| 1 | /* |
| 2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/parallel/gcTaskManager.hpp" |
| 27 | #include "gc/parallel/objectStartArray.inline.hpp" |
| 28 | #include "gc/parallel/parallelScavengeHeap.inline.hpp" |
| 29 | #include "gc/parallel/psCardTable.hpp" |
| 30 | #include "gc/parallel/psPromotionManager.inline.hpp" |
| 31 | #include "gc/parallel/psScavenge.inline.hpp" |
| 32 | #include "gc/parallel/psTasks.hpp" |
| 33 | #include "gc/parallel/psYoungGen.hpp" |
| 34 | #include "memory/iterator.inline.hpp" |
| 35 | #include "oops/access.inline.hpp" |
| 36 | #include "oops/oop.inline.hpp" |
| 37 | #include "runtime/prefetch.inline.hpp" |
| 38 | #include "utilities/align.hpp" |
| 39 | |
| 40 | // Checks an individual oop for missing precise marks. Mark |
| 41 | // may be either dirty or newgen. |
| 42 | class CheckForUnmarkedOops : public BasicOopIterateClosure { |
| 43 | private: |
| 44 | PSYoungGen* _young_gen; |
| 45 | PSCardTable* _card_table; |
| 46 | HeapWord* _unmarked_addr; |
| 47 | |
| 48 | protected: |
| 49 | template <class T> void do_oop_work(T* p) { |
| 50 | oop obj = RawAccess<>::oop_load(p); |
| 51 | if (_young_gen->is_in_reserved(obj) && |
| 52 | !_card_table->addr_is_marked_imprecise(p)) { |
| 53 | // Don't overwrite the first missing card mark |
| 54 | if (_unmarked_addr == NULL) { |
| 55 | _unmarked_addr = (HeapWord*)p; |
| 56 | } |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | public: |
| 61 | CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) : |
| 62 | _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { } |
| 63 | |
| 64 | virtual void do_oop(oop* p) { CheckForUnmarkedOops::do_oop_work(p); } |
| 65 | virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); } |
| 66 | |
| 67 | bool has_unmarked_oop() { |
| 68 | return _unmarked_addr != NULL; |
| 69 | } |
| 70 | }; |
| 71 | |
| 72 | // Checks all objects for the existence of some type of mark, |
| 73 | // precise or imprecise, dirty or newgen. |
| 74 | class CheckForUnmarkedObjects : public ObjectClosure { |
| 75 | private: |
| 76 | PSYoungGen* _young_gen; |
| 77 | PSCardTable* _card_table; |
| 78 | |
| 79 | public: |
| 80 | CheckForUnmarkedObjects() { |
| 81 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 82 | _young_gen = heap->young_gen(); |
| 83 | _card_table = heap->card_table(); |
| 84 | } |
| 85 | |
| 86 | // Card marks are not precise. The current system can leave us with |
| 87 | // a mismatch of precise marks and beginning of object marks. This means |
| 88 | // we test for missing precise marks first. If any are found, we don't |
| 89 | // fail unless the object head is also unmarked. |
| 90 | virtual void do_object(oop obj) { |
| 91 | CheckForUnmarkedOops object_check(_young_gen, _card_table); |
| 92 | obj->oop_iterate(&object_check); |
| 93 | if (object_check.has_unmarked_oop()) { |
| 94 | guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object" ); |
| 95 | } |
| 96 | } |
| 97 | }; |
| 98 | |
| 99 | // Checks for precise marking of oops as newgen. |
| 100 | class CheckForPreciseMarks : public BasicOopIterateClosure { |
| 101 | private: |
| 102 | PSYoungGen* _young_gen; |
| 103 | PSCardTable* _card_table; |
| 104 | |
| 105 | protected: |
| 106 | template <class T> void do_oop_work(T* p) { |
| 107 | oop obj = RawAccess<IS_NOT_NULL>::oop_load(p); |
| 108 | if (_young_gen->is_in_reserved(obj)) { |
| 109 | assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop" ); |
| 110 | _card_table->set_card_newgen(p); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | public: |
| 115 | CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) : |
| 116 | _young_gen(young_gen), _card_table(card_table) { } |
| 117 | |
| 118 | virtual void do_oop(oop* p) { CheckForPreciseMarks::do_oop_work(p); } |
| 119 | virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); } |
| 120 | }; |
| 121 | |
| 122 | // We get passed the space_top value to prevent us from traversing into |
| 123 | // the old_gen promotion labs, which cannot be safely parsed. |
