1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OPTO_BLOCK_HPP |
26 | #define SHARE_OPTO_BLOCK_HPP |
27 | |
28 | #include "opto/multnode.hpp" |
29 | #include "opto/node.hpp" |
30 | #include "opto/phase.hpp" |
31 | |
32 | // Optimization - Graph Style |
33 | |
34 | class Block; |
35 | class CFGLoop; |
36 | class MachCallNode; |
37 | class Matcher; |
38 | class RootNode; |
39 | class VectorSet; |
40 | class PhaseChaitin; |
41 | struct Tarjan; |
42 | |
43 | //------------------------------Block_Array------------------------------------ |
44 | // Map dense integer indices to Blocks. Uses classic doubling-array trick. |
45 | // Abstractly provides an infinite array of Block*'s, initialized to NULL. |
46 | // Note that the constructor just zeros things, and since I use Arena |
47 | // allocation I do not need a destructor to reclaim storage. |
48 | class Block_Array : public ResourceObj { |
49 | friend class VMStructs; |
50 | uint _size; // allocated size, as opposed to formal limit |
51 | debug_only(uint _limit;) // limit to formal domain |
52 | Arena *_arena; // Arena to allocate in |
53 | protected: |
54 | Block **_blocks; |
55 | void grow( uint i ); // Grow array node to fit |
56 | |
57 | public: |
58 | Block_Array(Arena *a) : _size(OptoBlockListSize), _arena(a) { |
59 | debug_only(_limit=0); |
60 | _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize ); |
61 | for( int i = 0; i < OptoBlockListSize; i++ ) { |
62 | _blocks[i] = NULL; |
63 | } |
64 | } |
65 | Block *lookup( uint i ) const // Lookup, or NULL for not mapped |
66 | { return (i<Max()) ? _blocks[i] : (Block*)NULL; } |
67 | Block *operator[] ( uint i ) const // Lookup, or assert for not mapped |
68 | { assert( i < Max(), "oob" ); return _blocks[i]; } |
69 | // Extend the mapping: index i maps to Block *n. |
70 | void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; } |
71 | uint Max() const { debug_only(return _limit); return _size; } |
72 | }; |
73 | |
74 | |
75 | class Block_List : public Block_Array { |
76 | friend class VMStructs; |
77 | public: |
78 | uint _cnt; |
79 | Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {} |
80 | void push( Block *b ) { map(_cnt++,b); } |
81 | Block *pop() { return _blocks[--_cnt]; } |
82 | Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;} |
83 | void remove( uint i ); |
84 | void insert( uint i, Block *n ); |
85 | uint size() const { return _cnt; } |
86 | void reset() { _cnt = 0; } |
87 | void print(); |
88 | }; |
89 | |
90 | |
91 | class CFGElement : public ResourceObj { |
92 | friend class VMStructs; |
93 | public: |
94 | double _freq; // Execution frequency (estimate) |
95 | |
96 | CFGElement() : _freq(0.0) {} |
97 | virtual bool is_block() { return false; } |
98 | virtual bool is_loop() { return false; } |
99 | Block* as_Block() { assert(is_block(), "must be block" ); return (Block*)this; } |
100 | CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop" ); return (CFGLoop*)this; } |
101 | }; |
102 | |
103 | //------------------------------Block------------------------------------------ |
104 | // This class defines a Basic Block. |
105 | // Basic blocks are used during the output routines, and are not used during |
106 | // any optimization pass. They are created late in the game. |
107 | class Block : public CFGElement { |
108 | friend class VMStructs; |
109 | |
110 | private: |
111 | // Nodes in this block, in order |
112 | Node_List _nodes; |
113 | |
114 | public: |
115 | |
116 | // Get the node at index 'at_index', if 'at_index' is out of bounds return NULL |
117 | Node* get_node(uint at_index) const { |
118 | return _nodes[at_index]; |
119 | } |
120 | |
121 | // Get the number of nodes in this block |
122 | uint number_of_nodes() const { |
123 | return _nodes.size(); |
124 | } |
125 | |
126 | // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased |
127 | void map_node(Node* node, uint to_index) { |
128 | _nodes.map(to_index, node); |
129 | } |
130 | |
131 | // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash |
132 | void insert_node(Node* node, uint at_index) { |
133 | _nodes.insert(at_index, node); |
