| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OPTO_BLOCK_HPP |
| 26 | #define SHARE_OPTO_BLOCK_HPP |
| 27 | |
| 28 | #include "opto/multnode.hpp" |
| 29 | #include "opto/node.hpp" |
| 30 | #include "opto/phase.hpp" |
| 31 | |
| 32 | // Optimization - Graph Style |
| 33 | |
| 34 | class Block; |
| 35 | class CFGLoop; |
| 36 | class MachCallNode; |
| 37 | class Matcher; |
| 38 | class RootNode; |
| 39 | class VectorSet; |
| 40 | class PhaseChaitin; |
| 41 | struct Tarjan; |
| 42 | |
| 43 | //------------------------------Block_Array------------------------------------ |
| 44 | // Map dense integer indices to Blocks. Uses classic doubling-array trick. |
| 45 | // Abstractly provides an infinite array of Block*'s, initialized to NULL. |
| 46 | // Note that the constructor just zeros things, and since I use Arena |
| 47 | // allocation I do not need a destructor to reclaim storage. |
| 48 | class Block_Array : public ResourceObj { |
| 49 | friend class VMStructs; |
| 50 | uint _size; // allocated size, as opposed to formal limit |
| 51 | debug_only(uint _limit;) // limit to formal domain |
| 52 | Arena *_arena; // Arena to allocate in |
| 53 | protected: |
| 54 | Block **_blocks; |
| 55 | void grow( uint i ); // Grow array node to fit |
| 56 | |
| 57 | public: |
| 58 | Block_Array(Arena *a) : _size(OptoBlockListSize), _arena(a) { |
| 59 | debug_only(_limit=0); |
| 60 | _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize ); |
| 61 | for( int i = 0; i < OptoBlockListSize; i++ ) { |
| 62 | _blocks[i] = NULL; |
| 63 | } |
| 64 | } |
| 65 | Block *lookup( uint i ) const // Lookup, or NULL for not mapped |
| 66 | { return (i<Max()) ? _blocks[i] : (Block*)NULL; } |
| 67 | Block *operator[] ( uint i ) const // Lookup, or assert for not mapped |
| 68 | { assert( i < Max(), "oob" ); return _blocks[i]; } |
| 69 | // Extend the mapping: index i maps to Block *n. |
| 70 | void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; } |
| 71 | uint Max() const { debug_only(return _limit); return _size; } |
| 72 | }; |
| 73 | |
| 74 | |
| 75 | class Block_List : public Block_Array { |
| 76 | friend class VMStructs; |
| 77 | public: |
| 78 | uint _cnt; |
| 79 | Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {} |
| 80 | void push( Block *b ) { map(_cnt++,b); } |
| 81 | Block *pop() { return _blocks[--_cnt]; } |
| 82 | Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;} |
| 83 | void remove( uint i ); |
| 84 | void insert( uint i, Block *n ); |
| 85 | uint size() const { return _cnt; } |
| 86 | void reset() { _cnt = 0; } |
| 87 | void print(); |
| 88 | }; |
| 89 | |
| 90 | |
| 91 | class CFGElement : public ResourceObj { |
| 92 | friend class VMStructs; |
| 93 | public: |
| 94 | double _freq; // Execution frequency (estimate) |
| 95 | |
| 96 | CFGElement() : _freq(0.0) {} |
| 97 | virtual bool is_block() { return false; } |
| 98 | virtual bool is_loop() { return false; } |
| 99 | Block* as_Block() { assert(is_block(), "must be block" ); return (Block*)this; } |
| 100 | CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop" ); return (CFGLoop*)this; } |
| 101 | }; |
| 102 | |
| 103 | //------------------------------Block------------------------------------------ |
| 104 | // This class defines a Basic Block. |
| 105 | // Basic blocks are used during the output routines, and are not used during |
| 106 | // any optimization pass. They are created late in the game. |
| 107 | class Block : public CFGElement { |
| 108 | friend class VMStructs; |
| 109 | |
| 110 | private: |
| 111 | // Nodes in this block, in order |
| 112 | Node_List _nodes; |
| 113 | |
| 114 | public: |
| 115 | |
| 116 | // Get the node at index 'at_index', if 'at_index' is out of bounds return NULL |
| 117 | Node* get_node(uint at_index) const { |
| 118 | return _nodes[at_index]; |
| 119 | } |
| 120 | |
| 121 | // Get the number of nodes in this block |
| 122 | uint number_of_nodes() const { |
| 123 | return _nodes.size(); |
| 124 | } |
| 125 | |
| 126 | // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased |
| 127 | void map_node(Node* node, uint to_index) { |
| 128 | _nodes.map(to_index, node); |
| 129 | } |
| 130 | |
| 131 | // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash |
| 132 | void insert_node(Node* node, uint at_index) { |
| 133 | _nodes.insert(at_index, node); |