| 124 | |
| 125 | // Do not call this method if the space is empty. |
| 126 | // It is a waste to start tasks and get here only to |
| 127 | // do no work. If this method needs to be called |
| 128 | // when the space is empty, fix the calculation of |
| 129 | // end_card to allow sp_top == sp->bottom(). |
| 130 | |
| 131 | void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array, |
| 132 | MutableSpace* sp, |
| 133 | HeapWord* space_top, |
| 134 | PSPromotionManager* pm, |
| 135 | uint stripe_number, |
| 136 | uint stripe_total) { |
| 137 | int ssize = 128; // Naked constant! Work unit = 64k. |
| 138 | int dirty_card_count = 0; |
| 139 | |
| 140 | // It is a waste to get here if empty. |
| 141 | assert(sp->bottom() < sp->top(), "Should not be called if empty" ); |
| 142 | oop* sp_top = (oop*)space_top; |
| 143 | CardValue* start_card = byte_for(sp->bottom()); |
| 144 | CardValue* end_card = byte_for(sp_top - 1) + 1; |
| 145 | oop* last_scanned = NULL; // Prevent scanning objects more than once |
| 146 | // The width of the stripe ssize*stripe_total must be |
| 147 | // consistent with the number of stripes so that the complete slice |
| 148 | // is covered. |
| 149 | size_t slice_width = ssize * stripe_total; |
| 150 | for (CardValue* slice = start_card; slice < end_card; slice += slice_width) { |
| 151 | CardValue* worker_start_card = slice + stripe_number * ssize; |
| 152 | if (worker_start_card >= end_card) |
| 153 | return; // We're done. |
| 154 | |
| 155 | CardValue* worker_end_card = worker_start_card + ssize; |
| 156 | if (worker_end_card > end_card) |
| 157 | worker_end_card = end_card; |
| 158 | |
| 159 | // We do not want to scan objects more than once. In order to accomplish |
| 160 | // this, we assert that any object with an object head inside our 'slice' |
| 161 | // belongs to us. We may need to extend the range of scanned cards if the |
| 162 | // last object continues into the next 'slice'. |
| 163 | // |
| 164 | // Note! ending cards are exclusive! |
| 165 | HeapWord* slice_start = addr_for(worker_start_card); |
| 166 | HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card)); |
| 167 | |
| 168 | #ifdef ASSERT |
| 169 | if (GCWorkerDelayMillis > 0) { |
| 170 | // Delay 1 worker so that it proceeds after all the work |
| 171 | // has been completed. |
| 172 | if (stripe_number < 2) { |
| 173 | os::sleep(Thread::current(), GCWorkerDelayMillis, false); |
| 174 | } |
| 175 | } |
| 176 | #endif |
| 177 | |
| 178 | // If there are not objects starting within the chunk, skip it. |
| 179 | if (!start_array->object_starts_in_range(slice_start, slice_end)) { |
| 180 | continue; |
| 181 | } |
| 182 | // Update our beginning addr |
| 183 | HeapWord* first_object = start_array->object_start(slice_start); |
| 184 | debug_only(oop* first_object_within_slice = (oop*) first_object;) |
| 185 | if (first_object < slice_start) { |
| 186 | last_scanned = (oop*)(first_object + oop(first_object)->size()); |
| 187 | debug_only(first_object_within_slice = last_scanned;) |
| 188 | worker_start_card = byte_for(last_scanned); |
| 189 | } |
| 190 | |
| 191 | // Update the ending addr |
| 192 | if (slice_end < (HeapWord*)sp_top) { |
| 193 | // The subtraction is important! An object may start precisely at slice_end. |
| 194 | HeapWord* last_object = start_array->object_start(slice_end - 1); |
| 195 | slice_end = last_object + oop(last_object)->size(); |
| 196 | // worker_end_card is exclusive, so bump it one past the end of last_object's |
| 197 | // covered span. |
| 198 | worker_end_card = byte_for(slice_end) + 1; |
| 199 | |
| 200 | if (worker_end_card > end_card) |
| 201 | worker_end_card = end_card; |
| 202 | } |
| 203 | |
| 204 | assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary" ); |
| 205 | assert(is_valid_card_address(worker_start_card), "Invalid worker start card" ); |
| 206 | assert(is_valid_card_address(worker_end_card), "Invalid worker end card" ); |
