1 | //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | /// @file |
11 | /// This file contains the declarations for the subclasses of Constant, |
12 | /// which represent the different flavors of constant values that live in LLVM. |
13 | /// Note that Constants are immutable (once created they never change) and are |
14 | /// fully shared by structural equivalence. This means that two structurally |
15 | /// equivalent constants will always have the same address. Constants are |
16 | /// created on demand as needed and never deleted: thus clients don't have to |
17 | /// worry about the lifetime of the objects. |
18 | // |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #ifndef LLVM_IR_CONSTANTS_H |
22 | #define LLVM_IR_CONSTANTS_H |
23 | |
24 | #include "llvm/ADT/APFloat.h" |
25 | #include "llvm/ADT/APInt.h" |
26 | #include "llvm/ADT/ArrayRef.h" |
27 | #include "llvm/ADT/None.h" |
28 | #include "llvm/ADT/Optional.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/StringRef.h" |
31 | #include "llvm/IR/Constant.h" |
32 | #include "llvm/IR/DerivedTypes.h" |
33 | #include "llvm/IR/OperandTraits.h" |
34 | #include "llvm/IR/User.h" |
35 | #include "llvm/IR/Value.h" |
36 | #include "llvm/Support/Casting.h" |
37 | #include "llvm/Support/Compiler.h" |
38 | #include "llvm/Support/ErrorHandling.h" |
39 | #include <cassert> |
40 | #include <cstddef> |
41 | #include <cstdint> |
42 | |
43 | namespace llvm { |
44 | |
45 | class ArrayType; |
46 | class IntegerType; |
47 | class PointerType; |
48 | class SequentialType; |
49 | class StructType; |
50 | class VectorType; |
51 | template <class ConstantClass> struct ConstantAggrKeyType; |
52 | |
53 | /// Base class for constants with no operands. |
54 | /// |
55 | /// These constants have no operands; they represent their data directly. |
56 | /// Since they can be in use by unrelated modules (and are never based on |
57 | /// GlobalValues), it never makes sense to RAUW them. |
58 | class ConstantData : public Constant { |
59 | friend class Constant; |
60 | |
61 | Value *handleOperandChangeImpl(Value *From, Value *To) { |
62 | llvm_unreachable("Constant data does not have operands!" ); |
63 | } |
64 | |
65 | protected: |
66 | explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} |
67 | |
68 | void *operator new(size_t s) { return User::operator new(s, 0); } |
69 | |
70 | public: |
71 | ConstantData(const ConstantData &) = delete; |
72 | |
73 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
74 | static bool classof(const Value *V) { |
75 | return V->getValueID() >= ConstantDataFirstVal && |
76 | V->getValueID() <= ConstantDataLastVal; |
77 | } |
78 | }; |
79 | |
80 | //===----------------------------------------------------------------------===// |
81 | /// This is the shared class of boolean and integer constants. This class |
82 | /// represents both boolean and integral constants. |
83 | /// Class for constant integers. |
84 | class ConstantInt final : public ConstantData { |
85 | friend class Constant; |
86 | |
87 | APInt Val; |
88 | |
89 | ConstantInt(IntegerType *Ty, const APInt& V); |
90 | |
91 | void destroyConstantImpl(); |
92 | |
93 | public: |
94 | ConstantInt(const ConstantInt &) = delete; |
95 | |
96 | static ConstantInt *getTrue(LLVMContext &Context); |
97 | static ConstantInt *getFalse(LLVMContext &Context); |
98 | static Constant *getTrue(Type *Ty); |
99 | static Constant *getFalse(Type *Ty); |
100 | |
101 | /// If Ty is a vector type, return a Constant with a splat of the given |
102 | /// value. Otherwise return a ConstantInt for the given value. |
103 | static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); |
104 | |
105 | /// Return a ConstantInt with the specified integer value for the specified |
106 | /// type. If the type is wider than 64 bits, the value will be zero-extended |
107 | /// to fit the type, unless isSigned is true, in which case the value will |
108 | /// be interpreted as a 64-bit signed integer and sign-extended to fit |
109 | /// the type. |
