1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef CPU_X86_MACROASSEMBLER_X86_HPP
26#define CPU_X86_MACROASSEMBLER_X86_HPP
27
28#include "asm/assembler.hpp"
29#include "utilities/macros.hpp"
30#include "runtime/rtmLocking.hpp"
31
32// MacroAssembler extends Assembler by frequently used macros.
33//
34// Instructions for which a 'better' code sequence exists depending
35// on arguments should also go in here.
36
37class MacroAssembler: public Assembler {
38 friend class LIR_Assembler;
39 friend class Runtime1; // as_Address()
40
41 public:
42 // Support for VM calls
43 //
44 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
45 // may customize this version by overriding it for its purposes (e.g., to save/restore
46 // additional registers when doing a VM call).
47
48 virtual void call_VM_leaf_base(
49 address entry_point, // the entry point
50 int number_of_arguments // the number of arguments to pop after the call
51 );
52
53 protected:
54 // This is the base routine called by the different versions of call_VM. The interpreter
55 // may customize this version by overriding it for its purposes (e.g., to save/restore
56 // additional registers when doing a VM call).
57 //
58 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
59 // returns the register which contains the thread upon return. If a thread register has been
60 // specified, the return value will correspond to that register. If no last_java_sp is specified
61 // (noreg) than rsp will be used instead.
62 virtual void call_VM_base( // returns the register containing the thread upon return
63 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
64 Register java_thread, // the thread if computed before ; use noreg otherwise
65 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
66 address entry_point, // the entry point
67 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
68 bool check_exceptions // whether to check for pending exceptions after return
69 );
70
71 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
72
73 // helpers for FPU flag access
74 // tmp is a temporary register, if none is available use noreg
75 void save_rax (Register tmp);
76 void restore_rax(Register tmp);
77
78 public:
79 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
80
81 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
82 // The implementation is only non-empty for the InterpreterMacroAssembler,
83 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
84 virtual void check_and_handle_popframe(Register java_thread);
85 virtual void check_and_handle_earlyret(Register java_thread);
86
87 Address as_Address(AddressLiteral adr);
88 Address as_Address(ArrayAddress adr);
89
90 // Support for NULL-checks
91 //
92 // Generates code that causes a NULL OS exception if the content of reg is NULL.
93 // If the accessed location is M[reg + offset] and the offset is known, provide the
94 // offset. No explicit code generation is needed if the offset is within a certain
95 // range (0 <= offset <= page_size).
96
97 void null_check(Register reg, int offset = -1);
98 static bool needs_explicit_null_check(intptr_t offset);
99 static bool uses_implicit_null_check(void* address);
100
101 // Required platform-specific helpers for Label::patch_instructions.
102 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
103 void pd_patch_instruction(address branch, address target, const char* file, int line) {
104 unsigned char op = branch[0];
105 assert(op == 0xE8 /* call */ ||
106 op == 0xE9 /* jmp */ ||
107 op == 0xEB /* short jmp */ ||
108 (op & 0xF0) == 0x70 /* short jcc */ ||
109 op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
110 op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
111 "Invalid opcode at patch point");
112
113 if (op == 0xEB || (op & 0xF0) == 0x70) {
114 // short offset operators (jmp and jcc)
115 char* disp = (char*) &branch[1];
116 int imm8 = target - (address) &disp[1];
117 guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", file, line);
118 *disp = imm8;
119 } else {
120 int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
121 int imm32 = target - (address) &disp[1];
122 *disp = imm32;
123 }
124 }
125
126 // The following 4 methods return the offset of the appropriate move instruction
127
128 // Support for fast byte/short loading with zero extension (depending on particular CPU)
129 int load_unsigned_byte(Register dst, Address src);
130 int load_unsigned_short(Register dst, Address src);
131
132 // Support for fast byte/short loading with sign extension (depending on particular CPU)
133 int load_signed_byte(Register dst, Address src);
134 int load_signed_short(Register dst, Address src);
135
136 // Support for sign-extension (hi:lo = extend_sign(lo))
137 void extend_sign(Register hi, Register lo);
138
139 // Load and store values by size and signed-ness
140 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
141 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
142
143 // Support for inc/dec with optimal instruction selection depending on value
144
145 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
146 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
147
148 void decrementl(Address dst, int value = 1);
149 void decrementl(Register reg, int value = 1);
150
151 void decrementq(Register reg, int value = 1);
152 void decrementq(Address dst, int value = 1);
153
154 void incrementl(Address dst, int value = 1);
155 void incrementl(Register reg, int value = 1);
156
157 void incrementq(Register reg, int value = 1);
158 void incrementq(Address dst, int value = 1);
159
160#ifdef COMPILER2
161 // special instructions for EVEX
162 void setvectmask(Register dst, Register src);
163 void restorevectmask();
164#endif
165
166 // Support optimal SSE move instructions.
167 void movflt(XMMRegister dst, XMMRegister src) {
168 if (dst-> encoding() == src->encoding()) return;
169 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
170 else { movss (dst, src); return; }
171 }
172 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
173 void movflt(XMMRegister dst, AddressLiteral src);
174 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
175
176 void movdbl(XMMRegister dst, XMMRegister src) {
177 if (dst-> encoding() == src->encoding()) return;
178 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
179 else { movsd (dst, src); return; }
180 }
181
182 void movdbl(XMMRegister dst, AddressLiteral src);
183
184 void movdbl(XMMRegister dst, Address src) {
185 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
186 else { movlpd(dst, src); return; }
187 }
188 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
189
190 void incrementl(AddressLiteral dst);
191 void incrementl(ArrayAddress dst);
192
193 void incrementq(AddressLiteral dst);
194
195 // Alignment
196 void align(int modulus);
197 void align(int modulus, int target);
198
199 // A 5 byte nop that is safe for patching (see patch_verified_entry)
200 void fat_nop();
201
202 // Stack frame creation/removal
203 void enter();
204 void leave();
205
206 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
207 // The pointer will be loaded into the thread register.
208 void get_thread(Register thread);
209
210
211 // Support for VM calls
212 //
213 // It is imperative that all calls into the VM are handled via the call_VM macros.
