| 1 | /* |
| 2 | * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "c1/c1_Compilation.hpp" |
| 27 | #include "c1/c1_FrameMap.hpp" |
| 28 | #include "c1/c1_GraphBuilder.hpp" |
| 29 | #include "c1/c1_IR.hpp" |
| 30 | #include "c1/c1_InstructionPrinter.hpp" |
| 31 | #include "c1/c1_Optimizer.hpp" |
| 32 | #include "memory/resourceArea.hpp" |
| 33 | #include "utilities/bitMap.inline.hpp" |
| 34 | |
| 35 | |
| 36 | // Implementation of XHandlers |
| 37 | // |
| 38 | // Note: This code could eventually go away if we are |
| 39 | // just using the ciExceptionHandlerStream. |
| 40 | |
| 41 | XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) { |
| 42 | ciExceptionHandlerStream s(method); |
| 43 | while (!s.is_done()) { |
| 44 | _list.append(new XHandler(s.handler())); |
| 45 | s.next(); |
| 46 | } |
| 47 | assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent" ); |
| 48 | } |
| 49 | |
| 50 | // deep copy of all XHandler contained in list |
| 51 | XHandlers::XHandlers(XHandlers* other) : |
| 52 | _list(other->length()) |
| 53 | { |
| 54 | for (int i = 0; i < other->length(); i++) { |
| 55 | _list.append(new XHandler(other->handler_at(i))); |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | // Returns whether a particular exception type can be caught. Also |
| 60 | // returns true if klass is unloaded or any exception handler |
| 61 | // classes are unloaded. type_is_exact indicates whether the throw |
| 62 | // is known to be exactly that class or it might throw a subtype. |
| 63 | bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const { |
| 64 | // the type is unknown so be conservative |
| 65 | if (!klass->is_loaded()) { |
| 66 | return true; |
| 67 | } |
| 68 | |
| 69 | for (int i = 0; i < length(); i++) { |
| 70 | XHandler* handler = handler_at(i); |
| 71 | if (handler->is_catch_all()) { |
| 72 | // catch of ANY |
| 73 | return true; |
| 74 | } |
| 75 | ciInstanceKlass* handler_klass = handler->catch_klass(); |
| 76 | // if it's unknown it might be catchable |
| 77 | if (!handler_klass->is_loaded()) { |
| 78 | return true; |
| 79 | } |
| 80 | // if the throw type is definitely a subtype of the catch type |
| 81 | // then it can be caught. |
| 82 | if (klass->is_subtype_of(handler_klass)) { |
| 83 | return true; |
| 84 | } |
| 85 | if (!type_is_exact) { |
| 86 | // If the type isn't exactly known then it can also be caught by |
| 87 | // catch statements where the inexact type is a subtype of the |
| 88 | // catch type. |
| 89 | // given: foo extends bar extends Exception |
| 90 | // throw bar can be caught by catch foo, catch bar, and catch |
| 91 | // Exception, however it can't be caught by any handlers without |
| 92 | // bar in its type hierarchy. |
| 93 | if (handler_klass->is_subtype_of(klass)) { |
| 94 | return true; |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | |
| 103 | bool XHandlers::equals(XHandlers* others) const { |
| 104 | if (others == NULL) return false; |
| 105 | if (length() != others->length()) return false; |
| 106 | |
| 107 | for (int i = 0; i < length(); i++) { |
| 108 | if (!handler_at(i)->equals(others->handler_at(i))) return false; |
| 109 | } |
| 110 | return true; |
| 111 | } |
| 112 | |
| 113 | bool XHandler::equals(XHandler* other) const { |
| 114 | assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco" ); |
| 115 | |
| 116 | if (entry_pco() != other->entry_pco()) return false; |
| 117 | if (scope_count() != other->scope_count()) return false; |
| 118 | if (_desc != other->_desc) return false; |
| 119 | |
| 120 | assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal" ); |
| 121 | return true; |
| 122 | } |
| 123 | |
| 124 | |
| 125 | // Implementation of IRScope |
| 126 | BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) { |
| 127 | GraphBuilder gm(compilation, this); |
| 128 | NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats()); |
| 129 | if (compilation->bailed_out()) return NULL; |
| 130 | return gm.start(); |
| 131 | } |
| 132 | |
| 133 | |
| 134 | IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph) |
| 135 | : _compilation(compilation) |
| 136 | , _callees(2) |
| 137 | , _requires_phi_function(method->max_locals()) |
| 138 | { |
| 139 | _caller = caller; |
| 140 | _level = caller == NULL ? 0 : caller->level() + 1; |
| 141 | _method = method; |
| 142 | _xhandlers = new XHandlers(method); |
| 143 | _number_of_locks = 0; |
| 144 | _monitor_pairing_ok = method->has_balanced_monitors(); |
| 145 | _wrote_final = false; |
| 146 | _wrote_fields = false; |
| 147 | _wrote_volatile = false; |
| 148 | _start = NULL; |
| 149 | |
| 150 | if (osr_bci != -1) { |
| 151 | // selective creation of phi functions is not possibel in osr-methods |
| 152 | _requires_phi_function.set_range(0, method->max_locals()); |
| 153 | } |
| 154 | |
| 155 | assert(method->holder()->is_loaded() , "method holder must be loaded" ); |
| 156 | |
| 157 | // build graph if monitor pairing is ok |
| 158 | if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci); |
| 159 | } |
| 160 | |
| 161 | |
| 162 | int IRScope::max_stack() const { |
| 163 | int my_max = method()->max_stack(); |
| 164 | int callee_max = 0; |
| 165 | for (int i = 0; i < number_of_callees(); i++) { |
| 166 | callee_max = MAX2(callee_max, callee_no(i)->max_stack()); |
| 167 | } |
| 168 | return my_max + callee_max; |
| 169 | } |
| 170 | |
| 171 | |
| 172 | bool IRScopeDebugInfo::should_reexecute() { |
| 173 | ciMethod* cur_method = scope()->method(); |
| 174 | int cur_bci = bci(); |
| 175 | if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) { |
| 176 | Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); |
| 177 | return Interpreter::bytecode_should_reexecute(code); |
| 178 | } else |
| 179 | return false; |
| 180 | } |
| 181 | |
| 182 | |
| 183 | // Implementation of CodeEmitInfo |
| 184 | |
| 185 | // Stack must be NON-null |
| 186 | CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception) |
| 187 | : _scope_debug_info(NULL) |
| 188 | , _scope(stack->scope()) |
| 189 | , _exception_handlers(exception_handlers) |
| 190 | , _oop_map(NULL) |
| 191 | , _stack(stack) |
| 192 | , _is_method_handle_invoke(false) |
| 193 | , _deoptimize_on_exception(deoptimize_on_exception) { |
| 194 | assert(_stack != NULL, "must be non null" ); |
| 195 | } |
| 196 | |
| 197 | |
| 198 | CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack) |
| 199 | : _scope_debug_info(NULL) |
| 200 | , _scope(info->_scope) |
| 201 | , _exception_handlers(NULL) |
| 202 | , _oop_map(NULL) |
| 203 | , _stack(stack == NULL ? info->_stack : stack) |
| 204 | , _is_method_handle_invoke(info->_is_method_handle_invoke) |
| 205 | , _deoptimize_on_exception(info->_deoptimize_on_exception) { |
| 206 | |
| 207 | // deep copy of exception handlers |
| 208 | if (info->_exception_handlers != NULL) { |