110 | /// Get a ConstantInt for a specific value. |
111 | static ConstantInt *get(IntegerType *Ty, uint64_t V, |
112 | bool isSigned = false); |
113 | |
114 | /// Return a ConstantInt with the specified value for the specified type. The |
115 | /// value V will be canonicalized to a an unsigned APInt. Accessing it with |
116 | /// either getSExtValue() or getZExtValue() will yield a correctly sized and |
117 | /// signed value for the type Ty. |
118 | /// Get a ConstantInt for a specific signed value. |
119 | static ConstantInt *getSigned(IntegerType *Ty, int64_t V); |
120 | static Constant *getSigned(Type *Ty, int64_t V); |
121 | |
122 | /// Return a ConstantInt with the specified value and an implied Type. The |
123 | /// type is the integer type that corresponds to the bit width of the value. |
124 | static ConstantInt *get(LLVMContext &Context, const APInt &V); |
125 | |
126 | /// Return a ConstantInt constructed from the string strStart with the given |
127 | /// radix. |
128 | static ConstantInt *get(IntegerType *Ty, StringRef Str, |
129 | uint8_t radix); |
130 | |
131 | /// If Ty is a vector type, return a Constant with a splat of the given |
132 | /// value. Otherwise return a ConstantInt for the given value. |
133 | static Constant *get(Type* Ty, const APInt& V); |
134 | |
135 | /// Return the constant as an APInt value reference. This allows clients to |
136 | /// obtain a full-precision copy of the value. |
137 | /// Return the constant's value. |
138 | inline const APInt &getValue() const { |
139 | return Val; |
140 | } |
141 | |
142 | /// getBitWidth - Return the bitwidth of this constant. |
143 | unsigned getBitWidth() const { return Val.getBitWidth(); } |
144 | |
145 | /// Return the constant as a 64-bit unsigned integer value after it |
146 | /// has been zero extended as appropriate for the type of this constant. Note |
147 | /// that this method can assert if the value does not fit in 64 bits. |
148 | /// Return the zero extended value. |
149 | inline uint64_t getZExtValue() const { |
150 | return Val.getZExtValue(); |
151 | } |
152 | |
153 | /// Return the constant as a 64-bit integer value after it has been sign |
154 | /// extended as appropriate for the type of this constant. Note that |
155 | /// this method can assert if the value does not fit in 64 bits. |
156 | /// Return the sign extended value. |
157 | inline int64_t getSExtValue() const { |
158 | return Val.getSExtValue(); |
159 | } |
160 | |
161 | /// A helper method that can be used to determine if the constant contained |
162 | /// within is equal to a constant. This only works for very small values, |
163 | /// because this is all that can be represented with all types. |
164 | /// Determine if this constant's value is same as an unsigned char. |
165 | bool equalsInt(uint64_t V) const { |
166 | return Val == V; |
167 | } |
168 | |
169 | /// getType - Specialize the getType() method to always return an IntegerType, |
170 | /// which reduces the amount of casting needed in parts of the compiler. |
171 | /// |
172 | inline IntegerType *getType() const { |
173 | return cast<IntegerType>(Value::getType()); |
174 | } |
175 | |
176 | /// This static method returns true if the type Ty is big enough to |
177 | /// represent the value V. This can be used to avoid having the get method |
178 | /// assert when V is larger than Ty can represent. Note that there are two |
179 | /// versions of this method, one for unsigned and one for signed integers. |
180 | /// Although ConstantInt canonicalizes everything to an unsigned integer, |
181 | /// the signed version avoids callers having to convert a signed quantity |
182 | /// to the appropriate unsigned type before calling the method. |
183 | /// @returns true if V is a valid value for type Ty |
184 | /// Determine if the value is in range for the given type. |
185 | static bool isValueValidForType(Type *Ty, uint64_t V); |
186 | static bool isValueValidForType(Type *Ty, int64_t V); |
187 | |