214 // They make sure that the stack linkage is setup correctly. call_VM's correspond
215 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
216
217
218 void call_VM(Register oop_result,
219 address entry_point,
220 bool check_exceptions = true);
221 void call_VM(Register oop_result,
222 address entry_point,
223 Register arg_1,
224 bool check_exceptions = true);
225 void call_VM(Register oop_result,
226 address entry_point,
227 Register arg_1, Register arg_2,
228 bool check_exceptions = true);
229 void call_VM(Register oop_result,
230 address entry_point,
231 Register arg_1, Register arg_2, Register arg_3,
232 bool check_exceptions = true);
233
234 // Overloadings with last_Java_sp
235 void call_VM(Register oop_result,
236 Register last_java_sp,
237 address entry_point,
238 int number_of_arguments = 0,
239 bool check_exceptions = true);
240 void call_VM(Register oop_result,
241 Register last_java_sp,
242 address entry_point,
243 Register arg_1, bool
244 check_exceptions = true);
245 void call_VM(Register oop_result,
246 Register last_java_sp,
247 address entry_point,
248 Register arg_1, Register arg_2,
249 bool check_exceptions = true);
250 void call_VM(Register oop_result,
251 Register last_java_sp,
252 address entry_point,
253 Register arg_1, Register arg_2, Register arg_3,
254 bool check_exceptions = true);
255
256 void get_vm_result (Register oop_result, Register thread);
257 void get_vm_result_2(Register metadata_result, Register thread);
258
259 // These always tightly bind to MacroAssembler::call_VM_base
260 // bypassing the virtual implementation
261 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
262 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
263 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
264 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
265 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
266
267 void call_VM_leaf0(address entry_point);
268 void call_VM_leaf(address entry_point,
269 int number_of_arguments = 0);
270 void call_VM_leaf(address entry_point,
271 Register arg_1);
272 void call_VM_leaf(address entry_point,
273 Register arg_1, Register arg_2);
274 void call_VM_leaf(address entry_point,
275 Register arg_1, Register arg_2, Register arg_3);
276
277 // These always tightly bind to MacroAssembler::call_VM_leaf_base
278 // bypassing the virtual implementation
279 void super_call_VM_leaf(address entry_point);
280 void super_call_VM_leaf(address entry_point, Register arg_1);
281 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
282 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
283 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
284
285 // last Java Frame (fills frame anchor)
286 void set_last_Java_frame(Register thread,
287 Register last_java_sp,
288 Register last_java_fp,
289 address last_java_pc);
290
291 // thread in the default location (r15_thread on 64bit)
292 void set_last_Java_frame(Register last_java_sp,
293 Register last_java_fp,
294 address last_java_pc);
295
296 void reset_last_Java_frame(Register thread, bool clear_fp);
297
298 // thread in the default location (r15_thread on 64bit)
299 void reset_last_Java_frame(bool clear_fp);
300
301 // jobjects
302 void clear_jweak_tag(Register possibly_jweak);
303 void resolve_jobject(Register value, Register thread, Register tmp);
304
305 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
306 void c2bool(Register x);
307
308 // C++ bool manipulation
309
310 void movbool(Register dst, Address src);
311 void movbool(Address dst, bool boolconst);
312 void movbool(Address dst, Register src);
313 void testbool(Register dst);
314
315 void resolve_oop_handle(Register result, Register tmp = rscratch2);
316 void resolve_weak_handle(Register result, Register tmp);
317 void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
318 void load_method_holder_cld(Register rresult, Register rmethod);
319
320 void load_method_holder(Register holder, Register method);
321
322 // oop manipulations
323 void load_klass(Register dst, Register src);
324 void store_klass(Register dst, Register src);
325
326 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
327 Register tmp1, Register thread_tmp);
328 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
329 Register tmp1, Register tmp2);
330
331 // Resolves obj access. Result is placed in the same register.
332 // All other registers are preserved.
333 void resolve(DecoratorSet decorators, Register obj);
334
335 void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
336 Register thread_tmp = noreg, DecoratorSet decorators = 0);
337 void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
338 Register thread_tmp = noreg, DecoratorSet decorators = 0);
339 void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
340 Register tmp2 = noreg, DecoratorSet decorators = 0);
341
342 // Used for storing NULL. All other oop constants should be
343 // stored using routines that take a jobject.
344 void store_heap_oop_null(Address dst);
345
346 void load_prototype_header(Register dst, Register src);
347
348#ifdef _LP64
349 void store_klass_gap(Register dst, Register src);
350
351 // This dummy is to prevent a call to store_heap_oop from
352 // converting a zero (like NULL) into a Register by giving
353 // the compiler two choices it can't resolve
354
355 void store_heap_oop(Address dst, void* dummy);
356
357 void encode_heap_oop(Register r);
358 void decode_heap_oop(Register r);
359 void encode_heap_oop_not_null(Register r);
360 void decode_heap_oop_not_null(Register r);
361 void encode_heap_oop_not_null(Register dst, Register src);
362 void decode_heap_oop_not_null(Register dst, Register src);
363
364 void set_narrow_oop(Register dst, jobject obj);
365 void set_narrow_oop(Address dst, jobject obj);
366 void cmp_narrow_oop(Register dst, jobject obj);
367 void cmp_narrow_oop(Address dst, jobject obj);
368
369 void encode_klass_not_null(Register r);
370 void decode_klass_not_null(Register r);
371 void encode_klass_not_null(Register dst, Register src);
372 void decode_klass_not_null(Register dst, Register src);
373 void set_narrow_klass(Register dst, Klass* k);
374 void set_narrow_klass(Address dst, Klass* k);
375 void cmp_narrow_klass(Register dst, Klass* k);
376 void cmp_narrow_klass(Address dst, Klass* k);
377
378 // Returns the byte size of the instructions generated by decode_klass_not_null()
379 // when compressed klass pointers are being used.
380 static int instr_size_for_decode_klass_not_null();
381
382 // if heap base register is used - reinit it with the correct value
383 void reinit_heapbase();
384
385 DEBUG_ONLY(void verify_heapbase(const char* msg);)
386
387#endif // _LP64
388
389 // Int division/remainder for Java
390 // (as idivl, but checks for special case as described in JVM spec.)
391 // returns idivl instruction offset for implicit exception handling
392 int corrected_idivl(Register reg);
393
394 // Long division/remainder for Java
395 // (as idivq, but checks for special case as described in JVM spec.)
396 // returns idivq instruction offset for implicit exception handling
397 int corrected_idivq(Register reg);
398
399 void int3();
400
401 // Long operation macros for a 32bit cpu
402 // Long negation for Java
403 void lneg(Register hi, Register lo);
404
405 // Long multiplication for Java
406 // (destroys contents of eax, ebx, ecx and edx)
407 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
408
409 // Long shifts for Java
410 // (semantics as described in JVM spec.)
411 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
412 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
413
414 // Long compare for Java
415 // (semantics as described in JVM spec.)
416 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
417
418
419 // misc
420
421 // Sign extension
422 void sign_extend_short(Register reg);
423 void sign_extend_byte(Register reg);
424
425 // Division by power of 2, rounding towards 0
426 void division_with_shift(Register reg, int shift_value);
427
428 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
429 //
430 // CF (corresponds to C0) if x < y
431 // PF (corresponds to C2) if unordered
432 // ZF (corresponds to C3) if x = y
433 //
434 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
435 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
436 void fcmp(Register tmp);
437 // Variant of the above which allows y to be further down the stack
438 // and which only pops x and y if specified. If pop_right is
439 // specified then pop_left must also be specified.