| 207 | // Note that worker_start_card >= worker_end_card is legal, and happens when |
| 208 | // an object spans an entire slice. |
| 209 | assert(worker_start_card <= end_card, "worker start card beyond end card" ); |
| 210 | assert(worker_end_card <= end_card, "worker end card beyond end card" ); |
| 211 | |
| 212 | CardValue* current_card = worker_start_card; |
| 213 | while (current_card < worker_end_card) { |
| 214 | // Find an unclean card. |
| 215 | while (current_card < worker_end_card && card_is_clean(*current_card)) { |
| 216 | current_card++; |
| 217 | } |
| 218 | CardValue* first_unclean_card = current_card; |
| 219 | |
| 220 | // Find the end of a run of contiguous unclean cards |
| 221 | while (current_card < worker_end_card && !card_is_clean(*current_card)) { |
| 222 | while (current_card < worker_end_card && !card_is_clean(*current_card)) { |
| 223 | current_card++; |
| 224 | } |
| 225 | |
| 226 | if (current_card < worker_end_card) { |
| 227 | // Some objects may be large enough to span several cards. If such |
| 228 | // an object has more than one dirty card, separated by a clean card, |
| 229 | // we will attempt to scan it twice. The test against "last_scanned" |
| 230 | // prevents the redundant object scan, but it does not prevent newly |
| 231 | // marked cards from being cleaned. |
| 232 | HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1); |
| 233 | size_t size_of_last_object = oop(last_object_in_dirty_region)->size(); |
| 234 | HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object; |
| 235 | CardValue* ending_card_of_last_object = byte_for(end_of_last_object); |
| 236 | assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card" ); |
| 237 | if (ending_card_of_last_object > current_card) { |
| 238 | // This means the object spans the next complete card. |
| 239 | // We need to bump the current_card to ending_card_of_last_object |
| 240 | current_card = ending_card_of_last_object; |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | CardValue* following_clean_card = current_card; |
| 245 | |
| 246 | if (first_unclean_card < worker_end_card) { |
| 247 | oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card)); |
| 248 | assert((HeapWord*)p <= addr_for(first_unclean_card), "checking" ); |
| 249 | // "p" should always be >= "last_scanned" because newly GC dirtied |
| 250 | // cards are no longer scanned again (see comment at end |
| 251 | // of loop on the increment of "current_card"). Test that |
| 252 | // hypothesis before removing this code. |
| 253 | // If this code is removed, deal with the first time through |
| 254 | // the loop when the last_scanned is the object starting in |
| 255 | // the previous slice. |
| 256 | assert((p >= last_scanned) || |
| 257 | (last_scanned == first_object_within_slice), |
| 258 | "Should no longer be possible" ); |
| 259 | if (p < last_scanned) { |
| 260 | // Avoid scanning more than once; this can happen because |
| 261 | // newgen cards set by GC may a different set than the |
| 262 | // originally dirty set |
| 263 | p = last_scanned; |
| 264 | } |
| 265 | oop* to = (oop*)addr_for(following_clean_card); |
| 266 | |
| 267 | // Test slice_end first! |
| 268 | if ((HeapWord*)to > slice_end) { |
| 269 | to = (oop*)slice_end; |
| 270 | } else if (to > sp_top) { |
| 271 | to = sp_top; |
| 272 | } |
| 273 | |
| 274 | // we know which cards to scan, now clear them |
| 275 | if (first_unclean_card <= worker_start_card+1) |
| 276 | first_unclean_card = worker_start_card+1; |
| 277 | if (following_clean_card >= worker_end_card-1) |
| 278 | following_clean_card = worker_end_card-1; |
| 279 | |
| 280 | while (first_unclean_card < following_clean_card) { |
| 281 | *first_unclean_card++ = clean_card; |
| 282 | } |
| 283 | |
| 284 | const int interval = PrefetchScanIntervalInBytes; |
| 285 | // scan all objects in the range |
| 286 | if (interval != 0) { |
| 287 | while (p < to) { |
| 288 | Prefetch::write(p, interval); |
| 289 | oop m = oop(p); |
| 290 | assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)); |
