 | double * lower = model2->columnLower(); |
6053 | CoinMemcpyN(lower, numberColumns, saveLower); |
6054 | double * saveUpper = new double[numberColumns]; |
6055 | double * upper = model2->columnUpper(); |
6056 | CoinMemcpyN(upper, numberColumns, saveUpper); |
6057 | int i; |
6058 | double tolerance = 10.0 * dualTolerance_; |
6059 | for ( i = 0; i < numberColumns; i++) { |
6060 | if (model2->getStatus(i) == basic) { |
6061 | dj[i] = 0.0; |
6062 | } else if (model2->getStatus(i) == atLowerBound) { |
6063 | if (optimizationDirection_ * dj[i] < tolerance) { |
6064 | if (optimizationDirection_ * dj[i] < 0.0) { |
6065 | //if (dj[i]<-1.0e-3) |
6066 | //printf("bad dj at lb %d %g\n",i,dj[i]); |
6067 | cost[i] -= dj[i]; |
6068 | dj[i] = 0.0; |
6069 | } |
6070 | } else { |
6071 | upper[i] = lower[i]; |
6072 | } |
6073 | } else if (model2->getStatus(i) == atUpperBound) { |
6074 | if (optimizationDirection_ * dj[i] > tolerance) { |
6075 | if (optimizationDirection_ * dj[i] > 0.0) { |
6076 | //if (dj[i]>1.0e-3) |
6077 | //printf("bad dj at ub %d %g\n",i,dj[i]); |
6078 | cost[i] -= dj[i]; |
6079 | dj[i] = 0.0; |
6080 | } |
6081 | } else { |
6082 | lower[i] = upper[i]; |
6083 | } |
6084 | } |
6085 | } |
6086 | // just dual values pass |
6087 | //model2->setLogLevel(63); |
6088 | //model2->setFactorizationFrequency(1); |
6089 | model2->dual(2); |
6090 | CoinMemcpyN(saveCost, numberColumns, cost); |
6091 | delete [] saveCost; |
6092 | CoinMemcpyN(saveLower, numberColumns, lower); |
6093 | delete [] saveLower; |
6094 | CoinMemcpyN(saveUpper, numberColumns, upper); |
6095 | delete [] saveUpper; |
6096 | } |
6097 | // and finish |
6098 | // move solutions |
6099 | CoinMemcpyN(rowPrimal, |
6100 | numberRows, model2->primalRowSolution()); |
6101 | CoinMemcpyN(columnPrimal, |
6102 | numberColumns, model2->primalColumnSolution()); |
6103 | } |
6104 | // double saveScale = model2->objectiveScale(); |
6105 | // model2->setObjectiveScale(1.0e-3); |
6106 | // model2->primal(2); |
6107 | // model2->setObjectiveScale(saveScale); |
6108 | model2->primal(1); |
6109 | } else if (barrierStatus == 4 && crossover) { |
6110 | // memory problems |
6111 | model2->setPerturbation(savePerturbation); |
6112 | model2->createStatus(); |
6113 | model2->dual(); |
6114 | } |
6115 | model2->setMaximumIterations(saveMaxIts); |
6116 | delete [] rowPrimal; |
6117 | delete [] columnPrimal; |
6118 | delete [] rowDual; |
6119 | delete [] columnDual; |
6120 | if (saveLower) { |
6121 | pinfo2.postsolve(true); |
6122 | delete model2; |
6123 | model2 = saveModel2; |
6124 | int numberRows = model2->numberRows(); |
6125 | int numberColumns = model2->numberColumns(); |
6126 | CoinMemcpyN(saveLower, numberColumns, model2->columnLower()); |
6127 | CoinMemcpyN(saveLower + numberColumns, numberRows, model2->rowLower()); |
6128 | delete [] saveLower; |
6129 | CoinMemcpyN(saveUpper, numberColumns, model2->columnUpper()); |
6130 | CoinMemcpyN(saveUpper + numberColumns, numberRows, model2->rowUpper()); |
6131 | delete [] saveUpper; |
6132 | model2->primal(1); |
6133 | } |
6134 | model2->setPerturbation(savePerturbation); |
6135 | return model2->status(); |
6136 | } |
6137 | /* For strong branching. On input lower and upper are new bounds |
6138 | while on output they are objective function values (>1.0e50 infeasible). |
6139 | Return code is 0 if nothing interesting, -1 if infeasible both |
6140 | ways and +1 if infeasible one way (check values to see which one(s)) |
6141 | */ |
6142 | int ClpSimplex::strongBranching(int numberVariables, const int * variables, |
6143 | double * newLower, double * newUpper, |
6144 | double ** outputSolution, |
6145 | int * outputStatus, int * outputIterations, |
6146 | bool stopOnFirstInfeasible, |
6147 | bool alwaysFinish, |
6148 | int startFinishOptions) |
6149 | { |
6150 | return static_cast<ClpSimplexDual *> (this)->strongBranching(numberVariables, variables, |
6151 | newLower, newUpper, outputSolution, |
6152 | outputStatus, outputIterations, |
6153 | stopOnFirstInfeasible, |
6154 | alwaysFinish, startFinishOptions); |
6155 | } |
6156 | #endif |
6157 | /* Borrow model. This is so we dont have to copy large amounts |
6158 | of data around. It assumes a derived class wants to overwrite |
6159 | an empty model with a real one - while it does an algorithm. |
6160 | This is same as ClpModel one, but sets scaling on etc. */ |
6161 | void |
6162 | ClpSimplex::borrowModel(ClpModel & otherModel) |
6163 | { |
6164 | ClpModel::borrowModel(otherModel); |
6165 | createStatus(); |
6166 | //ClpDualRowSteepest steep1; |
6167 | //setDualRowPivotAlgorithm(steep1); |
6168 | //ClpPrimalColumnSteepest steep2; |
6169 | //setPrimalColumnPivotAlgorithm(steep2); |
6170 | } |
6171 | void |
6172 | ClpSimplex::borrowModel(ClpSimplex & otherModel) |
6173 | { |
6174 | ClpModel::borrowModel(otherModel); |
6175 | createStatus(); |
6176 | dualBound_ = otherModel.dualBound_; |
6177 | dualTolerance_ = otherModel.dualTolerance_; |
6178 | primalTolerance_ = otherModel.primalTolerance_; |
6179 | delete dualRowPivot_; |
6180 | dualRowPivot_ = otherModel.dualRowPivot_->clone(true); |
6181 | dualRowPivot_->setModel(this); |
6182 | delete primalColumnPivot_; |
6183 | primalColumnPivot_ = otherModel.primalColumnPivot_->clone(true); |
6184 | primalColumnPivot_->setModel(this); |
6185 | perturbation_ = otherModel.perturbation_; |
6186 | moreSpecialOptions_ = otherModel.moreSpecialOptions_; |
6187 | automaticScale_ = otherModel.automaticScale_; |
6188 | maximumPerturbationSize_ = otherModel.maximumPerturbationSize_; |
6189 | perturbationArray_ = otherModel.perturbationArray_; |
6190 | } |
6191 | /// Saves scalars for ClpSimplex |
6192 | typedef struct { |
6193 | double optimizationDirection; |
6194 | double dblParam[ClpLastDblParam]; |
6195 | double objectiveValue; |
6196 | double dualBound; |
6197 | double dualTolerance; |
6198 | double primalTolerance; |
6199 | double sumDualInfeasibilities; |
6200 | double sumPrimalInfeasibilities; |
6201 | double infeasibilityCost; |
6202 | int numberRows; |
6203 | int numberColumns; |
6204 | int intParam[ClpLastIntParam]; |
6205 | int numberIterations; |
6206 | int problemStatus; |
6207 | int maximumIterations; |
6208 | int lengthNames; |
6209 | int numberDualInfeasibilities; |
6210 | int numberDualInfeasibilitiesWithoutFree; |
6211 | int numberPrimalInfeasibilities; |
6212 | int numberRefinements; |
6213 | int scalingFlag; |
6214 | int algorithm; |
6215 | unsigned int specialOptions; |
6216 | int dualPivotChoice; |
6217 | int primalPivotChoice; |
6218 | int matrixStorageChoice; |
6219 | } Clp_scalars; |
6220 | #ifndef SLIM_NOIO |
6221 | int outDoubleArray(double * array, int length, FILE * fp) |
6222 | { |
6223 | size_t numberWritten; |
6224 | if (array && length) { |
6225 | numberWritten = fwrite(&length, sizeof(int), 1, fp); |
6226 | if (numberWritten != 1) |
6227 | return 1; |
6228 | numberWritten = fwrite(array, sizeof(double), length, fp); |
6229 | if (numberWritten != static_cast<size_t>(length)) |
6230 | return 1; |
6231 | } else { |
6232 | length = 0; |
6233 | numberWritten = fwrite(&length, sizeof(int), 1, fp); |
6234 | if (numberWritten != 1) |
6235 | return 1; |
6236 | } |
6237 | return 0; |
6238 | } |
6239 | // Save model to file, returns 0 if success |
6240 | int |
6241 | ClpSimplex::saveModel(const char * fileName) |
6242 | { |
6243 | FILE * fp = fopen(fileName, "wb" ); |
6244 | if (fp) { |
6245 | Clp_scalars scalars; |
6246 | size_t numberWritten; |
6247 | // Fill in scalars |
6248 | scalars.optimizationDirection = optimizationDirection_; |
6249 | CoinMemcpyN( dblParam_, ClpLastDblParam, scalars.dblParam); |
6250 | scalars.objectiveValue = objectiveValue_; |
6251 | scalars.dualBound = dualBound_; |
6252 | scalars.dualTolerance = dualTolerance_; |
6253 | scalars.primalTolerance = primalTolerance_; |
6254 | scalars.sumDualInfeasibilities = sumDualInfeasibilities_; |
6255 | scalars.sumPrimalInfeasibilities = sumPrimalInfeasibilities_; |
6256 | scalars.infeasibilityCost = infeasibilityCost_; |
6257 | scalars.numberRows = numberRows_; |
6258 | scalars.numberColumns = numberColumns_; |
6259 | CoinMemcpyN( intParam_, ClpLastIntParam, scalars.intParam); |
6260 | scalars.numberIterations = numberIterations_; |
6261 | scalars.problemStatus = problemStatus_; |
6262 | scalars.maximumIterations = maximumIterations(); |
6263 | scalars.lengthNames = lengthNames_; |
6264 | scalars.numberDualInfeasibilities = numberDualInfeasibilities_; |
6265 | scalars.numberDualInfeasibilitiesWithoutFree |
6266 | = numberDualInfeasibilitiesWithoutFree_; |
6267 | scalars.numberPrimalInfeasibilities = numberPrimalInfeasibilities_; |
6268 | scalars.numberRefinements = numberRefinements_; |
6269 | scalars.scalingFlag = scalingFlag_; |
6270 | scalars.algorithm = algorithm_; |
6271 | scalars.specialOptions = specialOptions_; |
6272 | scalars.dualPivotChoice = dualRowPivot_->type(); |
6273 | scalars.primalPivotChoice = primalColumnPivot_->type(); |
6274 | scalars.matrixStorageChoice = matrix_->type(); |
6275 | |
6276 | // put out scalars |
6277 | numberWritten = fwrite(&scalars, sizeof(Clp_scalars), 1, fp); |
6278 | if (numberWritten != 1) |
6279 | return 1; |
6280 | size_t length; |
6281 | #ifndef CLP_NO_STD |
6282 | int i; |
6283 | // strings |
6284 | for (i = 0; i < ClpLastStrParam; i++) { |
6285 | length = strParam_[i].size(); |
6286 | numberWritten = fwrite(&length, sizeof(int), 1, fp); |
6287 | if (numberWritten != 1) |
6288 | return 1; |
6289 | if (length) { |
6290 | numberWritten = fwrite(strParam_[i].c_str(), length, 1, fp); |
6291 | if (numberWritten != 1) |
6292 | return 1; |
6293 | } |
6294 | } |
6295 | #endif |
6296 | // arrays - in no particular order |
6297 | if (outDoubleArray(rowActivity_, numberRows_, fp)) |
6298 | return 1; |
6299 | if (outDoubleArray(columnActivity_, numberColumns_, fp)) |
6300 | return 1; |
6301 | if (outDoubleArray(dual_, numberRows_, fp)) |
6302 | return 1; |
6303 | if (outDoubleArray(reducedCost_, numberColumns_, fp)) |
6304 | return 1; |
6305 | if (outDoubleArray(rowLower_, numberRows_, fp)) |
6306 | return 1; |
6307 | if (outDoubleArray(rowUpper_, numberRows_, fp)) |
6308 | return 1; |
6309 | if (outDoubleArray(objective(), numberColumns_, fp)) |
6310 | return 1; |
6311 | if (outDoubleArray(rowObjective_, numberRows_, fp)) |
6312 | return 1; |
6313 | if (outDoubleArray(columnLower_, numberColumns_, fp)) |
6314 | return 1; |
6315 | if (outDoubleArray(columnUpper_, numberColumns_, fp)) |
6316 | return 1; |
6317 | if (ray_) { |
6318 | if (problemStatus_ == 1) { |
6319 | if (outDoubleArray(ray_, numberRows_, fp)) |
6320 | return 1; |
6321 | } else if (problemStatus_ == 2) { |
6322 | if (outDoubleArray(ray_, numberColumns_, fp)) |
6323 | return 1; |
6324 | } else { |
6325 | if (outDoubleArray(NULL, 0, fp)) |
6326 | return 1; |
6327 | } |
6328 | } else { |
6329 | if (outDoubleArray(NULL, 0, fp)) |
6330 | return 1; |
6331 | } |
6332 | if (status_ && (numberRows_ + numberColumns_) > 0) { |
6333 | length = numberRows_ + numberColumns_; |
6334 | numberWritten = fwrite(&length, sizeof(int), 1, fp); |
6335 | if (numberWritten != 1) |
6336 | return 1; |
6337 | numberWritten = fwrite(status_, sizeof(char), length, fp); |
6338 | if (numberWritten != length) |
6339 | return 1; |
6340 | } else { |
6341 | length = 0; |
6342 | numberWritten = fwrite(&length, sizeof(int), 1, fp); |
6343 | if (numberWritten != 1) |
6344 | return 1; |
6345 | } |
6346 | #ifndef CLP_NO_STD |
6347 | if (lengthNames_) { |
6348 | char * array = |
6349 | new char[CoinMax(numberRows_, numberColumns_)*(lengthNames_+1)]; |
6350 | char * put = array; |
6351 | CoinAssert (numberRows_ == static_cast<int> (rowNames_.size())); |
6352 | for (i = 0; i < numberRows_; i++) { |
6353 | assert(static_cast<int>(rowNames_[i].size()) <= lengthNames_); |
6354 | strcpy(put, rowNames_[i].c_str()); |
6355 | put += lengthNames_ + 1; |
6356 | } |
6357 | numberWritten = fwrite(array, lengthNames_ + 1, numberRows_, fp); |
6358 | if (numberWritten != static_cast<size_t>(numberRows_)) |
6359 | return 1; |
6360 | put = array; |
6361 | CoinAssert (numberColumns_ == static_cast<int> (columnNames_.size())); |
6362 | for (i = 0; i < numberColumns_; i++) { |
6363 | assert(static_cast<int> (columnNames_[i].size()) <= lengthNames_); |
6364 | strcpy(put, columnNames_[i].c_str()); |
6365 | put += lengthNames_ + 1; |
6366 | } |
6367 | numberWritten = fwrite(array, lengthNames_ + 1, numberColumns_, fp); |
6368 | if (numberWritten != static_cast<size_t>(numberColumns_)) |
6369 | return 1; |
6370 | delete [] array; |
6371 | } |
6372 | #endif |
6373 | // integers |
6374 | if (integerType_) { |
6375 | int marker = 1; |
6376 | numberWritten = fwrite(&marker, sizeof(int), 1, fp); |
6377 | numberWritten = fwrite(integerType_, 1, numberColumns_, fp); |
6378 | if (numberWritten != static_cast<size_t>(numberColumns_)) |
6379 | return 1; |
6380 | } else { |
6381 | int marker = 0; |
6382 | numberWritten = fwrite(&marker, sizeof(int), 1, fp); |
6383 | } |
6384 | // just standard type at present |
6385 | assert (matrix_->type() == 1); |
6386 | CoinAssert (matrix_->getNumCols() == numberColumns_); |
6387 | CoinAssert (matrix_->getNumRows() == numberRows_); |
6388 | // we are going to save with gaps |
6389 | length = matrix_->getVectorStarts()[numberColumns_-1] |
6390 | + matrix_->getVectorLengths()[numberColumns_-1]; |
6391 | numberWritten = fwrite(&length, sizeof(int), 1, fp); |
6392 | if (numberWritten != 1) |
6393 | return 1; |
6394 | numberWritten = fwrite(matrix_->getElements(), |
6395 | sizeof(double), length, fp); |
6396 | if (numberWritten != length) |
6397 | return 1; |
6398 | numberWritten = fwrite(matrix_->getIndices(), |
6399 | sizeof(int), length, fp); |
6400 | if (numberWritten != length) |
6401 | return 1; |
6402 | numberWritten = fwrite(matrix_->getVectorStarts(), |
6403 | sizeof(int), numberColumns_ + 1, fp); |
6404 | if (numberWritten != static_cast<size_t>(numberColumns_) + 1) |
6405 | return 1; |
6406 | numberWritten = fwrite(matrix_->getVectorLengths(), |
6407 | sizeof(int), numberColumns_, fp); |
6408 | if (numberWritten != static_cast<size_t>(numberColumns_)) |
6409 | return 1; |
6410 | // finished |
6411 | fclose(fp); |
6412 | return 0; |
6413 | } else { |
6414 | return -1; |
6415 | } |
6416 | } |
6417 | |
6418 | int inDoubleArray(double * &array, int length, FILE * fp) |
6419 | { |
6420 | size_t numberRead; |
6421 | int length2; |
6422 | numberRead = fread(&length2, sizeof(int), 1, fp); |
6423 | if (numberRead != 1) |
6424 | return 1; |
6425 | if (length2) { |
6426 | // lengths must match |
6427 | if (length != length2) |
6428 | return 2; |
6429 | array = new double[length]; |
6430 | numberRead = fread(array, sizeof(double), length, fp); |
6431 | if (numberRead != static_cast<size_t>(length)) |
6432 | return 1; |
6433 | } |
6434 | return 0; |
6435 | } |
6436 | /* Restore model from file, returns 0 if success, |
6437 | deletes current model */ |
6438 | int |
6439 | ClpSimplex::restoreModel(const char * fileName) |
6440 | { |
6441 | FILE * fp = fopen(fileName, "rb" ); |
6442 | if (fp) { |
6443 | // Get rid of current model |
6444 | // save event handler in case already set |
6445 | ClpEventHandler * handler = eventHandler_->clone(); |
6446 | ClpModel::gutsOfDelete(0); |
6447 | eventHandler_ = handler; |
6448 | gutsOfDelete(0); |
6449 | int i; |
6450 | for (i = 0; i < 6; i++) { |
6451 | rowArray_[i] = NULL; |
6452 | columnArray_[i] = NULL; |
6453 | } |
6454 | // get an empty factorization so we can set tolerances etc |
6455 | getEmptyFactorization(); |
6456 | // Say sparse |
6457 | factorization_->sparseThreshold(1); |
6458 | Clp_scalars scalars; |
6459 | size_t numberRead; |
6460 | |
6461 | // get scalars |
6462 | numberRead = fread(&scalars, sizeof(Clp_scalars), 1, fp); |
6463 | if (numberRead != 1) |
6464 | return 1; |
6465 | // Fill in scalars |
6466 | optimizationDirection_ = scalars.optimizationDirection; |
6467 | CoinMemcpyN( scalars.dblParam, ClpLastDblParam, dblParam_); |
6468 | objectiveValue_ = scalars.objectiveValue; |
6469 | dualBound_ = scalars.dualBound; |
6470 | dualTolerance_ = scalars.dualTolerance; |
6471 | primalTolerance_ = scalars.primalTolerance; |
6472 | sumDualInfeasibilities_ = scalars.sumDualInfeasibilities; |
6473 | sumPrimalInfeasibilities_ = scalars.sumPrimalInfeasibilities; |
6474 | infeasibilityCost_ = scalars.infeasibilityCost; |
6475 | numberRows_ = scalars.numberRows; |
6476 | numberColumns_ = scalars.numberColumns; |
6477 | CoinMemcpyN( scalars.intParam, ClpLastIntParam, intParam_); |
6478 | numberIterations_ = scalars.numberIterations; |
6479 | problemStatus_ = scalars.problemStatus; |
6480 | setMaximumIterations(scalars.maximumIterations); |
6481 | lengthNames_ = scalars.lengthNames; |
6482 | numberDualInfeasibilities_ = scalars.numberDualInfeasibilities; |
6483 | numberDualInfeasibilitiesWithoutFree_ |
6484 | = scalars.numberDualInfeasibilitiesWithoutFree; |
6485 | numberPrimalInfeasibilities_ = scalars.numberPrimalInfeasibilities; |
6486 | numberRefinements_ = scalars.numberRefinements; |
6487 | scalingFlag_ = scalars.scalingFlag; |
6488 | algorithm_ = scalars.algorithm; |
6489 | specialOptions_ = scalars.specialOptions; |
6490 | // strings |
6491 | CoinBigIndex length; |
6492 | #ifndef CLP_NO_STD |
6493 | for (i = 0; i < ClpLastStrParam; i++) { |
6494 | numberRead = fread(&length, sizeof(int), 1, fp); |
6495 | if (numberRead != 1) |
6496 | return 1; |
6497 | if (length) { |
6498 | char * array = new char[length+1]; |
6499 | numberRead = fread(array, length, 1, fp); |
6500 | if (numberRead != 1) |
6501 | return 1; |
6502 | array[length] = '\0'; |
6503 | strParam_[i] = array; |
6504 | delete [] array; |
6505 | } |
6506 | } |
6507 | #endif |
6508 | // arrays - in no particular order |
6509 | if (inDoubleArray(rowActivity_, numberRows_, fp)) |
6510 | return 1; |
6511 | if (inDoubleArray(columnActivity_, numberColumns_, fp)) |
6512 | return 1; |
6513 | if (inDoubleArray(dual_, numberRows_, fp)) |
6514 | return 1; |
6515 | if (inDoubleArray(reducedCost_, numberColumns_, fp)) |
6516 | return 1; |
6517 | if (inDoubleArray(rowLower_, numberRows_, fp)) |
6518 | return 1; |
6519 | if (inDoubleArray(rowUpper_, numberRows_, fp)) |
6520 | return 1; |
6521 | double * objective = NULL; |
6522 | if (inDoubleArray(objective, numberColumns_, fp)) |
6523 | return 1; |
6524 | delete objective_; |
6525 | objective_ = new ClpLinearObjective(objective, numberColumns_); |
6526 | delete [] objective; |
6527 | if (inDoubleArray(rowObjective_, numberRows_, fp)) |
6528 | return 1; |
6529 | if (inDoubleArray(columnLower_, numberColumns_, fp)) |
6530 | return 1; |
6531 | if (inDoubleArray(columnUpper_, numberColumns_, fp)) |
6532 | return 1; |
6533 | if (problemStatus_ == 1) { |
6534 | if (inDoubleArray(ray_, numberRows_, fp)) |
6535 | return 1; |
6536 | } else if (problemStatus_ == 2) { |
6537 | if (inDoubleArray(ray_, numberColumns_, fp)) |
6538 | return 1; |
6539 | } else { |
6540 | // ray should be null |
6541 | numberRead = fread(&length, sizeof(int), 1, fp); |
6542 | if (numberRead != 1) |
6543 | return 1; |
6544 | if (length) |
6545 | return 2; |
6546 | } |
6547 | delete [] status_; |
6548 | status_ = NULL; |
6549 | // status region |
6550 | numberRead = fread(&length, sizeof(int), 1, fp); |
6551 | if (numberRead != 1) |
6552 | return 1; |
6553 | if (length) { |
6554 | if (length != numberRows_ + numberColumns_) |
6555 | return 1; |
6556 | status_ = new char unsigned[length]; |
6557 | numberRead = fread(status_, sizeof(char), length, fp); |
6558 | if (numberRead != static_cast<size_t>(length)) |
6559 | return 1; |
6560 | } |
6561 | #ifndef CLP_NO_STD |
6562 | if (lengthNames_) { |
6563 | char * array = |
6564 | new char[CoinMax(numberRows_, numberColumns_)*(lengthNames_+1)]; |
6565 | char * get = array; |
6566 | numberRead = fread(array, lengthNames_ + 1, numberRows_, fp); |
6567 | if (numberRead != static_cast<size_t>(numberRows_)) |
6568 | return 1; |
6569 | rowNames_ = std::vector<std::string> (); |
6570 | rowNames_.resize(numberRows_); |
6571 | for (i = 0; i < numberRows_; i++) { |
6572 | rowNames_.push_back(get); |
6573 | get += lengthNames_ + 1; |
6574 | } |
6575 | get = array; |
6576 | numberRead = fread(array, lengthNames_ + 1, numberColumns_, fp); |
6577 | if (numberRead != static_cast<size_t>(numberColumns_)) |
6578 | return 1; |
6579 | columnNames_ = std::vector<std::string> (); |
6580 | columnNames_.resize(numberColumns_); |
6581 | for (i = 0; i < numberColumns_; i++) { |
6582 | columnNames_.push_back(get); |
6583 | get += lengthNames_ + 1; |
6584 | } |
6585 | delete [] array; |
6586 | } |
6587 | #endif |
6588 | // integers |
6589 | int ifInteger; |
6590 | delete [] integerType_; |
6591 | numberRead = fread(&ifInteger, sizeof(int), 1, fp); |
6592 | // But try and stay compatible with previous version |
6593 | bool alreadyGotLength = false; |
6594 | if (numberRead != 1) |
6595 | return 1; |
6596 | if (ifInteger == 1) { |
6597 | integerType_ = new char [numberColumns_]; |
6598 | numberRead = fread(integerType_, 1, numberColumns_, fp); |
6599 | if (numberRead != static_cast<size_t>(numberColumns_)) |
6600 | return 1; |
6601 | } else { |
6602 | integerType_ = NULL; |
6603 | if (ifInteger) { |
6604 | // probably old style save |
6605 | alreadyGotLength = true; |
6606 | length = ifInteger; |
6607 | } |
6608 | } |
6609 | // Pivot choices |
6610 | assert(scalars.dualPivotChoice > 0 && (scalars.dualPivotChoice & 63) < 3); |
6611 | delete dualRowPivot_; |
6612 | switch ((scalars.dualPivotChoice & 63)) { |
6613 | default: |
6614 | printf("Need another dualPivot case %d\n" , scalars.dualPivotChoice & 63); |
6615 | case 1: |
6616 | // Dantzig |
6617 | dualRowPivot_ = new ClpDualRowDantzig(); |
6618 | break; |
6619 | case 2: |
6620 | // Steepest - use mode |
6621 | dualRowPivot_ = new ClpDualRowSteepest(scalars.dualPivotChoice >> 6); |
6622 | break; |
6623 | } |
6624 | assert(scalars.primalPivotChoice > 0 && (scalars.primalPivotChoice & 63) < 3); |
6625 | delete primalColumnPivot_; |
6626 | switch ((scalars.primalPivotChoice & 63)) { |
6627 | default: |
6628 | printf("Need another primalPivot case %d\n" , |
6629 | scalars.primalPivotChoice & 63); |
6630 | case 1: |
6631 | // Dantzig |
6632 | primalColumnPivot_ = new ClpPrimalColumnDantzig(); |
6633 | break; |
6634 | case 2: |
6635 | // Steepest - use mode |
6636 | primalColumnPivot_ |
6637 | = new ClpPrimalColumnSteepest(scalars.primalPivotChoice >> 6); |
6638 | break; |
6639 | } |
6640 | assert(scalars.matrixStorageChoice == 1); |
6641 | delete matrix_; |
6642 | // get arrays |
6643 | if (!alreadyGotLength) { |
6644 | numberRead = fread(&length, sizeof(int), 1, fp); |
6645 | if (numberRead != 1) |
6646 | return 1; |
6647 | } |
6648 | double * elements = new double[length]; |
6649 | int * indices = new int[length]; |
6650 | CoinBigIndex * starts = new CoinBigIndex[numberColumns_+1]; |
6651 | int * lengths = new int[numberColumns_]; |
6652 | numberRead = fread(elements, sizeof(double), length, fp); |
6653 | if (numberRead != static_cast<size_t>(length)) |
6654 | return 1; |
6655 | numberRead = fread(indices, sizeof(int), length, fp); |
6656 | if (numberRead != static_cast<size_t>(length)) |
6657 | return 1; |
6658 | numberRead = fread(starts, sizeof(int), numberColumns_ + 1, fp); |
6659 | if (numberRead != static_cast<size_t>(numberColumns_) + 1) |
6660 | return 1; |
6661 | numberRead = fread(lengths, sizeof(int), numberColumns_, fp); |
6662 | if (numberRead != static_cast<size_t>(numberColumns_)) |
6663 | return 1; |
6664 | // assign matrix |
6665 | CoinPackedMatrix * matrix = new CoinPackedMatrix(); |
6666 | matrix->setExtraGap(0.0); |
6667 | matrix->setExtraMajor(0.0); |
6668 | // Pack down |
6669 | length = 0; |
6670 | for (i = 0; i < numberColumns_; i++) { |
6671 | int start = starts[i]; |
6672 | starts[i] = length; |
6673 | for (CoinBigIndex j = start; j < start + lengths[i]; j++) { |
6674 | elements[length] = elements[j]; |
6675 | indices[length++] = indices[j]; |
6676 | } |
6677 | lengths[i] = length - starts[i]; |
6678 | } |
6679 | starts[numberColumns_] = length; |
6680 | matrix->assignMatrix(true, numberRows_, numberColumns_, |
6681 | length, elements, indices, starts, lengths); |
6682 | // and transfer to Clp |
6683 | matrix_ = new ClpPackedMatrix(matrix); |
6684 | // finished |
6685 | fclose(fp); |
6686 | return 0; |
6687 | } else { |
6688 | return -1; |
6689 | } |
6690 | return 0; |
6691 | } |
6692 | #endif |
6693 | // value of incoming variable (in Dual) |
6694 | double |
6695 | ClpSimplex::valueIncomingDual() const |
6696 | { |
6697 | // Need value of incoming for list of infeasibilities as may be infeasible |
6698 | double valueIncoming = (dualOut_ / alpha_) * directionOut_; |
6699 | if (directionIn_ == -1) |
6700 | valueIncoming = upperIn_ - valueIncoming; |
6701 | else |
6702 | valueIncoming = lowerIn_ - valueIncoming; |
6703 | return valueIncoming; |
6704 | } |
6705 | // Sanity check on input data - returns true if okay |
6706 | bool |
6707 | ClpSimplex::sanityCheck() |
6708 | { |
6709 | // bad if empty |
6710 | if (!numberColumns_ || ((!numberRows_ || !matrix_->getNumElements()) && objective_->type() < 2)) { |
6711 | int infeasNumber[2]; |
6712 | double infeasSum[2]; |
6713 | problemStatus_ = emptyProblem(infeasNumber, infeasSum, false); |
6714 | numberDualInfeasibilities_ = infeasNumber[0]; |
6715 | sumDualInfeasibilities_ = infeasSum[0]; |
6716 | numberPrimalInfeasibilities_ = infeasNumber[1]; |
6717 | sumPrimalInfeasibilities_ = infeasSum[1]; |
6718 | return false; |
6719 | } |
6720 | int numberBad ; |
6721 | double largestBound, smallestBound, minimumGap; |
6722 | double smallestObj, largestObj; |
6723 | int firstBad; |
6724 | int modifiedBounds = 0; |
6725 | int i; |
6726 | numberBad = 0; |
6727 | firstBad = -1; |
6728 | minimumGap = 1.0e100; |
6729 | smallestBound = 1.0e100; |
6730 | largestBound = 0.0; |
6731 | smallestObj = 1.0e100; |
6732 | largestObj = 0.0; |
6733 | // If bounds are too close - fix |
6734 | double fixTolerance = primalTolerance_; |
6735 | if (fixTolerance < 2.0e-8) |
6736 | fixTolerance *= 1.1; |
6737 | for (i = numberColumns_; i < numberColumns_ + numberRows_; i++) { |
6738 | double value; |
6739 | value = fabs(cost_[i]); |
6740 | if (value > 1.0e50) { |
6741 | numberBad++; |
6742 | if (firstBad < 0) |
6743 | firstBad = i; |
6744 | } else if (value) { |
6745 | if (value > largestObj) |
6746 | largestObj = value; |
6747 | if (value < smallestObj) |
6748 | smallestObj = value; |
6749 | } |
6750 | value = upper_[i] - lower_[i]; |
6751 | if (value < -primalTolerance_) { |
6752 | numberBad++; |
6753 | if (firstBad < 0) |
6754 | firstBad = i; |
6755 | } else if (value <= fixTolerance) { |
6756 | if (value) { |