188 | bool isNegative() const { return Val.isNegative(); } |
189 | |
190 | /// This is just a convenience method to make client code smaller for a |
191 | /// common code. It also correctly performs the comparison without the |
192 | /// potential for an assertion from getZExtValue(). |
193 | bool isZero() const { |
194 | return Val.isNullValue(); |
195 | } |
196 | |
197 | /// This is just a convenience method to make client code smaller for a |
198 | /// common case. It also correctly performs the comparison without the |
199 | /// potential for an assertion from getZExtValue(). |
200 | /// Determine if the value is one. |
201 | bool isOne() const { |
202 | return Val.isOneValue(); |
203 | } |
204 | |
205 | /// This function will return true iff every bit in this constant is set |
206 | /// to true. |
207 | /// @returns true iff this constant's bits are all set to true. |
208 | /// Determine if the value is all ones. |
209 | bool isMinusOne() const { |
210 | return Val.isAllOnesValue(); |
211 | } |
212 | |
213 | /// This function will return true iff this constant represents the largest |
214 | /// value that may be represented by the constant's type. |
215 | /// @returns true iff this is the largest value that may be represented |
216 | /// by this type. |
217 | /// Determine if the value is maximal. |
218 | bool isMaxValue(bool isSigned) const { |
219 | if (isSigned) |
220 | return Val.isMaxSignedValue(); |
221 | else |
222 | return Val.isMaxValue(); |
223 | } |
224 | |
225 | /// This function will return true iff this constant represents the smallest |
226 | /// value that may be represented by this constant's type. |
227 | /// @returns true if this is the smallest value that may be represented by |
228 | /// this type. |
229 | /// Determine if the value is minimal. |
230 | bool isMinValue(bool isSigned) const { |
231 | if (isSigned) |
232 | return Val.isMinSignedValue(); |
233 | else |
234 | return Val.isMinValue(); |
235 | } |
236 | |
237 | /// This function will return true iff this constant represents a value with |
238 | /// active bits bigger than 64 bits or a value greater than the given uint64_t |
239 | /// value. |
240 | /// @returns true iff this constant is greater or equal to the given number. |
241 | /// Determine if the value is greater or equal to the given number. |
242 | bool uge(uint64_t Num) const { |
243 | return Val.uge(Num); |
244 | } |
245 | |
246 | /// getLimitedValue - If the value is smaller than the specified limit, |
247 | /// return it, otherwise return the limit value. This causes the value |
248 | /// to saturate to the limit. |
249 | /// @returns the min of the value of the constant and the specified value |
250 | /// Get the constant's value with a saturation limit |
251 | uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { |
252 | return Val.getLimitedValue(Limit); |
253 | } |
254 | |
255 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
256 | static bool classof(const Value *V) { |
257 | return V->getValueID() == ConstantIntVal; |
258 | } |
259 | }; |
260 | |
261 | //===----------------------------------------------------------------------===// |
262 | /// ConstantFP - Floating Point Values [float, double] |
263 | /// |
264 | class ConstantFP final : public ConstantData { |
265 | friend class Constant; |
266 | |
267 | APFloat Val; |
268 | |
269 | ConstantFP(Type *Ty, const APFloat& V); |
270 | |
271 | void destroyConstantImpl(); |
272 | |
273 | public: |
274 | ConstantFP(const ConstantFP &) = delete; |
275 | |
276 | /// Floating point negation must be implemented with f(x) = -0.0 - x. This |
277 | /// method returns the negative zero constant for floating point or vector |
278 | /// floating point types; for all other types, it returns the null value. |
279 | static Constant *getZeroValueForNegation(Type *Ty); |
280 | |
281 | /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, |
282 | /// for the specified value in the specified type. This should only be used |