| 291 | pm->push_contents(m); |
| 292 | p += m->size(); |
| 293 | } |
| 294 | pm->drain_stacks_cond_depth(); |
| 295 | } else { |
| 296 | while (p < to) { |
| 297 | oop m = oop(p); |
| 298 | assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)); |
| 299 | pm->push_contents(m); |
| 300 | p += m->size(); |
| 301 | } |
| 302 | pm->drain_stacks_cond_depth(); |
| 303 | } |
| 304 | last_scanned = p; |
| 305 | } |
| 306 | // "current_card" is still the "following_clean_card" or |
| 307 | // the current_card is >= the worker_end_card so the |
| 308 | // loop will not execute again. |
| 309 | assert((current_card == following_clean_card) || |
| 310 | (current_card >= worker_end_card), |
| 311 | "current_card should only be incremented if it still equals " |
| 312 | "following_clean_card" ); |
| 313 | // Increment current_card so that it is not processed again. |
| 314 | // It may now be dirty because a old-to-young pointer was |
| 315 | // found on it an updated. If it is now dirty, it cannot be |
| 316 | // be safely cleaned in the next iteration. |
| 317 | current_card++; |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | // This should be called before a scavenge. |
| 323 | void PSCardTable::verify_all_young_refs_imprecise() { |
| 324 | CheckForUnmarkedObjects check; |
| 325 | |
| 326 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 327 | PSOldGen* old_gen = heap->old_gen(); |
| 328 | |
| 329 | old_gen->object_iterate(&check); |
| 330 | } |
| 331 | |
| 332 | // This should be called immediately after a scavenge, before mutators resume. |
| 333 | void PSCardTable::verify_all_young_refs_precise() { |
| 334 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 335 | PSOldGen* old_gen = heap->old_gen(); |
| 336 | |
| 337 | CheckForPreciseMarks check(heap->young_gen(), this); |
| 338 | |
| 339 | old_gen->oop_iterate(&check); |
| 340 | |
| 341 | verify_all_young_refs_precise_helper(old_gen->object_space()->used_region()); |
| 342 | } |
| 343 | |
| 344 | void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) { |
| 345 | CardValue* bot = byte_for(mr.start()); |
| 346 | CardValue* top = byte_for(mr.end()); |
| 347 | while (bot <= top) { |
| 348 | assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark" ); |
| 349 | if (*bot == verify_card) |
| 350 | *bot = youngergen_card; |
| 351 | bot++; |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | bool PSCardTable::addr_is_marked_imprecise(void *addr) { |
| 356 | CardValue* p = byte_for(addr); |
| 357 | CardValue val = *p; |
| 358 | |
| 359 | if (card_is_dirty(val)) |
| 360 | return true; |
| 361 | |
| 362 | if (card_is_newgen(val)) |
| 363 | return true; |
| 364 | |
| 365 | if (card_is_clean(val)) |
| 366 | return false; |
| 367 | |
| 368 | assert(false, "Found unhandled card mark type" ); |
| 369 | |
| 370 | return false; |
| 371 | } |
| 372 | |
| 373 | // Also includes verify_card |
| 374 | bool PSCardTable::addr_is_marked_precise(void *addr) { |
| 375 | CardValue* p = byte_for(addr); |
| 376 | CardValue val = *p; |
| 377 | |
| 378 | if (card_is_newgen(val)) |
| 379 | return true; |
| 380 | |
| 381 | if (card_is_verify(val)) |
| 382 | return true; |
| 383 | |
| 384 | if (card_is_clean(val)) |
| 385 | return false; |
| 386 | |
| 387 | if (card_is_dirty(val)) |
| 388 | return false; |
| 389 | |
| 390 | assert(false, "Found unhandled card mark type" ); |
| 391 | |
| 392 | return false; |
| 393 | } |
| 394 | |
| 395 | // Assumes that only the base or the end changes. This allows indentification |
| 396 | // of the region that is being resized. The |
| 397 | // CardTable::resize_covered_region() is used for the normal case |
| 398 | // where the covered regions are growing or shrinking at the high end. |
| 399 | // The method resize_covered_region_by_end() is analogous to |
| 400 | // CardTable::resize_covered_region() but |
| 401 | // for regions that grow or shrink at the low end. |
| 402 | void PSCardTable::resize_covered_region(MemRegion new_region) { |