134 | } |
135 | |
136 | // Remove a node at index 'at_index' |
137 | void remove_node(uint at_index) { |
138 | _nodes.remove(at_index); |
139 | } |
140 | |
141 | // Push a node 'node' onto the node list |
142 | void push_node(Node* node) { |
143 | _nodes.push(node); |
144 | } |
145 | |
146 | // Pop the last node off the node list |
147 | Node* pop_node() { |
148 | return _nodes.pop(); |
149 | } |
150 | |
151 | // Basic blocks have a Node which defines Control for all Nodes pinned in |
152 | // this block. This Node is a RegionNode. Exception-causing Nodes |
153 | // (division, subroutines) and Phi functions are always pinned. Later, |
154 | // every Node will get pinned to some block. |
155 | Node *head() const { return get_node(0); } |
156 | |
157 | // CAUTION: num_preds() is ONE based, so that predecessor numbers match |
158 | // input edges to Regions and Phis. |
159 | uint num_preds() const { return head()->req(); } |
160 | Node *pred(uint i) const { return head()->in(i); } |
161 | |
162 | // Array of successor blocks, same size as projs array |
163 | Block_Array _succs; |
164 | |
165 | // Basic blocks have some number of Nodes which split control to all |
166 | // following blocks. These Nodes are always Projections. The field in |
167 | // the Projection and the block-ending Node determine which Block follows. |
168 | uint _num_succs; |
169 | |
170 | // Basic blocks also carry all sorts of good old fashioned DFS information |
171 | // used to find loops, loop nesting depth, dominators, etc. |
172 | uint _pre_order; // Pre-order DFS number |
173 | |
174 | // Dominator tree |
175 | uint _dom_depth; // Depth in dominator tree for fast LCA |
176 | Block* _idom; // Immediate dominator block |
177 | |
178 | CFGLoop *_loop; // Loop to which this block belongs |
179 | uint _rpo; // Number in reverse post order walk |
180 | |
181 | virtual bool is_block() { return true; } |
182 | float succ_prob(uint i); // return probability of i'th successor |
183 | int num_fall_throughs(); // How many fall-through candidate this block has |
184 | void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code |
185 | bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate |
186 | Block* lone_fall_through(); // Return lone fall-through Block or null |
187 | |
188 | Block* dom_lca(Block* that); // Compute LCA in dominator tree. |
189 | |
190 | bool dominates(Block* that) { |
191 | int dom_diff = this->_dom_depth - that->_dom_depth; |
192 | if (dom_diff > 0) return false; |
193 | for (; dom_diff < 0; dom_diff++) that = that->_idom; |
194 | return this == that; |
195 | } |
196 | |
197 | // Report the alignment required by this block. Must be a power of 2. |
198 | // The previous block will insert nops to get this alignment. |
199 | uint code_alignment() const; |
200 | uint compute_loop_alignment(); |
201 | |
202 | // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies. |
203 | // It is currently also used to scale such frequencies relative to |
204 | // FreqCountInvocations relative to the old value of 1500. |
205 | #define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations) |
206 | |
207 | // Register Pressure (estimate) for Splitting heuristic |
208 | uint _reg_pressure; |
209 | uint _ihrp_index; |
210 | uint _freg_pressure; |
211 | uint _fhrp_index; |
212 | |
213 | // Mark and visited bits for an LCA calculation in insert_anti_dependences. |
214 | // Since they hold unique node indexes, they do not need reinitialization. |
215 | node_idx_t _raise_LCA_mark; |
216 | void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; } |
217 | node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; } |
218 | node_idx_t _raise_LCA_visited; |
219 | void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; } |
220 | node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; } |
221 | |
222 | // Estimated size in bytes of first instructions in a loop. |
223 | uint _first_inst_size; |
224 | uint first_inst_size() const { return _first_inst_size; } |
225 | void set_first_inst_size(uint s) { _first_inst_size = s; } |
226 | |
