1 | /* |
2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "ci/ciMethodData.hpp" |
27 | #include "ci/ciTypeFlow.hpp" |
28 | #include "classfile/symbolTable.hpp" |
29 | #include "classfile/systemDictionary.hpp" |
30 | #include "compiler/compileLog.hpp" |
31 | #include "libadt/dict.hpp" |
32 | #include "memory/oopFactory.hpp" |
33 | #include "memory/resourceArea.hpp" |
34 | #include "oops/instanceKlass.hpp" |
35 | #include "oops/instanceMirrorKlass.hpp" |
36 | #include "oops/objArrayKlass.hpp" |
37 | #include "oops/typeArrayKlass.hpp" |
38 | #include "opto/matcher.hpp" |
39 | #include "opto/node.hpp" |
40 | #include "opto/opcodes.hpp" |
41 | #include "opto/type.hpp" |
42 | |
43 | // Portions of code courtesy of Clifford Click |
44 | |
45 | // Optimization - Graph Style |
46 | |
47 | // Dictionary of types shared among compilations. |
48 | Dict* Type::_shared_type_dict = NULL; |
49 | |
50 | // Array which maps compiler types to Basic Types |
51 | const Type::TypeInfo Type::_type_info[Type::lastype] = { |
52 | { Bad, T_ILLEGAL, "bad" , false, Node::NotAMachineReg, relocInfo::none }, // Bad |
53 | { Control, T_ILLEGAL, "control" , false, 0, relocInfo::none }, // Control |
54 | { Bottom, T_VOID, "top" , false, 0, relocInfo::none }, // Top |
55 | { Bad, T_INT, "int:" , false, Op_RegI, relocInfo::none }, // Int |
56 | { Bad, T_LONG, "long:" , false, Op_RegL, relocInfo::none }, // Long |
57 | { Half, T_VOID, "half" , false, 0, relocInfo::none }, // Half |
58 | { Bad, T_NARROWOOP, "narrowoop:" , false, Op_RegN, relocInfo::none }, // NarrowOop |
59 | { Bad, T_NARROWKLASS,"narrowklass:" , false, Op_RegN, relocInfo::none }, // NarrowKlass |
60 | { Bad, T_ILLEGAL, "tuple:" , false, Node::NotAMachineReg, relocInfo::none }, // Tuple |
61 | { Bad, T_ARRAY, "array:" , false, Node::NotAMachineReg, relocInfo::none }, // Array |
62 | |
63 | #ifdef SPARC |
64 | { Bad, T_ILLEGAL, "vectors:" , false, 0, relocInfo::none }, // VectorS |
65 | { Bad, T_ILLEGAL, "vectord:" , false, Op_RegD, relocInfo::none }, // VectorD |
66 | { Bad, T_ILLEGAL, "vectorx:" , false, 0, relocInfo::none }, // VectorX |
67 | { Bad, T_ILLEGAL, "vectory:" , false, 0, relocInfo::none }, // VectorY |
68 | { Bad, T_ILLEGAL, "vectorz:" , false, 0, relocInfo::none }, // VectorZ |
69 | #elif defined(PPC64) |
70 | { Bad, T_ILLEGAL, "vectors:" , false, 0, relocInfo::none }, // VectorS |
71 | { Bad, T_ILLEGAL, "vectord:" , false, Op_RegL, relocInfo::none }, // VectorD |
72 | { Bad, T_ILLEGAL, "vectorx:" , false, Op_VecX, relocInfo::none }, // VectorX |
73 | { Bad, T_ILLEGAL, "vectory:" , false, 0, relocInfo::none }, // VectorY |
74 | { Bad, T_ILLEGAL, "vectorz:" , false, 0, relocInfo::none }, // VectorZ |
75 | #elif defined(S390) |
76 | { Bad, T_ILLEGAL, "vectors:" , false, 0, relocInfo::none }, // VectorS |
77 | { Bad, T_ILLEGAL, "vectord:" , false, Op_RegL, relocInfo::none }, // VectorD |
78 | { Bad, T_ILLEGAL, "vectorx:" , false, 0, relocInfo::none }, // VectorX |
79 | { Bad, T_ILLEGAL, "vectory:" , false, 0, relocInfo::none }, // VectorY |
80 | { Bad, T_ILLEGAL, "vectorz:" , false, 0, relocInfo::none }, // VectorZ |
81 | #else // all other |
82 | { Bad, T_ILLEGAL, "vectors:" , false, Op_VecS, relocInfo::none }, // VectorS |
83 | { Bad, T_ILLEGAL, "vectord:" , false, Op_VecD, relocInfo::none }, // VectorD |
84 | { Bad, T_ILLEGAL, "vectorx:" , false, Op_VecX, relocInfo::none }, // VectorX |
85 | { Bad, T_ILLEGAL, "vectory:" , false, Op_VecY, relocInfo::none }, // VectorY |
86 | { Bad, T_ILLEGAL, "vectorz:" , false, Op_VecZ, relocInfo::none }, // VectorZ |
87 | #endif |
88 | { Bad, T_ADDRESS, "anyptr:" , false, Op_RegP, relocInfo::none }, // AnyPtr |
89 | { Bad, T_ADDRESS, "rawptr:" , false, Op_RegP, relocInfo::none }, // RawPtr |
90 | { Bad, T_OBJECT, "oop:" , true, Op_RegP, relocInfo::oop_type }, // OopPtr |
91 | { Bad, T_OBJECT, "inst:" , true, Op_RegP, relocInfo::oop_type }, // InstPtr |
92 | { Bad, T_OBJECT, "ary:" , true, Op_RegP, relocInfo::oop_type }, // AryPtr |
93 | { Bad, T_METADATA, "metadata:" , false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr |
94 | { Bad, T_METADATA, "klass:" , false, Op_RegP, relocInfo::metadata_type }, // KlassPtr |
95 | { Bad, T_OBJECT, "func" , false, 0, relocInfo::none }, // Function |
96 | { Abio, T_ILLEGAL, "abIO" , false, 0, relocInfo::none }, // Abio |
97 | { Return_Address, T_ADDRESS, "return_address" ,false, Op_RegP, relocInfo::none }, // Return_Address |
98 | { Memory, T_ILLEGAL, "memory" , false, 0, relocInfo::none }, // Memory |
99 | { FloatBot, T_FLOAT, "float_top" , false, Op_RegF, relocInfo::none }, // FloatTop |
100 | { FloatCon, T_FLOAT, "ftcon:" , false, Op_RegF, relocInfo::none }, // FloatCon |
101 | { FloatTop, T_FLOAT, "float" , false, Op_RegF, relocInfo::none }, // FloatBot |
102 | { DoubleBot, T_DOUBLE, "double_top" , false, Op_RegD, relocInfo::none }, // DoubleTop |
103 | { DoubleCon, T_DOUBLE, "dblcon:" , false, Op_RegD, relocInfo::none }, // DoubleCon |
104 | { DoubleTop, T_DOUBLE, "double" , false, Op_RegD, relocInfo::none }, // DoubleBot |
105 | { Top, T_ILLEGAL, "bottom" , false, 0, relocInfo::none } // Bottom |
106 | }; |
107 | |
108 | // Map ideal registers (machine types) to ideal types |
109 | const Type *Type::mreg2type[_last_machine_leaf]; |
110 | |
111 | // Map basic types to canonical Type* pointers. |
112 | const Type* Type:: _const_basic_type[T_CONFLICT+1]; |
113 | |
114 | // Map basic types to constant-zero Types. |
115 | const Type* Type:: _zero_type[T_CONFLICT+1]; |
116 | |
117 | // Map basic types to array-body alias types. |
118 | const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; |
119 | |
120 | //============================================================================= |
121 | // Convenience common pre-built types. |
122 | const Type *Type::ABIO; // State-of-machine only |
123 | const Type *Type::BOTTOM; // All values |
124 | const Type *Type::CONTROL; // Control only |
125 | const Type *Type::DOUBLE; // All doubles |
126 | const Type *Type::FLOAT; // All floats |
127 | const Type *Type::HALF; // Placeholder half of doublewide type |
128 | const Type *Type::MEMORY; // Abstract store only |
129 | const Type *Type::RETURN_ADDRESS; |
130 | const Type *Type::TOP; // No values in set |
131 | |
132 | //------------------------------get_const_type--------------------------- |
133 | const Type* Type::get_const_type(ciType* type) { |
134 | if (type == NULL) { |
135 | return NULL; |
136 | } else if (type->is_primitive_type()) { |
137 | return get_const_basic_type(type->basic_type()); |
138 | } else { |
139 | return TypeOopPtr::make_from_klass(type->as_klass()); |
140 | } |
141 | } |
142 | |
143 | //---------------------------array_element_basic_type--------------------------------- |
144 | // Mapping to the array element's basic type. |
145 | BasicType Type::array_element_basic_type() const { |
146 | BasicType bt = basic_type(); |
147 | if (bt == T_INT) { |
148 | if (this == TypeInt::INT) return T_INT; |
149 | if (this == TypeInt::CHAR) return T_CHAR; |
150 | if (this == TypeInt::BYTE) return T_BYTE; |
151 | if (this == TypeInt::BOOL) return T_BOOLEAN; |
152 | if (this == TypeInt::SHORT) return T_SHORT; |
153 | return T_VOID; |
154 | } |
155 | return bt; |
156 | } |
157 | |
158 | // For two instance arrays of same dimension, return the base element types. |
159 | // Otherwise or if the arrays have different dimensions, return NULL. |
160 | void Type::get_arrays_base_elements(const Type *a1, const Type *a2, |
161 | const TypeInstPtr **e1, const TypeInstPtr **e2) { |
162 | |
163 | if (e1) *e1 = NULL; |
164 | if (e2) *e2 = NULL; |
165 | const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr(); |
166 | const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr(); |
167 | |
168 | if (a1tap != NULL && a2tap != NULL) { |
169 | // Handle multidimensional arrays |
170 | const TypePtr* a1tp = a1tap->elem()->make_ptr(); |
171 | const TypePtr* a2tp = a2tap->elem()->make_ptr(); |
172 | while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { |
173 | a1tap = a1tp->is_aryptr(); |
174 | a2tap = a2tp->is_aryptr(); |
175 | a1tp = a1tap->elem()->make_ptr(); |
176 | a2tp = a2tap->elem()->make_ptr(); |
177 | } |
178 | if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { |
179 | if (e1) *e1 = a1tp->is_instptr(); |
180 | if (e2) *e2 = a2tp->is_instptr(); |
181 | } |
182 | } |
183 | } |
184 | |
185 | //---------------------------get_typeflow_type--------------------------------- |
186 | // Import a type produced by ciTypeFlow. |
187 | const Type* Type::get_typeflow_type(ciType* type) { |
188 | switch (type->basic_type()) { |
189 | |
190 | case ciTypeFlow::StateVector::T_BOTTOM: |
191 | assert(type == ciTypeFlow::StateVector::bottom_type(), "" ); |
192 | return Type::BOTTOM; |
193 | |
194 | case ciTypeFlow::StateVector::T_TOP: |
195 | assert(type == ciTypeFlow::StateVector::top_type(), "" ); |
196 | return Type::TOP; |
197 | |
198 | case ciTypeFlow::StateVector::T_NULL: |
199 | assert(type == ciTypeFlow::StateVector::null_type(), "" ); |
200 | return TypePtr::NULL_PTR; |
201 | |
202 | case ciTypeFlow::StateVector::T_LONG2: |
203 | // The ciTypeFlow pass pushes a long, then the half. |
204 | // We do the same. |
205 | assert(type == ciTypeFlow::StateVector::long2_type(), "" ); |
206 | return TypeInt::TOP; |
207 | |
208 | case ciTypeFlow::StateVector::T_DOUBLE2: |
209 | // The ciTypeFlow pass pushes double, then the half. |
210 | // Our convention is the same. |
211 | assert(type == ciTypeFlow::StateVector::double2_type(), "" ); |
212 | return Type::TOP; |
213 | |
214 | case T_ADDRESS: |
215 | assert(type->is_return_address(), "" ); |
216 | return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); |
217 | |
218 | default: |
219 | // make sure we did not mix up the cases: |
220 | assert(type != ciTypeFlow::StateVector::bottom_type(), "" ); |
221 | assert(type != ciTypeFlow::StateVector::top_type(), "" ); |
222 | assert(type != ciTypeFlow::StateVector::null_type(), "" ); |
223 | assert(type != ciTypeFlow::StateVector::long2_type(), "" ); |
224 | assert(type != ciTypeFlow::StateVector::double2_type(), "" ); |
225 | assert(!type->is_return_address(), "" ); |
226 | |
227 | return Type::get_const_type(type); |
228 | } |
229 | } |
230 | |
231 | |
232 | //-----------------------make_from_constant------------------------------------ |
233 | const Type* Type::make_from_constant(ciConstant constant, bool require_constant, |
234 | int stable_dimension, bool is_narrow_oop, |
235 | bool is_autobox_cache) { |
236 | switch (constant.basic_type()) { |
237 | case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); |
238 | case T_CHAR: return TypeInt::make(constant.as_char()); |
239 | case T_BYTE: return TypeInt::make(constant.as_byte()); |
240 | case T_SHORT: return TypeInt::make(constant.as_short()); |
241 | case T_INT: return TypeInt::make(constant.as_int()); |
242 | case T_LONG: return TypeLong::make(constant.as_long()); |
243 | case T_FLOAT: return TypeF::make(constant.as_float()); |
244 | case T_DOUBLE: return TypeD::make(constant.as_double()); |
245 | case T_ARRAY: |
246 | case T_OBJECT: { |
247 | const Type* con_type = NULL; |
248 | ciObject* oop_constant = constant.as_object(); |
249 | if (oop_constant->is_null_object()) { |
250 | con_type = Type::get_zero_type(T_OBJECT); |
251 | } else { |
252 | guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed" ); |
253 | con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); |
254 | if (Compile::current()->eliminate_boxing() && is_autobox_cache) { |
255 | con_type = con_type->is_aryptr()->cast_to_autobox_cache(true); |
256 | } |
257 | if (stable_dimension > 0) { |
258 | assert(FoldStableValues, "sanity" ); |
259 | assert(!con_type->is_zero_type(), "default value for stable field" ); |
260 | con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); |
261 | } |
262 | } |
263 | if (is_narrow_oop) { |
264 | con_type = con_type->make_narrowoop(); |
265 | } |
266 | return con_type; |
267 | } |
268 | case T_ILLEGAL: |
269 | // Invalid ciConstant returned due to OutOfMemoryError in the CI |
270 | assert(Compile::current()->env()->failing(), "otherwise should not see this" ); |
271 | return NULL; |
272 | default: |
273 | // Fall through to failure |
274 | return NULL; |
275 | } |
276 | } |
277 | |
278 | static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { |
279 | BasicType conbt = con.basic_type(); |
280 | switch (conbt) { |
281 | case T_BOOLEAN: conbt = T_BYTE; break; |
282 | case T_ARRAY: conbt = T_OBJECT; break; |
283 | default: break; |
284 | } |
285 | switch (loadbt) { |
286 | case T_BOOLEAN: loadbt = T_BYTE; break; |
287 | case T_NARROWOOP: loadbt = T_OBJECT; break; |
288 | case T_ARRAY: loadbt = T_OBJECT; break; |
289 | case T_ADDRESS: loadbt = T_OBJECT; break; |
290 | default: break; |
291 | } |
292 | if (conbt == loadbt) { |
293 | if (is_unsigned && conbt == T_BYTE) { |
294 | // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). |
295 | return ciConstant(T_INT, con.as_int() & 0xFF); |
296 | } else { |
297 | return con; |
298 | } |
299 | } |
300 | if (conbt == T_SHORT && loadbt == T_CHAR) { |
301 | // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). |
302 | return ciConstant(T_INT, con.as_int() & 0xFFFF); |
303 | } |
304 | return ciConstant(); // T_ILLEGAL |
305 | } |
306 | |
307 | // Try to constant-fold a stable array element. |
308 | const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, |
309 | BasicType loadbt, bool is_unsigned_load) { |
310 | // Decode the results of GraphKit::array_element_address. |
311 | ciConstant element_value = array->element_value_by_offset(off); |
312 | if (element_value.basic_type() == T_ILLEGAL) { |
313 | return NULL; // wrong offset |
314 | } |
315 | ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); |
316 | |
317 | assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d" , |
318 | type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); |
319 | |
320 | if (con.is_valid() && // not a mismatched access |
321 | !con.is_null_or_zero()) { // not a default value |
322 | bool is_narrow_oop = (loadbt == T_NARROWOOP); |
323 | return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); |
324 | } |
325 | return NULL; |
326 | } |
327 | |
328 | const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { |
329 | ciField* field; |
330 | ciType* type = holder->java_mirror_type(); |
331 | if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { |
332 | // Static field |
333 | field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); |
334 | } else { |
335 | // Instance field |
336 | field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); |
337 | } |
338 | if (field == NULL) { |
339 | return NULL; // Wrong offset |
340 | } |
341 | return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); |
342 | } |
343 | |
344 | const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, |
345 | BasicType loadbt, bool is_unsigned_load) { |
346 | if (!field->is_constant()) { |
347 | return NULL; // Non-constant field |
348 | } |
349 | ciConstant field_value; |
350 | if (field->is_static()) { |
351 | // final static field |
352 | field_value = field->constant_value(); |
353 | } else if (holder != NULL) { |
354 | // final or stable non-static field |
355 | // Treat final non-static fields of trusted classes (classes in |
356 | // java.lang.invoke and sun.invoke packages and subpackages) as |
357 | // compile time constants. |
358 | field_value = field->constant_value_of(holder); |
359 | } |
360 | if (!field_value.is_valid()) { |
361 | return NULL; // Not a constant |
362 | } |
363 | |
364 | ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); |
365 | |
366 | assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d" , |
367 | type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); |
368 | |
369 | bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); |
370 | int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); |
371 | bool is_narrow_oop = (loadbt == T_NARROWOOP); |
372 | |
373 | const Type* con_type = make_from_constant(con, /*require_constant=*/ true, |
374 | stable_dimension, is_narrow_oop, |
375 | field->is_autobox_cache()); |
376 | if (con_type != NULL && field->is_call_site_target()) { |
377 | ciCallSite* call_site = holder->as_call_site(); |
378 | if (!call_site->is_constant_call_site()) { |
379 | ciMethodHandle* target = con.as_object()->as_method_handle(); |
380 | Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); |
381 | } |
382 | } |
383 | return con_type; |
384 | } |
385 | |
386 | //------------------------------make------------------------------------------- |
387 | // Create a simple Type, with default empty symbol sets. Then hashcons it |
388 | // and look for an existing copy in the type dictionary. |
389 | const Type *Type::make( enum TYPES t ) { |
390 | return (new Type(t))->hashcons(); |
391 | } |
392 | |
393 | //------------------------------cmp-------------------------------------------- |
394 | int Type::cmp( const Type *const t1, const Type *const t2 ) { |
395 | if( t1->_base != t2->_base ) |
396 | return 1; // Missed badly |
397 | assert(t1 != t2 || t1->eq(t2), "eq must be reflexive" ); |
398 | return !t1->eq(t2); // Return ZERO if equal |
399 | } |
400 | |
401 | const Type* Type::maybe_remove_speculative(bool include_speculative) const { |
402 | if (!include_speculative) { |
403 | return remove_speculative(); |
404 | } |
405 | return this; |
406 | } |
407 | |
408 | //------------------------------hash------------------------------------------- |
409 | int Type::uhash( const Type *const t ) { |
410 | return t->hash(); |
411 | } |
412 | |
413 | #define SMALLINT ((juint)3) // a value too insignificant to consider widening |
414 | #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite |
415 | #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite |
416 | |
417 | //--------------------------Initialize_shared---------------------------------- |
418 | void Type::Initialize_shared(Compile* current) { |
419 | // This method does not need to be locked because the first system |
420 | // compilations (stub compilations) occur serially. If they are |
421 | // changed to proceed in parallel, then this section will need |
422 | // locking. |
423 | |
424 | Arena* save = current->type_arena(); |
425 | Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); |
426 | |
427 | current->set_type_arena(shared_type_arena); |
428 | _shared_type_dict = |
429 | new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, |
430 | shared_type_arena, 128 ); |
431 | current->set_type_dict(_shared_type_dict); |
432 | |
433 | // Make shared pre-built types. |
434 | CONTROL = make(Control); // Control only |
435 | TOP = make(Top); // No values in set |
436 | MEMORY = make(Memory); // Abstract store only |
437 | ABIO = make(Abio); // State-of-machine only |
438 | RETURN_ADDRESS=make(Return_Address); |
439 | FLOAT = make(FloatBot); // All floats |
440 | DOUBLE = make(DoubleBot); // All doubles |
441 | BOTTOM = make(Bottom); // Everything |
442 | HALF = make(Half); // Placeholder half of doublewide type |
443 | |
444 | TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) |
445 | TypeF::ONE = TypeF::make(1.0); // Float 1 |
446 | TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); |
447 | TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); |
448 | |
449 | TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) |
450 | TypeD::ONE = TypeD::make(1.0); // Double 1 |
451 | TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); |
452 | TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); |
453 | |
454 | TypeInt::MINUS_1 = TypeInt::make(-1); // -1 |
455 | TypeInt::ZERO = TypeInt::make( 0); // 0 |
456 | TypeInt::ONE = TypeInt::make( 1); // 1 |
457 | TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. |
458 | TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes |
459 | TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 |
460 | TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE |
461 | TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO |
462 | TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); |
463 | TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL |
464 | TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes |
465 | TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes |
466 | TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars |
467 | TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts |
468 | TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values |
469 | TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values |
470 | TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers |
471 | TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range |
472 | TypeInt::TYPE_DOMAIN = TypeInt::INT; |
473 | // CmpL is overloaded both as the bytecode computation returning |
474 | // a trinary (-1,0,+1) integer result AND as an efficient long |
475 | // compare returning optimizer ideal-type flags. |
476 | assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); |
477 | assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); |
478 | assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); |
479 | assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); |
480 | assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small" ); |
481 | |
482 | TypeLong::MINUS_1 = TypeLong::make(-1); // -1 |
483 | TypeLong::ZERO = TypeLong::make( 0); // 0 |
484 | TypeLong::ONE = TypeLong::make( 1); // 1 |
485 | TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values |
486 | TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers |
487 | TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); |
488 | TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); |
489 | TypeLong::TYPE_DOMAIN = TypeLong::LONG; |
490 | |
491 | const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); |
492 | fboth[0] = Type::CONTROL; |
493 | fboth[1] = Type::CONTROL; |
494 | TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); |
495 | |
496 | const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); |
497 | ffalse[0] = Type::CONTROL; |
498 | ffalse[1] = Type::TOP; |
499 | TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); |
500 | |
501 | const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); |
502 | fneither[0] = Type::TOP; |
503 | fneither[1] = Type::TOP; |
504 | TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); |
505 | |
506 | const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); |
507 | ftrue[0] = Type::TOP; |
508 | ftrue[1] = Type::CONTROL; |
509 | TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); |
510 | |
511 | const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); |
512 | floop[0] = Type::CONTROL; |
513 | floop[1] = TypeInt::INT; |
514 | TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); |
515 | |
516 | TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); |
517 | TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); |
518 | TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); |
519 | |
520 | TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); |
521 | TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); |
522 | |
523 | const Type **fmembar = TypeTuple::fields(0); |
524 | TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); |
525 | |
526 | const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); |
527 | fsc[0] = TypeInt::CC; |
528 | fsc[1] = Type::MEMORY; |
529 | TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); |
530 | |
531 | TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); |
532 | TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); |
533 | TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); |
534 | TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), |
535 | false, 0, oopDesc::mark_offset_in_bytes()); |
536 | TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), |
537 | false, 0, oopDesc::klass_offset_in_bytes()); |
538 | TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); |
539 | |
540 | TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot); |
541 | |
542 | TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); |
543 | TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); |
544 | |
545 | TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); |
546 | |
547 | mreg2type[Op_Node] = Type::BOTTOM; |
548 | mreg2type[Op_Set ] = 0; |
549 | mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; |
550 | mreg2type[Op_RegI] = TypeInt::INT; |
551 | mreg2type[Op_RegP] = TypePtr::BOTTOM; |
552 | mreg2type[Op_RegF] = Type::FLOAT; |
553 | mreg2type[Op_RegD] = Type::DOUBLE; |
554 | mreg2type[Op_RegL] = TypeLong::LONG; |
555 | mreg2type[Op_RegFlags] = TypeInt::CC; |
556 | |
557 | TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); |
558 | |
559 | TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); |
560 | |
561 | #ifdef _LP64 |
562 | if (UseCompressedOops) { |
563 | assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop" ); |
564 | TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; |
565 | } else |
566 | #endif |
567 | { |
568 | // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). |
569 | TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); |
570 | } |
571 | TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); |
572 | TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); |
573 | TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); |
574 | TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); |
575 | TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); |
576 | TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); |
577 | TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); |
578 | |
579 | // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert. |
580 | TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL; |
581 | TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; |
582 | TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays |
583 | TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; |
584 | TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array |
585 | TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; |
586 | TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; |
587 | TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; |
588 | TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; |
589 | TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; |
590 | TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; |
591 | |
592 | TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 ); |
593 | TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 ); |
594 | |
595 | const Type **fi2c = TypeTuple::fields(2); |
596 | fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* |
597 | fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer |
598 | TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); |
599 | |
600 | const Type **intpair = TypeTuple::fields(2); |
601 | intpair[0] = TypeInt::INT; |
602 | intpair[1] = TypeInt::INT; |
603 | TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); |
604 | |
605 | const Type **longpair = TypeTuple::fields(2); |
606 | longpair[0] = TypeLong::LONG; |
607 | longpair[1] = TypeLong::LONG; |
608 | TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); |
609 | |
610 | const Type **intccpair = TypeTuple::fields(2); |
611 | intccpair[0] = TypeInt::INT; |
612 | intccpair[1] = TypeInt::CC; |
613 | TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); |
614 | |