440 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
441
442 // Floating-point comparison for Java
443 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
444 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
445 // (semantics as described in JVM spec.)
446 void fcmp2int(Register dst, bool unordered_is_less);
447 // Variant of the above which allows y to be further down the stack
448 // and which only pops x and y if specified. If pop_right is
449 // specified then pop_left must also be specified.
450 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
451
452 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
453 // tmp is a temporary register, if none is available use noreg
454 void fremr(Register tmp);
455
456 // dst = c = a * b + c
457 void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
458 void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
459
460 void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
461 void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
462 void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
463 void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
464
465
466 // same as fcmp2int, but using SSE2
467 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
468 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
469
470 // branch to L if FPU flag C2 is set/not set
471 // tmp is a temporary register, if none is available use noreg
472 void jC2 (Register tmp, Label& L);
473 void jnC2(Register tmp, Label& L);
474
475 // Pop ST (ffree & fincstp combined)
476 void fpop();
477
478 // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
479 // register xmm0. Otherwise, the value is loaded onto the FPU stack.
480 void load_float(Address src);
481
482 // Store float value to 'address'. If UseSSE >= 1, the value is stored
483 // from register xmm0. Otherwise, the value is stored from the FPU stack.
484 void store_float(Address dst);
485
486 // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
487 // register xmm0. Otherwise, the value is loaded onto the FPU stack.
488 void load_double(Address src);
489
490 // Store double value to 'address'. If UseSSE >= 2, the value is stored
491 // from register xmm0. Otherwise, the value is stored from the FPU stack.
492 void store_double(Address dst);
493
494 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
495 void push_fTOS();
496
497 // pops double TOS element from CPU stack and pushes on FPU stack
498 void pop_fTOS();
499
500 void empty_FPU_stack();
501
502 void push_IU_state();
503 void pop_IU_state();
504
505 void push_FPU_state();
506 void pop_FPU_state();
507
508 void push_CPU_state();
509 void pop_CPU_state();
510
511 // Round up to a power of two
512 void round_to(Register reg, int modulus);
513
514 // Callee saved registers handling
515 void push_callee_saved_registers();
516 void pop_callee_saved_registers();
517
518 // allocation
519 void eden_allocate(
520 Register thread, // Current thread
521 Register obj, // result: pointer to object after successful allocation
522 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
523 int con_size_in_bytes, // object size in bytes if known at compile time
524 Register t1, // temp register
525 Label& slow_case // continuation point if fast allocation fails
526 );
527 void tlab_allocate(
528 Register thread, // Current thread
529 Register obj, // result: pointer to object after successful allocation
530 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
531 int con_size_in_bytes, // object size in bytes if known at compile time
532 Register t1, // temp register
533 Register t2, // temp register
534 Label& slow_case // continuation point if fast allocation fails
535 );
536 void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
537
538 // interface method calling
539 void lookup_interface_method(Register recv_klass,
540 Register intf_klass,
541 RegisterOrConstant itable_index,
542 Register method_result,
543 Register scan_temp,
544 Label& no_such_interface,
545 bool return_method = true);
546
547 // virtual method calling
548 void lookup_virtual_method(Register recv_klass,
549 RegisterOrConstant vtable_index,
550 Register method_result);
551
552 // Test sub_klass against super_klass, with fast and slow paths.
553
554 // The fast path produces a tri-state answer: yes / no / maybe-slow.
555 // One of the three labels can be NULL, meaning take the fall-through.
556 // If super_check_offset is -1, the value is loaded up from super_klass.
557 // No registers are killed, except temp_reg.
558 void check_klass_subtype_fast_path(Register sub_klass,
559 Register super_klass,
560 Register temp_reg,
561 Label* L_success,
562 Label* L_failure,
563 Label* L_slow_path,
564 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
565
566 // The rest of the type check; must be wired to a corresponding fast path.
567 // It does not repeat the fast path logic, so don't use it standalone.
568 // The temp_reg and temp2_reg can be noreg, if no temps are available.
569 // Updates the sub's secondary super cache as necessary.
570 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
571 void check_klass_subtype_slow_path(Register sub_klass,
572 Register super_klass,
573 Register temp_reg,
574 Register temp2_reg,
575 Label* L_success,
576 Label* L_failure,
577 bool set_cond_codes = false);
578
579 // Simplified, combined version, good for typical uses.
580 // Falls through on failure.
581 void check_klass_subtype(Register sub_klass,
582 Register super_klass,
583 Register temp_reg,
584 Label& L_success);
585
586 void clinit_barrier(Register klass,
587 Register thread,
588 Label* L_fast_path = NULL,
589 Label* L_slow_path = NULL);
590
591 // method handles (JSR 292)
592 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
593
594 //----
595 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
596
597 // Debugging
598
599 // only if +VerifyOops
600 // TODO: Make these macros with file and line like sparc version!
601 void verify_oop(Register reg, const char* s = "broken oop");
602 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
603
604 // TODO: verify method and klass metadata (compare against vptr?)
605 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
606 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
607
608#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
609#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
610
611 // only if +VerifyFPU
612 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
613
614 // Verify or restore cpu control state after JNI call
615 void restore_cpu_control_state_after_jni();
616
617 // prints msg, dumps registers and stops execution
618 void stop(const char* msg);
619
620 // prints msg and continues
621 void warn(const char* msg);
622
623 // dumps registers and other state
624 void print_state();
625
626 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
627 static void debug64(char* msg, int64_t pc, int64_t regs[]);
628 static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
629 static void print_state64(int64_t pc, int64_t regs[]);
630
631 void os_breakpoint();
632
633 void untested() { stop("untested"); }
634
635 void unimplemented(const char* what = "");
636
637 void should_not_reach_here() { stop("should not reach here"); }
638
639 void print_CPU_state();
640
641 // Stack overflow checking
642 void bang_stack_with_offset(int offset) {
643 // stack grows down, caller passes positive offset
644 assert(offset > 0, "must bang with negative offset");
645 movl(Address(rsp, (-offset)), rax);
646 }
647
648 // Writes to stack successive pages until offset reached to check for
649 // stack overflow + shadow pages. Also, clobbers tmp
650 void bang_stack_size(Register size, Register tmp);
651
652 // Check for reserved stack access in method being exited (for JIT)
653 void reserved_stack_check();
654
655 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
656 Register tmp,
657 int offset);
658
659 // If thread_reg is != noreg the code assumes the register passed contains
660 // the thread (required on 64 bit).
661 void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
662
663 void verify_tlab();
664
665 // Biased locking support
666 // lock_reg and obj_reg must be loaded up with the appropriate values.