| 134 | } |
| 135 | |
| 136 | // Remove a node at index 'at_index' |
| 137 | void remove_node(uint at_index) { |
| 138 | _nodes.remove(at_index); |
| 139 | } |
| 140 | |
| 141 | // Push a node 'node' onto the node list |
| 142 | void push_node(Node* node) { |
| 143 | _nodes.push(node); |
| 144 | } |
| 145 | |
| 146 | // Pop the last node off the node list |
| 147 | Node* pop_node() { |
| 148 | return _nodes.pop(); |
| 149 | } |
| 150 | |
| 151 | // Basic blocks have a Node which defines Control for all Nodes pinned in |
| 152 | // this block. This Node is a RegionNode. Exception-causing Nodes |
| 153 | // (division, subroutines) and Phi functions are always pinned. Later, |
| 154 | // every Node will get pinned to some block. |
| 155 | Node *head() const { return get_node(0); } |
| 156 | |
| 157 | // CAUTION: num_preds() is ONE based, so that predecessor numbers match |
| 158 | // input edges to Regions and Phis. |
| 159 | uint num_preds() const { return head()->req(); } |
| 160 | Node *pred(uint i) const { return head()->in(i); } |
| 161 | |
| 162 | // Array of successor blocks, same size as projs array |
| 163 | Block_Array _succs; |
| 164 | |
| 165 | // Basic blocks have some number of Nodes which split control to all |
| 166 | // following blocks. These Nodes are always Projections. The field in |
| 167 | // the Projection and the block-ending Node determine which Block follows. |
| 168 | uint _num_succs; |
| 169 | |
| 170 | // Basic blocks also carry all sorts of good old fashioned DFS information |
| 171 | // used to find loops, loop nesting depth, dominators, etc. |
| 172 | uint _pre_order; // Pre-order DFS number |
| 173 | |
| 174 | // Dominator tree |
| 175 | uint _dom_depth; // Depth in dominator tree for fast LCA |
| 176 | Block* _idom; // Immediate dominator block |
| 177 | |
| 178 | CFGLoop *_loop; // Loop to which this block belongs |
| 179 | uint _rpo; // Number in reverse post order walk |
| 180 | |
| 181 | virtual bool is_block() { return true; } |
| 182 | float succ_prob(uint i); // return probability of i'th successor |
| 183 | int num_fall_throughs(); // How many fall-through candidate this block has |
| 184 | void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code |
| 185 | bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate |
| 186 | Block* lone_fall_through(); // Return lone fall-through Block or null |
| 187 | |
| 188 | Block* dom_lca(Block* that); // Compute LCA in dominator tree. |
| 189 | |
| 190 | bool dominates(Block* that) { |
| 191 | int dom_diff = this->_dom_depth - that->_dom_depth; |
| 192 | if (dom_diff > 0) return false; |
| 193 | for (; dom_diff < 0; dom_diff++) that = that->_idom; |
| 194 | return this == that; |
| 195 | } |
| 196 | |
| 197 | // Report the alignment required by this block. Must be a power of 2. |
| 198 | // The previous block will insert nops to get this alignment. |
| 199 | uint code_alignment() const; |
| 200 | uint compute_loop_alignment(); |
| 201 | |
| 202 | // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies. |
| 203 | // It is currently also used to scale such frequencies relative to |
| 204 | // FreqCountInvocations relative to the old value of 1500. |
| 205 | #define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations) |
| 206 | |
| 207 | // Register Pressure (estimate) for Splitting heuristic |
| 208 | uint _reg_pressure; |
| 209 | uint _ihrp_index; |
| 210 | uint _freg_pressure; |
| 211 | uint _fhrp_index; |
| 212 | |
| 213 | // Mark and visited bits for an LCA calculation in insert_anti_dependences. |
| 214 | // Since they hold unique node indexes, they do not need reinitialization. |
| 215 | node_idx_t _raise_LCA_mark; |
| 216 | void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; } |
| 217 | node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; } |
| 218 | node_idx_t _raise_LCA_visited; |
| 219 | void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; } |
| 220 | node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; } |
| 221 | |
| 222 | // Estimated size in bytes of first instructions in a loop. |
| 223 | uint _first_inst_size; |
| 224 | uint first_inst_size() const { return _first_inst_size; } |
| 225 | void set_first_inst_size(uint s) { _first_inst_size = s; } |
| 226 | |
| 227 | // Compute the size of first instructions in this block. |