615 | const Type **longccpair = TypeTuple::fields(2); |
616 | longccpair[0] = TypeLong::LONG; |
617 | longccpair[1] = TypeInt::CC; |
618 | TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); |
619 | |
620 | _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; |
621 | _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; |
622 | _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; |
623 | _const_basic_type[T_CHAR] = TypeInt::CHAR; |
624 | _const_basic_type[T_BYTE] = TypeInt::BYTE; |
625 | _const_basic_type[T_SHORT] = TypeInt::SHORT; |
626 | _const_basic_type[T_INT] = TypeInt::INT; |
627 | _const_basic_type[T_LONG] = TypeLong::LONG; |
628 | _const_basic_type[T_FLOAT] = Type::FLOAT; |
629 | _const_basic_type[T_DOUBLE] = Type::DOUBLE; |
630 | _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; |
631 | _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays |
632 | _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way |
633 | _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs |
634 | _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? |
635 | |
636 | _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; |
637 | _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; |
638 | _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 |
639 | _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 |
640 | _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 |
641 | _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 |
642 | _zero_type[T_INT] = TypeInt::ZERO; |
643 | _zero_type[T_LONG] = TypeLong::ZERO; |
644 | _zero_type[T_FLOAT] = TypeF::ZERO; |
645 | _zero_type[T_DOUBLE] = TypeD::ZERO; |
646 | _zero_type[T_OBJECT] = TypePtr::NULL_PTR; |
647 | _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop |
648 | _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null |
649 | _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all |
650 | |
651 | // get_zero_type() should not happen for T_CONFLICT |
652 | _zero_type[T_CONFLICT]= NULL; |
653 | |
654 | // Vector predefined types, it needs initialized _const_basic_type[]. |
655 | if (Matcher::vector_size_supported(T_BYTE,4)) { |
656 | TypeVect::VECTS = TypeVect::make(T_BYTE,4); |
657 | } |
658 | if (Matcher::vector_size_supported(T_FLOAT,2)) { |
659 | TypeVect::VECTD = TypeVect::make(T_FLOAT,2); |
660 | } |
661 | if (Matcher::vector_size_supported(T_FLOAT,4)) { |
662 | TypeVect::VECTX = TypeVect::make(T_FLOAT,4); |
663 | } |
664 | if (Matcher::vector_size_supported(T_FLOAT,8)) { |
665 | TypeVect::VECTY = TypeVect::make(T_FLOAT,8); |
666 | } |
667 | if (Matcher::vector_size_supported(T_FLOAT,16)) { |
668 | TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); |
669 | } |
670 | mreg2type[Op_VecS] = TypeVect::VECTS; |
671 | mreg2type[Op_VecD] = TypeVect::VECTD; |
672 | mreg2type[Op_VecX] = TypeVect::VECTX; |
673 | mreg2type[Op_VecY] = TypeVect::VECTY; |
674 | mreg2type[Op_VecZ] = TypeVect::VECTZ; |
675 | |
676 | // Restore working type arena. |
677 | current->set_type_arena(save); |
678 | current->set_type_dict(NULL); |
679 | } |
680 | |
681 | //------------------------------Initialize------------------------------------- |
682 | void Type::Initialize(Compile* current) { |
683 | assert(current->type_arena() != NULL, "must have created type arena" ); |
684 | |
685 | if (_shared_type_dict == NULL) { |
686 | Initialize_shared(current); |
687 | } |
688 | |
689 | Arena* type_arena = current->type_arena(); |
690 | |
691 | // Create the hash-cons'ing dictionary with top-level storage allocation |
692 | Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 ); |
693 | current->set_type_dict(tdic); |
694 | |
695 | // Transfer the shared types. |
696 | DictI i(_shared_type_dict); |
697 | for( ; i.test(); ++i ) { |
698 | Type* t = (Type*)i._value; |
699 | tdic->Insert(t,t); // New Type, insert into Type table |
700 | } |
701 | } |
702 | |
703 | //------------------------------hashcons--------------------------------------- |
704 | // Do the hash-cons trick. If the Type already exists in the type table, |
705 | // delete the current Type and return the existing Type. Otherwise stick the |
706 | // current Type in the Type table. |
707 | const Type *Type::hashcons(void) { |
708 | debug_only(base()); // Check the assertion in Type::base(). |
709 | // Look up the Type in the Type dictionary |
710 | Dict *tdic = type_dict(); |
711 | Type* old = (Type*)(tdic->Insert(this, this, false)); |
712 | if( old ) { // Pre-existing Type? |
713 | if( old != this ) // Yes, this guy is not the pre-existing? |
714 | delete this; // Yes, Nuke this guy |
715 | assert( old->_dual, "" ); |
716 | return old; // Return pre-existing |
717 | } |
718 | |
719 | // Every type has a dual (to make my lattice symmetric). |
720 | // Since we just discovered a new Type, compute its dual right now. |
721 | assert( !_dual, "" ); // No dual yet |
722 | _dual = xdual(); // Compute the dual |
723 | if( cmp(this,_dual)==0 ) { // Handle self-symmetric |
724 | _dual = this; |
725 | return this; |
726 | } |
727 | assert( !_dual->_dual, "" ); // No reverse dual yet |
728 | assert( !(*tdic)[_dual], "" ); // Dual not in type system either |
729 | // New Type, insert into Type table |
730 | tdic->Insert((void*)_dual,(void*)_dual); |
731 | ((Type*)_dual)->_dual = this; // Finish up being symmetric |
732 | #ifdef ASSERT |
733 | Type *dual_dual = (Type*)_dual->xdual(); |
734 | assert( eq(dual_dual), "xdual(xdual()) should be identity" ); |
735 | delete dual_dual; |
736 | #endif |
737 | return this; // Return new Type |
738 | } |
739 | |
740 | //------------------------------eq--------------------------------------------- |
741 | // Structural equality check for Type representations |
742 | bool Type::eq( const Type * ) const { |
743 | return true; // Nothing else can go wrong |
744 | } |
745 | |
746 | //------------------------------hash------------------------------------------- |
747 | // Type-specific hashing function. |
748 | int Type::hash(void) const { |
749 | return _base; |
750 | } |
751 | |
752 | //------------------------------is_finite-------------------------------------- |
753 | // Has a finite value |
754 | bool Type::is_finite() const { |
755 | return false; |
756 | } |
757 | |
758 | //------------------------------is_nan----------------------------------------- |
759 | // Is not a number (NaN) |
760 | bool Type::is_nan() const { |
761 | return false; |
762 | } |
763 | |
764 | //----------------------interface_vs_oop--------------------------------------- |
765 | #ifdef ASSERT |
766 | bool Type::interface_vs_oop_helper(const Type *t) const { |
767 | bool result = false; |
768 | |
769 | const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop |
770 | const TypePtr* t_ptr = t->make_ptr(); |
771 | if( this_ptr == NULL || t_ptr == NULL ) |
772 | return result; |
773 | |
774 | const TypeInstPtr* this_inst = this_ptr->isa_instptr(); |
775 | const TypeInstPtr* t_inst = t_ptr->isa_instptr(); |
776 | if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) { |
777 | bool this_interface = this_inst->klass()->is_interface(); |
778 | bool t_interface = t_inst->klass()->is_interface(); |
779 | result = this_interface ^ t_interface; |
780 | } |
781 | |
782 | return result; |
783 | } |
784 | |
785 | bool Type::interface_vs_oop(const Type *t) const { |
786 | if (interface_vs_oop_helper(t)) { |
787 | return true; |
788 | } |
789 | // Now check the speculative parts as well |
790 | const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL; |
791 | const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL; |
792 | if (this_spec != NULL && t_spec != NULL) { |
793 | if (this_spec->interface_vs_oop_helper(t_spec)) { |
794 | return true; |
795 | } |
796 | return false; |
797 | } |
798 | if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) { |
799 | return true; |
800 | } |
801 | if (t_spec != NULL && interface_vs_oop_helper(t_spec)) { |
802 | return true; |
803 | } |
804 | return false; |
805 | } |
806 | |
807 | #endif |
808 | |
809 | //------------------------------meet------------------------------------------- |
810 | // Compute the MEET of two types. NOT virtual. It enforces that meet is |
811 | // commutative and the lattice is symmetric. |
812 | const Type *Type::meet_helper(const Type *t, bool include_speculative) const { |
813 | if (isa_narrowoop() && t->isa_narrowoop()) { |
814 | const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); |
815 | return result->make_narrowoop(); |
816 | } |
817 | if (isa_narrowklass() && t->isa_narrowklass()) { |
818 | const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); |
819 | return result->make_narrowklass(); |
820 | } |
821 | |
822 | const Type *this_t = maybe_remove_speculative(include_speculative); |
823 | t = t->maybe_remove_speculative(include_speculative); |
824 | |
825 | const Type *mt = this_t->xmeet(t); |
826 | if (isa_narrowoop() || t->isa_narrowoop()) return mt; |
827 | if (isa_narrowklass() || t->isa_narrowklass()) return mt; |
828 | #ifdef ASSERT |
829 | assert(mt == t->xmeet(this_t), "meet not commutative" ); |
830 | const Type* dual_join = mt->_dual; |
831 | const Type *t2t = dual_join->xmeet(t->_dual); |
832 | const Type *t2this = dual_join->xmeet(this_t->_dual); |
833 | |
834 | // Interface meet Oop is Not Symmetric: |
835 | // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull |
836 | // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull |
837 | |
838 | if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) { |
839 | tty->print_cr("=== Meet Not Symmetric ===" ); |
840 | tty->print("t = " ); t->dump(); tty->cr(); |
841 | tty->print("this= " ); this_t->dump(); tty->cr(); |
842 | tty->print("mt=(t meet this)= " ); mt->dump(); tty->cr(); |
843 | |
844 | tty->print("t_dual= " ); t->_dual->dump(); tty->cr(); |
845 | tty->print("this_dual= " ); this_t->_dual->dump(); tty->cr(); |
846 | tty->print("mt_dual= " ); mt->_dual->dump(); tty->cr(); |
847 | |
848 | tty->print("mt_dual meet t_dual= " ); t2t ->dump(); tty->cr(); |
849 | tty->print("mt_dual meet this_dual= " ); t2this ->dump(); tty->cr(); |
850 | |
851 | fatal("meet not symmetric" ); |
852 | } |
853 | #endif |
854 | return mt; |
855 | } |
856 | |
857 | //------------------------------xmeet------------------------------------------ |
858 | // Compute the MEET of two types. It returns a new Type object. |
859 | const Type *Type::xmeet( const Type *t ) const { |
860 | // Perform a fast test for common case; meeting the same types together. |
861 | if( this == t ) return this; // Meeting same type-rep? |
862 | |
863 | // Meeting TOP with anything? |
864 | if( _base == Top ) return t; |
865 | |
866 | // Meeting BOTTOM with anything? |
867 | if( _base == Bottom ) return BOTTOM; |
868 | |
869 | // Current "this->_base" is one of: Bad, Multi, Control, Top, |
870 | // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. |
871 | switch (t->base()) { // Switch on original type |
872 | |
873 | // Cut in half the number of cases I must handle. Only need cases for when |
874 | // the given enum "t->type" is less than or equal to the local enum "type". |
875 | case FloatCon: |
876 | case DoubleCon: |
877 | case Int: |
878 | case Long: |
879 | return t->xmeet(this); |
880 | |
881 | case OopPtr: |
882 | return t->xmeet(this); |
883 | |
884 | case InstPtr: |
885 | return t->xmeet(this); |
886 | |
887 | case MetadataPtr: |
888 | case KlassPtr: |
889 | return t->xmeet(this); |
890 | |
891 | case AryPtr: |
892 | return t->xmeet(this); |
893 | |
894 | case NarrowOop: |
895 | return t->xmeet(this); |
896 | |
897 | case NarrowKlass: |
898 | return t->xmeet(this); |
899 | |
900 | case Bad: // Type check |
901 | default: // Bogus type not in lattice |
902 | typerr(t); |
903 | return Type::BOTTOM; |
904 | |
905 | case Bottom: // Ye Olde Default |
906 | return t; |
907 | |
908 | case FloatTop: |
909 | if( _base == FloatTop ) return this; |
910 | case FloatBot: // Float |
911 | if( _base == FloatBot || _base == FloatTop ) return FLOAT; |
912 | if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; |
913 | typerr(t); |
914 | return Type::BOTTOM; |
915 | |
916 | case DoubleTop: |
917 | if( _base == DoubleTop ) return this; |
918 | case DoubleBot: // Double |
919 | if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; |
920 | if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; |
921 | typerr(t); |
922 | return Type::BOTTOM; |
923 | |
924 | // These next few cases must match exactly or it is a compile-time error. |
925 | case Control: // Control of code |
926 | case Abio: // State of world outside of program |
927 | case Memory: |
928 | if( _base == t->_base ) return this; |
929 | typerr(t); |
930 | return Type::BOTTOM; |
931 | |
932 | case Top: // Top of the lattice |
933 | return this; |
934 | } |
935 | |
936 | // The type is unchanged |
937 | return this; |
938 | } |
939 | |
940 | //-----------------------------filter------------------------------------------ |
941 | const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { |
942 | const Type* ft = join_helper(kills, include_speculative); |
943 | if (ft->empty()) |
944 | return Type::TOP; // Canonical empty value |
945 | return ft; |
946 | } |
947 | |
948 | //------------------------------xdual------------------------------------------ |
949 | // Compute dual right now. |
950 | const Type::TYPES Type::dual_type[Type::lastype] = { |
951 | Bad, // Bad |
952 | Control, // Control |
953 | Bottom, // Top |
954 | Bad, // Int - handled in v-call |
955 | Bad, // Long - handled in v-call |
956 | Half, // Half |
957 | Bad, // NarrowOop - handled in v-call |
958 | Bad, // NarrowKlass - handled in v-call |
959 | |
960 | Bad, // Tuple - handled in v-call |
961 | Bad, // Array - handled in v-call |
962 | Bad, // VectorS - handled in v-call |
963 | Bad, // VectorD - handled in v-call |
964 | Bad, // VectorX - handled in v-call |
965 | Bad, // VectorY - handled in v-call |
966 | Bad, // VectorZ - handled in v-call |
967 | |
968 | Bad, // AnyPtr - handled in v-call |
969 | Bad, // RawPtr - handled in v-call |
970 | Bad, // OopPtr - handled in v-call |
971 | Bad, // InstPtr - handled in v-call |
972 | Bad, // AryPtr - handled in v-call |
973 | |
974 | Bad, // MetadataPtr - handled in v-call |
975 | Bad, // KlassPtr - handled in v-call |
976 | |
977 | Bad, // Function - handled in v-call |
978 | Abio, // Abio |
979 | Return_Address,// Return_Address |
980 | Memory, // Memory |
981 | FloatBot, // FloatTop |
982 | FloatCon, // FloatCon |
983 | FloatTop, // FloatBot |
984 | DoubleBot, // DoubleTop |
985 | DoubleCon, // DoubleCon |
986 | DoubleTop, // DoubleBot |
987 | Top // Bottom |
988 | }; |
989 | |
990 | const Type *Type::xdual() const { |
991 | // Note: the base() accessor asserts the sanity of _base. |
992 | assert(_type_info[base()].dual_type != Bad, "implement with v-call" ); |
993 | return new Type(_type_info[_base].dual_type); |
994 | } |
995 | |
996 | //------------------------------has_memory------------------------------------- |
997 | bool Type::has_memory() const { |
998 | Type::TYPES tx = base(); |
999 | if (tx == Memory) return true; |
1000 | if (tx == Tuple) { |
1001 | const TypeTuple *t = is_tuple(); |
1002 | for (uint i=0; i < t->cnt(); i++) { |
1003 | tx = t->field_at(i)->base(); |
1004 | if (tx == Memory) return true; |
1005 | } |
1006 | } |
1007 | return false; |
1008 | } |
1009 | |
1010 | #ifndef PRODUCT |
1011 | //------------------------------dump2------------------------------------------ |
1012 | void Type::dump2( Dict &d, uint depth, outputStream *st ) const { |
1013 | st->print("%s" , _type_info[_base].msg); |
1014 | } |
1015 | |
1016 | //------------------------------dump------------------------------------------- |
1017 | void Type::dump_on(outputStream *st) const { |
1018 | ResourceMark rm; |
1019 | Dict d(cmpkey,hashkey); // Stop recursive type dumping |
1020 | dump2(d,1, st); |
1021 | if (is_ptr_to_narrowoop()) { |
1022 | st->print(" [narrow]" ); |
1023 | } else if (is_ptr_to_narrowklass()) { |
1024 | st->print(" [narrowklass]" ); |
1025 | } |
1026 | } |
1027 | |
1028 | //----------------------------------------------------------------------------- |
1029 | const char* Type::str(const Type* t) { |
1030 | stringStream ss; |
1031 | t->dump_on(&ss); |
1032 | return ss.as_string(); |
1033 | } |
1034 | #endif |
1035 | |
1036 | //------------------------------singleton-------------------------------------- |
1037 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1038 | // constants (Ldi nodes). Singletons are integer, float or double constants. |
1039 | bool Type::singleton(void) const { |
1040 | return _base == Top || _base == Half; |
1041 | } |
1042 | |
1043 | //------------------------------empty------------------------------------------ |
1044 | // TRUE if Type is a type with no values, FALSE otherwise. |
1045 | bool Type::empty(void) const { |
1046 | switch (_base) { |
1047 | case DoubleTop: |
1048 | case FloatTop: |
1049 | case Top: |
1050 | return true; |
1051 | |
1052 | case Half: |
1053 | case Abio: |
1054 | case Return_Address: |
1055 | case Memory: |
1056 | case Bottom: |
1057 | case FloatBot: |
1058 | case DoubleBot: |
1059 | return false; // never a singleton, therefore never empty |
1060 | |
1061 | default: |
1062 | ShouldNotReachHere(); |
1063 | return false; |
1064 | } |
1065 | } |
1066 | |
1067 | //------------------------------dump_stats------------------------------------- |
1068 | // Dump collected statistics to stderr |
1069 | #ifndef PRODUCT |
1070 | void Type::dump_stats() { |
1071 | tty->print("Types made: %d\n" , type_dict()->Size()); |
1072 | } |
1073 | #endif |
1074 | |
1075 | //------------------------------typerr----------------------------------------- |
1076 | void Type::typerr( const Type *t ) const { |
1077 | #ifndef PRODUCT |
1078 | tty->print("\nError mixing types: " ); |
1079 | dump(); |
1080 | tty->print(" and " ); |
1081 | t->dump(); |
1082 | tty->print("\n" ); |
1083 | #endif |
1084 | ShouldNotReachHere(); |
1085 | } |
1086 | |
1087 | |
1088 | //============================================================================= |
1089 | // Convenience common pre-built types. |
1090 | const TypeF *TypeF::ZERO; // Floating point zero |
1091 | const TypeF *TypeF::ONE; // Floating point one |
1092 | const TypeF *TypeF::POS_INF; // Floating point positive infinity |
1093 | const TypeF *TypeF::NEG_INF; // Floating point negative infinity |
1094 | |
1095 | //------------------------------make------------------------------------------- |
1096 | // Create a float constant |
1097 | const TypeF *TypeF::make(float f) { |
1098 | return (TypeF*)(new TypeF(f))->hashcons(); |
1099 | } |
1100 | |
1101 | //------------------------------meet------------------------------------------- |
1102 | // Compute the MEET of two types. It returns a new Type object. |
1103 | const Type *TypeF::xmeet( const Type *t ) const { |
1104 | // Perform a fast test for common case; meeting the same types together. |
1105 | if( this == t ) return this; // Meeting same type-rep? |
1106 | |
1107 | // Current "this->_base" is FloatCon |
1108 | switch (t->base()) { // Switch on original type |
1109 | case AnyPtr: // Mixing with oops happens when javac |
1110 | case RawPtr: // reuses local variables |
1111 | case OopPtr: |
1112 | case InstPtr: |
1113 | case AryPtr: |
1114 | case MetadataPtr: |
1115 | case KlassPtr: |
1116 | case NarrowOop: |
1117 | case NarrowKlass: |
1118 | case Int: |
1119 | case Long: |
1120 | case DoubleTop: |
1121 | case DoubleCon: |
1122 | case DoubleBot: |
1123 | case Bottom: // Ye Olde Default |
1124 | return Type::BOTTOM; |
1125 | |
1126 | case FloatBot: |
1127 | return t; |
1128 | |
1129 | default: // All else is a mistake |
1130 | typerr(t); |
1131 | |
1132 | case FloatCon: // Float-constant vs Float-constant? |
1133 | if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? |
1134 | // must compare bitwise as positive zero, negative zero and NaN have |
1135 | // all the same representation in C++ |
1136 | return FLOAT; // Return generic float |
1137 | // Equal constants |
1138 | case Top: |
1139 | case FloatTop: |
1140 | break; // Return the float constant |
1141 | } |
1142 | return this; // Return the float constant |
1143 | } |
1144 | |
1145 | //------------------------------xdual------------------------------------------ |
1146 | // Dual: symmetric |
1147 | const Type *TypeF::xdual() const { |
1148 | return this; |
1149 | } |
1150 | |
1151 | //------------------------------eq--------------------------------------------- |
1152 | // Structural equality check for Type representations |
1153 | bool TypeF::eq(const Type *t) const { |
1154 | // Bitwise comparison to distinguish between +/-0. These values must be treated |
1155 | // as different to be consistent with C1 and the interpreter. |
1156 | return (jint_cast(_f) == jint_cast(t->getf())); |
1157 | } |
1158 | |
1159 | //------------------------------hash------------------------------------------- |
1160 | // Type-specific hashing function. |
1161 | int TypeF::hash(void) const { |
1162 | return *(int*)(&_f); |
1163 | } |
1164 | |
1165 | //------------------------------is_finite-------------------------------------- |
1166 | // Has a finite value |
1167 | bool TypeF::is_finite() const { |
1168 | return g_isfinite(getf()) != 0; |
1169 | } |
1170 | |
1171 | //------------------------------is_nan----------------------------------------- |
1172 | // Is not a number (NaN) |
1173 | bool TypeF::is_nan() const { |
1174 | return g_isnan(getf()) != 0; |
1175 | } |
1176 | |
1177 | //------------------------------dump2------------------------------------------ |
1178 | // Dump float constant Type |
1179 | #ifndef PRODUCT |
1180 | void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { |
1181 | Type::dump2(d,depth, st); |
1182 | st->print("%f" , _f); |
1183 | } |
1184 | #endif |
1185 | |
1186 | //------------------------------singleton-------------------------------------- |
1187 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1188 | // constants (Ldi nodes). Singletons are integer, float or double constants |
1189 | // or a single symbol. |
1190 | bool TypeF::singleton(void) const { |
1191 | return true; // Always a singleton |
1192 | } |
1193 | |
1194 | bool TypeF::empty(void) const { |
1195 | return false; // always exactly a singleton |
1196 | } |
1197 | |
1198 | //============================================================================= |
1199 | // Convenience common pre-built types. |
1200 | const TypeD *TypeD::ZERO; // Floating point zero |
1201 | const TypeD *TypeD::ONE; // Floating point one |
1202 | const TypeD *TypeD::POS_INF; // Floating point positive infinity |
1203 | const TypeD *TypeD::NEG_INF; // Floating point negative infinity |
1204 | |
1205 | //------------------------------make------------------------------------------- |
1206 | const TypeD *TypeD::make(double d) { |
1207 | return (TypeD*)(new TypeD(d))->hashcons(); |
1208 | } |
1209 | |
1210 | //------------------------------meet------------------------------------------- |
1211 | // Compute the MEET of two types. It returns a new Type object. |
1212 | const Type *TypeD::xmeet( const Type *t ) const { |
1213 | // Perform a fast test for common case; meeting the same types together. |
1214 | if( this == t ) return this; // Meeting same type-rep? |
1215 | |
1216 | // Current "this->_base" is DoubleCon |
1217 | switch (t->base()) { // Switch on original type |
1218 | case AnyPtr: // Mixing with oops happens when javac |
1219 | case RawPtr: // reuses local variables |
1220 | case OopPtr: |
1221 | case InstPtr: |
1222 | case AryPtr: |
1223 | case MetadataPtr: |
1224 | case KlassPtr: |
1225 | case NarrowOop: |
1226 | case NarrowKlass: |
1227 | case Int: |
1228 | case Long: |
1229 | case FloatTop: |
1230 | case FloatCon: |
1231 | case FloatBot: |
1232 | case Bottom: // Ye Olde Default |
1233 | return Type::BOTTOM; |
1234 | |
1235 | case DoubleBot: |
1236 | return t; |
1237 | |
1238 | default: // All else is a mistake |
1239 | typerr(t); |
1240 | |
1241 | case DoubleCon: // Double-constant vs Double-constant? |
1242 | if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) |
1243 | return DOUBLE; // Return generic double |
1244 | case Top: |
1245 | case DoubleTop: |
1246 | break; |
1247 | } |
1248 | return this; // Return the double constant |
1249 | } |
1250 | |
1251 | //------------------------------xdual------------------------------------------ |
1252 | // Dual: symmetric |
1253 | const Type *TypeD::xdual() const { |
1254 | return this; |
1255 | } |
1256 | |
1257 | //------------------------------eq--------------------------------------------- |
1258 | // Structural equality check for Type representations |
1259 | bool TypeD::eq(const Type *t) const { |
1260 | // Bitwise comparison to distinguish between +/-0. These values must be treated |
1261 | // as different to be consistent with C1 and the interpreter. |
1262 | return (jlong_cast(_d) == jlong_cast(t->getd())); |
1263 | } |
1264 | |
1265 | //------------------------------hash------------------------------------------- |
1266 | // Type-specific hashing function. |
1267 | int TypeD::hash(void) const { |
1268 | return *(int*)(&_d); |
1269 | } |
1270 | |
1271 | //------------------------------is_finite-------------------------------------- |
1272 | // Has a finite value |
1273 | bool TypeD::is_finite() const { |
1274 | return g_isfinite(getd()) != 0; |
1275 | } |
1276 | |
1277 | //------------------------------is_nan----------------------------------------- |
1278 | // Is not a number (NaN) |
1279 | bool TypeD::is_nan() const { |
1280 | return g_isnan(getd()) != 0; |
1281 | } |
1282 | |
1283 | //------------------------------dump2------------------------------------------ |
1284 | // Dump double constant Type |
1285 | #ifndef PRODUCT |
1286 | void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { |
1287 | Type::dump2(d,depth,st); |
1288 | st->print("%f" , _d); |
1289 | } |
1290 | #endif |
1291 | |
1292 | //------------------------------singleton-------------------------------------- |
1293 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1294 | // constants (Ldi nodes). Singletons are integer, float or double constants |
1295 | // or a single symbol. |
1296 | bool TypeD::singleton(void) const { |
1297 | return true; // Always a singleton |
1298 | } |
1299 | |
1300 | bool TypeD::empty(void) const { |
1301 | return false; // always exactly a singleton |
1302 | } |
1303 | |
1304 | //============================================================================= |
1305 | // Convience common pre-built types. |
1306 | const TypeInt *TypeInt::MINUS_1;// -1 |
1307 | const TypeInt *TypeInt::ZERO; // 0 |
1308 | const TypeInt *TypeInt::ONE; // 1 |
1309 | const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. |
1310 | const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes |
1311 | const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 |
1312 | const TypeInt *TypeInt::CC_GT; // [1] == ONE |
1313 | const TypeInt *TypeInt::CC_EQ; // [0] == ZERO |
1314 | const TypeInt *TypeInt::CC_LE; // [-1,0] |
1315 | const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) |
1316 | const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 |
1317 | const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 |
1318 | const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 |
1319 | const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 |
1320 | const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero |
1321 | const TypeInt *TypeInt::POS1; // Positive 32-bit integers |
1322 | const TypeInt *TypeInt::INT; // 32-bit integers |
1323 | const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] |
1324 | const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT |
1325 | |
1326 | //------------------------------TypeInt---------------------------------------- |
1327 | TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) { |
1328 | } |
1329 | |
1330 | //------------------------------make------------------------------------------- |
1331 | const TypeInt *TypeInt::make( jint lo ) { |
1332 | return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); |
1333 | } |
1334 | |
1335 | static int normalize_int_widen( jint lo, jint hi, int w ) { |
1336 | // Certain normalizations keep us sane when comparing types. |
1337 | // The 'SMALLINT' covers constants and also CC and its relatives. |
1338 | if (lo <= hi) { |
1339 | if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; |
1340 | if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT |
1341 | } else { |
1342 | if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; |
1343 | if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT |
1344 | } |
1345 | return w; |
1346 | } |
1347 | |
1348 | const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { |
1349 | w = normalize_int_widen(lo, hi, w); |
1350 | return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); |
1351 | } |
1352 | |
1353 | //------------------------------meet------------------------------------------- |
1354 | // Compute the MEET of two types. It returns a new Type representation object |
1355 | // with reference count equal to the number of Types pointing at it. |
1356 | // Caller should wrap a Types around it. |
1357 | const Type *TypeInt::xmeet( const Type *t ) const { |
1358 | // Perform a fast test for common case; meeting the same types together. |
1359 | if( this == t ) return this; // Meeting same type? |
1360 | |
1361 | // Currently "this->_base" is a TypeInt |
1362 | switch (t->base()) { // Switch on original type |
1363 | case AnyPtr: // Mixing with oops happens when javac |
1364 | case RawPtr: // reuses local variables |
1365 | case OopPtr: |
1366 | case InstPtr: |
1367 | case AryPtr: |
1368 | case MetadataPtr: |
1369 | case KlassPtr: |
1370 | case NarrowOop: |
1371 | case NarrowKlass: |
1372 | case Long: |
1373 | case FloatTop: |
1374 | case FloatCon: |
1375 | case FloatBot: |
1376 | case DoubleTop: |
1377 | case DoubleCon: |
1378 | case DoubleBot: |
1379 | case Bottom: // Ye Olde Default |
1380 | return Type::BOTTOM; |
1381 | default: // All else is a mistake |
1382 | typerr(t); |
1383 | case Top: // No change |
1384 | return this; |
1385 | case Int: // Int vs Int? |
1386 | break; |
1387 | } |
1388 | |
1389 | // Expand covered set |
1390 | const TypeInt *r = t->is_int(); |
1391 | return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); |
1392 | } |
1393 | |
1394 | //------------------------------xdual------------------------------------------ |
1395 | // Dual: reverse hi & lo; flip widen |
1396 | const Type *TypeInt::xdual() const { |
1397 | int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); |
1398 | return new TypeInt(_hi,_lo,w); |
1399 | } |
1400 | |
1401 | //------------------------------widen------------------------------------------ |
1402 | // Only happens for optimistic top-down optimizations. |
1403 | const Type *TypeInt::widen( const Type *old, const Type* limit ) const { |
1404 | // Coming from TOP or such; no widening |
1405 | if( old->base() != Int ) return this; |
1406 | const TypeInt *ot = old->is_int(); |
1407 | |
1408 | // If new guy is equal to old guy, no widening |
1409 | if( _lo == ot->_lo && _hi == ot->_hi ) |
1410 | return old; |
1411 | |
1412 | // If new guy contains old, then we widened |
1413 | if( _lo <= ot->_lo && _hi >= ot->_hi ) { |
1414 | // New contains old |
1415 | // If new guy is already wider than old, no widening |
1416 | if( _widen > ot->_widen ) return this; |
1417 | // If old guy was a constant, do not bother |
1418 | if (ot->_lo == ot->_hi) return this; |
1419 | // Now widen new guy. |
1420 | // Check for widening too far |
1421 | if (_widen == WidenMax) { |
1422 | int max = max_jint; |
1423 | int min = min_jint; |
1424 | if (limit->isa_int()) { |
1425 | max = limit->is_int()->_hi; |
1426 | min = limit->is_int()->_lo; |
1427 | } |
1428 | if (min < _lo && _hi < max) { |
1429 | // If neither endpoint is extremal yet, push out the endpoint |
1430 | // which is closer to its respective limit. |
1431 | if (_lo >= 0 || // easy common case |
1432 | (juint)(_lo - min) >= (juint)(max - _hi)) { |
1433 | // Try to widen to an unsigned range type of 31 bits: |
1434 | return make(_lo, max, WidenMax); |
1435 | } else { |
1436 | return make(min, _hi, WidenMax); |
1437 | } |
1438 | } |
1439 | return TypeInt::INT; |
1440 | } |
1441 | // Returned widened new guy |
1442 | return make(_lo,_hi,_widen+1); |
1443 | } |
1444 | |
1445 | // If old guy contains new, then we probably widened too far & dropped to |
1446 | // bottom. Return the wider fellow. |
1447 | if ( ot->_lo <= _lo && ot->_hi >= _hi ) |
1448 | return old; |
1449 | |
1450 | //fatal("Integer value range is not subset"); |
1451 | //return this; |
1452 | return TypeInt::INT; |
1453 | } |
1454 | |
1455 | //------------------------------narrow--------------------------------------- |
1456 | // Only happens for pessimistic optimizations. |
1457 | const Type *TypeInt::narrow( const Type *old ) const { |
1458 | if (_lo >= _hi) return this; // already narrow enough |
1459 | if (old == NULL) return this; |
1460 | const TypeInt* ot = old->isa_int(); |
1461 | if (ot == NULL) return this; |
1462 | jint olo = ot->_lo; |
1463 | jint ohi = ot->_hi; |
1464 | |
1465 | // If new guy is equal to old guy, no narrowing |
1466 | if (_lo == olo && _hi == ohi) return old; |
1467 | |
1468 | // If old guy was maximum range, allow the narrowing |
1469 | if (olo == min_jint && ohi == max_jint) return this; |
1470 | |
1471 | if (_lo < olo || _hi > ohi) |
1472 | return this; // doesn't narrow; pretty wierd |
1473 | |
1474 | // The new type narrows the old type, so look for a "death march". |
1475 | // See comments on PhaseTransform::saturate. |
1476 | juint nrange = (juint)_hi - _lo; |
1477 | juint orange = (juint)ohi - olo; |
1478 | if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { |
1479 | // Use the new type only if the range shrinks a lot. |
1480 | // We do not want the optimizer computing 2^31 point by point. |
1481 | return old; |
1482 | } |
1483 | |
1484 | return this; |
1485 | } |
1486 | |
1487 | //-----------------------------filter------------------------------------------ |
1488 | const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { |
1489 | const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); |
1490 | if (ft == NULL || ft->empty()) |
1491 | return Type::TOP; // Canonical empty value |
1492 | if (ft->_widen < this->_widen) { |
1493 | // Do not allow the value of kill->_widen to affect the outcome. |
1494 | // The widen bits must be allowed to run freely through the graph. |
1495 | ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); |
1496 | } |
1497 | return ft; |
1498 | } |
1499 | |
1500 | //------------------------------eq--------------------------------------------- |
1501 | // Structural equality check for Type representations |
1502 | bool TypeInt::eq( const Type *t ) const { |
1503 | const TypeInt *r = t->is_int(); // Handy access |
1504 | return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; |
1505 | } |
1506 | |
1507 | //------------------------------hash------------------------------------------- |
1508 | // Type-specific hashing function. |
1509 | int TypeInt::hash(void) const { |
1510 | return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int)); |
1511 | } |
1512 | |
1513 | //------------------------------is_finite-------------------------------------- |
1514 | // Has a finite value |
1515 | bool TypeInt::is_finite() const { |
1516 | return true; |
1517 | } |
1518 | |
1519 | //------------------------------dump2------------------------------------------ |
1520 | // Dump TypeInt |
1521 | #ifndef PRODUCT |
1522 | static const char* intname(char* buf, jint n) { |
1523 | if (n == min_jint) |
1524 | return "min" ; |
1525 | else if (n < min_jint + 10000) |
1526 | sprintf(buf, "min+" INT32_FORMAT, n - min_jint); |
1527 | else if (n == max_jint) |
1528 | return "max" ; |
1529 | else if (n > max_jint - 10000) |
1530 | sprintf(buf, "max-" INT32_FORMAT, max_jint - n); |
1531 | else |
1532 | sprintf(buf, INT32_FORMAT, n); |
1533 | return buf; |
1534 | } |
1535 | |
1536 | void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { |
1537 | char buf[40], buf2[40]; |
1538 | if (_lo == min_jint && _hi == max_jint) |
1539 | st->print("int" ); |
1540 | else if (is_con()) |
1541 | st->print("int:%s" , intname(buf, get_con())); |
1542 | else if (_lo == BOOL->_lo && _hi == BOOL->_hi) |
1543 | st->print("bool" ); |
1544 | else if (_lo == BYTE->_lo && _hi == BYTE->_hi) |
1545 | st->print("byte" ); |
1546 | else if (_lo == CHAR->_lo && _hi == CHAR->_hi) |
1547 | st->print("char" ); |
1548 | else if (_lo == SHORT->_lo && _hi == SHORT->_hi) |
1549 | st->print("short" ); |
1550 | else if (_hi == max_jint) |
1551 | st->print("int:>=%s" , intname(buf, _lo)); |
1552 | else if (_lo == min_jint) |
1553 | st->print("int:<=%s" , intname(buf, _hi)); |
1554 | else |
1555 | st->print("int:%s..%s" , intname(buf, _lo), intname(buf2, _hi)); |
1556 | |
1557 | if (_widen != 0 && this != TypeInt::INT) |
1558 | st->print(":%.*s" , _widen, "wwww" ); |
1559 | } |
1560 | #endif |
1561 | |
1562 | //------------------------------singleton-------------------------------------- |
1563 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1564 | // constants. |
1565 | bool TypeInt::singleton(void) const { |
1566 | return _lo >= _hi; |
1567 | } |
1568 | |
1569 | bool TypeInt::empty(void) const { |
1570 | return _lo > _hi; |
1571 | } |
1572 | |
1573 | //============================================================================= |
1574 | // Convenience common pre-built types. |
1575 | const TypeLong *TypeLong::MINUS_1;// -1 |
1576 | const TypeLong *TypeLong::ZERO; // 0 |
1577 | const TypeLong *TypeLong::ONE; // 1 |
1578 | const TypeLong *TypeLong::POS; // >=0 |
1579 | const TypeLong *TypeLong::LONG; // 64-bit integers |
1580 | const TypeLong *TypeLong::INT; // 32-bit subrange |
1581 | const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange |
1582 | const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG |
1583 | |
1584 | //------------------------------TypeLong--------------------------------------- |
1585 | TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) { |
1586 | } |
1587 | |
1588 | //------------------------------make------------------------------------------- |
1589 | const TypeLong *TypeLong::make( jlong lo ) { |
1590 | return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); |
1591 | } |
1592 | |
1593 | static int normalize_long_widen( jlong lo, jlong hi, int w ) { |
1594 | // Certain normalizations keep us sane when comparing types. |
1595 | // The 'SMALLINT' covers constants. |
1596 | if (lo <= hi) { |
1597 | if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; |
1598 | if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG |
1599 | } else { |
1600 | if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; |
1601 | if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG |
1602 | } |
1603 | return w; |
1604 | } |
1605 | |
1606 | const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { |
1607 | w = normalize_long_widen(lo, hi, w); |
1608 | return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); |
1609 | } |
1610 | |
1611 | |
1612 | //------------------------------meet------------------------------------------- |
1613 | // Compute the MEET of two types. It returns a new Type representation object |
1614 | // with reference count equal to the number of Types pointing at it. |
1615 | // Caller should wrap a Types around it. |
1616 | const Type *TypeLong::xmeet( const Type *t ) const { |
1617 | // Perform a fast test for common case; meeting the same types together. |
1618 | if( this == t ) return this; // Meeting same type? |
1619 | |
1620 | // Currently "this->_base" is a TypeLong |
1621 | switch (t->base()) { // Switch on original type |
1622 | case AnyPtr: // Mixing with oops happens when javac |
1623 | case RawPtr: // reuses local variables |
1624 | case OopPtr: |
1625 | case InstPtr: |
1626 | case AryPtr: |
1627 | case MetadataPtr: |
1628 | case KlassPtr: |
1629 | case NarrowOop: |
1630 | case NarrowKlass: |
1631 | case Int: |
1632 | case FloatTop: |
1633 | case FloatCon: |
1634 | case FloatBot: |
1635 | case DoubleTop: |
1636 | case DoubleCon: |
1637 | case DoubleBot: |
1638 | case Bottom: // Ye Olde Default |
1639 | return Type::BOTTOM; |
1640 | default: // All else is a mistake |
1641 | typerr(t); |
1642 | case Top: // No change |
1643 | return this; |
1644 | case Long: // Long vs Long? |
1645 | break; |
1646 | } |
1647 | |
1648 | // Expand covered set |
1649 | const TypeLong *r = t->is_long(); // Turn into a TypeLong |
1650 | return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); |
1651 | } |
1652 | |
1653 | //------------------------------xdual------------------------------------------ |
1654 | // Dual: reverse hi & lo; flip widen |
1655 | const Type *TypeLong::xdual() const { |
1656 | int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); |
1657 | return new TypeLong(_hi,_lo,w); |
1658 | } |
1659 | |
1660 | //------------------------------widen------------------------------------------ |
1661 | // Only happens for optimistic top-down optimizations. |
1662 | const Type *TypeLong::widen( const Type *old, const Type* limit ) const { |
1663 | // Coming from TOP or such; no widening |
1664 | if( old->base() != Long ) return this; |
1665 | const TypeLong *ot = old->is_long(); |
1666 | |
1667 | // If new guy is equal to old guy, no widening |
1668 | if( _lo == ot->_lo && _hi == ot->_hi ) |
1669 | return old; |
1670 | |
1671 | // If new guy contains old, then we widened |
1672 | if( _lo <= ot->_lo && _hi >= ot->_hi ) { |
1673 | // New contains old |
1674 | // If new guy is already wider than old, no widening |
1675 | if( _widen > ot->_widen ) return this; |
1676 | // If old guy was a constant, do not bother |
1677 | if (ot->_lo == ot->_hi) return this; |
1678 | // Now widen new guy. |
1679 | // Check for widening too far |
1680 | if (_widen == WidenMax) { |
1681 | jlong max = max_jlong; |
1682 | jlong min = min_jlong; |
1683 | if (limit->isa_long()) { |
1684 | max = limit->is_long()->_hi; |
1685 | min = limit->is_long()->_lo; |
1686 | } |
1687 | if (min < _lo && _hi < max) { |
1688 | // If neither endpoint is extremal yet, push out the endpoint |
1689 | // which is closer to its respective limit. |
1690 | if (_lo >= 0 || // easy common case |
1691 | ((julong)_lo - min) >= ((julong)max - _hi)) { |
1692 | // Try to widen to an unsigned range type of 32/63 bits: |
1693 | if (max >= max_juint && _hi < max_juint) |
1694 | return make(_lo, max_juint, WidenMax); |
1695 | else |
1696 | return make(_lo, max, WidenMax); |
1697 | } else { |
1698 | return make(min, _hi, WidenMax); |
1699 | } |
1700 | } |
1701 | return TypeLong::LONG; |
1702 | } |
1703 | // Returned widened new guy |
1704 | return make(_lo,_hi,_widen+1); |
1705 | } |
1706 | |
1707 | // If old guy contains new, then we probably widened too far & dropped to |
1708 | // bottom. Return the wider fellow. |
1709 | if ( ot->_lo <= _lo && ot->_hi >= _hi ) |
1710 | return old; |
1711 | |
1712 | // fatal("Long value range is not subset"); |
1713 | // return this; |
1714 | return TypeLong::LONG; |
1715 | } |
1716 | |
1717 | //------------------------------narrow---------------------------------------- |
1718 | // Only happens for pessimistic optimizations. |
1719 | const Type *TypeLong::narrow( const Type *old ) const { |
1720 | if (_lo >= _hi) return this; // already narrow enough |
1721 | if (old == NULL) return this; |
1722 | const TypeLong* ot = old->isa_long(); |
1723 | if (ot == NULL) return this; |
1724 | jlong olo = ot->_lo; |
1725 | jlong ohi = ot->_hi; |
1726 | |
1727 | // If new guy is equal to old guy, no narrowing |
1728 | if (_lo == olo && _hi == ohi) return old; |
1729 | |
1730 | // If old guy was maximum range, allow the narrowing |
1731 | if (olo == min_jlong && ohi == max_jlong) return this; |
1732 | |
1733 | if (_lo < olo || _hi > ohi) |
1734 | return this; // doesn't narrow; pretty wierd |
1735 | |
1736 | // The new type narrows the old type, so look for a "death march". |
1737 | // See comments on PhaseTransform::saturate. |
1738 | julong nrange = _hi - _lo; |
1739 | julong orange = ohi - olo; |
1740 | if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { |
1741 | // Use the new type only if the range shrinks a lot. |
1742 | // We do not want the optimizer computing 2^31 point by point. |
1743 | return old; |
1744 | } |
1745 | |
1746 | return this; |
1747 | } |
1748 | |
1749 | //-----------------------------filter------------------------------------------ |
1750 | const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { |
1751 | const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); |
1752 | if (ft == NULL || ft->empty()) |
1753 | return Type::TOP; // Canonical empty value |
1754 | if (ft->_widen < this->_widen) { |
1755 | // Do not allow the value of kill->_widen to affect the outcome. |
1756 | // The widen bits must be allowed to run freely through the graph. |
1757 | ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); |
1758 | } |
1759 | return ft; |
1760 | } |
1761 | |
1762 | //------------------------------eq--------------------------------------------- |
1763 | // Structural equality check for Type representations |
1764 | bool TypeLong::eq( const Type *t ) const { |
1765 | const TypeLong *r = t->is_long(); // Handy access |
1766 | return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; |
1767 | } |
1768 | |
1769 | //------------------------------hash------------------------------------------- |
1770 | // Type-specific hashing function. |
1771 | int TypeLong::hash(void) const { |
1772 | return (int)(_lo+_hi+_widen+(int)Type::Long); |
1773 | } |
1774 | |
1775 | //------------------------------is_finite-------------------------------------- |
1776 | // Has a finite value |
1777 | bool TypeLong::is_finite() const { |
1778 | return true; |
1779 | } |
1780 | |
1781 | //------------------------------dump2------------------------------------------ |
1782 | // Dump TypeLong |
1783 | #ifndef PRODUCT |
1784 | static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) { |
1785 | if (n > x) { |
1786 | if (n >= x + 10000) return NULL; |
1787 | sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x); |
1788 | } else if (n < x) { |
1789 | if (n <= x - 10000) return NULL; |
1790 | sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n); |
1791 | } else { |
1792 | return xname; |
1793 | } |
1794 | return buf; |
1795 | } |
1796 | |
1797 | static const char* longname(char* buf, jlong n) { |
1798 | const char* str; |
1799 | if (n == min_jlong) |
1800 | return "min" ; |
1801 | else if (n < min_jlong + 10000) |
1802 | sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong); |
1803 | else if (n == max_jlong) |
1804 | return "max" ; |
1805 | else if (n > max_jlong - 10000) |
1806 | sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n); |
1807 | else if ((str = longnamenear(max_juint, "maxuint" , buf, n)) != NULL) |
1808 | return str; |
1809 | else if ((str = longnamenear(max_jint, "maxint" , buf, n)) != NULL) |
1810 | return str; |
1811 | else if ((str = longnamenear(min_jint, "minint" , buf, n)) != NULL) |
1812 | return str; |
1813 | else |
1814 | sprintf(buf, JLONG_FORMAT, n); |
1815 | return buf; |
1816 | } |
1817 | |
1818 | void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { |
1819 | char buf[80], buf2[80]; |
1820 | if (_lo == min_jlong && _hi == max_jlong) |
1821 | st->print("long" ); |
1822 | else if (is_con()) |
1823 | st->print("long:%s" , longname(buf, get_con())); |
1824 | else if (_hi == max_jlong) |
1825 | st->print("long:>=%s" , longname(buf, _lo)); |
1826 | else if (_lo == min_jlong) |
1827 | st->print("long:<=%s" , longname(buf, _hi)); |
1828 | else |
1829 | st->print("long:%s..%s" , longname(buf, _lo), longname(buf2, _hi)); |
1830 | |
1831 | if (_widen != 0 && this != TypeLong::LONG) |
1832 | st->print(":%.*s" , _widen, "wwww" ); |
1833 | } |
1834 | #endif |
1835 | |
1836 | //------------------------------singleton-------------------------------------- |
1837 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1838 | // constants |
1839 | bool TypeLong::singleton(void) const { |
1840 | return _lo >= _hi; |
1841 | } |
1842 | |
1843 | bool TypeLong::empty(void) const { |
1844 | return _lo > _hi; |
1845 | } |
1846 | |
1847 | //============================================================================= |
1848 | // Convenience common pre-built types. |
1849 | const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable |
1850 | const TypeTuple *TypeTuple::IFFALSE; |
1851 | const TypeTuple *TypeTuple::IFTRUE; |
1852 | const TypeTuple *TypeTuple::IFNEITHER; |
1853 | const TypeTuple *TypeTuple::LOOPBODY; |
1854 | const TypeTuple *TypeTuple::MEMBAR; |
1855 | const TypeTuple *TypeTuple::STORECONDITIONAL; |
1856 | const TypeTuple *TypeTuple::START_I2C; |
1857 | const TypeTuple *TypeTuple::INT_PAIR; |
1858 | const TypeTuple *TypeTuple::LONG_PAIR; |
1859 | const TypeTuple *TypeTuple::INT_CC_PAIR; |
1860 | const TypeTuple *TypeTuple::LONG_CC_PAIR; |
1861 | |
1862 | |
1863 | //------------------------------make------------------------------------------- |
1864 | // Make a TypeTuple from the range of a method signature |
1865 | const TypeTuple *TypeTuple::make_range(ciSignature* sig) { |
1866 | ciType* return_type = sig->return_type(); |
1867 | uint arg_cnt = return_type->size(); |
1868 | const Type **field_array = fields(arg_cnt); |
1869 | switch (return_type->basic_type()) { |
1870 | case T_LONG: |
1871 | field_array[TypeFunc::Parms] = TypeLong::LONG; |
1872 | field_array[TypeFunc::Parms+1] = Type::HALF; |
1873 | break; |
1874 | case T_DOUBLE: |
1875 | field_array[TypeFunc::Parms] = Type::DOUBLE; |
1876 | field_array[TypeFunc::Parms+1] = Type::HALF; |
1877 | break; |
1878 | case T_OBJECT: |
1879 | case T_ARRAY: |
1880 | case T_BOOLEAN: |
1881 | case T_CHAR: |
1882 | case T_FLOAT: |
1883 | case T_BYTE: |
1884 | case T_SHORT: |
1885 | case T_INT: |
1886 | field_array[TypeFunc::Parms] = get_const_type(return_type); |
1887 | break; |
1888 | case T_VOID: |
1889 | break; |
1890 | default: |
1891 | ShouldNotReachHere(); |
1892 | } |
1893 | return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); |
1894 | } |
1895 | |
1896 | // Make a TypeTuple from the domain of a method signature |
1897 | const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) { |
1898 | uint arg_cnt = sig->size(); |
1899 | |
1900 | uint pos = TypeFunc::Parms; |
1901 | const Type **field_array; |
1902 | if (recv != NULL) { |
1903 | arg_cnt++; |
1904 | field_array = fields(arg_cnt); |
1905 | // Use get_const_type here because it respects UseUniqueSubclasses: |
1906 | field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL); |
1907 | } else { |
1908 | field_array = fields(arg_cnt); |
1909 | } |
1910 | |
1911 | int i = 0; |
1912 | while (pos < TypeFunc::Parms + arg_cnt) { |
1913 | ciType* type = sig->type_at(i); |
1914 | |
1915 | switch (type->basic_type()) { |
1916 | case T_LONG: |
1917 | field_array[pos++] = TypeLong::LONG; |
1918 | field_array[pos++] = Type::HALF; |
1919 | break; |
1920 | case T_DOUBLE: |
1921 | field_array[pos++] = Type::DOUBLE; |
1922 | field_array[pos++] = Type::HALF; |
1923 | break; |
1924 | case T_OBJECT: |
1925 | case T_ARRAY: |
1926 | case T_FLOAT: |
1927 | case T_INT: |
1928 | field_array[pos++] = get_const_type(type); |
1929 | break; |
1930 | case T_BOOLEAN: |
1931 | case T_CHAR: |
1932 | case T_BYTE: |
1933 | case T_SHORT: |
1934 | field_array[pos++] = TypeInt::INT; |
1935 | break; |
1936 | default: |
1937 | ShouldNotReachHere(); |
1938 | } |
1939 | i++; |
1940 | } |
1941 | |
1942 | return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); |
1943 | } |
1944 | |
1945 | const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { |
1946 | return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); |
1947 | } |
1948 | |
1949 | //------------------------------fields----------------------------------------- |
1950 | // Subroutine call type with space allocated for argument types |
1951 | // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly |
1952 | const Type **TypeTuple::fields( uint arg_cnt ) { |
1953 | const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); |
1954 | flds[TypeFunc::Control ] = Type::CONTROL; |
1955 | flds[TypeFunc::I_O ] = Type::ABIO; |
1956 | flds[TypeFunc::Memory ] = Type::MEMORY; |
1957 | flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; |
1958 | flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; |
1959 | |
1960 | return flds; |
1961 | } |
1962 | |
1963 | //------------------------------meet------------------------------------------- |
1964 | // Compute the MEET of two types. It returns a new Type object. |
1965 | const Type *TypeTuple::xmeet( const Type *t ) const { |
1966 | // Perform a fast test for common case; meeting the same types together. |
1967 | if( this == t ) return this; // Meeting same type-rep? |
1968 | |
1969 | // Current "this->_base" is Tuple |
1970 | switch (t->base()) { // switch on original type |
1971 | |
1972 | case Bottom: // Ye Olde Default |
1973 | return t; |
1974 | |
1975 | default: // All else is a mistake |
1976 | typerr(t); |
1977 | |
1978 | case Tuple: { // Meeting 2 signatures? |
1979 | const TypeTuple *x = t->is_tuple(); |
1980 | assert( _cnt == x->_cnt, "" ); |
1981 | const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) )); |
1982 | for( uint i=0; i<_cnt; i++ ) |
1983 | fields[i] = field_at(i)->xmeet( x->field_at(i) ); |
1984 | return TypeTuple::make(_cnt,fields); |
1985 | } |
1986 | case Top: |
1987 | break; |
1988 | } |
1989 | return this; // Return the double constant |
1990 | } |
1991 | |
1992 | //------------------------------xdual------------------------------------------ |
1993 | // Dual: compute field-by-field dual |
1994 | const Type *TypeTuple::xdual() const { |
1995 | const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) )); |
1996 | for( uint i=0; i<_cnt; i++ ) |
1997 | fields[i] = _fields[i]->dual(); |
1998 | return new TypeTuple(_cnt,fields); |
1999 | } |
2000 | |
2001 | //------------------------------eq--------------------------------------------- |
2002 | // Structural equality check for Type representations |
2003 | bool TypeTuple::eq( const Type *t ) const { |
2004 | const TypeTuple *s = (const TypeTuple *)t; |
2005 | if (_cnt != s->_cnt) return false; // Unequal field counts |
2006 | for (uint i = 0; i < _cnt; i++) |
2007 | if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! |
2008 | return false; // Missed |
2009 | return true; |
2010 | } |
2011 | |
2012 | //------------------------------hash------------------------------------------- |
2013 | // Type-specific hashing function. |
2014 | int TypeTuple::hash(void) const { |
2015 | intptr_t sum = _cnt; |