227 | // Compute the size of first instructions in this block. |
228 | uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra); |
229 | |
230 | // Compute alignment padding if the block needs it. |
231 | // Align a loop if loop's padding is less or equal to padding limit |
232 | // or the size of first instructions in the loop > padding. |
233 | uint alignment_padding(int current_offset) { |
234 | int block_alignment = code_alignment(); |
235 | int max_pad = block_alignment-relocInfo::addr_unit(); |
236 | if( max_pad > 0 ) { |
237 | assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "" ); |
238 | int current_alignment = current_offset & max_pad; |
239 | if( current_alignment != 0 ) { |
240 | uint padding = (block_alignment-current_alignment) & max_pad; |
241 | if( has_loop_alignment() && |
242 | padding > (uint)MaxLoopPad && |
243 | first_inst_size() <= padding ) { |
244 | return 0; |
245 | } |
246 | return padding; |
247 | } |
248 | } |
249 | return 0; |
250 | } |
251 | |
252 | // Connector blocks. Connector blocks are basic blocks devoid of |
253 | // instructions, but may have relevant non-instruction Nodes, such as |
254 | // Phis or MergeMems. Such blocks are discovered and marked during the |
255 | // RemoveEmpty phase, and elided during Output. |
256 | bool _connector; |
257 | void set_connector() { _connector = true; } |
258 | bool is_connector() const { return _connector; }; |
259 | |
260 | // Loop_alignment will be set for blocks which are at the top of loops. |
261 | // The block layout pass may rotate loops such that the loop head may not |
262 | // be the sequentially first block of the loop encountered in the linear |
263 | // list of blocks. If the layout pass is not run, loop alignment is set |
264 | // for each block which is the head of a loop. |
265 | uint _loop_alignment; |
266 | void set_loop_alignment(Block *loop_top) { |
267 | uint new_alignment = loop_top->compute_loop_alignment(); |
268 | if (new_alignment > _loop_alignment) { |
269 | _loop_alignment = new_alignment; |
270 | } |
271 | } |
272 | uint loop_alignment() const { return _loop_alignment; } |
273 | bool has_loop_alignment() const { return loop_alignment() > 0; } |
274 | |
275 | // Create a new Block with given head Node. |
276 | // Creates the (empty) predecessor arrays. |
277 | Block( Arena *a, Node *headnode ) |
278 | : CFGElement(), |
279 | _nodes(a), |
280 | _succs(a), |
281 | _num_succs(0), |
282 | _pre_order(0), |
283 | _idom(0), |
284 | _loop(NULL), |
285 | _reg_pressure(0), |
286 | _ihrp_index(1), |
287 | _freg_pressure(0), |
288 | _fhrp_index(1), |
289 | _raise_LCA_mark(0), |
290 | _raise_LCA_visited(0), |
291 | _first_inst_size(999999), |
292 | _connector(false), |
293 | _loop_alignment(0) { |
294 | _nodes.push(headnode); |
295 | } |
296 | |
297 | // Index of 'end' Node |
298 | uint end_idx() const { |
299 | // %%%%% add a proj after every goto |
300 | // so (last->is_block_proj() != last) always, then simplify this code |
301 | // This will not give correct end_idx for block 0 when it only contains root. |
302 | int last_idx = _nodes.size() - 1; |
303 | Node *last = _nodes[last_idx]; |
304 | assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "" ); |
305 | return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs); |
306 | } |
307 | |
308 | // Basic blocks have a Node which ends them. This Node determines which |
309 | // basic block follows this one in the program flow. This Node is either an |
310 | // IfNode, a GotoNode, a JmpNode, or a ReturnNode. |
311 | Node *end() const { return _nodes[end_idx()]; } |
312 | |
313 | // Add an instruction to an existing block. It must go after the head |
314 | // instruction and before the end instruction. |
315 | void add_inst( Node *n ) { insert_node(n, end_idx()); } |
316 | // Find node in block. Fails if node not in block. |
317 | uint find_node( const Node *n ) const; |
318 | // Find and remove n from block list |
319 | void find_remove( const Node *n ); |
320 | // Check wether the node is in the block. |
321 | bool contains (const Node *n) const; |
322 | |
323 | // Return the empty status of a block |
