| 1 | /* |
| 2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "asm/macroAssembler.hpp" |
| 27 | #include "code/compiledIC.hpp" |
| 28 | #include "memory/resourceArea.hpp" |
| 29 | #include "nativeInst_x86.hpp" |
| 30 | #include "oops/oop.inline.hpp" |
| 31 | #include "runtime/handles.hpp" |
| 32 | #include "runtime/sharedRuntime.hpp" |
| 33 | #include "runtime/stubRoutines.hpp" |
| 34 | #include "utilities/ostream.hpp" |
| 35 | #ifdef COMPILER1 |
| 36 | #include "c1/c1_Runtime1.hpp" |
| 37 | #endif |
| 38 | |
| 39 | void NativeInstruction::wrote(int offset) { |
| 40 | ICache::invalidate_word(addr_at(offset)); |
| 41 | } |
| 42 | |
| 43 | void NativeLoadGot::report_and_fail() const { |
| 44 | tty->print_cr("Addr: " INTPTR_FORMAT, p2i(instruction_address())); |
| 45 | fatal("not a indirect rip mov to rbx" ); |
| 46 | } |
| 47 | |
| 48 | void NativeLoadGot::verify() const { |
| 49 | if (has_rex) { |
| 50 | int rex = ubyte_at(0); |
| 51 | if (rex != rex_prefix) { |
| 52 | report_and_fail(); |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | int inst = ubyte_at(rex_size); |
| 57 | if (inst != instruction_code) { |
| 58 | report_and_fail(); |
| 59 | } |
| 60 | int modrm = ubyte_at(rex_size + 1); |
| 61 | if (modrm != modrm_rbx_code && modrm != modrm_rax_code) { |
| 62 | report_and_fail(); |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | intptr_t NativeLoadGot::data() const { |
| 67 | return *(intptr_t *) got_address(); |
| 68 | } |
| 69 | |
| 70 | address NativePltCall::destination() const { |
| 71 | NativeGotJump* jump = nativeGotJump_at(plt_jump()); |
| 72 | return jump->destination(); |
| 73 | } |
| 74 | |
| 75 | address NativePltCall::plt_entry() const { |
| 76 | return return_address() + displacement(); |
| 77 | } |
| 78 | |
| 79 | address NativePltCall::plt_jump() const { |
| 80 | address entry = plt_entry(); |
| 81 | // Virtual PLT code has move instruction first |
| 82 | if (((NativeGotJump*)entry)->is_GotJump()) { |
| 83 | return entry; |
| 84 | } else { |
| 85 | return nativeLoadGot_at(entry)->next_instruction_address(); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | address NativePltCall::plt_load_got() const { |
| 90 | address entry = plt_entry(); |
| 91 | if (!((NativeGotJump*)entry)->is_GotJump()) { |
| 92 | // Virtual PLT code has move instruction first |
| 93 | return entry; |
| 94 | } else { |
| 95 | // Static PLT code has move instruction second (from c2i stub) |
| 96 | return nativeGotJump_at(entry)->next_instruction_address(); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | address NativePltCall::plt_c2i_stub() const { |
| 101 | address entry = plt_load_got(); |
| 102 | // This method should be called only for static calls which has C2I stub. |
| 103 | NativeLoadGot* load = nativeLoadGot_at(entry); |
| 104 | return entry; |
| 105 | } |
| 106 | |
| 107 | address NativePltCall::plt_resolve_call() const { |
| 108 | NativeGotJump* jump = nativeGotJump_at(plt_jump()); |
| 109 | address entry = jump->next_instruction_address(); |
| 110 | if (((NativeGotJump*)entry)->is_GotJump()) { |
| 111 | return entry; |
| 112 | } else { |
| 113 | // c2i stub 2 instructions |
| 114 | entry = nativeLoadGot_at(entry)->next_instruction_address(); |
| 115 | return nativeGotJump_at(entry)->next_instruction_address(); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | void NativePltCall::reset_to_plt_resolve_call() { |
| 120 | set_destination_mt_safe(plt_resolve_call()); |
| 121 | } |
| 122 | |
| 123 | void NativePltCall::set_destination_mt_safe(address dest) { |
| 124 | // rewriting the value in the GOT, it should always be aligned |
| 125 | NativeGotJump* jump = nativeGotJump_at(plt_jump()); |
| 126 | address* got = (address *) jump->got_address(); |
| 127 | *got = dest; |
| 128 | } |
| 129 | |
| 130 | void NativePltCall::set_stub_to_clean() { |