6757 | // modify |
6758 | upper_[i] = lower_[i]; |
6759 | modifiedBounds++; |
6760 | } |
6761 | } else { |
6762 | if (value < minimumGap) |
6763 | minimumGap = value; |
6764 | } |
6765 | if (lower_[i] > -1.0e100 && lower_[i]) { |
6766 | value = fabs(lower_[i]); |
6767 | if (value > largestBound) |
6768 | largestBound = value; |
6769 | if (value < smallestBound) |
6770 | smallestBound = value; |
6771 | } |
6772 | if (upper_[i] < 1.0e100 && upper_[i]) { |
6773 | value = fabs(upper_[i]); |
6774 | if (value > largestBound) |
6775 | largestBound = value; |
6776 | if (value < smallestBound) |
6777 | smallestBound = value; |
6778 | } |
6779 | } |
6780 | if (largestBound) |
6781 | handler_->message(CLP_RIMSTATISTICS3, messages_) |
6782 | << smallestBound |
6783 | << largestBound |
6784 | << minimumGap |
6785 | << CoinMessageEol; |
6786 | minimumGap = 1.0e100; |
6787 | smallestBound = 1.0e100; |
6788 | largestBound = 0.0; |
6789 | for (i = 0; i < numberColumns_; i++) { |
6790 | double value; |
6791 | value = fabs(cost_[i]); |
6792 | if (value > 1.0e50) { |
6793 | numberBad++; |
6794 | if (firstBad < 0) |
6795 | firstBad = i; |
6796 | } else if (value) { |
6797 | if (value > largestObj) |
6798 | largestObj = value; |
6799 | if (value < smallestObj) |
6800 | smallestObj = value; |
6801 | } |
6802 | value = upper_[i] - lower_[i]; |
6803 | if (value < -primalTolerance_) { |
6804 | numberBad++; |
6805 | if (firstBad < 0) |
6806 | firstBad = i; |
6807 | } else if (value <= fixTolerance) { |
6808 | if (value) { |
6809 | // modify |
6810 | upper_[i] = lower_[i]; |
6811 | modifiedBounds++; |
6812 | } |
6813 | } else { |
6814 | if (value < minimumGap) |
6815 | minimumGap = value; |
6816 | } |
6817 | if (lower_[i] > -1.0e100 && lower_[i]) { |
6818 | value = fabs(lower_[i]); |
6819 | if (value > largestBound) |
6820 | largestBound = value; |
6821 | if (value < smallestBound) |
6822 | smallestBound = value; |
6823 | } |
6824 | if (upper_[i] < 1.0e100 && upper_[i]) { |
6825 | value = fabs(upper_[i]); |
6826 | if (value > largestBound) |
6827 | largestBound = value; |
6828 | if (value < smallestBound) |
6829 | smallestBound = value; |
6830 | } |
6831 | } |
6832 | char rowcol[] = {'R', 'C'}; |
6833 | if (numberBad) { |
6834 | handler_->message(CLP_BAD_BOUNDS, messages_) |
6835 | << numberBad |
6836 | << rowcol[isColumn(firstBad)] << sequenceWithin(firstBad) |
6837 | << CoinMessageEol; |
6838 | problemStatus_ = 4; |
6839 | return false; |
6840 | } |
6841 | if (modifiedBounds) |
6842 | handler_->message(CLP_MODIFIEDBOUNDS, messages_) |
6843 | << modifiedBounds |
6844 | << CoinMessageEol; |
6845 | handler_->message(CLP_RIMSTATISTICS1, messages_) |
6846 | << smallestObj |
6847 | << largestObj |
6848 | << CoinMessageEol; |
6849 | if (largestBound) |
6850 | handler_->message(CLP_RIMSTATISTICS2, messages_) |
6851 | << smallestBound |
6852 | << largestBound |
6853 | << minimumGap |
6854 | << CoinMessageEol; |
6855 | return true; |
6856 | } |
6857 | // Set up status array (for OsiClp) |
6858 | void |
6859 | ClpSimplex::createStatus() |
6860 | { |
6861 | if(!status_) |
6862 | status_ = new unsigned char [numberColumns_+numberRows_]; |
6863 | memset(status_, 0, (numberColumns_ + numberRows_)*sizeof(char)); |
6864 | int i; |
6865 | // set column status to one nearest zero |
6866 | for (i = 0; i < numberColumns_; i++) { |
6867 | #if 0 |
6868 | if (columnLower_[i] >= 0.0) { |
6869 | setColumnStatus(i, atLowerBound); |
6870 | } else if (columnUpper_[i] <= 0.0) { |
6871 | setColumnStatus(i, atUpperBound); |
6872 | } else if (columnLower_[i] < -1.0e20 && columnUpper_[i] > 1.0e20) { |
6873 | // free |
6874 | setColumnStatus(i, isFree); |
6875 | } else if (fabs(columnLower_[i]) < fabs(columnUpper_[i])) { |
6876 | setColumnStatus(i, atLowerBound); |
6877 | } else { |
6878 | setColumnStatus(i, atUpperBound); |
6879 | } |
6880 | #else |
6881 | setColumnStatus(i, atLowerBound); |
6882 | #endif |
6883 | } |
6884 | for (i = 0; i < numberRows_; i++) { |
6885 | setRowStatus(i, basic); |
6886 | } |
6887 | } |
6888 | /* Sets up all slack basis and resets solution to |
6889 | as it was after initial load or readMps */ |
6890 | void ClpSimplex::allSlackBasis(bool resetSolution) |
6891 | { |
6892 | createStatus(); |
6893 | if (resetSolution) { |
6894 | // put back to as it was originally |
6895 | int i; |
6896 | // set column status to one nearest zero |
6897 | // But set value to zero if lb <0.0 and ub>0.0 |
6898 | for (i = 0; i < numberColumns_; i++) { |
6899 | if (columnLower_[i] >= 0.0) { |
6900 | columnActivity_[i] = columnLower_[i]; |
6901 | setColumnStatus(i, atLowerBound); |
6902 | } else if (columnUpper_[i] <= 0.0) { |
6903 | columnActivity_[i] = columnUpper_[i]; |
6904 | setColumnStatus(i, atUpperBound); |
6905 | } else if (columnLower_[i] < -1.0e20 && columnUpper_[i] > 1.0e20) { |
6906 | // free |
6907 | columnActivity_[i] = 0.0; |
6908 | setColumnStatus(i, isFree); |
6909 | } else if (fabs(columnLower_[i]) < fabs(columnUpper_[i])) { |
6910 | columnActivity_[i] = 0.0; |
6911 | setColumnStatus(i, atLowerBound); |
6912 | } else { |
6913 | columnActivity_[i] = 0.0; |
6914 | setColumnStatus(i, atUpperBound); |
6915 | } |
6916 | } |
6917 | if (solution_) { |
6918 | // do that as well |
6919 | if (!columnScale_) { |
6920 | for (i = 0; i < numberColumns_; i++) { |
6921 | solution_[i] = columnActivity_[i]; |
6922 | } |
6923 | } else { |
6924 | double * inverseColumnScale = columnScale_ + numberColumns_; |
6925 | for (i = 0; i < numberColumns_; i++) { |
6926 | solution_[i] = columnActivity_[i] * (rhsScale_ * inverseColumnScale[i]); |
6927 | } |
6928 | } |
6929 | } |
6930 | } |
6931 | } |
6932 | /* Loads a problem (the constraints on the |
6933 | rows are given by lower and upper bounds). If a pointer is 0 then the |
6934 | following values are the default: |
6935 | <ul> |
6936 | <li> <code>colub</code>: all columns have upper bound infinity |
6937 | <li> <code>collb</code>: all columns have lower bound 0 |
6938 | <li> <code>rowub</code>: all rows have upper bound infinity |
6939 | <li> <code>rowlb</code>: all rows have lower bound -infinity |
6940 | <li> <code>obj</code>: all variables have 0 objective coefficient |
6941 | </ul> |
6942 | */ |
6943 | void |
6944 | ClpSimplex::loadProblem ( const ClpMatrixBase& matrix, |
6945 | const double* collb, const double* colub, |
6946 | const double* obj, |
6947 | const double* rowlb, const double* rowub, |
6948 | const double * rowObjective) |
6949 | { |
6950 | ClpModel::loadProblem(matrix, collb, colub, obj, rowlb, rowub, |
6951 | rowObjective); |
6952 | createStatus(); |
6953 | } |
6954 | void |
6955 | ClpSimplex::loadProblem ( const CoinPackedMatrix& matrix, |
6956 | const double* collb, const double* colub, |
6957 | const double* obj, |
6958 | const double* rowlb, const double* rowub, |
6959 | const double * rowObjective) |
6960 | { |
6961 | ClpModel::loadProblem(matrix, collb, colub, obj, rowlb, rowub, |
6962 | rowObjective); |
6963 | createStatus(); |
6964 | } |
6965 | |
6966 | /* Just like the other loadProblem() method except that the matrix is |
6967 | given in a standard column major ordered format (without gaps). */ |
6968 | void |
6969 | ClpSimplex::loadProblem ( const int numcols, const int numrows, |
6970 | const CoinBigIndex* start, const int* index, |
6971 | const double* value, |
6972 | const double* collb, const double* colub, |
6973 | const double* obj, |
6974 | const double* rowlb, const double* rowub, |
6975 | const double * rowObjective) |
6976 | { |
6977 | ClpModel::loadProblem(numcols, numrows, start, index, value, |
6978 | collb, colub, obj, rowlb, rowub, |
6979 | rowObjective); |
6980 | createStatus(); |
6981 | } |
6982 | #ifndef SLIM_NOIO |
6983 | // This loads a model from a coinModel object - returns number of errors |
6984 | int |
6985 | ClpSimplex::loadProblem ( CoinModel & modelObject, bool /*keepSolution*/) |
6986 | { |
6987 | unsigned char * status = NULL; |
6988 | double * psol = NULL; |
6989 | double * dsol = NULL; |
6990 | if (status_ && numberRows_ && numberRows_ == modelObject.numberRows() && |
6991 | numberColumns_ == modelObject.numberColumns()) { |
6992 | status = new unsigned char [numberRows_+numberColumns_]; |
6993 | CoinMemcpyN(status_, numberRows_ + numberColumns_, status); |
6994 | psol = new double [numberRows_+numberColumns_]; |
6995 | CoinMemcpyN(columnActivity_, numberColumns_, psol); |
6996 | CoinMemcpyN(rowActivity_, numberRows_, psol + numberColumns_); |
6997 | dsol = new double [numberRows_+numberColumns_]; |
6998 | CoinMemcpyN(reducedCost_, numberColumns_, dsol); |
6999 | CoinMemcpyN(dual_, numberRows_, dsol + numberColumns_); |
7000 | } |
7001 | int returnCode = ClpModel::loadProblem(modelObject); |
7002 | const int * integerType = modelObject.integerTypeArray(); |
7003 | if (integerType) { |
7004 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7005 | if (integerType[iColumn]) |
7006 | setInteger(iColumn); |
7007 | } |
7008 | } |
7009 | createStatus(); |
7010 | if (status) { |
7011 | // copy back |
7012 | CoinMemcpyN(status, numberRows_ + numberColumns_, status_); |
7013 | CoinMemcpyN(psol, numberColumns_, columnActivity_); |
7014 | CoinMemcpyN(psol + numberColumns_, numberRows_, rowActivity_); |
7015 | CoinMemcpyN(dsol, numberColumns_, reducedCost_); |
7016 | CoinMemcpyN(dsol + numberColumns_, numberRows_, dual_); |
7017 | delete [] status; |
7018 | delete [] psol; |
7019 | delete [] dsol; |
7020 | } |
7021 | optimizationDirection_ = modelObject.optimizationDirection(); |
7022 | return returnCode; |
7023 | } |
7024 | #endif |
7025 | void |
7026 | ClpSimplex::loadProblem ( const int numcols, const int numrows, |
7027 | const CoinBigIndex* start, const int* index, |
7028 | const double* value, const int * length, |
7029 | const double* collb, const double* colub, |
7030 | const double* obj, |
7031 | const double* rowlb, const double* rowub, |
7032 | const double * rowObjective) |
7033 | { |
7034 | ClpModel::loadProblem(numcols, numrows, start, index, value, length, |
7035 | collb, colub, obj, rowlb, rowub, |
7036 | rowObjective); |
7037 | createStatus(); |
7038 | } |
7039 | #ifndef SLIM_NOIO |
7040 | // Read an mps file from the given filename |
7041 | int |
7042 | ClpSimplex::readMps(const char *filename, |
7043 | bool keepNames, |
7044 | bool ignoreErrors) |
7045 | { |
7046 | int status = ClpModel::readMps(filename, keepNames, ignoreErrors); |
7047 | createStatus(); |
7048 | return status; |
7049 | } |
7050 | // Read GMPL files from the given filenames |
7051 | int |
7052 | ClpSimplex::readGMPL(const char *filename, const char * dataName, |
7053 | bool keepNames) |
7054 | { |
7055 | int status = ClpModel::readGMPL(filename, dataName, keepNames); |
7056 | createStatus(); |
7057 | return status; |
7058 | } |
7059 | // Read file in LP format from file with name filename. |
7060 | int |
7061 | ClpSimplex::readLp(const char *filename, const double epsilon ) |
7062 | { |
7063 | FILE *fp = fopen(filename, "r" ); |
7064 | |
7065 | if(!fp) { |
7066 | printf("### ERROR: ClpSimplex::readLp(): Unable to open file %s for reading\n" , |
7067 | filename); |
7068 | return(1); |
7069 | } |
7070 | CoinLpIO m; |
7071 | m.readLp(fp, epsilon); |
7072 | fclose(fp); |
7073 | |
7074 | // set problem name |
7075 | setStrParam(ClpProbName, m.getProblemName()); |
7076 | // no errors |
7077 | loadProblem(*m.getMatrixByRow(), m.getColLower(), m.getColUpper(), |
7078 | m.getObjCoefficients(), m.getRowLower(), m.getRowUpper()); |
7079 | |
7080 | if (m.integerColumns()) { |
7081 | integerType_ = new char[numberColumns_]; |
7082 | CoinMemcpyN(m.integerColumns(), numberColumns_, integerType_); |
7083 | } else { |
7084 | integerType_ = NULL; |
7085 | } |
7086 | createStatus(); |
7087 | unsigned int maxLength = 0; |
7088 | int iRow; |
7089 | rowNames_ = std::vector<std::string> (); |
7090 | columnNames_ = std::vector<std::string> (); |
7091 | rowNames_.reserve(numberRows_); |
7092 | for (iRow = 0; iRow < numberRows_; iRow++) { |
7093 | const char * name = m.rowName(iRow); |
7094 | if (name) { |
7095 | maxLength = CoinMax(maxLength, static_cast<unsigned int> (strlen(name))); |
7096 | rowNames_.push_back(name); |
7097 | } else { |
7098 | rowNames_.push_back("" ); |
7099 | } |
7100 | } |
7101 | |
7102 | int iColumn; |
7103 | columnNames_.reserve(numberColumns_); |
7104 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7105 | const char * name = m.columnName(iColumn); |
7106 | if (name) { |
7107 | maxLength = CoinMax(maxLength, static_cast<unsigned int> (strlen(name))); |
7108 | columnNames_.push_back(name); |
7109 | } else { |
7110 | columnNames_.push_back("" ); |
7111 | } |
7112 | } |
7113 | lengthNames_ = static_cast<int> (maxLength); |
7114 | |
7115 | return 0; |
7116 | } |
7117 | #endif |
7118 | // Just check solution (for external use) |
7119 | void |
7120 | ClpSimplex::checkSolution(int setToBounds) |
7121 | { |
7122 | if (setToBounds) { |
7123 | // Set all ones that look at bounds to bounds |
7124 | bool changed = false; |
7125 | int i; |
7126 | for (i = 0; i < numberRows_; i++) { |
7127 | double newValue = 0.0; |
7128 | switch(getRowStatus(i)) { |
7129 | |
7130 | case basic: |
7131 | newValue = rowActivity_[i]; |
7132 | break; |
7133 | case atUpperBound: |
7134 | newValue = rowUpper_[i]; |
7135 | if (newValue > largeValue_) { |
7136 | if (rowLower_[i] > -largeValue_) { |
7137 | newValue = rowLower_[i]; |
7138 | setRowStatus(i, atLowerBound); |
7139 | } else { |
7140 | // say free |
7141 | setRowStatus(i, isFree); |
7142 | newValue = 0.0; |
7143 | } |
7144 | } |
7145 | break; |
7146 | case ClpSimplex::isFixed: |
7147 | case atLowerBound: |
7148 | newValue = rowLower_[i]; |
7149 | if (newValue < -largeValue_) { |
7150 | if (rowUpper_[i] < largeValue_) { |
7151 | newValue = rowUpper_[i]; |
7152 | setRowStatus(i, atUpperBound); |
7153 | } else { |
7154 | // say free |
7155 | setRowStatus(i, isFree); |
7156 | newValue = 0.0; |
7157 | } |
7158 | } |
7159 | break; |
7160 | case isFree: |
7161 | newValue = rowActivity_[i]; |
7162 | break; |
7163 | // not really free - fall through to superbasic |
7164 | case superBasic: |
7165 | if (rowUpper_[i] > largeValue_) { |
7166 | if (rowLower_[i] > -largeValue_) { |
7167 | newValue = rowLower_[i]; |
7168 | setRowStatus(i, atLowerBound); |
7169 | } else { |
7170 | // say free |
7171 | setRowStatus(i, isFree); |
7172 | newValue = 0.0; |
7173 | } |
7174 | } else { |
7175 | if (rowLower_[i] > -largeValue_) { |
7176 | // set to nearest |
7177 | if (fabs(newValue - rowLower_[i]) |
7178 | < fabs(newValue - rowUpper_[i])) { |
7179 | newValue = rowLower_[i]; |
7180 | setRowStatus(i, atLowerBound); |
7181 | } else { |
7182 | newValue = rowUpper_[i]; |
7183 | setRowStatus(i, atUpperBound); |
7184 | } |
7185 | } else { |
7186 | newValue = rowUpper_[i]; |
7187 | setRowStatus(i, atUpperBound); |
7188 | } |
7189 | } |
7190 | break; |
7191 | } |
7192 | if (fabs(newValue - rowActivity_[i]) > 1.0e-12) { |
7193 | changed = true; |
7194 | rowActivity_[i] = newValue; |
7195 | } |
7196 | } |
7197 | for (i = 0; i < numberColumns_; i++) { |
7198 | double newValue = 0.0; |
7199 | switch(getColumnStatus(i)) { |
7200 | |
7201 | case basic: |
7202 | newValue = columnActivity_[i]; |
7203 | break; |
7204 | case atUpperBound: |
7205 | newValue = columnUpper_[i]; |
7206 | if (newValue > largeValue_) { |
7207 | if (columnLower_[i] > -largeValue_) { |
7208 | newValue = columnLower_[i]; |
7209 | setColumnStatus(i, atLowerBound); |
7210 | } else { |
7211 | // say free |
7212 | setColumnStatus(i, isFree); |
7213 | newValue = 0.0; |
7214 | } |
7215 | } |
7216 | break; |
7217 | case ClpSimplex::isFixed: |
7218 | case atLowerBound: |
7219 | newValue = columnLower_[i]; |
7220 | if (newValue < -largeValue_) { |
7221 | if (columnUpper_[i] < largeValue_) { |
7222 | newValue = columnUpper_[i]; |
7223 | setColumnStatus(i, atUpperBound); |
7224 | } else { |
7225 | // say free |
7226 | setColumnStatus(i, isFree); |
7227 | newValue = 0.0; |
7228 | } |
7229 | } |
7230 | break; |
7231 | case isFree: |
7232 | newValue = columnActivity_[i]; |
7233 | break; |
7234 | // not really free - fall through to superbasic |
7235 | case superBasic: |
7236 | if (columnUpper_[i] > largeValue_) { |
7237 | if (columnLower_[i] > -largeValue_) { |
7238 | newValue = columnLower_[i]; |
7239 | setColumnStatus(i, atLowerBound); |
7240 | } else { |
7241 | // say free |
7242 | setColumnStatus(i, isFree); |
7243 | newValue = 0.0; |
7244 | } |
7245 | } else { |
7246 | if (columnLower_[i] > -largeValue_) { |
7247 | // set to nearest |
7248 | if (fabs(newValue - columnLower_[i]) |
7249 | < fabs(newValue - columnUpper_[i])) { |
7250 | newValue = columnLower_[i]; |
7251 | setColumnStatus(i, atLowerBound); |
7252 | } else { |
7253 | newValue = columnUpper_[i]; |
7254 | setColumnStatus(i, atUpperBound); |
7255 | } |
7256 | } else { |
7257 | newValue = columnUpper_[i]; |
7258 | setColumnStatus(i, atUpperBound); |
7259 | } |
7260 | } |
7261 | break; |
7262 | } |
7263 | if (fabs(newValue - columnActivity_[i]) > 1.0e-12) { |
7264 | changed = true; |
7265 | columnActivity_[i] = newValue; |
7266 | } |
7267 | } |
7268 | if (!changed && setToBounds == 1) |
7269 | // no need to do anything |
7270 | setToBounds = 0; |
7271 | } |
7272 | if (!setToBounds) { |
7273 | // Just use column solution |
7274 | CoinZeroN(rowActivity_, numberRows_); |
7275 | matrix()->times(columnActivity_, rowActivity_) ; |
7276 | // put in standard form |
7277 | createRim(7 + 8 + 16 + 32); |
7278 | dualTolerance_ = dblParam_[ClpDualTolerance]; |
7279 | primalTolerance_ = dblParam_[ClpPrimalTolerance]; |
7280 | checkPrimalSolution( rowActivityWork_, columnActivityWork_); |
7281 | checkDualSolution(); |
7282 | } else { |
7283 | startup(0, 0); |
7284 | gutsOfSolution(NULL, NULL); |
7285 | } |
7286 | if (!numberDualInfeasibilities_ && |
7287 | !numberPrimalInfeasibilities_) |
7288 | problemStatus_ = 0; |
7289 | else |
7290 | problemStatus_ = -1; |
7291 | #ifdef CLP_DEBUG |
7292 | int i; |
7293 | double value = 0.0; |
7294 | for (i = 0; i < numberRows_ + numberColumns_; i++) |
7295 | value += dj_[i] * solution_[i]; |
7296 | printf("dual value %g, primal %g\n" , value, objectiveValue()); |
7297 | #endif |
7298 | // release extra memory |
7299 | deleteRim(0); |
7300 | } |
7301 | // Check unscaled primal solution but allow for rounding error |
7302 | void |
7303 | ClpSimplex::checkUnscaledSolution() |
7304 | { |
7305 | if (problemStatus_==1 && matrix_->getNumElements()) { |
7306 | const double * element = matrix_->getElements(); |
7307 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
7308 | const int * columnLength = matrix_->getVectorLengths(); |
7309 | const int * row = matrix_->getIndices(); |
7310 | memset(rowActivity_,0,numberRows_*sizeof(double)); |
7311 | double * sum = new double [numberRows_+100000]; |
7312 | memset(sum,0,numberRows_*sizeof(double)); |
7313 | // clean column activity |
7314 | for (int i=0;i<numberColumns_;i++) { |
7315 | double value = columnActivity_[i]; |
7316 | value = CoinMax(value,columnLower_[i]); |
7317 | value = CoinMin(value,columnUpper_[i]); |
7318 | //columnActivity_[i]=value; |
7319 | if (value) { |
7320 | for (CoinBigIndex j=columnStart[i]; |
7321 | j<columnStart[i]+columnLength[i];j++) { |
7322 | double value2 = value*element[j]; |
7323 | int iRow = row[j]; |
7324 | assert (iRow>=0&&iRow<numberRows_); |
7325 | rowActivity_[iRow] += value2; |
7326 | sum[iRow]+=fabs(value2); |
7327 | } |
7328 | } |
7329 | } |
7330 | sumPrimalInfeasibilities_ = 0.0; |
7331 | numberPrimalInfeasibilities_ = 0; |
7332 | double sumPrimalInfeasibilities2 = 0.0; |
7333 | int numberPrimalInfeasibilities2 = 0; |
7334 | double fudgeFactor = 1.0e-12; |
7335 | double fudgeFactor2 = 1.0e-12; |
7336 | double tolerance = primalTolerance_; |
7337 | for (int i=0;i<numberRows_;i++) { |
7338 | double useTolerance = CoinMax(tolerance,fudgeFactor*sum[i]); |
7339 | double value = rowActivity_[i]; |
7340 | useTolerance = CoinMax(useTolerance,fudgeFactor2*fabs(value)); |
7341 | if (value>rowUpper_[i]) { |
7342 | sumPrimalInfeasibilities2 += value - rowUpper_[i]; |
7343 | numberPrimalInfeasibilities2++; |
7344 | if (value>rowUpper_[i]+useTolerance) { |
7345 | sumPrimalInfeasibilities_ += value - (rowUpper_[i]+useTolerance); |
7346 | numberPrimalInfeasibilities_++; |
7347 | } |
7348 | } else if (value<rowLower_[i]) { |
7349 | sumPrimalInfeasibilities2 -= value - rowLower_[i]; |
7350 | numberPrimalInfeasibilities2++; |
7351 | if (value<rowLower_[i]-useTolerance) { |
7352 | sumPrimalInfeasibilities_ -= value - (rowLower_[i]-useTolerance); |
7353 | numberPrimalInfeasibilities_++; |
7354 | } |
7355 | } |
7356 | } |
7357 | char line[1000]; |
7358 | if (!numberPrimalInfeasibilities2) { |
7359 | sprintf(line,"%d unscaled row infeasibilities - summing to %g" , |
7360 | numberPrimalInfeasibilities2, |
7361 | sumPrimalInfeasibilities2); |
7362 | handler_->message(CLP_GENERAL, messages_) |
7363 | << line |
7364 | << CoinMessageEol; |
7365 | } |
7366 | if (!numberPrimalInfeasibilities_) { |
7367 | if (!numberDualInfeasibilities_) |
7368 | problemStatus_=0; |
7369 | } else { |
7370 | sprintf(line,"%d relaxed row infeasibilities - summing to %g" , |
7371 | numberPrimalInfeasibilities_, |
7372 | sumPrimalInfeasibilities_); |
7373 | handler_->message(CLP_GENERAL, messages_) |
7374 | << line |
7375 | << CoinMessageEol; |
7376 | } |
7377 | delete [] sum; |
7378 | } |
7379 | } |
7380 | /* Crash - at present just aimed at dual, returns |
7381 | -2 if dual preferred and crash basis created |
7382 | -1 if dual preferred and all slack basis preferred |
7383 | 0 if basis going in was not all slack |
7384 | 1 if primal preferred and all slack basis preferred |
7385 | 2 if primal preferred and crash basis created. |
7386 | |
7387 | if gap between bounds <="gap" variables can be flipped |
7388 | ( If pivot -1 then can be made super basic!) |
7389 | |
7390 | If "pivot" is |
7391 | -1 No pivoting - always primal |
7392 | 0 No pivoting (so will just be choice of algorithm) |
7393 | 1 Simple pivoting e.g. gub |
7394 | 2 Mini iterations |
7395 | 3 Just throw all free variables in basis |
7396 | */ |
7397 | int |
7398 | ClpSimplex::crash(double gap, int pivot) |
7399 | { |
7400 | //CoinAssert(!rowObjective_); // not coded |
7401 | int iColumn; |
7402 | int numberBad = 0; |
7403 | int numberBasic = 0; |
7404 | double dualTolerance = dblParam_[ClpDualTolerance]; |
7405 | //double primalTolerance=dblParam_[ClpPrimalTolerance]; |
7406 | int returnCode = 0; |
7407 | // If no basis then make all slack one |
7408 | if (!status_) |
7409 | createStatus(); |
7410 | |
7411 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7412 | if (getColumnStatus(iColumn) == basic) |
7413 | numberBasic++; |
7414 | } |
7415 | if (!numberBasic || pivot == 3) { |
7416 | if (pivot == 3) { |
7417 | // Just throw all free variables in basis |
7418 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
7419 | if (fabs(rowLower_[iRow]) < fabs(rowUpper_[iRow])) |
7420 | setRowStatus(iRow, atLowerBound); |
7421 | else |
7422 | setRowStatus(iRow, atUpperBound); |
7423 | } |
7424 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7425 | if (columnLower_[iColumn] < -1.0e20 && columnUpper_[iColumn] > 1.0e20) |
7426 | setColumnStatus(iColumn, basic); |
7427 | } |
7428 | return 0; |
7429 | } |
7430 | // all slack |
7431 | double * dj = new double [numberColumns_]; |
7432 | double * solution = columnActivity_; |
7433 | const double * linearObjective = objective(); |
7434 | //double objectiveValue=0.0; |
7435 | int iColumn; |
7436 | double direction = optimizationDirection_; |
7437 | // direction is actually scale out not scale in |
7438 | if (direction) |
7439 | direction = 1.0 / direction; |
7440 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) |
7441 | dj[iColumn] = direction * linearObjective[iColumn]; |
7442 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7443 | // assume natural place is closest to zero |
7444 | double lowerBound = columnLower_[iColumn]; |
7445 | double upperBound = columnUpper_[iColumn]; |
7446 | if (lowerBound > -1.0e20 || upperBound < 1.0e20) { |
7447 | bool atLower; |
7448 | if (fabs(upperBound) < fabs(lowerBound)) { |
7449 | atLower = false; |
7450 | setColumnStatus(iColumn, atUpperBound); |
7451 | solution[iColumn] = upperBound; |
7452 | } else { |
7453 | atLower = true; |
7454 | setColumnStatus(iColumn, atLowerBound); |
7455 | solution[iColumn] = lowerBound; |
7456 | } |
7457 | if (dj[iColumn] < -dualTolerance_) { |
7458 | // should be at upper bound |
7459 | if (atLower) { |
7460 | // can we flip |
7461 | if (upperBound - lowerBound <= gap) { |
7462 | columnActivity_[iColumn] = upperBound; |
7463 | setColumnStatus(iColumn, atUpperBound); |
7464 | } else if (pivot < 0) { |
7465 | // set superbasic |
7466 | columnActivity_[iColumn] = lowerBound + gap; |
7467 | setColumnStatus(iColumn, superBasic); |
7468 | } else if (dj[iColumn] < -dualTolerance) { |
7469 | numberBad++; |
7470 | } |
7471 | } |
7472 | } else if (dj[iColumn] > dualTolerance_) { |
7473 | // should be at lower bound |
7474 | if (!atLower) { |
7475 | // can we flip |
7476 | if (upperBound - lowerBound <= gap) { |
7477 | columnActivity_[iColumn] = lowerBound; |
7478 | setColumnStatus(iColumn, atLowerBound); |
7479 | } else if (pivot < 0) { |
7480 | // set superbasic |
7481 | columnActivity_[iColumn] = upperBound - gap; |
7482 | setColumnStatus(iColumn, superBasic); |
7483 | } else if (dj[iColumn] > dualTolerance) { |
7484 | numberBad++; |
7485 | } |
7486 | } |
7487 | } |
7488 | } else { |
7489 | // free |
7490 | setColumnStatus(iColumn, isFree); |
7491 | if (fabs(dj[iColumn]) > dualTolerance) |
7492 | numberBad++; |
7493 | } |
7494 | } |
7495 | if (numberBad || pivot) { |
7496 | if (pivot <= 0) { |
7497 | delete [] dj; |
7498 | returnCode = 1; |
7499 | } else { |
7500 | // see if can be made dual feasible with gubs etc |
7501 | double * pi = new double[numberRows_]; |
7502 | memset (pi, 0, numberRows_ * sizeof(double)); |
7503 | int * way = new int[numberColumns_]; |
7504 | int numberIn = 0; |
7505 | |
7506 | // Get column copy |
7507 | CoinPackedMatrix * columnCopy = matrix(); |
7508 | // Get a row copy in standard format |
7509 | CoinPackedMatrix copy; |
7510 | copy.setExtraGap(0.0); |
7511 | copy.setExtraMajor(0.0); |
7512 | copy.reverseOrderedCopyOf(*columnCopy); |
7513 | // get matrix data pointers |
7514 | const int * column = copy.getIndices(); |
7515 | const CoinBigIndex * rowStart = copy.getVectorStarts(); |
7516 | const int * rowLength = copy.getVectorLengths(); |
7517 | const double * elementByRow = copy.getElements(); |
7518 | //const int * row = columnCopy->getIndices(); |
7519 | //const CoinBigIndex * columnStart = columnCopy->getVectorStarts(); |