2016 | for( uint i=0; i<_cnt; i++ ) |
2017 | sum += (intptr_t)_fields[i]; // Hash on pointers directly |
2018 | return sum; |
2019 | } |
2020 | |
2021 | //------------------------------dump2------------------------------------------ |
2022 | // Dump signature Type |
2023 | #ifndef PRODUCT |
2024 | void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { |
2025 | st->print("{" ); |
2026 | if( !depth || d[this] ) { // Check for recursive print |
2027 | st->print("...}" ); |
2028 | return; |
2029 | } |
2030 | d.Insert((void*)this, (void*)this); // Stop recursion |
2031 | if( _cnt ) { |
2032 | uint i; |
2033 | for( i=0; i<_cnt-1; i++ ) { |
2034 | st->print("%d:" , i); |
2035 | _fields[i]->dump2(d, depth-1, st); |
2036 | st->print(", " ); |
2037 | } |
2038 | st->print("%d:" , i); |
2039 | _fields[i]->dump2(d, depth-1, st); |
2040 | } |
2041 | st->print("}" ); |
2042 | } |
2043 | #endif |
2044 | |
2045 | //------------------------------singleton-------------------------------------- |
2046 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2047 | // constants (Ldi nodes). Singletons are integer, float or double constants |
2048 | // or a single symbol. |
2049 | bool TypeTuple::singleton(void) const { |
2050 | return false; // Never a singleton |
2051 | } |
2052 | |
2053 | bool TypeTuple::empty(void) const { |
2054 | for( uint i=0; i<_cnt; i++ ) { |
2055 | if (_fields[i]->empty()) return true; |
2056 | } |
2057 | return false; |
2058 | } |
2059 | |
2060 | //============================================================================= |
2061 | // Convenience common pre-built types. |
2062 | |
2063 | inline const TypeInt* normalize_array_size(const TypeInt* size) { |
2064 | // Certain normalizations keep us sane when comparing types. |
2065 | // We do not want arrayOop variables to differ only by the wideness |
2066 | // of their index types. Pick minimum wideness, since that is the |
2067 | // forced wideness of small ranges anyway. |
2068 | if (size->_widen != Type::WidenMin) |
2069 | return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); |
2070 | else |
2071 | return size; |
2072 | } |
2073 | |
2074 | //------------------------------make------------------------------------------- |
2075 | const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { |
2076 | if (UseCompressedOops && elem->isa_oopptr()) { |
2077 | elem = elem->make_narrowoop(); |
2078 | } |
2079 | size = normalize_array_size(size); |
2080 | return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); |
2081 | } |
2082 | |
2083 | //------------------------------meet------------------------------------------- |
2084 | // Compute the MEET of two types. It returns a new Type object. |
2085 | const Type *TypeAry::xmeet( const Type *t ) const { |
2086 | // Perform a fast test for common case; meeting the same types together. |
2087 | if( this == t ) return this; // Meeting same type-rep? |
2088 | |
2089 | // Current "this->_base" is Ary |
2090 | switch (t->base()) { // switch on original type |
2091 | |
2092 | case Bottom: // Ye Olde Default |
2093 | return t; |
2094 | |
2095 | default: // All else is a mistake |
2096 | typerr(t); |
2097 | |
2098 | case Array: { // Meeting 2 arrays? |
2099 | const TypeAry *a = t->is_ary(); |
2100 | return TypeAry::make(_elem->meet_speculative(a->_elem), |
2101 | _size->xmeet(a->_size)->is_int(), |
2102 | _stable & a->_stable); |
2103 | } |
2104 | case Top: |
2105 | break; |
2106 | } |
2107 | return this; // Return the double constant |
2108 | } |
2109 | |
2110 | //------------------------------xdual------------------------------------------ |
2111 | // Dual: compute field-by-field dual |
2112 | const Type *TypeAry::xdual() const { |
2113 | const TypeInt* size_dual = _size->dual()->is_int(); |
2114 | size_dual = normalize_array_size(size_dual); |
2115 | return new TypeAry(_elem->dual(), size_dual, !_stable); |
2116 | } |
2117 | |
2118 | //------------------------------eq--------------------------------------------- |
2119 | // Structural equality check for Type representations |
2120 | bool TypeAry::eq( const Type *t ) const { |
2121 | const TypeAry *a = (const TypeAry*)t; |
2122 | return _elem == a->_elem && |
2123 | _stable == a->_stable && |
2124 | _size == a->_size; |
2125 | } |
2126 | |
2127 | //------------------------------hash------------------------------------------- |
2128 | // Type-specific hashing function. |
2129 | int TypeAry::hash(void) const { |
2130 | return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0); |
2131 | } |
2132 | |
2133 | /** |
2134 | * Return same type without a speculative part in the element |
2135 | */ |
2136 | const Type* TypeAry::remove_speculative() const { |
2137 | return make(_elem->remove_speculative(), _size, _stable); |
2138 | } |
2139 | |
2140 | /** |
2141 | * Return same type with cleaned up speculative part of element |
2142 | */ |
2143 | const Type* TypeAry::cleanup_speculative() const { |
2144 | return make(_elem->cleanup_speculative(), _size, _stable); |
2145 | } |
2146 | |
2147 | /** |
2148 | * Return same type but with a different inline depth (used for speculation) |
2149 | * |
2150 | * @param depth depth to meet with |
2151 | */ |
2152 | const TypePtr* TypePtr::with_inline_depth(int depth) const { |
2153 | if (!UseInlineDepthForSpeculativeTypes) { |
2154 | return this; |
2155 | } |
2156 | return make(AnyPtr, _ptr, _offset, _speculative, depth); |
2157 | } |
2158 | |
2159 | //----------------------interface_vs_oop--------------------------------------- |
2160 | #ifdef ASSERT |
2161 | bool TypeAry::interface_vs_oop(const Type *t) const { |
2162 | const TypeAry* t_ary = t->is_ary(); |
2163 | if (t_ary) { |
2164 | const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops |
2165 | const TypePtr* t_ptr = t_ary->_elem->make_ptr(); |
2166 | if(this_ptr != NULL && t_ptr != NULL) { |
2167 | return this_ptr->interface_vs_oop(t_ptr); |
2168 | } |
2169 | } |
2170 | return false; |
2171 | } |
2172 | #endif |
2173 | |
2174 | //------------------------------dump2------------------------------------------ |
2175 | #ifndef PRODUCT |
2176 | void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { |
2177 | if (_stable) st->print("stable:" ); |
2178 | _elem->dump2(d, depth, st); |
2179 | st->print("[" ); |
2180 | _size->dump2(d, depth, st); |
2181 | st->print("]" ); |
2182 | } |
2183 | #endif |
2184 | |
2185 | //------------------------------singleton-------------------------------------- |
2186 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2187 | // constants (Ldi nodes). Singletons are integer, float or double constants |
2188 | // or a single symbol. |
2189 | bool TypeAry::singleton(void) const { |
2190 | return false; // Never a singleton |
2191 | } |
2192 | |
2193 | bool TypeAry::empty(void) const { |
2194 | return _elem->empty() || _size->empty(); |
2195 | } |
2196 | |
2197 | //--------------------------ary_must_be_exact---------------------------------- |
2198 | bool TypeAry::ary_must_be_exact() const { |
2199 | if (!UseExactTypes) return false; |
2200 | // This logic looks at the element type of an array, and returns true |
2201 | // if the element type is either a primitive or a final instance class. |
2202 | // In such cases, an array built on this ary must have no subclasses. |
2203 | if (_elem == BOTTOM) return false; // general array not exact |
2204 | if (_elem == TOP ) return false; // inverted general array not exact |
2205 | const TypeOopPtr* toop = NULL; |
2206 | if (UseCompressedOops && _elem->isa_narrowoop()) { |
2207 | toop = _elem->make_ptr()->isa_oopptr(); |
2208 | } else { |
2209 | toop = _elem->isa_oopptr(); |
2210 | } |
2211 | if (!toop) return true; // a primitive type, like int |
2212 | ciKlass* tklass = toop->klass(); |
2213 | if (tklass == NULL) return false; // unloaded class |
2214 | if (!tklass->is_loaded()) return false; // unloaded class |
2215 | const TypeInstPtr* tinst; |
2216 | if (_elem->isa_narrowoop()) |
2217 | tinst = _elem->make_ptr()->isa_instptr(); |
2218 | else |
2219 | tinst = _elem->isa_instptr(); |
2220 | if (tinst) |
2221 | return tklass->as_instance_klass()->is_final(); |
2222 | const TypeAryPtr* tap; |
2223 | if (_elem->isa_narrowoop()) |
2224 | tap = _elem->make_ptr()->isa_aryptr(); |
2225 | else |
2226 | tap = _elem->isa_aryptr(); |
2227 | if (tap) |
2228 | return tap->ary()->ary_must_be_exact(); |
2229 | return false; |
2230 | } |
2231 | |
2232 | //==============================TypeVect======================================= |
2233 | // Convenience common pre-built types. |
2234 | const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors |
2235 | const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors |
2236 | const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors |
2237 | const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors |
2238 | const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors |
2239 | |
2240 | //------------------------------make------------------------------------------- |
2241 | const TypeVect* TypeVect::make(const Type *elem, uint length) { |
2242 | BasicType elem_bt = elem->array_element_basic_type(); |
2243 | assert(is_java_primitive(elem_bt), "only primitive types in vector" ); |
2244 | assert(length > 1 && is_power_of_2(length), "vector length is power of 2" ); |
2245 | assert(Matcher::vector_size_supported(elem_bt, length), "length in range" ); |
2246 | int size = length * type2aelembytes(elem_bt); |
2247 | switch (Matcher::vector_ideal_reg(size)) { |
2248 | case Op_VecS: |
2249 | return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); |
2250 | case Op_RegL: |
2251 | case Op_VecD: |
2252 | case Op_RegD: |
2253 | return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); |
2254 | case Op_VecX: |
2255 | return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); |
2256 | case Op_VecY: |
2257 | return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); |
2258 | case Op_VecZ: |
2259 | return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); |
2260 | } |
2261 | ShouldNotReachHere(); |
2262 | return NULL; |
2263 | } |
2264 | |
2265 | //------------------------------meet------------------------------------------- |
2266 | // Compute the MEET of two types. It returns a new Type object. |
2267 | const Type *TypeVect::xmeet( const Type *t ) const { |
2268 | // Perform a fast test for common case; meeting the same types together. |
2269 | if( this == t ) return this; // Meeting same type-rep? |
2270 | |
2271 | // Current "this->_base" is Vector |
2272 | switch (t->base()) { // switch on original type |
2273 | |
2274 | case Bottom: // Ye Olde Default |
2275 | return t; |
2276 | |
2277 | default: // All else is a mistake |
2278 | typerr(t); |
2279 | |
2280 | case VectorS: |
2281 | case VectorD: |
2282 | case VectorX: |
2283 | case VectorY: |
2284 | case VectorZ: { // Meeting 2 vectors? |
2285 | const TypeVect* v = t->is_vect(); |
2286 | assert( base() == v->base(), "" ); |
2287 | assert(length() == v->length(), "" ); |
2288 | assert(element_basic_type() == v->element_basic_type(), "" ); |
2289 | return TypeVect::make(_elem->xmeet(v->_elem), _length); |
2290 | } |
2291 | case Top: |
2292 | break; |
2293 | } |
2294 | return this; |
2295 | } |
2296 | |
2297 | //------------------------------xdual------------------------------------------ |
2298 | // Dual: compute field-by-field dual |
2299 | const Type *TypeVect::xdual() const { |
2300 | return new TypeVect(base(), _elem->dual(), _length); |
2301 | } |
2302 | |
2303 | //------------------------------eq--------------------------------------------- |
2304 | // Structural equality check for Type representations |
2305 | bool TypeVect::eq(const Type *t) const { |
2306 | const TypeVect *v = t->is_vect(); |
2307 | return (_elem == v->_elem) && (_length == v->_length); |
2308 | } |
2309 | |
2310 | //------------------------------hash------------------------------------------- |
2311 | // Type-specific hashing function. |
2312 | int TypeVect::hash(void) const { |
2313 | return (intptr_t)_elem + (intptr_t)_length; |
2314 | } |
2315 | |
2316 | //------------------------------singleton-------------------------------------- |
2317 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2318 | // constants (Ldi nodes). Vector is singleton if all elements are the same |
2319 | // constant value (when vector is created with Replicate code). |
2320 | bool TypeVect::singleton(void) const { |
2321 | // There is no Con node for vectors yet. |
2322 | // return _elem->singleton(); |
2323 | return false; |
2324 | } |
2325 | |
2326 | bool TypeVect::empty(void) const { |
2327 | return _elem->empty(); |
2328 | } |
2329 | |
2330 | //------------------------------dump2------------------------------------------ |
2331 | #ifndef PRODUCT |
2332 | void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { |
2333 | switch (base()) { |
2334 | case VectorS: |
2335 | st->print("vectors[" ); break; |
2336 | case VectorD: |
2337 | st->print("vectord[" ); break; |
2338 | case VectorX: |
2339 | st->print("vectorx[" ); break; |
2340 | case VectorY: |
2341 | st->print("vectory[" ); break; |
2342 | case VectorZ: |
2343 | st->print("vectorz[" ); break; |
2344 | default: |
2345 | ShouldNotReachHere(); |
2346 | } |
2347 | st->print("%d]:{" , _length); |
2348 | _elem->dump2(d, depth, st); |
2349 | st->print("}" ); |
2350 | } |
2351 | #endif |
2352 | |
2353 | |
2354 | //============================================================================= |
2355 | // Convenience common pre-built types. |
2356 | const TypePtr *TypePtr::NULL_PTR; |
2357 | const TypePtr *TypePtr::NOTNULL; |
2358 | const TypePtr *TypePtr::BOTTOM; |
2359 | |
2360 | //------------------------------meet------------------------------------------- |
2361 | // Meet over the PTR enum |
2362 | const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { |
2363 | // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, |
2364 | { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, |
2365 | { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, |
2366 | { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, |
2367 | { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, |
2368 | { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, |
2369 | { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} |
2370 | }; |
2371 | |
2372 | //------------------------------make------------------------------------------- |
2373 | const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { |
2374 | return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); |
2375 | } |
2376 | |
2377 | //------------------------------cast_to_ptr_type------------------------------- |
2378 | const Type *TypePtr::cast_to_ptr_type(PTR ptr) const { |
2379 | assert(_base == AnyPtr, "subclass must override cast_to_ptr_type" ); |
2380 | if( ptr == _ptr ) return this; |
2381 | return make(_base, ptr, _offset, _speculative, _inline_depth); |
2382 | } |
2383 | |
2384 | //------------------------------get_con---------------------------------------- |
2385 | intptr_t TypePtr::get_con() const { |
2386 | assert( _ptr == Null, "" ); |
2387 | return _offset; |
2388 | } |
2389 | |
2390 | //------------------------------meet------------------------------------------- |
2391 | // Compute the MEET of two types. It returns a new Type object. |
2392 | const Type *TypePtr::xmeet(const Type *t) const { |
2393 | const Type* res = xmeet_helper(t); |
2394 | if (res->isa_ptr() == NULL) { |
2395 | return res; |
2396 | } |
2397 | |
2398 | const TypePtr* res_ptr = res->is_ptr(); |
2399 | if (res_ptr->speculative() != NULL) { |
2400 | // type->speculative() == NULL means that speculation is no better |
2401 | // than type, i.e. type->speculative() == type. So there are 2 |
2402 | // ways to represent the fact that we have no useful speculative |
2403 | // data and we should use a single one to be able to test for |
2404 | // equality between types. Check whether type->speculative() == |
2405 | // type and set speculative to NULL if it is the case. |
2406 | if (res_ptr->remove_speculative() == res_ptr->speculative()) { |
2407 | return res_ptr->remove_speculative(); |
2408 | } |
2409 | } |
2410 | |
2411 | return res; |
2412 | } |
2413 | |
2414 | const Type *TypePtr::xmeet_helper(const Type *t) const { |
2415 | // Perform a fast test for common case; meeting the same types together. |
2416 | if( this == t ) return this; // Meeting same type-rep? |
2417 | |
2418 | // Current "this->_base" is AnyPtr |
2419 | switch (t->base()) { // switch on original type |
2420 | case Int: // Mixing ints & oops happens when javac |
2421 | case Long: // reuses local variables |
2422 | case FloatTop: |
2423 | case FloatCon: |
2424 | case FloatBot: |
2425 | case DoubleTop: |
2426 | case DoubleCon: |
2427 | case DoubleBot: |
2428 | case NarrowOop: |
2429 | case NarrowKlass: |
2430 | case Bottom: // Ye Olde Default |
2431 | return Type::BOTTOM; |
2432 | case Top: |
2433 | return this; |
2434 | |
2435 | case AnyPtr: { // Meeting to AnyPtrs |
2436 | const TypePtr *tp = t->is_ptr(); |
2437 | const TypePtr* speculative = xmeet_speculative(tp); |
2438 | int depth = meet_inline_depth(tp->inline_depth()); |
2439 | return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); |
2440 | } |
2441 | case RawPtr: // For these, flip the call around to cut down |
2442 | case OopPtr: |
2443 | case InstPtr: // on the cases I have to handle. |
2444 | case AryPtr: |
2445 | case MetadataPtr: |
2446 | case KlassPtr: |
2447 | return t->xmeet(this); // Call in reverse direction |
2448 | default: // All else is a mistake |
2449 | typerr(t); |
2450 | |
2451 | } |
2452 | return this; |
2453 | } |
2454 | |
2455 | //------------------------------meet_offset------------------------------------ |
2456 | int TypePtr::meet_offset( int offset ) const { |
2457 | // Either is 'TOP' offset? Return the other offset! |
2458 | if( _offset == OffsetTop ) return offset; |
2459 | if( offset == OffsetTop ) return _offset; |
2460 | // If either is different, return 'BOTTOM' offset |
2461 | if( _offset != offset ) return OffsetBot; |
2462 | return _offset; |
2463 | } |
2464 | |
2465 | //------------------------------dual_offset------------------------------------ |
2466 | int TypePtr::dual_offset( ) const { |
2467 | if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' |
2468 | if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' |
2469 | return _offset; // Map everything else into self |
2470 | } |
2471 | |
2472 | //------------------------------xdual------------------------------------------ |
2473 | // Dual: compute field-by-field dual |
2474 | const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { |
2475 | BotPTR, NotNull, Constant, Null, AnyNull, TopPTR |
2476 | }; |
2477 | const Type *TypePtr::xdual() const { |
2478 | return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); |
2479 | } |
2480 | |
2481 | //------------------------------xadd_offset------------------------------------ |
2482 | int TypePtr::xadd_offset( intptr_t offset ) const { |
2483 | // Adding to 'TOP' offset? Return 'TOP'! |
2484 | if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; |
2485 | // Adding to 'BOTTOM' offset? Return 'BOTTOM'! |
2486 | if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; |
2487 | // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! |
2488 | offset += (intptr_t)_offset; |
2489 | if (offset != (int)offset || offset == OffsetTop) return OffsetBot; |
2490 | |
2491 | // assert( _offset >= 0 && _offset+offset >= 0, "" ); |
2492 | // It is possible to construct a negative offset during PhaseCCP |
2493 | |
2494 | return (int)offset; // Sum valid offsets |
2495 | } |
2496 | |
2497 | //------------------------------add_offset------------------------------------- |
2498 | const TypePtr *TypePtr::add_offset( intptr_t offset ) const { |
2499 | return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); |
2500 | } |
2501 | |
2502 | //------------------------------eq--------------------------------------------- |
2503 | // Structural equality check for Type representations |
2504 | bool TypePtr::eq( const Type *t ) const { |
2505 | const TypePtr *a = (const TypePtr*)t; |
2506 | return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; |
2507 | } |
2508 | |
2509 | //------------------------------hash------------------------------------------- |
2510 | // Type-specific hashing function. |
2511 | int TypePtr::hash(void) const { |
2512 | return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth)); |
2513 | ; |
2514 | } |
2515 | |
2516 | /** |
2517 | * Return same type without a speculative part |
2518 | */ |
2519 | const Type* TypePtr::remove_speculative() const { |
2520 | if (_speculative == NULL) { |
2521 | return this; |
2522 | } |
2523 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth" ); |
2524 | return make(AnyPtr, _ptr, _offset, NULL, _inline_depth); |
2525 | } |
2526 | |
2527 | /** |
2528 | * Return same type but drop speculative part if we know we won't use |
2529 | * it |
2530 | */ |
2531 | const Type* TypePtr::cleanup_speculative() const { |
2532 | if (speculative() == NULL) { |
2533 | return this; |
2534 | } |
2535 | const Type* no_spec = remove_speculative(); |
2536 | // If this is NULL_PTR then we don't need the speculative type |
2537 | // (with_inline_depth in case the current type inline depth is |
2538 | // InlineDepthTop) |
2539 | if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { |
2540 | return no_spec; |
2541 | } |
2542 | if (above_centerline(speculative()->ptr())) { |
2543 | return no_spec; |
2544 | } |
2545 | const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); |
2546 | // If the speculative may be null and is an inexact klass then it |
2547 | // doesn't help |
2548 | if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && |
2549 | (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) { |
2550 | return no_spec; |
2551 | } |
2552 | return this; |
2553 | } |
2554 | |
2555 | /** |
2556 | * dual of the speculative part of the type |
2557 | */ |
2558 | const TypePtr* TypePtr::dual_speculative() const { |
2559 | if (_speculative == NULL) { |
2560 | return NULL; |
2561 | } |
2562 | return _speculative->dual()->is_ptr(); |
2563 | } |
2564 | |
2565 | /** |
2566 | * meet of the speculative parts of 2 types |
2567 | * |
2568 | * @param other type to meet with |
2569 | */ |
2570 | const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { |
2571 | bool this_has_spec = (_speculative != NULL); |
2572 | bool other_has_spec = (other->speculative() != NULL); |
2573 | |
2574 | if (!this_has_spec && !other_has_spec) { |
2575 | return NULL; |
2576 | } |
2577 | |
2578 | // If we are at a point where control flow meets and one branch has |
2579 | // a speculative type and the other has not, we meet the speculative |
2580 | // type of one branch with the actual type of the other. If the |
2581 | // actual type is exact and the speculative is as well, then the |
2582 | // result is a speculative type which is exact and we can continue |
2583 | // speculation further. |
2584 | const TypePtr* this_spec = _speculative; |
2585 | const TypePtr* other_spec = other->speculative(); |
2586 | |
2587 | if (!this_has_spec) { |
2588 | this_spec = this; |
2589 | } |
2590 | |
2591 | if (!other_has_spec) { |
2592 | other_spec = other; |
2593 | } |
2594 | |
2595 | return this_spec->meet(other_spec)->is_ptr(); |
2596 | } |
2597 | |
2598 | /** |
2599 | * dual of the inline depth for this type (used for speculation) |
2600 | */ |
2601 | int TypePtr::dual_inline_depth() const { |
2602 | return -inline_depth(); |
2603 | } |
2604 | |
2605 | /** |
2606 | * meet of 2 inline depths (used for speculation) |
2607 | * |
2608 | * @param depth depth to meet with |
2609 | */ |
2610 | int TypePtr::meet_inline_depth(int depth) const { |
2611 | return MAX2(inline_depth(), depth); |
2612 | } |
2613 | |
2614 | /** |
2615 | * Are the speculative parts of 2 types equal? |
2616 | * |
2617 | * @param other type to compare this one to |
2618 | */ |
2619 | bool TypePtr::eq_speculative(const TypePtr* other) const { |
2620 | if (_speculative == NULL || other->speculative() == NULL) { |
2621 | return _speculative == other->speculative(); |
2622 | } |
2623 | |
2624 | if (_speculative->base() != other->speculative()->base()) { |
2625 | return false; |
2626 | } |
2627 | |
2628 | return _speculative->eq(other->speculative()); |
2629 | } |
2630 | |
2631 | /** |
2632 | * Hash of the speculative part of the type |
2633 | */ |
2634 | int TypePtr::hash_speculative() const { |
2635 | if (_speculative == NULL) { |
2636 | return 0; |
2637 | } |
2638 | |
2639 | return _speculative->hash(); |
2640 | } |
2641 | |
2642 | /** |
2643 | * add offset to the speculative part of the type |
2644 | * |
2645 | * @param offset offset to add |
2646 | */ |
2647 | const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { |
2648 | if (_speculative == NULL) { |
2649 | return NULL; |
2650 | } |
2651 | return _speculative->add_offset(offset)->is_ptr(); |
2652 | } |
2653 | |
2654 | /** |
2655 | * return exact klass from the speculative type if there's one |
2656 | */ |
2657 | ciKlass* TypePtr::speculative_type() const { |
2658 | if (_speculative != NULL && _speculative->isa_oopptr()) { |
2659 | const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); |
2660 | if (speculative->klass_is_exact()) { |
2661 | return speculative->klass(); |
2662 | } |
2663 | } |
2664 | return NULL; |
2665 | } |
2666 | |
2667 | /** |
2668 | * return true if speculative type may be null |
2669 | */ |
2670 | bool TypePtr::speculative_maybe_null() const { |
2671 | if (_speculative != NULL) { |
2672 | const TypePtr* speculative = _speculative->join(this)->is_ptr(); |
2673 | return speculative->maybe_null(); |
2674 | } |
2675 | return true; |
2676 | } |
2677 | |
2678 | bool TypePtr::speculative_always_null() const { |
2679 | if (_speculative != NULL) { |
2680 | const TypePtr* speculative = _speculative->join(this)->is_ptr(); |
2681 | return speculative == TypePtr::NULL_PTR; |
2682 | } |
2683 | return false; |
2684 | } |
2685 | |
2686 | /** |
2687 | * Same as TypePtr::speculative_type() but return the klass only if |
2688 | * the speculative tells us is not null |
2689 | */ |
2690 | ciKlass* TypePtr::speculative_type_not_null() const { |
2691 | if (speculative_maybe_null()) { |
2692 | return NULL; |
2693 | } |
2694 | return speculative_type(); |
2695 | } |
2696 | |
2697 | /** |
2698 | * Check whether new profiling would improve speculative type |
2699 | * |
2700 | * @param exact_kls class from profiling |
2701 | * @param inline_depth inlining depth of profile point |
2702 | * |
2703 | * @return true if type profile is valuable |
2704 | */ |
2705 | bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { |
2706 | // no profiling? |
2707 | if (exact_kls == NULL) { |
2708 | return false; |
2709 | } |
2710 | if (speculative() == TypePtr::NULL_PTR) { |
2711 | return false; |
2712 | } |
2713 | // no speculative type or non exact speculative type? |
2714 | if (speculative_type() == NULL) { |
2715 | return true; |
2716 | } |
2717 | // If the node already has an exact speculative type keep it, |
2718 | // unless it was provided by profiling that is at a deeper |
2719 | // inlining level. Profiling at a higher inlining depth is |
2720 | // expected to be less accurate. |
2721 | if (_speculative->inline_depth() == InlineDepthBottom) { |
2722 | return false; |
2723 | } |
2724 | assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison" ); |