| 228 | uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra); |
| 229 | |
| 230 | // Compute alignment padding if the block needs it. |
| 231 | // Align a loop if loop's padding is less or equal to padding limit |
| 232 | // or the size of first instructions in the loop > padding. |
| 233 | uint alignment_padding(int current_offset) { |
| 234 | int block_alignment = code_alignment(); |
| 235 | int max_pad = block_alignment-relocInfo::addr_unit(); |
| 236 | if( max_pad > 0 ) { |
| 237 | assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "" ); |
| 238 | int current_alignment = current_offset & max_pad; |
| 239 | if( current_alignment != 0 ) { |
| 240 | uint padding = (block_alignment-current_alignment) & max_pad; |
| 241 | if( has_loop_alignment() && |
| 242 | padding > (uint)MaxLoopPad && |
| 243 | first_inst_size() <= padding ) { |
| 244 | return 0; |
| 245 | } |
| 246 | return padding; |
| 247 | } |
| 248 | } |
| 249 | return 0; |
| 250 | } |
| 251 | |
| 252 | // Connector blocks. Connector blocks are basic blocks devoid of |
| 253 | // instructions, but may have relevant non-instruction Nodes, such as |
| 254 | // Phis or MergeMems. Such blocks are discovered and marked during the |
| 255 | // RemoveEmpty phase, and elided during Output. |
| 256 | bool _connector; |
| 257 | void set_connector() { _connector = true; } |
| 258 | bool is_connector() const { return _connector; }; |
| 259 | |
| 260 | // Loop_alignment will be set for blocks which are at the top of loops. |
| 261 | // The block layout pass may rotate loops such that the loop head may not |
| 262 | // be the sequentially first block of the loop encountered in the linear |
| 263 | // list of blocks. If the layout pass is not run, loop alignment is set |
| 264 | // for each block which is the head of a loop. |
| 265 | uint _loop_alignment; |
| 266 | void set_loop_alignment(Block *loop_top) { |
| 267 | uint new_alignment = loop_top->compute_loop_alignment(); |
| 268 | if (new_alignment > _loop_alignment) { |
| 269 | _loop_alignment = new_alignment; |
| 270 | } |
| 271 | } |
| 272 | uint loop_alignment() const { return _loop_alignment; } |
| 273 | bool has_loop_alignment() const { return loop_alignment() > 0; } |
| 274 | |
| 275 | // Create a new Block with given head Node. |
| 276 | // Creates the (empty) predecessor arrays. |
| 277 | Block( Arena *a, Node *headnode ) |
| 278 | : CFGElement(), |
| 279 | _nodes(a), |
| 280 | _succs(a), |
| 281 | _num_succs(0), |
| 282 | _pre_order(0), |
| 283 | _idom(0), |
| 284 | _loop(NULL), |
| 285 | _reg_pressure(0), |
| 286 | _ihrp_index(1), |
| 287 | _freg_pressure(0), |
| 288 | _fhrp_index(1), |
| 289 | _raise_LCA_mark(0), |
| 290 | _raise_LCA_visited(0), |
| 291 | _first_inst_size(999999), |
| 292 | _connector(false), |
| 293 | _loop_alignment(0) { |
| 294 | _nodes.push(headnode); |
| 295 | } |
| 296 | |
| 297 | // Index of 'end' Node |
| 298 | uint end_idx() const { |
| 299 | // %%%%% add a proj after every goto |
| 300 | // so (last->is_block_proj() != last) always, then simplify this code |
| 301 | // This will not give correct end_idx for block 0 when it only contains root. |
| 302 | int last_idx = _nodes.size() - 1; |
| 303 | Node *last = _nodes[last_idx]; |
| 304 | assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "" ); |
| 305 | return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs); |
| 306 | } |
| 307 | |
| 308 | // Basic blocks have a Node which ends them. This Node determines which |
| 309 | // basic block follows this one in the program flow. This Node is either an |
| 310 | // IfNode, a GotoNode, a JmpNode, or a ReturnNode. |
| 311 | Node *end() const { return _nodes[end_idx()]; } |
| 312 | |
| 313 | // Add an instruction to an existing block. It must go after the head |
| 314 | // instruction and before the end instruction. |
| 315 | void add_inst( Node *n ) { insert_node(n, end_idx()); } |
| 316 | // Find node in block. Fails if node not in block. |
| 317 | uint find_node( const Node *n ) const; |
| 318 | // Find and remove n from block list |
| 319 | void find_remove( const Node *n ); |
| 320 | // Check wether the node is in the block. |
| 321 | bool contains (const Node *n) const; |
| 322 | |
| 323 | // Return the empty status of a block |
| 324 | enum { not_empty, empty_with_goto, completely_empty }; |