7520 | //const int * columnLength = columnCopy->getVectorLengths(); |
7521 | //const double * element = columnCopy->getElements(); |
7522 | |
7523 | |
7524 | // if equality row and bounds mean artificial in basis bad |
7525 | // then do anyway |
7526 | |
7527 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7528 | // - if we want to reduce dj, + if we want to increase |
7529 | int thisWay = 100; |
7530 | double lowerBound = columnLower_[iColumn]; |
7531 | double upperBound = columnUpper_[iColumn]; |
7532 | if (upperBound > lowerBound) { |
7533 | switch(getColumnStatus(iColumn)) { |
7534 | |
7535 | case basic: |
7536 | thisWay = 0; |
7537 | case ClpSimplex::isFixed: |
7538 | break; |
7539 | case isFree: |
7540 | case superBasic: |
7541 | if (dj[iColumn] < -dualTolerance) |
7542 | thisWay = 1; |
7543 | else if (dj[iColumn] > dualTolerance) |
7544 | thisWay = -1; |
7545 | else |
7546 | thisWay = 0; |
7547 | break; |
7548 | case atUpperBound: |
7549 | if (dj[iColumn] > dualTolerance) |
7550 | thisWay = -1; |
7551 | else if (dj[iColumn] < -dualTolerance) |
7552 | thisWay = -3; |
7553 | else |
7554 | thisWay = -2; |
7555 | break; |
7556 | case atLowerBound: |
7557 | if (dj[iColumn] < -dualTolerance) |
7558 | thisWay = 1; |
7559 | else if (dj[iColumn] > dualTolerance) |
7560 | thisWay = 3; |
7561 | else |
7562 | thisWay = 2; |
7563 | break; |
7564 | } |
7565 | } |
7566 | way[iColumn] = thisWay; |
7567 | } |
7568 | /*if (!numberBad) |
7569 | printf("Was dual feasible before passes - rows %d\n", |
7570 | numberRows_);*/ |
7571 | int lastNumberIn = -100000; |
7572 | int numberPasses = 5; |
7573 | while (numberIn > lastNumberIn + numberRows_ / 100) { |
7574 | lastNumberIn = numberIn; |
7575 | // we need to maximize chance of doing good |
7576 | int iRow; |
7577 | for (iRow = 0; iRow < numberRows_; iRow++) { |
7578 | double lowerBound = rowLower_[iRow]; |
7579 | double upperBound = rowUpper_[iRow]; |
7580 | if (getRowStatus(iRow) == basic) { |
7581 | // see if we can find a column to pivot on |
7582 | int j; |
7583 | // down is amount pi can go down |
7584 | double maximumDown = COIN_DBL_MAX; |
7585 | double maximumUp = COIN_DBL_MAX; |
7586 | double minimumDown = 0.0; |
7587 | double minimumUp = 0.0; |
7588 | int iUp = -1; |
7589 | int iDown = -1; |
7590 | int iUpB = -1; |
7591 | int iDownB = -1; |
7592 | if (lowerBound < -1.0e20) |
7593 | maximumUp = -1.0; |
7594 | if (upperBound > 1.0e20) |
7595 | maximumDown = -1.0; |
7596 | for (j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
7597 | int iColumn = column[j]; |
7598 | double value = elementByRow[j]; |
7599 | double djValue = dj[iColumn]; |
7600 | /* way - |
7601 | -3 - okay at upper bound with negative dj |
7602 | -2 - marginal at upper bound with zero dj - can only decrease |
7603 | -1 - bad at upper bound |
7604 | 0 - we can never pivot on this row |
7605 | 1 - bad at lower bound |
7606 | 2 - marginal at lower bound with zero dj - can only increase |
7607 | 3 - okay at lower bound with positive dj |
7608 | 100 - fine we can just ignore |
7609 | */ |
7610 | if (way[iColumn] != 100) { |
7611 | switch(way[iColumn]) { |
7612 | |
7613 | case -3: |
7614 | if (value > 0.0) { |
7615 | if (maximumDown * value > -djValue) { |
7616 | maximumDown = -djValue / value; |
7617 | iDown = iColumn; |
7618 | } |
7619 | } else { |
7620 | if (-maximumUp * value > -djValue) { |
7621 | maximumUp = djValue / value; |
7622 | iUp = iColumn; |
7623 | } |
7624 | } |
7625 | break; |
7626 | case -2: |
7627 | if (value > 0.0) { |
7628 | maximumDown = 0.0; |
7629 | } else { |
7630 | maximumUp = 0.0; |
7631 | } |
7632 | break; |
7633 | case -1: |
7634 | // see if could be satisfied |
7635 | // dj value > 0 |
7636 | if (value > 0.0) { |
7637 | maximumDown = 0.0; |
7638 | if (maximumUp * value < djValue - dualTolerance) { |
7639 | maximumUp = 0.0; // would improve but not enough |
7640 | } else { |
7641 | if (minimumUp * value < djValue) { |
7642 | minimumUp = djValue / value; |
7643 | iUpB = iColumn; |
7644 | } |
7645 | } |
7646 | } else { |
7647 | maximumUp = 0.0; |
7648 | if (-maximumDown * value < djValue - dualTolerance) { |
7649 | maximumDown = 0.0; // would improve but not enough |
7650 | } else { |
7651 | if (-minimumDown * value < djValue) { |
7652 | minimumDown = -djValue / value; |
7653 | iDownB = iColumn; |
7654 | } |
7655 | } |
7656 | } |
7657 | |
7658 | break; |
7659 | case 0: |
7660 | maximumDown = -1.0; |
7661 | maximumUp = -1.0; |
7662 | break; |
7663 | case 1: |
7664 | // see if could be satisfied |
7665 | // dj value < 0 |
7666 | if (value > 0.0) { |
7667 | maximumUp = 0.0; |
7668 | if (maximumDown * value < -djValue - dualTolerance) { |
7669 | maximumDown = 0.0; // would improve but not enough |
7670 | } else { |
7671 | if (minimumDown * value < -djValue) { |
7672 | minimumDown = -djValue / value; |
7673 | iDownB = iColumn; |
7674 | } |
7675 | } |
7676 | } else { |
7677 | maximumDown = 0.0; |
7678 | if (-maximumUp * value < -djValue - dualTolerance) { |
7679 | maximumUp = 0.0; // would improve but not enough |
7680 | } else { |
7681 | if (-minimumUp * value < -djValue) { |
7682 | minimumUp = djValue / value; |
7683 | iUpB = iColumn; |
7684 | } |
7685 | } |
7686 | } |
7687 | |
7688 | break; |
7689 | case 2: |
7690 | if (value > 0.0) { |
7691 | maximumUp = 0.0; |
7692 | } else { |
7693 | maximumDown = 0.0; |
7694 | } |
7695 | |
7696 | break; |
7697 | case 3: |
7698 | if (value > 0.0) { |
7699 | if (maximumUp * value > djValue) { |
7700 | maximumUp = djValue / value; |
7701 | iUp = iColumn; |
7702 | } |
7703 | } else { |
7704 | if (-maximumDown * value > djValue) { |
7705 | maximumDown = -djValue / value; |
7706 | iDown = iColumn; |
7707 | } |
7708 | } |
7709 | |
7710 | break; |
7711 | default: |
7712 | break; |
7713 | } |
7714 | } |
7715 | } |
7716 | if (iUpB >= 0) |
7717 | iUp = iUpB; |
7718 | if (maximumUp <= dualTolerance || maximumUp < minimumUp) |
7719 | iUp = -1; |
7720 | if (iDownB >= 0) |
7721 | iDown = iDownB; |
7722 | if (maximumDown <= dualTolerance || maximumDown < minimumDown) |
7723 | iDown = -1; |
7724 | if (iUp >= 0 || iDown >= 0) { |
7725 | // do something |
7726 | if (iUp >= 0 && iDown >= 0) { |
7727 | if (maximumDown > maximumUp) |
7728 | iUp = -1; |
7729 | } |
7730 | double change; |
7731 | int kColumn; |
7732 | if (iUp >= 0) { |
7733 | kColumn = iUp; |
7734 | change = maximumUp; |
7735 | // just do minimum if was dual infeasible |
7736 | // ? only if maximum large? |
7737 | if (minimumUp > 0.0) |
7738 | change = minimumUp; |
7739 | setRowStatus(iRow, atUpperBound); |
7740 | } else { |
7741 | kColumn = iDown; |
7742 | change = -maximumDown; |
7743 | // just do minimum if was dual infeasible |
7744 | // ? only if maximum large? |
7745 | if (minimumDown > 0.0) |
7746 | change = -minimumDown; |
7747 | setRowStatus(iRow, atLowerBound); |
7748 | } |
7749 | assert (fabs(change) < 1.0e200); |
7750 | setColumnStatus(kColumn, basic); |
7751 | numberIn++; |
7752 | pi[iRow] = change; |
7753 | for (j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
7754 | int iColumn = column[j]; |
7755 | double value = elementByRow[j]; |
7756 | double djValue = dj[iColumn] - change * value; |
7757 | dj[iColumn] = djValue; |
7758 | if (abs(way[iColumn]) == 1) { |
7759 | numberBad--; |
7760 | /*if (!numberBad) |
7761 | printf("Became dual feasible at row %d out of %d\n", |
7762 | iRow, numberRows_);*/ |
7763 | lastNumberIn = -1000000; |
7764 | } |
7765 | int thisWay = 100; |
7766 | double lowerBound = columnLower_[iColumn]; |
7767 | double upperBound = columnUpper_[iColumn]; |
7768 | if (upperBound > lowerBound) { |
7769 | switch(getColumnStatus(iColumn)) { |
7770 | |
7771 | case basic: |
7772 | thisWay = 0; |
7773 | case isFixed: |
7774 | break; |
7775 | case isFree: |
7776 | case superBasic: |
7777 | if (djValue < -dualTolerance) |
7778 | thisWay = 1; |
7779 | else if (djValue > dualTolerance) |
7780 | thisWay = -1; |
7781 | else { |
7782 | thisWay = 0; |
7783 | } |
7784 | break; |
7785 | case atUpperBound: |
7786 | if (djValue > dualTolerance) { |
7787 | thisWay = -1; |
7788 | } else if (djValue < -dualTolerance) |
7789 | thisWay = -3; |
7790 | else |
7791 | thisWay = -2; |
7792 | break; |
7793 | case atLowerBound: |
7794 | if (djValue < -dualTolerance) { |
7795 | thisWay = 1; |
7796 | } else if (djValue > dualTolerance) |
7797 | thisWay = 3; |
7798 | else |
7799 | thisWay = 2; |
7800 | break; |
7801 | } |
7802 | } |
7803 | way[iColumn] = thisWay; |
7804 | } |
7805 | } |
7806 | } |
7807 | } |
7808 | if (numberIn == lastNumberIn || numberBad || pivot < 2) |
7809 | break; |
7810 | if (!(--numberPasses)) |
7811 | break; |
7812 | //printf("%d put in so far\n",numberIn); |
7813 | } |
7814 | // last attempt to flip |
7815 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
7816 | double lowerBound = columnLower_[iColumn]; |
7817 | double upperBound = columnUpper_[iColumn]; |
7818 | if (upperBound - lowerBound <= gap && upperBound > lowerBound) { |
7819 | double djValue = dj[iColumn]; |
7820 | switch(getColumnStatus(iColumn)) { |
7821 | |
7822 | case basic: |
7823 | case ClpSimplex::isFixed: |
7824 | break; |
7825 | case isFree: |
7826 | case superBasic: |
7827 | break; |
7828 | case atUpperBound: |
7829 | if (djValue > dualTolerance) { |
7830 | setColumnStatus(iColumn, atUpperBound); |
7831 | solution[iColumn] = upperBound; |
7832 | } |
7833 | break; |
7834 | case atLowerBound: |
7835 | if (djValue < -dualTolerance) { |
7836 | setColumnStatus(iColumn, atUpperBound); |
7837 | solution[iColumn] = upperBound; |
7838 | } |
7839 | break; |
7840 | } |
7841 | } |
7842 | } |
7843 | delete [] pi; |
7844 | delete [] dj; |
7845 | delete [] way; |
7846 | handler_->message(CLP_CRASH, messages_) |
7847 | << numberIn |
7848 | << numberBad |
7849 | << CoinMessageEol; |
7850 | returnCode = -1; |
7851 | } |
7852 | } else { |
7853 | delete [] dj; |
7854 | returnCode = -1; |
7855 | } |
7856 | //cleanStatus(); |
7857 | } |
7858 | return returnCode; |
7859 | } |
7860 | /* Pivot in a variable and out a variable. Returns 0 if okay, |
7861 | 1 if inaccuracy forced re-factorization, -1 if would be singular. |
7862 | Also updates primal/dual infeasibilities. |
7863 | Assumes sequenceIn_ and pivotRow_ set and also directionIn and Out. |
7864 | */ |
7865 | int ClpSimplex::pivot() |
7866 | { |
7867 | // scaling not allowed |
7868 | assert (!scalingFlag_); |
7869 | // assume In_ and Out_ are correct and directionOut_ set |
7870 | // (or In_ if flip |
7871 | lowerIn_ = lower_[sequenceIn_]; |
7872 | valueIn_ = solution_[sequenceIn_]; |
7873 | upperIn_ = upper_[sequenceIn_]; |
7874 | dualIn_ = dj_[sequenceIn_]; |
7875 | lowerOut_ = lower_[sequenceOut_]; |
7876 | valueOut_ = solution_[sequenceOut_]; |
7877 | upperOut_ = upper_[sequenceOut_]; |
7878 | // for now assume primal is feasible (or in dual) |
7879 | dualOut_ = dj_[sequenceOut_]; |
7880 | assert(fabs(dualOut_) < 1.0e-6); |
7881 | bool roundAgain = true; |
7882 | int returnCode = 0; |
7883 | bool updateSolution = true; |
7884 | while (roundAgain) { |
7885 | roundAgain = false; |
7886 | unpack(rowArray_[1]); |
7887 | factorization_->updateColumnFT(rowArray_[2], rowArray_[1]); |
7888 | alpha_ = 0.0; |
7889 | int i; |
7890 | int * index = rowArray_[1]->getIndices(); |
7891 | int number = rowArray_[1]->getNumElements(); |
7892 | double * element = rowArray_[1]->denseVector(); |
7893 | assert ( !rowArray_[3]->getNumElements()); |
7894 | double * saveSolution = rowArray_[3]->denseVector(); |
7895 | for (i = 0; i < number; i++) { |
7896 | int ii = index[i]; |
7897 | if ( pivotVariable_[ii] == sequenceOut_) { |
7898 | pivotRow_ = ii; |
7899 | alpha_ = element[pivotRow_]; |
7900 | break; |
7901 | } |
7902 | } |
7903 | if (fabs(alpha_) < 1.0e-8) { |
7904 | // be on safe side and clear arrays |
7905 | rowArray_[0]->clear(); |
7906 | rowArray_[1]->clear(); |
7907 | return -1; // will be singular |
7908 | } |
7909 | // we are going to subtract movement from current basic |
7910 | double movement; |
7911 | // see where incoming will go to |
7912 | if (sequenceOut_ < 0 || sequenceIn_ == sequenceOut_) { |
7913 | // flip so go to bound |
7914 | movement = ((directionIn_ > 0) ? upperIn_ : lowerIn_) - valueIn_; |
7915 | } else { |
7916 | // get where outgoing needs to get to |
7917 | double outValue = (directionOut_ < 0) ? upperOut_ : lowerOut_; |
7918 | // solutionOut_ - movement*alpha_ == outValue |
7919 | movement = (valueOut_ - outValue) / alpha_; |
7920 | // set directionIn_ correctly |
7921 | directionIn_ = (movement > 0) ? 1 : -1; |
7922 | } |
7923 | theta_ = movement; |
7924 | double oldValueIn = valueIn_; |
7925 | // update primal solution |
7926 | for (i = 0; i < number; i++) { |
7927 | int ii = index[i]; |
7928 | // get column |
7929 | int ij = pivotVariable_[ii]; |
7930 | double value = element[ii]; |
7931 | saveSolution[ii] = solution_[ij]; |
7932 | solution_[ij] -= movement * value; |
7933 | } |
7934 | //rowArray_[1]->setNumElements(0); |
7935 | // see where something went to |
7936 | #ifndef NDEBUG |
7937 | CoinRelFltEq eq(1.0e-9); |
7938 | #endif |
7939 | if (sequenceOut_ < 0) { |
7940 | if (directionIn_ < 0) { |
7941 | assert (eq(solution_[sequenceIn_], upperIn_)); |
7942 | solution_[sequenceIn_] = upperIn_; |
7943 | } else { |
7944 | assert (eq(solution_[sequenceIn_], lowerIn_)); |
7945 | solution_[sequenceIn_] = lowerIn_; |
7946 | } |
7947 | } else { |
7948 | if (directionOut_ < 0) { |
7949 | assert (eq(solution_[sequenceOut_], upperOut_)); |
7950 | solution_[sequenceOut_] = upperOut_; |
7951 | } else { |
7952 | assert (eq(solution_[sequenceOut_], lowerOut_)); |
7953 | solution_[sequenceOut_] = lowerOut_; |
7954 | } |
7955 | valueOut_ = solution_[sequenceOut_]; |
7956 | solution_[sequenceIn_] = valueIn_ + movement; |
7957 | } |
7958 | valueIn_ = solution_[sequenceIn_]; |
7959 | double objectiveChange = dualIn_ * movement; |
7960 | // update duals |
7961 | if (pivotRow_ >= 0) { |
7962 | if (fabs(alpha_) < 1.0e-8) { |
7963 | // be on safe side and clear arrays |
7964 | rowArray_[0]->clear(); |
7965 | rowArray_[1]->clear(); |
7966 | return -1; // will be singular |
7967 | } |
7968 | double multiplier = dualIn_ / alpha_; |
7969 | rowArray_[0]->insert(pivotRow_, multiplier); |
7970 | factorization_->updateColumnTranspose(rowArray_[2], rowArray_[0]); |
7971 | // put row of tableau in rowArray[0] and columnArray[0] |
7972 | matrix_->transposeTimes(this, -1.0, |
7973 | rowArray_[0], columnArray_[1], columnArray_[0]); |
7974 | // update column djs |
7975 | int i; |
7976 | int * index = columnArray_[0]->getIndices(); |
7977 | int number = columnArray_[0]->getNumElements(); |
7978 | double * element = columnArray_[0]->denseVector(); |
7979 | for (i = 0; i < number; i++) { |
7980 | int ii = index[i]; |
7981 | dj_[ii] += element[ii]; |
7982 | reducedCost_[ii] = dj_[ii]; |
7983 | element[ii] = 0.0; |
7984 | } |
7985 | columnArray_[0]->setNumElements(0); |
7986 | // and row djs |
7987 | index = rowArray_[0]->getIndices(); |
7988 | number = rowArray_[0]->getNumElements(); |
7989 | element = rowArray_[0]->denseVector(); |
7990 | for (i = 0; i < number; i++) { |
7991 | int ii = index[i]; |
7992 | dj_[ii+numberColumns_] += element[ii]; |
7993 | dual_[ii] = dj_[ii+numberColumns_]; |
7994 | element[ii] = 0.0; |
7995 | } |
7996 | rowArray_[0]->setNumElements(0); |
7997 | // check incoming |
7998 | assert (fabs(dj_[sequenceIn_]) < 1.0e-6 || CoinAbs(solveType_) == 2); |
7999 | } |
8000 | |
8001 | // if stable replace in basis |
8002 | int updateStatus = factorization_->replaceColumn(this, |
8003 | rowArray_[2], |
8004 | rowArray_[1], |
8005 | pivotRow_, |
8006 | alpha_); |
8007 | bool takePivot = true; |
8008 | // See if Factorization updated |
8009 | if (updateStatus) { |
8010 | updateSolution = false; |
8011 | returnCode = 1; |
8012 | } |
8013 | // if no pivots, bad update but reasonable alpha - take and invert |
8014 | if (updateStatus == 2 && |
8015 | lastGoodIteration_ == numberIterations_ && fabs(alpha_) > 1.0e-5) |
8016 | updateStatus = 4; |
8017 | if (updateStatus == 1 || updateStatus == 4 || fabs(alpha_) < 1.0e-6) { |
8018 | // slight error |
8019 | if (factorization_->pivots() > 5 || updateStatus == 4) { |
8020 | returnCode = 1; |
8021 | } |
8022 | } else if (updateStatus == 2) { |
8023 | // major error - put back solution |
8024 | valueIn_ = oldValueIn; |
8025 | solution_[sequenceIn_] = valueIn_; |
8026 | int * index = rowArray_[1]->getIndices(); |
8027 | int number = rowArray_[1]->getNumElements(); |
8028 | for (i = 0; i < number; i++) { |
8029 | int ii = index[i]; |
8030 | // get column |
8031 | int ij = pivotVariable_[ii]; |
8032 | solution_[ij] = saveSolution[ii]; |
8033 | } |
8034 | if (sequenceOut_ >= 0) |
8035 | valueOut_ = solution_[sequenceOut_]; |
8036 | takePivot = false; |
8037 | if (factorization_->pivots()) { |
8038 | // refactorize here |
8039 | int factorStatus = internalFactorize(1); |
8040 | if (factorStatus) { |
8041 | printf("help in user pivot\n" ); |
8042 | abort(); |
8043 | } |
8044 | gutsOfSolution(NULL, NULL); |
8045 | valueIn_ = solution_[sequenceIn_]; |
8046 | if (sequenceOut_ >= 0) |
8047 | valueOut_ = solution_[sequenceOut_]; |
8048 | roundAgain = true; |
8049 | } else { |
8050 | returnCode = -1; |
8051 | } |
8052 | } else if (updateStatus == 3) { |
8053 | // out of memory |
8054 | // increase space if not many iterations |
8055 | if (factorization_->pivots() < |
8056 | 0.5 * factorization_->maximumPivots() && |
8057 | factorization_->pivots() < 200) |
8058 | factorization_->areaFactor( |
8059 | factorization_->areaFactor() * 1.1); |
8060 | returnCode = 1; // factorize now |
8061 | } |
8062 | { |
8063 | // clear saveSolution |
8064 | int * index = rowArray_[1]->getIndices(); |
8065 | int number = rowArray_[1]->getNumElements(); |
8066 | for (i = 0; i < number; i++) { |
8067 | int ii = index[i]; |
8068 | saveSolution[ii] = 0.0; |
8069 | } |
8070 | } |
8071 | rowArray_[1]->clear(); |
8072 | if (takePivot) { |
8073 | int save = algorithm_; |
8074 | // make simple so always primal |
8075 | algorithm_ = 1; |
8076 | housekeeping(objectiveChange); |
8077 | algorithm_ = save; |
8078 | } |
8079 | } |
8080 | if (returnCode == 1) { |
8081 | // refactorize here |
8082 | int factorStatus = internalFactorize(1); |
8083 | if (factorStatus) { |
8084 | printf("help in user pivot\n" ); |
8085 | abort(); |
8086 | } |
8087 | updateSolution = true; |
8088 | } |
8089 | if (updateSolution) { |
8090 | // just for now - recompute anyway |
8091 | gutsOfSolution(NULL, NULL); |
8092 | } |
8093 | return returnCode; |
8094 | } |
8095 | |
8096 | /* Pivot in a variable and choose an outgoing one. Assumes primal |
8097 | feasible - will not go through a bound. Returns step length in theta |
8098 | Returns ray in ray_ (or NULL if no pivot) |
8099 | Return codes as before but -1 means no acceptable pivot |
8100 | */ |
8101 | int ClpSimplex::primalPivotResult() |
8102 | { |
8103 | assert (sequenceIn_ >= 0); |
8104 | valueIn_ = solution_[sequenceIn_]; |
8105 | lowerIn_ = lower_[sequenceIn_]; |
8106 | upperIn_ = upper_[sequenceIn_]; |
8107 | dualIn_ = dj_[sequenceIn_]; |
8108 | |
8109 | int returnCode = static_cast<ClpSimplexPrimal *> (this)->pivotResult(); |
8110 | if (returnCode < 0 && returnCode > -4) { |
8111 | return 0; |
8112 | } else { |
8113 | COIN_DETAIL_PRINT(printf("Return code of %d from ClpSimplexPrimal::pivotResult\n" , |
8114 | returnCode)); |
8115 | return -1; |
8116 | } |
8117 | } |
8118 | |
8119 | /* Pivot out a variable and choose an incoing one. Assumes dual |
8120 | feasible - will not go through a reduced cost. |
8121 | Returns step length in theta |
8122 | Returns ray in ray_ (or NULL if no pivot) |
8123 | Return codes as before but -1 means no acceptable pivot |
8124 | */ |
8125 | int |
8126 | ClpSimplex::dualPivotResult() |
8127 | { |
8128 | return static_cast<ClpSimplexDual *> (this)->pivotResult(); |
8129 | } |
8130 | // Factorization frequency |
8131 | int |
8132 | ClpSimplex::factorizationFrequency() const |
8133 | { |
8134 | if (factorization_) |
8135 | return factorization_->maximumPivots(); |
8136 | else |
8137 | return -1; |
8138 | } |
8139 | void |
8140 | ClpSimplex::setFactorizationFrequency(int value) |
8141 | { |
8142 | if (factorization_) |
8143 | factorization_->maximumPivots(value); |
8144 | } |
8145 | // Common bits of coding for dual and primal |
8146 | int |
8147 | ClpSimplex::startup(int ifValuesPass, int startFinishOptions) |
8148 | { |
8149 | // Get rid of some arrays and empty factorization |
8150 | int useFactorization = false; |
8151 | if ((startFinishOptions & 2) != 0 && (whatsChanged_&(2 + 512)) == 2 + 512) |
8152 | useFactorization = true; // Keep factorization if possible |
8153 | #if 0 |
8154 | // seems to be needed if rows deleted later in CbcModel! |
8155 | if (!solution_ && scaledMatrix_) { |
8156 | // get rid of scaled matrix |
8157 | if (scaledMatrix_->getNumRows() != numberRows_) { |
8158 | delete scaledMatrix_; |
8159 | scaledMatrix_ = NULL; |
8160 | } |
8161 | } |
8162 | #endif |
8163 | // sanity check |
8164 | // bad if empty (trap here to avoid using bad matrix_) |
8165 | #if 0 |
8166 | // but also check bounds |
8167 | { |
8168 | int badProblem = 0; |
8169 | int i; |
8170 | for (i = 0; i < numberColumns_; i++) { |
8171 | if (columnLower_[i] > columnUpper_[i]) |
8172 | badProblem++; |
8173 | } |
8174 | for (i = 0; i < numberRows_; i++) { |
8175 | if (rowLower_[i] > rowUpper_[i]) |
8176 | badProblem++; |
8177 | } |
8178 | if (badProblem) { |
8179 | numberDualInfeasibilities_ = 0; |
8180 | sumDualInfeasibilities_ = 0.0; |
8181 | numberPrimalInfeasibilities_ = badProblem; |
8182 | sumPrimalInfeasibilities_ = badProblem; |
8183 | secondaryStatus_ = 6; // so user can see something odd |
8184 | problemStatus_ = 1; |
8185 | bool printIt = (specialOptions_ & 32768) == 0 ? true : false; // no message if from Osi |
8186 | if (printIt) |
8187 | handler_->message(CLP_INFEASIBLE, messages_) |
8188 | << CoinMessageEol; |
8189 | return 2; |
8190 | } |
8191 | } |
8192 | #endif |
8193 | if (!matrix_ || (!matrix_->getNumElements() && objective_->type() < 2)) { |
8194 | int infeasNumber[2]; |
8195 | double infeasSum[2]; |
8196 | bool printIt = (specialOptions_ & 32768) == 0 ? true : false; // no message if from Osi |
8197 | problemStatus_ = emptyProblem(infeasNumber, infeasSum, printIt); |
8198 | if ((startFinishOptions & 1) != 0) { |
8199 | // User may expect user data - fill in as required |
8200 | if (numberRows_) { |
8201 | if (!pivotVariable_) |
8202 | pivotVariable_ = new int [numberRows_]; |
8203 | CoinIotaN(pivotVariable_, numberRows_, numberColumns_); |
8204 | } |
8205 | } |
8206 | numberDualInfeasibilities_ = infeasNumber[0]; |
8207 | sumDualInfeasibilities_ = infeasSum[0]; |
8208 | numberPrimalInfeasibilities_ = infeasNumber[1]; |
8209 | sumPrimalInfeasibilities_ = infeasSum[1]; |
8210 | return 2; |
8211 | } |
8212 | pivotRow_ = -1; |
8213 | sequenceIn_ = -1; |
8214 | sequenceOut_ = -1; |
8215 | secondaryStatus_ = 0; |
8216 | |
8217 | primalTolerance_ = dblParam_[ClpPrimalTolerance]; |
8218 | dualTolerance_ = dblParam_[ClpDualTolerance]; |
8219 | if (problemStatus_ != 10) |
8220 | numberIterations_ = 0; |
8221 | |
8222 | // put in standard form (and make row copy) |
8223 | // create modifiable copies of model rim and do optional scaling |
8224 | bool goodMatrix = createRim(7 + 8 + 16 + 32, true, startFinishOptions); |
8225 | |
8226 | if (goodMatrix) { |
8227 | // switch off factorization if bad |
8228 | if (pivotVariable_[0] < 0) |
8229 | useFactorization = false; |
8230 | // Model looks okay |
8231 | // Do initial factorization |
8232 | // and set certain stuff |
8233 | // We can either set increasing rows so ...IsBasic gives pivot row |
8234 | // or we can just increment iBasic one by one |
8235 | // for now let ...iBasic give pivot row |
8236 | int saveThreshold = factorization_->denseThreshold(); |
8237 | if (!useFactorization || factorization_->numberRows() != numberRows_) { |
8238 | useFactorization = false; |
8239 | factorization_->setDefaultValues(); |
8240 | // Switch off dense (unless special option set) |
8241 | if ((specialOptions_ & 8) == 0) |
8242 | factorization_->setDenseThreshold(0); |
8243 | } |
8244 | // If values pass then perturb (otherwise may be optimal so leave a bit) |
8245 | if (ifValuesPass) { |
8246 | // do perturbation if asked for |
8247 | |
8248 | if (perturbation_ < 100) { |
8249 | if (algorithm_ > 0 && (objective_->type() < 2 || !objective_->activated())) { |
8250 | #ifndef FEB_TRY |
8251 | static_cast<ClpSimplexPrimal *> (this)->perturb(0); |
8252 | #endif |
8253 | } else if (algorithm_ < 0) { |
8254 | static_cast<ClpSimplexDual *> (this)->perturb(); |
8255 | } |
8256 | } |
8257 | } |
8258 | // for primal we will change bounds using infeasibilityCost_ |
8259 | if (nonLinearCost_ == NULL && algorithm_ > 0) { |
8260 | // get a valid nonlinear cost function |
8261 | nonLinearCost_ = new ClpNonLinearCost(this); |
8262 | } |
8263 | |
8264 | // loop round to clean up solution if values pass |
8265 | int numberThrownOut = -1; |
8266 | int totalNumberThrownOut = 0; |
8267 | problemStatus_ = -1; |
8268 | // see if we are re-using factorization |
8269 | if (!useFactorization) { |
8270 | while(numberThrownOut) { |
8271 | int status = internalFactorize(ifValuesPass ? 10 : 0); |
8272 | if (status < 0) |
8273 | return 1; // some error |
8274 | else |
8275 | numberThrownOut = status; |
8276 | |
8277 | // for this we need clean basis so it is after factorize |
8278 | if (!numberThrownOut || numberThrownOut == numberRows_ + 1) { |
8279 | // solution will be done again - skip if absolutely sure |
8280 | if ((specialOptions_ & 512) == 0 || numberThrownOut == numberRows_ + 1) { |
8281 | //int saveFirstFree=firstFree_; |
8282 | numberThrownOut = gutsOfSolution( NULL, NULL, |
8283 | ifValuesPass != 0); |
8284 | //firstFree_=saveFirstFree; |
8285 | if (largestPrimalError_ > 10.0 && !ifValuesPass && !numberThrownOut) { |
8286 | // throw out up to 1000 structurals |
8287 | int iRow; |
8288 | int * sort = new int[numberRows_]; |
8289 | double * array = rowArray_[0]->denseVector(); |
8290 | memset(array, 0, numberRows_ * sizeof(double)); |
8291 | times(-1.0, columnActivityWork_, array); |
8292 | int numberBasic = 0; |
8293 | for (iRow = 0; iRow < numberRows_; iRow++) { |
8294 | int iPivot = pivotVariable_[iRow]; |
8295 | if (iPivot < numberColumns_) { |
8296 | // column |
8297 | double difference = fabs(array[iRow] + rowActivityWork_[iRow]); |
8298 | if (difference > 1.0e-4) { |
8299 | sort[numberThrownOut] = iPivot; |
8300 | array[numberThrownOut++] = difference; |
8301 | if (getStatus(iPivot) == basic) |
8302 | numberBasic++; |
8303 | } |
8304 | } |
8305 | } |
8306 | if (!numberBasic) { |
8307 | allSlackBasis(true); |
8308 | numberThrownOut = 1; // force another go |