| 131 | NativeLoadGot* method_loader = nativeLoadGot_at(plt_c2i_stub()); |
| 132 | NativeGotJump* jump = nativeGotJump_at(method_loader->next_instruction_address()); |
| 133 | method_loader->set_data(0); |
| 134 | jump->set_jump_destination((address)-1); |
| 135 | } |
| 136 | |
| 137 | void NativePltCall::verify() const { |
| 138 | // Make sure code pattern is actually a call rip+off32 instruction. |
| 139 | int inst = ubyte_at(0); |
| 140 | if (inst != instruction_code) { |
| 141 | tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x" , p2i(instruction_address()), |
| 142 | inst); |
| 143 | fatal("not a call rip+off32" ); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | address NativeGotJump::destination() const { |
| 148 | address *got_entry = (address *) got_address(); |
| 149 | return *got_entry; |
| 150 | } |
| 151 | |
| 152 | void NativeGotJump::verify() const { |
| 153 | int inst = ubyte_at(0); |
| 154 | if (inst != instruction_code) { |
| 155 | tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x" , p2i(instruction_address()), |
| 156 | inst); |
| 157 | fatal("not a indirect rip jump" ); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | void NativeCall::verify() { |
| 162 | // Make sure code pattern is actually a call imm32 instruction. |
| 163 | int inst = ubyte_at(0); |
| 164 | if (inst != instruction_code) { |
| 165 | tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x" , p2i(instruction_address()), |
| 166 | inst); |
| 167 | fatal("not a call disp32" ); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | address NativeCall::destination() const { |
| 172 | // Getting the destination of a call isn't safe because that call can |
| 173 | // be getting patched while you're calling this. There's only special |
| 174 | // places where this can be called but not automatically verifiable by |
| 175 | // checking which locks are held. The solution is true atomic patching |
| 176 | // on x86, nyi. |
| 177 | return return_address() + displacement(); |
| 178 | } |
| 179 | |
| 180 | void NativeCall::print() { |
| 181 | tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT, |
| 182 | p2i(instruction_address()), p2i(destination())); |
| 183 | } |
| 184 | |
| 185 | // Inserts a native call instruction at a given pc |
| 186 | void NativeCall::insert(address code_pos, address entry) { |
| 187 | intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); |
| 188 | #ifdef AMD64 |
| 189 | guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset" ); |
| 190 | #endif // AMD64 |
| 191 | *code_pos = instruction_code; |
| 192 | *((int32_t *)(code_pos+1)) = (int32_t) disp; |
| 193 | ICache::invalidate_range(code_pos, instruction_size); |
| 194 | } |
| 195 | |
| 196 | // MT-safe patching of a call instruction. |
| 197 | // First patches first word of instruction to two jmp's that jmps to them |
| 198 | // selfs (spinlock). Then patches the last byte, and then atomicly replaces |
| 199 | // the jmp's with the first 4 byte of the new instruction. |
| 200 | void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) { |
| 201 | assert(Patching_lock->is_locked() || |
| 202 | SafepointSynchronize::is_at_safepoint(), "concurrent code patching" ); |
| 203 | assert (instr_addr != NULL, "illegal address for code patching" ); |
| 204 | |
| 205 | NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call |
| 206 | guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned" ); |
| 207 | |
| 208 | // First patch dummy jmp in place |
| 209 | unsigned char patch[4]; |
| 210 | assert(sizeof(patch)==sizeof(jint), "sanity check" ); |
| 211 | patch[0] = 0xEB; // jmp rel8 |
| 212 | patch[1] = 0xFE; // jmp to self |
| 213 | patch[2] = 0xEB; |
| 214 | patch[3] = 0xFE; |
| 215 | |
| 216 | // First patch dummy jmp in place |
| 217 | *(jint*)instr_addr = *(jint *)patch; |
| 218 | |