2725 | return inline_depth < _speculative->inline_depth(); |
2726 | } |
2727 | |
2728 | /** |
2729 | * Check whether new profiling would improve ptr (= tells us it is non |
2730 | * null) |
2731 | * |
2732 | * @param ptr_kind always null or not null? |
2733 | * |
2734 | * @return true if ptr profile is valuable |
2735 | */ |
2736 | bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { |
2737 | // profiling doesn't tell us anything useful |
2738 | if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { |
2739 | return false; |
2740 | } |
2741 | // We already know this is not null |
2742 | if (!this->maybe_null()) { |
2743 | return false; |
2744 | } |
2745 | // We already know the speculative type cannot be null |
2746 | if (!speculative_maybe_null()) { |
2747 | return false; |
2748 | } |
2749 | // We already know this is always null |
2750 | if (this == TypePtr::NULL_PTR) { |
2751 | return false; |
2752 | } |
2753 | // We already know the speculative type is always null |
2754 | if (speculative_always_null()) { |
2755 | return false; |
2756 | } |
2757 | if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) { |
2758 | return false; |
2759 | } |
2760 | return true; |
2761 | } |
2762 | |
2763 | //------------------------------dump2------------------------------------------ |
2764 | const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { |
2765 | "TopPTR" ,"AnyNull" ,"Constant" ,"NULL" ,"NotNull" ,"BotPTR" |
2766 | }; |
2767 | |
2768 | #ifndef PRODUCT |
2769 | void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
2770 | if( _ptr == Null ) st->print("NULL" ); |
2771 | else st->print("%s *" , ptr_msg[_ptr]); |
2772 | if( _offset == OffsetTop ) st->print("+top" ); |
2773 | else if( _offset == OffsetBot ) st->print("+bot" ); |
2774 | else if( _offset ) st->print("+%d" , _offset); |
2775 | dump_inline_depth(st); |
2776 | dump_speculative(st); |
2777 | } |
2778 | |
2779 | /** |
2780 | *dump the speculative part of the type |
2781 | */ |
2782 | void TypePtr::dump_speculative(outputStream *st) const { |
2783 | if (_speculative != NULL) { |
2784 | st->print(" (speculative=" ); |
2785 | _speculative->dump_on(st); |
2786 | st->print(")" ); |
2787 | } |
2788 | } |
2789 | |
2790 | /** |
2791 | *dump the inline depth of the type |
2792 | */ |
2793 | void TypePtr::dump_inline_depth(outputStream *st) const { |
2794 | if (_inline_depth != InlineDepthBottom) { |
2795 | if (_inline_depth == InlineDepthTop) { |
2796 | st->print(" (inline_depth=InlineDepthTop)" ); |
2797 | } else { |
2798 | st->print(" (inline_depth=%d)" , _inline_depth); |
2799 | } |
2800 | } |
2801 | } |
2802 | #endif |
2803 | |
2804 | //------------------------------singleton-------------------------------------- |
2805 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2806 | // constants |
2807 | bool TypePtr::singleton(void) const { |
2808 | // TopPTR, Null, AnyNull, Constant are all singletons |
2809 | return (_offset != OffsetBot) && !below_centerline(_ptr); |
2810 | } |
2811 | |
2812 | bool TypePtr::empty(void) const { |
2813 | return (_offset == OffsetTop) || above_centerline(_ptr); |
2814 | } |
2815 | |
2816 | //============================================================================= |
2817 | // Convenience common pre-built types. |
2818 | const TypeRawPtr *TypeRawPtr::BOTTOM; |
2819 | const TypeRawPtr *TypeRawPtr::NOTNULL; |
2820 | |
2821 | //------------------------------make------------------------------------------- |
2822 | const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { |
2823 | assert( ptr != Constant, "what is the constant?" ); |
2824 | assert( ptr != Null, "Use TypePtr for NULL" ); |
2825 | return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); |
2826 | } |
2827 | |
2828 | const TypeRawPtr *TypeRawPtr::make( address bits ) { |
2829 | assert( bits, "Use TypePtr for NULL" ); |
2830 | return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); |
2831 | } |
2832 | |
2833 | //------------------------------cast_to_ptr_type------------------------------- |
2834 | const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const { |
2835 | assert( ptr != Constant, "what is the constant?" ); |
2836 | assert( ptr != Null, "Use TypePtr for NULL" ); |
2837 | assert( _bits==0, "Why cast a constant address?" ); |
2838 | if( ptr == _ptr ) return this; |
2839 | return make(ptr); |
2840 | } |
2841 | |
2842 | //------------------------------get_con---------------------------------------- |
2843 | intptr_t TypeRawPtr::get_con() const { |
2844 | assert( _ptr == Null || _ptr == Constant, "" ); |
2845 | return (intptr_t)_bits; |
2846 | } |
2847 | |
2848 | //------------------------------meet------------------------------------------- |
2849 | // Compute the MEET of two types. It returns a new Type object. |
2850 | const Type *TypeRawPtr::xmeet( const Type *t ) const { |
2851 | // Perform a fast test for common case; meeting the same types together. |
2852 | if( this == t ) return this; // Meeting same type-rep? |
2853 | |
2854 | // Current "this->_base" is RawPtr |
2855 | switch( t->base() ) { // switch on original type |
2856 | case Bottom: // Ye Olde Default |
2857 | return t; |
2858 | case Top: |
2859 | return this; |
2860 | case AnyPtr: // Meeting to AnyPtrs |
2861 | break; |
2862 | case RawPtr: { // might be top, bot, any/not or constant |
2863 | enum PTR tptr = t->is_ptr()->ptr(); |
2864 | enum PTR ptr = meet_ptr( tptr ); |
2865 | if( ptr == Constant ) { // Cannot be equal constants, so... |
2866 | if( tptr == Constant && _ptr != Constant) return t; |
2867 | if( _ptr == Constant && tptr != Constant) return this; |
2868 | ptr = NotNull; // Fall down in lattice |
2869 | } |
2870 | return make( ptr ); |
2871 | } |
2872 | |
2873 | case OopPtr: |
2874 | case InstPtr: |
2875 | case AryPtr: |
2876 | case MetadataPtr: |
2877 | case KlassPtr: |
2878 | return TypePtr::BOTTOM; // Oop meet raw is not well defined |
2879 | default: // All else is a mistake |
2880 | typerr(t); |
2881 | } |
2882 | |
2883 | // Found an AnyPtr type vs self-RawPtr type |
2884 | const TypePtr *tp = t->is_ptr(); |
2885 | switch (tp->ptr()) { |
2886 | case TypePtr::TopPTR: return this; |
2887 | case TypePtr::BotPTR: return t; |
2888 | case TypePtr::Null: |
2889 | if( _ptr == TypePtr::TopPTR ) return t; |
2890 | return TypeRawPtr::BOTTOM; |
2891 | case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); |
2892 | case TypePtr::AnyNull: |
2893 | if( _ptr == TypePtr::Constant) return this; |
2894 | return make( meet_ptr(TypePtr::AnyNull) ); |
2895 | default: ShouldNotReachHere(); |
2896 | } |
2897 | return this; |
2898 | } |
2899 | |
2900 | //------------------------------xdual------------------------------------------ |
2901 | // Dual: compute field-by-field dual |
2902 | const Type *TypeRawPtr::xdual() const { |
2903 | return new TypeRawPtr( dual_ptr(), _bits ); |
2904 | } |
2905 | |
2906 | //------------------------------add_offset------------------------------------- |
2907 | const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const { |
2908 | if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer |
2909 | if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer |
2910 | if( offset == 0 ) return this; // No change |
2911 | switch (_ptr) { |
2912 | case TypePtr::TopPTR: |
2913 | case TypePtr::BotPTR: |
2914 | case TypePtr::NotNull: |
2915 | return this; |
2916 | case TypePtr::Null: |
2917 | case TypePtr::Constant: { |
2918 | address bits = _bits+offset; |
2919 | if ( bits == 0 ) return TypePtr::NULL_PTR; |
2920 | return make( bits ); |
2921 | } |
2922 | default: ShouldNotReachHere(); |
2923 | } |
2924 | return NULL; // Lint noise |
2925 | } |
2926 | |
2927 | //------------------------------eq--------------------------------------------- |
2928 | // Structural equality check for Type representations |
2929 | bool TypeRawPtr::eq( const Type *t ) const { |
2930 | const TypeRawPtr *a = (const TypeRawPtr*)t; |
2931 | return _bits == a->_bits && TypePtr::eq(t); |
2932 | } |
2933 | |
2934 | //------------------------------hash------------------------------------------- |
2935 | // Type-specific hashing function. |
2936 | int TypeRawPtr::hash(void) const { |
2937 | return (intptr_t)_bits + TypePtr::hash(); |
2938 | } |
2939 | |
2940 | //------------------------------dump2------------------------------------------ |
2941 | #ifndef PRODUCT |
2942 | void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
2943 | if( _ptr == Constant ) |
2944 | st->print(INTPTR_FORMAT, p2i(_bits)); |
2945 | else |
2946 | st->print("rawptr:%s" , ptr_msg[_ptr]); |
2947 | } |
2948 | #endif |
2949 | |
2950 | //============================================================================= |
2951 | // Convenience common pre-built type. |
2952 | const TypeOopPtr *TypeOopPtr::BOTTOM; |
2953 | |
2954 | //------------------------------TypeOopPtr------------------------------------- |
2955 | TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, |
2956 | int instance_id, const TypePtr* speculative, int inline_depth) |
2957 | : TypePtr(t, ptr, offset, speculative, inline_depth), |
2958 | _const_oop(o), _klass(k), |
2959 | _klass_is_exact(xk), |
2960 | _is_ptr_to_narrowoop(false), |
2961 | _is_ptr_to_narrowklass(false), |
2962 | _is_ptr_to_boxed_value(false), |
2963 | _instance_id(instance_id) { |
2964 | if (Compile::current()->eliminate_boxing() && (t == InstPtr) && |
2965 | (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { |
2966 | _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); |
2967 | } |
2968 | #ifdef _LP64 |
2969 | if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { |
2970 | if (_offset == oopDesc::klass_offset_in_bytes()) { |
2971 | _is_ptr_to_narrowklass = UseCompressedClassPointers; |
2972 | } else if (klass() == NULL) { |
2973 | // Array with unknown body type |
2974 | assert(this->isa_aryptr(), "only arrays without klass" ); |
2975 | _is_ptr_to_narrowoop = UseCompressedOops; |
2976 | } else if (this->isa_aryptr()) { |
2977 | _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && |
2978 | _offset != arrayOopDesc::length_offset_in_bytes()); |
2979 | } else if (klass()->is_instance_klass()) { |
2980 | ciInstanceKlass* ik = klass()->as_instance_klass(); |
2981 | ciField* field = NULL; |
2982 | if (this->isa_klassptr()) { |
2983 | // Perm objects don't use compressed references |
2984 | } else if (_offset == OffsetBot || _offset == OffsetTop) { |
2985 | // unsafe access |
2986 | _is_ptr_to_narrowoop = UseCompressedOops; |
2987 | } else { // exclude unsafe ops |
2988 | assert(this->isa_instptr(), "must be an instance ptr." ); |
2989 | |
2990 | if (klass() == ciEnv::current()->Class_klass() && |
2991 | (_offset == java_lang_Class::klass_offset_in_bytes() || |
2992 | _offset == java_lang_Class::array_klass_offset_in_bytes())) { |
2993 | // Special hidden fields from the Class. |
2994 | assert(this->isa_instptr(), "must be an instance ptr." ); |
2995 | _is_ptr_to_narrowoop = false; |
2996 | } else if (klass() == ciEnv::current()->Class_klass() && |
2997 | _offset >= InstanceMirrorKlass::offset_of_static_fields()) { |
2998 | // Static fields |
2999 | assert(o != NULL, "must be constant" ); |
3000 | ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass(); |
3001 | ciField* field = k->get_field_by_offset(_offset, true); |
3002 | assert(field != NULL, "missing field" ); |
3003 | BasicType basic_elem_type = field->layout_type(); |
3004 | _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT || |
3005 | basic_elem_type == T_ARRAY); |
3006 | } else { |
3007 | // Instance fields which contains a compressed oop references. |
3008 | field = ik->get_field_by_offset(_offset, false); |
3009 | if (field != NULL) { |
3010 | BasicType basic_elem_type = field->layout_type(); |
3011 | _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT || |
3012 | basic_elem_type == T_ARRAY); |
3013 | } else if (klass()->equals(ciEnv::current()->Object_klass())) { |
3014 | // Compile::find_alias_type() cast exactness on all types to verify |
3015 | // that it does not affect alias type. |
3016 | _is_ptr_to_narrowoop = UseCompressedOops; |
3017 | } else { |
3018 | // Type for the copy start in LibraryCallKit::inline_native_clone(). |
3019 | _is_ptr_to_narrowoop = UseCompressedOops; |
3020 | } |
3021 | } |
3022 | } |
3023 | } |
3024 | } |
3025 | #endif |
3026 | } |
3027 | |
3028 | //------------------------------make------------------------------------------- |
3029 | const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, |
3030 | const TypePtr* speculative, int inline_depth) { |
3031 | assert(ptr != Constant, "no constant generic pointers" ); |
3032 | ciKlass* k = Compile::current()->env()->Object_klass(); |
3033 | bool xk = false; |
3034 | ciObject* o = NULL; |
3035 | return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); |
3036 | } |
3037 | |
3038 | |
3039 | //------------------------------cast_to_ptr_type------------------------------- |
3040 | const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const { |
3041 | assert(_base == OopPtr, "subclass must override cast_to_ptr_type" ); |
3042 | if( ptr == _ptr ) return this; |
3043 | return make(ptr, _offset, _instance_id, _speculative, _inline_depth); |
3044 | } |
3045 | |
3046 | //-----------------------------cast_to_instance_id---------------------------- |
3047 | const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { |
3048 | // There are no instances of a general oop. |
3049 | // Return self unchanged. |
3050 | return this; |
3051 | } |
3052 | |
3053 | const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const { |
3054 | return this; |
3055 | } |
3056 | |
3057 | //-----------------------------cast_to_exactness------------------------------- |
3058 | const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { |
3059 | // There is no such thing as an exact general oop. |
3060 | // Return self unchanged. |
3061 | return this; |
3062 | } |
3063 | |
3064 | |
3065 | //------------------------------as_klass_type---------------------------------- |
3066 | // Return the klass type corresponding to this instance or array type. |
3067 | // It is the type that is loaded from an object of this type. |
3068 | const TypeKlassPtr* TypeOopPtr::as_klass_type() const { |
3069 | ciKlass* k = klass(); |
3070 | bool xk = klass_is_exact(); |
3071 | if (k == NULL) |
3072 | return TypeKlassPtr::OBJECT; |
3073 | else |
3074 | return TypeKlassPtr::make(xk? Constant: NotNull, k, 0); |
3075 | } |
3076 | |
3077 | //------------------------------meet------------------------------------------- |
3078 | // Compute the MEET of two types. It returns a new Type object. |
3079 | const Type *TypeOopPtr::xmeet_helper(const Type *t) const { |
3080 | // Perform a fast test for common case; meeting the same types together. |
3081 | if( this == t ) return this; // Meeting same type-rep? |
3082 | |
3083 | // Current "this->_base" is OopPtr |
3084 | switch (t->base()) { // switch on original type |
3085 | |
3086 | case Int: // Mixing ints & oops happens when javac |
3087 | case Long: // reuses local variables |
3088 | case FloatTop: |
3089 | case FloatCon: |
3090 | case FloatBot: |
3091 | case DoubleTop: |
3092 | case DoubleCon: |
3093 | case DoubleBot: |
3094 | case NarrowOop: |
3095 | case NarrowKlass: |
3096 | case Bottom: // Ye Olde Default |
3097 | return Type::BOTTOM; |
3098 | case Top: |
3099 | return this; |
3100 | |
3101 | default: // All else is a mistake |
3102 | typerr(t); |
3103 | |
3104 | case RawPtr: |
3105 | case MetadataPtr: |
3106 | case KlassPtr: |
3107 | return TypePtr::BOTTOM; // Oop meet raw is not well defined |
3108 | |
3109 | case AnyPtr: { |
3110 | // Found an AnyPtr type vs self-OopPtr type |
3111 | const TypePtr *tp = t->is_ptr(); |
3112 | int offset = meet_offset(tp->offset()); |
3113 | PTR ptr = meet_ptr(tp->ptr()); |
3114 | const TypePtr* speculative = xmeet_speculative(tp); |
3115 | int depth = meet_inline_depth(tp->inline_depth()); |
3116 | switch (tp->ptr()) { |
3117 | case Null: |
3118 | if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
3119 | // else fall through: |
3120 | case TopPTR: |
3121 | case AnyNull: { |
3122 | int instance_id = meet_instance_id(InstanceTop); |
3123 | return make(ptr, offset, instance_id, speculative, depth); |
3124 | } |
3125 | case BotPTR: |
3126 | case NotNull: |
3127 | return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
3128 | default: typerr(t); |
3129 | } |
3130 | } |
3131 | |
3132 | case OopPtr: { // Meeting to other OopPtrs |
3133 | const TypeOopPtr *tp = t->is_oopptr(); |
3134 | int instance_id = meet_instance_id(tp->instance_id()); |
3135 | const TypePtr* speculative = xmeet_speculative(tp); |
3136 | int depth = meet_inline_depth(tp->inline_depth()); |
3137 | return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); |
3138 | } |
3139 | |
3140 | case InstPtr: // For these, flip the call around to cut down |
3141 | case AryPtr: |
3142 | return t->xmeet(this); // Call in reverse direction |
3143 | |
3144 | } // End of switch |
3145 | return this; // Return the double constant |
3146 | } |
3147 | |
3148 | |
3149 | //------------------------------xdual------------------------------------------ |
3150 | // Dual of a pure heap pointer. No relevant klass or oop information. |
3151 | const Type *TypeOopPtr::xdual() const { |
3152 | assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here" ); |
3153 | assert(const_oop() == NULL, "no constants here" ); |
3154 | return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); |
3155 | } |
3156 | |
3157 | //--------------------------make_from_klass_common----------------------------- |
3158 | // Computes the element-type given a klass. |
3159 | const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) { |
3160 | if (klass->is_instance_klass()) { |
3161 | Compile* C = Compile::current(); |
3162 | Dependencies* deps = C->dependencies(); |
3163 | assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity" ); |
3164 | // Element is an instance |
3165 | bool klass_is_exact = false; |
3166 | if (klass->is_loaded()) { |
3167 | // Try to set klass_is_exact. |
3168 | ciInstanceKlass* ik = klass->as_instance_klass(); |
3169 | klass_is_exact = ik->is_final(); |
3170 | if (!klass_is_exact && klass_change |
3171 | && deps != NULL && UseUniqueSubclasses) { |
3172 | ciInstanceKlass* sub = ik->unique_concrete_subklass(); |
3173 | if (sub != NULL) { |
3174 | deps->assert_abstract_with_unique_concrete_subtype(ik, sub); |
3175 | klass = ik = sub; |
3176 | klass_is_exact = sub->is_final(); |
3177 | } |
3178 | } |
3179 | if (!klass_is_exact && try_for_exact |
3180 | && deps != NULL && UseExactTypes) { |
3181 | if (!ik->is_interface() && !ik->has_subklass()) { |
3182 | // Add a dependence; if concrete subclass added we need to recompile |
3183 | deps->assert_leaf_type(ik); |
3184 | klass_is_exact = true; |
3185 | } |
3186 | } |
3187 | } |
3188 | return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0); |
3189 | } else if (klass->is_obj_array_klass()) { |
3190 | // Element is an object array. Recursively call ourself. |
3191 | const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact); |
3192 | bool xk = etype->klass_is_exact(); |
3193 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); |
3194 | // We used to pass NotNull in here, asserting that the sub-arrays |
3195 | // are all not-null. This is not true in generally, as code can |
3196 | // slam NULLs down in the subarrays. |
3197 | const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0); |
3198 | return arr; |
3199 | } else if (klass->is_type_array_klass()) { |
3200 | // Element is an typeArray |
3201 | const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); |
3202 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); |
3203 | // We used to pass NotNull in here, asserting that the array pointer |
3204 | // is not-null. That was not true in general. |
3205 | const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); |
3206 | return arr; |
3207 | } else { |
3208 | ShouldNotReachHere(); |
3209 | return NULL; |
3210 | } |
3211 | } |
3212 | |
3213 | //------------------------------make_from_constant----------------------------- |
3214 | // Make a java pointer from an oop constant |
3215 | const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { |
3216 | assert(!o->is_null_object(), "null object not yet handled here." ); |
3217 | |
3218 | const bool make_constant = require_constant || o->should_be_constant(); |
3219 | |
3220 | ciKlass* klass = o->klass(); |
3221 | if (klass->is_instance_klass()) { |
3222 | // Element is an instance |
3223 | if (make_constant) { |
3224 | return TypeInstPtr::make(o); |
3225 | } else { |
3226 | return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0); |
3227 | } |
3228 | } else if (klass->is_obj_array_klass()) { |
3229 | // Element is an object array. Recursively call ourself. |
3230 | const TypeOopPtr *etype = |
3231 | TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass()); |
3232 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); |
3233 | // We used to pass NotNull in here, asserting that the sub-arrays |
3234 | // are all not-null. This is not true in generally, as code can |
3235 | // slam NULLs down in the subarrays. |
3236 | if (make_constant) { |
3237 | return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); |
3238 | } else { |
3239 | return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); |
3240 | } |
3241 | } else if (klass->is_type_array_klass()) { |
3242 | // Element is an typeArray |
3243 | const Type* etype = |
3244 | (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); |
3245 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); |
3246 | // We used to pass NotNull in here, asserting that the array pointer |
3247 | // is not-null. That was not true in general. |
3248 | if (make_constant) { |
3249 | return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); |
3250 | } else { |
3251 | return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); |
3252 | } |
3253 | } |
3254 | |
3255 | fatal("unhandled object type" ); |
3256 | return NULL; |
3257 | } |
3258 | |
3259 | //------------------------------get_con---------------------------------------- |
3260 | intptr_t TypeOopPtr::get_con() const { |
3261 | assert( _ptr == Null || _ptr == Constant, "" ); |
3262 | assert( _offset >= 0, "" ); |
3263 | |
3264 | if (_offset != 0) { |
3265 | // After being ported to the compiler interface, the compiler no longer |
3266 | // directly manipulates the addresses of oops. Rather, it only has a pointer |
3267 | // to a handle at compile time. This handle is embedded in the generated |
3268 | // code and dereferenced at the time the nmethod is made. Until that time, |
3269 | // it is not reasonable to do arithmetic with the addresses of oops (we don't |
3270 | // have access to the addresses!). This does not seem to currently happen, |
3271 | // but this assertion here is to help prevent its occurence. |
3272 | tty->print_cr("Found oop constant with non-zero offset" ); |
3273 | ShouldNotReachHere(); |
3274 | } |
3275 | |
3276 | return (intptr_t)const_oop()->constant_encoding(); |
3277 | } |
3278 | |
3279 | |
3280 | //-----------------------------filter------------------------------------------ |
3281 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
3282 | const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { |
3283 | |
3284 | const Type* ft = join_helper(kills, include_speculative); |
3285 | const TypeInstPtr* ftip = ft->isa_instptr(); |
3286 | const TypeInstPtr* ktip = kills->isa_instptr(); |
3287 | |
3288 | if (ft->empty()) { |
3289 | // Check for evil case of 'this' being a class and 'kills' expecting an |
3290 | // interface. This can happen because the bytecodes do not contain |
3291 | // enough type info to distinguish a Java-level interface variable |
3292 | // from a Java-level object variable. If we meet 2 classes which |
3293 | // both implement interface I, but their meet is at 'j/l/O' which |
3294 | // doesn't implement I, we have no way to tell if the result should |
3295 | // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows |
3296 | // into a Phi which "knows" it's an Interface type we'll have to |
3297 | // uplift the type. |
3298 | if (!empty()) { |
3299 | if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { |
3300 | return kills; // Uplift to interface |
3301 | } |
3302 | // Also check for evil cases of 'this' being a class array |
3303 | // and 'kills' expecting an array of interfaces. |
3304 | Type::get_arrays_base_elements(ft, kills, NULL, &ktip); |
3305 | if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { |
3306 | return kills; // Uplift to array of interface |
3307 | } |
3308 | } |
3309 | |
3310 | return Type::TOP; // Canonical empty value |
3311 | } |
3312 | |
3313 | // If we have an interface-typed Phi or cast and we narrow to a class type, |
3314 | // the join should report back the class. However, if we have a J/L/Object |
3315 | // class-typed Phi and an interface flows in, it's possible that the meet & |
3316 | // join report an interface back out. This isn't possible but happens |
3317 | // because the type system doesn't interact well with interfaces. |
3318 | if (ftip != NULL && ktip != NULL && |
3319 | ftip->is_loaded() && ftip->klass()->is_interface() && |
3320 | ktip->is_loaded() && !ktip->klass()->is_interface()) { |
3321 | assert(!ftip->klass_is_exact(), "interface could not be exact" ); |
3322 | return ktip->cast_to_ptr_type(ftip->ptr()); |
3323 | } |
3324 | |
3325 | return ft; |
3326 | } |
3327 | |
3328 | //------------------------------eq--------------------------------------------- |
3329 | // Structural equality check for Type representations |
3330 | bool TypeOopPtr::eq( const Type *t ) const { |
3331 | const TypeOopPtr *a = (const TypeOopPtr*)t; |
3332 | if (_klass_is_exact != a->_klass_is_exact || |
3333 | _instance_id != a->_instance_id) return false; |
3334 | ciObject* one = const_oop(); |
3335 | ciObject* two = a->const_oop(); |
3336 | if (one == NULL || two == NULL) { |
3337 | return (one == two) && TypePtr::eq(t); |
3338 | } else { |
3339 | return one->equals(two) && TypePtr::eq(t); |
3340 | } |
3341 | } |
3342 | |
3343 | //------------------------------hash------------------------------------------- |
3344 | // Type-specific hashing function. |
3345 | int TypeOopPtr::hash(void) const { |
3346 | return |
3347 | java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact), |
3348 | java_add((jint)_instance_id, (jint)TypePtr::hash())); |
3349 | } |
3350 | |
3351 | //------------------------------dump2------------------------------------------ |
3352 | #ifndef PRODUCT |
3353 | void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
3354 | st->print("oopptr:%s" , ptr_msg[_ptr]); |
3355 | if( _klass_is_exact ) st->print(":exact" ); |
3356 | if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); |
3357 | switch( _offset ) { |
3358 | case OffsetTop: st->print("+top" ); break; |
3359 | case OffsetBot: st->print("+any" ); break; |
3360 | case 0: break; |
3361 | default: st->print("+%d" ,_offset); break; |
3362 | } |
3363 | if (_instance_id == InstanceTop) |
3364 | st->print(",iid=top" ); |
3365 | else if (_instance_id != InstanceBot) |
3366 | st->print(",iid=%d" ,_instance_id); |
3367 | |
3368 | dump_inline_depth(st); |
3369 | dump_speculative(st); |
3370 | } |
3371 | #endif |
3372 | |
3373 | //------------------------------singleton-------------------------------------- |