| 209 | _exception_handlers = new XHandlers(info->_exception_handlers); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | |
| 214 | void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) { |
| 215 | // record the safepoint before recording the debug info for enclosing scopes |
| 216 | recorder->add_safepoint(pc_offset, _oop_map->deep_copy()); |
| 217 | _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke); |
| 218 | recorder->end_safepoint(pc_offset); |
| 219 | } |
| 220 | |
| 221 | |
| 222 | void CodeEmitInfo::add_register_oop(LIR_Opr opr) { |
| 223 | assert(_oop_map != NULL, "oop map must already exist" ); |
| 224 | assert(opr->is_single_cpu(), "should not call otherwise" ); |
| 225 | |
| 226 | VMReg name = frame_map()->regname(opr); |
| 227 | _oop_map->set_oop(name); |
| 228 | } |
| 229 | |
| 230 | // Mirror the stack size calculation in the deopt code |
| 231 | // How much stack space would we need at this point in the program in |
| 232 | // case of deoptimization? |
| 233 | int CodeEmitInfo::interpreter_frame_size() const { |
| 234 | ValueStack* state = _stack; |
| 235 | int size = 0; |
| 236 | int callee_parameters = 0; |
| 237 | int callee_locals = 0; |
| 238 | int = state->scope()->method()->max_stack() - state->stack_size(); |
| 239 | |
| 240 | while (state != NULL) { |
| 241 | int locks = state->locks_size(); |
| 242 | int temps = state->stack_size(); |
| 243 | bool is_top_frame = (state == _stack); |
| 244 | ciMethod* method = state->scope()->method(); |
| 245 | |
| 246 | int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), |
| 247 | temps + callee_parameters, |
| 248 | extra_args, |
| 249 | locks, |
| 250 | callee_parameters, |
| 251 | callee_locals, |
| 252 | is_top_frame); |
| 253 | size += frame_size; |
| 254 | |
| 255 | callee_parameters = method->size_of_parameters(); |
| 256 | callee_locals = method->max_locals(); |
| 257 | extra_args = 0; |
| 258 | state = state->caller_state(); |
| 259 | } |
| 260 | return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; |
| 261 | } |
| 262 | |
| 263 | // Implementation of IR |
| 264 | |
| 265 | IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) : |
| 266 | _num_loops(0) { |
| 267 | // setup IR fields |
| 268 | _compilation = compilation; |
| 269 | _top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true); |
| 270 | _code = NULL; |
| 271 | } |
| 272 | |
| 273 | |
| 274 | void IR::optimize_blocks() { |
| 275 | Optimizer opt(this); |
| 276 | if (!compilation()->profile_branches()) { |
| 277 | if (DoCEE) { |
| 278 | opt.eliminate_conditional_expressions(); |
| 279 | #ifndef PRODUCT |
| 280 | if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE" ); print(true); } |
| 281 | if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE" ); print(false); } |
| 282 | #endif |
| 283 | } |
| 284 | if (EliminateBlocks) { |
| 285 | opt.eliminate_blocks(); |
| 286 | #ifndef PRODUCT |
| 287 | if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination" ); print(true); } |
| 288 | if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination" ); print(false); } |
| 289 | #endif |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | void IR::eliminate_null_checks() { |
| 295 | Optimizer opt(this); |
| 296 | if (EliminateNullChecks) { |
| 297 | opt.eliminate_null_checks(); |
| 298 | #ifndef PRODUCT |
| 299 | if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination" ); print(true); } |
| 300 | if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination" ); print(false); } |
| 301 | #endif |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | |
| 306 | static int sort_pairs(BlockPair** a, BlockPair** b) { |
| 307 | if ((*a)->from() == (*b)->from()) { |
| 308 | return (*a)->to()->block_id() - (*b)->to()->block_id(); |
| 309 | } else { |
| 310 | return (*a)->from()->block_id() - (*b)->from()->block_id(); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | |
| 315 | class CriticalEdgeFinder: public BlockClosure { |
| 316 | BlockPairList blocks; |
| 317 | IR* _ir; |
| 318 | |
| 319 | public: |
| 320 | CriticalEdgeFinder(IR* ir): _ir(ir) {} |
| 321 | void block_do(BlockBegin* bb) { |
| 322 | BlockEnd* be = bb->end(); |
| 323 | int nos = be->number_of_sux(); |
| 324 | if (nos >= 2) { |
| 325 | for (int i = 0; i < nos; i++) { |
| 326 | BlockBegin* sux = be->sux_at(i); |
| 327 | if (sux->number_of_preds() >= 2) { |
| 328 | blocks.append(new BlockPair(bb, sux)); |
| 329 | } |
| 330 | } |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | void split_edges() { |
| 335 | BlockPair* last_pair = NULL; |
| 336 | blocks.sort(sort_pairs); |
| 337 | for (int i = 0; i < blocks.length(); i++) { |
| 338 | BlockPair* pair = blocks.at(i); |
| 339 | if (last_pair != NULL && pair->is_same(last_pair)) continue; |
| 340 | BlockBegin* from = pair->from(); |
| 341 | BlockBegin* to = pair->to(); |
| 342 | BlockBegin* split = from->insert_block_between(to); |
| 343 | #ifndef PRODUCT |
| 344 | if ((PrintIR || PrintIR1) && Verbose) { |
| 345 | tty->print_cr("Split critical edge B%d -> B%d (new block B%d)" , |
| 346 | from->block_id(), to->block_id(), split->block_id()); |
| 347 | } |
| 348 | #endif |
| 349 | last_pair = pair; |
| 350 | } |
| 351 | } |
| 352 | }; |
| 353 | |
| 354 | void IR::split_critical_edges() { |
| 355 | CriticalEdgeFinder cef(this); |
| 356 | |
| 357 | iterate_preorder(&cef); |
| 358 | cef.split_edges(); |
| 359 | } |
| 360 | |
| 361 | |
| 362 | class UseCountComputer: public ValueVisitor, BlockClosure { |
| 363 | private: |
| 364 | void visit(Value* n) { |
| 365 | // Local instructions and Phis for expression stack values at the |
| 366 | // start of basic blocks are not added to the instruction list |
| 367 | if (!(*n)->is_linked() && (*n)->can_be_linked()) { |
| 368 | assert(false, "a node was not appended to the graph" ); |
| 369 | Compilation::current()->bailout("a node was not appended to the graph" ); |
| 370 | } |
| 371 | // use n's input if not visited before |
| 372 | if (!(*n)->is_pinned() && !(*n)->has_uses()) { |
| 373 | // note: a) if the instruction is pinned, it will be handled by compute_use_count |
| 374 | // b) if the instruction has uses, it was touched before |
| 375 | // => in both cases we don't need to update n's values |
| 376 | uses_do(n); |
| 377 | } |
| 378 | // use n |
| 379 | (*n)->_use_count++; |
| 380 | } |
| 381 | |
| 382 | Values* worklist; |
| 383 | int depth; |
| 384 | enum { |
| 385 | max_recurse_depth = 20 |
| 386 | }; |
| 387 | |
| 388 | void uses_do(Value* n) { |
| 389 | depth++; |
| 390 | if (depth > max_recurse_depth) { |
| 391 | // don't allow the traversal to recurse too deeply |
| 392 | worklist->push(*n); |
| 393 | } else { |
| 394 | (*n)->input_values_do(this); |
| 395 | // special handling for some instructions |
| 396 | if ((*n)->as_BlockEnd() != NULL) { |
| 397 | // note on BlockEnd: |