324 | enum { not_empty, empty_with_goto, completely_empty }; |
325 | int is_Empty() const; |
326 | |
327 | // Forward through connectors |
328 | Block* non_connector() { |
329 | Block* s = this; |
330 | while (s->is_connector()) { |
331 | s = s->_succs[0]; |
332 | } |
333 | return s; |
334 | } |
335 | |
336 | // Return true if b is a successor of this block |
337 | bool has_successor(Block* b) const { |
338 | for (uint i = 0; i < _num_succs; i++ ) { |
339 | if (non_connector_successor(i) == b) { |
340 | return true; |
341 | } |
342 | } |
343 | return false; |
344 | } |
345 | |
346 | // Successor block, after forwarding through connectors |
347 | Block* non_connector_successor(int i) const { |
348 | return _succs[i]->non_connector(); |
349 | } |
350 | |
351 | // Examine block's code shape to predict if it is not commonly executed. |
352 | bool has_uncommon_code() const; |
353 | |
354 | #ifndef PRODUCT |
355 | // Debugging print of basic block |
356 | void dump_bidx(const Block* orig, outputStream* st = tty) const; |
357 | void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const; |
358 | void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const; |
359 | void dump() const; |
360 | void dump(const PhaseCFG* cfg) const; |
361 | #endif |
362 | }; |
363 | |
364 | |
365 | //------------------------------PhaseCFG--------------------------------------- |
366 | // Build an array of Basic Block pointers, one per Node. |
367 | class PhaseCFG : public Phase { |
368 | friend class VMStructs; |
369 | private: |
370 | // Root of whole program |
371 | RootNode* _root; |
372 | |
373 | // The block containing the root node |
374 | Block* _root_block; |
375 | |
376 | // List of basic blocks that are created during CFG creation |
377 | Block_List _blocks; |
378 | |
379 | // Count of basic blocks |
380 | uint _number_of_blocks; |
381 | |
382 | // Arena for the blocks to be stored in |
383 | Arena* _block_arena; |
384 | |
385 | // Info used for scheduling |
386 | PhaseChaitin* _regalloc; |
387 | |
388 | // Register pressure heuristic used? |
389 | bool _scheduling_for_pressure; |
390 | |
391 | // The matcher for this compilation |
392 | Matcher& _matcher; |
393 | |
394 | // Map nodes to owning basic block |
395 | Block_Array _node_to_block_mapping; |
396 | |
397 | // Loop from the root |
398 | CFGLoop* _root_loop; |
399 | |
400 | // Outmost loop frequency |
401 | double _outer_loop_frequency; |
402 | |
403 | // Per node latency estimation, valid only during GCM |
404 | GrowableArray<uint>* _node_latency; |
405 | |
406 | // Build a proper looking cfg. Return count of basic blocks |
407 | uint build_cfg(); |
408 | |
409 | // Build the dominator tree so that we know where we can move instructions |
410 | void build_dominator_tree(); |
411 | |
412 | // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions |
413 | void estimate_block_frequency(); |
414 | |
415 | // Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific |
416 | // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block. |
417 | // Move nodes to ensure correctness from GVN and also try to move nodes out of loops. |
418 | void global_code_motion(); |
419 | |
420 | // Schedule Nodes early in their basic blocks. |
421 | bool schedule_early(VectorSet &visited, Node_Stack &roots); |
422 | |
423 | // For each node, find the latest block it can be scheduled into |
424 | // and then select the cheapest block between the latest and earliest |
425 | // block to place the node. |
426 | void schedule_late(VectorSet &visited, Node_Stack &stack); |
427 | |
428 | // Compute the (backwards) latency of a node from a single use |
429 | int latency_from_use(Node *n, const Node *def, Node *use); |
430 | |
431 | // Compute the (backwards) latency of a node from the uses of this instruction |
432 | void partial_latency_of_defs(Node *n); |
433 | |
434 | // Compute the instruction global latency with a backwards walk |
435 | void compute_latencies_backwards(VectorSet &visited, Node_Stack &stack); |
436 | |
437 | // Pick a block between early and late that is a cheaper alternative |
438 | // to late. Helper for schedule_late. |