| 219 | // Invalidate. Opteron requires a flush after every write. |
| 220 | n_call->wrote(0); |
| 221 | |
| 222 | // Patch 4th byte |
| 223 | instr_addr[4] = code_buffer[4]; |
| 224 | |
| 225 | n_call->wrote(4); |
| 226 | |
| 227 | // Patch bytes 0-3 |
| 228 | *(jint*)instr_addr = *(jint *)code_buffer; |
| 229 | |
| 230 | n_call->wrote(0); |
| 231 | |
| 232 | #ifdef ASSERT |
| 233 | // verify patching |
| 234 | for ( int i = 0; i < instruction_size; i++) { |
| 235 | address ptr = (address)((intptr_t)code_buffer + i); |
| 236 | int a_byte = (*ptr) & 0xFF; |
| 237 | assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed" ); |
| 238 | } |
| 239 | #endif |
| 240 | |
| 241 | } |
| 242 | |
| 243 | |
| 244 | // Similar to replace_mt_safe, but just changes the destination. The |
| 245 | // important thing is that free-running threads are able to execute this |
| 246 | // call instruction at all times. If the displacement field is aligned |
| 247 | // we can simply rely on atomicity of 32-bit writes to make sure other threads |
| 248 | // will see no intermediate states. Otherwise, the first two bytes of the |
| 249 | // call are guaranteed to be aligned, and can be atomically patched to a |
| 250 | // self-loop to guard the instruction while we change the other bytes. |
| 251 | |
| 252 | // We cannot rely on locks here, since the free-running threads must run at |
| 253 | // full speed. |
| 254 | // |
| 255 | // Used in the runtime linkage of calls; see class CompiledIC. |
| 256 | // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.) |
| 257 | void NativeCall::set_destination_mt_safe(address dest) { |
| 258 | debug_only(verify()); |
| 259 | // Make sure patching code is locked. No two threads can patch at the same |
| 260 | // time but one may be executing this code. |
| 261 | assert(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint() || |
| 262 | CompiledICLocker::is_safe(instruction_address()), "concurrent code patching" ); |
| 263 | // Both C1 and C2 should now be generating code which aligns the patched address |
| 264 | // to be within a single cache line. |
| 265 | bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size == |
| 266 | ((uintptr_t)displacement_address() + 3) / cache_line_size; |
| 267 | |
| 268 | guarantee(is_aligned, "destination must be aligned" ); |
| 269 | |
| 270 | // The destination lies within a single cache line. |
| 271 | set_destination(dest); |
| 272 | } |
| 273 | |
| 274 | |
| 275 | void NativeMovConstReg::verify() { |
| 276 | #ifdef AMD64 |
| 277 | // make sure code pattern is actually a mov reg64, imm64 instruction |
| 278 | if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) || |
| 279 | (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) { |
| 280 | print(); |
| 281 | fatal("not a REX.W[B] mov reg64, imm64" ); |
| 282 | } |
| 283 | #else |
| 284 | // make sure code pattern is actually a mov reg, imm32 instruction |
| 285 | u_char test_byte = *(u_char*)instruction_address(); |
| 286 | u_char test_byte_2 = test_byte & ( 0xff ^ register_mask); |
| 287 | if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32" ); |
| 288 | #endif // AMD64 |
| 289 | } |
| 290 | |
| 291 | |
| 292 | void NativeMovConstReg::print() { |
| 293 | tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT, |
| 294 | p2i(instruction_address()), data()); |
| 295 | } |
| 296 | |
| 297 | //------------------------------------------------------------------- |
| 298 | |
| 299 | int NativeMovRegMem::instruction_start() const { |
| 300 | int off = 0; |
| 301 | u_char instr_0 = ubyte_at(off); |
| 302 | |
| 303 | // See comment in Assembler::locate_operand() about VEX prefixes. |
| 304 | if (instr_0 == instruction_VEX_prefix_2bytes) { |
| 305 | assert((UseAVX > 0), "shouldn't have VEX prefix" ); |
| 306 | NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions" )); |