| 325 | int is_Empty() const; |
| 326 | |
| 327 | // Forward through connectors |
| 328 | Block* non_connector() { |
| 329 | Block* s = this; |
| 330 | while (s->is_connector()) { |
| 331 | s = s->_succs[0]; |
| 332 | } |
| 333 | return s; |
| 334 | } |
| 335 | |
| 336 | // Return true if b is a successor of this block |
| 337 | bool has_successor(Block* b) const { |
| 338 | for (uint i = 0; i < _num_succs; i++ ) { |
| 339 | if (non_connector_successor(i) == b) { |
| 340 | return true; |
| 341 | } |
| 342 | } |
| 343 | return false; |
| 344 | } |
| 345 | |
| 346 | // Successor block, after forwarding through connectors |
| 347 | Block* non_connector_successor(int i) const { |
| 348 | return _succs[i]->non_connector(); |
| 349 | } |
| 350 | |
| 351 | // Examine block's code shape to predict if it is not commonly executed. |
| 352 | bool has_uncommon_code() const; |
| 353 | |
| 354 | #ifndef PRODUCT |
| 355 | // Debugging print of basic block |
| 356 | void dump_bidx(const Block* orig, outputStream* st = tty) const; |
| 357 | void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const; |
| 358 | void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const; |
| 359 | void dump() const; |
| 360 | void dump(const PhaseCFG* cfg) const; |
| 361 | #endif |
| 362 | }; |
| 363 | |
| 364 | |
| 365 | //------------------------------PhaseCFG--------------------------------------- |
| 366 | // Build an array of Basic Block pointers, one per Node. |
| 367 | class PhaseCFG : public Phase { |
| 368 | friend class VMStructs; |
| 369 | private: |
| 370 | // Root of whole program |
| 371 | RootNode* _root; |
| 372 | |
| 373 | // The block containing the root node |
| 374 | Block* _root_block; |
| 375 | |
| 376 | // List of basic blocks that are created during CFG creation |
| 377 | Block_List _blocks; |
| 378 | |
| 379 | // Count of basic blocks |
| 380 | uint _number_of_blocks; |
| 381 | |
| 382 | // Arena for the blocks to be stored in |
| 383 | Arena* _block_arena; |
| 384 | |
| 385 | // Info used for scheduling |
| 386 | PhaseChaitin* _regalloc; |
| 387 | |
| 388 | // Register pressure heuristic used? |
| 389 | bool _scheduling_for_pressure; |
| 390 | |
| 391 | // The matcher for this compilation |
| 392 | Matcher& _matcher; |
| 393 | |
| 394 | // Map nodes to owning basic block |
| 395 | Block_Array _node_to_block_mapping; |
| 396 | |
| 397 | // Loop from the root |
| 398 | CFGLoop* _root_loop; |
| 399 | |
| 400 | // Outmost loop frequency |
| 401 | double _outer_loop_frequency; |
| 402 | |
| 403 | // Per node latency estimation, valid only during GCM |
| 404 | GrowableArray<uint>* _node_latency; |
| 405 | |
| 406 | // Build a proper looking cfg. Return count of basic blocks |
| 407 | uint build_cfg(); |
| 408 | |
| 409 | // Build the dominator tree so that we know where we can move instructions |
| 410 | void build_dominator_tree(); |
| 411 | |
| 412 | // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions |
| 413 | void estimate_block_frequency(); |
| 414 | |
| 415 | // Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific |
| 416 | // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block. |
| 417 | // Move nodes to ensure correctness from GVN and also try to move nodes out of loops. |
| 418 | void global_code_motion(); |
| 419 | |
| 420 | // Schedule Nodes early in their basic blocks. |
| 421 | bool schedule_early(VectorSet &visited, Node_Stack &roots); |
| 422 | |
| 423 | // For each node, find the latest block it can be scheduled into |
| 424 | // and then select the cheapest block between the latest and earliest |
| 425 | // block to place the node. |
| 426 | void schedule_late(VectorSet &visited, Node_Stack &stack); |
| 427 | |
| 428 | // Compute the (backwards) latency of a node from a single use |
| 429 | int latency_from_use(Node *n, const Node *def, Node *use); |
| 430 | |
| 431 | // Compute the (backwards) latency of a node from the uses of this instruction |
| 432 | void partial_latency_of_defs(Node *n); |
| 433 | |
| 434 | // Compute the instruction global latency with a backwards walk |
| 435 | void compute_latencies_backwards(VectorSet &visited, Node_Stack &stack); |
| 436 | |
| 437 | // Pick a block between early and late that is a cheaper alternative |
| 438 | // to late. Helper for schedule_late. |