439 | Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self); |
440 | |
441 | bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t* recacl_pressure_nodes); |
442 | void set_next_call(Block* block, Node* n, VectorSet& next_call); |
443 | void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call); |
444 | |
445 | // Perform basic-block local scheduling |
446 | Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot, |
447 | intptr_t* recacl_pressure_nodes); |
448 | void adjust_register_pressure(Node* n, Block* block, intptr_t *recalc_pressure_nodes, bool finalize_mode); |
449 | |
450 | // Schedule a call next in the block |
451 | uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call); |
452 | |
453 | // Cleanup if any code lands between a Call and his Catch |
454 | void call_catch_cleanup(Block* block); |
455 | |
456 | Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx); |
457 | void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx); |
458 | |
459 | // Detect implicit-null-check opportunities. Basically, find NULL checks |
460 | // with suitable memory ops nearby. Use the memory op to do the NULL check. |
461 | // I can generate a memory op if there is not one nearby. |
462 | void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons); |
463 | |
464 | // Perform a Depth First Search (DFS). |
465 | // Setup 'vertex' as DFS to vertex mapping. |
466 | // Setup 'semi' as vertex to DFS mapping. |
467 | // Set 'parent' to DFS parent. |
468 | uint do_DFS(Tarjan* tarjan, uint rpo_counter); |
469 | |
470 | // Helper function to insert a node into a block |
471 | void schedule_node_into_block( Node *n, Block *b ); |
472 | |
473 | void replace_block_proj_ctrl( Node *n ); |
474 | |
475 | // Set the basic block for pinned Nodes |
476 | void schedule_pinned_nodes( VectorSet &visited ); |
477 | |
478 | // I'll need a few machine-specific GotoNodes. Clone from this one. |
479 | // Used when building the CFG and creating end nodes for blocks. |
480 | MachNode* _goto; |
481 | |
482 | Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false); |
483 | void verify_anti_dependences(Block* LCA, Node* load) const { |
484 | assert(LCA == get_block_for_node(load), "should already be scheduled" ); |
485 | const_cast<PhaseCFG*>(this)->insert_anti_dependences(LCA, load, true); |
486 | } |
487 | |
488 | bool move_to_next(Block* bx, uint b_index); |
489 | void move_to_end(Block* bx, uint b_index); |
490 | |
491 | void insert_goto_at(uint block_no, uint succ_no); |
492 | |
493 | // Check for NeverBranch at block end. This needs to become a GOTO to the |
494 | // true target. NeverBranch are treated as a conditional branch that always |
495 | // goes the same direction for most of the optimizer and are used to give a |
496 | // fake exit path to infinite loops. At this late stage they need to turn |
497 | // into Goto's so that when you enter the infinite loop you indeed hang. |
498 | void convert_NeverBranch_to_Goto(Block *b); |
499 | |
500 | CFGLoop* create_loop_tree(); |
501 | bool is_dominator(Node* dom_node, Node* node); |
502 | |
503 | #ifndef PRODUCT |
504 | bool _trace_opto_pipelining; // tracing flag |
505 | #endif |
506 | |
507 | public: |
508 | PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher); |
509 | |
510 | void set_latency_for_node(Node* node, int latency) { |
511 | _node_latency->at_put_grow(node->_idx, latency); |
512 | } |
513 | |
514 | uint get_latency_for_node(Node* node) { |
515 | return _node_latency->at_grow(node->_idx); |
516 | } |
517 | |
518 | // Get the outer most frequency |
519 | double get_outer_loop_frequency() const { |
520 | return _outer_loop_frequency; |
521 | } |
522 | |
523 | // Get the root node of the CFG |
524 | RootNode* get_root_node() const { |
525 | return _root; |
526 | } |
527 | |
528 | // Get the block of the root node |
529 | Block* get_root_block() const { |
530 | return _root_block; |
531 | } |
532 | |
533 | // Add a block at a position and moves the later ones one step |
534 | void add_block_at(uint pos, Block* block) { |
535 | _blocks.insert(pos, block); |