| 307 | return 2; |
| 308 | } |
| 309 | if (instr_0 == instruction_VEX_prefix_3bytes) { |
| 310 | assert((UseAVX > 0), "shouldn't have VEX prefix" ); |
| 311 | NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions" )); |
| 312 | return 3; |
| 313 | } |
| 314 | if (instr_0 == instruction_EVEX_prefix_4bytes) { |
| 315 | assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix" ); |
| 316 | return 4; |
| 317 | } |
| 318 | |
| 319 | // First check to see if we have a (prefixed or not) xor |
| 320 | if (instr_0 >= instruction_prefix_wide_lo && // 0x40 |
| 321 | instr_0 <= instruction_prefix_wide_hi) { // 0x4f |
| 322 | off++; |
| 323 | instr_0 = ubyte_at(off); |
| 324 | } |
| 325 | |
| 326 | if (instr_0 == instruction_code_xor) { |
| 327 | off += 2; |
| 328 | instr_0 = ubyte_at(off); |
| 329 | } |
| 330 | |
| 331 | // Now look for the real instruction and the many prefix/size specifiers. |
| 332 | |
| 333 | if (instr_0 == instruction_operandsize_prefix ) { // 0x66 |
| 334 | off++; // Not SSE instructions |
| 335 | instr_0 = ubyte_at(off); |
| 336 | } |
| 337 | |
| 338 | if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3 |
| 339 | instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2 |
| 340 | off++; |
| 341 | instr_0 = ubyte_at(off); |
| 342 | } |
| 343 | |
| 344 | if ( instr_0 >= instruction_prefix_wide_lo && // 0x40 |
| 345 | instr_0 <= instruction_prefix_wide_hi) { // 0x4f |
| 346 | off++; |
| 347 | instr_0 = ubyte_at(off); |
| 348 | } |
| 349 | |
| 350 | |
| 351 | if (instr_0 == instruction_extended_prefix ) { // 0x0f |
| 352 | off++; |
| 353 | } |
| 354 | |
| 355 | return off; |
| 356 | } |
| 357 | |
| 358 | address NativeMovRegMem::instruction_address() const { |
| 359 | return addr_at(instruction_start()); |
| 360 | } |
| 361 | |
| 362 | address NativeMovRegMem::next_instruction_address() const { |
| 363 | address ret = instruction_address() + instruction_size; |
| 364 | u_char instr_0 = *(u_char*) instruction_address(); |
| 365 | switch (instr_0) { |
| 366 | case instruction_operandsize_prefix: |
| 367 | |
| 368 | fatal("should have skipped instruction_operandsize_prefix" ); |
| 369 | break; |
| 370 | |
| 371 | case instruction_extended_prefix: |
| 372 | fatal("should have skipped instruction_extended_prefix" ); |
| 373 | break; |
| 374 | |
| 375 | case instruction_code_mem2reg_movslq: // 0x63 |
| 376 | case instruction_code_mem2reg_movzxb: // 0xB6 |
| 377 | case instruction_code_mem2reg_movsxb: // 0xBE |
| 378 | case instruction_code_mem2reg_movzxw: // 0xB7 |
| 379 | case instruction_code_mem2reg_movsxw: // 0xBF |
| 380 | case instruction_code_reg2mem: // 0x89 (q/l) |
| 381 | case instruction_code_mem2reg: // 0x8B (q/l) |
| 382 | case instruction_code_reg2memb: // 0x88 |
| 383 | case instruction_code_mem2regb: // 0x8a |
| 384 | |
| 385 | case instruction_code_lea: // 0x8d |
| 386 | |
| 387 | case instruction_code_float_s: // 0xd9 fld_s a |
| 388 | case instruction_code_float_d: // 0xdd fld_d a |
| 389 | |
| 390 | case instruction_code_xmm_load: // 0x10 |
| 391 | case instruction_code_xmm_store: // 0x11 |
| 392 | case instruction_code_xmm_lpd: // 0x12 |
| 393 | { |
| 394 | // If there is an SIB then instruction is longer than expected |
| 395 | u_char mod_rm = *(u_char*)(instruction_address() + 1); |
| 396 | if ((mod_rm & 7) == 0x4) { |
| 397 | ret++; |
| 398 | } |
| 399 | } |
| 400 | case instruction_code_xor: |
| 401 | fatal("should have skipped xor lead in" ); |
| 402 | break; |
| 403 | |
| 404 | default: |
| 405 | fatal("not a NativeMovRegMem" ); |
| 406 | } |
| 407 | return ret; |
| 408 | |
| 409 | } |
| 410 | |
| 411 | int NativeMovRegMem::offset() const{ |
| 412 | int off = data_offset + instruction_start(); |
| 413 | u_char mod_rm = *(u_char*)(instruction_address() + 1); |
| 414 | // nnnn(r12|rsp) isn't coded as simple mod/rm since that is |