8309 | } else { |
8310 | CoinSort_2(array, array + numberThrownOut, sort); |
8311 | numberThrownOut = CoinMin(1000, numberThrownOut); |
8312 | for (iRow = 0; iRow < numberThrownOut; iRow++) { |
8313 | int iColumn = sort[iRow]; |
8314 | setColumnStatus(iColumn, superBasic); |
8315 | if (fabs(solution_[iColumn]) > 1.0e10) { |
8316 | if (upper_[iColumn] < 0.0) { |
8317 | solution_[iColumn] = upper_[iColumn]; |
8318 | } else if (lower_[iColumn] > 0.0) { |
8319 | solution_[iColumn] = lower_[iColumn]; |
8320 | } else { |
8321 | solution_[iColumn] = 0.0; |
8322 | } |
8323 | } |
8324 | } |
8325 | } |
8326 | CoinZeroN(array, numberRows_); |
8327 | delete [] sort; |
8328 | } |
8329 | } else { |
8330 | // make sure not optimal at once |
8331 | numberPrimalInfeasibilities_ = 1; |
8332 | numberThrownOut = 0; |
8333 | } |
8334 | } else { |
8335 | matrix_->rhsOffset(this, true); // redo rhs offset |
8336 | } |
8337 | totalNumberThrownOut += numberThrownOut; |
8338 | |
8339 | } |
8340 | } else { |
8341 | // using previous factorization - we assume fine |
8342 | if ((moreSpecialOptions_ & 8) == 0 || !(whatsChanged_ & 64)) { |
8343 | // but we need to say not optimal (!(whatsChanged_ & 64) means that objective has changed) |
8344 | numberPrimalInfeasibilities_ = 1; |
8345 | numberDualInfeasibilities_ = 1; |
8346 | } |
8347 | matrix_->rhsOffset(this, true); // redo rhs offset |
8348 | } |
8349 | if (totalNumberThrownOut) |
8350 | handler_->message(CLP_SINGULARITIES, messages_) |
8351 | << totalNumberThrownOut |
8352 | << CoinMessageEol; |
8353 | // Switch back dense |
8354 | factorization_->setDenseThreshold(saveThreshold); |
8355 | |
8356 | if (!numberPrimalInfeasibilities_ && !numberDualInfeasibilities_ |
8357 | && !ifValuesPass && |
8358 | (!nonLinearCost_ || !nonLinearCost_->numberInfeasibilities())) |
8359 | problemStatus_ = 0; |
8360 | else |
8361 | assert(problemStatus_ == -1); |
8362 | |
8363 | // number of times we have declared optimality |
8364 | numberTimesOptimal_ = 0; |
8365 | if (disasterArea_) |
8366 | disasterArea_->intoSimplex(); |
8367 | |
8368 | return 0; |
8369 | } else { |
8370 | // bad matrix |
8371 | return 2; |
8372 | } |
8373 | |
8374 | } |
8375 | |
8376 | |
8377 | void |
8378 | ClpSimplex::finish(int startFinishOptions) |
8379 | { |
8380 | // Get rid of some arrays and empty factorization |
8381 | int getRidOfData = 1; |
8382 | if (upper_ && ((startFinishOptions & 1) != 0 || problemStatus_ == 10)) { |
8383 | getRidOfData = 0; // Keep stuff |
8384 | // mark all as current |
8385 | whatsChanged_ = 0x3ffffff; |
8386 | } else { |
8387 | whatsChanged_ &= ~0xffff; |
8388 | } |
8389 | double saveObjValue = objectiveValue_; |
8390 | deleteRim(getRidOfData); |
8391 | if (matrix_->type()>=15) |
8392 | objectiveValue_ = saveObjValue; |
8393 | // Skip message if changing algorithms |
8394 | if (problemStatus_ != 10) { |
8395 | if (problemStatus_ == -1) |
8396 | problemStatus_ = 4; |
8397 | assert(problemStatus_ >= 0 && problemStatus_ < 6); |
8398 | if (handler_->detail(CLP_SIMPLEX_FINISHED, messages_) < 100) { |
8399 | handler_->message(CLP_SIMPLEX_FINISHED + problemStatus_, messages_) |
8400 | << objectiveValue() |
8401 | << CoinMessageEol; |
8402 | } |
8403 | } |
8404 | factorization_->relaxAccuracyCheck(1.0); |
8405 | // get rid of any network stuff - could do more |
8406 | factorization_->cleanUp(); |
8407 | } |
8408 | // Save data |
8409 | ClpDataSave |
8410 | ClpSimplex::saveData() |
8411 | { |
8412 | ClpDataSave saved; |
8413 | saved.dualBound_ = dualBound_; |
8414 | saved.infeasibilityCost_ = infeasibilityCost_; |
8415 | saved.sparseThreshold_ = factorization_->sparseThreshold(); |
8416 | saved.pivotTolerance_ = factorization_->pivotTolerance(); |
8417 | saved.zeroFactorizationTolerance_ = factorization_->zeroTolerance(); |
8418 | saved.zeroSimplexTolerance_ = zeroTolerance_; |
8419 | saved.perturbation_ = perturbation_; |
8420 | saved.forceFactorization_ = forceFactorization_; |
8421 | saved.acceptablePivot_ = acceptablePivot_; |
8422 | saved.objectiveScale_ = objectiveScale_; |
8423 | // Progress indicator |
8424 | progress_.fillFromModel (this); |
8425 | return saved; |
8426 | } |
8427 | // Restore data |
8428 | void |
8429 | ClpSimplex::restoreData(ClpDataSave saved) |
8430 | { |
8431 | //factorization_->sparseThreshold(saved.sparseThreshold_); |
8432 | factorization_->pivotTolerance(saved.pivotTolerance_); |
8433 | factorization_->zeroTolerance(saved.zeroFactorizationTolerance_); |
8434 | zeroTolerance_ = saved.zeroSimplexTolerance_; |
8435 | perturbation_ = saved.perturbation_; |
8436 | infeasibilityCost_ = saved.infeasibilityCost_; |
8437 | dualBound_ = saved.dualBound_; |
8438 | forceFactorization_ = saved.forceFactorization_; |
8439 | objectiveScale_ = saved.objectiveScale_; |
8440 | acceptablePivot_ = saved.acceptablePivot_; |
8441 | } |
8442 | // To flag a variable (not inline to allow for column generation) |
8443 | void |
8444 | ClpSimplex::setFlagged( int sequence) |
8445 | { |
8446 | status_[sequence] |= 64; |
8447 | matrix_->generalExpanded(this, 7, sequence); |
8448 | lastFlaggedIteration_ = numberIterations_; |
8449 | } |
8450 | /* Factorizes and returns true if optimal. Used by user */ |
8451 | bool |
8452 | ClpSimplex::statusOfProblem(bool initial) |
8453 | { |
8454 | // We don't want scaling |
8455 | int saveFlag = scalingFlag_; |
8456 | if (!rowScale_) |
8457 | scalingFlag_ = 0; |
8458 | bool goodMatrix = createRim(7 + 8 + 16 + 32); |
8459 | if (!goodMatrix) { |
8460 | problemStatus_ = 4; |
8461 | scalingFlag_ = saveFlag; |
8462 | return false; |
8463 | } |
8464 | // is factorization okay? |
8465 | if (initial) { |
8466 | // First time - allow singularities |
8467 | int numberThrownOut = -1; |
8468 | int totalNumberThrownOut = 0; |
8469 | while(numberThrownOut) { |
8470 | int status = internalFactorize(0); |
8471 | if (status == numberRows_ + 1) |
8472 | status = 0; // all slack |
8473 | if (status < 0) { |
8474 | deleteRim(-1); |
8475 | scalingFlag_ = saveFlag; |
8476 | return false; // some error |
8477 | } else { |
8478 | numberThrownOut = status; |
8479 | } |
8480 | |
8481 | // for this we need clean basis so it is after factorize |
8482 | //if (!numberThrownOut) |
8483 | //numberThrownOut = gutsOfSolution( NULL,NULL, |
8484 | // false); |
8485 | //else |
8486 | //matrix_->rhsOffset(this,true); // redo rhs offset |
8487 | totalNumberThrownOut += numberThrownOut; |
8488 | |
8489 | } |
8490 | |
8491 | if (totalNumberThrownOut) |
8492 | handler_->message(CLP_SINGULARITIES, messages_) |
8493 | << totalNumberThrownOut |
8494 | << CoinMessageEol; |
8495 | } else { |
8496 | #ifndef NDEBUG |
8497 | int returnCode = internalFactorize(1); |
8498 | assert (!returnCode); |
8499 | #else |
8500 | internalFactorize(1); |
8501 | #endif |
8502 | } |
8503 | CoinMemcpyN(rowActivity_, numberRows_, rowActivityWork_); |
8504 | CoinMemcpyN(columnActivity_, numberColumns_, columnActivityWork_); |
8505 | gutsOfSolution(NULL, NULL); |
8506 | CoinMemcpyN(rowActivityWork_, numberRows_, rowActivity_); |
8507 | CoinMemcpyN(columnActivityWork_, numberColumns_, columnActivity_); |
8508 | CoinMemcpyN(dj_, numberColumns_, reducedCost_); |
8509 | deleteRim(-1); |
8510 | scalingFlag_ = saveFlag; |
8511 | return (primalFeasible() && dualFeasible()); |
8512 | } |
8513 | /* Return model - updates any scalars */ |
8514 | void |
8515 | ClpSimplex::returnModel(ClpSimplex & otherModel) |
8516 | { |
8517 | ClpModel::returnModel(otherModel); |
8518 | otherModel.bestPossibleImprovement_ = bestPossibleImprovement_; |
8519 | otherModel.columnPrimalSequence_ = columnPrimalSequence_; |
8520 | otherModel.zeroTolerance_ = zeroTolerance_; |
8521 | otherModel.rowPrimalSequence_ = rowPrimalSequence_; |
8522 | otherModel.bestObjectiveValue_ = bestObjectiveValue_; |
8523 | otherModel.moreSpecialOptions_ = moreSpecialOptions_; |
8524 | otherModel.baseIteration_ = baseIteration_; |
8525 | otherModel.primalToleranceToGetOptimal_ = primalToleranceToGetOptimal_; |
8526 | otherModel.largestPrimalError_ = largestPrimalError_; |
8527 | otherModel.largestDualError_ = largestDualError_; |
8528 | otherModel.alphaAccuracy_ = alphaAccuracy_; |
8529 | otherModel.alpha_ = alpha_; |
8530 | otherModel.theta_ = theta_; |
8531 | otherModel.lowerIn_ = lowerIn_; |
8532 | otherModel.valueIn_ = valueIn_; |
8533 | otherModel.upperIn_ = upperIn_; |
8534 | otherModel.dualIn_ = dualIn_; |
8535 | otherModel.sequenceIn_ = sequenceIn_; |
8536 | otherModel.directionIn_ = directionIn_; |
8537 | otherModel.lowerOut_ = lowerOut_; |
8538 | otherModel.valueOut_ = valueOut_; |
8539 | otherModel.upperOut_ = upperOut_; |
8540 | otherModel.dualOut_ = dualOut_; |
8541 | otherModel.sequenceOut_ = sequenceOut_; |
8542 | otherModel.directionOut_ = directionOut_; |
8543 | otherModel.pivotRow_ = pivotRow_; |
8544 | otherModel.sumDualInfeasibilities_ = sumDualInfeasibilities_; |
8545 | otherModel.numberDualInfeasibilities_ = numberDualInfeasibilities_; |
8546 | otherModel.numberDualInfeasibilitiesWithoutFree_ = |
8547 | numberDualInfeasibilitiesWithoutFree_; |
8548 | otherModel.sumPrimalInfeasibilities_ = sumPrimalInfeasibilities_; |
8549 | otherModel.numberPrimalInfeasibilities_ = numberPrimalInfeasibilities_; |
8550 | otherModel.numberTimesOptimal_ = numberTimesOptimal_; |
8551 | otherModel.disasterArea_ = NULL; |
8552 | otherModel.sumOfRelaxedDualInfeasibilities_ = sumOfRelaxedDualInfeasibilities_; |
8553 | otherModel.sumOfRelaxedPrimalInfeasibilities_ = sumOfRelaxedPrimalInfeasibilities_; |
8554 | if (perturbationArray_ != otherModel.perturbationArray_) |
8555 | delete [] perturbationArray_; |
8556 | perturbationArray_ = NULL; |
8557 | |
8558 | } |
8559 | /* Constructs a non linear cost from list of non-linearities (columns only) |
8560 | First lower of each column is taken as real lower |
8561 | Last lower is taken as real upper and cost ignored |
8562 | |
8563 | Returns nonzero if bad data e.g. lowers not monotonic |
8564 | */ |
8565 | int |
8566 | ClpSimplex::createPiecewiseLinearCosts(const int * starts, |
8567 | const double * lower, const double * gradient) |
8568 | { |
8569 | delete nonLinearCost_; |
8570 | // Set up feasible bounds and check monotonicity |
8571 | int iColumn; |
8572 | int returnCode = 0; |
8573 | |
8574 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
8575 | int iIndex = starts[iColumn]; |
8576 | int end = starts[iColumn+1] - 1; |
8577 | columnLower_[iColumn] = lower[iIndex]; |
8578 | columnUpper_[iColumn] = lower[end]; |
8579 | double value = columnLower_[iColumn]; |
8580 | iIndex++; |
8581 | for (; iIndex < end; iIndex++) { |
8582 | if (lower[iIndex] < value) |
8583 | returnCode++; // not monotonic |
8584 | value = lower[iIndex]; |
8585 | } |
8586 | } |
8587 | nonLinearCost_ = new ClpNonLinearCost(this, starts, lower, gradient); |
8588 | specialOptions_ |= 2; // say keep |
8589 | return returnCode; |
8590 | } |
8591 | /* For advanced use. When doing iterative solves things can get |
8592 | nasty so on values pass if incoming solution has largest |
8593 | infeasibility < incomingInfeasibility throw out variables |
8594 | from basis until largest infeasibility < allowedInfeasibility |
8595 | or incoming largest infeasibility. |
8596 | If allowedInfeasibility>= incomingInfeasibility this is |
8597 | always possible altough you may end up with an all slack basis. |
8598 | |
8599 | Defaults are 1.0,10.0 |
8600 | */ |
8601 | void |
8602 | ClpSimplex::setValuesPassAction(double incomingInfeasibility, |
8603 | double allowedInfeasibility) |
8604 | { |
8605 | incomingInfeasibility_ = incomingInfeasibility; |
8606 | allowedInfeasibility_ = allowedInfeasibility; |
8607 | CoinAssert(incomingInfeasibility_ >= 0.0); |
8608 | CoinAssert(allowedInfeasibility_ >= incomingInfeasibility_); |
8609 | } |
8610 | // Allow initial dense factorization |
8611 | void |
8612 | ClpSimplex::setInitialDenseFactorization(bool onOff) |
8613 | { |
8614 | if (onOff) |
8615 | specialOptions_ |= 8; |
8616 | else |
8617 | specialOptions_ &= ~8; |
8618 | } |
8619 | bool |
8620 | ClpSimplex::initialDenseFactorization() const |
8621 | { |
8622 | return (specialOptions_ & 8) != 0; |
8623 | } |
8624 | /* This constructor modifies original ClpSimplex and stores |
8625 | original stuff in created ClpSimplex. It is only to be used in |
8626 | conjunction with originalModel */ |
8627 | ClpSimplex::ClpSimplex (ClpSimplex * wholeModel, |
8628 | int numberColumns, const int * whichColumns) |
8629 | { |
8630 | |
8631 | // Set up dummy row selection list |
8632 | numberRows_ = wholeModel->numberRows_; |
8633 | int * whichRow = new int [numberRows_]; |
8634 | int iRow; |
8635 | for (iRow = 0; iRow < numberRows_; iRow++) |
8636 | whichRow[iRow] = iRow; |
8637 | // ClpModel stuff (apart from numberColumns_) |
8638 | matrix_ = wholeModel->matrix_; |
8639 | rowCopy_ = wholeModel->rowCopy_; |
8640 | if (wholeModel->rowCopy_) { |
8641 | // note reversal of order |
8642 | wholeModel->rowCopy_ = wholeModel->rowCopy_->subsetClone(numberRows_, whichRow, |
8643 | numberColumns, whichColumns); |
8644 | } else { |
8645 | wholeModel->rowCopy_ = NULL; |
8646 | } |
8647 | whatsChanged_ &= ~0xffff; |
8648 | CoinAssert (wholeModel->matrix_); |
8649 | wholeModel->matrix_ = wholeModel->matrix_->subsetClone(numberRows_, whichRow, |
8650 | numberColumns, whichColumns); |
8651 | delete [] whichRow; |
8652 | numberColumns_ = wholeModel->numberColumns_; |
8653 | // Now ClpSimplex stuff and status_ |
8654 | delete wholeModel->primalColumnPivot_; |
8655 | wholeModel->primalColumnPivot_ = new ClpPrimalColumnSteepest(0); |
8656 | nonLinearCost_ = wholeModel->nonLinearCost_; |
8657 | |
8658 | // Now main arrays |
8659 | int iColumn; |
8660 | int numberTotal = numberRows_ + numberColumns; |
8661 | COIN_DETAIL_PRINT(printf("%d %d %d\n" , numberTotal, numberRows_, numberColumns)); |
8662 | // mapping |
8663 | int * mapping = new int[numberRows_+numberColumns_]; |
8664 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) |
8665 | mapping[iColumn] = -1; |
8666 | for (iRow = 0; iRow < numberRows_; iRow++) |
8667 | mapping[iRow+numberColumns_] = iRow + numberColumns; |
8668 | // Redo costs and bounds of whole model |
8669 | wholeModel->createRim(1 + 4, false); |
8670 | lower_ = wholeModel->lower_; |
8671 | wholeModel->lower_ = new double [numberTotal]; |
8672 | CoinMemcpyN(lower_ + numberColumns_, numberRows_, wholeModel->lower_ + numberColumns); |
8673 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
8674 | int jColumn = whichColumns[iColumn]; |
8675 | wholeModel->lower_[iColumn] = lower_[jColumn]; |
8676 | // and pointer back |
8677 | mapping[jColumn] = iColumn; |
8678 | } |
8679 | #ifdef CLP_DEBUG |
8680 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) |
8681 | printf("mapx %d %d\n" , iColumn, mapping[iColumn]); |
8682 | #endif |
8683 | // Re-define pivotVariable_ |
8684 | for (iRow = 0; iRow < numberRows_; iRow++) { |
8685 | int iPivot = wholeModel->pivotVariable_[iRow]; |
8686 | wholeModel->pivotVariable_[iRow] = mapping[iPivot]; |
8687 | #ifdef CLP_DEBUG |
8688 | printf("p row %d, pivot %d -> %d\n" , iRow, iPivot, mapping[iPivot]); |
8689 | #endif |
8690 | assert (wholeModel->pivotVariable_[iRow] >= 0); |
8691 | } |
8692 | // Reverse mapping (so extended version of whichColumns) |
8693 | for (iColumn = 0; iColumn < numberColumns; iColumn++) |
8694 | mapping[iColumn] = whichColumns[iColumn]; |
8695 | for (; iColumn < numberRows_ + numberColumns; iColumn++) |
8696 | mapping[iColumn] = iColumn + (numberColumns_ - numberColumns); |
8697 | #ifdef CLP_DEBUG |
8698 | for (iColumn = 0; iColumn < numberRows_ + numberColumns; iColumn++) |
8699 | printf("map %d %d\n" , iColumn, mapping[iColumn]); |
8700 | #endif |
8701 | // Save mapping somewhere - doesn't matter |
8702 | rowUpper_ = reinterpret_cast<double *> (mapping); |
8703 | upper_ = wholeModel->upper_; |
8704 | wholeModel->upper_ = new double [numberTotal]; |
8705 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8706 | int jColumn = mapping[iColumn]; |
8707 | wholeModel->upper_[iColumn] = upper_[jColumn]; |
8708 | } |
8709 | cost_ = wholeModel->cost_; |
8710 | wholeModel->cost_ = new double [numberTotal]; |
8711 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8712 | int jColumn = mapping[iColumn]; |
8713 | wholeModel->cost_[iColumn] = cost_[jColumn]; |
8714 | } |
8715 | dj_ = wholeModel->dj_; |
8716 | wholeModel->dj_ = new double [numberTotal]; |
8717 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8718 | int jColumn = mapping[iColumn]; |
8719 | wholeModel->dj_[iColumn] = dj_[jColumn]; |
8720 | } |
8721 | solution_ = wholeModel->solution_; |
8722 | wholeModel->solution_ = new double [numberTotal]; |
8723 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8724 | int jColumn = mapping[iColumn]; |
8725 | wholeModel->solution_[iColumn] = solution_[jColumn]; |
8726 | } |
8727 | // now see what variables left out do to row solution |
8728 | double * rowSolution = wholeModel->solution_ + numberColumns; |
8729 | double * fullSolution = solution_; |
8730 | double * sumFixed = new double[numberRows_]; |
8731 | memset (sumFixed, 0, numberRows_ * sizeof(double)); |
8732 | // zero out ones in small problem |
8733 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
8734 | int jColumn = mapping[iColumn]; |
8735 | fullSolution[jColumn] = 0.0; |
8736 | } |
8737 | // Get objective offset |
8738 | double originalOffset; |
8739 | wholeModel->getDblParam(ClpObjOffset, originalOffset); |
8740 | double offset = 0.0; |
8741 | const double * cost = cost_; |
8742 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) |
8743 | offset += fullSolution[iColumn] * cost[iColumn]; |
8744 | wholeModel->setDblParam(ClpObjOffset, originalOffset - offset); |
8745 | setDblParam(ClpObjOffset, originalOffset); |
8746 | matrix_->times(1.0, fullSolution, sumFixed, wholeModel->rowScale_, wholeModel->columnScale_); |
8747 | |
8748 | double * lower = lower_ + numberColumns; |
8749 | double * upper = upper_ + numberColumns; |
8750 | double fixed = 0.0; |
8751 | for (iRow = 0; iRow < numberRows_; iRow++) { |
8752 | fixed += fabs(sumFixed[iRow]); |
8753 | if (lower[iRow] > -1.0e50) |
8754 | lower[iRow] -= sumFixed[iRow]; |
8755 | if (upper[iRow] < 1.0e50) |
8756 | upper[iRow] -= sumFixed[iRow]; |
8757 | rowSolution[iRow] -= sumFixed[iRow]; |
8758 | } |
8759 | COIN_DETAIL_PRINT(printf("offset %g sumfixed %g\n" , offset, fixed)); |
8760 | delete [] sumFixed; |
8761 | columnScale_ = wholeModel->columnScale_; |
8762 | if (columnScale_) { |
8763 | wholeModel->columnScale_ = new double [numberTotal]; |
8764 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
8765 | int jColumn = mapping[iColumn]; |
8766 | wholeModel->columnScale_[iColumn] = columnScale_[jColumn]; |
8767 | } |
8768 | } |
8769 | status_ = wholeModel->status_; |
8770 | wholeModel->status_ = new unsigned char [numberTotal]; |
8771 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8772 | int jColumn = mapping[iColumn]; |
8773 | wholeModel->status_[iColumn] = status_[jColumn]; |
8774 | } |
8775 | savedSolution_ = wholeModel->savedSolution_; |
8776 | if (savedSolution_) { |
8777 | wholeModel->savedSolution_ = new double [numberTotal]; |
8778 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8779 | int jColumn = mapping[iColumn]; |
8780 | wholeModel->savedSolution_[iColumn] = savedSolution_[jColumn]; |
8781 | } |
8782 | } |
8783 | saveStatus_ = wholeModel->saveStatus_; |
8784 | if (saveStatus_) { |
8785 | wholeModel->saveStatus_ = new unsigned char [numberTotal]; |
8786 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8787 | int jColumn = mapping[iColumn]; |
8788 | wholeModel->saveStatus_[iColumn] = saveStatus_[jColumn]; |
8789 | } |
8790 | } |
8791 | |
8792 | wholeModel->numberColumns_ = numberColumns; |
8793 | // Initialize weights |
8794 | wholeModel->primalColumnPivot_->saveWeights(wholeModel, 2); |
8795 | // Costs |
8796 | wholeModel->nonLinearCost_ = new ClpNonLinearCost(wholeModel); |
8797 | wholeModel->nonLinearCost_->checkInfeasibilities(); |
8798 | COIN_DETAIL_PRINT(printf("after contraction %d infeasibilities summing to %g\n" , |
8799 | nonLinearCost_->numberInfeasibilities(), nonLinearCost_->sumInfeasibilities())); |
8800 | // Redo some stuff |
8801 | wholeModel->reducedCostWork_ = wholeModel->dj_; |
8802 | wholeModel->rowReducedCost_ = wholeModel->dj_ + wholeModel->numberColumns_; |
8803 | wholeModel->columnActivityWork_ = wholeModel->solution_; |
8804 | wholeModel->rowActivityWork_ = wholeModel->solution_ + wholeModel->numberColumns_; |
8805 | wholeModel->objectiveWork_ = wholeModel->cost_; |
8806 | wholeModel->rowObjectiveWork_ = wholeModel->cost_ + wholeModel->numberColumns_; |
8807 | wholeModel->rowLowerWork_ = wholeModel->lower_ + wholeModel->numberColumns_; |
8808 | wholeModel->columnLowerWork_ = wholeModel->lower_; |
8809 | wholeModel->rowUpperWork_ = wholeModel->upper_ + wholeModel->numberColumns_; |
8810 | wholeModel->columnUpperWork_ = wholeModel->upper_; |
8811 | #ifndef NDEBUG |
8812 | // Check status |
8813 | ClpSimplex * xxxx = wholeModel; |
8814 | int nBasic = 0; |
8815 | for (iColumn = 0; iColumn < xxxx->numberRows_ + xxxx->numberColumns_; iColumn++) |
8816 | if (xxxx->getStatus(iColumn) == basic) |
8817 | nBasic++; |
8818 | assert (nBasic == xxxx->numberRows_); |
8819 | for (iRow = 0; iRow < xxxx->numberRows_; iRow++) { |
8820 | int iPivot = xxxx->pivotVariable_[iRow]; |
8821 | assert (xxxx->getStatus(iPivot) == basic); |
8822 | } |
8823 | #endif |
8824 | } |
8825 | /* This copies back stuff from miniModel and then deletes miniModel. |
8826 | Only to be used with mini constructor */ |
8827 | void |
8828 | ClpSimplex::originalModel(ClpSimplex * miniModel) |
8829 | { |
8830 | int numberSmall = numberColumns_; |
8831 | numberColumns_ = miniModel->numberColumns_; |
8832 | int numberTotal = numberSmall + numberRows_; |
8833 | // copy back |
8834 | int iColumn; |
8835 | int * mapping = reinterpret_cast<int *> (miniModel->rowUpper_); |
8836 | #ifdef CLP_DEBUG |
8837 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) |
8838 | printf("mapb %d %d\n" , iColumn, mapping[iColumn]); |
8839 | #endif |
8840 | // miniModel actually has full arrays |
8841 | // now see what variables left out do to row solution |
8842 | double * fullSolution = miniModel->solution_; |
8843 | double * sumFixed = new double[numberRows_]; |
8844 | memset (sumFixed, 0, numberRows_ * sizeof(double)); |
8845 | miniModel->matrix_->times(1.0, fullSolution, sumFixed, rowScale_, miniModel->columnScale_); |
8846 | |
8847 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8848 | int jColumn = mapping[iColumn]; |
8849 | miniModel->lower_[jColumn] = lower_[iColumn]; |
8850 | miniModel->upper_[jColumn] = upper_[iColumn]; |
8851 | miniModel->cost_[jColumn] = cost_[iColumn]; |
8852 | miniModel->dj_[jColumn] = dj_[iColumn]; |
8853 | miniModel->solution_[jColumn] = solution_[iColumn]; |
8854 | miniModel->status_[jColumn] = status_[iColumn]; |
8855 | #ifdef CLP_DEBUG |
8856 | printf("%d in small -> %d in original\n" , iColumn, jColumn); |
8857 | #endif |
8858 | } |
8859 | delete [] lower_; |
8860 | lower_ = miniModel->lower_; |
8861 | delete [] upper_; |
8862 | upper_ = miniModel->upper_; |
8863 | delete [] cost_; |
8864 | cost_ = miniModel->cost_; |
8865 | delete [] dj_; |
8866 | dj_ = miniModel->dj_; |
8867 | delete [] solution_; |
8868 | solution_ = miniModel->solution_; |
8869 | delete [] status_; |
8870 | status_ = miniModel->status_; |
8871 | if (columnScale_) { |
8872 | for (iColumn = 0; iColumn < numberSmall; iColumn++) { |
8873 | int jColumn = mapping[iColumn]; |
8874 | miniModel->columnScale_[jColumn] = columnScale_[iColumn]; |
8875 | } |
8876 | delete [] columnScale_; |
8877 | columnScale_ = miniModel->columnScale_; |
8878 | } |
8879 | if (savedSolution_) { |
8880 | if (!miniModel->savedSolution_) { |
8881 | miniModel->savedSolution_ = ClpCopyOfArray(solution_, numberColumns_ + numberRows_); |
8882 | } else { |
8883 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8884 | int jColumn = mapping[iColumn]; |
8885 | miniModel->savedSolution_[jColumn] = savedSolution_[iColumn]; |
8886 | } |
8887 | } |
8888 | delete [] savedSolution_; |
8889 | savedSolution_ = miniModel->savedSolution_; |
8890 | } |
8891 | if (saveStatus_) { |
8892 | if (!miniModel->saveStatus_) { |
8893 | miniModel->saveStatus_ = ClpCopyOfArray(status_, numberColumns_ + numberRows_); |
8894 | } else { |
8895 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
8896 | int jColumn = mapping[iColumn]; |
8897 | miniModel->saveStatus_[jColumn] = saveStatus_[iColumn]; |
8898 | } |
8899 | } |
8900 | delete [] saveStatus_; |
8901 | saveStatus_ = miniModel->saveStatus_; |
8902 | } |
8903 | // Re-define pivotVariable_ |
8904 | int iRow; |
8905 | for (iRow = 0; iRow < numberRows_; iRow++) { |
8906 | int iPivot = pivotVariable_[iRow]; |
8907 | #ifdef CLP_DEBUG |
8908 | printf("pb row %d, pivot %d -> %d\n" , iRow, iPivot, mapping[iPivot]); |
8909 | #endif |
8910 | pivotVariable_[iRow] = mapping[iPivot]; |
8911 | assert (pivotVariable_[iRow] >= 0); |
8912 | } |
8913 | // delete stuff and move back |
8914 | delete matrix_; |
8915 | delete rowCopy_; |
8916 | delete primalColumnPivot_; |
8917 | delete nonLinearCost_; |
8918 | matrix_ = miniModel->matrix_; |
8919 | rowCopy_ = miniModel->rowCopy_; |
8920 | nonLinearCost_ = miniModel->nonLinearCost_; |
8921 | double originalOffset; |
8922 | miniModel->getDblParam(ClpObjOffset, originalOffset); |
8923 | setDblParam(ClpObjOffset, originalOffset); |
8924 | // Redo some stuff |
8925 | reducedCostWork_ = dj_; |
8926 | rowReducedCost_ = dj_ + numberColumns_; |
8927 | columnActivityWork_ = solution_; |
8928 | rowActivityWork_ = solution_ + numberColumns_; |
8929 | objectiveWork_ = cost_; |
8930 | rowObjectiveWork_ = cost_ + numberColumns_; |
8931 | rowLowerWork_ = lower_ + numberColumns_; |
8932 | columnLowerWork_ = lower_; |
8933 | rowUpperWork_ = upper_ + numberColumns_; |
8934 | columnUpperWork_ = upper_; |
8935 | // Cleanup |
8936 | for (iRow = 0; iRow < numberRows_; iRow++) { |
8937 | double value = rowActivityWork_[iRow] + sumFixed[iRow]; |
8938 | rowActivityWork_[iRow] = value; |
8939 | switch(getRowStatus(iRow)) { |
8940 | |
8941 | case basic: |
8942 | break; |
8943 | case atUpperBound: |
8944 | //rowActivityWork_[iRow]=rowUpperWork_[iRow]; |
8945 | break; |
8946 | case ClpSimplex::isFixed: |
8947 | case atLowerBound: |
8948 | //rowActivityWork_[iRow]=rowLowerWork_[iRow]; |
8949 | break; |
8950 | case isFree: |
8951 | break; |
8952 | // superbasic |
8953 | case superBasic: |
8954 | break; |
8955 | } |
8956 | } |
8957 | delete [] sumFixed; |
8958 | nonLinearCost_->checkInfeasibilities(); |
8959 | COIN_DETAIL_PRINT(printf("in original %d infeasibilities summing to %g\n" , |