536 | _number_of_blocks++; |
537 | } |
538 | |
539 | // Adds a block to the top of the block list |
540 | void add_block(Block* block) { |
541 | _blocks.push(block); |
542 | _number_of_blocks++; |
543 | } |
544 | |
545 | // Clear the list of blocks |
546 | void clear_blocks() { |
547 | _blocks.reset(); |
548 | _number_of_blocks = 0; |
549 | } |
550 | |
551 | // Get the block at position pos in _blocks |
552 | Block* get_block(uint pos) const { |
553 | return _blocks[pos]; |
554 | } |
555 | |
556 | // Number of blocks |
557 | uint number_of_blocks() const { |
558 | return _number_of_blocks; |
559 | } |
560 | |
561 | // set which block this node should reside in |
562 | void map_node_to_block(const Node* node, Block* block) { |
563 | _node_to_block_mapping.map(node->_idx, block); |
564 | } |
565 | |
566 | // removes the mapping from a node to a block |
567 | void unmap_node_from_block(const Node* node) { |
568 | _node_to_block_mapping.map(node->_idx, NULL); |
569 | } |
570 | |
571 | // get the block in which this node resides |
572 | Block* get_block_for_node(const Node* node) const { |
573 | return _node_to_block_mapping[node->_idx]; |
574 | } |
575 | |
576 | // does this node reside in a block; return true |
577 | bool has_block(const Node* node) const { |
578 | return (_node_to_block_mapping.lookup(node->_idx) != NULL); |
579 | } |
580 | |
581 | // Use frequency calculations and code shape to predict if the block |
582 | // is uncommon. |
583 | bool is_uncommon(const Block* block); |
584 | |
585 | #ifdef ASSERT |
586 | Unique_Node_List _raw_oops; |
587 | #endif |
588 | |
589 | // Do global code motion by first building dominator tree and estimate block frequency |
590 | // Returns true on success |
591 | bool do_global_code_motion(); |
592 | |
593 | // Compute the (backwards) latency of a node from the uses |
594 | void latency_from_uses(Node *n); |
595 | |
596 | // Set loop alignment |
597 | void set_loop_alignment(); |
598 | |
599 | // Remove empty basic blocks |
600 | void remove_empty_blocks(); |
601 | Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext); |
602 | void fixup_flow(); |
603 | |
604 | // Insert a node into a block at index and map the node to the block |
605 | void insert(Block *b, uint idx, Node *n) { |
606 | b->insert_node(n , idx); |
607 | map_node_to_block(n, b); |
608 | } |
609 | |
610 | // Check all nodes and postalloc_expand them if necessary. |
611 | void postalloc_expand(PhaseRegAlloc* _ra); |
612 | |
613 | #ifndef PRODUCT |
614 | bool trace_opto_pipelining() const { return _trace_opto_pipelining; } |
615 | |
616 | // Debugging print of CFG |
617 | void dump( ) const; // CFG only |
618 | void _dump_cfg( const Node *end, VectorSet &visited ) const; |
619 | void verify() const; |
620 | void dump_headers(); |
621 | #else |
622 | bool trace_opto_pipelining() const { return false; } |
623 | #endif |
624 | }; |
625 | |
626 | |
627 | //------------------------------UnionFind-------------------------------------- |
628 | // Map Block indices to a block-index for a cfg-cover. |
629 | // Array lookup in the optimized case. |
630 | class UnionFind : public ResourceObj { |
631 | uint _cnt, _max; |
632 | uint* _indices; |
633 | ReallocMark _nesting; // assertion check for reallocations |
634 | public: |
635 | UnionFind( uint max ); |
636 | void reset( uint max ); // Reset to identity map for [0..max] |
637 | |
638 | uint lookup( uint nidx ) const { |
639 | return _indices[nidx]; |
640 | } |
641 | uint operator[] (uint nidx) const { return lookup(nidx); } |
642 | |
643 | void map( uint from_idx, uint to_idx ) { |
644 | assert( from_idx < _cnt, "oob" ); |
645 | _indices[from_idx] = to_idx; |
646 | } |
647 | void extend( uint from_idx, uint to_idx ); |
648 | |
649 | uint Size() const { return _cnt; } |
650 | |
651 | uint Find( uint idx ) { |
652 | assert( idx < 65536, "Must fit into uint" ); |
653 | uint uf_idx = lookup(idx); |
654 | return (uf_idx == idx) ? uf_idx : Find_compress(idx); |
655 | } |
656 | uint Find_compress( uint idx ); |
657 | uint Find_const( uint idx ) const; |
658 | void Union( uint idx1, uint idx2 ); |