| 415 | // the encoding to use an SIB byte. Which will have the nnnn |
| 416 | // field off by one byte |
| 417 | if ((mod_rm & 7) == 0x4) { |
| 418 | off++; |
| 419 | } |
| 420 | return int_at(off); |
| 421 | } |
| 422 | |
| 423 | void NativeMovRegMem::set_offset(int x) { |
| 424 | int off = data_offset + instruction_start(); |
| 425 | u_char mod_rm = *(u_char*)(instruction_address() + 1); |
| 426 | // nnnn(r12|rsp) isn't coded as simple mod/rm since that is |
| 427 | // the encoding to use an SIB byte. Which will have the nnnn |
| 428 | // field off by one byte |
| 429 | if ((mod_rm & 7) == 0x4) { |
| 430 | off++; |
| 431 | } |
| 432 | set_int_at(off, x); |
| 433 | } |
| 434 | |
| 435 | void NativeMovRegMem::verify() { |
| 436 | // make sure code pattern is actually a mov [reg+offset], reg instruction |
| 437 | u_char test_byte = *(u_char*)instruction_address(); |
| 438 | switch (test_byte) { |
| 439 | case instruction_code_reg2memb: // 0x88 movb a, r |
| 440 | case instruction_code_reg2mem: // 0x89 movl a, r (can be movq in 64bit) |
| 441 | case instruction_code_mem2regb: // 0x8a movb r, a |
| 442 | case instruction_code_mem2reg: // 0x8b movl r, a (can be movq in 64bit) |
| 443 | break; |
| 444 | |
| 445 | case instruction_code_mem2reg_movslq: // 0x63 movsql r, a |
| 446 | case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb) |
| 447 | case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw) |
| 448 | case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb) |
| 449 | case instruction_code_mem2reg_movsxw: // 0xbf movswl r, a (movsxw) |
| 450 | break; |
| 451 | |
| 452 | case instruction_code_float_s: // 0xd9 fld_s a |
| 453 | case instruction_code_float_d: // 0xdd fld_d a |
| 454 | case instruction_code_xmm_load: // 0x10 movsd xmm, a |
| 455 | case instruction_code_xmm_store: // 0x11 movsd a, xmm |
| 456 | case instruction_code_xmm_lpd: // 0x12 movlpd xmm, a |
| 457 | break; |
| 458 | |
| 459 | case instruction_code_lea: // 0x8d lea r, a |
| 460 | break; |
| 461 | |
| 462 | default: |
| 463 | fatal ("not a mov [reg+offs], reg instruction" ); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | |
| 468 | void NativeMovRegMem::print() { |
| 469 | tty->print_cr(PTR_FORMAT ": mov reg, [reg + %x]" , p2i(instruction_address()), offset()); |
| 470 | } |
| 471 | |
| 472 | //------------------------------------------------------------------- |
| 473 | |
| 474 | void NativeLoadAddress::verify() { |
| 475 | // make sure code pattern is actually a mov [reg+offset], reg instruction |
| 476 | u_char test_byte = *(u_char*)instruction_address(); |
| 477 | #ifdef _LP64 |
| 478 | if ( (test_byte == instruction_prefix_wide || |
| 479 | test_byte == instruction_prefix_wide_extended) ) { |
| 480 | test_byte = *(u_char*)(instruction_address() + 1); |
| 481 | } |
| 482 | #endif // _LP64 |
| 483 | if ( ! ((test_byte == lea_instruction_code) |
| 484 | LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) { |
| 485 | fatal ("not a lea reg, [reg+offs] instruction" ); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | |
| 490 | void NativeLoadAddress::print() { |
| 491 | tty->print_cr(PTR_FORMAT ": lea [reg + %x], reg" , p2i(instruction_address()), offset()); |
| 492 | } |
| 493 | |
| 494 | //-------------------------------------------------------------------------------- |
| 495 | |
| 496 | void NativeJump::verify() { |
| 497 | if (*(u_char*)instruction_address() != instruction_code) { |
| 498 | // far jump |
| 499 | NativeMovConstReg* mov = nativeMovConstReg_at(instruction_address()); |
| 500 | NativeInstruction* jmp = nativeInstruction_at(mov->next_instruction_address()); |
| 501 | if (!jmp->is_jump_reg()) { |
| 502 | fatal("not a jump instruction" ); |
| 503 | } |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | |
| 508 | void NativeJump::insert(address code_pos, address entry) { |
| 509 | intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); |
| 510 | #ifdef AMD64 |
| 511 | guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset" ); |
| 512 | #endif // AMD64 |
| 513 | |
| 514 | *code_pos = instruction_code; |
| 515 | *((int32_t*)(code_pos + 1)) = (int32_t)disp; |
| 516 | |
| 517 | ICache::invalidate_range(code_pos, instruction_size); |
| 518 | } |
| 519 | |
| 520 | void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) { |
| 521 | // Patching to not_entrant can happen while activations of the method are |
| 522 | // in use. The patching in that instance must happen only when certain |
| 523 | // alignment restrictions are true. These guarantees check those |
| 524 | // conditions. |
| 525 | #ifdef AMD64 |
| 526 | const int linesize = 64; |
| 527 | #else |
| 528 | const int linesize = 32; |
| 529 | #endif // AMD64 |
| 530 | |
| 531 | // Must be wordSize aligned |
| 532 | guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0, |
| 533 | "illegal address for code patching 2" ); |
| 534 | // First 5 bytes must be within the same cache line - 4827828 |
| 535 | guarantee((uintptr_t) verified_entry / linesize == |
| 536 | ((uintptr_t) verified_entry + 4) / linesize, |
| 537 | "illegal address for code patching 3" ); |
| 538 | } |
| 539 | |
| 540 | |
| 541 | // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie) |
| 542 | // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes. |
| 543 | // First patches the first word atomically to be a jump to itself. |
| 544 | // Then patches the last byte and then atomically patches the first word (4-bytes), |
| 545 | // thus inserting the desired jump |
| 546 | // This code is mt-safe with the following conditions: entry point is 4 byte aligned, |
| 547 | // entry point is in same cache line as unverified entry point, and the instruction being |
| 548 | // patched is >= 5 byte (size of patch). |
| 549 | // |
| 550 | // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit. |
| 551 | // In C1 the restriction is enforced by CodeEmitter::method_entry |
| 552 | // In JVMCI, the restriction is enforced by HotSpotFrameContext.enter(...) |
| 553 | // |
| 554 | void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) { |
| 555 | // complete jump instruction (to be inserted) is in code_buffer; |
| 556 | unsigned char code_buffer[5]; |
| 557 | code_buffer[0] = instruction_code; |
| 558 | intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4); |
| 559 | #ifdef AMD64 |
| 560 | guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset" ); |
| 561 | #endif // AMD64 |
| 562 | *(int32_t*)(code_buffer + 1) = (int32_t)disp; |
| 563 | |
| 564 | check_verified_entry_alignment(entry, verified_entry); |
| 565 | |
| 566 | // Can't call nativeJump_at() because it's asserts jump exists |
| 567 | NativeJump* n_jump = (NativeJump*) verified_entry; |
| 568 | |
| 569 | //First patch dummy jmp in place |
| 570 | |
| 571 | unsigned char patch[4]; |
| 572 | assert(sizeof(patch)==sizeof(int32_t), "sanity check" ); |
| 573 | patch[0] = 0xEB; // jmp rel8 |
| 574 | patch[1] = 0xFE; // jmp to self |
| 575 | patch[2] = 0xEB; |
| 576 | patch[3] = 0xFE; |
| 577 | |
| 578 | // First patch dummy jmp in place |
| 579 | *(int32_t*)verified_entry = *(int32_t *)patch; |
| 580 | |
| 581 | n_jump->wrote(0); |
| 582 | |
| 583 | // Patch 5th byte (from jump instruction) |
| 584 | verified_entry[4] = code_buffer[4]; |
| 585 | |
| 586 | n_jump->wrote(4); |
| 587 | |
| 588 | // Patch bytes 0-3 (from jump instruction) |
| 589 | *(int32_t*)verified_entry = *(int32_t *)code_buffer; |
| 590 | // Invalidate. Opteron requires a flush after every write. |
| 591 | n_jump->wrote(0); |
| 592 | |
| 593 | } |
| 594 | |
| 595 | address NativeFarJump::jump_destination() const { |
| 596 | NativeMovConstReg* mov = nativeMovConstReg_at(addr_at(0)); |