667 // swap_reg must be rax, and is killed.
668 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
669 // be killed; if not supplied, push/pop will be used internally to
670 // allocate a temporary (inefficient, avoid if possible).
671 // Optional slow case is for implementations (interpreter and C1) which branch to
672 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
673 // Returns offset of first potentially-faulting instruction for null
674 // check info (currently consumed only by C1). If
675 // swap_reg_contains_mark is true then returns -1 as it is assumed
676 // the calling code has already passed any potential faults.
677 int biased_locking_enter(Register lock_reg, Register obj_reg,
678 Register swap_reg, Register tmp_reg,
679 bool swap_reg_contains_mark,
680 Label& done, Label* slow_case = NULL,
681 BiasedLockingCounters* counters = NULL);
682 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
683#ifdef COMPILER2
684 // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
685 // See full desription in macroAssembler_x86.cpp.
686 void fast_lock(Register obj, Register box, Register tmp,
687 Register scr, Register cx1, Register cx2,
688 BiasedLockingCounters* counters,
689 RTMLockingCounters* rtm_counters,
690 RTMLockingCounters* stack_rtm_counters,
691 Metadata* method_data,
692 bool use_rtm, bool profile_rtm);
693 void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
694#if INCLUDE_RTM_OPT
695 void rtm_counters_update(Register abort_status, Register rtm_counters);
696 void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
697 void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
698 RTMLockingCounters* rtm_counters,
699 Metadata* method_data);
700 void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
701 RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
702 void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
703 void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
704 void rtm_stack_locking(Register obj, Register tmp, Register scr,
705 Register retry_on_abort_count,
706 RTMLockingCounters* stack_rtm_counters,
707 Metadata* method_data, bool profile_rtm,
708 Label& DONE_LABEL, Label& IsInflated);
709 void rtm_inflated_locking(Register obj, Register box, Register tmp,
710 Register scr, Register retry_on_busy_count,
711 Register retry_on_abort_count,
712 RTMLockingCounters* rtm_counters,
713 Metadata* method_data, bool profile_rtm,
714 Label& DONE_LABEL);
715#endif
716#endif
717
718 Condition negate_condition(Condition cond);
719
720 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
721 // operands. In general the names are modified to avoid hiding the instruction in Assembler
722 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
723 // here in MacroAssembler. The major exception to this rule is call
724
725 // Arithmetics
726
727
728 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
729 void addptr(Address dst, Register src);
730
731 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
732 void addptr(Register dst, int32_t src);
733 void addptr(Register dst, Register src);
734 void addptr(Register dst, RegisterOrConstant src) {
735 if (src.is_constant()) addptr(dst, (int) src.as_constant());
736 else addptr(dst, src.as_register());
737 }
738
739 void andptr(Register dst, int32_t src);
740 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
741
742 void cmp8(AddressLiteral src1, int imm);
743
744 // renamed to drag out the casting of address to int32_t/intptr_t
745 void cmp32(Register src1, int32_t imm);
746
747 void cmp32(AddressLiteral src1, int32_t imm);
748 // compare reg - mem, or reg - &mem
749 void cmp32(Register src1, AddressLiteral src2);
750
751 void cmp32(Register src1, Address src2);
752
753#ifndef _LP64
754 void cmpklass(Address dst, Metadata* obj);
755 void cmpklass(Register dst, Metadata* obj);
756 void cmpoop(Address dst, jobject obj);
757 void cmpoop_raw(Address dst, jobject obj);
758#endif // _LP64
759
760 void cmpoop(Register src1, Register src2);
761 void cmpoop(Register src1, Address src2);
762 void cmpoop(Register dst, jobject obj);
763 void cmpoop_raw(Register dst, jobject obj);
764
765 // NOTE src2 must be the lval. This is NOT an mem-mem compare
766 void cmpptr(Address src1, AddressLiteral src2);
767
768 void cmpptr(Register src1, AddressLiteral src2);
769
770 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
771 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
772 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
773
774 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
775 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
776
777 // cmp64 to avoild hiding cmpq
778 void cmp64(Register src1, AddressLiteral src);
779
780 void cmpxchgptr(Register reg, Address adr);
781
782 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
783
784
785 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
786 void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
787
788
789 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
790
791 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
792
793 void shlptr(Register dst, int32_t shift);
794 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
795
796 void shrptr(Register dst, int32_t shift);
797 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
798
799 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
800 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
801
802 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
803
804 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
805 void subptr(Register dst, int32_t src);
806 // Force generation of a 4 byte immediate value even if it fits into 8bit
807 void subptr_imm32(Register dst, int32_t src);
808 void subptr(Register dst, Register src);
809 void subptr(Register dst, RegisterOrConstant src) {
810 if (src.is_constant()) subptr(dst, (int) src.as_constant());
811 else subptr(dst, src.as_register());
812 }
813
814 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
815 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
816
817 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
818 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
819
820 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
821
822
823
824 // Helper functions for statistics gathering.
825 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
826 void cond_inc32(Condition cond, AddressLiteral counter_addr);
827 // Unconditional atomic increment.
828 void atomic_incl(Address counter_addr);
829 void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
830#ifdef _LP64
831 void atomic_incq(Address counter_addr);
832 void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
833#endif
834 void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
835 void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
836
837 void lea(Register dst, AddressLiteral adr);
838 void lea(Address dst, AddressLiteral adr);
839 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
840
841 void leal32(Register dst, Address src) { leal(dst, src); }
842
843 // Import other testl() methods from the parent class or else
844 // they will be hidden by the following overriding declaration.
845 using Assembler::testl;
846 void testl(Register dst, AddressLiteral src);
847
848 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
849 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
850 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
851 void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
852
853 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
854 void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
855 void testptr(Register src1, Register src2);
856
857 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
858 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
859
860 // Calls
861
862 void call(Label& L, relocInfo::relocType rtype);
863 void call(Register entry);
864
865 // NOTE: this call transfers to the effective address of entry NOT
866 // the address contained by entry. This is because this is more natural
867 // for jumps/calls.
868 void call(AddressLiteral entry);
869
870 // Emit the CompiledIC call idiom
871 void ic_call(address entry, jint method_index = 0);
872
873 // Jumps
874
875 // NOTE: these jumps tranfer to the effective address of dst NOT
876 // the address contained by dst. This is because this is more natural
877 // for jumps/calls.