283 | /// for simple constant values like 2.0/1.0 etc, that are known-valid both as |
284 | /// host double and as the target format. |
285 | static Constant *get(Type* Ty, double V); |
286 | |
287 | /// If Ty is a vector type, return a Constant with a splat of the given |
288 | /// value. Otherwise return a ConstantFP for the given value. |
289 | static Constant *get(Type *Ty, const APFloat &V); |
290 | |
291 | static Constant *get(Type* Ty, StringRef Str); |
292 | static ConstantFP *get(LLVMContext &Context, const APFloat &V); |
293 | static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0); |
294 | static Constant *getQNaN(Type *Ty, bool Negative = false, |
295 | APInt *Payload = nullptr); |
296 | static Constant *getSNaN(Type *Ty, bool Negative = false, |
297 | APInt *Payload = nullptr); |
298 | static Constant *getNegativeZero(Type *Ty); |
299 | static Constant *getInfinity(Type *Ty, bool Negative = false); |
300 | |
301 | /// Return true if Ty is big enough to represent V. |
302 | static bool isValueValidForType(Type *Ty, const APFloat &V); |
303 | inline const APFloat &getValueAPF() const { return Val; } |
304 | |
305 | /// Return true if the value is positive or negative zero. |
306 | bool isZero() const { return Val.isZero(); } |
307 | |
308 | /// Return true if the sign bit is set. |
309 | bool isNegative() const { return Val.isNegative(); } |
310 | |
311 | /// Return true if the value is infinity |
312 | bool isInfinity() const { return Val.isInfinity(); } |
313 | |
314 | /// Return true if the value is a NaN. |
315 | bool isNaN() const { return Val.isNaN(); } |
316 | |
317 | /// We don't rely on operator== working on double values, as it returns true |
318 | /// for things that are clearly not equal, like -0.0 and 0.0. |
319 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
320 | /// two floating point values. The version with a double operand is retained |
321 | /// because it's so convenient to write isExactlyValue(2.0), but please use |
322 | /// it only for simple constants. |
323 | bool isExactlyValue(const APFloat &V) const; |
324 | |
325 | bool isExactlyValue(double V) const { |
326 | bool ignored; |
327 | APFloat FV(V); |
328 | FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
329 | return isExactlyValue(FV); |
330 | } |
331 | |
332 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
333 | static bool classof(const Value *V) { |
334 | return V->getValueID() == ConstantFPVal; |
335 | } |
336 | }; |
337 | |
338 | //===----------------------------------------------------------------------===// |
339 | /// All zero aggregate value |
340 | /// |
341 | class ConstantAggregateZero final : public ConstantData { |
342 | friend class Constant; |
343 | |
344 | explicit ConstantAggregateZero(Type *Ty) |
345 | : ConstantData(Ty, ConstantAggregateZeroVal) {} |
346 | |
347 | void destroyConstantImpl(); |
348 | |
349 | public: |
350 | ConstantAggregateZero(const ConstantAggregateZero &) = delete; |
351 | |
352 | static ConstantAggregateZero *get(Type *Ty); |
353 | |
354 | /// If this CAZ has array or vector type, return a zero with the right element |
355 | /// type. |
356 | Constant *getSequentialElement() const; |
357 | |
358 | /// If this CAZ has struct type, return a zero with the right element type for |
359 | /// the specified element. |
360 | Constant *getStructElement(unsigned Elt) const; |
361 | |
362 | /// Return a zero of the right value for the specified GEP index if we can, |
363 | /// otherwise return null (e.g. if C is a ConstantExpr). |
364 | Constant *getElementValue(Constant *C) const; |
365 | |
366 | /// Return a zero of the right value for the specified GEP index. |
367 | Constant *getElementValue(unsigned Idx) const; |
368 | |
369 | /// Return the number of elements in the array, vector, or struct. |
370 | unsigned getNumElements() const; |
371 | |
372 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
373 | /// |
374 | static bool classof(const Value *V) { |
375 | return V->getValueID() == ConstantAggregateZeroVal; |