| 398 | // must 'use' the stack only if the method doesn't |
| 399 | // terminate, however, in those cases stack is empty |
| 400 | (*n)->state_values_do(this); |
| 401 | } |
| 402 | } |
| 403 | depth--; |
| 404 | } |
| 405 | |
| 406 | void block_do(BlockBegin* b) { |
| 407 | depth = 0; |
| 408 | // process all pinned nodes as the roots of expression trees |
| 409 | for (Instruction* n = b; n != NULL; n = n->next()) { |
| 410 | if (n->is_pinned()) uses_do(&n); |
| 411 | } |
| 412 | assert(depth == 0, "should have counted back down" ); |
| 413 | |
| 414 | // now process any unpinned nodes which recursed too deeply |
| 415 | while (worklist->length() > 0) { |
| 416 | Value t = worklist->pop(); |
| 417 | if (!t->is_pinned()) { |
| 418 | // compute the use count |
| 419 | uses_do(&t); |
| 420 | |
| 421 | // pin the instruction so that LIRGenerator doesn't recurse |
| 422 | // too deeply during it's evaluation. |
| 423 | t->pin(); |
| 424 | } |
| 425 | } |
| 426 | assert(depth == 0, "should have counted back down" ); |
| 427 | } |
| 428 | |
| 429 | UseCountComputer() { |
| 430 | worklist = new Values(); |
| 431 | depth = 0; |
| 432 | } |
| 433 | |
| 434 | public: |
| 435 | static void compute(BlockList* blocks) { |
| 436 | UseCountComputer ucc; |
| 437 | blocks->iterate_backward(&ucc); |
| 438 | } |
| 439 | }; |
| 440 | |
| 441 | |
| 442 | // helper macro for short definition of trace-output inside code |
| 443 | #ifndef PRODUCT |
| 444 | #define TRACE_LINEAR_SCAN(level, code) \ |
| 445 | if (TraceLinearScanLevel >= level) { \ |
| 446 | code; \ |
| 447 | } |
| 448 | #else |
| 449 | #define TRACE_LINEAR_SCAN(level, code) |
| 450 | #endif |
| 451 | |
| 452 | class ComputeLinearScanOrder : public StackObj { |
| 453 | private: |
| 454 | int _max_block_id; // the highest block_id of a block |
| 455 | int _num_blocks; // total number of blocks (smaller than _max_block_id) |
| 456 | int _num_loops; // total number of loops |
| 457 | bool _iterative_dominators;// method requires iterative computation of dominatiors |
| 458 | |
| 459 | BlockList* _linear_scan_order; // the resulting list of blocks in correct order |
| 460 | |
| 461 | ResourceBitMap _visited_blocks; // used for recursive processing of blocks |
| 462 | ResourceBitMap _active_blocks; // used for recursive processing of blocks |
| 463 | ResourceBitMap _dominator_blocks; // temproary BitMap used for computation of dominator |
| 464 | intArray _forward_branches; // number of incoming forward branches for each block |
| 465 | BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges |
| 466 | BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop |
| 467 | BlockList _work_list; // temporary list (used in mark_loops and compute_order) |
| 468 | BlockList ; |
| 469 | |
| 470 | Compilation* _compilation; |
| 471 | |
| 472 | // accessors for _visited_blocks and _active_blocks |
| 473 | void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); } |
| 474 | bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); } |
| 475 | bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); } |
| 476 | void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set" ); _visited_blocks.set_bit(b->block_id()); } |
| 477 | void set_active(BlockBegin* b) { assert(!is_active(b), "already set" ); _active_blocks.set_bit(b->block_id()); } |
| 478 | void clear_active(BlockBegin* b) { assert(is_active(b), "not already" ); _active_blocks.clear_bit(b->block_id()); } |
| 479 | |
| 480 | // accessors for _forward_branches |
| 481 | void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); } |
| 482 | int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); } |
| 483 | |
| 484 | // accessors for _loop_map |
| 485 | bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); } |
| 486 | void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); } |
| 487 | void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); } |
| 488 | |
| 489 | // count edges between blocks |
| 490 | void count_edges(BlockBegin* cur, BlockBegin* parent); |
| 491 | |
| 492 | // loop detection |
| 493 | void mark_loops(); |
| 494 | void clear_non_natural_loops(BlockBegin* start_block); |
| 495 | void assign_loop_depth(BlockBegin* start_block); |
| 496 | |
| 497 | // computation of final block order |
| 498 | BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b); |
| 499 | void compute_dominator(BlockBegin* cur, BlockBegin* parent); |
| 500 | void compute_dominator_impl(BlockBegin* cur, BlockBegin* parent); |
| 501 | int compute_weight(BlockBegin* cur); |
| 502 | bool ready_for_processing(BlockBegin* cur); |
| 503 | void sort_into_work_list(BlockBegin* b); |
| 504 | void append_block(BlockBegin* cur); |
| 505 | void compute_order(BlockBegin* start_block); |
| 506 | |
| 507 | // fixup of dominators for non-natural loops |
| 508 | bool compute_dominators_iter(); |
| 509 | void compute_dominators(); |
| 510 | |
| 511 | // debug functions |
| 512 | NOT_PRODUCT(void print_blocks();) |
| 513 | DEBUG_ONLY(void verify();) |
| 514 | |
| 515 | Compilation* compilation() const { return _compilation; } |
| 516 | public: |
| 517 | ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block); |
| 518 | |
| 519 | // accessors for final result |
| 520 | BlockList* linear_scan_order() const { return _linear_scan_order; } |
| 521 | int num_loops() const { return _num_loops; } |
| 522 | }; |
| 523 | |
| 524 | |
| 525 | ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) : |
| 526 | _max_block_id(BlockBegin::number_of_blocks()), |
| 527 | _num_blocks(0), |
| 528 | _num_loops(0), |
| 529 | _iterative_dominators(false), |
| 530 | _linear_scan_order(NULL), // initialized later with correct size |
| 531 | _visited_blocks(_max_block_id), |
| 532 | _active_blocks(_max_block_id), |
| 533 | _dominator_blocks(_max_block_id), |
| 534 | _forward_branches(_max_block_id, _max_block_id, 0), |
| 535 | _loop_end_blocks(8), |
| 536 | _loop_map(0), // initialized later with correct size |
| 537 | _work_list(8), |
| 538 | _compilation(c) |
| 539 | { |
| 540 | TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order" )); |
| 541 | |
| 542 | count_edges(start_block, NULL); |
| 543 | |
| 544 | if (compilation()->is_profiling()) { |
| 545 | ciMethod *method = compilation()->method(); |
| 546 | if (!method->is_accessor()) { |
| 547 | ciMethodData* md = method->method_data_or_null(); |
| 548 | assert(md != NULL, "Sanity" ); |
| 549 | md->set_compilation_stats(_num_loops, _num_blocks); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | if (_num_loops > 0) { |
| 554 | mark_loops(); |
| 555 | clear_non_natural_loops(start_block); |
| 556 | assign_loop_depth(start_block); |
| 557 | } |
| 558 | |
| 559 | compute_order(start_block); |
| 560 | compute_dominators(); |
| 561 | |
| 562 | NOT_PRODUCT(print_blocks()); |
| 563 | DEBUG_ONLY(verify()); |
| 564 | } |