878 void jump(AddressLiteral dst);
879 void jump_cc(Condition cc, AddressLiteral dst);
880
881 // 32bit can do a case table jump in one instruction but we no longer allow the base
882 // to be installed in the Address class. This jump will tranfers to the address
883 // contained in the location described by entry (not the address of entry)
884 void jump(ArrayAddress entry);
885
886 // Floating
887
888 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
889 void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
890 void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
891
892 void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
893 void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
894 void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
895
896 void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
897 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
898 void comiss(XMMRegister dst, AddressLiteral src);
899
900 void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
901 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
902 void comisd(XMMRegister dst, AddressLiteral src);
903
904 void fadd_s(Address src) { Assembler::fadd_s(src); }
905 void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
906
907 void fldcw(Address src) { Assembler::fldcw(src); }
908 void fldcw(AddressLiteral src);
909
910 void fld_s(int index) { Assembler::fld_s(index); }
911 void fld_s(Address src) { Assembler::fld_s(src); }
912 void fld_s(AddressLiteral src);
913
914 void fld_d(Address src) { Assembler::fld_d(src); }
915 void fld_d(AddressLiteral src);
916
917 void fld_x(Address src) { Assembler::fld_x(src); }
918 void fld_x(AddressLiteral src);
919
920 void fmul_s(Address src) { Assembler::fmul_s(src); }
921 void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
922
923 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
924 void ldmxcsr(AddressLiteral src);
925
926#ifdef _LP64
927 private:
928 void sha256_AVX2_one_round_compute(
929 Register reg_old_h,
930 Register reg_a,
931 Register reg_b,
932 Register reg_c,
933 Register reg_d,
934 Register reg_e,
935 Register reg_f,
936 Register reg_g,
937 Register reg_h,
938 int iter);
939 void sha256_AVX2_four_rounds_compute_first(int start);
940 void sha256_AVX2_four_rounds_compute_last(int start);
941 void sha256_AVX2_one_round_and_sched(
942 XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
943 XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */
944 XMMRegister xmm_2, /* ymm6 */
945 XMMRegister xmm_3, /* ymm7 */
946 Register reg_a, /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
947 Register reg_b, /* ebx */ /* full cycle is 8 iterations */
948 Register reg_c, /* edi */
949 Register reg_d, /* esi */
950 Register reg_e, /* r8d */
951 Register reg_f, /* r9d */
952 Register reg_g, /* r10d */
953 Register reg_h, /* r11d */
954 int iter);
955
956 void addm(int disp, Register r1, Register r2);
957 void gfmul(XMMRegister tmp0, XMMRegister t);
958 void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
959 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
960 void generateHtbl_one_block(Register htbl);
961 void generateHtbl_eight_blocks(Register htbl);
962 public:
963 void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
964 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
965 Register buf, Register state, Register ofs, Register limit, Register rsp,
966 bool multi_block, XMMRegister shuf_mask);
967 void avx_ghash(Register state, Register htbl, Register data, Register blocks);
968#endif
969
970#ifdef _LP64
971 private:
972 void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
973 Register e, Register f, Register g, Register h, int iteration);
974
975 void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
976 Register a, Register b, Register c, Register d, Register e, Register f,
977 Register g, Register h, int iteration);
978
979 void addmq(int disp, Register r1, Register r2);
980 public:
981 void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
982 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
983 Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
984 XMMRegister shuf_mask);
985#endif
986
987 void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
988 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
989 Register buf, Register state, Register ofs, Register limit, Register rsp,
990 bool multi_block);
991
992#ifdef _LP64
993 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
994 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
995 Register buf, Register state, Register ofs, Register limit, Register rsp,
996 bool multi_block, XMMRegister shuf_mask);
997#else
998 void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
999 XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1000 Register buf, Register state, Register ofs, Register limit, Register rsp,
1001 bool multi_block);
1002#endif
1003
1004 void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1005 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1006 Register rax, Register rcx, Register rdx, Register tmp);
1007
1008#ifdef _LP64
1009 void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1012
1013 void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1014 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015 Register rax, Register rcx, Register rdx, Register r11);
1016
1017 void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1018 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1019 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1020
1021 void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1022 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1023 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1024 Register tmp3, Register tmp4);
1025
1026 void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028 Register rax, Register rcx, Register rdx, Register tmp1,
1029 Register tmp2, Register tmp3, Register tmp4);
1030 void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1031 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1032 Register rax, Register rcx, Register rdx, Register tmp1,
1033 Register tmp2, Register tmp3, Register tmp4);
1034#else
1035 void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037 Register rax, Register rcx, Register rdx, Register tmp1);
1038
1039 void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1040 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1041 Register rax, Register rcx, Register rdx, Register tmp);
1042
1043 void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1044 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1045 Register rdx, Register tmp);
1046
1047 void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1048 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1049 Register rax, Register rbx, Register rdx);
1050
1051 void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1052 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1053 Register rax, Register rcx, Register rdx, Register tmp);
1054
1055 void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1056 Register edx, Register ebx, Register esi, Register edi,
1057 Register ebp, Register esp);
1058
1059 void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1060 Register esi, Register edi, Register ebp, Register esp);
1061
1062 void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1063 Register edx, Register ebx, Register esi, Register edi,
1064 Register ebp, Register esp);
1065
1066 void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068 Register rax, Register rcx, Register rdx, Register tmp);
1069#endif
1070
1071 void increase_precision();
1072 void restore_precision();
1073
1074private:
1075
1076 // these are private because users should be doing movflt/movdbl
1077
1078 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1079 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
1080 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
1081 void movss(XMMRegister dst, AddressLiteral src);
1082
1083 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
1084 void movlpd(XMMRegister dst, AddressLiteral src);
1085
1086public:
1087
1088 void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
1089 void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
1090 void addsd(XMMRegister dst, AddressLiteral src);
1091
1092 void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
1093 void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
1094 void addss(XMMRegister dst, AddressLiteral src);
1095
1096 void addpd(XMMRegister dst, XMMRegister src) { Assembler::addpd(dst, src); }
1097 void addpd(XMMRegister dst, Address src) { Assembler::addpd(dst, src); }
1098 void addpd(XMMRegister dst, AddressLiteral src);
1099
1100 void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
1101 void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
1102 void divsd(XMMRegister dst, AddressLiteral src);
1103
1104 void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
1105 void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
1106 void divss(XMMRegister dst, AddressLiteral src);
1107
1108 // Move Unaligned Double Quadword
1109 void movdqu(Address dst, XMMRegister src);