3374 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
3375 | // constants |
3376 | bool TypeOopPtr::singleton(void) const { |
3377 | // detune optimizer to not generate constant oop + constant offset as a constant! |
3378 | // TopPTR, Null, AnyNull, Constant are all singletons |
3379 | return (_offset == 0) && !below_centerline(_ptr); |
3380 | } |
3381 | |
3382 | //------------------------------add_offset------------------------------------- |
3383 | const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const { |
3384 | return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); |
3385 | } |
3386 | |
3387 | /** |
3388 | * Return same type without a speculative part |
3389 | */ |
3390 | const Type* TypeOopPtr::remove_speculative() const { |
3391 | if (_speculative == NULL) { |
3392 | return this; |
3393 | } |
3394 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth" ); |
3395 | return make(_ptr, _offset, _instance_id, NULL, _inline_depth); |
3396 | } |
3397 | |
3398 | /** |
3399 | * Return same type but drop speculative part if we know we won't use |
3400 | * it |
3401 | */ |
3402 | const Type* TypeOopPtr::cleanup_speculative() const { |
3403 | // If the klass is exact and the ptr is not null then there's |
3404 | // nothing that the speculative type can help us with |
3405 | if (klass_is_exact() && !maybe_null()) { |
3406 | return remove_speculative(); |
3407 | } |
3408 | return TypePtr::cleanup_speculative(); |
3409 | } |
3410 | |
3411 | /** |
3412 | * Return same type but with a different inline depth (used for speculation) |
3413 | * |
3414 | * @param depth depth to meet with |
3415 | */ |
3416 | const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { |
3417 | if (!UseInlineDepthForSpeculativeTypes) { |
3418 | return this; |
3419 | } |
3420 | return make(_ptr, _offset, _instance_id, _speculative, depth); |
3421 | } |
3422 | |
3423 | //------------------------------with_instance_id-------------------------------- |
3424 | const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { |
3425 | assert(_instance_id != -1, "should be known" ); |
3426 | return make(_ptr, _offset, instance_id, _speculative, _inline_depth); |
3427 | } |
3428 | |
3429 | //------------------------------meet_instance_id-------------------------------- |
3430 | int TypeOopPtr::meet_instance_id( int instance_id ) const { |
3431 | // Either is 'TOP' instance? Return the other instance! |
3432 | if( _instance_id == InstanceTop ) return instance_id; |
3433 | if( instance_id == InstanceTop ) return _instance_id; |
3434 | // If either is different, return 'BOTTOM' instance |
3435 | if( _instance_id != instance_id ) return InstanceBot; |
3436 | return _instance_id; |
3437 | } |
3438 | |
3439 | //------------------------------dual_instance_id-------------------------------- |
3440 | int TypeOopPtr::dual_instance_id( ) const { |
3441 | if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM |
3442 | if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP |
3443 | return _instance_id; // Map everything else into self |
3444 | } |
3445 | |
3446 | /** |
3447 | * Check whether new profiling would improve speculative type |
3448 | * |
3449 | * @param exact_kls class from profiling |
3450 | * @param inline_depth inlining depth of profile point |
3451 | * |
3452 | * @return true if type profile is valuable |
3453 | */ |
3454 | bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { |
3455 | // no way to improve an already exact type |
3456 | if (klass_is_exact()) { |
3457 | return false; |
3458 | } |
3459 | return TypePtr::would_improve_type(exact_kls, inline_depth); |
3460 | } |
3461 | |
3462 | //============================================================================= |
3463 | // Convenience common pre-built types. |
3464 | const TypeInstPtr *TypeInstPtr::NOTNULL; |
3465 | const TypeInstPtr *TypeInstPtr::BOTTOM; |
3466 | const TypeInstPtr *TypeInstPtr::MIRROR; |
3467 | const TypeInstPtr *TypeInstPtr::MARK; |
3468 | const TypeInstPtr *TypeInstPtr::KLASS; |
3469 | |
3470 | //------------------------------TypeInstPtr------------------------------------- |
3471 | TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, |
3472 | int instance_id, const TypePtr* speculative, int inline_depth) |
3473 | : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), |
3474 | _name(k->name()) { |
3475 | assert(k != NULL && |
3476 | (k->is_loaded() || o == NULL), |
3477 | "cannot have constants with non-loaded klass" ); |
3478 | }; |
3479 | |
3480 | //------------------------------make------------------------------------------- |
3481 | const TypeInstPtr *TypeInstPtr::make(PTR ptr, |
3482 | ciKlass* k, |
3483 | bool xk, |
3484 | ciObject* o, |
3485 | int offset, |
3486 | int instance_id, |
3487 | const TypePtr* speculative, |
3488 | int inline_depth) { |
3489 | assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance" ); |
3490 | // Either const_oop() is NULL or else ptr is Constant |
3491 | assert( (!o && ptr != Constant) || (o && ptr == Constant), |
3492 | "constant pointers must have a value supplied" ); |
3493 | // Ptr is never Null |
3494 | assert( ptr != Null, "NULL pointers are not typed" ); |
3495 | |
3496 | assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed" ); |
3497 | if (!UseExactTypes) xk = false; |
3498 | if (ptr == Constant) { |
3499 | // Note: This case includes meta-object constants, such as methods. |
3500 | xk = true; |
3501 | } else if (k->is_loaded()) { |
3502 | ciInstanceKlass* ik = k->as_instance_klass(); |
3503 | if (!xk && ik->is_final()) xk = true; // no inexact final klass |
3504 | if (xk && ik->is_interface()) xk = false; // no exact interface |
3505 | } |
3506 | |
3507 | // Now hash this baby |
3508 | TypeInstPtr *result = |
3509 | (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); |
3510 | |
3511 | return result; |
3512 | } |
3513 | |
3514 | /** |
3515 | * Create constant type for a constant boxed value |
3516 | */ |
3517 | const Type* TypeInstPtr::get_const_boxed_value() const { |
3518 | assert(is_ptr_to_boxed_value(), "should be called only for boxed value" ); |
3519 | assert((const_oop() != NULL), "should be called only for constant object" ); |
3520 | ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); |
3521 | BasicType bt = constant.basic_type(); |
3522 | switch (bt) { |
3523 | case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); |
3524 | case T_INT: return TypeInt::make(constant.as_int()); |
3525 | case T_CHAR: return TypeInt::make(constant.as_char()); |
3526 | case T_BYTE: return TypeInt::make(constant.as_byte()); |
3527 | case T_SHORT: return TypeInt::make(constant.as_short()); |
3528 | case T_FLOAT: return TypeF::make(constant.as_float()); |
3529 | case T_DOUBLE: return TypeD::make(constant.as_double()); |
3530 | case T_LONG: return TypeLong::make(constant.as_long()); |
3531 | default: break; |
3532 | } |
3533 | fatal("Invalid boxed value type '%s'" , type2name(bt)); |
3534 | return NULL; |
3535 | } |
3536 | |
3537 | //------------------------------cast_to_ptr_type------------------------------- |
3538 | const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const { |
3539 | if( ptr == _ptr ) return this; |
3540 | // Reconstruct _sig info here since not a problem with later lazy |
3541 | // construction, _sig will show up on demand. |
3542 | return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth); |
3543 | } |
3544 | |
3545 | |
3546 | //-----------------------------cast_to_exactness------------------------------- |
3547 | const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { |
3548 | if( klass_is_exact == _klass_is_exact ) return this; |
3549 | if (!UseExactTypes) return this; |
3550 | if (!_klass->is_loaded()) return this; |
3551 | ciInstanceKlass* ik = _klass->as_instance_klass(); |
3552 | if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk |
3553 | if( ik->is_interface() ) return this; // cannot set xk |
3554 | return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); |
3555 | } |
3556 | |
3557 | //-----------------------------cast_to_instance_id---------------------------- |
3558 | const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const { |
3559 | if( instance_id == _instance_id ) return this; |
3560 | return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); |
3561 | } |
3562 | |
3563 | const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const { |
3564 | if (const_oop() == NULL) return this; |
3565 | return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth); |
3566 | } |
3567 | |
3568 | //------------------------------xmeet_unloaded--------------------------------- |
3569 | // Compute the MEET of two InstPtrs when at least one is unloaded. |
3570 | // Assume classes are different since called after check for same name/class-loader |
3571 | const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const { |
3572 | int off = meet_offset(tinst->offset()); |
3573 | PTR ptr = meet_ptr(tinst->ptr()); |
3574 | int instance_id = meet_instance_id(tinst->instance_id()); |
3575 | const TypePtr* speculative = xmeet_speculative(tinst); |
3576 | int depth = meet_inline_depth(tinst->inline_depth()); |
3577 | |
3578 | const TypeInstPtr *loaded = is_loaded() ? this : tinst; |
3579 | const TypeInstPtr *unloaded = is_loaded() ? tinst : this; |
3580 | if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { |
3581 | // |
3582 | // Meet unloaded class with java/lang/Object |
3583 | // |
3584 | // Meet |
3585 | // | Unloaded Class |
3586 | // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | |
3587 | // =================================================================== |
3588 | // TOP | ..........................Unloaded......................| |
3589 | // AnyNull | U-AN |................Unloaded......................| |
3590 | // Constant | ... O-NN .................................. | O-BOT | |
3591 | // NotNull | ... O-NN .................................. | O-BOT | |
3592 | // BOTTOM | ........................Object-BOTTOM ..................| |
3593 | // |
3594 | assert(loaded->ptr() != TypePtr::Null, "insanity check" ); |
3595 | // |
3596 | if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; } |
3597 | else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); } |
3598 | else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } |
3599 | else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { |
3600 | if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } |
3601 | else { return TypeInstPtr::NOTNULL; } |
3602 | } |
3603 | else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; } |
3604 | |
3605 | return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr(); |
3606 | } |
3607 | |
3608 | // Both are unloaded, not the same class, not Object |
3609 | // Or meet unloaded with a different loaded class, not java/lang/Object |
3610 | if( ptr != TypePtr::BotPTR ) { |
3611 | return TypeInstPtr::NOTNULL; |
3612 | } |
3613 | return TypeInstPtr::BOTTOM; |
3614 | } |
3615 | |
3616 | |
3617 | //------------------------------meet------------------------------------------- |
3618 | // Compute the MEET of two types. It returns a new Type object. |
3619 | const Type *TypeInstPtr::xmeet_helper(const Type *t) const { |
3620 | // Perform a fast test for common case; meeting the same types together. |
3621 | if( this == t ) return this; // Meeting same type-rep? |
3622 | |
3623 | // Current "this->_base" is Pointer |
3624 | switch (t->base()) { // switch on original type |
3625 | |
3626 | case Int: // Mixing ints & oops happens when javac |
3627 | case Long: // reuses local variables |
3628 | case FloatTop: |
3629 | case FloatCon: |
3630 | case FloatBot: |
3631 | case DoubleTop: |
3632 | case DoubleCon: |
3633 | case DoubleBot: |
3634 | case NarrowOop: |
3635 | case NarrowKlass: |
3636 | case Bottom: // Ye Olde Default |
3637 | return Type::BOTTOM; |
3638 | case Top: |
3639 | return this; |
3640 | |
3641 | default: // All else is a mistake |
3642 | typerr(t); |
3643 | |
3644 | case MetadataPtr: |
3645 | case KlassPtr: |
3646 | case RawPtr: return TypePtr::BOTTOM; |
3647 | |
3648 | case AryPtr: { // All arrays inherit from Object class |
3649 | const TypeAryPtr *tp = t->is_aryptr(); |
3650 | int offset = meet_offset(tp->offset()); |
3651 | PTR ptr = meet_ptr(tp->ptr()); |
3652 | int instance_id = meet_instance_id(tp->instance_id()); |
3653 | const TypePtr* speculative = xmeet_speculative(tp); |
3654 | int depth = meet_inline_depth(tp->inline_depth()); |
3655 | switch (ptr) { |
3656 | case TopPTR: |
3657 | case AnyNull: // Fall 'down' to dual of object klass |
3658 | // For instances when a subclass meets a superclass we fall |
3659 | // below the centerline when the superclass is exact. We need to |
3660 | // do the same here. |
3661 | if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { |
3662 | return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth); |
3663 | } else { |
3664 | // cannot subclass, so the meet has to fall badly below the centerline |
3665 | ptr = NotNull; |
3666 | instance_id = InstanceBot; |
3667 | return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); |
3668 | } |
3669 | case Constant: |
3670 | case NotNull: |
3671 | case BotPTR: // Fall down to object klass |
3672 | // LCA is object_klass, but if we subclass from the top we can do better |
3673 | if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) |
3674 | // If 'this' (InstPtr) is above the centerline and it is Object class |
3675 | // then we can subclass in the Java class hierarchy. |
3676 | // For instances when a subclass meets a superclass we fall |
3677 | // below the centerline when the superclass is exact. We need |
3678 | // to do the same here. |
3679 | if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { |
3680 | // that is, tp's array type is a subtype of my klass |
3681 | return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL), |
3682 | tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth); |
3683 | } |
3684 | } |
3685 | // The other case cannot happen, since I cannot be a subtype of an array. |
3686 | // The meet falls down to Object class below centerline. |
3687 | if( ptr == Constant ) |
3688 | ptr = NotNull; |
3689 | instance_id = InstanceBot; |
3690 | return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); |
3691 | default: typerr(t); |
3692 | } |
3693 | } |
3694 | |
3695 | case OopPtr: { // Meeting to OopPtrs |
3696 | // Found a OopPtr type vs self-InstPtr type |
3697 | const TypeOopPtr *tp = t->is_oopptr(); |
3698 | int offset = meet_offset(tp->offset()); |
3699 | PTR ptr = meet_ptr(tp->ptr()); |
3700 | switch (tp->ptr()) { |
3701 | case TopPTR: |
3702 | case AnyNull: { |
3703 | int instance_id = meet_instance_id(InstanceTop); |
3704 | const TypePtr* speculative = xmeet_speculative(tp); |
3705 | int depth = meet_inline_depth(tp->inline_depth()); |
3706 | return make(ptr, klass(), klass_is_exact(), |
3707 | (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); |
3708 | } |
3709 | case NotNull: |
3710 | case BotPTR: { |
3711 | int instance_id = meet_instance_id(tp->instance_id()); |
3712 | const TypePtr* speculative = xmeet_speculative(tp); |
3713 | int depth = meet_inline_depth(tp->inline_depth()); |
3714 | return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); |
3715 | } |
3716 | default: typerr(t); |
3717 | } |
3718 | } |
3719 | |
3720 | case AnyPtr: { // Meeting to AnyPtrs |
3721 | // Found an AnyPtr type vs self-InstPtr type |
3722 | const TypePtr *tp = t->is_ptr(); |
3723 | int offset = meet_offset(tp->offset()); |
3724 | PTR ptr = meet_ptr(tp->ptr()); |
3725 | int instance_id = meet_instance_id(InstanceTop); |
3726 | const TypePtr* speculative = xmeet_speculative(tp); |
3727 | int depth = meet_inline_depth(tp->inline_depth()); |
3728 | switch (tp->ptr()) { |
3729 | case Null: |
3730 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
3731 | // else fall through to AnyNull |
3732 | case TopPTR: |
3733 | case AnyNull: { |
3734 | return make(ptr, klass(), klass_is_exact(), |
3735 | (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); |
3736 | } |
3737 | case NotNull: |
3738 | case BotPTR: |
3739 | return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); |
3740 | default: typerr(t); |
3741 | } |
3742 | } |
3743 | |
3744 | /* |
3745 | A-top } |
3746 | / | \ } Tops |
3747 | B-top A-any C-top } |
3748 | | / | \ | } Any-nulls |
3749 | B-any | C-any } |
3750 | | | | |
3751 | B-con A-con C-con } constants; not comparable across classes |
3752 | | | | |
3753 | B-not | C-not } |
3754 | | \ | / | } not-nulls |
3755 | B-bot A-not C-bot } |
3756 | \ | / } Bottoms |
3757 | A-bot } |
3758 | */ |
3759 | |
3760 | case InstPtr: { // Meeting 2 Oops? |
3761 | // Found an InstPtr sub-type vs self-InstPtr type |
3762 | const TypeInstPtr *tinst = t->is_instptr(); |
3763 | int off = meet_offset( tinst->offset() ); |
3764 | PTR ptr = meet_ptr( tinst->ptr() ); |
3765 | int instance_id = meet_instance_id(tinst->instance_id()); |
3766 | const TypePtr* speculative = xmeet_speculative(tinst); |
3767 | int depth = meet_inline_depth(tinst->inline_depth()); |
3768 | |
3769 | // Check for easy case; klasses are equal (and perhaps not loaded!) |
3770 | // If we have constants, then we created oops so classes are loaded |
3771 | // and we can handle the constants further down. This case handles |
3772 | // both-not-loaded or both-loaded classes |
3773 | if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) { |
3774 | return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth); |
3775 | } |
3776 | |
3777 | // Classes require inspection in the Java klass hierarchy. Must be loaded. |
3778 | ciKlass* tinst_klass = tinst->klass(); |
3779 | ciKlass* this_klass = this->klass(); |
3780 | bool tinst_xk = tinst->klass_is_exact(); |
3781 | bool this_xk = this->klass_is_exact(); |
3782 | if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) { |
3783 | // One of these classes has not been loaded |
3784 | const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst); |
3785 | #ifndef PRODUCT |
3786 | if( PrintOpto && Verbose ) { |
3787 | tty->print("meet of unloaded classes resulted in: " ); unloaded_meet->dump(); tty->cr(); |
3788 | tty->print(" this == " ); this->dump(); tty->cr(); |
3789 | tty->print(" tinst == " ); tinst->dump(); tty->cr(); |
3790 | } |
3791 | #endif |
3792 | return unloaded_meet; |
3793 | } |
3794 | |
3795 | // Handle mixing oops and interfaces first. |
3796 | if( this_klass->is_interface() && !(tinst_klass->is_interface() || |
3797 | tinst_klass == ciEnv::current()->Object_klass())) { |
3798 | ciKlass *tmp = tinst_klass; // Swap interface around |
3799 | tinst_klass = this_klass; |
3800 | this_klass = tmp; |
3801 | bool tmp2 = tinst_xk; |
3802 | tinst_xk = this_xk; |
3803 | this_xk = tmp2; |
3804 | } |
3805 | if (tinst_klass->is_interface() && |
3806 | !(this_klass->is_interface() || |
3807 | // Treat java/lang/Object as an honorary interface, |
3808 | // because we need a bottom for the interface hierarchy. |
3809 | this_klass == ciEnv::current()->Object_klass())) { |
3810 | // Oop meets interface! |
3811 | |
3812 | // See if the oop subtypes (implements) interface. |
3813 | ciKlass *k; |
3814 | bool xk; |
3815 | if( this_klass->is_subtype_of( tinst_klass ) ) { |
3816 | // Oop indeed subtypes. Now keep oop or interface depending |
3817 | // on whether we are both above the centerline or either is |
3818 | // below the centerline. If we are on the centerline |
3819 | // (e.g., Constant vs. AnyNull interface), use the constant. |
3820 | k = below_centerline(ptr) ? tinst_klass : this_klass; |
3821 | // If we are keeping this_klass, keep its exactness too. |
3822 | xk = below_centerline(ptr) ? tinst_xk : this_xk; |
3823 | } else { // Does not implement, fall to Object |
3824 | // Oop does not implement interface, so mixing falls to Object |
3825 | // just like the verifier does (if both are above the |
3826 | // centerline fall to interface) |
3827 | k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass(); |
3828 | xk = above_centerline(ptr) ? tinst_xk : false; |
3829 | // Watch out for Constant vs. AnyNull interface. |
3830 | if (ptr == Constant) ptr = NotNull; // forget it was a constant |
3831 | instance_id = InstanceBot; |
3832 | } |
3833 | ciObject* o = NULL; // the Constant value, if any |
3834 | if (ptr == Constant) { |
3835 | // Find out which constant. |
3836 | o = (this_klass == klass()) ? const_oop() : tinst->const_oop(); |
3837 | } |
3838 | return make(ptr, k, xk, o, off, instance_id, speculative, depth); |
3839 | } |
3840 | |
3841 | // Either oop vs oop or interface vs interface or interface vs Object |
3842 | |
3843 | // !!! Here's how the symmetry requirement breaks down into invariants: |
3844 | // If we split one up & one down AND they subtype, take the down man. |
3845 | // If we split one up & one down AND they do NOT subtype, "fall hard". |
3846 | // If both are up and they subtype, take the subtype class. |
3847 | // If both are up and they do NOT subtype, "fall hard". |
3848 | // If both are down and they subtype, take the supertype class. |
3849 | // If both are down and they do NOT subtype, "fall hard". |
3850 | // Constants treated as down. |
3851 | |
3852 | // Now, reorder the above list; observe that both-down+subtype is also |
3853 | // "fall hard"; "fall hard" becomes the default case: |
3854 | // If we split one up & one down AND they subtype, take the down man. |
3855 | // If both are up and they subtype, take the subtype class. |
3856 | |
3857 | // If both are down and they subtype, "fall hard". |
3858 | // If both are down and they do NOT subtype, "fall hard". |
3859 | // If both are up and they do NOT subtype, "fall hard". |
3860 | // If we split one up & one down AND they do NOT subtype, "fall hard". |
3861 | |
3862 | // If a proper subtype is exact, and we return it, we return it exactly. |
3863 | // If a proper supertype is exact, there can be no subtyping relationship! |
3864 | // If both types are equal to the subtype, exactness is and-ed below the |
3865 | // centerline and or-ed above it. (N.B. Constants are always exact.) |
3866 | |
3867 | // Check for subtyping: |
3868 | ciKlass *subtype = NULL; |
3869 | bool subtype_exact = false; |
3870 | if( tinst_klass->equals(this_klass) ) { |
3871 | subtype = this_klass; |
3872 | subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk); |
3873 | } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) { |
3874 | subtype = this_klass; // Pick subtyping class |
3875 | subtype_exact = this_xk; |
3876 | } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) { |
3877 | subtype = tinst_klass; // Pick subtyping class |
3878 | subtype_exact = tinst_xk; |
3879 | } |
3880 | |
3881 | if( subtype ) { |
3882 | if( above_centerline(ptr) ) { // both are up? |
3883 | this_klass = tinst_klass = subtype; |
3884 | this_xk = tinst_xk = subtype_exact; |
3885 | } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) { |
3886 | this_klass = tinst_klass; // tinst is down; keep down man |
3887 | this_xk = tinst_xk; |
3888 | } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) { |
3889 | tinst_klass = this_klass; // this is down; keep down man |
3890 | tinst_xk = this_xk; |
3891 | } else { |
3892 | this_xk = subtype_exact; // either they are equal, or we'll do an LCA |
3893 | } |
3894 | } |
3895 | |
3896 | // Check for classes now being equal |
3897 | if (tinst_klass->equals(this_klass)) { |
3898 | // If the klasses are equal, the constants may still differ. Fall to |
3899 | // NotNull if they do (neither constant is NULL; that is a special case |
3900 | // handled elsewhere). |
3901 | ciObject* o = NULL; // Assume not constant when done |
3902 | ciObject* this_oop = const_oop(); |
3903 | ciObject* tinst_oop = tinst->const_oop(); |
3904 | if( ptr == Constant ) { |
3905 | if (this_oop != NULL && tinst_oop != NULL && |
3906 | this_oop->equals(tinst_oop) ) |
3907 | o = this_oop; |
3908 | else if (above_centerline(this ->_ptr)) |
3909 | o = tinst_oop; |
3910 | else if (above_centerline(tinst ->_ptr)) |
3911 | o = this_oop; |
3912 | else |
3913 | ptr = NotNull; |
3914 | } |
3915 | return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth); |
3916 | } // Else classes are not equal |
3917 | |
3918 | // Since klasses are different, we require a LCA in the Java |
3919 | // class hierarchy - which means we have to fall to at least NotNull. |
3920 | if( ptr == TopPTR || ptr == AnyNull || ptr == Constant ) |
3921 | ptr = NotNull; |
3922 | |
3923 | instance_id = InstanceBot; |
3924 | |
3925 | // Now we find the LCA of Java classes |
3926 | ciKlass* k = this_klass->least_common_ancestor(tinst_klass); |
3927 | return make(ptr, k, false, NULL, off, instance_id, speculative, depth); |
3928 | } // End of case InstPtr |
3929 | |
3930 | } // End of switch |
3931 | return this; // Return the double constant |
3932 | } |
3933 | |
3934 | |
3935 | //------------------------java_mirror_type-------------------------------------- |
3936 | ciType* TypeInstPtr::java_mirror_type() const { |
3937 | // must be a singleton type |
3938 | if( const_oop() == NULL ) return NULL; |
3939 | |
3940 | // must be of type java.lang.Class |
3941 | if( klass() != ciEnv::current()->Class_klass() ) return NULL; |
3942 | |
3943 | return const_oop()->as_instance()->java_mirror_type(); |
3944 | } |
3945 | |
3946 | |
3947 | //------------------------------xdual------------------------------------------ |
3948 | // Dual: do NOT dual on klasses. This means I do NOT understand the Java |
3949 | // inheritance mechanism. |
3950 | const Type *TypeInstPtr::xdual() const { |
3951 | return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); |
3952 | } |
3953 | |
3954 | //------------------------------eq--------------------------------------------- |
3955 | // Structural equality check for Type representations |
3956 | bool TypeInstPtr::eq( const Type *t ) const { |
3957 | const TypeInstPtr *p = t->is_instptr(); |
3958 | return |
3959 | klass()->equals(p->klass()) && |
3960 | TypeOopPtr::eq(p); // Check sub-type stuff |
3961 | } |
3962 | |
3963 | //------------------------------hash------------------------------------------- |
3964 | // Type-specific hashing function. |
3965 | int TypeInstPtr::hash(void) const { |
3966 | int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash()); |
3967 | return hash; |
3968 | } |
3969 | |
3970 | //------------------------------dump2------------------------------------------ |
3971 | // Dump oop Type |
3972 | #ifndef PRODUCT |
3973 | void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
3974 | // Print the name of the klass. |
3975 | klass()->print_name_on(st); |
3976 | |
3977 | switch( _ptr ) { |
3978 | case Constant: |
3979 | // TO DO: Make CI print the hex address of the underlying oop. |
3980 | if (WizardMode || Verbose) { |
3981 | const_oop()->print_oop(st); |
3982 | } |
3983 | case BotPTR: |
3984 | if (!WizardMode && !Verbose) { |
3985 | if( _klass_is_exact ) st->print(":exact" ); |
3986 | break; |
3987 | } |
3988 | case TopPTR: |
3989 | case AnyNull: |
3990 | case NotNull: |
3991 | st->print(":%s" , ptr_msg[_ptr]); |
3992 | if( _klass_is_exact ) st->print(":exact" ); |
3993 | break; |
3994 | default: |
3995 | break; |
3996 | } |
3997 | |
3998 | if( _offset ) { // Dump offset, if any |
3999 | if( _offset == OffsetBot ) st->print("+any" ); |
4000 | else if( _offset == OffsetTop ) st->print("+unknown" ); |
4001 | else st->print("+%d" , _offset); |
4002 | } |
4003 | |
4004 | st->print(" *" ); |
4005 | if (_instance_id == InstanceTop) |