| 439 | Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self); |
| 440 | |
| 441 | bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t* recacl_pressure_nodes); |
| 442 | void set_next_call(Block* block, Node* n, VectorSet& next_call); |
| 443 | void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call); |
| 444 | |
| 445 | // Perform basic-block local scheduling |
| 446 | Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot, |
| 447 | intptr_t* recacl_pressure_nodes); |
| 448 | void adjust_register_pressure(Node* n, Block* block, intptr_t *recalc_pressure_nodes, bool finalize_mode); |
| 449 | |
| 450 | // Schedule a call next in the block |
| 451 | uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call); |
| 452 | |
| 453 | // Cleanup if any code lands between a Call and his Catch |
| 454 | void call_catch_cleanup(Block* block); |
| 455 | |
| 456 | Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx); |
| 457 | void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx); |
| 458 | |
| 459 | // Detect implicit-null-check opportunities. Basically, find NULL checks |
| 460 | // with suitable memory ops nearby. Use the memory op to do the NULL check. |
| 461 | // I can generate a memory op if there is not one nearby. |
| 462 | void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons); |
| 463 | |
| 464 | // Perform a Depth First Search (DFS). |
| 465 | // Setup 'vertex' as DFS to vertex mapping. |
| 466 | // Setup 'semi' as vertex to DFS mapping. |
| 467 | // Set 'parent' to DFS parent. |
| 468 | uint do_DFS(Tarjan* tarjan, uint rpo_counter); |
| 469 | |
| 470 | // Helper function to insert a node into a block |
| 471 | void schedule_node_into_block( Node *n, Block *b ); |
| 472 | |
| 473 | void replace_block_proj_ctrl( Node *n ); |
| 474 | |
| 475 | // Set the basic block for pinned Nodes |
| 476 | void schedule_pinned_nodes( VectorSet &visited ); |
| 477 | |
| 478 | // I'll need a few machine-specific GotoNodes. Clone from this one. |
| 479 | // Used when building the CFG and creating end nodes for blocks. |
| 480 | MachNode* _goto; |
| 481 | |
| 482 | Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false); |
| 483 | void verify_anti_dependences(Block* LCA, Node* load) const { |
| 484 | assert(LCA == get_block_for_node(load), "should already be scheduled" ); |
| 485 | const_cast<PhaseCFG*>(this)->insert_anti_dependences(LCA, load, true); |
| 486 | } |
| 487 | |
| 488 | bool move_to_next(Block* bx, uint b_index); |
| 489 | void move_to_end(Block* bx, uint b_index); |
| 490 | |
| 491 | void insert_goto_at(uint block_no, uint succ_no); |
| 492 | |
| 493 | // Check for NeverBranch at block end. This needs to become a GOTO to the |
| 494 | // true target. NeverBranch are treated as a conditional branch that always |
| 495 | // goes the same direction for most of the optimizer and are used to give a |
| 496 | // fake exit path to infinite loops. At this late stage they need to turn |
| 497 | // into Goto's so that when you enter the infinite loop you indeed hang. |
| 498 | void convert_NeverBranch_to_Goto(Block *b); |
| 499 | |
| 500 | CFGLoop* create_loop_tree(); |
| 501 | bool is_dominator(Node* dom_node, Node* node); |
| 502 | |
| 503 | #ifndef PRODUCT |
| 504 | bool _trace_opto_pipelining; // tracing flag |
| 505 | #endif |
| 506 | |
| 507 | public: |
| 508 | PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher); |
| 509 | |
| 510 | void set_latency_for_node(Node* node, int latency) { |
| 511 | _node_latency->at_put_grow(node->_idx, latency); |
| 512 | } |
| 513 | |
| 514 | uint get_latency_for_node(Node* node) { |
| 515 | return _node_latency->at_grow(node->_idx); |
| 516 | } |
| 517 | |
| 518 | // Get the outer most frequency |
| 519 | double get_outer_loop_frequency() const { |
| 520 | return _outer_loop_frequency; |
| 521 | } |
| 522 | |
| 523 | // Get the root node of the CFG |
| 524 | RootNode* get_root_node() const { |
| 525 | return _root; |
| 526 | } |
| 527 | |
| 528 | // Get the block of the root node |
| 529 | Block* get_root_block() const { |
| 530 | return _root_block; |
| 531 | } |
| 532 | |
| 533 | // Add a block at a position and moves the later ones one step |
| 534 | void add_block_at(uint pos, Block* block) { |
| 535 | _blocks.insert(pos, block); |
| 536 | _number_of_blocks++; |
| 537 | } |
| 538 | |