8960 | nonLinearCost_->numberInfeasibilities(), nonLinearCost_->sumInfeasibilities())); |
8961 | // Initialize weights |
8962 | primalColumnPivot_ = new ClpPrimalColumnSteepest(10); |
8963 | primalColumnPivot_->saveWeights(this, 2); |
8964 | #ifndef NDEBUG |
8965 | // Check status |
8966 | ClpSimplex * xxxx = this; |
8967 | int nBasic = 0; |
8968 | for (iColumn = 0; iColumn < xxxx->numberRows_ + xxxx->numberColumns_; iColumn++) |
8969 | if (xxxx->getStatus(iColumn) == basic) |
8970 | nBasic++; |
8971 | assert (nBasic == xxxx->numberRows_); |
8972 | for (iRow = 0; iRow < xxxx->numberRows_; iRow++) { |
8973 | int iPivot = xxxx->pivotVariable_[iRow]; |
8974 | assert (xxxx->getStatus(iPivot) == basic); |
8975 | } |
8976 | #endif |
8977 | } |
8978 | // Pass in Event handler (cloned and deleted at end) |
8979 | void |
8980 | ClpSimplex::passInEventHandler(const ClpEventHandler * eventHandler) |
8981 | { |
8982 | delete eventHandler_; |
8983 | eventHandler_ = eventHandler->clone(); |
8984 | eventHandler_->setSimplex(this); |
8985 | } |
8986 | #ifndef NDEBUG |
8987 | // For errors to make sure print to screen |
8988 | // only called in debug mode |
8989 | static void indexError(int index, |
8990 | std::string methodName) |
8991 | { |
8992 | std::cerr << "Illegal index " << index << " in ClpSimplex::" << methodName << std::endl; |
8993 | throw CoinError("Illegal index" , methodName, "ClpSimplex" ); |
8994 | } |
8995 | #endif |
8996 | // These are only to be used using startFinishOptions (ClpSimplexDual, ClpSimplexPrimal) |
8997 | //Get a row of the tableau (slack part in slack if not NULL) |
8998 | void |
8999 | ClpSimplex::getBInvARow(int row, double* z, double * slack) |
9000 | { |
9001 | #ifndef NDEBUG |
9002 | int n = numberRows(); |
9003 | if (row < 0 || row >= n) { |
9004 | indexError(row, "getBInvARow" ); |
9005 | } |
9006 | #endif |
9007 | if (!rowArray_[0]) { |
9008 | printf("ClpSimplexPrimal or ClpSimplexDual must have been called with correct startFinishOption\n" ); |
9009 | abort(); |
9010 | } |
9011 | CoinIndexedVector * rowArray0 = rowArray(0); |
9012 | CoinIndexedVector * rowArray1 = rowArray(1); |
9013 | CoinIndexedVector * columnArray0 = columnArray(0); |
9014 | CoinIndexedVector * columnArray1 = columnArray(1); |
9015 | rowArray0->clear(); |
9016 | rowArray1->clear(); |
9017 | columnArray0->clear(); |
9018 | columnArray1->clear(); |
9019 | // put +1 in row |
9020 | // But swap if pivot variable was slack as clp stores slack as -1.0 |
9021 | int pivot = pivotVariable_[row]; |
9022 | double value; |
9023 | // And if scaled then adjust |
9024 | if (!rowScale_) { |
9025 | if (pivot < numberColumns_) |
9026 | value = 1.0; |
9027 | else |
9028 | value = -1.0; |
9029 | } else { |
9030 | if (pivot < numberColumns_) |
9031 | value = columnScale_[pivot]; |
9032 | else |
9033 | value = -1.0 * inverseRowScale_[pivot-numberColumns_]; |
9034 | } |
9035 | rowArray1->insert(row, value); |
9036 | factorization_->updateColumnTranspose(rowArray0, rowArray1); |
9037 | // put row of tableau in rowArray1 and columnArray0 |
9038 | clpMatrix()->transposeTimes(this, 1.0, |
9039 | rowArray1, columnArray1, columnArray0); |
9040 | if (!rowScale_) { |
9041 | CoinMemcpyN(columnArray0->denseVector(), numberColumns_, z); |
9042 | } else { |
9043 | double * array = columnArray0->denseVector(); |
9044 | for (int i = 0; i < numberColumns_; i++) |
9045 | z[i] = array[i] * inverseColumnScale_[i]; |
9046 | } |
9047 | if (slack) { |
9048 | if (!rowScale_) { |
9049 | CoinMemcpyN(rowArray1->denseVector(), numberRows_, slack); |
9050 | } else { |
9051 | double * array = rowArray1->denseVector(); |
9052 | for (int i = 0; i < numberRows_; i++) |
9053 | slack[i] = array[i] * rowScale_[i]; |
9054 | } |
9055 | } |
9056 | // don't need to clear everything always, but doesn't cost |
9057 | rowArray0->clear(); |
9058 | rowArray1->clear(); |
9059 | columnArray0->clear(); |
9060 | columnArray1->clear(); |
9061 | } |
9062 | |
9063 | //Get a row of the basis inverse |
9064 | void |
9065 | ClpSimplex::getBInvRow(int row, double* z) |
9066 | |
9067 | { |
9068 | #ifndef NDEBUG |
9069 | int n = numberRows(); |
9070 | if (row < 0 || row >= n) { |
9071 | indexError(row, "getBInvRow" ); |
9072 | } |
9073 | #endif |
9074 | if (!rowArray_[0]) { |
9075 | printf("ClpSimplexPrimal or ClpSimplexDual must have been called with correct startFinishOption\n" ); |
9076 | abort(); |
9077 | } |
9078 | ClpFactorization * factorization = factorization_; |
9079 | CoinIndexedVector * rowArray0 = rowArray(0); |
9080 | CoinIndexedVector * rowArray1 = rowArray(1); |
9081 | rowArray0->clear(); |
9082 | rowArray1->clear(); |
9083 | // put +1 in row |
9084 | // But swap if pivot variable was slack as clp stores slack as -1.0 |
9085 | double value = (pivotVariable_[row] < numberColumns_) ? 1.0 : -1.0; |
9086 | // but scale |
9087 | if (rowScale_) { |
9088 | int pivot = pivotVariable_[row]; |
9089 | if (pivot < numberColumns_) |
9090 | value *= columnScale_[pivot]; |
9091 | else |
9092 | value /= rowScale_[pivot-numberColumns_]; |
9093 | } |
9094 | rowArray1->insert(row, value); |
9095 | factorization->updateColumnTranspose(rowArray0, rowArray1); |
9096 | if (!rowScale_) { |
9097 | CoinMemcpyN(rowArray1->denseVector(), numberRows_, z); |
9098 | } else { |
9099 | double * array = rowArray1->denseVector(); |
9100 | for (int i = 0; i < numberRows_; i++) { |
9101 | z[i] = array[i] * rowScale_[i]; |
9102 | } |
9103 | } |
9104 | rowArray1->clear(); |
9105 | } |
9106 | |
9107 | //Get a column of the tableau |
9108 | void |
9109 | ClpSimplex::getBInvACol(int col, double* vec) |
9110 | { |
9111 | if (!rowArray_[0]) { |
9112 | printf("ClpSimplexPrimal or ClpSimplexDual should have been called with correct startFinishOption\n" ); |
9113 | abort(); |
9114 | } |
9115 | CoinIndexedVector * rowArray0 = rowArray(0); |
9116 | CoinIndexedVector * rowArray1 = rowArray(1); |
9117 | rowArray0->clear(); |
9118 | rowArray1->clear(); |
9119 | // get column of matrix |
9120 | #ifndef NDEBUG |
9121 | int n = numberColumns_ + numberRows_; |
9122 | if (col < 0 || col >= n) { |
9123 | indexError(col, "getBInvACol" ); |
9124 | } |
9125 | #endif |
9126 | if (!rowScale_) { |
9127 | if (col < numberColumns_) { |
9128 | unpack(rowArray1, col); |
9129 | } else { |
9130 | rowArray1->insert(col - numberColumns_, 1.0); |
9131 | } |
9132 | } else { |
9133 | if (col < numberColumns_) { |
9134 | unpack(rowArray1, col); |
9135 | double multiplier = 1.0 * inverseColumnScale_[col]; |
9136 | int number = rowArray1->getNumElements(); |
9137 | int * index = rowArray1->getIndices(); |
9138 | double * array = rowArray1->denseVector(); |
9139 | for (int i = 0; i < number; i++) { |
9140 | int iRow = index[i]; |
9141 | // make sure not packed |
9142 | assert (array[iRow]); |
9143 | array[iRow] *= multiplier; |
9144 | } |
9145 | } else { |
9146 | rowArray1->insert(col - numberColumns_, rowScale_[col-numberColumns_]); |
9147 | } |
9148 | } |
9149 | factorization_->updateColumn(rowArray0, rowArray1, false); |
9150 | // But swap if pivot variable was slack as clp stores slack as -1.0 |
9151 | double * array = rowArray1->denseVector(); |
9152 | if (!rowScale_) { |
9153 | for (int i = 0; i < numberRows_; i++) { |
9154 | double multiplier = (pivotVariable_[i] < numberColumns_) ? 1.0 : -1.0; |
9155 | vec[i] = multiplier * array[i]; |
9156 | } |
9157 | } else { |
9158 | for (int i = 0; i < numberRows_; i++) { |
9159 | int pivot = pivotVariable_[i]; |
9160 | if (pivot < numberColumns_) |
9161 | vec[i] = array[i] * columnScale_[pivot]; |
9162 | else |
9163 | vec[i] = - array[i] / rowScale_[pivot-numberColumns_]; |
9164 | } |
9165 | } |
9166 | rowArray1->clear(); |
9167 | } |
9168 | |
9169 | //Get a column of the basis inverse |
9170 | void |
9171 | ClpSimplex::getBInvCol(int col, double* vec) |
9172 | { |
9173 | if (!rowArray_[0]) { |
9174 | printf("ClpSimplexPrimal or ClpSimplexDual must have been called with correct startFinishOption\n" ); |
9175 | abort(); |
9176 | } |
9177 | CoinIndexedVector * rowArray0 = rowArray(0); |
9178 | CoinIndexedVector * rowArray1 = rowArray(1); |
9179 | rowArray0->clear(); |
9180 | rowArray1->clear(); |
9181 | #ifndef NDEBUG |
9182 | int n = numberRows(); |
9183 | if (col < 0 || col >= n) { |
9184 | indexError(col, "getBInvCol" ); |
9185 | } |
9186 | #endif |
9187 | // put +1 in row |
9188 | // but scale |
9189 | double value; |
9190 | if (!rowScale_) { |
9191 | value = 1.0; |
9192 | } else { |
9193 | value = rowScale_[col]; |
9194 | } |
9195 | rowArray1->insert(col, value); |
9196 | factorization_->updateColumn(rowArray0, rowArray1, false); |
9197 | // But swap if pivot variable was slack as clp stores slack as -1.0 |
9198 | double * array = rowArray1->denseVector(); |
9199 | if (!rowScale_) { |
9200 | for (int i = 0; i < numberRows_; i++) { |
9201 | double multiplier = (pivotVariable_[i] < numberColumns_) ? 1.0 : -1.0; |
9202 | vec[i] = multiplier * array[i]; |
9203 | } |
9204 | } else { |
9205 | for (int i = 0; i < numberRows_; i++) { |
9206 | int pivot = pivotVariable_[i]; |
9207 | double value = array[i]; |
9208 | if (pivot < numberColumns_) |
9209 | vec[i] = value * columnScale_[pivot]; |
9210 | else |
9211 | vec[i] = - value / rowScale_[pivot-numberColumns_]; |
9212 | } |
9213 | } |
9214 | rowArray1->clear(); |
9215 | } |
9216 | |
9217 | /* Get basic indices (order of indices corresponds to the |
9218 | order of elements in a vector retured by getBInvACol() and |
9219 | getBInvCol()). |
9220 | */ |
9221 | void |
9222 | ClpSimplex::getBasics(int* index) |
9223 | { |
9224 | if (!rowArray_[0]) { |
9225 | printf("ClpSimplexPrimal or ClpSimplexDual must have been called with correct startFinishOption\n" ); |
9226 | abort(); |
9227 | } |
9228 | CoinAssert (index); |
9229 | CoinMemcpyN(pivotVariable(), numberRows(), index); |
9230 | } |
9231 | /* Set an objective function coefficient */ |
9232 | void |
9233 | ClpSimplex::setObjectiveCoefficient( int elementIndex, double elementValue ) |
9234 | { |
9235 | #ifndef NDEBUG |
9236 | if (elementIndex < 0 || elementIndex >= numberColumns_) { |
9237 | indexError(elementIndex, "setObjectiveCoefficient" ); |
9238 | } |
9239 | #endif |
9240 | if (objective()[elementIndex] != elementValue) { |
9241 | objective()[elementIndex] = elementValue; |
9242 | if ((whatsChanged_ & 1) != 0) { |
9243 | // work arrays exist - update as well |
9244 | whatsChanged_ &= ~64; |
9245 | double direction = optimizationDirection_ * objectiveScale_; |
9246 | if (!rowScale_) { |
9247 | objectiveWork_[elementIndex] = direction * elementValue; |
9248 | } else { |
9249 | objectiveWork_[elementIndex] = direction * elementValue |
9250 | * columnScale_[elementIndex]; |
9251 | } |
9252 | } |
9253 | } |
9254 | } |
9255 | /* Set a single row lower bound<br> |
9256 | Use -DBL_MAX for -infinity. */ |
9257 | void |
9258 | ClpSimplex::setRowLower( int elementIndex, double elementValue ) |
9259 | { |
9260 | #ifndef NDEBUG |
9261 | int n = numberRows_; |
9262 | if (elementIndex < 0 || elementIndex >= n) { |
9263 | indexError(elementIndex, "setRowLower" ); |
9264 | } |
9265 | #endif |
9266 | if (elementValue < -1.0e27) |
9267 | elementValue = -COIN_DBL_MAX; |
9268 | if (rowLower_[elementIndex] != elementValue) { |
9269 | rowLower_[elementIndex] = elementValue; |
9270 | if ((whatsChanged_ & 1) != 0) { |
9271 | // work arrays exist - update as well |
9272 | whatsChanged_ &= ~16; |
9273 | if (rowLower_[elementIndex] == -COIN_DBL_MAX) { |
9274 | rowLowerWork_[elementIndex] = -COIN_DBL_MAX; |
9275 | } else if (!rowScale_) { |
9276 | rowLowerWork_[elementIndex] = elementValue * rhsScale_; |
9277 | } else { |
9278 | rowLowerWork_[elementIndex] = elementValue * rhsScale_ |
9279 | * rowScale_[elementIndex]; |
9280 | } |
9281 | } |
9282 | } |
9283 | } |
9284 | |
9285 | /* Set a single row upper bound<br> |
9286 | Use DBL_MAX for infinity. */ |
9287 | void |
9288 | ClpSimplex::setRowUpper( int elementIndex, double elementValue ) |
9289 | { |
9290 | #ifndef NDEBUG |
9291 | int n = numberRows_; |
9292 | if (elementIndex < 0 || elementIndex >= n) { |
9293 | indexError(elementIndex, "setRowUpper" ); |
9294 | } |
9295 | #endif |
9296 | if (elementValue > 1.0e27) |
9297 | elementValue = COIN_DBL_MAX; |
9298 | if (rowUpper_[elementIndex] != elementValue) { |
9299 | rowUpper_[elementIndex] = elementValue; |
9300 | if ((whatsChanged_ & 1) != 0) { |
9301 | // work arrays exist - update as well |
9302 | whatsChanged_ &= ~32; |
9303 | if (rowUpper_[elementIndex] == COIN_DBL_MAX) { |
9304 | rowUpperWork_[elementIndex] = COIN_DBL_MAX; |
9305 | } else if (!rowScale_) { |
9306 | rowUpperWork_[elementIndex] = elementValue * rhsScale_; |
9307 | } else { |
9308 | rowUpperWork_[elementIndex] = elementValue * rhsScale_ |
9309 | * rowScale_[elementIndex]; |
9310 | } |
9311 | } |
9312 | } |
9313 | } |
9314 | |
9315 | /* Set a single row lower and upper bound */ |
9316 | void |
9317 | ClpSimplex::setRowBounds( int elementIndex, |
9318 | double lowerValue, double upperValue ) |
9319 | { |
9320 | #ifndef NDEBUG |
9321 | int n = numberRows_; |
9322 | if (elementIndex < 0 || elementIndex >= n) { |
9323 | indexError(elementIndex, "setRowBounds" ); |
9324 | } |
9325 | #endif |
9326 | if (lowerValue < -1.0e27) |
9327 | lowerValue = -COIN_DBL_MAX; |
9328 | if (upperValue > 1.0e27) |
9329 | upperValue = COIN_DBL_MAX; |
9330 | //CoinAssert (upperValue>=lowerValue); |
9331 | if (rowLower_[elementIndex] != lowerValue) { |
9332 | rowLower_[elementIndex] = lowerValue; |
9333 | if ((whatsChanged_ & 1) != 0) { |
9334 | // work arrays exist - update as well |
9335 | whatsChanged_ &= ~16; |
9336 | if (rowLower_[elementIndex] == -COIN_DBL_MAX) { |
9337 | rowLowerWork_[elementIndex] = -COIN_DBL_MAX; |
9338 | } else if (!rowScale_) { |
9339 | rowLowerWork_[elementIndex] = lowerValue * rhsScale_; |
9340 | } else { |
9341 | rowLowerWork_[elementIndex] = lowerValue * rhsScale_ |
9342 | * rowScale_[elementIndex]; |
9343 | } |
9344 | } |
9345 | } |
9346 | if (rowUpper_[elementIndex] != upperValue) { |
9347 | rowUpper_[elementIndex] = upperValue; |
9348 | if ((whatsChanged_ & 1) != 0) { |
9349 | // work arrays exist - update as well |
9350 | whatsChanged_ &= ~32; |
9351 | if (rowUpper_[elementIndex] == COIN_DBL_MAX) { |
9352 | rowUpperWork_[elementIndex] = COIN_DBL_MAX; |
9353 | } else if (!rowScale_) { |
9354 | rowUpperWork_[elementIndex] = upperValue * rhsScale_; |
9355 | } else { |
9356 | rowUpperWork_[elementIndex] = upperValue * rhsScale_ |
9357 | * rowScale_[elementIndex]; |
9358 | } |
9359 | } |
9360 | } |
9361 | } |
9362 | void ClpSimplex::setRowSetBounds(const int* indexFirst, |
9363 | const int* indexLast, |
9364 | const double* boundList) |
9365 | { |
9366 | #ifndef NDEBUG |
9367 | int n = numberRows_; |
9368 | #endif |
9369 | int numberChanged = 0; |
9370 | const int * saveFirst = indexFirst; |
9371 | while (indexFirst != indexLast) { |
9372 | const int iRow = *indexFirst++; |
9373 | #ifndef NDEBUG |
9374 | if (iRow < 0 || iRow >= n) { |
9375 | indexError(iRow, "setRowSetBounds" ); |
9376 | } |
9377 | #endif |
9378 | double lowerValue = *boundList++; |
9379 | double upperValue = *boundList++; |
9380 | if (lowerValue < -1.0e27) |
9381 | lowerValue = -COIN_DBL_MAX; |
9382 | if (upperValue > 1.0e27) |
9383 | upperValue = COIN_DBL_MAX; |
9384 | //CoinAssert (upperValue>=lowerValue); |
9385 | if (rowLower_[iRow] != lowerValue) { |
9386 | rowLower_[iRow] = lowerValue; |
9387 | whatsChanged_ &= ~16; |
9388 | numberChanged++; |
9389 | } |
9390 | if (rowUpper_[iRow] != upperValue) { |
9391 | rowUpper_[iRow] = upperValue; |
9392 | whatsChanged_ &= ~32; |
9393 | numberChanged++; |
9394 | } |
9395 | } |
9396 | if (numberChanged && (whatsChanged_ & 1) != 0) { |
9397 | indexFirst = saveFirst; |
9398 | while (indexFirst != indexLast) { |
9399 | const int iRow = *indexFirst++; |
9400 | if (rowLower_[iRow] == -COIN_DBL_MAX) { |
9401 | rowLowerWork_[iRow] = -COIN_DBL_MAX; |
9402 | } else if (!rowScale_) { |
9403 | rowLowerWork_[iRow] = rowLower_[iRow] * rhsScale_; |
9404 | } else { |
9405 | rowLowerWork_[iRow] = rowLower_[iRow] * rhsScale_ |
9406 | * rowScale_[iRow]; |
9407 | } |
9408 | if (rowUpper_[iRow] == COIN_DBL_MAX) { |
9409 | rowUpperWork_[iRow] = COIN_DBL_MAX; |
9410 | } else if (!rowScale_) { |
9411 | rowUpperWork_[iRow] = rowUpper_[iRow] * rhsScale_; |
9412 | } else { |
9413 | rowUpperWork_[iRow] = rowUpper_[iRow] * rhsScale_ |
9414 | * rowScale_[iRow]; |
9415 | } |
9416 | } |
9417 | } |
9418 | } |
9419 | //----------------------------------------------------------------------------- |
9420 | /* Set a single column lower bound<br> |
9421 | Use -DBL_MAX for -infinity. */ |
9422 | void |
9423 | ClpSimplex::setColumnLower( int elementIndex, double elementValue ) |
9424 | { |
9425 | #ifndef NDEBUG |
9426 | int n = numberColumns_; |
9427 | if (elementIndex < 0 || elementIndex >= n) { |
9428 | indexError(elementIndex, "setColumnLower" ); |
9429 | } |
9430 | #endif |
9431 | if (elementValue < -1.0e27) |
9432 | elementValue = -COIN_DBL_MAX; |
9433 | if (columnLower_[elementIndex] != elementValue) { |
9434 | columnLower_[elementIndex] = elementValue; |
9435 | if ((whatsChanged_ & 1) != 0) { |
9436 | // work arrays exist - update as well |
9437 | whatsChanged_ &= ~128; |
9438 | double value; |
9439 | if (columnLower_[elementIndex] == -COIN_DBL_MAX) { |
9440 | value = -COIN_DBL_MAX; |
9441 | } else if (!columnScale_) { |
9442 | value = elementValue * rhsScale_; |
9443 | } else { |
9444 | value = elementValue * rhsScale_ |
9445 | / columnScale_[elementIndex]; |
9446 | } |
9447 | lower_[elementIndex] = value; |
9448 | if (maximumRows_ >= 0) |
9449 | lower_[elementIndex+maximumRows_+maximumColumns_] = value; |
9450 | } |
9451 | } |
9452 | } |
9453 | |
9454 | /* Set a single column upper bound<br> |
9455 | Use DBL_MAX for infinity. */ |
9456 | void |
9457 | ClpSimplex::setColumnUpper( int elementIndex, double elementValue ) |
9458 | { |
9459 | #ifndef NDEBUG |
9460 | int n = numberColumns_; |
9461 | if (elementIndex < 0 || elementIndex >= n) { |
9462 | indexError(elementIndex, "setColumnUpper" ); |
9463 | } |
9464 | #endif |
9465 | if (elementValue > 1.0e27) |
9466 | elementValue = COIN_DBL_MAX; |
9467 | if (columnUpper_[elementIndex] != elementValue) { |
9468 | columnUpper_[elementIndex] = elementValue; |
9469 | if ((whatsChanged_ & 1) != 0) { |
9470 | // work arrays exist - update as well |
9471 | whatsChanged_ &= ~256; |
9472 | double value; |
9473 | if (columnUpper_[elementIndex] == COIN_DBL_MAX) { |
9474 | value = COIN_DBL_MAX; |
9475 | } else if (!columnScale_) { |
9476 | value = elementValue * rhsScale_; |
9477 | } else { |
9478 | value = elementValue * rhsScale_ |
9479 | / columnScale_[elementIndex]; |
9480 | } |
9481 | //assert (columnUpperWork_==upper_); |
9482 | upper_[elementIndex] = value; |
9483 | if (maximumRows_ >= 0) |
9484 | upper_[elementIndex+maximumRows_+maximumColumns_] = value; |
9485 | } |
9486 | } |
9487 | } |
9488 | |
9489 | /* Set a single column lower and upper bound */ |
9490 | void |
9491 | ClpSimplex::setColumnBounds( int elementIndex, |
9492 | double lowerValue, double upperValue ) |
9493 | { |
9494 | #ifndef NDEBUG |
9495 | int n = numberColumns_; |
9496 | if (elementIndex < 0 || elementIndex >= n) { |
9497 | indexError(elementIndex, "setColumnBounds" ); |
9498 | } |
9499 | #endif |
9500 | if (lowerValue < -1.0e27) |
9501 | lowerValue = -COIN_DBL_MAX; |
9502 | if (columnLower_[elementIndex] != lowerValue) { |
9503 | columnLower_[elementIndex] = lowerValue; |
9504 | if ((whatsChanged_ & 1) != 0) { |
9505 | // work arrays exist - update as well |
9506 | whatsChanged_ &= ~128; |
9507 | if (columnLower_[elementIndex] == -COIN_DBL_MAX) { |
9508 | lower_[elementIndex] = -COIN_DBL_MAX; |
9509 | } else if (!columnScale_) { |
9510 | lower_[elementIndex] = lowerValue * rhsScale_; |
9511 | } else { |
9512 | lower_[elementIndex] = lowerValue * rhsScale_ |
9513 | / columnScale_[elementIndex]; |
9514 | } |
9515 | } |
9516 | } |
9517 | if (upperValue > 1.0e27) |
9518 | upperValue = COIN_DBL_MAX; |
9519 | //CoinAssert (upperValue>=lowerValue); |
9520 | if (columnUpper_[elementIndex] != upperValue) { |
9521 | columnUpper_[elementIndex] = upperValue; |
9522 | if ((whatsChanged_ & 1) != 0) { |
9523 | // work arrays exist - update as well |
9524 | whatsChanged_ &= ~256; |
9525 | if (columnUpper_[elementIndex] == COIN_DBL_MAX) { |
9526 | upper_[elementIndex] = COIN_DBL_MAX; |
9527 | } else if (!columnScale_) { |
9528 | upper_[elementIndex] = upperValue * rhsScale_; |
9529 | } else { |
9530 | upper_[elementIndex] = upperValue * rhsScale_ |
9531 | / columnScale_[elementIndex]; |
9532 | } |
9533 | } |
9534 | } |
9535 | } |
9536 | void ClpSimplex::setColumnSetBounds(const int* indexFirst, |
9537 | const int* indexLast, |
9538 | const double* boundList) |
9539 | { |
9540 | #ifndef NDEBUG |
9541 | int n = numberColumns_; |
9542 | #endif |
9543 | int numberChanged = 0; |
9544 | const int * saveFirst = indexFirst; |
9545 | while (indexFirst != indexLast) { |
9546 | const int iColumn = *indexFirst++; |
9547 | #ifndef NDEBUG |
9548 | if (iColumn < 0 || iColumn >= n) { |
9549 | indexError(iColumn, "setColumnSetBounds" ); |
9550 | } |
9551 | #endif |
9552 | double lowerValue = *boundList++; |
9553 | double upperValue = *boundList++; |
9554 | if (lowerValue < -1.0e27) |
9555 | lowerValue = -COIN_DBL_MAX; |
9556 | if (upperValue > 1.0e27) |
9557 | upperValue = COIN_DBL_MAX; |
9558 | //CoinAssert (upperValue>=lowerValue); |
9559 | if (columnLower_[iColumn] != lowerValue) { |
9560 | columnLower_[iColumn] = lowerValue; |
9561 | whatsChanged_ &= ~16; |
9562 | numberChanged++; |
9563 | } |
9564 | if (columnUpper_[iColumn] != upperValue) { |
9565 | columnUpper_[iColumn] = upperValue; |
9566 | whatsChanged_ &= ~32; |
9567 | numberChanged++; |
9568 | } |
9569 | } |
9570 | if (numberChanged && (whatsChanged_ & 1) != 0) { |
9571 | indexFirst = saveFirst; |
9572 | while (indexFirst != indexLast) { |
9573 | const int iColumn = *indexFirst++; |
9574 | if (columnLower_[iColumn] == -COIN_DBL_MAX) { |
9575 | lower_[iColumn] = -COIN_DBL_MAX; |
9576 | } else if (!columnScale_) { |
9577 | lower_[iColumn] = columnLower_[iColumn] * rhsScale_; |
9578 | } else { |
9579 | lower_[iColumn] = columnLower_[iColumn] * rhsScale_ |
9580 | / columnScale_[iColumn]; |
9581 | } |
9582 | if (columnUpper_[iColumn] == COIN_DBL_MAX) { |
9583 | upper_[iColumn] = COIN_DBL_MAX; |
9584 | } else if (!columnScale_) { |
9585 | upper_[iColumn] = columnUpper_[iColumn] * rhsScale_; |
9586 | } else { |
9587 | upper_[iColumn] = columnUpper_[iColumn] * rhsScale_ |
9588 | / columnScale_[iColumn]; |
9589 | } |
9590 | } |
9591 | } |
9592 | } |
9593 | /* Just check solution (for internal use) - sets sum of |
9594 | infeasibilities etc. */ |
9595 | void |
9596 | ClpSimplex::checkSolutionInternal() |
9597 | { |
9598 | double dualTolerance = dblParam_[ClpDualTolerance]; |
9599 | double primalTolerance = dblParam_[ClpPrimalTolerance]; |
9600 | double nonLinearOffset = 0.0; |
9601 | const double * objective = objective_->gradient(this, columnActivity_, |
9602 | nonLinearOffset, true); |
9603 | int iRow, iColumn; |
9604 | assert (!rowObjective_); |
9605 | |
9606 | objectiveValue_ = 0.0; |
9607 | // now look at solution |
9608 | sumPrimalInfeasibilities_ = 0.0; |
9609 | numberPrimalInfeasibilities_ = 0; |
9610 | |
9611 | sumDualInfeasibilities_ = 0.0; |
9612 | numberDualInfeasibilities_ = 0; |
9613 | double maxmin = optimizationDirection_; |
9614 | |
9615 | for (iRow = 0; iRow < numberRows_; iRow++) { |
9616 | double dualValue = dual_[iRow] * maxmin; |
9617 | double primalValue = rowActivity_[iRow]; |
9618 | double lower = rowLower_[iRow]; |
9619 | double upper = rowUpper_[iRow]; |
9620 | ClpSimplex::Status status = getRowStatus(iRow); |
9621 | if (status != basic) { |
9622 | if (lower == upper) { |
9623 | status = ClpSimplex::isFixed; |
9624 | } else if (primalValue > upper - primalTolerance) { |
9625 | status = ClpSimplex::atUpperBound; |
9626 | } else if (primalValue < lower + primalTolerance) { |
9627 | status = ClpSimplex::atLowerBound; |
9628 | } |
9629 | setRowStatus(iRow, status); |
9630 | } |
9631 | if (primalValue > upper + primalTolerance) { |
9632 | sumPrimalInfeasibilities_ += primalValue - upper - primalTolerance; |
9633 | numberPrimalInfeasibilities_ ++; |
9634 | } else if (primalValue < lower - primalTolerance) { |
9635 | sumPrimalInfeasibilities_ += lower - primalValue - primalTolerance; |
9636 | numberPrimalInfeasibilities_ ++; |
9637 | } else { |
9638 | switch(status) { |
9639 | |
9640 | case basic: |
9641 | case ClpSimplex::isFixed: |
9642 | break; |
9643 | case atUpperBound: |
9644 | // dual should not be positive |
9645 | if (dualValue > dualTolerance) { |
9646 | sumDualInfeasibilities_ += dualValue - dualTolerance_; |
9647 | numberDualInfeasibilities_ ++; |
9648 | } |
9649 | break; |
9650 | case atLowerBound: |
9651 | // dual should not be negative |
9652 | if (dualValue < -dualTolerance) { |
9653 | sumDualInfeasibilities_ -= dualValue + dualTolerance_; |
9654 | numberDualInfeasibilities_ ++; |
9655 | } |
9656 | break; |
9657 | case superBasic: |
9658 | case isFree: |
9659 | if (primalValue < upper - primalTolerance) { |
9660 | // dual should not be negative |
9661 | if (dualValue < -dualTolerance) { |
9662 | sumDualInfeasibilities_ -= dualValue + dualTolerance_; |
9663 | numberDualInfeasibilities_ ++; |
9664 | } |
9665 | } |
9666 | if (primalValue > lower + primalTolerance) { |
9667 | // dual should not be positive |
9668 | if (dualValue > dualTolerance) { |
9669 | sumDualInfeasibilities_ += dualValue - dualTolerance_; |
9670 | numberDualInfeasibilities_ ++; |
9671 | } |
9672 | } |
9673 | break; |
9674 | } |
9675 | } |
9676 | } |
9677 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
9678 | double dualValue = reducedCost_[iColumn] * maxmin; |
9679 | double primalValue = columnActivity_[iColumn]; |
9680 | objectiveValue_ += objective[iColumn] * primalValue; |
9681 | double lower = columnLower_[iColumn]; |
9682 | double upper = columnUpper_[iColumn]; |
9683 | ClpSimplex::Status status = getColumnStatus(iColumn); |
9684 | if (status != basic && lower == upper) { |
9685 | status = ClpSimplex::isFixed; |
9686 | setColumnStatus(iColumn, ClpSimplex::isFixed); |
9687 | } |
9688 | if (primalValue > upper + primalTolerance) { |
9689 | sumPrimalInfeasibilities_ += primalValue - upper - primalTolerance; |
9690 | numberPrimalInfeasibilities_ ++; |
9691 | } else if (primalValue < lower - primalTolerance) { |
9692 | sumPrimalInfeasibilities_ += lower - primalValue - primalTolerance; |
9693 | numberPrimalInfeasibilities_ ++; |
9694 | } else { |
9695 | switch(status) { |
9696 | |
9697 | case basic: |
9698 | // dual should be zero |