| 403 | for (int i = 0; i < _cur_covered_regions; i++) { |
| 404 | if (_covered[i].start() == new_region.start()) { |
| 405 | // Found a covered region with the same start as the |
| 406 | // new region. The region is growing or shrinking |
| 407 | // from the start of the region. |
| 408 | resize_covered_region_by_start(new_region); |
| 409 | return; |
| 410 | } |
| 411 | if (_covered[i].start() > new_region.start()) { |
| 412 | break; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | int changed_region = -1; |
| 417 | for (int j = 0; j < _cur_covered_regions; j++) { |
| 418 | if (_covered[j].end() == new_region.end()) { |
| 419 | changed_region = j; |
| 420 | // This is a case where the covered region is growing or shrinking |
| 421 | // at the start of the region. |
| 422 | assert(changed_region != -1, "Don't expect to add a covered region" ); |
| 423 | assert(_covered[changed_region].byte_size() != new_region.byte_size(), |
| 424 | "The sizes should be different here" ); |
| 425 | resize_covered_region_by_end(changed_region, new_region); |
| 426 | return; |
| 427 | } |
| 428 | } |
| 429 | // This should only be a new covered region (where no existing |
| 430 | // covered region matches at the start or the end). |
| 431 | assert(_cur_covered_regions < _max_covered_regions, |
| 432 | "An existing region should have been found" ); |
| 433 | resize_covered_region_by_start(new_region); |
| 434 | } |
| 435 | |
| 436 | void PSCardTable::resize_covered_region_by_start(MemRegion new_region) { |
| 437 | CardTable::resize_covered_region(new_region); |
| 438 | debug_only(verify_guard();) |
| 439 | } |
| 440 | |
| 441 | void PSCardTable::resize_covered_region_by_end(int changed_region, |
| 442 | MemRegion new_region) { |
| 443 | assert(SafepointSynchronize::is_at_safepoint(), |
| 444 | "Only expect an expansion at the low end at a GC" ); |
| 445 | debug_only(verify_guard();) |
| 446 | #ifdef ASSERT |
| 447 | for (int k = 0; k < _cur_covered_regions; k++) { |
| 448 | if (_covered[k].end() == new_region.end()) { |
| 449 | assert(changed_region == k, "Changed region is incorrect" ); |
| 450 | break; |
| 451 | } |
| 452 | } |
| 453 | #endif |
| 454 | |
| 455 | // Commit new or uncommit old pages, if necessary. |
| 456 | if (resize_commit_uncommit(changed_region, new_region)) { |
| 457 | // Set the new start of the committed region |
| 458 | resize_update_committed_table(changed_region, new_region); |
| 459 | } |
| 460 | |
| 461 | // Update card table entries |
| 462 | resize_update_card_table_entries(changed_region, new_region); |
| 463 | |
| 464 | // Update the covered region |
| 465 | resize_update_covered_table(changed_region, new_region); |
| 466 | |
| 467 | int ind = changed_region; |
| 468 | log_trace(gc, barrier)("CardTable::resize_covered_region: " ); |
| 469 | log_trace(gc, barrier)(" _covered[%d].start(): " INTPTR_FORMAT " _covered[%d].last(): " INTPTR_FORMAT, |
| 470 | ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last())); |
| 471 | log_trace(gc, barrier)(" _committed[%d].start(): " INTPTR_FORMAT " _committed[%d].last(): " INTPTR_FORMAT, |
| 472 | ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last())); |
| 473 | log_trace(gc, barrier)(" byte_for(start): " INTPTR_FORMAT " byte_for(last): " INTPTR_FORMAT, |
| 474 | p2i(byte_for(_covered[ind].start())), p2i(byte_for(_covered[ind].last()))); |
| 475 | log_trace(gc, barrier)(" addr_for(start): " INTPTR_FORMAT " addr_for(last): " INTPTR_FORMAT, |
| 476 | p2i(addr_for((CardValue*) _committed[ind].start())), p2i(addr_for((CardValue*) _committed[ind].last()))); |
| 477 | |
| 478 | debug_only(verify_guard();) |
| 479 | } |
| 480 | |
| 481 | bool PSCardTable::resize_commit_uncommit(int changed_region, |
| 482 | MemRegion new_region) { |
| 483 | bool result = false; |
| 484 | // Commit new or uncommit old pages, if necessary. |
| 485 | MemRegion cur_committed = _committed[changed_region]; |
| 486 | assert(_covered[changed_region].end() == new_region.end(), |