4006 | st->print(",iid=top" ); |
4007 | else if (_instance_id != InstanceBot) |
4008 | st->print(",iid=%d" ,_instance_id); |
4009 | |
4010 | dump_inline_depth(st); |
4011 | dump_speculative(st); |
4012 | } |
4013 | #endif |
4014 | |
4015 | //------------------------------add_offset------------------------------------- |
4016 | const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const { |
4017 | return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), |
4018 | _instance_id, add_offset_speculative(offset), _inline_depth); |
4019 | } |
4020 | |
4021 | const Type *TypeInstPtr::remove_speculative() const { |
4022 | if (_speculative == NULL) { |
4023 | return this; |
4024 | } |
4025 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth" ); |
4026 | return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, |
4027 | _instance_id, NULL, _inline_depth); |
4028 | } |
4029 | |
4030 | const TypePtr *TypeInstPtr::with_inline_depth(int depth) const { |
4031 | if (!UseInlineDepthForSpeculativeTypes) { |
4032 | return this; |
4033 | } |
4034 | return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); |
4035 | } |
4036 | |
4037 | const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const { |
4038 | assert(is_known_instance(), "should be known" ); |
4039 | return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); |
4040 | } |
4041 | |
4042 | //============================================================================= |
4043 | // Convenience common pre-built types. |
4044 | const TypeAryPtr *TypeAryPtr::RANGE; |
4045 | const TypeAryPtr *TypeAryPtr::OOPS; |
4046 | const TypeAryPtr *TypeAryPtr::NARROWOOPS; |
4047 | const TypeAryPtr *TypeAryPtr::BYTES; |
4048 | const TypeAryPtr *TypeAryPtr::SHORTS; |
4049 | const TypeAryPtr *TypeAryPtr::CHARS; |
4050 | const TypeAryPtr *TypeAryPtr::INTS; |
4051 | const TypeAryPtr *TypeAryPtr::LONGS; |
4052 | const TypeAryPtr *TypeAryPtr::FLOATS; |
4053 | const TypeAryPtr *TypeAryPtr::DOUBLES; |
4054 | |
4055 | //------------------------------make------------------------------------------- |
4056 | const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
4057 | int instance_id, const TypePtr* speculative, int inline_depth) { |
4058 | assert(!(k == NULL && ary->_elem->isa_int()), |
4059 | "integral arrays must be pre-equipped with a class" ); |
4060 | if (!xk) xk = ary->ary_must_be_exact(); |
4061 | assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed" ); |
4062 | if (!UseExactTypes) xk = (ptr == Constant); |
4063 | return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); |
4064 | } |
4065 | |
4066 | //------------------------------make------------------------------------------- |
4067 | const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
4068 | int instance_id, const TypePtr* speculative, int inline_depth, |
4069 | bool is_autobox_cache) { |
4070 | assert(!(k == NULL && ary->_elem->isa_int()), |
4071 | "integral arrays must be pre-equipped with a class" ); |
4072 | assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); |
4073 | if (!xk) xk = (o != NULL) || ary->ary_must_be_exact(); |
4074 | assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed" ); |
4075 | if (!UseExactTypes) xk = (ptr == Constant); |
4076 | return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); |
4077 | } |
4078 | |
4079 | //------------------------------cast_to_ptr_type------------------------------- |
4080 | const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const { |
4081 | if( ptr == _ptr ) return this; |
4082 | return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); |
4083 | } |
4084 | |
4085 | |
4086 | //-----------------------------cast_to_exactness------------------------------- |
4087 | const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { |
4088 | if( klass_is_exact == _klass_is_exact ) return this; |
4089 | if (!UseExactTypes) return this; |
4090 | if (_ary->ary_must_be_exact()) return this; // cannot clear xk |
4091 | return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); |
4092 | } |
4093 | |
4094 | //-----------------------------cast_to_instance_id---------------------------- |
4095 | const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const { |
4096 | if( instance_id == _instance_id ) return this; |
4097 | return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); |
4098 | } |
4099 | |
4100 | const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const { |
4101 | if (const_oop() == NULL) return this; |
4102 | return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); |
4103 | } |
4104 | |
4105 | |
4106 | //-----------------------------narrow_size_type------------------------------- |
4107 | // Local cache for arrayOopDesc::max_array_length(etype), |
4108 | // which is kind of slow (and cached elsewhere by other users). |
4109 | static jint max_array_length_cache[T_CONFLICT+1]; |
4110 | static jint max_array_length(BasicType etype) { |
4111 | jint& cache = max_array_length_cache[etype]; |
4112 | jint res = cache; |
4113 | if (res == 0) { |
4114 | switch (etype) { |
4115 | case T_NARROWOOP: |
4116 | etype = T_OBJECT; |
4117 | break; |
4118 | case T_NARROWKLASS: |
4119 | case T_CONFLICT: |
4120 | case T_ILLEGAL: |
4121 | case T_VOID: |
4122 | etype = T_BYTE; // will produce conservatively high value |
4123 | break; |
4124 | default: |
4125 | break; |
4126 | } |
4127 | cache = res = arrayOopDesc::max_array_length(etype); |
4128 | } |
4129 | return res; |
4130 | } |
4131 | |
4132 | // Narrow the given size type to the index range for the given array base type. |
4133 | // Return NULL if the resulting int type becomes empty. |
4134 | const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { |
4135 | jint hi = size->_hi; |
4136 | jint lo = size->_lo; |
4137 | jint min_lo = 0; |
4138 | jint max_hi = max_array_length(elem()->basic_type()); |
4139 | //if (index_not_size) --max_hi; // type of a valid array index, FTR |
4140 | bool chg = false; |
4141 | if (lo < min_lo) { |
4142 | lo = min_lo; |
4143 | if (size->is_con()) { |
4144 | hi = lo; |
4145 | } |
4146 | chg = true; |
4147 | } |
4148 | if (hi > max_hi) { |
4149 | hi = max_hi; |
4150 | if (size->is_con()) { |
4151 | lo = hi; |
4152 | } |
4153 | chg = true; |
4154 | } |
4155 | // Negative length arrays will produce weird intermediate dead fast-path code |
4156 | if (lo > hi) |
4157 | return TypeInt::ZERO; |
4158 | if (!chg) |
4159 | return size; |
4160 | return TypeInt::make(lo, hi, Type::WidenMin); |
4161 | } |
4162 | |
4163 | //-------------------------------cast_to_size---------------------------------- |
4164 | const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { |
4165 | assert(new_size != NULL, "" ); |
4166 | new_size = narrow_size_type(new_size); |
4167 | if (new_size == size()) return this; |
4168 | const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); |
4169 | return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); |
4170 | } |
4171 | |
4172 | //------------------------------cast_to_stable--------------------------------- |
4173 | const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { |
4174 | if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) |
4175 | return this; |
4176 | |
4177 | const Type* elem = this->elem(); |
4178 | const TypePtr* elem_ptr = elem->make_ptr(); |
4179 | |
4180 | if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) { |
4181 | // If this is widened from a narrow oop, TypeAry::make will re-narrow it. |
4182 | elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); |
4183 | } |
4184 | |
4185 | const TypeAry* new_ary = TypeAry::make(elem, size(), stable); |
4186 | |
4187 | return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); |
4188 | } |
4189 | |
4190 | //-----------------------------stable_dimension-------------------------------- |
4191 | int TypeAryPtr::stable_dimension() const { |
4192 | if (!is_stable()) return 0; |
4193 | int dim = 1; |
4194 | const TypePtr* elem_ptr = elem()->make_ptr(); |
4195 | if (elem_ptr != NULL && elem_ptr->isa_aryptr()) |
4196 | dim += elem_ptr->is_aryptr()->stable_dimension(); |
4197 | return dim; |
4198 | } |
4199 | |
4200 | //----------------------cast_to_autobox_cache----------------------------------- |
4201 | const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const { |
4202 | if (is_autobox_cache() == cache) return this; |
4203 | const TypeOopPtr* etype = elem()->make_oopptr(); |
4204 | if (etype == NULL) return this; |
4205 | // The pointers in the autobox arrays are always non-null. |
4206 | TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull; |
4207 | etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); |
4208 | const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); |
4209 | return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache); |
4210 | } |
4211 | |
4212 | //------------------------------eq--------------------------------------------- |
4213 | // Structural equality check for Type representations |
4214 | bool TypeAryPtr::eq( const Type *t ) const { |
4215 | const TypeAryPtr *p = t->is_aryptr(); |
4216 | return |
4217 | _ary == p->_ary && // Check array |
4218 | TypeOopPtr::eq(p); // Check sub-parts |
4219 | } |
4220 | |
4221 | //------------------------------hash------------------------------------------- |
4222 | // Type-specific hashing function. |
4223 | int TypeAryPtr::hash(void) const { |
4224 | return (intptr_t)_ary + TypeOopPtr::hash(); |
4225 | } |
4226 | |
4227 | //------------------------------meet------------------------------------------- |
4228 | // Compute the MEET of two types. It returns a new Type object. |
4229 | const Type *TypeAryPtr::xmeet_helper(const Type *t) const { |
4230 | // Perform a fast test for common case; meeting the same types together. |
4231 | if( this == t ) return this; // Meeting same type-rep? |
4232 | // Current "this->_base" is Pointer |
4233 | switch (t->base()) { // switch on original type |
4234 | |
4235 | // Mixing ints & oops happens when javac reuses local variables |
4236 | case Int: |
4237 | case Long: |
4238 | case FloatTop: |
4239 | case FloatCon: |
4240 | case FloatBot: |
4241 | case DoubleTop: |
4242 | case DoubleCon: |
4243 | case DoubleBot: |
4244 | case NarrowOop: |
4245 | case NarrowKlass: |
4246 | case Bottom: // Ye Olde Default |
4247 | return Type::BOTTOM; |
4248 | case Top: |
4249 | return this; |
4250 | |
4251 | default: // All else is a mistake |
4252 | typerr(t); |
4253 | |
4254 | case OopPtr: { // Meeting to OopPtrs |
4255 | // Found a OopPtr type vs self-AryPtr type |
4256 | const TypeOopPtr *tp = t->is_oopptr(); |
4257 | int offset = meet_offset(tp->offset()); |
4258 | PTR ptr = meet_ptr(tp->ptr()); |
4259 | int depth = meet_inline_depth(tp->inline_depth()); |
4260 | const TypePtr* speculative = xmeet_speculative(tp); |
4261 | switch (tp->ptr()) { |
4262 | case TopPTR: |
4263 | case AnyNull: { |
4264 | int instance_id = meet_instance_id(InstanceTop); |
4265 | return make(ptr, (ptr == Constant ? const_oop() : NULL), |
4266 | _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4267 | } |
4268 | case BotPTR: |
4269 | case NotNull: { |
4270 | int instance_id = meet_instance_id(tp->instance_id()); |
4271 | return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); |
4272 | } |
4273 | default: ShouldNotReachHere(); |
4274 | } |
4275 | } |
4276 | |
4277 | case AnyPtr: { // Meeting two AnyPtrs |
4278 | // Found an AnyPtr type vs self-AryPtr type |
4279 | const TypePtr *tp = t->is_ptr(); |
4280 | int offset = meet_offset(tp->offset()); |
4281 | PTR ptr = meet_ptr(tp->ptr()); |
4282 | const TypePtr* speculative = xmeet_speculative(tp); |
4283 | int depth = meet_inline_depth(tp->inline_depth()); |
4284 | switch (tp->ptr()) { |
4285 | case TopPTR: |
4286 | return this; |
4287 | case BotPTR: |
4288 | case NotNull: |
4289 | return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
4290 | case Null: |
4291 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
4292 | // else fall through to AnyNull |
4293 | case AnyNull: { |
4294 | int instance_id = meet_instance_id(InstanceTop); |
4295 | return make(ptr, (ptr == Constant ? const_oop() : NULL), |
4296 | _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4297 | } |
4298 | default: ShouldNotReachHere(); |
4299 | } |
4300 | } |
4301 | |
4302 | case MetadataPtr: |
4303 | case KlassPtr: |
4304 | case RawPtr: return TypePtr::BOTTOM; |
4305 | |
4306 | case AryPtr: { // Meeting 2 references? |
4307 | const TypeAryPtr *tap = t->is_aryptr(); |
4308 | int off = meet_offset(tap->offset()); |
4309 | const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); |
4310 | PTR ptr = meet_ptr(tap->ptr()); |
4311 | int instance_id = meet_instance_id(tap->instance_id()); |
4312 | const TypePtr* speculative = xmeet_speculative(tap); |
4313 | int depth = meet_inline_depth(tap->inline_depth()); |
4314 | ciKlass* lazy_klass = NULL; |
4315 | if (tary->_elem->isa_int()) { |
4316 | // Integral array element types have irrelevant lattice relations. |
4317 | // It is the klass that determines array layout, not the element type. |
4318 | if (_klass == NULL) |
4319 | lazy_klass = tap->_klass; |
4320 | else if (tap->_klass == NULL || tap->_klass == _klass) { |
4321 | lazy_klass = _klass; |
4322 | } else { |
4323 | // Something like byte[int+] meets char[int+]. |
4324 | // This must fall to bottom, not (int[-128..65535])[int+]. |
4325 | instance_id = InstanceBot; |
4326 | tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable); |
4327 | } |
4328 | } else // Non integral arrays. |
4329 | // Must fall to bottom if exact klasses in upper lattice |
4330 | // are not equal or super klass is exact. |
4331 | if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() && |
4332 | // meet with top[] and bottom[] are processed further down: |
4333 | tap->_klass != NULL && this->_klass != NULL && |
4334 | // both are exact and not equal: |
4335 | ((tap->_klass_is_exact && this->_klass_is_exact) || |
4336 | // 'tap' is exact and super or unrelated: |
4337 | (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) || |
4338 | // 'this' is exact and super or unrelated: |
4339 | (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) { |
4340 | if (above_centerline(ptr)) { |
4341 | tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable); |
4342 | } |
4343 | return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth); |
4344 | } |
4345 | |
4346 | bool xk = false; |
4347 | switch (tap->ptr()) { |
4348 | case AnyNull: |
4349 | case TopPTR: |
4350 | // Compute new klass on demand, do not use tap->_klass |
4351 | if (below_centerline(this->_ptr)) { |
4352 | xk = this->_klass_is_exact; |
4353 | } else { |
4354 | xk = (tap->_klass_is_exact | this->_klass_is_exact); |
4355 | } |
4356 | return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth); |
4357 | case Constant: { |
4358 | ciObject* o = const_oop(); |
4359 | if( _ptr == Constant ) { |
4360 | if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) { |
4361 | xk = (klass() == tap->klass()); |
4362 | ptr = NotNull; |
4363 | o = NULL; |
4364 | instance_id = InstanceBot; |
4365 | } else { |
4366 | xk = true; |
4367 | } |
4368 | } else if(above_centerline(_ptr)) { |
4369 | o = tap->const_oop(); |
4370 | xk = true; |
4371 | } else { |
4372 | // Only precise for identical arrays |
4373 | xk = this->_klass_is_exact && (klass() == tap->klass()); |
4374 | } |
4375 | return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth); |
4376 | } |
4377 | case NotNull: |
4378 | case BotPTR: |
4379 | // Compute new klass on demand, do not use tap->_klass |
4380 | if (above_centerline(this->_ptr)) |
4381 | xk = tap->_klass_is_exact; |
4382 | else xk = (tap->_klass_is_exact & this->_klass_is_exact) && |
4383 | (klass() == tap->klass()); // Only precise for identical arrays |
4384 | return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth); |
4385 | default: ShouldNotReachHere(); |
4386 | } |
4387 | } |
4388 | |
4389 | // All arrays inherit from Object class |
4390 | case InstPtr: { |
4391 | const TypeInstPtr *tp = t->is_instptr(); |
4392 | int offset = meet_offset(tp->offset()); |
4393 | PTR ptr = meet_ptr(tp->ptr()); |
4394 | int instance_id = meet_instance_id(tp->instance_id()); |
4395 | const TypePtr* speculative = xmeet_speculative(tp); |
4396 | int depth = meet_inline_depth(tp->inline_depth()); |
4397 | switch (ptr) { |
4398 | case TopPTR: |
4399 | case AnyNull: // Fall 'down' to dual of object klass |
4400 | // For instances when a subclass meets a superclass we fall |
4401 | // below the centerline when the superclass is exact. We need to |
4402 | // do the same here. |
4403 | if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { |
4404 | return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4405 | } else { |
4406 | // cannot subclass, so the meet has to fall badly below the centerline |
4407 | ptr = NotNull; |
4408 | instance_id = InstanceBot; |
4409 | return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); |
4410 | } |
4411 | case Constant: |
4412 | case NotNull: |
4413 | case BotPTR: // Fall down to object klass |
4414 | // LCA is object_klass, but if we subclass from the top we can do better |
4415 | if (above_centerline(tp->ptr())) { |
4416 | // If 'tp' is above the centerline and it is Object class |
4417 | // then we can subclass in the Java class hierarchy. |
4418 | // For instances when a subclass meets a superclass we fall |
4419 | // below the centerline when the superclass is exact. We need |
4420 | // to do the same here. |
4421 | if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { |
4422 | // that is, my array type is a subtype of 'tp' klass |
4423 | return make(ptr, (ptr == Constant ? const_oop() : NULL), |
4424 | _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4425 | } |
4426 | } |
4427 | // The other case cannot happen, since t cannot be a subtype of an array. |
4428 | // The meet falls down to Object class below centerline. |
4429 | if( ptr == Constant ) |
4430 | ptr = NotNull; |
4431 | instance_id = InstanceBot; |
4432 | return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); |
4433 | default: typerr(t); |
4434 | } |
4435 | } |
4436 | } |
4437 | return this; // Lint noise |
4438 | } |
4439 | |
4440 | //------------------------------xdual------------------------------------------ |
4441 | // Dual: compute field-by-field dual |
4442 | const Type *TypeAryPtr::xdual() const { |
4443 | return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); |
4444 | } |
4445 | |
4446 | //----------------------interface_vs_oop--------------------------------------- |
4447 | #ifdef ASSERT |
4448 | bool TypeAryPtr::interface_vs_oop(const Type *t) const { |
4449 | const TypeAryPtr* t_aryptr = t->isa_aryptr(); |
4450 | if (t_aryptr) { |
4451 | return _ary->interface_vs_oop(t_aryptr->_ary); |
4452 | } |
4453 | return false; |
4454 | } |
4455 | #endif |
4456 | |
4457 | //------------------------------dump2------------------------------------------ |
4458 | #ifndef PRODUCT |
4459 | void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
4460 | _ary->dump2(d,depth,st); |
4461 | switch( _ptr ) { |
4462 | case Constant: |
4463 | const_oop()->print(st); |
4464 | break; |
4465 | case BotPTR: |
4466 | if (!WizardMode && !Verbose) { |
4467 | if( _klass_is_exact ) st->print(":exact" ); |
4468 | break; |
4469 | } |
4470 | case TopPTR: |
4471 | case AnyNull: |
4472 | case NotNull: |
4473 | st->print(":%s" , ptr_msg[_ptr]); |
4474 | if( _klass_is_exact ) st->print(":exact" ); |
4475 | break; |
4476 | default: |
4477 | break; |
4478 | } |
4479 | |
4480 | if( _offset != 0 ) { |
4481 | int header_size = objArrayOopDesc::header_size() * wordSize; |
4482 | if( _offset == OffsetTop ) st->print("+undefined" ); |
4483 | else if( _offset == OffsetBot ) st->print("+any" ); |
4484 | else if( _offset < header_size ) st->print("+%d" , _offset); |
4485 | else { |
4486 | BasicType basic_elem_type = elem()->basic_type(); |
4487 | int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); |
4488 | int elem_size = type2aelembytes(basic_elem_type); |
4489 | st->print("[%d]" , (_offset - array_base)/elem_size); |
4490 | } |
4491 | } |
4492 | st->print(" *" ); |
4493 | if (_instance_id == InstanceTop) |
4494 | st->print(",iid=top" ); |
4495 | else if (_instance_id != InstanceBot) |
4496 | st->print(",iid=%d" ,_instance_id); |
4497 | |
4498 | dump_inline_depth(st); |
4499 | dump_speculative(st); |
4500 | } |
4501 | #endif |
4502 | |
4503 | bool TypeAryPtr::empty(void) const { |
4504 | if (_ary->empty()) return true; |
4505 | return TypeOopPtr::empty(); |
4506 | } |
4507 | |
4508 | //------------------------------add_offset------------------------------------- |
4509 | const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const { |
4510 | return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); |
4511 | } |
4512 | |
4513 | const Type *TypeAryPtr::remove_speculative() const { |
4514 | if (_speculative == NULL) { |
4515 | return this; |
4516 | } |
4517 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth" ); |
4518 | return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth); |
4519 | } |
4520 | |
4521 | const TypePtr *TypeAryPtr::with_inline_depth(int depth) const { |
4522 | if (!UseInlineDepthForSpeculativeTypes) { |
4523 | return this; |
4524 | } |
4525 | return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); |
4526 | } |
4527 | |
4528 | const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const { |
4529 | assert(is_known_instance(), "should be known" ); |
4530 | return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); |
4531 | } |
4532 | |
4533 | //============================================================================= |
4534 | |
4535 | //------------------------------hash------------------------------------------- |
4536 | // Type-specific hashing function. |
4537 | int TypeNarrowPtr::hash(void) const { |
4538 | return _ptrtype->hash() + 7; |
4539 | } |
4540 | |
4541 | bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton |
4542 | return _ptrtype->singleton(); |
4543 | } |
4544 | |
4545 | bool TypeNarrowPtr::empty(void) const { |
4546 | return _ptrtype->empty(); |
4547 | } |
4548 | |
4549 | intptr_t TypeNarrowPtr::get_con() const { |
4550 | return _ptrtype->get_con(); |
4551 | } |
4552 | |
4553 | bool TypeNarrowPtr::eq( const Type *t ) const { |
4554 | const TypeNarrowPtr* tc = isa_same_narrowptr(t); |
4555 | if (tc != NULL) { |
4556 | if (_ptrtype->base() != tc->_ptrtype->base()) { |
4557 | return false; |
4558 | } |
4559 | return tc->_ptrtype->eq(_ptrtype); |
4560 | } |
4561 | return false; |
4562 | } |
4563 | |
4564 | const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. |
4565 | const TypePtr* odual = _ptrtype->dual()->is_ptr(); |
4566 | return make_same_narrowptr(odual); |
4567 | } |
4568 | |
4569 | |
4570 | const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { |
4571 | if (isa_same_narrowptr(kills)) { |
4572 | const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); |
4573 | if (ft->empty()) |
4574 | return Type::TOP; // Canonical empty value |
4575 | if (ft->isa_ptr()) { |
4576 | return make_hash_same_narrowptr(ft->isa_ptr()); |
4577 | } |
4578 | return ft; |
4579 | } else if (kills->isa_ptr()) { |
4580 | const Type* ft = _ptrtype->join_helper(kills, include_speculative); |
4581 | if (ft->empty()) |
4582 | return Type::TOP; // Canonical empty value |
4583 | return ft; |
4584 | } else { |
4585 | return Type::TOP; |
4586 | } |
4587 | } |
4588 | |
4589 | //------------------------------xmeet------------------------------------------ |
4590 | // Compute the MEET of two types. It returns a new Type object. |
4591 | const Type *TypeNarrowPtr::xmeet( const Type *t ) const { |
4592 | // Perform a fast test for common case; meeting the same types together. |
4593 | if( this == t ) return this; // Meeting same type-rep? |
4594 | |
4595 | if (t->base() == base()) { |
4596 | const Type* result = _ptrtype->xmeet(t->make_ptr()); |
4597 | if (result->isa_ptr()) { |
4598 | return make_hash_same_narrowptr(result->is_ptr()); |
4599 | } |
4600 | return result; |
4601 | } |
4602 | |
4603 | // Current "this->_base" is NarrowKlass or NarrowOop |
4604 | switch (t->base()) { // switch on original type |
4605 | |
4606 | case Int: // Mixing ints & oops happens when javac |
4607 | case Long: // reuses local variables |
4608 | case FloatTop: |
4609 | case FloatCon: |
4610 | case FloatBot: |
4611 | case DoubleTop: |
4612 | case DoubleCon: |
4613 | case DoubleBot: |
4614 | case AnyPtr: |
4615 | case RawPtr: |
4616 | case OopPtr: |
4617 | case InstPtr: |
4618 | case AryPtr: |
4619 | case MetadataPtr: |
4620 | case KlassPtr: |
4621 | case NarrowOop: |
4622 | case NarrowKlass: |
4623 | |
4624 | case Bottom: // Ye Olde Default |
4625 | return Type::BOTTOM; |
4626 | case Top: |
4627 | return this; |
4628 | |
4629 | default: // All else is a mistake |
4630 | typerr(t); |
4631 | |
4632 | } // End of switch |
4633 | |
4634 | return this; |
4635 | } |
4636 | |
4637 | #ifndef PRODUCT |
4638 | void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { |
4639 | _ptrtype->dump2(d, depth, st); |
4640 | } |
4641 | #endif |
4642 | |
4643 | const TypeNarrowOop *TypeNarrowOop::BOTTOM; |
4644 | const TypeNarrowOop *TypeNarrowOop::NULL_PTR; |
4645 | |
4646 | |
4647 | const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { |
4648 | return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); |
4649 | } |
4650 | |
4651 | const Type* TypeNarrowOop::remove_speculative() const { |
4652 | return make(_ptrtype->remove_speculative()->is_ptr()); |
4653 | } |
4654 | |
4655 | const Type* TypeNarrowOop::cleanup_speculative() const { |
4656 | return make(_ptrtype->cleanup_speculative()->is_ptr()); |
4657 | } |
4658 | |
4659 | #ifndef PRODUCT |
4660 | void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { |
4661 | st->print("narrowoop: " ); |
4662 | TypeNarrowPtr::dump2(d, depth, st); |
4663 | } |
4664 | #endif |
4665 | |
4666 | const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; |
4667 | |
4668 | const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { |
4669 | return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); |
4670 | } |
4671 | |
4672 | #ifndef PRODUCT |
4673 | void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { |
4674 | st->print("narrowklass: " ); |
4675 | TypeNarrowPtr::dump2(d, depth, st); |
4676 | } |
4677 | #endif |
4678 | |
4679 | |
4680 | //------------------------------eq--------------------------------------------- |
4681 | // Structural equality check for Type representations |
4682 | bool TypeMetadataPtr::eq( const Type *t ) const { |
4683 | const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; |
4684 | ciMetadata* one = metadata(); |
4685 | ciMetadata* two = a->metadata(); |
4686 | if (one == NULL || two == NULL) { |
4687 | return (one == two) && TypePtr::eq(t); |
4688 | } else { |
4689 | return one->equals(two) && TypePtr::eq(t); |
4690 | } |
4691 | } |
4692 | |
4693 | //------------------------------hash------------------------------------------- |
4694 | // Type-specific hashing function. |
4695 | int TypeMetadataPtr::hash(void) const { |
4696 | return |
4697 | (metadata() ? metadata()->hash() : 0) + |
4698 | TypePtr::hash(); |
4699 | } |
4700 | |
4701 | //------------------------------singleton-------------------------------------- |
4702 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
4703 | // constants |
4704 | bool TypeMetadataPtr::singleton(void) const { |