| 565 | |
| 566 | |
| 567 | // Traverse the CFG: |
| 568 | // * count total number of blocks |
| 569 | // * count all incoming edges and backward incoming edges |
| 570 | // * number loop header blocks |
| 571 | // * create a list with all loop end blocks |
| 572 | void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) { |
| 573 | TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d" , cur->block_id(), parent != NULL ? parent->block_id() : -1)); |
| 574 | assert(cur->dominator() == NULL, "dominator already initialized" ); |
| 575 | |
| 576 | if (is_active(cur)) { |
| 577 | TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch" )); |
| 578 | assert(is_visited(cur), "block must be visisted when block is active" ); |
| 579 | assert(parent != NULL, "must have parent" ); |
| 580 | |
| 581 | cur->set(BlockBegin::backward_branch_target_flag); |
| 582 | |
| 583 | // When a loop header is also the start of an exception handler, then the backward branch is |
| 584 | // an exception edge. Because such edges are usually critical edges which cannot be split, the |
| 585 | // loop must be excluded here from processing. |
| 586 | if (cur->is_set(BlockBegin::exception_entry_flag)) { |
| 587 | // Make sure that dominators are correct in this weird situation |
| 588 | _iterative_dominators = true; |
| 589 | return; |
| 590 | } |
| 591 | |
| 592 | cur->set(BlockBegin::linear_scan_loop_header_flag); |
| 593 | parent->set(BlockBegin::linear_scan_loop_end_flag); |
| 594 | |
| 595 | assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur, |
| 596 | "loop end blocks must have one successor (critical edges are split)" ); |
| 597 | |
| 598 | _loop_end_blocks.append(parent); |
| 599 | return; |
| 600 | } |
| 601 | |
| 602 | // increment number of incoming forward branches |
| 603 | inc_forward_branches(cur); |
| 604 | |
| 605 | if (is_visited(cur)) { |
| 606 | TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited" )); |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | _num_blocks++; |
| 611 | set_visited(cur); |
| 612 | set_active(cur); |
| 613 | |
| 614 | // recursive call for all successors |
| 615 | int i; |
| 616 | for (i = cur->number_of_sux() - 1; i >= 0; i--) { |
| 617 | count_edges(cur->sux_at(i), cur); |
| 618 | } |
| 619 | for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) { |
| 620 | count_edges(cur->exception_handler_at(i), cur); |
| 621 | } |
| 622 | |
| 623 | clear_active(cur); |
| 624 | |
| 625 | // Each loop has a unique number. |
| 626 | // When multiple loops are nested, assign_loop_depth assumes that the |
| 627 | // innermost loop has the lowest number. This is guaranteed by setting |
| 628 | // the loop number after the recursive calls for the successors above |
| 629 | // have returned. |
| 630 | if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) { |
| 631 | assert(cur->loop_index() == -1, "cannot set loop-index twice" ); |
| 632 | TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d" , cur->block_id(), _num_loops)); |
| 633 | |
| 634 | cur->set_loop_index(_num_loops); |
| 635 | _loop_headers.append(cur); |
| 636 | _num_loops++; |
| 637 | } |
| 638 | |
| 639 | TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d" , cur->block_id())); |
| 640 | } |
| 641 | |
| 642 | |
| 643 | void ComputeLinearScanOrder::mark_loops() { |
| 644 | TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops" )); |
| 645 | |
| 646 | _loop_map = BitMap2D(_num_loops, _max_block_id); |
| 647 | |
| 648 | for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) { |
| 649 | BlockBegin* loop_end = _loop_end_blocks.at(i); |
| 650 | BlockBegin* loop_start = loop_end->sux_at(0); |
| 651 | int loop_idx = loop_start->loop_index(); |
| 652 | |
| 653 | TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):" , loop_start->block_id(), loop_end->block_id(), loop_idx)); |
| 654 | assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set" ); |
| 655 | assert(loop_end->number_of_sux() == 1, "incorrect number of successors" ); |
| 656 | assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set" ); |
| 657 | assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set" ); |
| 658 | assert(_work_list.is_empty(), "work list must be empty before processing" ); |
| 659 | |
| 660 | // add the end-block of the loop to the working list |
| 661 | _work_list.push(loop_end); |
| 662 | set_block_in_loop(loop_idx, loop_end); |
| 663 | do { |
| 664 | BlockBegin* cur = _work_list.pop(); |
| 665 | |
| 666 | TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d" , cur->block_id())); |
| 667 | assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list" ); |
| 668 | |
| 669 | // recursive processing of all predecessors ends when start block of loop is reached |
| 670 | if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) { |
| 671 | for (int j = cur->number_of_preds() - 1; j >= 0; j--) { |
| 672 | BlockBegin* pred = cur->pred_at(j); |
| 673 | |
| 674 | if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) { |
| 675 | // this predecessor has not been processed yet, so add it to work list |
| 676 | TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d" , pred->block_id())); |
| 677 | _work_list.push(pred); |
| 678 | set_block_in_loop(loop_idx, pred); |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | } while (!_work_list.is_empty()); |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | |
| 687 | // check for non-natural loops (loops where the loop header does not dominate |
| 688 | // all other loop blocks = loops with mulitple entries). |
| 689 | // such loops are ignored |
| 690 | void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) { |
| 691 | for (int i = _num_loops - 1; i >= 0; i--) { |
| 692 | if (is_block_in_loop(i, start_block)) { |
| 693 | // loop i contains the entry block of the method |
| 694 | // -> this is not a natural loop, so ignore it |
| 695 | TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored" , i)); |
| 696 | |
| 697 | BlockBegin * = _loop_headers.at(i); |
| 698 | assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header" ); |
| 699 | |
| 700 | for (int j = 0; j < loop_header->number_of_preds(); j++) { |
| 701 | BlockBegin *pred = loop_header->pred_at(j); |
| 702 | pred->clear(BlockBegin::linear_scan_loop_end_flag); |
| 703 | } |
| 704 | |
| 705 | loop_header->clear(BlockBegin::linear_scan_loop_header_flag); |
| 706 | |
| 707 | for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) { |
| 708 | clear_block_in_loop(i, block_id); |
| 709 | } |
| 710 | _iterative_dominators = true; |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) { |
| 716 | TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight" )); |
| 717 | init_visited(); |
| 718 | |
| 719 | assert(_work_list.is_empty(), "work list must be empty before processing" ); |
| 720 | _work_list.append(start_block); |