9699 | if (fabs(dualValue) > 10.0 * dualTolerance) { |
9700 | sumDualInfeasibilities_ -= dualValue + dualTolerance_; |
9701 | numberDualInfeasibilities_ ++; |
9702 | } |
9703 | break; |
9704 | case ClpSimplex::isFixed: |
9705 | break; |
9706 | case atUpperBound: |
9707 | // dual should not be positive |
9708 | if (dualValue > dualTolerance) { |
9709 | sumDualInfeasibilities_ += dualValue - dualTolerance_; |
9710 | numberDualInfeasibilities_ ++; |
9711 | } |
9712 | break; |
9713 | case atLowerBound: |
9714 | // dual should not be negative |
9715 | if (dualValue < -dualTolerance) { |
9716 | sumDualInfeasibilities_ -= dualValue + dualTolerance_; |
9717 | numberDualInfeasibilities_ ++; |
9718 | } |
9719 | break; |
9720 | case superBasic: |
9721 | case isFree: |
9722 | if (primalValue < upper - primalTolerance) { |
9723 | // dual should not be negative |
9724 | if (dualValue < -dualTolerance) { |
9725 | sumDualInfeasibilities_ -= dualValue + dualTolerance_; |
9726 | numberDualInfeasibilities_ ++; |
9727 | } |
9728 | } |
9729 | if (primalValue > lower + primalTolerance) { |
9730 | // dual should not be positive |
9731 | if (dualValue > dualTolerance) { |
9732 | sumDualInfeasibilities_ += dualValue - dualTolerance_; |
9733 | numberDualInfeasibilities_ ++; |
9734 | } |
9735 | } |
9736 | break; |
9737 | } |
9738 | } |
9739 | } |
9740 | objectiveValue_ += objective_->nonlinearOffset(); |
9741 | // But do direction |
9742 | objectiveValue_ *= optimizationDirection_; |
9743 | |
9744 | if (!numberDualInfeasibilities_ && |
9745 | !numberPrimalInfeasibilities_) |
9746 | problemStatus_ = 0; |
9747 | else |
9748 | problemStatus_ = -1; |
9749 | } |
9750 | /* |
9751 | When scaling is on it is possible that the scaled problem |
9752 | is feasible but the unscaled is not. Clp returns a secondary |
9753 | status code to that effect. This option allows for a cleanup. |
9754 | If you use it I would suggest 1. |
9755 | This only affects actions when scaled optimal |
9756 | 0 - no action |
9757 | 1 - clean up using dual if primal infeasibility |
9758 | 2 - clean up using dual if dual infeasibility |
9759 | 3 - clean up using dual if primal or dual infeasibility |
9760 | 11,12,13 - as 1,2,3 but use primal |
9761 | */ |
9762 | #ifdef COUNT_CLEANUPS |
9763 | static int n1 = 0; |
9764 | static int n2 = 0; |
9765 | static int n3 = 0; |
9766 | #endif |
9767 | int |
9768 | ClpSimplex::cleanup(int cleanupScaling) |
9769 | { |
9770 | #ifdef COUNT_CLEANUPS |
9771 | n1++; |
9772 | #endif |
9773 | int returnCode = 0; |
9774 | if (!problemStatus_ && cleanupScaling) { |
9775 | int check = cleanupScaling % 10; |
9776 | bool primal = (secondaryStatus_ == 2 || secondaryStatus_ == 4); |
9777 | bool dual = (secondaryStatus_ == 3 || secondaryStatus_ == 4); |
9778 | if (((check & 1) != 0 && primal) || (((check & 2) != 0) && dual)) { |
9779 | // need cleanup |
9780 | int saveScalingFlag = scalingFlag_; |
9781 | // say matrix changed |
9782 | whatsChanged_ |= 1; |
9783 | scaling(0); |
9784 | if (cleanupScaling < 10) { |
9785 | // dual |
9786 | returnCode = this->dual(); |
9787 | } else { |
9788 | // primal |
9789 | returnCode = this->primal(); |
9790 | } |
9791 | #ifdef COUNT_CLEANUPS |
9792 | n2++; |
9793 | n3 += numberIterations_; |
9794 | //printf("**cleanup took %d iterations\n",numberIterations_); |
9795 | #endif |
9796 | scaling(saveScalingFlag); |
9797 | } |
9798 | } |
9799 | return returnCode; |
9800 | } |
9801 | #ifdef COUNT_CLEANUPS |
9802 | void printHowMany() |
9803 | { |
9804 | printf("There were %d cleanups out of %d solves and %d iterations\n" , |
9805 | n2, n1, n3); |
9806 | } |
9807 | #endif |
9808 | #ifndef SLIM_CLP |
9809 | #include "CoinWarmStartBasis.hpp" |
9810 | |
9811 | // Returns a basis (to be deleted by user) |
9812 | CoinWarmStartBasis * |
9813 | ClpSimplex::getBasis() const |
9814 | { |
9815 | int iRow, iColumn; |
9816 | CoinWarmStartBasis * basis = new CoinWarmStartBasis(); |
9817 | basis->setSize(numberColumns_, numberRows_); |
9818 | |
9819 | if (statusExists()) { |
9820 | // Flip slacks |
9821 | int lookupA[] = {0, 1, 3, 2, 0, 2}; |
9822 | for (iRow = 0; iRow < numberRows_; iRow++) { |
9823 | int iStatus = getRowStatus(iRow); |
9824 | iStatus = lookupA[iStatus]; |
9825 | basis->setArtifStatus(iRow, static_cast<CoinWarmStartBasis::Status> (iStatus)); |
9826 | } |
9827 | int lookupS[] = {0, 1, 2, 3, 0, 3}; |
9828 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
9829 | int iStatus = getColumnStatus(iColumn); |
9830 | iStatus = lookupS[iStatus]; |
9831 | basis->setStructStatus(iColumn, static_cast<CoinWarmStartBasis::Status> (iStatus)); |
9832 | } |
9833 | } |
9834 | return basis; |
9835 | } |
9836 | #endif |
9837 | // Compute objective value from solution |
9838 | void |
9839 | ClpSimplex::computeObjectiveValue(bool useInternalArrays) |
9840 | { |
9841 | int iSequence; |
9842 | objectiveValue_ = 0.0; |
9843 | const double * obj = objective(); |
9844 | if (!useInternalArrays) { |
9845 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) { |
9846 | double value = columnActivity_[iSequence]; |
9847 | objectiveValue_ += value * obj[iSequence]; |
9848 | } |
9849 | // But remember direction as we are using external objective |
9850 | objectiveValue_ *= optimizationDirection_; |
9851 | } else if (!columnScale_) { |
9852 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) { |
9853 | double value = columnActivityWork_[iSequence]; |
9854 | objectiveValue_ += value * obj[iSequence]; |
9855 | } |
9856 | // But remember direction as we are using external objective |
9857 | objectiveValue_ *= optimizationDirection_; |
9858 | objectiveValue_ += objective_->nonlinearOffset(); |
9859 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
9860 | } else { |
9861 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) { |
9862 | double scaleFactor = columnScale_[iSequence]; |
9863 | double valueScaled = columnActivityWork_[iSequence]; |
9864 | objectiveValue_ += valueScaled * scaleFactor * obj[iSequence]; |
9865 | } |
9866 | // But remember direction as we are using external objective |
9867 | objectiveValue_ *= optimizationDirection_; |
9868 | objectiveValue_ += objective_->nonlinearOffset(); |
9869 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
9870 | } |
9871 | } |
9872 | // Compute minimization objective value from internal solution |
9873 | double |
9874 | ClpSimplex::computeInternalObjectiveValue() |
9875 | { |
9876 | int iSequence; |
9877 | //double oldObj = objectiveValue_; |
9878 | double objectiveValue = 0.0; |
9879 | const double * obj = objective(); |
9880 | if (!columnScale_) { |
9881 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) { |
9882 | double value = solution_[iSequence]; |
9883 | objectiveValue += value * obj[iSequence]; |
9884 | } |
9885 | } else { |
9886 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) { |
9887 | double value = solution_[iSequence] * columnScale_[iSequence]; |
9888 | objectiveValue += value * obj[iSequence]; |
9889 | } |
9890 | } |
9891 | objectiveValue *= optimizationDirection_ / rhsScale_; |
9892 | objectiveValue -= dblParam_[ClpObjOffset]; |
9893 | return objectiveValue; |
9894 | } |
9895 | // If user left factorization frequency then compute |
9896 | void |
9897 | ClpSimplex::defaultFactorizationFrequency() |
9898 | { |
9899 | if (factorizationFrequency() == 200) { |
9900 | // User did not touch preset |
9901 | const int cutoff1 = 10000; |
9902 | const int cutoff2 = 100000; |
9903 | const int base = 75; |
9904 | const int freq0 = 50; |
9905 | const int freq1 = 200; |
9906 | const int freq2 = 400; |
9907 | const int maximum = 1000; |
9908 | int frequency; |
9909 | if (numberRows_ < cutoff1) |
9910 | frequency = base + numberRows_ / freq0; |
9911 | else if (numberRows_ < cutoff2) |
9912 | frequency = base + cutoff1 / freq0 + (numberRows_ - cutoff1) / freq1; |
9913 | else |
9914 | frequency = base + cutoff1 / freq0 + (cutoff2 - cutoff1) / freq1 + (numberRows_ - cutoff2) / freq2; |
9915 | setFactorizationFrequency(CoinMin(maximum, frequency)); |
9916 | } |
9917 | } |
9918 | // Gets clean and emptyish factorization |
9919 | ClpFactorization * |
9920 | ClpSimplex::getEmptyFactorization() |
9921 | { |
9922 | if ((specialOptions_ & 65536) == 0) { |
9923 | assert (!factorization_); |
9924 | factorization_ = new ClpFactorization(); |
9925 | } else if (!factorization_) { |
9926 | factorization_ = new ClpFactorization(); |
9927 | factorization_->setPersistenceFlag(1); |
9928 | } |
9929 | return factorization_; |
9930 | } |
9931 | // May delete or may make clean and emptyish factorization |
9932 | void |
9933 | ClpSimplex::setEmptyFactorization() |
9934 | { |
9935 | if (factorization_) { |
9936 | factorization_->cleanUp(); |
9937 | if ((specialOptions_ & 65536) == 0) { |
9938 | delete factorization_; |
9939 | factorization_ = NULL; |
9940 | } else if (factorization_) { |
9941 | factorization_->almostDestructor(); |
9942 | } |
9943 | } |
9944 | } |
9945 | /* Array persistence flag |
9946 | If 0 then as now (delete/new) |
9947 | 1 then only do arrays if bigger needed |
9948 | 2 as 1 but give a bit extra if bigger needed |
9949 | */ |
9950 | void |
9951 | ClpSimplex::setPersistenceFlag(int value) |
9952 | { |
9953 | if (value) { |
9954 | //specialOptions_|=65536; |
9955 | startPermanentArrays(); |
9956 | } else { |
9957 | specialOptions_ &= ~65536; |
9958 | } |
9959 | if (factorization_) |
9960 | factorization_->setPersistenceFlag(value); |
9961 | } |
9962 | // Move status and solution across |
9963 | void |
9964 | ClpSimplex::moveInfo(const ClpSimplex & rhs, bool justStatus) |
9965 | { |
9966 | objectiveValue_ = rhs.objectiveValue_; |
9967 | numberIterations_ = rhs. numberIterations_; |
9968 | problemStatus_ = rhs. problemStatus_; |
9969 | secondaryStatus_ = rhs. secondaryStatus_; |
9970 | if (numberRows_ == rhs.numberRows_ && numberColumns_ == rhs.numberColumns_ && !justStatus) { |
9971 | if (rhs.status_) { |
9972 | if (status_) |
9973 | CoinMemcpyN(rhs.status_, numberRows_ + numberColumns_, status_); |
9974 | else |
9975 | status_ = CoinCopyOfArray(rhs.status_, numberRows_ + numberColumns_); |
9976 | } else { |
9977 | delete [] status_; |
9978 | status_ = NULL; |
9979 | } |
9980 | CoinMemcpyN(rhs.columnActivity_, numberColumns_, columnActivity_); |
9981 | CoinMemcpyN(rhs.reducedCost_, numberColumns_, reducedCost_); |
9982 | CoinMemcpyN(rhs.rowActivity_, numberRows_, rowActivity_); |
9983 | CoinMemcpyN(rhs.dual_, numberRows_, dual_); |
9984 | } |
9985 | } |
9986 | // Save a copy of model with certain state - normally without cuts |
9987 | void |
9988 | ClpSimplex::makeBaseModel() |
9989 | { |
9990 | delete baseModel_; |
9991 | baseModel_ = new ClpSimplex(*this); |
9992 | } |
9993 | // Switch off base model |
9994 | void |
9995 | ClpSimplex::deleteBaseModel() |
9996 | { |
9997 | delete baseModel_; |
9998 | baseModel_ = NULL; |
9999 | } |
10000 | // Reset to base model |
10001 | void |
10002 | ClpSimplex::setToBaseModel(ClpSimplex * model) |
10003 | { |
10004 | if (!model) |
10005 | model = baseModel_; |
10006 | assert (model); |
10007 | int multiplier = ((model->specialOptions_ & 65536) != 0) ? 2 : 1; |
10008 | assert (multiplier == 2); |
10009 | if (multiplier == 2) { |
10010 | assert (model->maximumRows_ >= 0); |
10011 | if (maximumRows_ < 0) { |
10012 | specialOptions_ |= 65536; |
10013 | maximumRows_ = model->maximumRows_; |
10014 | maximumColumns_ = model->maximumColumns_; |
10015 | } |
10016 | } |
10017 | COIN_DETAIL_PRINT(printf("resetbase a %d rows, %d maximum rows\n" , |
10018 | numberRows_, maximumRows_)); |
10019 | // temporary - later use maximumRows_ for rowUpper_ etc |
10020 | assert (numberRows_ >= model->numberRows_); |
10021 | abort(); |
10022 | } |
10023 | // Start or reset using maximumRows_ and Columns_ |
10024 | bool |
10025 | ClpSimplex::startPermanentArrays() |
10026 | { |
10027 | int maximumRows = maximumRows_; |
10028 | int maximumColumns = maximumColumns_; |
10029 | ClpModel::startPermanentArrays(); |
10030 | if (maximumRows != maximumRows_ || |
10031 | maximumColumns != maximumColumns_) { |
10032 | #if 0 |
10033 | maximumInternalRows_ = maximumRows_; |
10034 | maximumInternalColumns_ = maximumColumns_; |
10035 | int numberTotal2 = (maximumRows_ + maximumColumns_) * 2; |
10036 | delete [] cost_; |
10037 | cost_ = new double[numberTotal2]; |
10038 | delete [] lower_; |
10039 | delete [] upper_; |
10040 | lower_ = new double[numberTotal2]; |
10041 | upper_ = new double[numberTotal2]; |
10042 | delete [] dj_; |
10043 | dj_ = new double[numberTotal2]; |
10044 | delete [] solution_; |
10045 | solution_ = new double[numberTotal2]; |
10046 | assert (scalingFlag_ > 0); |
10047 | if (rowScale_ && rowScale_ != savedRowScale_) |
10048 | delete [] rowScale_; |
10049 | rowScale_ = NULL; |
10050 | // Do initial scaling |
10051 | delete [] savedRowScale_; |
10052 | savedRowScale_ = new double [4*maximumRows_]; |
10053 | delete [] savedColumnScale_; |
10054 | savedColumnScale_ = new double [4*maximumColumns_]; |
10055 | if (scalingFlag_ > 0) { |
10056 | rowScale_ = savedRowScale_; |
10057 | columnScale_ = savedColumnScale_; |
10058 | if (matrix_->scale(this)) { |
10059 | scalingFlag_ = -scalingFlag_; // not scaled after all |
10060 | assert (!rowScale_); |
10061 | } |
10062 | int numberRows2 = numberRows_ + numberExtraRows_; |
10063 | if (rowScale_) { |
10064 | CoinMemcpyN(rowScale_, 2 * numberRows2, savedRowScale_ + 2 * maximumRows_); |
10065 | CoinMemcpyN(columnScale_, 2 * numberColumns_, savedColumnScale_ + 2 * maximumColumns_); |
10066 | } else { |
10067 | abort(); |
10068 | CoinFillN(savedRowScale_ + 2 * maximumRows_, 2 * numberRows2, 1.0); |
10069 | CoinFillN(savedColumnScale_ + 2 * maximumColumns_, 2 * numberColumns_, 1.0); |
10070 | } |
10071 | } |
10072 | #else |
10073 | createRim(63); |
10074 | #endif |
10075 | return true; |
10076 | } else { |
10077 | return false; |
10078 | } |
10079 | } |
10080 | #include "ClpNode.hpp" |
10081 | //#define COIN_DEVELOP |
10082 | // Fathom - 1 if solution |
10083 | int |
10084 | ClpSimplex::fathom(void * stuff) |
10085 | { |
10086 | assert (stuff); |
10087 | ClpNodeStuff * info = reinterpret_cast<ClpNodeStuff *> (stuff); |
10088 | info->nNodes_ = 0; |
10089 | // say can declare optimal |
10090 | moreSpecialOptions_ |= 8; |
10091 | int saveMaxIterations = maximumIterations(); |
10092 | setMaximumIterations((((moreSpecialOptions_&2048)==0) ? 100 : 2000) |
10093 | + 5 * (numberRows_ + numberColumns_)); |
10094 | double saveObjLimit; |
10095 | getDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10096 | if (perturbation_<100) { |
10097 | double limit = saveObjLimit * optimizationDirection_; |
10098 | setDblParam(ClpDualObjectiveLimit, |
10099 | (limit+1.0e-2+1.0e-7*fabs(limit))*optimizationDirection_); |
10100 | } |
10101 | #if 0 |
10102 | bool onOptimal = (numberColumns_==100); |
10103 | double optVal[133]; |
10104 | { |
10105 | memset(optVal, 0, sizeof(optVal)); |
10106 | #if 0 |
10107 | int intIndicesV[] = {61, 62, 65, 66, 67, 68, 69, 70}; |
10108 | double intSolnV[] = {4., 21., 4., 4., 6., 1., 25., 8.}; |
10109 | int vecLen = sizeof(intIndicesV) / sizeof(int); |
10110 | for (int i = 0; i < vecLen; i++) { |
10111 | optVal[intIndicesV[i]] = intSolnV[i]; |
10112 | } |
10113 | #else |
10114 | int intIndicesAt1[] = { 0, 18, 25, 36, 44, 59, 61, 77, 82, 93 }; |
10115 | int vecLen = sizeof(intIndicesAt1) / sizeof(int); |
10116 | for (int i = 0; i < vecLen; i++) { |
10117 | optVal[intIndicesAt1[i]] = 1; |
10118 | } |
10119 | #endif |
10120 | } |
10121 | if (numberColumns_ == 100) { |
10122 | const char * integerType = integerInformation(); |
10123 | for (int i = 0; i < 100; i++) { |
10124 | if (integerType[i]) { |
10125 | if (columnLower_[i] > optVal[i] || columnUpper_[i] < optVal[i]) { |
10126 | onOptimal = false; |
10127 | break; |
10128 | } |
10129 | } |
10130 | } |
10131 | if (onOptimal) { |
10132 | printf("On optimal path fathom\n" ); |
10133 | } |
10134 | } |
10135 | #endif |
10136 | if (info->presolveType_) { |
10137 | // crunch down |
10138 | bool feasible = true; |
10139 | // Use dual region |
10140 | double * rhs = dual_; |
10141 | int * whichRow = new int[3*numberRows_]; |
10142 | int * whichColumn = new int[2*numberColumns_]; |
10143 | int nBound; |
10144 | bool tightenBounds = ((specialOptions_ & 64) == 0) ? false : true; |
10145 | ClpSimplex * small = |
10146 | static_cast<ClpSimplexOther *> (this)->crunch(rhs, whichRow, whichColumn, |
10147 | nBound, false, tightenBounds); |
10148 | if (small) { |
10149 | //double limit = 0.0; |
10150 | //getDblParam(ClpDualObjectiveLimit, limit); |
10151 | //printf("objlimit a %g",limit); |
10152 | //small->getDblParam(ClpDualObjectiveLimit, limit); |
10153 | //printf(" %g\n",limit); |
10154 | // pack down pseudocosts |
10155 | small->moreSpecialOptions_ = moreSpecialOptions_; |
10156 | if (info->upPseudo_) { |
10157 | const char * integerType2 = small->integerInformation(); |
10158 | int n = small->numberColumns(); |
10159 | int k = 0; |
10160 | int jColumn = 0; |
10161 | int j = 0; |
10162 | for (int i = 0; i < n; i++) { |
10163 | if (integerType2[i]) { |
10164 | int iColumn = whichColumn[i]; |
10165 | // find |
10166 | while (jColumn != iColumn) { |
10167 | if (integerType_[jColumn]) |
10168 | j++; |
10169 | jColumn++; |
10170 | } |
10171 | info->priority_[k] = info->priority_[j]; |
10172 | info->upPseudo_[k] = info->upPseudo_[j]; |
10173 | info->numberUp_[k] = info->numberUp_[j]; |
10174 | info->numberUpInfeasible_[k] = info->numberUpInfeasible_[j]; |
10175 | info->downPseudo_[k] = info->downPseudo_[j]; |
10176 | info->numberDown_[k] = info->numberDown_[j]; |
10177 | info->numberDownInfeasible_[k] = info->numberDownInfeasible_[j]; |
10178 | assert (info->upPseudo_[k] > 1.0e-40 && info->upPseudo_[k] < 1.0e40); |
10179 | assert (info->downPseudo_[k] > 1.0e-40 && info->downPseudo_[k] < 1.0e40); |
10180 | k++; |
10181 | } |
10182 | } |
10183 | } |
10184 | #if 0 |
10185 | small->dual(); |
10186 | if (small->problemStatus() == 0) { |
10187 | //problemStatus_ = 0; |
10188 | } else if (small->problemStatus() != 3) { |
10189 | feasible = false; |
10190 | } else { |
10191 | if (small->problemStatus_ == 3) { |
10192 | // may be problems |
10193 | printf("need coding from OsiClp for crunch\n" ); |
10194 | abort(); |
10195 | } |
10196 | } |
10197 | #endif |
10198 | } else { |
10199 | feasible = false; |
10200 | } |
10201 | int returnCode = 0; |
10202 | if (feasible) { |
10203 | info->presolveType_ = 0; |
10204 | // save and move pseudo costs |
10205 | returnCode = small->fathom(stuff); |
10206 | // restore pseudocosts |
10207 | if (info->upPseudo_) { |
10208 | int n = small->numberColumns(); |
10209 | int * back = new int [numberColumns_]; |
10210 | int numberIntegers = 0; |
10211 | for (int i = 0; i < numberColumns_; i++) { |
10212 | if (integerType_[i]) { |
10213 | back[i] = -10 - numberIntegers; |
10214 | numberIntegers++; |
10215 | } else { |
10216 | back[i] = -1; |
10217 | } |
10218 | } |
10219 | const char * integerType2 = small->integerInformation(); |
10220 | int numberIntegers2 = 0; |
10221 | for (int i = 0; i < n; i++) { |
10222 | int iColumn = whichColumn[i]; |
10223 | if (integerType2[i]) { |
10224 | int iBack = -back[iColumn]; |
10225 | assert (iBack >= 10); |
10226 | iBack -= 10; |
10227 | back[iColumn] = iBack; |
10228 | numberIntegers2++; |
10229 | } |
10230 | } |
10231 | int k = numberIntegers2; |
10232 | for (int i = numberColumns_ - 1; i >= 0; i--) { |
10233 | int iBack = back[i]; |
10234 | if (iBack <= -10) { |
10235 | // fixed integer |
10236 | numberIntegers--; |
10237 | info->numberUp_[numberIntegers] = -1; // say not updated |
10238 | } else if (iBack >= 0) { |
10239 | // not fixed integer |
10240 | numberIntegers--; |
10241 | k--; |
10242 | assert (info->upPseudo_[k] > 1.0e-40 && info->upPseudo_[k] < 1.0e40); |
10243 | assert (info->downPseudo_[k] > 1.0e-40 && info->downPseudo_[k] < 1.0e40); |
10244 | info->upPseudo_[numberIntegers] = info->upPseudo_[k]; |
10245 | info->numberUp_[numberIntegers] = info->numberUp_[k]; |
10246 | info->numberUpInfeasible_[numberIntegers] = info->numberUpInfeasible_[k]; |
10247 | info->downPseudo_[numberIntegers] = info->downPseudo_[k]; |
10248 | info->numberDown_[numberIntegers] = info->numberDown_[k]; |
10249 | info->numberDownInfeasible_[numberIntegers] = info->numberDownInfeasible_[k]; |
10250 | } |
10251 | } |
10252 | delete [] back; |
10253 | } |
10254 | if (returnCode) { |
10255 | bool fixBounds = (info->nNodes_ >= 0) ? true : false; |
10256 | //check this does everything |
10257 | static_cast<ClpSimplexOther *> (this)->afterCrunch(*small, |
10258 | whichRow, whichColumn, nBound); |
10259 | bool badSolution = false; |
10260 | for (int i = 0; i < numberColumns_; i++) { |
10261 | if (integerType_[i]) { |
10262 | double value = columnActivity_[i]; |
10263 | double value2 = floor(value + 0.5); |
10264 | if (fabs(value - value2) >= 1.0e-4) { |
10265 | // Very odd - can't use |
10266 | badSolution = true; |
10267 | } |
10268 | columnActivity_[i] = value2; |
10269 | if (fixBounds) { |
10270 | columnLower_[i] = value2; |
10271 | columnUpper_[i] = value2; |
10272 | } |
10273 | } |
10274 | } |
10275 | if (badSolution) { |
10276 | info->nNodes_ = -1; |
10277 | returnCode = 0; |
10278 | } |
10279 | //setLogLevel(63); |
10280 | //double objectiveValue=doubleCheck(); |
10281 | //printf("Solution of %g\n",objectiveValue); |
10282 | } |
10283 | delete small; |
10284 | } |
10285 | delete [] whichRow; |
10286 | delete [] whichColumn; |
10287 | setMaximumIterations(saveMaxIterations); |
10288 | setDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10289 | return returnCode; |
10290 | } |
10291 | int returnCode = startFastDual2(info); |
10292 | if (returnCode) { |
10293 | stopFastDual2(info); |
10294 | setMaximumIterations(saveMaxIterations); |
10295 | setDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10296 | return returnCode; |
10297 | } |
10298 | // Get fake bounds correctly |
10299 | //(static_cast<ClpSimplexDual *>(this))->resetFakeBounds(1); |
10300 | gutsOfSolution ( NULL, NULL); |
10301 | double dummyChange; |
10302 | (static_cast<ClpSimplexDual *>(this))->changeBounds(3, NULL, dummyChange); |
10303 | int saveNumberFake = numberFake_; |
10304 | int status = fastDual2(info); |
10305 | #if 0 |
10306 | { |
10307 | int iPivot; |
10308 | double * array = rowArray_[3]->denseVector(); |
10309 | int i; |
10310 | for (iPivot = 0; iPivot < numberRows_; iPivot++) { |
10311 | int iSequence = pivotVariable_[iPivot]; |
10312 | unpack(rowArray_[3], iSequence); |
10313 | factorization_->updateColumn(rowArray_[2], rowArray_[3]); |
10314 | assert (fabs(array[iPivot] - 1.0) < 1.0e-4); |
10315 | array[iPivot] = 0.0; |
10316 | for (i = 0; i < numberRows_; i++) |
10317 | assert (fabs(array[i]) < 1.0e-4); |
10318 | rowArray_[3]->clear(); |
10319 | } |
10320 | } |
10321 | #endif |
10322 | CoinAssert (problemStatus_ || objectiveValue_ < 1.0e50); |
10323 | if (status && problemStatus_ != 3) { |
10324 | // not finished - might be optimal |
10325 | checkPrimalSolution(rowActivityWork_, columnActivityWork_); |
10326 | double limit = 0.0; |
10327 | getDblParam(ClpDualObjectiveLimit, limit); |
10328 | //printf("objlimit b %g\n",limit); |
10329 | if (!numberPrimalInfeasibilities_ && objectiveValue()*optimizationDirection_ < limit) { |
10330 | problemStatus_ = 0; |
10331 | } |
10332 | status = problemStatus_; |
10333 | } |
10334 | if (problemStatus_ != 0 && problemStatus_ != 1) { |
10335 | #ifdef COIN_DEVELOP |
10336 | printf("bad status %d on initial fast dual %d its\n" , problemStatus_, |
10337 | numberIterations_); |
10338 | #endif |
10339 | info->nNodes_ = -1; |
10340 | setMaximumIterations(saveMaxIterations); |
10341 | setDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10342 | return 0; |
10343 | } |
10344 | int numberNodes = 1; |
10345 | int numberIterations = numberIterations_; |
10346 | #if defined(COIN_DEVELOP) || !defined(NO_FATHOM_PRINT) |
10347 | int printFrequency = 2000; |
10348 | #endif |
10349 | if (problemStatus_ == 1) { |
10350 | //printf("fathom infeasible on initial\n"); |
10351 | stopFastDual2(info); |
10352 | info->numberNodesExplored_ = 1; |
10353 | info->numberIterations_ = numberIterations; |
10354 | setMaximumIterations(saveMaxIterations); |
10355 | setDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10356 | return 0; |
10357 | } else if (problemStatus_ != 0) { |
10358 | stopFastDual2(info); |
10359 | info->numberNodesExplored_ = 1; |
10360 | info->numberIterations_ = numberIterations; |
10361 | setMaximumIterations(saveMaxIterations); |
10362 | setDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10363 | // say bad |
10364 | info->nNodes_ = -1; |
10365 | return 0; |
10366 | } |
10367 | if (!columnScale_) { |
10368 | CoinMemcpyN(solution_, numberColumns_, columnActivity_); |
10369 | } else { |
10370 | assert(columnActivity_); |
10371 | assert(columnScale_); |
10372 | assert(solution_); |
10373 | int j; |
10374 | for (j = 0; j < numberColumns_; j++) |
10375 | columnActivity_[j] = solution_[j] * columnScale_[j]; |
10376 | } |
10377 | double increment = info->integerIncrement_; |
10378 | int maxDepthSize = 10; |
10379 | int maxDepth = 0; |
10380 | int depth = 0; |
10381 | // Get fake bounds correctly |
10382 | (static_cast<ClpSimplexDual *>(this))->changeBounds(3, NULL, dummyChange); |
10383 | saveNumberFake = numberFake_; |
10384 | ClpNode ** nodes = new ClpNode * [maxDepthSize]; |
10385 | int numberTotal = numberRows_ + numberColumns_; |
10386 | double * saveLower = CoinCopyOfArray(columnLower_, numberColumns_); |
10387 | double * saveUpper = CoinCopyOfArray(columnUpper_, numberColumns_); |
10388 | double * saveLowerInternal = CoinCopyOfArray(lower_, numberTotal); |
10389 | double * saveUpperInternal = CoinCopyOfArray(upper_, numberTotal); |
10390 | double * bestLower = NULL; |
10391 | double * bestUpper = NULL; |
10392 | int * back = new int [numberColumns_]; |
10393 | int numberIntegers = 0; |
10394 | double sumChanges = 1.0e-5; |
10395 | int numberChanges = 1; |
10396 | for (int i = 0; i < numberColumns_; i++) { |
10397 | if (integerType_[i]) |
10398 | back[i] = numberIntegers++; |
10399 | else |
10400 | back[i] = -1; |
10401 | } |
10402 | unsigned char * bestStatus = NULL; |
10403 | double bestObjective; |
10404 | getDblParam(ClpDualObjectiveLimit, bestObjective); |
10405 | double saveBestObjective = bestObjective; |
10406 | bool backtrack = false; |
10407 | bool printing = handler_->logLevel() > 0; |
10408 | while (depth >= 0) { |
10409 | // If backtrack get to correct depth |
10410 | if (backtrack) { |
10411 | depth--; |
10412 | while (depth >= 0) { |
10413 | if (!nodes[depth]->fathomed()) { |
10414 | nodes[depth]->changeState(); |
10415 | break; |
10416 | } |
10417 | //if (printing) |