| 539 | // Adds a block to the top of the block list |
| 540 | void add_block(Block* block) { |
| 541 | _blocks.push(block); |
| 542 | _number_of_blocks++; |
| 543 | } |
| 544 | |
| 545 | // Clear the list of blocks |
| 546 | void clear_blocks() { |
| 547 | _blocks.reset(); |
| 548 | _number_of_blocks = 0; |
| 549 | } |
| 550 | |
| 551 | // Get the block at position pos in _blocks |
| 552 | Block* get_block(uint pos) const { |
| 553 | return _blocks[pos]; |
| 554 | } |
| 555 | |
| 556 | // Number of blocks |
| 557 | uint number_of_blocks() const { |
| 558 | return _number_of_blocks; |
| 559 | } |
| 560 | |
| 561 | // set which block this node should reside in |
| 562 | void map_node_to_block(const Node* node, Block* block) { |
| 563 | _node_to_block_mapping.map(node->_idx, block); |
| 564 | } |
| 565 | |
| 566 | // removes the mapping from a node to a block |
| 567 | void unmap_node_from_block(const Node* node) { |
| 568 | _node_to_block_mapping.map(node->_idx, NULL); |
| 569 | } |
| 570 | |
| 571 | // get the block in which this node resides |
| 572 | Block* get_block_for_node(const Node* node) const { |
| 573 | return _node_to_block_mapping[node->_idx]; |
| 574 | } |
| 575 | |
| 576 | // does this node reside in a block; return true |
| 577 | bool has_block(const Node* node) const { |
| 578 | return (_node_to_block_mapping.lookup(node->_idx) != NULL); |
| 579 | } |
| 580 | |
| 581 | // Use frequency calculations and code shape to predict if the block |
| 582 | // is uncommon. |
| 583 | bool is_uncommon(const Block* block); |
| 584 | |
| 585 | #ifdef ASSERT |
| 586 | Unique_Node_List _raw_oops; |
| 587 | #endif |
| 588 | |
| 589 | // Do global code motion by first building dominator tree and estimate block frequency |
| 590 | // Returns true on success |
| 591 | bool do_global_code_motion(); |
| 592 | |
| 593 | // Compute the (backwards) latency of a node from the uses |
| 594 | void latency_from_uses(Node *n); |
| 595 | |
| 596 | // Set loop alignment |
| 597 | void set_loop_alignment(); |
| 598 | |
| 599 | // Remove empty basic blocks |
| 600 | void remove_empty_blocks(); |
| 601 | Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext); |
| 602 | void fixup_flow(); |
| 603 | |
| 604 | // Insert a node into a block at index and map the node to the block |
| 605 | void insert(Block *b, uint idx, Node *n) { |
| 606 | b->insert_node(n , idx); |
| 607 | map_node_to_block(n, b); |
| 608 | } |
| 609 | |
| 610 | // Check all nodes and postalloc_expand them if necessary. |
| 611 | void postalloc_expand(PhaseRegAlloc* _ra); |
| 612 | |
| 613 | #ifndef PRODUCT |
| 614 | bool trace_opto_pipelining() const { return _trace_opto_pipelining; } |
| 615 | |
| 616 | // Debugging print of CFG |
| 617 | void dump( ) const; // CFG only |
| 618 | void _dump_cfg( const Node *end, VectorSet &visited ) const; |
| 619 | void verify() const; |
| 620 | void dump_headers(); |
| 621 | #else |
| 622 | bool trace_opto_pipelining() const { return false; } |
| 623 | #endif |
| 624 | }; |
| 625 | |
| 626 | |
| 627 | //------------------------------UnionFind-------------------------------------- |
| 628 | // Map Block indices to a block-index for a cfg-cover. |
| 629 | // Array lookup in the optimized case. |
| 630 | class UnionFind : public ResourceObj { |
| 631 | uint _cnt, _max; |
| 632 | uint* _indices; |
| 633 | ReallocMark _nesting; // assertion check for reallocations |
| 634 | public: |
| 635 | UnionFind( uint max ); |
| 636 | void reset( uint max ); // Reset to identity map for [0..max] |
| 637 | |
| 638 | uint lookup( uint nidx ) const { |
| 639 | return _indices[nidx]; |
| 640 | } |
| 641 | uint operator[] (uint nidx) const { return lookup(nidx); } |
| 642 | |
| 643 | void map( uint from_idx, uint to_idx ) { |
| 644 | assert( from_idx < _cnt, "oob" ); |
| 645 | _indices[from_idx] = to_idx; |
| 646 | } |
| 647 | void extend( uint from_idx, uint to_idx ); |
| 648 | |
| 649 | uint Size() const { return _cnt; } |
| 650 | |
| 651 | uint Find( uint idx ) { |
| 652 | assert( idx < 65536, "Must fit into uint" ); |
| 653 | uint uf_idx = lookup(idx); |
| 654 | return (uf_idx == idx) ? uf_idx : Find_compress(idx); |
| 655 | } |
| 656 | uint Find_compress( uint idx ); |
| 657 | uint Find_const( uint idx ) const; |
| 658 | void Union( uint idx1, uint idx2 ); |
| 659 | |
| 660 | }; |
| 661 | |