1110 void movdqu(XMMRegister dst, Address src);
1111 void movdqu(XMMRegister dst, XMMRegister src);
1112 void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1113 // AVX Unaligned forms
1114 void vmovdqu(Address dst, XMMRegister src);
1115 void vmovdqu(XMMRegister dst, Address src);
1116 void vmovdqu(XMMRegister dst, XMMRegister src);
1117 void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1118 void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1119 void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1120 void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1121 void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1122
1123 // Move Aligned Double Quadword
1124 void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); }
1125 void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); }
1126 void movdqa(XMMRegister dst, AddressLiteral src);
1127
1128 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1129 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
1130 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
1131 void movsd(XMMRegister dst, AddressLiteral src);
1132
1133 void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); }
1134 void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); }
1135 void mulpd(XMMRegister dst, AddressLiteral src);
1136
1137 void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
1138 void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
1139 void mulsd(XMMRegister dst, AddressLiteral src);
1140
1141 void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
1142 void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
1143 void mulss(XMMRegister dst, AddressLiteral src);
1144
1145 // Carry-Less Multiplication Quadword
1146 void pclmulldq(XMMRegister dst, XMMRegister src) {
1147 // 0x00 - multiply lower 64 bits [0:63]
1148 Assembler::pclmulqdq(dst, src, 0x00);
1149 }
1150 void pclmulhdq(XMMRegister dst, XMMRegister src) {
1151 // 0x11 - multiply upper 64 bits [64:127]
1152 Assembler::pclmulqdq(dst, src, 0x11);
1153 }
1154
1155 void pcmpeqb(XMMRegister dst, XMMRegister src);
1156 void pcmpeqw(XMMRegister dst, XMMRegister src);
1157
1158 void pcmpestri(XMMRegister dst, Address src, int imm8);
1159 void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1160
1161 void pmovzxbw(XMMRegister dst, XMMRegister src);
1162 void pmovzxbw(XMMRegister dst, Address src);
1163
1164 void pmovmskb(Register dst, XMMRegister src);
1165
1166 void ptest(XMMRegister dst, XMMRegister src);
1167
1168 void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
1169 void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
1170 void sqrtsd(XMMRegister dst, AddressLiteral src);
1171
1172 void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
1173 void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
1174 void sqrtss(XMMRegister dst, AddressLiteral src);
1175
1176 void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
1177 void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
1178 void subsd(XMMRegister dst, AddressLiteral src);
1179
1180 void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
1181 void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
1182 void subss(XMMRegister dst, AddressLiteral src);
1183
1184 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1185 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
1186 void ucomiss(XMMRegister dst, AddressLiteral src);
1187
1188 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1189 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
1190 void ucomisd(XMMRegister dst, AddressLiteral src);
1191
1192 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1193 void xorpd(XMMRegister dst, XMMRegister src);
1194 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
1195 void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1196
1197 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1198 void xorps(XMMRegister dst, XMMRegister src);
1199 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
1200 void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1201
1202 // Shuffle Bytes
1203 void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1204 void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
1205 void pshufb(XMMRegister dst, AddressLiteral src);
1206 // AVX 3-operands instructions
1207
1208 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1209 void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
1210 void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1211
1212 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1213 void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
1214 void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1215
1216 void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1217 void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1218
1219 void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1220 void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1221
1222 void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1223 void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1224
1225 void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1226 void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1227 void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1228
1229 void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1230 void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1231
1232 void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1233
1234 void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1235
1236 void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1237 void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1238
1239 void vpmovmskb(Register dst, XMMRegister src);
1240
1241 void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1242 void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1243
1244 void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1245 void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1246
1247 void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1248 void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1249
1250 void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1251 void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1252
1253 void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1254 void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1255
1256 void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1257 void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1258
1259 void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1260 void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1261
1262 void vptest(XMMRegister dst, XMMRegister src);
1263
1264 void punpcklbw(XMMRegister dst, XMMRegister src);
1265 void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1266
1267 void pshufd(XMMRegister dst, Address src, int mode);
1268 void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1269
1270 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1271 void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1272
1273 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1274 void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1275 void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1276
1277 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1278 void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1279 void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1280
1281 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1282 void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
1283 void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1284
1285 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1286 void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
1287 void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1288
1289 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1290 void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
1291 void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1292
1293 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1294 void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
1295 void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1296
1297 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1298 void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
1299 void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1300
1301 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1302 void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
1303 void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1304
1305 void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1306 void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1307
1308 // AVX Vector instructions
1309
1310 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1311 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1312 void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1313
1314 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1315 void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1316 void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1317
1318 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1319 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1320 Assembler::vpxor(dst, nds, src, vector_len);