| 487 | "The ends of the regions are expected to match" ); |
| 488 | // Extend the start of this _committed region to |
| 489 | // to cover the start of any previous _committed region. |
| 490 | // This forms overlapping regions, but never interior regions. |
| 491 | HeapWord* min_prev_start = lowest_prev_committed_start(changed_region); |
| 492 | if (min_prev_start < cur_committed.start()) { |
| 493 | // Only really need to set start of "cur_committed" to |
| 494 | // the new start (min_prev_start) but assertion checking code |
| 495 | // below use cur_committed.end() so make it correct. |
| 496 | MemRegion new_committed = |
| 497 | MemRegion(min_prev_start, cur_committed.end()); |
| 498 | cur_committed = new_committed; |
| 499 | } |
| 500 | #ifdef ASSERT |
| 501 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 502 | assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()), |
| 503 | "Starts should have proper alignment" ); |
| 504 | #endif |
| 505 | |
| 506 | CardValue* new_start = byte_for(new_region.start()); |
| 507 | // Round down because this is for the start address |
| 508 | HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size()); |
| 509 | // The guard page is always committed and should not be committed over. |
| 510 | // This method is used in cases where the generation is growing toward |
| 511 | // lower addresses but the guard region is still at the end of the |
| 512 | // card table. That still makes sense when looking for writes |
| 513 | // off the end of the card table. |
| 514 | if (new_start_aligned < cur_committed.start()) { |
| 515 | // Expand the committed region |
| 516 | // |
| 517 | // Case A |
| 518 | // |+ guard +| |
| 519 | // |+ cur committed +++++++++| |
| 520 | // |+ new committed +++++++++++++++++| |
| 521 | // |
| 522 | // Case B |
| 523 | // |+ guard +| |
| 524 | // |+ cur committed +| |
| 525 | // |+ new committed +++++++| |
| 526 | // |
| 527 | // These are not expected because the calculation of the |
| 528 | // cur committed region and the new committed region |
| 529 | // share the same end for the covered region. |
| 530 | // Case C |
| 531 | // |+ guard +| |
| 532 | // |+ cur committed +| |
| 533 | // |+ new committed +++++++++++++++++| |
| 534 | // Case D |
| 535 | // |+ guard +| |
| 536 | // |+ cur committed +++++++++++| |
| 537 | // |+ new committed +++++++| |
| 538 | |
| 539 | HeapWord* new_end_for_commit = |
| 540 | MIN2(cur_committed.end(), _guard_region.start()); |
| 541 | if(new_start_aligned < new_end_for_commit) { |
| 542 | MemRegion new_committed = |
| 543 | MemRegion(new_start_aligned, new_end_for_commit); |
| 544 | os::commit_memory_or_exit((char*)new_committed.start(), |
| 545 | new_committed.byte_size(), !ExecMem, |
| 546 | "card table expansion" ); |
| 547 | } |
| 548 | result = true; |
| 549 | } else if (new_start_aligned > cur_committed.start()) { |
| 550 | // Shrink the committed region |
| 551 | #if 0 // uncommitting space is currently unsafe because of the interactions |
| 552 | // of growing and shrinking regions. One region A can uncommit space |
| 553 | // that it owns but which is being used by another region B (maybe). |
| 554 | // Region B has not committed the space because it was already |
| 555 | // committed by region A. |
| 556 | MemRegion uncommit_region = committed_unique_to_self(changed_region, |
| 557 | MemRegion(cur_committed.start(), new_start_aligned)); |
| 558 | if (!uncommit_region.is_empty()) { |
| 559 | if (!os::uncommit_memory((char*)uncommit_region.start(), |
| 560 | uncommit_region.byte_size())) { |
| 561 | // If the uncommit fails, ignore it. Let the |
| 562 | // committed table resizing go even though the committed |
| 563 | // table will over state the committed space. |
| 564 | } |
| 565 | } |
| 566 | #else |
| 567 | assert(!result, "Should be false with current workaround" ); |
| 568 | #endif |
| 569 | } |
| 570 | assert(_committed[changed_region].end() == cur_committed.end(), |
| 571 | "end should not change" ); |