| 721 | |
| 722 | do { |
| 723 | BlockBegin* cur = _work_list.pop(); |
| 724 | |
| 725 | if (!is_visited(cur)) { |
| 726 | set_visited(cur); |
| 727 | TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d" , cur->block_id())); |
| 728 | |
| 729 | // compute loop-depth and loop-index for the block |
| 730 | assert(cur->loop_depth() == 0, "cannot set loop-depth twice" ); |
| 731 | int i; |
| 732 | int loop_depth = 0; |
| 733 | int min_loop_idx = -1; |
| 734 | for (i = _num_loops - 1; i >= 0; i--) { |
| 735 | if (is_block_in_loop(i, cur)) { |
| 736 | loop_depth++; |
| 737 | min_loop_idx = i; |
| 738 | } |
| 739 | } |
| 740 | cur->set_loop_depth(loop_depth); |
| 741 | cur->set_loop_index(min_loop_idx); |
| 742 | |
| 743 | // append all unvisited successors to work list |
| 744 | for (i = cur->number_of_sux() - 1; i >= 0; i--) { |
| 745 | _work_list.append(cur->sux_at(i)); |
| 746 | } |
| 747 | for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) { |
| 748 | _work_list.append(cur->exception_handler_at(i)); |
| 749 | } |
| 750 | } |
| 751 | } while (!_work_list.is_empty()); |
| 752 | } |
| 753 | |
| 754 | |
| 755 | BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) { |
| 756 | assert(a != NULL && b != NULL, "must have input blocks" ); |
| 757 | |
| 758 | _dominator_blocks.clear(); |
| 759 | while (a != NULL) { |
| 760 | _dominator_blocks.set_bit(a->block_id()); |
| 761 | assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized" ); |
| 762 | a = a->dominator(); |
| 763 | } |
| 764 | while (b != NULL && !_dominator_blocks.at(b->block_id())) { |
| 765 | assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized" ); |
| 766 | b = b->dominator(); |
| 767 | } |
| 768 | |
| 769 | assert(b != NULL, "could not find dominator" ); |
| 770 | return b; |
| 771 | } |
| 772 | |
| 773 | void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) { |
| 774 | init_visited(); |
| 775 | compute_dominator_impl(cur, parent); |
| 776 | } |
| 777 | |
| 778 | void ComputeLinearScanOrder::compute_dominator_impl(BlockBegin* cur, BlockBegin* parent) { |
| 779 | // Mark as visited to avoid recursive calls with same parent |
| 780 | set_visited(cur); |
| 781 | |
| 782 | if (cur->dominator() == NULL) { |
| 783 | TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d" , cur->block_id(), parent->block_id())); |
| 784 | cur->set_dominator(parent); |
| 785 | |
| 786 | } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) { |
| 787 | TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d" , cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id())); |
| 788 | // Does not hold for exception blocks |
| 789 | assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "" ); |
| 790 | cur->set_dominator(common_dominator(cur->dominator(), parent)); |
| 791 | } |
| 792 | |
| 793 | // Additional edge to xhandler of all our successors |
| 794 | // range check elimination needs that the state at the end of a |
| 795 | // block be valid in every block it dominates so cur must dominate |
| 796 | // the exception handlers of its successors. |
| 797 | int num_cur_xhandler = cur->number_of_exception_handlers(); |
| 798 | for (int j = 0; j < num_cur_xhandler; j++) { |
| 799 | BlockBegin* xhandler = cur->exception_handler_at(j); |
| 800 | if (!is_visited(xhandler)) { |
| 801 | compute_dominator_impl(xhandler, parent); |
| 802 | } |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | |
| 807 | int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) { |
| 808 | BlockBegin* single_sux = NULL; |
| 809 | if (cur->number_of_sux() == 1) { |
| 810 | single_sux = cur->sux_at(0); |
| 811 | } |
| 812 | |
| 813 | // limit loop-depth to 15 bit (only for security reason, it will never be so big) |
| 814 | int weight = (cur->loop_depth() & 0x7FFF) << 16; |
| 815 | |
| 816 | // general macro for short definition of weight flags |
| 817 | // the first instance of INC_WEIGHT_IF has the highest priority |
| 818 | int cur_bit = 15; |
| 819 | #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--; |
| 820 | |
| 821 | // this is necessery for the (very rare) case that two successing blocks have |
| 822 | // the same loop depth, but a different loop index (can happen for endless loops |
| 823 | // with exception handlers) |
| 824 | INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag)); |
| 825 | |
| 826 | // loop end blocks (blocks that end with a backward branch) are added |
| 827 | // after all other blocks of the loop. |
| 828 | INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag)); |
| 829 | |
| 830 | // critical edge split blocks are prefered because than they have a bigger |
| 831 | // proability to be completely empty |
| 832 | INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag)); |
| 833 | |
| 834 | // exceptions should not be thrown in normal control flow, so these blocks |
| 835 | // are added as late as possible |
| 836 | INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL)); |
| 837 | INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL)); |
| 838 | |
| 839 | // exceptions handlers are added as late as possible |
| 840 | INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag)); |
| 841 | |
| 842 | // guarantee that weight is > 0 |
| 843 | weight |= 1; |
| 844 | |
| 845 | #undef INC_WEIGHT_IF |
| 846 | assert(cur_bit >= 0, "too many flags" ); |
| 847 | assert(weight > 0, "weight cannot become negative" ); |
| 848 | |
| 849 | return weight; |
| 850 | } |
| 851 | |
| 852 | bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) { |
| 853 | // Discount the edge just traveled. |
| 854 | // When the number drops to zero, all forward branches were processed |
| 855 | if (dec_forward_branches(cur) != 0) { |
| 856 | return false; |
| 857 | } |
| 858 | |
| 859 | assert(_linear_scan_order->find(cur) == -1, "block already processed (block can be ready only once)" ); |
| 860 | assert(_work_list.find(cur) == -1, "block already in work-list (block can be ready only once)" ); |
| 861 | return true; |
| 862 | } |
| 863 | |
| 864 | void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) { |
| 865 | assert(_work_list.find(cur) == -1, "block already in work list" ); |
| 866 | |
| 867 | int cur_weight = compute_weight(cur); |
| 868 | |
| 869 | // the linear_scan_number is used to cache the weight of a block |
| 870 | cur->set_linear_scan_number(cur_weight); |
| 871 | |
| 872 | #ifndef PRODUCT |
| 873 | if (StressLinearScan) { |
| 874 | _work_list.insert_before(0, cur); |
| 875 | return; |
| 876 | } |
| 877 | #endif |
| 878 | |
| 879 | _work_list.append(NULL); // provide space for new element |
| 880 | |
| 881 | int insert_idx = _work_list.length() - 1; |
| 882 | while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) { |
| 883 | _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1)); |
| 884 | insert_idx--; |
| 885 | } |