659 | |
660 | }; |
661 | |
662 | //----------------------------BlockProbPair--------------------------- |
663 | // Ordered pair of Node*. |
664 | class BlockProbPair { |
665 | protected: |
666 | Block* _target; // block target |
667 | double _prob; // probability of edge to block |
668 | public: |
669 | BlockProbPair() : _target(NULL), _prob(0.0) {} |
670 | BlockProbPair(Block* b, double p) : _target(b), _prob(p) {} |
671 | |
672 | Block* get_target() const { return _target; } |
673 | double get_prob() const { return _prob; } |
674 | }; |
675 | |
676 | //------------------------------CFGLoop------------------------------------------- |
677 | class CFGLoop : public CFGElement { |
678 | friend class VMStructs; |
679 | int _id; |
680 | int _depth; |
681 | CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null |
682 | CFGLoop *_sibling; // null terminated list |
683 | CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops |
684 | GrowableArray<CFGElement*> _members; // list of members of loop |
685 | GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities |
686 | double _exit_prob; // probability any loop exit is taken on a single loop iteration |
687 | void update_succ_freq(Block* b, double freq); |
688 | |
689 | public: |
690 | CFGLoop(int id) : |
691 | CFGElement(), |
692 | _id(id), |
693 | _depth(0), |
694 | _parent(NULL), |
695 | _sibling(NULL), |
696 | _child(NULL), |
697 | _exit_prob(1.0f) {} |
698 | CFGLoop* parent() { return _parent; } |
699 | void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg); |
700 | void add_member(CFGElement *s) { _members.push(s); } |
701 | void add_nested_loop(CFGLoop* cl); |
702 | Block* head() { |
703 | assert(_members.at(0)->is_block(), "head must be a block" ); |
704 | Block* hd = _members.at(0)->as_Block(); |
705 | assert(hd->_loop == this, "just checking" ); |
706 | assert(hd->head()->is_Loop(), "must begin with loop head node" ); |
707 | return hd; |
708 | } |
709 | Block* backedge_block(); // Return the block on the backedge of the loop (else NULL) |
710 | void compute_loop_depth(int depth); |
711 | void compute_freq(); // compute frequency with loop assuming head freq 1.0f |
712 | void scale_freq(); // scale frequency by loop trip count (including outer loops) |
713 | double outer_loop_freq() const; // frequency of outer loop |
714 | bool in_loop_nest(Block* b); |
715 | double trip_count() const { return 1.0 / _exit_prob; } |
716 | virtual bool is_loop() { return true; } |
717 | int id() { return _id; } |
718 | |
719 | #ifndef PRODUCT |
720 | void dump( ) const; |
721 | void dump_tree() const; |
722 | #endif |
723 | }; |
724 | |
725 | |
726 | //----------------------------------CFGEdge------------------------------------ |
727 | // A edge between two basic blocks that will be embodied by a branch or a |
728 | // fall-through. |
729 | class CFGEdge : public ResourceObj { |
730 | friend class VMStructs; |
731 | private: |
732 | Block * _from; // Source basic block |
733 | Block * _to; // Destination basic block |
734 | double _freq; // Execution frequency (estimate) |
735 | int _state; |
736 | bool _infrequent; |
737 | int _from_pct; |
738 | int _to_pct; |
739 | |
740 | // Private accessors |
741 | int from_pct() const { return _from_pct; } |
742 | int to_pct() const { return _to_pct; } |
743 | int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; } |
744 | int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; } |
745 | |
746 | public: |
747 | enum { |
748 | open, // initial edge state; unprocessed |
749 | connected, // edge used to connect two traces together |
750 | interior // edge is interior to trace (could be backedge) |
751 | }; |
752 | |
753 | CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) : |
754 | _from(from), _to(to), _freq(freq), |
755 | _state(open), _from_pct(from_pct), _to_pct(to_pct) { |
756 | _infrequent = from_infrequent() || to_infrequent(); |
757 | } |
758 | |
759 | double freq() const { return _freq; } |
760 | Block* from() const { return _from; } |
761 | Block* to () const { return _to; } |
762 | int infrequent() const { return _infrequent; } |