| 572 | return result; |
| 573 | } |
| 574 | |
| 575 | void PSCardTable::resize_update_committed_table(int changed_region, |
| 576 | MemRegion new_region) { |
| 577 | |
| 578 | CardValue* new_start = byte_for(new_region.start()); |
| 579 | // Set the new start of the committed region |
| 580 | HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size()); |
| 581 | MemRegion new_committed = MemRegion(new_start_aligned, |
| 582 | _committed[changed_region].end()); |
| 583 | _committed[changed_region] = new_committed; |
| 584 | _committed[changed_region].set_start(new_start_aligned); |
| 585 | } |
| 586 | |
| 587 | void PSCardTable::resize_update_card_table_entries(int changed_region, |
| 588 | MemRegion new_region) { |
| 589 | debug_only(verify_guard();) |
| 590 | MemRegion original_covered = _covered[changed_region]; |
| 591 | // Initialize the card entries. Only consider the |
| 592 | // region covered by the card table (_whole_heap) |
| 593 | CardValue* entry; |
| 594 | if (new_region.start() < _whole_heap.start()) { |
| 595 | entry = byte_for(_whole_heap.start()); |
| 596 | } else { |
| 597 | entry = byte_for(new_region.start()); |
| 598 | } |
| 599 | CardValue* end = byte_for(original_covered.start()); |
| 600 | // If _whole_heap starts at the original covered regions start, |
| 601 | // this loop will not execute. |
| 602 | while (entry < end) { *entry++ = clean_card; } |
| 603 | } |
| 604 | |
| 605 | void PSCardTable::resize_update_covered_table(int changed_region, |
| 606 | MemRegion new_region) { |
| 607 | // Update the covered region |
| 608 | _covered[changed_region].set_start(new_region.start()); |
| 609 | _covered[changed_region].set_word_size(new_region.word_size()); |
| 610 | |
| 611 | // reorder regions. There should only be at most 1 out |
| 612 | // of order. |
| 613 | for (int i = _cur_covered_regions-1 ; i > 0; i--) { |
| 614 | if (_covered[i].start() < _covered[i-1].start()) { |
| 615 | MemRegion covered_mr = _covered[i-1]; |
| 616 | _covered[i-1] = _covered[i]; |
| 617 | _covered[i] = covered_mr; |
| 618 | MemRegion committed_mr = _committed[i-1]; |
| 619 | _committed[i-1] = _committed[i]; |
| 620 | _committed[i] = committed_mr; |
| 621 | break; |
| 622 | } |
| 623 | } |
| 624 | #ifdef ASSERT |
| 625 | for (int m = 0; m < _cur_covered_regions-1; m++) { |
| 626 | assert(_covered[m].start() <= _covered[m+1].start(), |
| 627 | "Covered regions out of order" ); |
| 628 | assert(_committed[m].start() <= _committed[m+1].start(), |
| 629 | "Committed regions out of order" ); |
| 630 | } |
| 631 | #endif |
| 632 | } |
| 633 | |
| 634 | // Returns the start of any committed region that is lower than |
| 635 | // the target committed region (index ind) and that intersects the |
| 636 | // target region. If none, return start of target region. |
| 637 | // |
| 638 | // ------------- |
| 639 | // | | |
| 640 | // ------------- |
| 641 | // ------------ |
| 642 | // | target | |
| 643 | // ------------ |
| 644 | // ------------- |
| 645 | // | | |
| 646 | // ------------- |
| 647 | // ^ returns this |
| 648 | // |
| 649 | // ------------- |
| 650 | // | | |
| 651 | // ------------- |
| 652 | // ------------ |
| 653 | // | target | |
| 654 | // ------------ |
| 655 | // ------------- |
| 656 | // | | |
| 657 | // ------------- |
| 658 | // ^ returns this |
| 659 | |
| 660 | HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const { |
| 661 | assert(_cur_covered_regions >= 0, "Expecting at least on region" ); |
| 662 | HeapWord* min_start = _committed[ind].start(); |
| 663 | for (int j = 0; j < ind; j++) { |
| 664 | HeapWord* this_start = _committed[j].start(); |
| 665 | if ((this_start < min_start) && |
| 666 | !(_committed[j].intersection(_committed[ind])).is_empty()) { |
| 667 | min_start = this_start; |
| 668 | } |
| 669 | } |
| 670 | return min_start; |
| 671 | } |
| 672 | |
| 673 | bool PSCardTable::is_in_young(oop obj) const { |
| 674 | return ParallelScavengeHeap::heap()->is_in_young(obj); |
| 675 | } |
| 676 | |