| 886 | _work_list.at_put(insert_idx, cur); |
| 887 | |
| 888 | TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:" , cur->block_id())); |
| 889 | TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x" , i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number())); |
| 890 | |
| 891 | #ifdef ASSERT |
| 892 | for (int i = 0; i < _work_list.length(); i++) { |
| 893 | assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set" ); |
| 894 | assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist" ); |
| 895 | } |
| 896 | #endif |
| 897 | } |
| 898 | |
| 899 | void ComputeLinearScanOrder::append_block(BlockBegin* cur) { |
| 900 | TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order" , cur->block_id(), cur->linear_scan_number())); |
| 901 | assert(_linear_scan_order->find(cur) == -1, "cannot add the same block twice" ); |
| 902 | |
| 903 | // currently, the linear scan order and code emit order are equal. |
| 904 | // therefore the linear_scan_number and the weight of a block must also |
| 905 | // be equal. |
| 906 | cur->set_linear_scan_number(_linear_scan_order->length()); |
| 907 | _linear_scan_order->append(cur); |
| 908 | } |
| 909 | |
| 910 | void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) { |
| 911 | TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order" )); |
| 912 | |
| 913 | // the start block is always the first block in the linear scan order |
| 914 | _linear_scan_order = new BlockList(_num_blocks); |
| 915 | append_block(start_block); |
| 916 | |
| 917 | assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction" ); |
| 918 | BlockBegin* std_entry = ((Base*)start_block->end())->std_entry(); |
| 919 | BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry(); |
| 920 | |
| 921 | BlockBegin* sux_of_osr_entry = NULL; |
| 922 | if (osr_entry != NULL) { |
| 923 | // special handling for osr entry: |
| 924 | // ignore the edge between the osr entry and its successor for processing |
| 925 | // the osr entry block is added manually below |
| 926 | assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor" ); |
| 927 | assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow" ); |
| 928 | |
| 929 | sux_of_osr_entry = osr_entry->sux_at(0); |
| 930 | dec_forward_branches(sux_of_osr_entry); |
| 931 | |
| 932 | compute_dominator(osr_entry, start_block); |
| 933 | _iterative_dominators = true; |
| 934 | } |
| 935 | compute_dominator(std_entry, start_block); |
| 936 | |
| 937 | // start processing with standard entry block |
| 938 | assert(_work_list.is_empty(), "list must be empty before processing" ); |
| 939 | |
| 940 | if (ready_for_processing(std_entry)) { |
| 941 | sort_into_work_list(std_entry); |
| 942 | } else { |
| 943 | assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)" ); |
| 944 | } |
| 945 | |
| 946 | do { |
| 947 | BlockBegin* cur = _work_list.pop(); |
| 948 | |
| 949 | if (cur == sux_of_osr_entry) { |
| 950 | // the osr entry block is ignored in normal processing, it is never added to the |
| 951 | // work list. Instead, it is added as late as possible manually here. |
| 952 | append_block(osr_entry); |
| 953 | compute_dominator(cur, osr_entry); |
| 954 | } |
| 955 | append_block(cur); |
| 956 | |
| 957 | int i; |
| 958 | int num_sux = cur->number_of_sux(); |
| 959 | // changed loop order to get "intuitive" order of if- and else-blocks |
| 960 | for (i = 0; i < num_sux; i++) { |
| 961 | BlockBegin* sux = cur->sux_at(i); |
| 962 | compute_dominator(sux, cur); |
| 963 | if (ready_for_processing(sux)) { |
| 964 | sort_into_work_list(sux); |
| 965 | } |
| 966 | } |
| 967 | num_sux = cur->number_of_exception_handlers(); |
| 968 | for (i = 0; i < num_sux; i++) { |
| 969 | BlockBegin* sux = cur->exception_handler_at(i); |
| 970 | if (ready_for_processing(sux)) { |
| 971 | sort_into_work_list(sux); |
| 972 | } |
| 973 | } |
| 974 | } while (_work_list.length() > 0); |
| 975 | } |
| 976 | |
| 977 | |
| 978 | bool ComputeLinearScanOrder::compute_dominators_iter() { |
| 979 | bool changed = false; |
| 980 | int num_blocks = _linear_scan_order->length(); |
| 981 | |
| 982 | assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator" ); |
| 983 | assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors" ); |
| 984 | for (int i = 1; i < num_blocks; i++) { |
| 985 | BlockBegin* block = _linear_scan_order->at(i); |
| 986 | |
| 987 | BlockBegin* dominator = block->pred_at(0); |
| 988 | int num_preds = block->number_of_preds(); |
| 989 | |
| 990 | TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d" , block->block_id())); |
| 991 | |
| 992 | for (int j = 0; j < num_preds; j++) { |
| 993 | |
| 994 | BlockBegin *pred = block->pred_at(j); |
| 995 | TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d" , pred->block_id())); |
| 996 | |
| 997 | if (block->is_set(BlockBegin::exception_entry_flag)) { |
| 998 | dominator = common_dominator(dominator, pred); |
| 999 | int num_pred_preds = pred->number_of_preds(); |
| 1000 | for (int k = 0; k < num_pred_preds; k++) { |
| 1001 | dominator = common_dominator(dominator, pred->pred_at(k)); |
| 1002 | } |
| 1003 | } else { |
| 1004 | dominator = common_dominator(dominator, pred); |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | if (dominator != block->dominator()) { |
| 1009 | TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d" , block->block_id(), block->dominator()->block_id(), dominator->block_id())); |
| 1010 | |
| 1011 | block->set_dominator(dominator); |
| 1012 | changed = true; |
| 1013 | } |
| 1014 | } |
| 1015 | return changed; |
| 1016 | } |
| 1017 | |
| 1018 | void ComputeLinearScanOrder::compute_dominators() { |
| 1019 | TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)" , _iterative_dominators)); |
| 1020 | |
| 1021 | // iterative computation of dominators is only required for methods with non-natural loops |
| 1022 | // and OSR-methods. For all other methods, the dominators computed when generating the |
| 1023 | // linear scan block order are correct. |
| 1024 | if (_iterative_dominators) { |
| 1025 | do { |
| 1026 | TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation" )); |
| 1027 | } while (compute_dominators_iter()); |
| 1028 | } |
| 1029 | |
| 1030 | // check that dominators are correct |
| 1031 | assert(!compute_dominators_iter(), "fix point not reached" ); |
| 1032 | |
| 1033 | // Add Blocks to dominates-Array |
| 1034 | int num_blocks = _linear_scan_order->length(); |
| 1035 | for (int i = 0; i < num_blocks; i++) { |
| 1036 | BlockBegin* block = _linear_scan_order->at(i); |
| 1037 | |
| 1038 | BlockBegin *dom = block->dominator(); |
| 1039 | if (dom) { |
| 1040 | assert(dom->dominator_depth() != -1, "Dominator must have been visited before" ); |
| 1041 | dom->dominates()->append(block); |
| 1042 | block->set_dominator_depth(dom->dominator_depth() + 1); |