| 662 | //----------------------------BlockProbPair--------------------------- |
| 663 | // Ordered pair of Node*. |
| 664 | class BlockProbPair { |
| 665 | protected: |
| 666 | Block* _target; // block target |
| 667 | double _prob; // probability of edge to block |
| 668 | public: |
| 669 | BlockProbPair() : _target(NULL), _prob(0.0) {} |
| 670 | BlockProbPair(Block* b, double p) : _target(b), _prob(p) {} |
| 671 | |
| 672 | Block* get_target() const { return _target; } |
| 673 | double get_prob() const { return _prob; } |
| 674 | }; |
| 675 | |
| 676 | //------------------------------CFGLoop------------------------------------------- |
| 677 | class CFGLoop : public CFGElement { |
| 678 | friend class VMStructs; |
| 679 | int _id; |
| 680 | int _depth; |
| 681 | CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null |
| 682 | CFGLoop *_sibling; // null terminated list |
| 683 | CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops |
| 684 | GrowableArray<CFGElement*> _members; // list of members of loop |
| 685 | GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities |
| 686 | double _exit_prob; // probability any loop exit is taken on a single loop iteration |
| 687 | void update_succ_freq(Block* b, double freq); |
| 688 | |
| 689 | public: |
| 690 | CFGLoop(int id) : |
| 691 | CFGElement(), |
| 692 | _id(id), |
| 693 | _depth(0), |
| 694 | _parent(NULL), |
| 695 | _sibling(NULL), |
| 696 | _child(NULL), |
| 697 | _exit_prob(1.0f) {} |
| 698 | CFGLoop* parent() { return _parent; } |
| 699 | void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg); |
| 700 | void add_member(CFGElement *s) { _members.push(s); } |
| 701 | void add_nested_loop(CFGLoop* cl); |
| 702 | Block* head() { |
| 703 | assert(_members.at(0)->is_block(), "head must be a block" ); |
| 704 | Block* hd = _members.at(0)->as_Block(); |
| 705 | assert(hd->_loop == this, "just checking" ); |
| 706 | assert(hd->head()->is_Loop(), "must begin with loop head node" ); |
| 707 | return hd; |
| 708 | } |
| 709 | Block* backedge_block(); // Return the block on the backedge of the loop (else NULL) |
| 710 | void compute_loop_depth(int depth); |
| 711 | void compute_freq(); // compute frequency with loop assuming head freq 1.0f |
| 712 | void scale_freq(); // scale frequency by loop trip count (including outer loops) |
| 713 | double outer_loop_freq() const; // frequency of outer loop |
| 714 | bool in_loop_nest(Block* b); |
| 715 | double trip_count() const { return 1.0 / _exit_prob; } |
| 716 | virtual bool is_loop() { return true; } |
| 717 | int id() { return _id; } |
| 718 | |
| 719 | #ifndef PRODUCT |
| 720 | void dump( ) const; |
| 721 | void dump_tree() const; |
| 722 | #endif |
| 723 | }; |
| 724 | |
| 725 | |
| 726 | //----------------------------------CFGEdge------------------------------------ |
| 727 | // A edge between two basic blocks that will be embodied by a branch or a |
| 728 | // fall-through. |
| 729 | class CFGEdge : public ResourceObj { |
| 730 | friend class VMStructs; |
| 731 | private: |
| 732 | Block * _from; // Source basic block |
| 733 | Block * _to; // Destination basic block |
| 734 | double _freq; // Execution frequency (estimate) |
| 735 | int _state; |
| 736 | bool _infrequent; |
| 737 | int _from_pct; |
| 738 | int _to_pct; |
| 739 | |
| 740 | // Private accessors |
| 741 | int from_pct() const { return _from_pct; } |
| 742 | int to_pct() const { return _to_pct; } |
| 743 | int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; } |
| 744 | int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; } |
| 745 | |
| 746 | public: |
| 747 | enum { |
| 748 | open, // initial edge state; unprocessed |
| 749 | connected, // edge used to connect two traces together |
| 750 | interior // edge is interior to trace (could be backedge) |
| 751 | }; |
| 752 | |
| 753 | CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) : |
| 754 | _from(from), _to(to), _freq(freq), |
| 755 | _state(open), _from_pct(from_pct), _to_pct(to_pct) { |
| 756 | _infrequent = from_infrequent() || to_infrequent(); |
| 757 | } |
| 758 | |
| 759 | double freq() const { return _freq; } |
| 760 | Block* from() const { return _from; } |
| 761 | Block* to () const { return _to; } |
| 762 | int infrequent() const { return _infrequent; } |
| 763 | int state() const { return _state; } |