763 | int state() const { return _state; } |
764 | |
765 | void set_state(int state) { _state = state; } |
766 | |
767 | #ifndef PRODUCT |
768 | void dump( ) const; |
769 | #endif |
770 | }; |
771 | |
772 | |
773 | //-----------------------------------Trace------------------------------------- |
774 | // An ordered list of basic blocks. |
775 | class Trace : public ResourceObj { |
776 | private: |
777 | uint _id; // Unique Trace id (derived from initial block) |
778 | Block ** _next_list; // Array mapping index to next block |
779 | Block ** _prev_list; // Array mapping index to previous block |
780 | Block * _first; // First block in the trace |
781 | Block * _last; // Last block in the trace |
782 | |
783 | // Return the block that follows "b" in the trace. |
784 | Block * next(Block *b) const { return _next_list[b->_pre_order]; } |
785 | void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; } |
786 | |
787 | // Return the block that precedes "b" in the trace. |
788 | Block * prev(Block *b) const { return _prev_list[b->_pre_order]; } |
789 | void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; } |
790 | |
791 | // We've discovered a loop in this trace. Reset last to be "b", and first as |
792 | // the block following "b |
793 | void break_loop_after(Block *b) { |
794 | _last = b; |
795 | _first = next(b); |
796 | set_prev(_first, NULL); |
797 | set_next(_last, NULL); |
798 | } |
799 | |
800 | public: |
801 | |
802 | Trace(Block *b, Block **next_list, Block **prev_list) : |
803 | _id(b->_pre_order), |
804 | _next_list(next_list), |
805 | _prev_list(prev_list), |
806 | _first(b), |
807 | _last(b) { |
808 | set_next(b, NULL); |
809 | set_prev(b, NULL); |
810 | }; |
811 | |
812 | // Return the id number |
813 | uint id() const { return _id; } |
814 | void set_id(uint id) { _id = id; } |
815 | |
816 | // Return the first block in the trace |
817 | Block * first_block() const { return _first; } |
818 | |
819 | // Return the last block in the trace |
820 | Block * last_block() const { return _last; } |
821 | |
822 | // Insert a trace in the middle of this one after b |
823 | void insert_after(Block *b, Trace *tr) { |
824 | set_next(tr->last_block(), next(b)); |
825 | if (next(b) != NULL) { |
826 | set_prev(next(b), tr->last_block()); |
827 | } |
828 | |
829 | set_next(b, tr->first_block()); |
830 | set_prev(tr->first_block(), b); |
831 | |
832 | if (b == _last) { |
833 | _last = tr->last_block(); |
834 | } |
835 | } |
836 | |
837 | void insert_before(Block *b, Trace *tr) { |
838 | Block *p = prev(b); |
839 | assert(p != NULL, "use append instead" ); |
840 | insert_after(p, tr); |
841 | } |
842 | |
843 | // Append another trace to this one. |
844 | void append(Trace *tr) { |
845 | insert_after(_last, tr); |
846 | } |
847 | |
848 | // Append a block at the end of this trace |
849 | void append(Block *b) { |
850 | set_next(_last, b); |
851 | set_prev(b, _last); |
852 | _last = b; |
853 | } |
854 | |
855 | // Adjust the the blocks in this trace |
856 | void fixup_blocks(PhaseCFG &cfg); |
857 | bool backedge(CFGEdge *e); |
858 | |
859 | #ifndef PRODUCT |
860 | void dump( ) const; |
861 | #endif |
862 | }; |
863 | |
864 | //------------------------------PhaseBlockLayout------------------------------- |
865 | // Rearrange blocks into some canonical order, based on edges and their frequencies |
866 | class PhaseBlockLayout : public Phase { |
867 | friend class VMStructs; |
868 | PhaseCFG &_cfg; // Control flow graph |
869 | |
870 | GrowableArray<CFGEdge *> *edges; |
871 | Trace **traces; |
872 | Block **next; |
873 | Block **prev; |
874 | UnionFind *uf; |
875 | |
876 | // Given a block, find its encompassing Trace |
877 | Trace * trace(Block *b) { |
878 | return traces[uf->Find_compress(b->_pre_order)]; |
879 | } |
880 | public: |
881 | PhaseBlockLayout(PhaseCFG &cfg); |
882 | |
883 | void find_edges(); |
884 | void grow_traces(); |
885 | void merge_traces(bool loose_connections); |
886 | void reorder_traces(int count); |
887 | void union_traces(Trace* from, Trace* to); |
888 | }; |
889 | |
890 | #endif // SHARE_OPTO_BLOCK_HPP |
891 | |