10418 | //printf("deleting node at depth %d\n",depth); |
10419 | //delete nodes[depth]; |
10420 | //nodes[depth]=NULL; |
10421 | depth--; |
10422 | } |
10423 | if (depth < 0) |
10424 | break; |
10425 | // apply |
10426 | // First if backtracking we need to restore factorization, bounds and weights |
10427 | CoinMemcpyN(saveLowerInternal, numberTotal, lower_); |
10428 | CoinMemcpyN(saveUpperInternal, numberTotal, upper_); |
10429 | CoinMemcpyN(saveLower, numberColumns_, columnLower_); |
10430 | CoinMemcpyN(saveUpper, numberColumns_, columnUpper_); |
10431 | for (int i = 0; i < depth; i++) { |
10432 | nodes[i]->applyNode(this, 0); |
10433 | } |
10434 | nodes[depth]->applyNode(this, 1); |
10435 | int iColumn = nodes[depth]->sequence(); |
10436 | if (printing) |
10437 | printf("after backtracking - applying node at depth %d - variable %d (%g,%g)\n" , |
10438 | depth, iColumn, |
10439 | columnLower_[iColumn], columnUpper_[iColumn]); |
10440 | depth++; |
10441 | } else { |
10442 | // just bounds |
10443 | if (depth > 0) { |
10444 | nodes[depth-1]->applyNode(this, 0); |
10445 | int iColumn = nodes[depth-1]->sequence(); |
10446 | if (printing) |
10447 | printf("No backtracking - applying node at depth-m %d - variable %d (%g,%g)\n" , |
10448 | depth - 1, iColumn, |
10449 | columnLower_[iColumn], columnUpper_[iColumn]); |
10450 | } |
10451 | } |
10452 | // solve |
10453 | #if 0 |
10454 | { |
10455 | int iPivot; |
10456 | double * array = rowArray_[3]->denseVector(); |
10457 | int i; |
10458 | for (iPivot = 0; iPivot < numberRows_; iPivot++) { |
10459 | int iSequence = pivotVariable_[iPivot]; |
10460 | unpack(rowArray_[3], iSequence); |
10461 | factorization_->updateColumn(rowArray_[2], rowArray_[3]); |
10462 | assert (fabs(array[iPivot] - 1.0) < 1.0e-4); |
10463 | array[iPivot] = 0.0; |
10464 | for (i = 0; i < numberRows_; i++) |
10465 | assert (fabs(array[i]) < 1.0e-4); |
10466 | rowArray_[3]->clear(); |
10467 | } |
10468 | } |
10469 | #endif |
10470 | #ifdef COIN_DEVELOP |
10471 | static int zzzzzz=0; |
10472 | zzzzzz++; |
10473 | if ((zzzzzz%100000)==0) |
10474 | printf("%d fathom solves\n" ,zzzzzz); |
10475 | if (zzzzzz==-1) { |
10476 | printf("TROUBLE\n" ); |
10477 | } |
10478 | #endif |
10479 | // Get fake bounds correctly |
10480 | (static_cast<ClpSimplexDual *>(this))->changeBounds(3, NULL, dummyChange); |
10481 | fastDual2(info); |
10482 | #if 0 |
10483 | { |
10484 | int iPivot; |
10485 | double * array = rowArray_[3]->denseVector(); |
10486 | int i; |
10487 | for (iPivot = 0; iPivot < numberRows_; iPivot++) { |
10488 | int iSequence = pivotVariable_[iPivot]; |
10489 | unpack(rowArray_[3], iSequence); |
10490 | factorization_->updateColumn(rowArray_[2], rowArray_[3]); |
10491 | assert (fabs(array[iPivot] - 1.0) < 1.0e-4); |
10492 | array[iPivot] = 0.0; |
10493 | for (i = 0; i < numberRows_; i++) |
10494 | assert (fabs(array[i]) < 1.0e-4); |
10495 | rowArray_[3]->clear(); |
10496 | } |
10497 | } |
10498 | #endif |
10499 | // give up if odd |
10500 | if (problemStatus_ > 1) { |
10501 | info->nNodes_ = -1; |
10502 | #ifdef COIN_DEVELOP |
10503 | printf("OUCH giving up on loop! %d %d %d %d - zzzzzz %d - max %d\n" , |
10504 | numberNodes, numberIterations, problemStatus_, numberIterations_,zzzzzz,intParam_[0]); |
10505 | printf("xx %d\n" , numberIterations*(numberRows_ + numberColumns_)); |
10506 | //abort(); |
10507 | #endif |
10508 | break; |
10509 | } |
10510 | numberNodes++; |
10511 | numberIterations += numberIterations_; |
10512 | if ((numberNodes % 1000) == 0) { |
10513 | #ifdef COIN_DEVELOP |
10514 | if ((numberNodes % printFrequency) == 0) { |
10515 | printf("Fathoming from node %d - %d nodes (%d iterations) - current depth %d\n" , |
10516 | info->nodeCalled_,numberNodes, |
10517 | numberIterations, depth+info->startingDepth_); |
10518 | printFrequency *= 2; |
10519 | } |
10520 | #elif !defined(NO_FATHOM_PRINT) |
10521 | if ((numberNodes % printFrequency) == 0) { |
10522 | if ((moreSpecialOptions_&2048)!=0) |
10523 | info->handler_->message(CLP_FATHOM_STATUS, messages_) |
10524 | << info->nodeCalled_ << numberNodes |
10525 | << numberIterations << depth+info->startingDepth_ |
10526 | << CoinMessageEol; |
10527 | printFrequency *= 2; |
10528 | } |
10529 | #endif |
10530 | if ((numberIterations*(numberRows_ + numberColumns_) > 5.0e10 || |
10531 | numberNodes > 2.0e4) && |
10532 | (moreSpecialOptions_&4096)==0) { |
10533 | // give up |
10534 | info->nNodes_ = -1; |
10535 | #ifdef COIN_DEVELOP |
10536 | printf("OUCH giving up on nodes %d %d\n" , numberNodes, numberIterations); |
10537 | printf("xx %d\n" , numberIterations*(numberRows_ + numberColumns_)); |
10538 | //abort(); |
10539 | #endif |
10540 | break; |
10541 | } |
10542 | } |
10543 | if (problemStatus_ == 1 || |
10544 | (problemStatus_ == 0 && objectiveValue()*optimizationDirection_ > bestObjective)) { |
10545 | backtrack = true; |
10546 | if (printing) |
10547 | printf("infeasible at depth %d\n" , depth); |
10548 | if (depth > 0) { |
10549 | int way = nodes[depth-1]->way(); |
10550 | int sequence = nodes[depth-1]->sequence(); |
10551 | #ifndef NDEBUG |
10552 | double branchingValue = nodes[depth-1]->branchingValue(); |
10553 | if (way > 0) |
10554 | assert (columnLower_[sequence] == ceil(branchingValue)); |
10555 | else |
10556 | assert (columnUpper_[sequence] == floor(branchingValue)); |
10557 | #endif |
10558 | sequence = back[sequence]; |
10559 | double change = bestObjective - nodes[depth-1]->objectiveValue(); |
10560 | if (change > 1.0e10) |
10561 | change = 10.0 * sumChanges / (1.0 + numberChanges); |
10562 | info->update(way, sequence, change, false); |
10563 | } |
10564 | } else if (problemStatus_ != 0) { |
10565 | abort(); |
10566 | } else { |
10567 | // Create node |
10568 | ClpNode * node; |
10569 | computeDuals(NULL); |
10570 | if (depth > 0) { |
10571 | int way = nodes[depth-1]->way(); |
10572 | int sequence = nodes[depth-1]->sequence(); |
10573 | #ifndef NDEBUG |
10574 | double branchingValue = nodes[depth-1]->branchingValue(); |
10575 | if (way > 0) |
10576 | assert (columnLower_[sequence] == ceil(branchingValue)); |
10577 | else |
10578 | assert (columnUpper_[sequence] == floor(branchingValue)); |
10579 | #endif |
10580 | sequence = back[sequence]; |
10581 | info->update(way, sequence, |
10582 | objectiveValue() - nodes[depth-1]->objectiveValue(), |
10583 | true); |
10584 | numberChanges++; |
10585 | sumChanges += objectiveValue() - nodes[depth-1]->objectiveValue(); |
10586 | } |
10587 | if (depth < maxDepth) { |
10588 | node = nodes[depth]; |
10589 | node->gutsOfConstructor(this, info, 1, depth); |
10590 | } else { |
10591 | node = new ClpNode(this, info, depth); |
10592 | if (depth == maxDepthSize) { |
10593 | maxDepthSize = 2 * maxDepthSize + 10; |
10594 | ClpNode ** temp = new ClpNode * [maxDepthSize]; |
10595 | for (int i = 0; i < depth; i++) |
10596 | temp[i] = nodes[i]; |
10597 | delete [] nodes; |
10598 | nodes = temp; |
10599 | } |
10600 | nodes[maxDepth++] = node; |
10601 | } |
10602 | #if 0 |
10603 | if (numberColumns_ == 100 && onOptimal) { |
10604 | const char * integerType = integerInformation(); |
10605 | bool localOptimal=true; |
10606 | for (int i = 0; i < 100; i++) { |
10607 | if (integerType[i]) { |
10608 | if (columnLower_[i] > optVal[i] || columnUpper_[i] < optVal[i]) { |
10609 | localOptimal = false; |
10610 | printf("bad %d %g %g %g\n" , i, columnLower_[i], optVal[i], |
10611 | columnUpper_[i]); |
10612 | break; |
10613 | } |
10614 | } |
10615 | } |
10616 | if (localOptimal) { |
10617 | printf("still on optimal\n" ); |
10618 | } |
10619 | assert (onOptimal); |
10620 | } |
10621 | #endif |
10622 | double objectiveValue=0.0; |
10623 | if (node->sequence() < 0) { |
10624 | objectiveValue = doubleCheck(); |
10625 | node->gutsOfConstructor(this, info, 1, depth); |
10626 | } |
10627 | if (node->sequence() < 0) { |
10628 | // solution |
10629 | //double objectiveValue = doubleCheck(); |
10630 | if (objectiveValue < bestObjective) { |
10631 | #ifdef COIN_DEVELOP |
10632 | printf("Fathoming from node %d - solution of %g after %d nodes at depth %d\n" , |
10633 | info->nodeCalled_,objectiveValue, |
10634 | numberNodes, depth+info->startingDepth_); |
10635 | #elif !defined(NO_FATHOM_PRINT) |
10636 | if ((moreSpecialOptions_&2048)!=0) |
10637 | info->handler_->message(CLP_FATHOM_SOLUTION, messages_) |
10638 | << info->nodeCalled_ << objectiveValue |
10639 | << numberNodes << depth+info->startingDepth_ |
10640 | << CoinMessageEol; |
10641 | #endif |
10642 | // later then lower_ not columnLower_ (and total?) |
10643 | delete [] bestLower; |
10644 | bestLower = CoinCopyOfArray(columnLower_, numberColumns_); |
10645 | delete [] bestUpper; |
10646 | bestUpper = CoinCopyOfArray(columnUpper_, numberColumns_); |
10647 | delete [] bestStatus; |
10648 | bestStatus = CoinCopyOfArray(status_, numberTotal); |
10649 | bestObjective = objectiveValue - increment; |
10650 | if (perturbation_<100) |
10651 | bestObjective += 1.0e-2+1.0e-7*fabs(bestObjective); |
10652 | setDblParam(ClpDualObjectiveLimit, bestObjective * optimizationDirection_); |
10653 | } else { |
10654 | //#define CLP_INVESTIGATE |
10655 | #ifdef COIN_DEVELOP |
10656 | printf("why bad solution feasible\n" ); |
10657 | #endif |
10658 | } |
10659 | //delete node; |
10660 | backtrack = true; |
10661 | } else { |
10662 | if (printing) |
10663 | printf("depth %d variable %d\n" , depth, node->sequence()); |
10664 | depth++; |
10665 | backtrack = false; |
10666 | //nodes[depth++] = new ClpNode (this,info); |
10667 | } |
10668 | } |
10669 | } |
10670 | if (!info->nNodes_) |
10671 | assert (depth == -1); |
10672 | for (int i = 0; i < maxDepth; i++) |
10673 | delete nodes[i]; |
10674 | delete [] nodes; |
10675 | delete [] back; |
10676 | stopFastDual2(info); |
10677 | #ifndef NO_FATHOM_PRINT |
10678 | if ((moreSpecialOptions_&2048)!=0 && numberNodes >= 10000) |
10679 | info->handler_->message(CLP_FATHOM_FINISH, messages_) |
10680 | << info->nodeCalled_ << info->startingDepth_ |
10681 | << numberNodes << numberIterations << maxDepth+info->startingDepth_ |
10682 | << CoinMessageEol; |
10683 | #endif |
10684 | //printf("fathom finished after %d nodes\n",numberNodes); |
10685 | if (bestStatus) { |
10686 | CoinMemcpyN(bestLower, numberColumns_, columnLower_); |
10687 | CoinMemcpyN(bestUpper, numberColumns_, columnUpper_); |
10688 | CoinMemcpyN(bestStatus, numberTotal, status_); |
10689 | delete [] bestLower; |
10690 | delete [] bestUpper; |
10691 | delete [] bestStatus; |
10692 | setDblParam(ClpDualObjectiveLimit, saveBestObjective); |
10693 | saveObjLimit = saveBestObjective; |
10694 | int saveOptions = specialOptions_; |
10695 | specialOptions_ &= ~65536; |
10696 | dual(); |
10697 | specialOptions_ = saveOptions; |
10698 | info->numberNodesExplored_ = numberNodes; |
10699 | info->numberIterations_ = numberIterations; |
10700 | returnCode = 1; |
10701 | } else { |
10702 | info->numberNodesExplored_ = numberNodes; |
10703 | info->numberIterations_ = numberIterations; |
10704 | returnCode = 0; |
10705 | } |
10706 | if (info->nNodes_ < 0) { |
10707 | if (lower_) { |
10708 | CoinMemcpyN(saveLowerInternal, numberTotal, lower_); |
10709 | CoinMemcpyN(saveUpperInternal, numberTotal, upper_); |
10710 | numberFake_ = saveNumberFake; |
10711 | } |
10712 | CoinMemcpyN(saveLower, numberColumns_, columnLower_); |
10713 | CoinMemcpyN(saveUpper, numberColumns_, columnUpper_); |
10714 | } |
10715 | delete [] saveLower; |
10716 | delete [] saveUpper; |
10717 | delete [] saveLowerInternal; |
10718 | delete [] saveUpperInternal; |
10719 | setMaximumIterations(saveMaxIterations); |
10720 | setDblParam(ClpDualObjectiveLimit, saveObjLimit); |
10721 | return returnCode; |
10722 | } |
10723 | //#define CHECK_PATH |
10724 | #ifdef CHECK_PATH |
10725 | const double * debuggerSolution_Z = NULL; |
10726 | int numberColumns_Z = -1; |
10727 | int gotGoodNode_Z = -1; |
10728 | #endif |
10729 | /* Do up to N deep - returns |
10730 | -1 - no solution nNodes_ valid nodes |
10731 | >= if solution and that node gives solution |
10732 | ClpNode array is 2**N long. Values for N and |
10733 | array are in stuff (nNodes_ also in stuff) */ |
10734 | int |
10735 | ClpSimplex::fathomMany(void * stuff) |
10736 | { |
10737 | assert (stuff); |
10738 | ClpNodeStuff * info = reinterpret_cast<ClpNodeStuff *> (stuff); |
10739 | int nNodes = info->maximumNodes(); |
10740 | int putNode = info->maximumSpace(); |
10741 | int goodNodes = 0; |
10742 | info->nNodes_ = 0; |
10743 | ClpNode ** nodeInfo = info->nodeInfo_; |
10744 | assert (nodeInfo); |
10745 | // say can declare optimal |
10746 | moreSpecialOptions_ |= 8; |
10747 | double limit = 0.0; |
10748 | getDblParam(ClpDualObjectiveLimit, limit); |
10749 | for (int j = 0; j < putNode; j++) { |
10750 | if (nodeInfo[j]) { |
10751 | nodeInfo[j]->setObjectiveValue(limit); |
10752 | if (info->large_) |
10753 | nodeInfo[j]->cleanUpForCrunch(); |
10754 | } |
10755 | } |
10756 | #ifdef CHECK_PATH |
10757 | // Note - if code working can get assert on startOptimal==2 (if finds) |
10758 | int startOptimal = 0; |
10759 | if (numberColumns_ == numberColumns_Z) { |
10760 | assert (debuggerSolution_Z); |
10761 | startOptimal = 1; |
10762 | for (int i = 0; i < numberColumns_; i++) { |
10763 | if (columnUpper_[i] < debuggerSolution_Z[i] || columnLower_[i] > debuggerSolution_Z[i]) { |
10764 | startOptimal = 0; |
10765 | break; |
10766 | } |
10767 | } |
10768 | if (startOptimal) { |
10769 | printf("starting on optimal\n" ); |
10770 | } |
10771 | } else if (info->large_ && info->large_->numberColumns_ == numberColumns_Z) { |
10772 | assert (debuggerSolution_Z); |
10773 | startOptimal = 1; |
10774 | for (int i = 0; i < info->large_->numberColumns_; i++) { |
10775 | if (info->large_->columnUpper_[i] < debuggerSolution_Z[i] || info->large_->columnLower_[i] > debuggerSolution_Z[i]) { |
10776 | startOptimal = 0; |
10777 | break; |
10778 | } |
10779 | } |
10780 | if (startOptimal) { |
10781 | printf("starting on optimal (presolved) %d\n" , numberColumns_); |
10782 | } |
10783 | } |
10784 | #endif |
10785 | int whichSolution = -1; |
10786 | if (info->presolveType_) { |
10787 | // crunch down |
10788 | bool feasible = true; |
10789 | // Use dual region |
10790 | double * rhs = dual_; |
10791 | int * whichRow = new int[3*numberRows_]; |
10792 | int * whichColumn = new int[2*numberColumns_]; |
10793 | int nBound; |
10794 | bool tightenBounds = ((specialOptions_ & 64) == 0) ? false : true; |
10795 | ClpSimplex * small = |
10796 | static_cast<ClpSimplexOther *> (this)->crunch(rhs, whichRow, whichColumn, |
10797 | nBound, false, tightenBounds); |
10798 | if (small) { |
10799 | info->large_ = this; |
10800 | info->whichRow_ = whichRow; |
10801 | info->whichColumn_ = whichColumn; |
10802 | info->nBound_ = nBound; |
10803 | //double limit = 0.0; |
10804 | //getDblParam(ClpDualObjectiveLimit, limit); |
10805 | //printf("objlimit a %g",limit); |
10806 | //small->getDblParam(ClpDualObjectiveLimit, limit); |
10807 | //printf(" %g\n",limit); |
10808 | // pack down pseudocosts |
10809 | if (info->upPseudo_) { |
10810 | const char * integerType2 = small->integerInformation(); |
10811 | int n = small->numberColumns(); |
10812 | int k = 0; |
10813 | int jColumn = 0; |
10814 | int j = 0; |
10815 | for (int i = 0; i < n; i++) { |
10816 | if (integerType2[i]) { |
10817 | int iColumn = whichColumn[i]; |
10818 | // find |
10819 | while (jColumn != iColumn) { |
10820 | if (integerType_[jColumn]) |
10821 | j++; |
10822 | jColumn++; |
10823 | } |
10824 | info->upPseudo_[k] = info->upPseudo_[j]; |
10825 | info->numberUp_[k] = info->numberUp_[j]; |
10826 | info->numberUpInfeasible_[k] = info->numberUpInfeasible_[j]; |
10827 | info->downPseudo_[k] = info->downPseudo_[j]; |
10828 | info->numberDown_[k] = info->numberDown_[j]; |
10829 | info->numberDownInfeasible_[k] = info->numberDownInfeasible_[j]; |
10830 | assert (info->upPseudo_[k] > 1.0e-40 && info->upPseudo_[k] < 1.0e40); |
10831 | assert (info->downPseudo_[k] > 1.0e-40 && info->downPseudo_[k] < 1.0e40); |
10832 | k++; |
10833 | } |
10834 | } |
10835 | } |
10836 | } else { |
10837 | feasible = false; |
10838 | } |
10839 | if (feasible) { |
10840 | info->presolveType_ = 0; |
10841 | // save and move pseudo costs |
10842 | whichSolution = small->fathomMany(stuff); |
10843 | // restore pseudocosts |
10844 | if (info->upPseudo_) { |
10845 | int n = small->numberColumns(); |
10846 | int * back = new int [numberColumns_]; |
10847 | int numberIntegers = 0; |
10848 | for (int i = 0; i < numberColumns_; i++) { |
10849 | if (integerType_[i]) { |
10850 | back[i] = -10 - numberIntegers; |
10851 | numberIntegers++; |
10852 | } else { |
10853 | back[i] = -1; |
10854 | } |
10855 | } |
10856 | const char * integerType2 = small->integerInformation(); |
10857 | int numberIntegers2 = 0; |
10858 | for (int i = 0; i < n; i++) { |
10859 | int iColumn = whichColumn[i]; |
10860 | if (integerType2[i]) { |
10861 | int iBack = -back[iColumn]; |
10862 | assert (iBack >= 10); |
10863 | iBack -= 10; |
10864 | back[iColumn] = iBack; |
10865 | numberIntegers2++; |
10866 | } |
10867 | } |
10868 | int k = numberIntegers2; |
10869 | for (int i = numberColumns_ - 1; i >= 0; i--) { |
10870 | int iBack = back[i]; |
10871 | if (iBack <= -10) { |
10872 | // fixed integer |
10873 | numberIntegers--; |
10874 | info->numberUp_[numberIntegers] = -1; // say not updated |
10875 | } else if (iBack >= 0) { |
10876 | // not fixed integer |
10877 | numberIntegers--; |
10878 | k--; |
10879 | assert (info->upPseudo_[k] > 1.0e-40 && info->upPseudo_[k] < 1.0e40); |
10880 | assert (info->downPseudo_[k] > 1.0e-40 && info->downPseudo_[k] < 1.0e40); |
10881 | info->upPseudo_[numberIntegers] = info->upPseudo_[k]; |
10882 | info->numberUp_[numberIntegers] = info->numberUp_[k]; |
10883 | info->numberUpInfeasible_[numberIntegers] = info->numberUpInfeasible_[k]; |
10884 | info->downPseudo_[numberIntegers] = info->downPseudo_[k]; |
10885 | info->numberDown_[numberIntegers] = info->numberDown_[k]; |
10886 | info->numberDownInfeasible_[numberIntegers] = info->numberDownInfeasible_[k]; |
10887 | } |
10888 | } |
10889 | delete [] back; |
10890 | } |
10891 | delete small; |
10892 | } |
10893 | info->large_ = NULL; |
10894 | info->whichRow_ = NULL; |
10895 | info->whichColumn_ = NULL; |
10896 | delete [] whichRow; |
10897 | delete [] whichColumn; |
10898 | return whichSolution; |
10899 | } |
10900 | #ifndef DEBUG |
10901 | { |
10902 | int nBasic = 0; |
10903 | int i; |
10904 | for (i = 0; i < numberRows_ + numberColumns_; i++) { |
10905 | if (getColumnStatus(i) == basic) |
10906 | nBasic++; |
10907 | } |
10908 | assert (nBasic == numberRows_); |
10909 | } |
10910 | #endif |
10911 | int returnCode = startFastDual2(info); |
10912 | if (returnCode) { |
10913 | stopFastDual2(info); |
10914 | abort(); |
10915 | return -1; |
10916 | } |
10917 | gutsOfSolution ( NULL, NULL); |
10918 | int status = fastDual2(info); |
10919 | CoinAssert (problemStatus_ || objectiveValue_ < 1.0e50); |
10920 | if (status && problemStatus_ != 3) { |
10921 | // not finished - might be optimal |
10922 | checkPrimalSolution(rowActivityWork_, columnActivityWork_); |
10923 | double limit = 0.0; |
10924 | getDblParam(ClpDualObjectiveLimit, limit); |
10925 | //printf("objlimit b %g\n",limit); |
10926 | if (!numberPrimalInfeasibilities_ && objectiveValue()*optimizationDirection_ < limit) { |
10927 | problemStatus_ = 0; |
10928 | } |
10929 | status = problemStatus_; |
10930 | } |
10931 | assert (problemStatus_ == 0 || problemStatus_ == 1); //(static_cast<ClpSimplexDual *> this)->dual(0,0); |
10932 | if (problemStatus_ == 10) { |
10933 | printf("Cleaning up with primal - need coding without createRim!\n" ); |
10934 | abort(); |
10935 | } |
10936 | int numberNodes = 0; |
10937 | int numberIterations = numberIterations_; |
10938 | if (problemStatus_ == 1) { |
10939 | //printf("fathom infeasible on initial\n"); |
10940 | stopFastDual2(info); |
10941 | info->nNodes_ = 0; |
10942 | info->numberNodesExplored_ = 0; |
10943 | info->numberIterations_ = numberIterations; |
10944 | return -1; |
10945 | } else if (problemStatus_ != 0) { |
10946 | abort(); |
10947 | } |
10948 | if (!columnScale_) { |
10949 | CoinMemcpyN(solution_, numberColumns_, columnActivity_); |
10950 | } else { |
10951 | assert(columnActivity_); |
10952 | assert(columnScale_); |
10953 | assert(solution_); |
10954 | int j; |
10955 | for (j = 0; j < numberColumns_; j++) |
10956 | columnActivity_[j] = solution_[j] * columnScale_[j]; |
10957 | } |
10958 | double increment = info->integerIncrement_; |
10959 | int depth = 0; |
10960 | int numberTotal = numberRows_ + numberColumns_; |
10961 | double * saveLower = CoinCopyOfArray(columnLower_, numberColumns_); |
10962 | double * saveUpper = CoinCopyOfArray(columnUpper_, numberColumns_); |
10963 | double * saveLowerInternal = CoinCopyOfArray(lower_, numberTotal); |
10964 | double * saveUpperInternal = CoinCopyOfArray(upper_, numberTotal); |
10965 | //double * bestLower = NULL; |
10966 | //double * bestUpper = NULL; |
10967 | int * back = new int [numberColumns_]; |
10968 | int numberIntegers = 0; |
10969 | double sumChanges = 1.0e-5; |
10970 | int numberChanges = 1; |
10971 | for (int i = 0; i < numberColumns_; i++) { |
10972 | if (integerType_[i]) |
10973 | back[i] = numberIntegers++; |
10974 | else |
10975 | back[i] = -1; |
10976 | } |
10977 | //unsigned char * bestStatus = NULL; |
10978 | double bestObjective; |
10979 | getDblParam(ClpDualObjectiveLimit, bestObjective); |
10980 | double saveBestObjective = bestObjective; |
10981 | bool backtrack = false; |
10982 | bool printing = handler_->logLevel() > 0; |
10983 | #ifdef CHECK_PATH |
10984 | if (startOptimal) |
10985 | printing = true; |
10986 | #endif |
10987 | /* Use nodeInfo for storage |
10988 | depth 0 will be putNode-1, 1 putNode-2 etc */ |
10989 | int useDepth = putNode - 1; |
10990 | bool justDive = (info->solverOptions_ & 32) != 0; |
10991 | //printf("putNode %d nDepth %d\n"); |
10992 | while (depth >= 0) { |
10993 | bool stopAtOnce = false; |
10994 | // If backtrack get to correct depth |
10995 | if (backtrack) { |
10996 | depth--; |
10997 | useDepth++; |
10998 | while (depth >= 0) { |
10999 | if (!nodeInfo[useDepth]->fathomed()) { |
11000 | nodeInfo[useDepth]->changeState(); |
11001 | break; |
11002 | } |
11003 | //if (printing) |
11004 | //printf("deleting node at depth %d\n",depth); |
11005 | //delete nodes[useDepth]; |
11006 | //nodes[useDepth]=NULL; |
11007 | depth--; |
11008 | useDepth++; |
11009 | } |
11010 | if (depth < 0) |
11011 | break; |
11012 | // apply |
11013 | // First if backtracking we need to restore factorization, bounds and weights |
11014 | CoinMemcpyN(saveLowerInternal, numberTotal, lower_); |
11015 | CoinMemcpyN(saveUpperInternal, numberTotal, upper_); |
11016 | CoinMemcpyN(saveLower, numberColumns_, columnLower_); |
11017 | CoinMemcpyN(saveUpper, numberColumns_, columnUpper_); |
11018 | for (int i = 0; i < depth; i++) { |
11019 | nodeInfo[putNode-1-i]->applyNode(this, 0); |
11020 | } |
11021 | nodeInfo[useDepth]->applyNode(this, 1); |
11022 | if (justDive) |
11023 | stopAtOnce = true; |
11024 | int iColumn = nodeInfo[useDepth]->sequence(); |
11025 | if (printing) |
11026 | printf("after backtracking - applying node at depth %d - variable %d (%g,%g)\n" , |
11027 | depth, iColumn, |
11028 | columnLower_[iColumn], columnUpper_[iColumn]); |
11029 | depth++; |
11030 | useDepth--; |
11031 | } else { |
11032 | // just bounds |
11033 | if (depth > 0) { |
11034 | // Choose variable here!! |
11035 | nodeInfo[useDepth+1]->chooseVariable(this, info); |
11036 | nodeInfo[useDepth+1]->applyNode(this, 0); |
11037 | int iColumn = nodeInfo[useDepth+1]->sequence(); |
11038 | if (printing) |
11039 | printf("No backtracking - applying node at depth-m %d - variable %d (%g,%g)\n" , |
11040 | depth - 1, iColumn, |
11041 | columnLower_[iColumn], columnUpper_[iColumn]); |
11042 | } |
11043 | } |
11044 | // solve |
11045 | double dummyChange; |
11046 | (static_cast<ClpSimplexDual *>(this))->changeBounds(3, NULL, dummyChange); |
11047 | //int saveNumberFake = numberFake_; |
11048 | fastDual2(info); |
11049 | numberNodes++; |
11050 | numberIterations += numberIterations_; |
11051 | if ((numberNodes % 1000) == 0 && printing) |
11052 | printf("After %d nodes (%d iterations) - best solution %g - current depth %d\n" , |
11053 | numberNodes, numberIterations, bestObjective, depth); |
11054 | if (problemStatus_ == 1 || |
11055 | (problemStatus_ == 0 && objectiveValue()*optimizationDirection_ > bestObjective)) { |
11056 | backtrack = true; |
11057 | if (printing) |
11058 | printf("infeasible at depth %d\n" , depth); |
11059 | #ifdef CHECK_PATH |
11060 | if (startOptimal && numberColumns_ == numberColumns_Z) { |
11061 | bool onOptimal = true; |
11062 | for (int i = 0; i < numberColumns_; i++) { |
11063 | if (columnUpper_[i] < debuggerSolution_Z[i] || columnLower_[i] > debuggerSolution_Z[i]) { |
11064 | onOptimal = false; |
11065 | break; |
11066 | } |
11067 | } |
11068 | if (onOptimal) { |
11069 | printf("INF on optimal fathom at depth %d\n" , depth); |
11070 | abort(); |
11071 | } |
11072 | } else if (info->large_ && startOptimal && info->large_->numberColumns_ == numberColumns_Z) { |
11073 | bool onOptimal = true; |
11074 | for (int i = 0; i < info->large_->numberColumns_; i++) { |
11075 | if (info->large_->columnUpper_[i] < debuggerSolution_Z[i] || info->large_->columnLower_[i] > debuggerSolution_Z[i]) { |
11076 | onOptimal = false; |
11077 | break; |
11078 | } |
11079 | } |
11080 | if (onOptimal) { |
11081 | printf("INF on optimal (pre) fathom at depth %d\n" , depth); |
11082 | writeMps("fathom_pre.mps" ); |
11083 | abort(); |
11084 | } |
11085 | } |
11086 | #endif |
11087 | if (depth > 0) { |
11088 | int way = nodeInfo[useDepth+1]->way(); |
11089 | int sequence = nodeInfo[useDepth+1]->sequence(); |
11090 | #ifndef NDEBUG |
11091 | double branchingValue = nodeInfo[useDepth+1]->branchingValue(); |
11092 | if (way > 0) |
11093 | assert (columnLower_[sequence] == ceil(branchingValue)); |
11094 | else |
11095 | assert (columnUpper_[sequence] == floor(branchingValue)); |
11096 | #endif |
11097 | sequence = back[sequence]; |
11098 | double change = bestObjective - nodeInfo[useDepth+1]->objectiveValue(); |
11099 | if (change > 1.0e10) |
11100 | change = 10.0 * sumChanges / (1.0 + numberChanges); |
11101 | info->update(way, sequence, change, false); |
11102 | } |
11103 | } else if (problemStatus_ != 0) { |
11104 | abort(); |
11105 | } else { |
11106 | // Create node |
11107 | ClpNode * node; |
11108 | computeDuals(NULL); |
11109 | if (depth > 0) { |
11110 | int way = nodeInfo[useDepth+1]->way(); |
11111 | int sequence = nodeInfo[useDepth+1]->sequence(); |
11112 | #ifndef NDEBUG |