1321 else
1322 Assembler::vxorpd(dst, nds, src, vector_len);
1323 }
1324 void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1325 if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1326 Assembler::vpxor(dst, nds, src, vector_len);
1327 else
1328 Assembler::vxorpd(dst, nds, src, vector_len);
1329 }
1330 void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1331
1332 // Simple version for AVX2 256bit vectors
1333 void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1334 void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1335
1336 void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1337 if (UseAVX > 2) {
1338 Assembler::vinserti32x4(dst, dst, src, imm8);
1339 } else if (UseAVX > 1) {
1340 // vinserti128 is available only in AVX2
1341 Assembler::vinserti128(dst, nds, src, imm8);
1342 } else {
1343 Assembler::vinsertf128(dst, nds, src, imm8);
1344 }
1345 }
1346
1347 void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1348 if (UseAVX > 2) {
1349 Assembler::vinserti32x4(dst, dst, src, imm8);
1350 } else if (UseAVX > 1) {
1351 // vinserti128 is available only in AVX2
1352 Assembler::vinserti128(dst, nds, src, imm8);
1353 } else {
1354 Assembler::vinsertf128(dst, nds, src, imm8);
1355 }
1356 }
1357
1358 void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1359 if (UseAVX > 2) {
1360 Assembler::vextracti32x4(dst, src, imm8);
1361 } else if (UseAVX > 1) {
1362 // vextracti128 is available only in AVX2
1363 Assembler::vextracti128(dst, src, imm8);
1364 } else {
1365 Assembler::vextractf128(dst, src, imm8);
1366 }
1367 }
1368
1369 void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1370 if (UseAVX > 2) {
1371 Assembler::vextracti32x4(dst, src, imm8);
1372 } else if (UseAVX > 1) {
1373 // vextracti128 is available only in AVX2
1374 Assembler::vextracti128(dst, src, imm8);
1375 } else {
1376 Assembler::vextractf128(dst, src, imm8);
1377 }
1378 }
1379
1380 // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1381 void vinserti128_high(XMMRegister dst, XMMRegister src) {
1382 vinserti128(dst, dst, src, 1);
1383 }
1384 void vinserti128_high(XMMRegister dst, Address src) {
1385 vinserti128(dst, dst, src, 1);
1386 }
1387 void vextracti128_high(XMMRegister dst, XMMRegister src) {
1388 vextracti128(dst, src, 1);
1389 }
1390 void vextracti128_high(Address dst, XMMRegister src) {
1391 vextracti128(dst, src, 1);
1392 }
1393
1394 void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1395 if (UseAVX > 2) {
1396 Assembler::vinsertf32x4(dst, dst, src, 1);
1397 } else {
1398 Assembler::vinsertf128(dst, dst, src, 1);
1399 }
1400 }
1401
1402 void vinsertf128_high(XMMRegister dst, Address src) {
1403 if (UseAVX > 2) {
1404 Assembler::vinsertf32x4(dst, dst, src, 1);
1405 } else {
1406 Assembler::vinsertf128(dst, dst, src, 1);
1407 }
1408 }
1409
1410 void vextractf128_high(XMMRegister dst, XMMRegister src) {
1411 if (UseAVX > 2) {
1412 Assembler::vextractf32x4(dst, src, 1);
1413 } else {
1414 Assembler::vextractf128(dst, src, 1);
1415 }
1416 }
1417
1418 void vextractf128_high(Address dst, XMMRegister src) {
1419 if (UseAVX > 2) {
1420 Assembler::vextractf32x4(dst, src, 1);
1421 } else {
1422 Assembler::vextractf128(dst, src, 1);
1423 }
1424 }
1425
1426 // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1427 void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1428 Assembler::vinserti64x4(dst, dst, src, 1);
1429 }
1430 void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1431 Assembler::vinsertf64x4(dst, dst, src, 1);
1432 }
1433 void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1434 Assembler::vextracti64x4(dst, src, 1);
1435 }
1436 void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1437 Assembler::vextractf64x4(dst, src, 1);
1438 }
1439 void vextractf64x4_high(Address dst, XMMRegister src) {
1440 Assembler::vextractf64x4(dst, src, 1);
1441 }
1442 void vinsertf64x4_high(XMMRegister dst, Address src) {
1443 Assembler::vinsertf64x4(dst, dst, src, 1);
1444 }
1445
1446 // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1447 void vinserti128_low(XMMRegister dst, XMMRegister src) {
1448 vinserti128(dst, dst, src, 0);
1449 }
1450 void vinserti128_low(XMMRegister dst, Address src) {
1451 vinserti128(dst, dst, src, 0);
1452 }
1453 void vextracti128_low(XMMRegister dst, XMMRegister src) {
1454 vextracti128(dst, src, 0);
1455 }
1456 void vextracti128_low(Address dst, XMMRegister src) {
1457 vextracti128(dst, src, 0);
1458 }
1459
1460 void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1461 if (UseAVX > 2) {
1462 Assembler::vinsertf32x4(dst, dst, src, 0);
1463 } else {
1464 Assembler::vinsertf128(dst, dst, src, 0);
1465 }
1466 }
1467
1468 void vinsertf128_low(XMMRegister dst, Address src) {
1469 if (UseAVX > 2) {
1470 Assembler::vinsertf32x4(dst, dst, src, 0);
1471 } else {
1472 Assembler::vinsertf128(dst, dst, src, 0);
1473 }
1474 }
1475
1476 void vextractf128_low(XMMRegister dst, XMMRegister src) {
1477 if (UseAVX > 2) {
1478 Assembler::vextractf32x4(dst, src, 0);
1479 } else {
1480 Assembler::vextractf128(dst, src, 0);
1481 }
1482 }
1483
1484 void vextractf128_low(Address dst, XMMRegister src) {
1485 if (UseAVX > 2) {
1486 Assembler::vextractf32x4(dst, src, 0);
1487 } else {
1488 Assembler::vextractf128(dst, src, 0);
1489 }
1490 }
1491
1492 // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1493 void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1494 Assembler::vinserti64x4(dst, dst, src, 0);
1495 }
1496 void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1497 Assembler::vinsertf64x4(dst, dst, src, 0);
1498 }
1499 void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1500 Assembler::vextracti64x4(dst, src, 0);
1501 }
1502 void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1503 Assembler::vextractf64x4(dst, src, 0);
1504 }
1505 void vextractf64x4_low(Address dst, XMMRegister src) {
1506 Assembler::vextractf64x4(dst, src, 0);
1507 }
1508 void vinsertf64x4_low(XMMRegister dst, Address src) {
1509 Assembler::vinsertf64x4(dst, dst, src, 0);
1510 }
1511
1512 // Carry-Less Multiplication Quadword
1513 void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1514 // 0x00 - multiply lower 64 bits [0:63]
1515 Assembler::vpclmulqdq(dst, nds, src, 0x00);
1516 }
1517 void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1518 // 0x11 - multiply upper 64 bits [64:127]
1519 Assembler::vpclmulqdq(dst, nds, src, 0x11);
1520 }
1521 void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1522 // 0x10 - multiply nds[0:63] and src[64:127]
1523 Assembler::vpclmulqdq(dst, nds, src, 0x10);
1524 }
1525 void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1526 //0x01 - multiply nds[64:127] and src[0:63]
1527 Assembler::vpclmulqdq(dst, nds, src, 0x01);
1528 }
1529
1530 void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1531 // 0x00 - multiply lower 64 bits [0:63]
1532 Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1533 }
1534 void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1535 // 0x11 - multiply upper 64 bits [64:127]
1536 Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1537 }
1538
1539 // Data
1540
1541 void cmov32( Condition cc, Register dst, Address src);
1542 void cmov32( Condition cc, Register dst, Register src);
1543
1544 void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1545
1546 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1547 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1548
1549 void movoop(Register dst, jobject obj);
1550 void movoop(Address dst, jobject obj);
1551
1552 void mov_metadata(Register dst, Metadata* obj);
1553 void mov_metadata(Address dst, Metadata* obj);
1554
1555 void movptr(ArrayAddress dst, Register src);
1556 // can this do an lea?
1557 void movptr(Register dst, ArrayAddress src);
1558
1559 void movptr(Register dst, Address src);
1560
1561#ifdef _LP64
1562 void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1563#else
1564 void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1565#endif
1566
1567 void movptr(Register dst, intptr_t src);
1568 void movptr(Register dst, Register src);
1569 void movptr(Address dst, intptr_t src);
1570
1571 void movptr(Address dst, Register src);
1572
1573 void movptr(Register dst, RegisterOrConstant src) {
1574 if (src.is_constant()) movptr(dst, src.as_constant());
1575 else movptr(dst, src.as_register());
1576 }
1577
1578#ifdef _LP64
1579 // Generally the next two are only used for moving NULL
1580 // Although there are situations in initializing the mark word where
1581 // they could be used. They are dangerous.
1582
1583 // They only exist on LP64 so that int32_t and intptr_t are not the same
1584 // and we have ambiguous declarations.
1585
1586 void movptr(Address dst, int32_t imm32);
1587 void movptr(Register dst, int32_t imm32);
1588#endif // _LP64
1589
1590 // to avoid hiding movl
1591 void mov32(AddressLiteral dst, Register src);
1592 void mov32(Register dst, AddressLiteral src);
1593
1594 // to avoid hiding movb
1595 void movbyte(ArrayAddress dst, int src);
1596
1597 // Import other mov() methods from the parent class or else
1598 // they will be hidden by the following overriding declaration.