| 1043 | } else { |
| 1044 | block->set_dominator_depth(0); |
| 1045 | } |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | |
| 1050 | #ifndef PRODUCT |
| 1051 | void ComputeLinearScanOrder::print_blocks() { |
| 1052 | if (TraceLinearScanLevel >= 2) { |
| 1053 | tty->print_cr("----- loop information:" ); |
| 1054 | for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) { |
| 1055 | BlockBegin* cur = _linear_scan_order->at(block_idx); |
| 1056 | |
| 1057 | tty->print("%4d: B%2d: " , cur->linear_scan_number(), cur->block_id()); |
| 1058 | for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) { |
| 1059 | tty->print ("%d " , is_block_in_loop(loop_idx, cur)); |
| 1060 | } |
| 1061 | tty->print_cr(" -> loop_index: %2d, loop_depth: %2d" , cur->loop_index(), cur->loop_depth()); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | if (TraceLinearScanLevel >= 1) { |
| 1066 | tty->print_cr("----- linear-scan block order:" ); |
| 1067 | for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) { |
| 1068 | BlockBegin* cur = _linear_scan_order->at(block_idx); |
| 1069 | tty->print("%4d: B%2d loop: %2d depth: %2d" , cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth()); |
| 1070 | |
| 1071 | tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " " ); |
| 1072 | tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " " ); |
| 1073 | tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " " ); |
| 1074 | tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " " ); |
| 1075 | |
| 1076 | if (cur->dominator() != NULL) { |
| 1077 | tty->print(" dom: B%d " , cur->dominator()->block_id()); |
| 1078 | } else { |
| 1079 | tty->print(" dom: NULL " ); |
| 1080 | } |
| 1081 | |
| 1082 | if (cur->number_of_preds() > 0) { |
| 1083 | tty->print(" preds: " ); |
| 1084 | for (int j = 0; j < cur->number_of_preds(); j++) { |
| 1085 | BlockBegin* pred = cur->pred_at(j); |
| 1086 | tty->print("B%d " , pred->block_id()); |
| 1087 | } |
| 1088 | } |
| 1089 | if (cur->number_of_sux() > 0) { |
| 1090 | tty->print(" sux: " ); |
| 1091 | for (int j = 0; j < cur->number_of_sux(); j++) { |
| 1092 | BlockBegin* sux = cur->sux_at(j); |
| 1093 | tty->print("B%d " , sux->block_id()); |
| 1094 | } |
| 1095 | } |
| 1096 | if (cur->number_of_exception_handlers() > 0) { |
| 1097 | tty->print(" ex: " ); |
| 1098 | for (int j = 0; j < cur->number_of_exception_handlers(); j++) { |
| 1099 | BlockBegin* ex = cur->exception_handler_at(j); |
| 1100 | tty->print("B%d " , ex->block_id()); |
| 1101 | } |
| 1102 | } |
| 1103 | tty->cr(); |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | #endif |
| 1108 | |
| 1109 | #ifdef ASSERT |
| 1110 | void ComputeLinearScanOrder::verify() { |
| 1111 | assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list" ); |
| 1112 | |
| 1113 | if (StressLinearScan) { |
| 1114 | // blocks are scrambled when StressLinearScan is used |
| 1115 | return; |
| 1116 | } |
| 1117 | |
| 1118 | // check that all successors of a block have a higher linear-scan-number |
| 1119 | // and that all predecessors of a block have a lower linear-scan-number |
| 1120 | // (only backward branches of loops are ignored) |
| 1121 | int i; |
| 1122 | for (i = 0; i < _linear_scan_order->length(); i++) { |
| 1123 | BlockBegin* cur = _linear_scan_order->at(i); |
| 1124 | |
| 1125 | assert(cur->linear_scan_number() == i, "incorrect linear_scan_number" ); |
| 1126 | assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->find(cur), "incorrect linear_scan_number" ); |
| 1127 | |
| 1128 | int j; |
| 1129 | for (j = cur->number_of_sux() - 1; j >= 0; j--) { |
| 1130 | BlockBegin* sux = cur->sux_at(j); |
| 1131 | |
| 1132 | assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->find(sux), "incorrect linear_scan_number" ); |
| 1133 | if (!sux->is_set(BlockBegin::backward_branch_target_flag)) { |
| 1134 | assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order" ); |
| 1135 | } |
| 1136 | if (cur->loop_depth() == sux->loop_depth()) { |
| 1137 | assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index" ); |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | for (j = cur->number_of_preds() - 1; j >= 0; j--) { |
| 1142 | BlockBegin* pred = cur->pred_at(j); |
| 1143 | |
| 1144 | assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->find(pred), "incorrect linear_scan_number" ); |
| 1145 | if (!cur->is_set(BlockBegin::backward_branch_target_flag)) { |
| 1146 | assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order" ); |
| 1147 | } |
| 1148 | if (cur->loop_depth() == pred->loop_depth()) { |
| 1149 | assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index" ); |
| 1150 | } |
| 1151 | |
| 1152 | assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors" ); |
| 1153 | } |
| 1154 | |
| 1155 | // check dominator |
| 1156 | if (i == 0) { |
| 1157 | assert(cur->dominator() == NULL, "first block has no dominator" ); |
| 1158 | } else { |
| 1159 | assert(cur->dominator() != NULL, "all but first block must have dominator" ); |
| 1160 | } |
| 1161 | // Assertion does not hold for exception handlers |
| 1162 | assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator" ); |
| 1163 | } |
| 1164 | |
| 1165 | // check that all loops are continuous |
| 1166 | for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) { |
| 1167 | int block_idx = 0; |
| 1168 | assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop" ); |
| 1169 | |
| 1170 | // skip blocks before the loop |
| 1171 | while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) { |
| 1172 | block_idx++; |
| 1173 | } |
| 1174 | // skip blocks of loop |
| 1175 | while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) { |
| 1176 | block_idx++; |
| 1177 | } |
| 1178 | // after the first non-loop block, there must not be another loop-block |
| 1179 | while (block_idx < _num_blocks) { |
| 1180 | assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order" ); |
| 1181 | block_idx++; |
| 1182 | } |
| 1183 | } |
| 1184 | } |
| 1185 | #endif |
| 1186 | |
| 1187 | |
| 1188 | void IR::compute_code() { |
| 1189 | assert(is_valid(), "IR must be valid" ); |
| 1190 | |
| 1191 | ComputeLinearScanOrder compute_order(compilation(), start()); |
| 1192 | _num_loops = compute_order.num_loops(); |
| 1193 | _code = compute_order.linear_scan_order(); |
| 1194 | } |
| 1195 | |
| 1196 | |
| 1197 | void IR::compute_use_counts() { |
| 1198 | // make sure all values coming out of this block get evaluated. |
| 1199 | int num_blocks = _code->length(); |
| 1200 | for (int i = 0; i < num_blocks; i++) { |
| 1201 | _code->at(i)->end()->state()->pin_stack_for_linear_scan(); |
| 1202 | } |
| 1203 | |
| 1204 | // compute use counts |
| 1205 | UseCountComputer::compute(_code); |
| 1206 | } |
| 1207 | |
| 1208 | |
| 1209 | void IR::iterate_preorder(BlockClosure* closure) { |
| 1210 | assert(is_valid(), "IR must be valid" ); |