| 597 | return (address)mov->data(); |
| 598 | } |
| 599 | |
| 600 | void NativeFarJump::verify() { |
| 601 | if (is_far_jump()) { |
| 602 | NativeMovConstReg* mov = nativeMovConstReg_at(addr_at(0)); |
| 603 | NativeInstruction* jmp = nativeInstruction_at(mov->next_instruction_address()); |
| 604 | if (jmp->is_jump_reg()) return; |
| 605 | } |
| 606 | fatal("not a jump instruction" ); |
| 607 | } |
| 608 | |
| 609 | void NativePopReg::insert(address code_pos, Register reg) { |
| 610 | assert(reg->encoding() < 8, "no space for REX" ); |
| 611 | assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update" ); |
| 612 | *code_pos = (u_char)(instruction_code | reg->encoding()); |
| 613 | ICache::invalidate_range(code_pos, instruction_size); |
| 614 | } |
| 615 | |
| 616 | |
| 617 | void NativeIllegalInstruction::insert(address code_pos) { |
| 618 | assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update" ); |
| 619 | *(short *)code_pos = instruction_code; |
| 620 | ICache::invalidate_range(code_pos, instruction_size); |
| 621 | } |
| 622 | |
| 623 | void NativeGeneralJump::verify() { |
| 624 | assert(((NativeInstruction *)this)->is_jump() || |
| 625 | ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction" ); |
| 626 | } |
| 627 | |
| 628 | |
| 629 | void NativeGeneralJump::insert_unconditional(address code_pos, address entry) { |
| 630 | intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); |
| 631 | #ifdef AMD64 |
| 632 | guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset" ); |
| 633 | #endif // AMD64 |
| 634 | |
| 635 | *code_pos = unconditional_long_jump; |
| 636 | *((int32_t *)(code_pos+1)) = (int32_t) disp; |
| 637 | ICache::invalidate_range(code_pos, instruction_size); |
| 638 | } |
| 639 | |
| 640 | |
| 641 | // MT-safe patching of a long jump instruction. |
| 642 | // First patches first word of instruction to two jmp's that jmps to them |
| 643 | // selfs (spinlock). Then patches the last byte, and then atomicly replaces |
| 644 | // the jmp's with the first 4 byte of the new instruction. |
| 645 | void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) { |
| 646 | assert (instr_addr != NULL, "illegal address for code patching (4)" ); |
| 647 | NativeGeneralJump* n_jump = nativeGeneralJump_at (instr_addr); // checking that it is a jump |
| 648 | |
| 649 | // Temporary code |
| 650 | unsigned char patch[4]; |
| 651 | assert(sizeof(patch)==sizeof(int32_t), "sanity check" ); |
| 652 | patch[0] = 0xEB; // jmp rel8 |
| 653 | patch[1] = 0xFE; // jmp to self |
| 654 | patch[2] = 0xEB; |
| 655 | patch[3] = 0xFE; |
| 656 | |
| 657 | // First patch dummy jmp in place |
| 658 | *(int32_t*)instr_addr = *(int32_t *)patch; |
| 659 | n_jump->wrote(0); |
| 660 | |
| 661 | // Patch 4th byte |
| 662 | instr_addr[4] = code_buffer[4]; |
| 663 | |
| 664 | n_jump->wrote(4); |
| 665 | |
| 666 | // Patch bytes 0-3 |
| 667 | *(jint*)instr_addr = *(jint *)code_buffer; |
| 668 | |
| 669 | n_jump->wrote(0); |
| 670 | |
| 671 | #ifdef ASSERT |
| 672 | // verify patching |
| 673 | for ( int i = 0; i < instruction_size; i++) { |
| 674 | address ptr = (address)((intptr_t)code_buffer + i); |
| 675 | int a_byte = (*ptr) & 0xFF; |
| 676 | assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed" ); |
| 677 | } |
| 678 | #endif |
| 679 | |
| 680 | } |
| 681 | |
| 682 | |
| 683 | |
| 684 | address NativeGeneralJump::jump_destination() const { |
| 685 | int op_code = ubyte_at(0); |
| 686 | bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F); |
| 687 | int offset = (op_code == 0x0F) ? 2 : 1; |
| 688 | int length = offset + ((is_rel32off) ? 4 : 1); |
| 689 | |
| 690 | if (is_rel32off) |
| 691 | return addr_at(0) + length + int_at(offset); |
| 692 | else |
| 693 | return addr_at(0) + length + sbyte_at(offset); |
| 694 | } |
| 695 | |