11113 | double branchingValue = nodeInfo[useDepth+1]->branchingValue(); |
11114 | if (way > 0) |
11115 | assert (columnLower_[sequence] == ceil(branchingValue)); |
11116 | else |
11117 | assert (columnUpper_[sequence] == floor(branchingValue)); |
11118 | #endif |
11119 | sequence = back[sequence]; |
11120 | info->update(way, sequence, |
11121 | objectiveValue() - nodeInfo[useDepth+1]->objectiveValue(), |
11122 | true); |
11123 | numberChanges++; |
11124 | sumChanges += objectiveValue() - nodeInfo[useDepth+1]->objectiveValue(); |
11125 | } |
11126 | #ifdef CHECK_PATH |
11127 | if (startOptimal && numberColumns_ == numberColumns_Z) { |
11128 | bool onOptimal = true; |
11129 | for (int i = 0; i < numberColumns_; i++) { |
11130 | if (columnUpper_[i] < debuggerSolution_Z[i] || columnLower_[i] > debuggerSolution_Z[i]) { |
11131 | onOptimal = false; |
11132 | break; |
11133 | } |
11134 | } |
11135 | if (onOptimal) { |
11136 | if (depth >= info->nDepth_) { |
11137 | printf("on optimal fathom at full depth %d %d %g\n" , |
11138 | depth, goodNodes, objectiveValue()); |
11139 | gotGoodNode_Z = goodNodes; |
11140 | startOptimal = 2; |
11141 | } else { |
11142 | printf("on optimal fathom at depth %d\n" , depth); |
11143 | } |
11144 | } |
11145 | } else if (info->large_ && startOptimal && info->large_->numberColumns_ == numberColumns_Z) { |
11146 | bool onOptimal = true; |
11147 | // Fix bounds in large |
11148 | for (int i = 0; i < numberColumns_; i++) { |
11149 | if (integerType_[i]) { |
11150 | int iColumn = info->whichColumn_[i]; |
11151 | info->large_->columnUpper_[iColumn] = columnUpper_[i]; |
11152 | info->large_->columnLower_[iColumn] = columnLower_[i]; |
11153 | COIN_DETAIL_PRINT(printf("%d dj %g dual %g scale %g\n" , |
11154 | iColumn, dj_[i], reducedCost_[i], columnScale_[i])); |
11155 | |
11156 | } |
11157 | } |
11158 | for (int i = 0; i < info->large_->numberColumns_; i++) { |
11159 | if (info->large_->columnUpper_[i] < debuggerSolution_Z[i] || info->large_->columnLower_[i] > debuggerSolution_Z[i]) { |
11160 | onOptimal = false; |
11161 | break; |
11162 | } |
11163 | } |
11164 | if (onOptimal) { |
11165 | if (depth >= info->nDepth_) { |
11166 | printf("on (pre) tentative optimal fathom at full depth %d %d %g\n" , |
11167 | depth, goodNodes, objectiveValue()); |
11168 | for (int i = 0; i < info->large_->numberColumns_; i++) |
11169 | printf("fathomA %d %g %g\n" , i, info->large_->columnLower_[i], |
11170 | info->large_->columnUpper_[i]); |
11171 | } else { |
11172 | printf("on (pre) optimal fathom at depth %d\n" , depth); |
11173 | } |
11174 | } |
11175 | } |
11176 | #endif |
11177 | if (depth < info->nDepth_ && !stopAtOnce) { |
11178 | node = nodeInfo[useDepth]; |
11179 | if (node) { |
11180 | node->gutsOfConstructor(this, info, 1, depth); |
11181 | } else { |
11182 | node = new ClpNode(this, info, depth); |
11183 | nodeInfo[useDepth] = node; |
11184 | } |
11185 | } else { |
11186 | // save |
11187 | node = nodeInfo[goodNodes]; |
11188 | if (!node) { |
11189 | node = new ClpNode(this, info, depth); |
11190 | nodeInfo[goodNodes] = node; |
11191 | } |
11192 | if (!node->oddArraysExist()) |
11193 | node->createArrays(this); |
11194 | node->gutsOfConstructor(this, info, 2, depth); |
11195 | } |
11196 | if (node->sequence() < 0) { |
11197 | // solution |
11198 | double objectiveValue = doubleCheck(); |
11199 | if (printing) |
11200 | printf("Solution of %g after %d nodes at depth %d\n" , |
11201 | objectiveValue, numberNodes, depth); |
11202 | if (objectiveValue < bestObjective && !problemStatus_) { |
11203 | // make sure node exists |
11204 | node = nodeInfo[goodNodes]; |
11205 | if (!node) { |
11206 | node = new ClpNode(this, info, depth); |
11207 | nodeInfo[goodNodes] = node; |
11208 | } |
11209 | if (info->large_) { |
11210 | //check this does everything |
11211 | // Fix bounds in large |
11212 | for (int i = 0; i < numberColumns_; i++) { |
11213 | if (integerType_[i]) { |
11214 | int iColumn = info->whichColumn_[i]; |
11215 | info->large_->columnUpper_[iColumn] = columnUpper_[i]; |
11216 | info->large_->columnLower_[iColumn] = columnLower_[i]; |
11217 | } |
11218 | } |
11219 | static_cast<ClpSimplexOther *> (info->large_)->afterCrunch(*this, |
11220 | info->whichRow_, info->whichColumn_, info->nBound_); |
11221 | // do as for large |
11222 | if (!node->oddArraysExist()) |
11223 | node->createArrays(info->large_); |
11224 | node->gutsOfConstructor(info->large_, info, 2, depth); |
11225 | } else { |
11226 | if (!node->oddArraysExist()) |
11227 | node->createArrays(this); |
11228 | node->gutsOfConstructor(this, info, 2, depth); |
11229 | } |
11230 | whichSolution = goodNodes; |
11231 | goodNodes++; |
11232 | if (goodNodes >= nNodes) |
11233 | justDive = true; // clean up phase |
11234 | assert (node->sequence() < 0); |
11235 | bestObjective = objectiveValue - increment; |
11236 | setDblParam(ClpDualObjectiveLimit, bestObjective * optimizationDirection_); |
11237 | } else { |
11238 | #ifdef CLP_INVESTIGATE |
11239 | printf("why bad solution feasible\n" ); |
11240 | abort(); |
11241 | #endif |
11242 | } |
11243 | backtrack = true; |
11244 | } else { |
11245 | //if (printing) |
11246 | //printf("depth %d variable %d\n",depth,node->sequence()); |
11247 | if (depth == info->nDepth_ || stopAtOnce) { |
11248 | if (info->large_) { |
11249 | //check this does everything |
11250 | // Fix bounds in large |
11251 | for (int i = 0; i < numberColumns_; i++) { |
11252 | if (integerType_[i]) { |
11253 | int iColumn = info->whichColumn_[i]; |
11254 | info->large_->columnUpper_[iColumn] = columnUpper_[i]; |
11255 | info->large_->columnLower_[iColumn] = columnLower_[i]; |
11256 | } |
11257 | } |
11258 | #ifdef CHECK_PATH |
11259 | if (startOptimal) |
11260 | for (int i = 0; i < info->large_->numberColumns_; i++) |
11261 | printf("fathomB %d %g %g %g\n" , i, info->large_->columnLower_[i], |
11262 | info->large_->columnUpper_[i], |
11263 | node->dualSolution()[i]); |
11264 | #endif |
11265 | static_cast<ClpSimplexOther *> (info->large_)->afterCrunch(*this, |
11266 | info->whichRow_, info->whichColumn_, info->nBound_); |
11267 | #ifdef CHECK_PATH |
11268 | if (startOptimal) { |
11269 | bool onOptimal = true; |
11270 | for (int i = 0; i < info->large_->numberColumns_; i++) |
11271 | printf("fathomC %d %g %g\n" , i, info->large_->columnLower_[i], |
11272 | info->large_->columnUpper_[i]); |
11273 | for (int i = 0; i < info->large_->numberColumns_; i++) { |
11274 | if (info->large_->columnUpper_[i] < debuggerSolution_Z[i] || info->large_->columnLower_[i] > debuggerSolution_Z[i]) { |
11275 | onOptimal = false; |
11276 | break; |
11277 | } |
11278 | } |
11279 | if (onOptimal) { |
11280 | printf("on (pre) optimal fathom at full depth %d %d %g\n" , |
11281 | depth, goodNodes, info->large_->objectiveValue()); |
11282 | startOptimal = 2; |
11283 | gotGoodNode_Z = goodNodes; |
11284 | for (int i = 0; i < info->large_->numberColumns_; i++) |
11285 | printf("fathom %d %g %g\n" , i, info->large_->columnLower_[i], |
11286 | info->large_->columnUpper_[i]); |
11287 | } |
11288 | } |
11289 | #endif |
11290 | // do as for large |
11291 | node->gutsOfConstructor(info->large_, info, 2, depth); |
11292 | } |
11293 | goodNodes++; |
11294 | if (goodNodes >= nNodes) |
11295 | justDive = true; // clean up phase |
11296 | backtrack = true; |
11297 | } else { |
11298 | depth++; |
11299 | useDepth--; |
11300 | backtrack = false; |
11301 | } |
11302 | } |
11303 | } |
11304 | } |
11305 | //printf("nNodes %d nDepth %d, useDepth %d goodNodes %d\n", |
11306 | // nNodes,info->nDepth_,useDepth,goodNodes); |
11307 | #ifdef CHECK_PATH |
11308 | if (startOptimal) { |
11309 | assert(startOptimal == 2); |
11310 | printf("got fathomed optimal at end %d\n" , startOptimal); |
11311 | if (startOptimal != 2) |
11312 | abort(); |
11313 | } |
11314 | #endif |
11315 | assert (depth == -1); |
11316 | delete [] saveLower; |
11317 | delete [] saveUpper; |
11318 | delete [] saveLowerInternal; |
11319 | delete [] saveUpperInternal; |
11320 | delete [] back; |
11321 | //printf("fathom finished after %d nodes\n",numberNodes); |
11322 | if (whichSolution >= 0) { |
11323 | setDblParam(ClpDualObjectiveLimit, saveBestObjective); |
11324 | } |
11325 | stopFastDual2(info); |
11326 | info->nNodes_ = goodNodes; |
11327 | info->numberNodesExplored_ = numberNodes; |
11328 | info->numberIterations_ = numberIterations; |
11329 | return whichSolution; |
11330 | } |
11331 | // Double checks OK |
11332 | double |
11333 | ClpSimplex::doubleCheck() |
11334 | { |
11335 | #if 0 |
11336 | double * solution = CoinCopyOfArray(solution_, numberColumns_ + numberRows_); |
11337 | gutsOfSolution ( NULL, NULL); |
11338 | for (int i = 0; i < numberColumns_; i++) { |
11339 | if (fabs(solution[i] - solution_[i]) > 1.0e-7) |
11340 | printf("bada %d bad %g good %g\n" , |
11341 | i, solution[i], solution_[i]); |
11342 | } |
11343 | //abort(); |
11344 | #endif |
11345 | dual(0, 7); |
11346 | #if 0 |
11347 | for (int i = 0; i < numberColumns_; i++) { |
11348 | if (fabs(solution[i] - solution_[i]) > 1.0e-7) |
11349 | printf("badb %d bad %g good %g\n" , |
11350 | i, solution[i], solution_[i]); |
11351 | } |
11352 | dual(0, 1); |
11353 | for (int i = 0; i < numberColumns_; i++) { |
11354 | if (fabs(solution[i] - solution_[i]) > 1.0e-7) |
11355 | printf("badc %d bad %g good %g\n" , |
11356 | i, solution[i], solution_[i]); |
11357 | } |
11358 | delete [] solution; |
11359 | #endif |
11360 | return objectiveValue() * optimizationDirection_; |
11361 | } |
11362 | // Start Fast dual |
11363 | int |
11364 | ClpSimplex::startFastDual2(ClpNodeStuff * info) |
11365 | { |
11366 | info->saveOptions_ = specialOptions_; |
11367 | assert ((info->solverOptions_ & 65536) == 0); |
11368 | info->solverOptions_ |= 65536; |
11369 | if ((specialOptions_ & 65536) == 0) { |
11370 | factorization_->setPersistenceFlag(2); |
11371 | } else { |
11372 | factorization_->setPersistenceFlag(2); |
11373 | startPermanentArrays(); |
11374 | } |
11375 | //assert (!lower_); |
11376 | // create modifiable copies of model rim and do optional scaling |
11377 | createRim(7 + 8 + 16 + 32, true, 0); |
11378 | #ifndef NDEBUG |
11379 | ClpPackedMatrix* clpMatrix = |
11380 | dynamic_cast< ClpPackedMatrix*>(matrix_); |
11381 | assert (clpMatrix && (clpMatrix->flags() & 1) == 0); |
11382 | #endif |
11383 | // mark all as current |
11384 | whatsChanged_ = 0x3ffffff; |
11385 | |
11386 | // change newLower and newUpper if scaled |
11387 | |
11388 | // Do initial factorization |
11389 | // and set certain stuff |
11390 | // We can either set increasing rows so ...IsBasic gives pivot row |
11391 | // or we can just increment iBasic one by one |
11392 | // for now let ...iBasic give pivot row |
11393 | int factorizationStatus = internalFactorize(0); |
11394 | if (factorizationStatus < 0 || |
11395 | (factorizationStatus && factorizationStatus <= numberRows_)) { |
11396 | // some error |
11397 | #if 0 |
11398 | // we should either debug or ignore |
11399 | #ifdef CLP_INVESTIGATE |
11400 | //#ifndef NDEBUG |
11401 | printf("***** ClpDual strong branching factorization error - debug\n" ); |
11402 | abort(); |
11403 | //#endif |
11404 | #endif |
11405 | return -2; |
11406 | #else |
11407 | dual(0, 7); |
11408 | createRim(7 + 8 + 16 + 32, true, 0); |
11409 | int factorizationStatus = internalFactorize(0); |
11410 | assert (factorizationStatus == 0); |
11411 | if (factorizationStatus) |
11412 | abort(); |
11413 | #endif |
11414 | } |
11415 | // Start of fast iterations |
11416 | factorization_->sparseThreshold(0); |
11417 | factorization_->goSparse(); |
11418 | assert (!info->saveCosts_); |
11419 | int numberTotal = numberRows_ + numberColumns_; |
11420 | double * save = new double [4*numberTotal]; |
11421 | CoinMemcpyN(cost_, numberTotal, save+3*numberTotal); |
11422 | if (perturbation_<100) { |
11423 | int saveIterations = numberIterations_; |
11424 | //int saveOptions = moreSpecialOptions_; |
11425 | int savePerturbation = perturbation_; |
11426 | numberIterations_ = 0; |
11427 | //moreSpecialOptions_ |= 128; |
11428 | bool allZero = true; |
11429 | for (int i=0;i<numberColumns_;i++) { |
11430 | if (cost_[i]) { |
11431 | if (upper_[i]>lower_[i]) { |
11432 | allZero=false; |
11433 | break; |
11434 | } |
11435 | } |
11436 | } |
11437 | if (allZero) |
11438 | perturbation_ = 58; |
11439 | static_cast< ClpSimplexDual *>(this)->perturb(); |
11440 | numberIterations_ = saveIterations; |
11441 | //moreSpecialOptions_ = saveOptions; |
11442 | perturbation_ = savePerturbation; |
11443 | } |
11444 | info->saveCosts_ = save; |
11445 | CoinMemcpyN(cost_, numberTotal, save); |
11446 | return 0; |
11447 | } |
11448 | // Like Fast dual |
11449 | int |
11450 | ClpSimplex::fastDual2(ClpNodeStuff * info) |
11451 | { |
11452 | assert ((info->solverOptions_ & 65536) != 0); |
11453 | int numberTotal = numberRows_ + numberColumns_; |
11454 | assert (info->saveCosts_); |
11455 | double * save = info->saveCosts_; |
11456 | CoinMemcpyN(save, numberTotal, cost_); |
11457 | save += numberTotal; |
11458 | CoinMemcpyN(lower_, numberTotal, save); |
11459 | save += numberTotal; |
11460 | CoinMemcpyN(upper_, numberTotal, save); |
11461 | double dummyChange; |
11462 | (static_cast<ClpSimplexDual *>(this))->changeBounds(3, NULL, dummyChange); |
11463 | numberPrimalInfeasibilities_ = 1; |
11464 | sumPrimalInfeasibilities_ = 0.5; |
11465 | sumOfRelaxedDualInfeasibilities_ = 0.0; |
11466 | sumOfRelaxedPrimalInfeasibilities_ = 0.5; |
11467 | checkDualSolution(); |
11468 | //if (xxxxxx) |
11469 | //checkPrimalSolution(rowActivityWork_,columnActivityWork_); |
11470 | assert((specialOptions_ & 16384) == 0); |
11471 | specialOptions_ |= 524288; // say use solution |
11472 | ClpObjective * saveObjective = objective_; |
11473 | #ifndef NDEBUG |
11474 | //(static_cast<ClpSimplexDual *>(this))->resetFakeBounds(-1); |
11475 | #endif |
11476 | //int saveNumberFake = numberFake_; |
11477 | int status = static_cast<ClpSimplexDual *> (this)->fastDual(true); |
11478 | //numberFake_ = saveNumberFake; |
11479 | specialOptions_ &= ~524288; // say dont use solution |
11480 | CoinAssert (problemStatus_ || objectiveValue_ < 1.0e50); |
11481 | if (status && problemStatus_ != 3) { |
11482 | // not finished - might be optimal |
11483 | checkPrimalSolution(rowActivityWork_, columnActivityWork_); |
11484 | double limit = 0.0; |
11485 | getDblParam(ClpDualObjectiveLimit, limit); |
11486 | if (!numberPrimalInfeasibilities_ && objectiveValue()*optimizationDirection_ < limit) { |
11487 | problemStatus_ = 0; |
11488 | } |
11489 | } |
11490 | if (problemStatus_ == 10) { |
11491 | // Say second call |
11492 | moreSpecialOptions_ |= 256; |
11493 | //printf("Cleaning up with primal\n"); |
11494 | //lastAlgorithm=1; |
11495 | int savePerturbation = perturbation_; |
11496 | int saveLog = handler_->logLevel(); |
11497 | //handler_->setLogLevel(63); |
11498 | perturbation_ = 100; |
11499 | bool denseFactorization = initialDenseFactorization(); |
11500 | // It will be safe to allow dense |
11501 | setInitialDenseFactorization(true); |
11502 | // Allow for catastrophe |
11503 | int saveMax = intParam_[ClpMaxNumIteration]; |
11504 | if (intParam_[ClpMaxNumIteration] > 100000 + numberIterations_) |
11505 | intParam_[ClpMaxNumIteration] = numberIterations_ + 1000 + 2 * numberRows_ + numberColumns_; |
11506 | // check which algorithms allowed |
11507 | baseIteration_ = numberIterations_; |
11508 | status = static_cast<ClpSimplexPrimal *> (this)->primal(1, 7); |
11509 | baseIteration_ = 0; |
11510 | if (saveObjective != objective_) { |
11511 | // We changed objective to see if infeasible |
11512 | delete objective_; |
11513 | objective_ = saveObjective; |
11514 | if (!problemStatus_) { |
11515 | // carry on |
11516 | status = static_cast<ClpSimplexPrimal *> (this)->primal(1, 7); |
11517 | } |
11518 | } |
11519 | if (problemStatus_ == 3 && numberIterations_ < saveMax) { |
11520 | #ifdef COIN_DEVELOP |
11521 | if (handler_->logLevel() > 0) |
11522 | printf("looks like trouble - too many iterations in clean up - trying again\n" ); |
11523 | #endif |
11524 | // flatten solution and try again |
11525 | int iColumn; |
11526 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
11527 | if (getStatus(iColumn) != basic) { |
11528 | setStatus(iColumn, superBasic); |
11529 | // but put to bound if close |
11530 | if (fabs(solution_[iColumn] - lower_[iColumn]) |
11531 | <= primalTolerance_) { |
11532 | solution_[iColumn] = lower_[iColumn]; |
11533 | setStatus(iColumn, atLowerBound); |
11534 | } else if (fabs(solution_[iColumn] |
11535 | - upper_[iColumn]) |
11536 | <= primalTolerance_) { |
11537 | solution_[iColumn] = upper_[iColumn]; |
11538 | setStatus(iColumn, atUpperBound); |
11539 | } |
11540 | } |
11541 | } |
11542 | problemStatus_ = -1; |
11543 | intParam_[ClpMaxNumIteration] = CoinMin(numberIterations_ + 1000 + |
11544 | 2 * numberRows_ + numberColumns_, saveMax); |
11545 | perturbation_ = savePerturbation; |
11546 | baseIteration_ = numberIterations_; |
11547 | status = static_cast<ClpSimplexPrimal *> (this)->primal(0); |
11548 | baseIteration_ = 0; |
11549 | computeObjectiveValue(); |
11550 | // can't rely on djs either |
11551 | memset(reducedCost_, 0, numberColumns_ * sizeof(double)); |
11552 | #ifdef COIN_DEVELOP |
11553 | if (problemStatus_ == 3 && numberIterations_ < saveMax && handler_->logLevel() > 0) |
11554 | printf("looks like real trouble - too many iterations in second clean up - giving up\n" ); |
11555 | #endif |
11556 | } |
11557 | // Say not second call |
11558 | moreSpecialOptions_ &= ~256; |
11559 | intParam_[ClpMaxNumIteration] = saveMax; |
11560 | |
11561 | setInitialDenseFactorization(denseFactorization); |
11562 | perturbation_ = savePerturbation; |
11563 | if (problemStatus_ == 10) { |
11564 | if (!numberPrimalInfeasibilities_) |
11565 | problemStatus_ = 0; |
11566 | else |
11567 | problemStatus_ = 4; |
11568 | } |
11569 | handler_->setLogLevel(saveLog); |
11570 | // if done primal arrays may be rubbish |
11571 | save = info->saveCosts_ + numberTotal; |
11572 | CoinMemcpyN(save, numberTotal, lower_); |
11573 | save += numberTotal; |
11574 | CoinMemcpyN(save, numberTotal, upper_); |
11575 | } |
11576 | status = problemStatus_; |
11577 | if (!problemStatus_) { |
11578 | int j; |
11579 | // Move solution to external array |
11580 | if (!columnScale_) { |
11581 | CoinMemcpyN(solution_, numberColumns_, columnActivity_); |
11582 | } else { |
11583 | for (j = 0; j < numberColumns_; j++) |
11584 | columnActivity_[j] = solution_[j] * columnScale_[j]; |
11585 | } |
11586 | if ((info->solverOptions_ & 1) != 0) { |
11587 | // reduced costs |
11588 | if (!columnScale_) { |
11589 | CoinMemcpyN(dj_, numberColumns_, reducedCost_); |
11590 | } else { |
11591 | for (j = 0; j < numberColumns_; j++) |
11592 | reducedCost_[j] = dj_[j] * columnScale_[j+numberColumns_]; |
11593 | } |
11594 | } |
11595 | if ((info->solverOptions_ & 2) != 0) { |
11596 | // dual |
11597 | if (!rowScale_) { |
11598 | //CoinMemcpyN(dual_,numberRows_,dj_+numberColumns_); |
11599 | } else { |
11600 | for (j = 0; j < numberRows_; j++) |
11601 | dual_[j] = dj_[j+numberColumns_] * rowScale_[j]; |
11602 | } |
11603 | } |
11604 | if ((info->solverOptions_ & 4) != 0) { |
11605 | // row activity |
11606 | if (!rowScale_) { |
11607 | CoinMemcpyN(solution_ + numberColumns_, numberRows_, rowActivity_); |
11608 | } else { |
11609 | for (j = 0; j < numberRows_; j++) |
11610 | rowActivity_[j] = solution_[j+numberColumns_] * rowScale_[j+numberRows_]; |
11611 | } |
11612 | } |
11613 | } |
11614 | save = info->saveCosts_; |
11615 | CoinMemcpyN(save, numberTotal, cost_); |
11616 | #if 0 |
11617 | save += numberTotal; |
11618 | CoinMemcpyN(save, numberTotal, lower_); |
11619 | save += numberTotal; |
11620 | CoinMemcpyN(save, numberTotal, upper_); |
11621 | #endif |
11622 | return status; |
11623 | } |
11624 | // Stop Fast dual |
11625 | void |
11626 | ClpSimplex::stopFastDual2(ClpNodeStuff * info) |
11627 | { |
11628 | delete [] info->saveCosts_; |
11629 | info->saveCosts_ = NULL; |
11630 | specialOptions_ = info->saveOptions_; |
11631 | // try just factorization |
11632 | if ((specialOptions_ & 65536) == 0) |
11633 | factorization_->setPersistenceFlag(0); |
11634 | deleteRim(1); |
11635 | whatsChanged_ &= ~0xffff; |
11636 | assert ((info->solverOptions_ & 65536) != 0); |
11637 | info->solverOptions_ &= ~65536; |
11638 | } |
11639 | // Deals with crunch aspects |
11640 | ClpSimplex * |
11641 | ClpSimplex::fastCrunch(ClpNodeStuff * info, int mode) |
11642 | { |
11643 | ClpSimplex * small = NULL; |
11644 | if (mode == 0) { |
11645 | // before crunch |
11646 | // crunch down |
11647 | // Use dual region |
11648 | double * rhs = dual_; |
11649 | int * whichRow = new int[3*numberRows_]; |
11650 | int * whichColumn = new int[2*numberColumns_]; |
11651 | int nBound; |
11652 | bool tightenBounds = ((specialOptions_ & 64) == 0) ? false : true; |
11653 | small = |
11654 | static_cast<ClpSimplexOther *> (this)->crunch(rhs, whichRow, whichColumn, |
11655 | nBound, false, tightenBounds); |
11656 | if (small) { |
11657 | info->large_ = this; |
11658 | info->whichRow_ = whichRow; |
11659 | info->whichColumn_ = whichColumn; |
11660 | info->nBound_ = nBound; |
11661 | if (info->upPseudo_) { |
11662 | const char * integerType2 = small->integerInformation(); |
11663 | int n = small->numberColumns(); |
11664 | int k = 0; |
11665 | int jColumn = 0; |
11666 | int j = 0; |
11667 | for (int i = 0; i < n; i++) { |
11668 | if (integerType2[i]) { |
11669 | int iColumn = whichColumn[i]; |
11670 | // find |
11671 | while (jColumn != iColumn) { |
11672 | if (integerType_[jColumn]) |
11673 | j++; |
11674 | jColumn++; |
11675 | } |
11676 | info->upPseudo_[k] = info->upPseudo_[j]; |
11677 | info->numberUp_[k] = info->numberUp_[j]; |
11678 | info->numberUpInfeasible_[k] = info->numberUpInfeasible_[j]; |
11679 | info->downPseudo_[k] = info->downPseudo_[j]; |
11680 | info->numberDown_[k] = info->numberDown_[j]; |
11681 | info->numberDownInfeasible_[k] = info->numberDownInfeasible_[j]; |
11682 | assert (info->upPseudo_[k] > 1.0e-40 && info->upPseudo_[k] < 1.0e40); |
11683 | assert (info->downPseudo_[k] > 1.0e-40 && info->downPseudo_[k] < 1.0e40); |
11684 | k++; |
11685 | } |
11686 | } |
11687 | } |
11688 | } else { |
11689 | delete [] whichRow; |
11690 | delete [] whichColumn; |
11691 | } |
11692 | } else { |
11693 | // after crunch |
11694 | if (mode == 1) { |
11695 | // has solution |
11696 | ClpSimplex * other = info->large_; |
11697 | assert (other != this); |
11698 | static_cast<ClpSimplexOther *> (other)->afterCrunch(*this, |
11699 | info->whichRow_, |
11700 | info->whichColumn_, info->nBound_); |
11701 | for (int i = 0; i < other->numberColumns_; i++) { |
11702 | if (other->integerType_[i]) { |
11703 | double value = other->columnActivity_[i]; |
11704 | double value2 = floor(value + 0.5); |
11705 | assert (fabs(value - value2) < 1.0e-4); |
11706 | other->columnActivity_[i] = value2; |
11707 | other->columnLower_[i] = value2; |
11708 | other->columnUpper_[i] = value2; |
11709 | } |
11710 | } |
11711 | } |
11712 | delete [] info->whichRow_; |
11713 | delete [] info->whichColumn_; |
11714 | } |
11715 | return small; |
11716 | } |
11717 | // Resizes rim part of model |
11718 | void |
11719 | ClpSimplex::resize (int newNumberRows, int newNumberColumns) |
11720 | { |
11721 | ClpModel::resize(newNumberRows, newNumberColumns); |
11722 | if (saveStatus_) { |
11723 | // delete arrays |
11724 | int saveOptions = specialOptions_; |
11725 | specialOptions_ = 0; |
11726 | gutsOfDelete(2); |
11727 | specialOptions_ = saveOptions; |
11728 | } |
11729 | } |
11730 | // Return true if the objective limit test can be relied upon |
11731 | bool |
11732 | ClpSimplex::isObjectiveLimitTestValid() const |
11733 | { |
11734 | if (problemStatus_ == 0) { |
11735 | return true; |
11736 | } else if (problemStatus_ == 1) { |
11737 | // ok if dual |
11738 | return (algorithm_ < 0); |
11739 | } else if (problemStatus_ == 2) { |
11740 | // ok if primal |
11741 | return (algorithm_ > 0); |
11742 | } else { |
11743 | return false; |
11744 | } |
11745 | } |
11746 | // Create C++ lines to get to current state |
11747 | void |
11748 | ClpSimplex::generateCpp( FILE * fp, bool defaultFactor) |
11749 | { |
11750 | ClpModel::generateCpp(fp); |
11751 | ClpSimplex defaultModel; |
11752 | ClpSimplex * other = &defaultModel; |
11753 | int iValue1, iValue2; |
11754 | double dValue1, dValue2; |
11755 | // Stuff that can't be done easily |
11756 | if (factorizationFrequency() == other->factorizationFrequency()) { |
11757 | if (defaultFactor) { |
11758 | fprintf(fp, "3 // For branchAndBound this may help\n" ); |
11759 | fprintf(fp, "3 clpModel->defaultFactorizationFrequency();\n" ); |
11760 | } else { |
11761 | // tell user about default |
11762 | fprintf(fp, "3 // For initialSolve you don't need below but ...\n" ); |
11763 | fprintf(fp, "3 // clpModel->defaultFactorizationFrequency();\n" ); |
11764 | } |
11765 | } |
11766 | iValue1 = this->factorizationFrequency(); |
11767 | iValue2 = other->factorizationFrequency(); |
11768 | fprintf(fp, "%d int save_factorizationFrequency = clpModel->factorizationFrequency();\n" , iValue1 == iValue2 ? 2 : 1); |
11769 | fprintf(fp, "%d clpModel->setFactorizationFrequency(%d);\n" , iValue1 == iValue2 ? 4 : 3, iValue1); |
11770 | fprintf(fp, "%d clpModel->setFactorizationFrequency(save_factorizationFrequency);\n" , iValue1 == iValue2 ? 7 : 6); |
11771 | dValue1 = this->dualBound(); |
11772 | dValue2 = other->dualBound(); |
11773 | fprintf(fp, "%d double save_dualBound = clpModel->dualBound();\n" , dValue1 == dValue2 ? 2 : 1); |
11774 | fprintf(fp, "%d clpModel->setDualBound(%g);\n" , dValue1 == dValue2 ? 4 : 3, dValue1); |
11775 | fprintf(fp, "%d clpModel->setDualBound(save_dualBound);\n" , dValue1 == dValue2 ? 7 : 6); |
11776 | dValue1 = this->infeasibilityCost(); |
11777 | dValue2 = other->infeasibilityCost(); |
11778 | fprintf(fp, "%d double save_infeasibilityCost = clpModel->infeasibilityCost();\n" , dValue1 == dValue2 ? 2 : 1); |
11779 | fprintf(fp, "%d clpModel->setInfeasibilityCost(%g);\n" , dValue1 == dValue2 ? 4 : 3, dValue1); |
11780 | fprintf(fp, "%d clpModel->setInfeasibilityCost(save_infeasibilityCost);\n" , dValue1 == dValue2 ? 7 : 6); |
11781 | iValue1 = this->perturbation(); |
11782 | iValue2 = other->perturbation(); |
11783 | fprintf(fp, "%d int save_perturbation = clpModel->perturbation();\n" , iValue1 == iValue2 ? 2 : 1); |
11784 | fprintf(fp, "%d clpModel->setPerturbation(%d);\n" , iValue1 == iValue2 ? 4 : 3, iValue1); |
11785 | fprintf(fp, "%d clpModel->setPerturbation(save_perturbation);\n" , iValue1 == iValue2 ? 7 : 6); |
11786 | } |
11787 | |