| 1211 | start()->iterate_preorder(closure); |
| 1212 | } |
| 1213 | |
| 1214 | |
| 1215 | void IR::iterate_postorder(BlockClosure* closure) { |
| 1216 | assert(is_valid(), "IR must be valid" ); |
| 1217 | start()->iterate_postorder(closure); |
| 1218 | } |
| 1219 | |
| 1220 | void IR::iterate_linear_scan_order(BlockClosure* closure) { |
| 1221 | linear_scan_order()->iterate_forward(closure); |
| 1222 | } |
| 1223 | |
| 1224 | |
| 1225 | #ifndef PRODUCT |
| 1226 | class BlockPrinter: public BlockClosure { |
| 1227 | private: |
| 1228 | InstructionPrinter* _ip; |
| 1229 | bool _cfg_only; |
| 1230 | bool _live_only; |
| 1231 | |
| 1232 | public: |
| 1233 | BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) { |
| 1234 | _ip = ip; |
| 1235 | _cfg_only = cfg_only; |
| 1236 | _live_only = live_only; |
| 1237 | } |
| 1238 | |
| 1239 | virtual void block_do(BlockBegin* block) { |
| 1240 | if (_cfg_only) { |
| 1241 | _ip->print_instr(block); tty->cr(); |
| 1242 | } else { |
| 1243 | block->print_block(*_ip, _live_only); |
| 1244 | } |
| 1245 | } |
| 1246 | }; |
| 1247 | |
| 1248 | |
| 1249 | void IR::print(BlockBegin* start, bool cfg_only, bool live_only) { |
| 1250 | ttyLocker ttyl; |
| 1251 | InstructionPrinter ip(!cfg_only); |
| 1252 | BlockPrinter bp(&ip, cfg_only, live_only); |
| 1253 | start->iterate_preorder(&bp); |
| 1254 | tty->cr(); |
| 1255 | } |
| 1256 | |
| 1257 | void IR::print(bool cfg_only, bool live_only) { |
| 1258 | if (is_valid()) { |
| 1259 | print(start(), cfg_only, live_only); |
| 1260 | } else { |
| 1261 | tty->print_cr("invalid IR" ); |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | typedef GrowableArray<BlockList*> BlockListList; |
| 1267 | |
| 1268 | class PredecessorValidator : public BlockClosure { |
| 1269 | private: |
| 1270 | BlockListList* _predecessors; |
| 1271 | BlockList* _blocks; |
| 1272 | |
| 1273 | static int cmp(BlockBegin** a, BlockBegin** b) { |
| 1274 | return (*a)->block_id() - (*b)->block_id(); |
| 1275 | } |
| 1276 | |
| 1277 | public: |
| 1278 | PredecessorValidator(IR* hir) { |
| 1279 | ResourceMark rm; |
| 1280 | _predecessors = new BlockListList(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL); |
| 1281 | _blocks = new BlockList(); |
| 1282 | |
| 1283 | int i; |
| 1284 | hir->start()->iterate_preorder(this); |
| 1285 | if (hir->code() != NULL) { |
| 1286 | assert(hir->code()->length() == _blocks->length(), "must match" ); |
| 1287 | for (i = 0; i < _blocks->length(); i++) { |
| 1288 | assert(hir->code()->contains(_blocks->at(i)), "should be in both lists" ); |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | for (i = 0; i < _blocks->length(); i++) { |
| 1293 | BlockBegin* block = _blocks->at(i); |
| 1294 | BlockList* preds = _predecessors->at(block->block_id()); |
| 1295 | if (preds == NULL) { |
| 1296 | assert(block->number_of_preds() == 0, "should be the same" ); |
| 1297 | continue; |
| 1298 | } |
| 1299 | |
| 1300 | // clone the pred list so we can mutate it |
| 1301 | BlockList* pred_copy = new BlockList(); |
| 1302 | int j; |
| 1303 | for (j = 0; j < block->number_of_preds(); j++) { |
| 1304 | pred_copy->append(block->pred_at(j)); |
| 1305 | } |
| 1306 | // sort them in the same order |
| 1307 | preds->sort(cmp); |
| 1308 | pred_copy->sort(cmp); |
| 1309 | int length = MIN2(preds->length(), block->number_of_preds()); |
| 1310 | for (j = 0; j < block->number_of_preds(); j++) { |
| 1311 | assert(preds->at(j) == pred_copy->at(j), "must match" ); |
| 1312 | } |
| 1313 | |
| 1314 | assert(preds->length() == block->number_of_preds(), "should be the same" ); |
| 1315 | } |
| 1316 | } |
| 1317 | |
| 1318 | virtual void block_do(BlockBegin* block) { |
| 1319 | _blocks->append(block); |
| 1320 | BlockEnd* be = block->end(); |
| 1321 | int n = be->number_of_sux(); |
| 1322 | int i; |
| 1323 | for (i = 0; i < n; i++) { |
| 1324 | BlockBegin* sux = be->sux_at(i); |
| 1325 | assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler" ); |
| 1326 | |
| 1327 | BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL); |
| 1328 | if (preds == NULL) { |
| 1329 | preds = new BlockList(); |
| 1330 | _predecessors->at_put(sux->block_id(), preds); |
| 1331 | } |
| 1332 | preds->append(block); |
| 1333 | } |
| 1334 | |
| 1335 | n = block->number_of_exception_handlers(); |
| 1336 | for (i = 0; i < n; i++) { |
| 1337 | BlockBegin* sux = block->exception_handler_at(i); |
| 1338 | assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler" ); |
| 1339 | |
| 1340 | BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL); |
| 1341 | if (preds == NULL) { |
| 1342 | preds = new BlockList(); |
| 1343 | _predecessors->at_put(sux->block_id(), preds); |
| 1344 | } |
| 1345 | preds->append(block); |
| 1346 | } |
| 1347 | } |
| 1348 | }; |
| 1349 | |
| 1350 | class VerifyBlockBeginField : public BlockClosure { |
| 1351 | |
| 1352 | public: |
| 1353 | |
| 1354 | virtual void block_do(BlockBegin *block) { |
| 1355 | for ( Instruction *cur = block; cur != NULL; cur = cur->next()) { |
| 1356 | assert(cur->block() == block, "Block begin is not correct" ); |
| 1357 | } |
| 1358 | } |
| 1359 | }; |
| 1360 | |
| 1361 | void IR::verify() { |
| 1362 | #ifdef ASSERT |
| 1363 | PredecessorValidator pv(this); |
| 1364 | VerifyBlockBeginField verifier; |
| 1365 | this->iterate_postorder(&verifier); |
| 1366 | #endif |
| 1367 | } |
| 1368 | |
| 1369 | #endif // PRODUCT |
| 1370 | |
| 1371 | void SubstitutionResolver::visit(Value* v) { |
| 1372 | Value v0 = *v; |
| 1373 | if (v0) { |
| 1374 | Value vs = v0->subst(); |
| 1375 | if (vs != v0) { |
| 1376 | *v = v0->subst(); |
| 1377 | } |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | #ifdef ASSERT |
| 1382 | class SubstitutionChecker: public ValueVisitor { |
| 1383 | void visit(Value* v) { |
| 1384 | Value v0 = *v; |
| 1385 | if (v0) { |
| 1386 | Value vs = v0->subst(); |
| 1387 | assert(vs == v0, "missed substitution" ); |
| 1388 | } |
| 1389 | } |
| 1390 | }; |
| 1391 | #endif |
| 1392 | |
| 1393 | |
| 1394 | void SubstitutionResolver::block_do(BlockBegin* block) { |
| 1395 | Instruction* last = NULL; |
| 1396 | for (Instruction* n = block; n != NULL;) { |
| 1397 | n->values_do(this); |
| 1398 | // need to remove this instruction from the instruction stream |
| 1399 | if (n->subst() != n) { |
| 1400 | guarantee(last != NULL, "must have last" ); |
| 1401 | last->set_next(n->next()); |
| 1402 | } else { |
| 1403 | last = n; |
| 1404 | } |
| 1405 | n = last->next(); |
| 1406 | } |
| 1407 | |
| 1408 | #ifdef ASSERT |
| 1409 | SubstitutionChecker check_substitute; |
| 1410 | if (block->state()) block->state()->values_do(&check_substitute); |
| 1411 | block->block_values_do(&check_substitute); |
| 1412 | if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute); |
| 1413 | #endif |
| 1414 | } |
| 1415 | |