376 | } |
377 | }; |
378 | |
379 | /// Base class for aggregate constants (with operands). |
380 | /// |
381 | /// These constants are aggregates of other constants, which are stored as |
382 | /// operands. |
383 | /// |
384 | /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a |
385 | /// ConstantVector. |
386 | /// |
387 | /// \note Some subclasses of \a ConstantData are semantically aggregates -- |
388 | /// such as \a ConstantDataArray -- but are not subclasses of this because they |
389 | /// use operands. |
390 | class ConstantAggregate : public Constant { |
391 | protected: |
392 | ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V); |
393 | |
394 | public: |
395 | /// Transparently provide more efficient getOperand methods. |
396 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
397 | |
398 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
399 | static bool classof(const Value *V) { |
400 | return V->getValueID() >= ConstantAggregateFirstVal && |
401 | V->getValueID() <= ConstantAggregateLastVal; |
402 | } |
403 | }; |
404 | |
405 | template <> |
406 | struct OperandTraits<ConstantAggregate> |
407 | : public VariadicOperandTraits<ConstantAggregate> {}; |
408 | |
409 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) |
410 | |
411 | //===----------------------------------------------------------------------===// |
412 | /// ConstantArray - Constant Array Declarations |
413 | /// |
414 | class ConstantArray final : public ConstantAggregate { |
415 | friend struct ConstantAggrKeyType<ConstantArray>; |
416 | friend class Constant; |
417 | |
418 | ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); |
419 | |
420 | void destroyConstantImpl(); |
421 | Value *handleOperandChangeImpl(Value *From, Value *To); |
422 | |
423 | public: |
424 | // ConstantArray accessors |
425 | static Constant *get(ArrayType *T, ArrayRef<Constant*> V); |
426 | |
427 | private: |
428 | static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); |
429 | |
430 | public: |
431 | /// Specialize the getType() method to always return an ArrayType, |
432 | /// which reduces the amount of casting needed in parts of the compiler. |
433 | inline ArrayType *getType() const { |
434 | return cast<ArrayType>(Value::getType()); |
435 | } |
436 | |
437 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
438 | static bool classof(const Value *V) { |
439 | return V->getValueID() == ConstantArrayVal; |
440 | } |
441 | }; |
442 | |
443 | //===----------------------------------------------------------------------===// |
444 | // Constant Struct Declarations |
445 | // |
446 | class ConstantStruct final : public ConstantAggregate { |
447 | friend struct ConstantAggrKeyType<ConstantStruct>; |
448 | friend class Constant; |
449 | |
450 | ConstantStruct(StructType *T, ArrayRef<Constant *> Val); |
451 | |
452 | void destroyConstantImpl(); |
453 | Value *handleOperandChangeImpl(Value *From, Value *To); |
454 | |
455 | public: |
456 | // ConstantStruct accessors |
457 | static Constant *get(StructType *T, ArrayRef<Constant*> V); |
458 | |
459 | template <typename... Csts> |
460 | static typename std::enable_if<are_base_of<Constant, Csts...>::value, |
461 | Constant *>::type |
462 | get(StructType *T, Csts *... Vs) { |
463 | SmallVector<Constant *, 8> Values({Vs...}); |
464 | return get(T, Values); |
465 | } |
466 | |
467 | /// Return an anonymous struct that has the specified elements. |
468 | /// If the struct is possibly empty, then you must specify a context. |
469 | static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { |
470 | return get(getTypeForElements(V, Packed), V); |
471 | } |
472 | static Constant *getAnon(LLVMContext &Ctx, |
473 | ArrayRef<Constant*> V, bool Packed = false) { |
474 | return get(getTypeForElements(Ctx, V, Packed), V); |
475 | } |
476 | |
477 | /// Return an anonymous struct type to use for a constant with the specified |
478 | /// set of elements. The list must not be empty. |
479 | static StructType *getTypeForElements(ArrayRef<Constant*> V, |