4705 | // detune optimizer to not generate constant metadata + constant offset as a constant! |
4706 | // TopPTR, Null, AnyNull, Constant are all singletons |
4707 | return (_offset == 0) && !below_centerline(_ptr); |
4708 | } |
4709 | |
4710 | //------------------------------add_offset------------------------------------- |
4711 | const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const { |
4712 | return make( _ptr, _metadata, xadd_offset(offset)); |
4713 | } |
4714 | |
4715 | //-----------------------------filter------------------------------------------ |
4716 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
4717 | const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { |
4718 | const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); |
4719 | if (ft == NULL || ft->empty()) |
4720 | return Type::TOP; // Canonical empty value |
4721 | return ft; |
4722 | } |
4723 | |
4724 | //------------------------------get_con---------------------------------------- |
4725 | intptr_t TypeMetadataPtr::get_con() const { |
4726 | assert( _ptr == Null || _ptr == Constant, "" ); |
4727 | assert( _offset >= 0, "" ); |
4728 | |
4729 | if (_offset != 0) { |
4730 | // After being ported to the compiler interface, the compiler no longer |
4731 | // directly manipulates the addresses of oops. Rather, it only has a pointer |
4732 | // to a handle at compile time. This handle is embedded in the generated |
4733 | // code and dereferenced at the time the nmethod is made. Until that time, |
4734 | // it is not reasonable to do arithmetic with the addresses of oops (we don't |
4735 | // have access to the addresses!). This does not seem to currently happen, |
4736 | // but this assertion here is to help prevent its occurence. |
4737 | tty->print_cr("Found oop constant with non-zero offset" ); |
4738 | ShouldNotReachHere(); |
4739 | } |
4740 | |
4741 | return (intptr_t)metadata()->constant_encoding(); |
4742 | } |
4743 | |
4744 | //------------------------------cast_to_ptr_type------------------------------- |
4745 | const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { |
4746 | if( ptr == _ptr ) return this; |
4747 | return make(ptr, metadata(), _offset); |
4748 | } |
4749 | |
4750 | //------------------------------meet------------------------------------------- |
4751 | // Compute the MEET of two types. It returns a new Type object. |
4752 | const Type *TypeMetadataPtr::xmeet( const Type *t ) const { |
4753 | // Perform a fast test for common case; meeting the same types together. |
4754 | if( this == t ) return this; // Meeting same type-rep? |
4755 | |
4756 | // Current "this->_base" is OopPtr |
4757 | switch (t->base()) { // switch on original type |
4758 | |
4759 | case Int: // Mixing ints & oops happens when javac |
4760 | case Long: // reuses local variables |
4761 | case FloatTop: |
4762 | case FloatCon: |
4763 | case FloatBot: |
4764 | case DoubleTop: |
4765 | case DoubleCon: |
4766 | case DoubleBot: |
4767 | case NarrowOop: |
4768 | case NarrowKlass: |
4769 | case Bottom: // Ye Olde Default |
4770 | return Type::BOTTOM; |
4771 | case Top: |
4772 | return this; |
4773 | |
4774 | default: // All else is a mistake |
4775 | typerr(t); |
4776 | |
4777 | case AnyPtr: { |
4778 | // Found an AnyPtr type vs self-OopPtr type |
4779 | const TypePtr *tp = t->is_ptr(); |
4780 | int offset = meet_offset(tp->offset()); |
4781 | PTR ptr = meet_ptr(tp->ptr()); |
4782 | switch (tp->ptr()) { |
4783 | case Null: |
4784 | if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
4785 | // else fall through: |
4786 | case TopPTR: |
4787 | case AnyNull: { |
4788 | return make(ptr, _metadata, offset); |
4789 | } |
4790 | case BotPTR: |
4791 | case NotNull: |
4792 | return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
4793 | default: typerr(t); |
4794 | } |
4795 | } |
4796 | |
4797 | case RawPtr: |
4798 | case KlassPtr: |
4799 | case OopPtr: |
4800 | case InstPtr: |
4801 | case AryPtr: |
4802 | return TypePtr::BOTTOM; // Oop meet raw is not well defined |
4803 | |
4804 | case MetadataPtr: { |
4805 | const TypeMetadataPtr *tp = t->is_metadataptr(); |
4806 | int offset = meet_offset(tp->offset()); |
4807 | PTR tptr = tp->ptr(); |
4808 | PTR ptr = meet_ptr(tptr); |
4809 | ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); |
4810 | if (tptr == TopPTR || _ptr == TopPTR || |
4811 | metadata()->equals(tp->metadata())) { |
4812 | return make(ptr, md, offset); |
4813 | } |
4814 | // metadata is different |
4815 | if( ptr == Constant ) { // Cannot be equal constants, so... |
4816 | if( tptr == Constant && _ptr != Constant) return t; |
4817 | if( _ptr == Constant && tptr != Constant) return this; |
4818 | ptr = NotNull; // Fall down in lattice |
4819 | } |
4820 | return make(ptr, NULL, offset); |
4821 | break; |
4822 | } |
4823 | } // End of switch |
4824 | return this; // Return the double constant |
4825 | } |
4826 | |
4827 | |
4828 | //------------------------------xdual------------------------------------------ |
4829 | // Dual of a pure metadata pointer. |
4830 | const Type *TypeMetadataPtr::xdual() const { |
4831 | return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); |
4832 | } |
4833 | |
4834 | //------------------------------dump2------------------------------------------ |
4835 | #ifndef PRODUCT |
4836 | void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
4837 | st->print("metadataptr:%s" , ptr_msg[_ptr]); |
4838 | if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); |
4839 | switch( _offset ) { |
4840 | case OffsetTop: st->print("+top" ); break; |
4841 | case OffsetBot: st->print("+any" ); break; |
4842 | case 0: break; |
4843 | default: st->print("+%d" ,_offset); break; |
4844 | } |
4845 | } |
4846 | #endif |
4847 | |
4848 | |
4849 | //============================================================================= |
4850 | // Convenience common pre-built type. |
4851 | const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; |
4852 | |
4853 | TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): |
4854 | TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { |
4855 | } |
4856 | |
4857 | const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { |
4858 | return make(Constant, m, 0); |
4859 | } |
4860 | const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { |
4861 | return make(Constant, m, 0); |
4862 | } |
4863 | |
4864 | //------------------------------make------------------------------------------- |
4865 | // Create a meta data constant |
4866 | const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { |
4867 | assert(m == NULL || !m->is_klass(), "wrong type" ); |
4868 | return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); |
4869 | } |
4870 | |
4871 | |
4872 | //============================================================================= |
4873 | // Convenience common pre-built types. |
4874 | |
4875 | // Not-null object klass or below |
4876 | const TypeKlassPtr *TypeKlassPtr::OBJECT; |
4877 | const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL; |
4878 | |
4879 | //------------------------------TypeKlassPtr----------------------------------- |
4880 | TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset ) |
4881 | : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) { |
4882 | } |
4883 | |
4884 | //------------------------------make------------------------------------------- |
4885 | // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant |
4886 | const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) { |
4887 | assert( k != NULL, "Expect a non-NULL klass" ); |
4888 | assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop" ); |
4889 | TypeKlassPtr *r = |
4890 | (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons(); |
4891 | |
4892 | return r; |
4893 | } |
4894 | |
4895 | //------------------------------eq--------------------------------------------- |
4896 | // Structural equality check for Type representations |
4897 | bool TypeKlassPtr::eq( const Type *t ) const { |
4898 | const TypeKlassPtr *p = t->is_klassptr(); |
4899 | return |
4900 | klass()->equals(p->klass()) && |
4901 | TypePtr::eq(p); |
4902 | } |
4903 | |
4904 | //------------------------------hash------------------------------------------- |
4905 | // Type-specific hashing function. |
4906 | int TypeKlassPtr::hash(void) const { |
4907 | return java_add((jint)klass()->hash(), (jint)TypePtr::hash()); |
4908 | } |
4909 | |
4910 | //------------------------------singleton-------------------------------------- |
4911 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
4912 | // constants |
4913 | bool TypeKlassPtr::singleton(void) const { |
4914 | // detune optimizer to not generate constant klass + constant offset as a constant! |
4915 | // TopPTR, Null, AnyNull, Constant are all singletons |
4916 | return (_offset == 0) && !below_centerline(_ptr); |
4917 | } |
4918 | |
4919 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
4920 | const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { |
4921 | // logic here mirrors the one from TypeOopPtr::filter. See comments |
4922 | // there. |
4923 | const Type* ft = join_helper(kills, include_speculative); |
4924 | const TypeKlassPtr* ftkp = ft->isa_klassptr(); |
4925 | const TypeKlassPtr* ktkp = kills->isa_klassptr(); |
4926 | |
4927 | if (ft->empty()) { |
4928 | if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface()) |
4929 | return kills; // Uplift to interface |
4930 | |
4931 | return Type::TOP; // Canonical empty value |
4932 | } |
4933 | |
4934 | // Interface klass type could be exact in opposite to interface type, |
4935 | // return it here instead of incorrect Constant ptr J/L/Object (6894807). |
4936 | if (ftkp != NULL && ktkp != NULL && |
4937 | ftkp->is_loaded() && ftkp->klass()->is_interface() && |
4938 | !ftkp->klass_is_exact() && // Keep exact interface klass |
4939 | ktkp->is_loaded() && !ktkp->klass()->is_interface()) { |
4940 | return ktkp->cast_to_ptr_type(ftkp->ptr()); |
4941 | } |
4942 | |
4943 | return ft; |
4944 | } |
4945 | |
4946 | //----------------------compute_klass------------------------------------------ |
4947 | // Compute the defining klass for this class |
4948 | ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const { |
4949 | // Compute _klass based on element type. |
4950 | ciKlass* k_ary = NULL; |
4951 | const TypeInstPtr *tinst; |
4952 | const TypeAryPtr *tary; |
4953 | const Type* el = elem(); |
4954 | if (el->isa_narrowoop()) { |
4955 | el = el->make_ptr(); |
4956 | } |
4957 | |
4958 | // Get element klass |
4959 | if ((tinst = el->isa_instptr()) != NULL) { |
4960 | // Compute array klass from element klass |
4961 | k_ary = ciObjArrayKlass::make(tinst->klass()); |
4962 | } else if ((tary = el->isa_aryptr()) != NULL) { |
4963 | // Compute array klass from element klass |
4964 | ciKlass* k_elem = tary->klass(); |
4965 | // If element type is something like bottom[], k_elem will be null. |
4966 | if (k_elem != NULL) |
4967 | k_ary = ciObjArrayKlass::make(k_elem); |
4968 | } else if ((el->base() == Type::Top) || |
4969 | (el->base() == Type::Bottom)) { |
4970 | // element type of Bottom occurs from meet of basic type |
4971 | // and object; Top occurs when doing join on Bottom. |
4972 | // Leave k_ary at NULL. |
4973 | } else { |
4974 | // Cannot compute array klass directly from basic type, |
4975 | // since subtypes of TypeInt all have basic type T_INT. |
4976 | #ifdef ASSERT |
4977 | if (verify && el->isa_int()) { |
4978 | // Check simple cases when verifying klass. |
4979 | BasicType bt = T_ILLEGAL; |
4980 | if (el == TypeInt::BYTE) { |
4981 | bt = T_BYTE; |
4982 | } else if (el == TypeInt::SHORT) { |
4983 | bt = T_SHORT; |
4984 | } else if (el == TypeInt::CHAR) { |
4985 | bt = T_CHAR; |
4986 | } else if (el == TypeInt::INT) { |
4987 | bt = T_INT; |
4988 | } else { |
4989 | return _klass; // just return specified klass |
4990 | } |
4991 | return ciTypeArrayKlass::make(bt); |
4992 | } |
4993 | #endif |
4994 | assert(!el->isa_int(), |
4995 | "integral arrays must be pre-equipped with a class" ); |
4996 | // Compute array klass directly from basic type |
4997 | k_ary = ciTypeArrayKlass::make(el->basic_type()); |
4998 | } |
4999 | return k_ary; |
5000 | } |
5001 | |
5002 | //------------------------------klass------------------------------------------ |
5003 | // Return the defining klass for this class |
5004 | ciKlass* TypeAryPtr::klass() const { |
5005 | if( _klass ) return _klass; // Return cached value, if possible |
5006 | |
5007 | // Oops, need to compute _klass and cache it |
5008 | ciKlass* k_ary = compute_klass(); |
5009 | |
5010 | if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { |
5011 | // The _klass field acts as a cache of the underlying |
5012 | // ciKlass for this array type. In order to set the field, |
5013 | // we need to cast away const-ness. |
5014 | // |
5015 | // IMPORTANT NOTE: we *never* set the _klass field for the |
5016 | // type TypeAryPtr::OOPS. This Type is shared between all |
5017 | // active compilations. However, the ciKlass which represents |
5018 | // this Type is *not* shared between compilations, so caching |
5019 | // this value would result in fetching a dangling pointer. |
5020 | // |
5021 | // Recomputing the underlying ciKlass for each request is |
5022 | // a bit less efficient than caching, but calls to |
5023 | // TypeAryPtr::OOPS->klass() are not common enough to matter. |
5024 | ((TypeAryPtr*)this)->_klass = k_ary; |
5025 | if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() && |
5026 | _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) { |
5027 | ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true; |
5028 | } |
5029 | } |
5030 | return k_ary; |
5031 | } |
5032 | |
5033 | |
5034 | //------------------------------add_offset------------------------------------- |
5035 | // Access internals of klass object |
5036 | const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const { |
5037 | return make( _ptr, klass(), xadd_offset(offset) ); |
5038 | } |
5039 | |
5040 | //------------------------------cast_to_ptr_type------------------------------- |
5041 | const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const { |
5042 | assert(_base == KlassPtr, "subclass must override cast_to_ptr_type" ); |
5043 | if( ptr == _ptr ) return this; |
5044 | return make(ptr, _klass, _offset); |
5045 | } |
5046 | |
5047 | |
5048 | //-----------------------------cast_to_exactness------------------------------- |
5049 | const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const { |
5050 | if( klass_is_exact == _klass_is_exact ) return this; |
5051 | if (!UseExactTypes) return this; |
5052 | return make(klass_is_exact ? Constant : NotNull, _klass, _offset); |
5053 | } |
5054 | |
5055 | |
5056 | //-----------------------------as_instance_type-------------------------------- |
5057 | // Corresponding type for an instance of the given class. |
5058 | // It will be NotNull, and exact if and only if the klass type is exact. |
5059 | const TypeOopPtr* TypeKlassPtr::as_instance_type() const { |
5060 | ciKlass* k = klass(); |
5061 | bool xk = klass_is_exact(); |
5062 | //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0); |
5063 | const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k); |
5064 | guarantee(toop != NULL, "need type for given klass" ); |
5065 | toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); |
5066 | return toop->cast_to_exactness(xk)->is_oopptr(); |
5067 | } |
5068 | |
5069 | |
5070 | //------------------------------xmeet------------------------------------------ |
5071 | // Compute the MEET of two types, return a new Type object. |
5072 | const Type *TypeKlassPtr::xmeet( const Type *t ) const { |
5073 | // Perform a fast test for common case; meeting the same types together. |
5074 | if( this == t ) return this; // Meeting same type-rep? |
5075 | |
5076 | // Current "this->_base" is Pointer |
5077 | switch (t->base()) { // switch on original type |
5078 | |
5079 | case Int: // Mixing ints & oops happens when javac |
5080 | case Long: // reuses local variables |
5081 | case FloatTop: |
5082 | case FloatCon: |
5083 | case FloatBot: |
5084 | case DoubleTop: |
5085 | case DoubleCon: |
5086 | case DoubleBot: |
5087 | case NarrowOop: |
5088 | case NarrowKlass: |
5089 | case Bottom: // Ye Olde Default |
5090 | return Type::BOTTOM; |
5091 | case Top: |
5092 | return this; |
5093 | |
5094 | default: // All else is a mistake |
5095 | typerr(t); |
5096 | |
5097 | case AnyPtr: { // Meeting to AnyPtrs |
5098 | // Found an AnyPtr type vs self-KlassPtr type |
5099 | const TypePtr *tp = t->is_ptr(); |
5100 | int offset = meet_offset(tp->offset()); |
5101 | PTR ptr = meet_ptr(tp->ptr()); |
5102 | switch (tp->ptr()) { |
5103 | case TopPTR: |
5104 | return this; |
5105 | case Null: |
5106 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5107 | case AnyNull: |
5108 | return make( ptr, klass(), offset ); |
5109 | case BotPTR: |
5110 | case NotNull: |
5111 | return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5112 | default: typerr(t); |
5113 | } |
5114 | } |
5115 | |
5116 | case RawPtr: |
5117 | case MetadataPtr: |
5118 | case OopPtr: |
5119 | case AryPtr: // Meet with AryPtr |
5120 | case InstPtr: // Meet with InstPtr |
5121 | return TypePtr::BOTTOM; |
5122 | |
5123 | // |
5124 | // A-top } |
5125 | // / | \ } Tops |
5126 | // B-top A-any C-top } |
5127 | // | / | \ | } Any-nulls |
5128 | // B-any | C-any } |
5129 | // | | | |
5130 | // B-con A-con C-con } constants; not comparable across classes |
5131 | // | | | |
5132 | // B-not | C-not } |
5133 | // | \ | / | } not-nulls |
5134 | // B-bot A-not C-bot } |
5135 | // \ | / } Bottoms |
5136 | // A-bot } |
5137 | // |
5138 | |
5139 | case KlassPtr: { // Meet two KlassPtr types |
5140 | const TypeKlassPtr *tkls = t->is_klassptr(); |
5141 | int off = meet_offset(tkls->offset()); |
5142 | PTR ptr = meet_ptr(tkls->ptr()); |
5143 | |
5144 | // Check for easy case; klasses are equal (and perhaps not loaded!) |
5145 | // If we have constants, then we created oops so classes are loaded |
5146 | // and we can handle the constants further down. This case handles |
5147 | // not-loaded classes |
5148 | if( ptr != Constant && tkls->klass()->equals(klass()) ) { |
5149 | return make( ptr, klass(), off ); |
5150 | } |
5151 | |
5152 | // Classes require inspection in the Java klass hierarchy. Must be loaded. |
5153 | ciKlass* tkls_klass = tkls->klass(); |
5154 | ciKlass* this_klass = this->klass(); |
5155 | assert( tkls_klass->is_loaded(), "This class should have been loaded." ); |
5156 | assert( this_klass->is_loaded(), "This class should have been loaded." ); |
5157 | |
5158 | // If 'this' type is above the centerline and is a superclass of the |
5159 | // other, we can treat 'this' as having the same type as the other. |
5160 | if ((above_centerline(this->ptr())) && |
5161 | tkls_klass->is_subtype_of(this_klass)) { |
5162 | this_klass = tkls_klass; |
5163 | } |
5164 | // If 'tinst' type is above the centerline and is a superclass of the |
5165 | // other, we can treat 'tinst' as having the same type as the other. |
5166 | if ((above_centerline(tkls->ptr())) && |
5167 | this_klass->is_subtype_of(tkls_klass)) { |
5168 | tkls_klass = this_klass; |
5169 | } |
5170 | |
5171 | // Check for classes now being equal |
5172 | if (tkls_klass->equals(this_klass)) { |
5173 | // If the klasses are equal, the constants may still differ. Fall to |
5174 | // NotNull if they do (neither constant is NULL; that is a special case |
5175 | // handled elsewhere). |
5176 | if( ptr == Constant ) { |
5177 | if (this->_ptr == Constant && tkls->_ptr == Constant && |
5178 | this->klass()->equals(tkls->klass())); |
5179 | else if (above_centerline(this->ptr())); |
5180 | else if (above_centerline(tkls->ptr())); |
5181 | else |
5182 | ptr = NotNull; |
5183 | } |
5184 | return make( ptr, this_klass, off ); |
5185 | } // Else classes are not equal |
5186 | |
5187 | // Since klasses are different, we require the LCA in the Java |
5188 | // class hierarchy - which means we have to fall to at least NotNull. |
5189 | if( ptr == TopPTR || ptr == AnyNull || ptr == Constant ) |
5190 | ptr = NotNull; |
5191 | // Now we find the LCA of Java classes |
5192 | ciKlass* k = this_klass->least_common_ancestor(tkls_klass); |
5193 | return make( ptr, k, off ); |
5194 | } // End of case KlassPtr |
5195 | |
5196 | } // End of switch |
5197 | return this; // Return the double constant |
5198 | } |
5199 | |
5200 | //------------------------------xdual------------------------------------------ |
5201 | // Dual: compute field-by-field dual |
5202 | const Type *TypeKlassPtr::xdual() const { |
5203 | return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() ); |
5204 | } |
5205 | |
5206 | //------------------------------get_con---------------------------------------- |
5207 | intptr_t TypeKlassPtr::get_con() const { |
5208 | assert( _ptr == Null || _ptr == Constant, "" ); |
5209 | assert( _offset >= 0, "" ); |
5210 | |
5211 | if (_offset != 0) { |
5212 | // After being ported to the compiler interface, the compiler no longer |
5213 | // directly manipulates the addresses of oops. Rather, it only has a pointer |
5214 | // to a handle at compile time. This handle is embedded in the generated |
5215 | // code and dereferenced at the time the nmethod is made. Until that time, |
5216 | // it is not reasonable to do arithmetic with the addresses of oops (we don't |
5217 | // have access to the addresses!). This does not seem to currently happen, |
5218 | // but this assertion here is to help prevent its occurence. |
5219 | tty->print_cr("Found oop constant with non-zero offset" ); |
5220 | ShouldNotReachHere(); |
5221 | } |
5222 | |
5223 | return (intptr_t)klass()->constant_encoding(); |
5224 | } |
5225 | //------------------------------dump2------------------------------------------ |
5226 | // Dump Klass Type |
5227 | #ifndef PRODUCT |
5228 | void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { |
5229 | switch( _ptr ) { |
5230 | case Constant: |
5231 | st->print("precise " ); |
5232 | case NotNull: |
5233 | { |
5234 | const char *name = klass()->name()->as_utf8(); |
5235 | if( name ) { |
5236 | st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass())); |
5237 | } else { |
5238 | ShouldNotReachHere(); |
5239 | } |
5240 | } |
5241 | case BotPTR: |
5242 | if( !WizardMode && !Verbose && !_klass_is_exact ) break; |
5243 | case TopPTR: |
5244 | case AnyNull: |
5245 | st->print(":%s" , ptr_msg[_ptr]); |
5246 | if( _klass_is_exact ) st->print(":exact" ); |
5247 | break; |
5248 | default: |
5249 | break; |
5250 | } |
5251 | |
5252 | if( _offset ) { // Dump offset, if any |
5253 | if( _offset == OffsetBot ) { st->print("+any" ); } |
5254 | else if( _offset == OffsetTop ) { st->print("+unknown" ); } |
5255 | else { st->print("+%d" , _offset); } |
5256 | } |
5257 | |
5258 | st->print(" *" ); |
5259 | } |
5260 | #endif |
5261 | |
5262 | |
5263 | |
5264 | //============================================================================= |
5265 | // Convenience common pre-built types. |
5266 | |
5267 | //------------------------------make------------------------------------------- |
5268 | const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { |
5269 | return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); |
5270 | } |
5271 | |
5272 | //------------------------------make------------------------------------------- |
5273 | const TypeFunc *TypeFunc::make(ciMethod* method) { |
5274 | Compile* C = Compile::current(); |
5275 | const TypeFunc* tf = C->last_tf(method); // check cache |
5276 | if (tf != NULL) return tf; // The hit rate here is almost 50%. |
5277 | const TypeTuple *domain; |
5278 | if (method->is_static()) { |
5279 | domain = TypeTuple::make_domain(NULL, method->signature()); |
5280 | } else { |
5281 | domain = TypeTuple::make_domain(method->holder(), method->signature()); |
5282 | } |
5283 | const TypeTuple *range = TypeTuple::make_range(method->signature()); |
5284 | tf = TypeFunc::make(domain, range); |
5285 | C->set_last_tf(method, tf); // fill cache |
5286 | return tf; |
5287 | } |
5288 | |
5289 | //------------------------------meet------------------------------------------- |
5290 | // Compute the MEET of two types. It returns a new Type object. |
5291 | const Type *TypeFunc::xmeet( const Type *t ) const { |
5292 | // Perform a fast test for common case; meeting the same types together. |
5293 | if( this == t ) return this; // Meeting same type-rep? |
5294 | |
5295 | // Current "this->_base" is Func |
5296 | switch (t->base()) { // switch on original type |
5297 | |
5298 | case Bottom: // Ye Olde Default |
5299 | return t; |
5300 | |
5301 | default: // All else is a mistake |
5302 | typerr(t); |
5303 | |
5304 | case Top: |
5305 | break; |
5306 | } |
5307 | return this; // Return the double constant |
5308 | } |
5309 | |
5310 | //------------------------------xdual------------------------------------------ |
5311 | // Dual: compute field-by-field dual |
5312 | const Type *TypeFunc::xdual() const { |
5313 | return this; |
5314 | } |
5315 | |
5316 | //------------------------------eq--------------------------------------------- |
5317 | // Structural equality check for Type representations |
5318 | bool TypeFunc::eq( const Type *t ) const { |
5319 | const TypeFunc *a = (const TypeFunc*)t; |
5320 | return _domain == a->_domain && |
5321 | _range == a->_range; |
5322 | } |
5323 | |
5324 | //------------------------------hash------------------------------------------- |
5325 | // Type-specific hashing function. |
5326 | int TypeFunc::hash(void) const { |
5327 | return (intptr_t)_domain + (intptr_t)_range; |
5328 | } |
5329 | |
5330 | //------------------------------dump2------------------------------------------ |
5331 | // Dump Function Type |
5332 | #ifndef PRODUCT |
5333 | void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { |
5334 | if( _range->cnt() <= Parms ) |
5335 | st->print("void" ); |
5336 | else { |
5337 | uint i; |
5338 | for (i = Parms; i < _range->cnt()-1; i++) { |
5339 | _range->field_at(i)->dump2(d,depth,st); |
5340 | st->print("/" ); |
5341 | } |
5342 | _range->field_at(i)->dump2(d,depth,st); |
5343 | } |
5344 | st->print(" " ); |
5345 | st->print("( " ); |
5346 | if( !depth || d[this] ) { // Check for recursive dump |
5347 | st->print("...)" ); |
5348 | return; |
5349 | } |
5350 | d.Insert((void*)this,(void*)this); // Stop recursion |
5351 | if (Parms < _domain->cnt()) |
5352 | _domain->field_at(Parms)->dump2(d,depth-1,st); |
5353 | for (uint i = Parms+1; i < _domain->cnt(); i++) { |
5354 | st->print(", " ); |
5355 | _domain->field_at(i)->dump2(d,depth-1,st); |
5356 | } |
5357 | st->print(" )" ); |
5358 | } |
5359 | #endif |
5360 | |
5361 | //------------------------------singleton-------------------------------------- |
5362 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
5363 | // constants (Ldi nodes). Singletons are integer, float or double constants |
5364 | // or a single symbol. |
5365 | bool TypeFunc::singleton(void) const { |
5366 | return false; // Never a singleton |
5367 | } |
5368 | |
5369 | bool TypeFunc::empty(void) const { |
5370 | return false; // Never empty |
5371 | } |
5372 | |
5373 | |
5374 | BasicType TypeFunc::return_type() const{ |
5375 | if (range()->cnt() == TypeFunc::Parms) { |
5376 | return T_VOID; |
5377 | } |
5378 | return range()->field_at(TypeFunc::Parms)->basic_type(); |
5379 | } |
5380 | |