| 764 | |
| 765 | void set_state(int state) { _state = state; } |
| 766 | |
| 767 | #ifndef PRODUCT |
| 768 | void dump( ) const; |
| 769 | #endif |
| 770 | }; |
| 771 | |
| 772 | |
| 773 | //-----------------------------------Trace------------------------------------- |
| 774 | // An ordered list of basic blocks. |
| 775 | class Trace : public ResourceObj { |
| 776 | private: |
| 777 | uint _id; // Unique Trace id (derived from initial block) |
| 778 | Block ** _next_list; // Array mapping index to next block |
| 779 | Block ** _prev_list; // Array mapping index to previous block |
| 780 | Block * _first; // First block in the trace |
| 781 | Block * _last; // Last block in the trace |
| 782 | |
| 783 | // Return the block that follows "b" in the trace. |
| 784 | Block * next(Block *b) const { return _next_list[b->_pre_order]; } |
| 785 | void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; } |
| 786 | |
| 787 | // Return the block that precedes "b" in the trace. |
| 788 | Block * prev(Block *b) const { return _prev_list[b->_pre_order]; } |
| 789 | void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; } |
| 790 | |
| 791 | // We've discovered a loop in this trace. Reset last to be "b", and first as |
| 792 | // the block following "b |
| 793 | void break_loop_after(Block *b) { |
| 794 | _last = b; |
| 795 | _first = next(b); |
| 796 | set_prev(_first, NULL); |
| 797 | set_next(_last, NULL); |
| 798 | } |
| 799 | |
| 800 | public: |
| 801 | |
| 802 | Trace(Block *b, Block **next_list, Block **prev_list) : |
| 803 | _id(b->_pre_order), |
| 804 | _next_list(next_list), |
| 805 | _prev_list(prev_list), |
| 806 | _first(b), |
| 807 | _last(b) { |
| 808 | set_next(b, NULL); |
| 809 | set_prev(b, NULL); |
| 810 | }; |
| 811 | |
| 812 | // Return the id number |
| 813 | uint id() const { return _id; } |
| 814 | void set_id(uint id) { _id = id; } |
| 815 | |
| 816 | // Return the first block in the trace |
| 817 | Block * first_block() const { return _first; } |
| 818 | |
| 819 | // Return the last block in the trace |
| 820 | Block * last_block() const { return _last; } |
| 821 | |
| 822 | // Insert a trace in the middle of this one after b |
| 823 | void insert_after(Block *b, Trace *tr) { |
| 824 | set_next(tr->last_block(), next(b)); |
| 825 | if (next(b) != NULL) { |
| 826 | set_prev(next(b), tr->last_block()); |
| 827 | } |
| 828 | |
| 829 | set_next(b, tr->first_block()); |
| 830 | set_prev(tr->first_block(), b); |
| 831 | |
| 832 | if (b == _last) { |
| 833 | _last = tr->last_block(); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | void insert_before(Block *b, Trace *tr) { |
| 838 | Block *p = prev(b); |
| 839 | assert(p != NULL, "use append instead" ); |
| 840 | insert_after(p, tr); |
| 841 | } |
| 842 | |
| 843 | // Append another trace to this one. |
| 844 | void append(Trace *tr) { |
| 845 | insert_after(_last, tr); |
| 846 | } |
| 847 | |
| 848 | // Append a block at the end of this trace |
| 849 | void append(Block *b) { |
| 850 | set_next(_last, b); |
| 851 | set_prev(b, _last); |
| 852 | _last = b; |
| 853 | } |
| 854 | |
| 855 | // Adjust the the blocks in this trace |
| 856 | void fixup_blocks(PhaseCFG &cfg); |
| 857 | bool backedge(CFGEdge *e); |
| 858 | |
| 859 | #ifndef PRODUCT |
| 860 | void dump( ) const; |
| 861 | #endif |
| 862 | }; |
| 863 | |
| 864 | //------------------------------PhaseBlockLayout------------------------------- |
| 865 | // Rearrange blocks into some canonical order, based on edges and their frequencies |
| 866 | class PhaseBlockLayout : public Phase { |
| 867 | friend class VMStructs; |
| 868 | PhaseCFG &_cfg; // Control flow graph |
| 869 | |
| 870 | GrowableArray<CFGEdge *> *edges; |
| 871 | Trace **traces; |
| 872 | Block **next; |
| 873 | Block **prev; |
| 874 | UnionFind *uf; |
| 875 | |
| 876 | // Given a block, find its encompassing Trace |
| 877 | Trace * trace(Block *b) { |
| 878 | return traces[uf->Find_compress(b->_pre_order)]; |
| 879 | } |
| 880 | public: |
| 881 | PhaseBlockLayout(PhaseCFG &cfg); |
| 882 | |
| 883 | void find_edges(); |
| 884 | void grow_traces(); |
| 885 | void merge_traces(bool loose_connections); |
| 886 | void reorder_traces(int count); |
| 887 | void union_traces(Trace* from, Trace* to); |
| 888 | }; |
| 889 | |
| 890 | #endif // SHARE_OPTO_BLOCK_HPP |
| 891 | |