1599 using Assembler::movdl;
1600 using Assembler::movq;
1601 void movdl(XMMRegister dst, AddressLiteral src);
1602 void movq(XMMRegister dst, AddressLiteral src);
1603
1604 // Can push value or effective address
1605 void pushptr(AddressLiteral src);
1606
1607 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1608 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1609
1610 void pushoop(jobject obj);
1611 void pushklass(Metadata* obj);
1612
1613 // sign extend as need a l to ptr sized element
1614 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1615 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1616
1617#ifdef COMPILER2
1618 // Generic instructions support for use in .ad files C2 code generation
1619 void vabsnegd(int opcode, XMMRegister dst, Register scr);
1620 void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1621 void vabsnegf(int opcode, XMMRegister dst, Register scr);
1622 void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1623 void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1624 void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1625 void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1626 void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1627 void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1628 void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1629 void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1630 void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1631#endif
1632
1633 // C2 compiled method's prolog code.
1634 void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1635
1636 // clear memory of size 'cnt' qwords, starting at 'base';
1637 // if 'is_large' is set, do not try to produce short loop
1638 void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1639
1640 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1641 void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1642
1643#ifdef COMPILER2
1644 void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1645 XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1646
1647 // IndexOf strings.
1648 // Small strings are loaded through stack if they cross page boundary.
1649 void string_indexof(Register str1, Register str2,
1650 Register cnt1, Register cnt2,
1651 int int_cnt2, Register result,
1652 XMMRegister vec, Register tmp,
1653 int ae);
1654
1655 // IndexOf for constant substrings with size >= 8 elements
1656 // which don't need to be loaded through stack.
1657 void string_indexofC8(Register str1, Register str2,
1658 Register cnt1, Register cnt2,
1659 int int_cnt2, Register result,
1660 XMMRegister vec, Register tmp,
1661 int ae);
1662
1663 // Smallest code: we don't need to load through stack,
1664 // check string tail.
1665
1666 // helper function for string_compare
1667 void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1668 Address::ScaleFactor scale, Address::ScaleFactor scale1,
1669 Address::ScaleFactor scale2, Register index, int ae);
1670 // Compare strings.
1671 void string_compare(Register str1, Register str2,
1672 Register cnt1, Register cnt2, Register result,
1673 XMMRegister vec1, int ae);
1674
1675 // Search for Non-ASCII character (Negative byte value) in a byte array,
1676 // return true if it has any and false otherwise.
1677 void has_negatives(Register ary1, Register len,
1678 Register result, Register tmp1,
1679 XMMRegister vec1, XMMRegister vec2);
1680
1681 // Compare char[] or byte[] arrays.
1682 void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1683 Register limit, Register result, Register chr,
1684 XMMRegister vec1, XMMRegister vec2, bool is_char);
1685
1686#endif
1687
1688 // Fill primitive arrays
1689 void generate_fill(BasicType t, bool aligned,
1690 Register to, Register value, Register count,
1691 Register rtmp, XMMRegister xtmp);
1692
1693 void encode_iso_array(Register src, Register dst, Register len,
1694 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1695 XMMRegister tmp4, Register tmp5, Register result);
1696
1697#ifdef _LP64
1698 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1699 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1700 Register y, Register y_idx, Register z,
1701 Register carry, Register product,
1702 Register idx, Register kdx);
1703 void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1704 Register yz_idx, Register idx,
1705 Register carry, Register product, int offset);
1706 void multiply_128_x_128_bmi2_loop(Register y, Register z,
1707 Register carry, Register carry2,
1708 Register idx, Register jdx,
1709 Register yz_idx1, Register yz_idx2,
1710 Register tmp, Register tmp3, Register tmp4);
1711 void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1712 Register yz_idx, Register idx, Register jdx,
1713 Register carry, Register product,
1714 Register carry2);
1715 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1716 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1717 void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1718 Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1719 void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1720 Register tmp2);
1721 void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1722 Register rdxReg, Register raxReg);
1723 void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1724 void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1725 Register tmp3, Register tmp4);
1726 void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1727 Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1728
1729 void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1730 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1731 Register raxReg);
1732 void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1733 Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1734 Register raxReg);
1735 void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1736 Register result, Register tmp1, Register tmp2,
1737 XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1738#endif
1739
1740 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1741 void update_byte_crc32(Register crc, Register val, Register table);
1742 void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1743 // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1744 // Note on a naming convention:
1745 // Prefix w = register only used on a Westmere+ architecture
1746 // Prefix n = register only used on a Nehalem architecture
1747#ifdef _LP64
1748 void crc32c_ipl_alg4(Register in_out, uint32_t n,
1749 Register tmp1, Register tmp2, Register tmp3);
1750#else
1751 void crc32c_ipl_alg4(Register in_out, uint32_t n,
1752 Register tmp1, Register tmp2, Register tmp3,
1753 XMMRegister xtmp1, XMMRegister xtmp2);
1754#endif
1755 void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1756 Register in_out,
1757 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1758 XMMRegister w_xtmp2,
1759 Register tmp1,
1760 Register n_tmp2, Register n_tmp3);
1761 void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1762 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1763 Register tmp1, Register tmp2,
1764 Register n_tmp3);
1765 void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1766 Register in_out1, Register in_out2, Register in_out3,
1767 Register tmp1, Register tmp2, Register tmp3,
1768 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1769 Register tmp4, Register tmp5,
1770 Register n_tmp6);
1771 void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1772 Register tmp1, Register tmp2, Register tmp3,
1773 Register tmp4, Register tmp5, Register tmp6,
1774 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1775 bool is_pclmulqdq_supported);
1776 // Fold 128-bit data chunk
1777 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1778 void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1779 // Fold 8-bit data
1780 void fold_8bit_crc32(Register crc, Register table, Register tmp);
1781 void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1782 void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1783
1784 // Compress char[] array to byte[].
1785 void char_array_compress(Register src, Register dst, Register len,
1786 XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1787 XMMRegister tmp4, Register tmp5, Register result);
1788
1789 // Inflate byte[] array to char[].
1790 void byte_array_inflate(Register src, Register dst, Register len,
1791 XMMRegister tmp1, Register tmp2);
1792
1793};
1794
1795/**
1796 * class SkipIfEqual:
1797 *
1798 * Instantiating this class will result in assembly code being output that will
1799 * jump around any code emitted between the creation of the instance and it's
1800 * automatic destruction at the end of a scope block, depending on the value of
1801 * the flag passed to the constructor, which will be checked at run-time.
1802 */
1803class SkipIfEqual {
1804 private:
1805 MacroAssembler* _masm;
1806 Label _label;
1807
1808 public:
1809 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1810 ~SkipIfEqual();
1811};
1812
1813#endif // CPU_X86_MACROASSEMBLER_X86_HPP
1814