480 | bool Packed = false); |
481 | /// This version of the method allows an empty list. |
482 | static StructType *getTypeForElements(LLVMContext &Ctx, |
483 | ArrayRef<Constant*> V, |
484 | bool Packed = false); |
485 | |
486 | /// Specialization - reduce amount of casting. |
487 | inline StructType *getType() const { |
488 | return cast<StructType>(Value::getType()); |
489 | } |
490 | |
491 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
492 | static bool classof(const Value *V) { |
493 | return V->getValueID() == ConstantStructVal; |
494 | } |
495 | }; |
496 | |
497 | //===----------------------------------------------------------------------===// |
498 | /// Constant Vector Declarations |
499 | /// |
500 | class ConstantVector final : public ConstantAggregate { |
501 | friend struct ConstantAggrKeyType<ConstantVector>; |
502 | friend class Constant; |
503 | |
504 | ConstantVector(VectorType *T, ArrayRef<Constant *> Val); |
505 | |
506 | void destroyConstantImpl(); |
507 | Value *handleOperandChangeImpl(Value *From, Value *To); |
508 | |
509 | public: |
510 | // ConstantVector accessors |
511 | static Constant *get(ArrayRef<Constant*> V); |
512 | |
513 | private: |
514 | static Constant *getImpl(ArrayRef<Constant *> V); |
515 | |
516 | public: |
517 | /// Return a ConstantVector with the specified constant in each element. |
518 | static Constant *getSplat(unsigned NumElts, Constant *Elt); |
519 | |
520 | /// Specialize the getType() method to always return a VectorType, |
521 | /// which reduces the amount of casting needed in parts of the compiler. |
522 | inline VectorType *getType() const { |
523 | return cast<VectorType>(Value::getType()); |
524 | } |
525 | |
526 | /// If this is a splat constant, meaning that all of the elements have the |
527 | /// same value, return that value. Otherwise return NULL. |
528 | Constant *getSplatValue() const; |
529 | |
530 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
531 | static bool classof(const Value *V) { |
532 | return V->getValueID() == ConstantVectorVal; |
533 | } |
534 | }; |
535 | |
536 | //===----------------------------------------------------------------------===// |
537 | /// A constant pointer value that points to null |
538 | /// |
539 | class ConstantPointerNull final : public ConstantData { |
540 | friend class Constant; |
541 | |
542 | explicit ConstantPointerNull(PointerType *T) |
543 | : ConstantData(T, Value::ConstantPointerNullVal) {} |
544 | |
545 | void destroyConstantImpl(); |
546 | |
547 | public: |
548 | ConstantPointerNull(const ConstantPointerNull &) = delete; |
549 | |
550 | /// Static factory methods - Return objects of the specified value |
551 | static ConstantPointerNull *get(PointerType *T); |
552 | |
553 | /// Specialize the getType() method to always return an PointerType, |
554 | /// which reduces the amount of casting needed in parts of the compiler. |
555 | inline PointerType *getType() const { |
556 | return cast<PointerType>(Value::getType()); |
557 | } |
558 | |
559 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
560 | static bool classof(const Value *V) { |
561 | return V->getValueID() == ConstantPointerNullVal; |
562 | } |
563 | }; |
564 | |
565 | //===----------------------------------------------------------------------===// |
566 | /// ConstantDataSequential - A vector or array constant whose element type is a |
567 | /// simple 1/2/4/8-byte integer or float/double, and whose elements are just |
568 | /// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no |
569 | /// operands because it stores all of the elements of the constant as densely |
570 | /// packed data, instead of as Value*'s. |
571 | /// |
572 | /// This is the common base class of ConstantDataArray and ConstantDataVector. |
573 | /// |
574 | class ConstantDataSequential : public ConstantData { |
575 | friend class LLVMContextImpl; |
576 | friend class Constant; |
577 | |
578 | /// A pointer to the bytes underlying this constant (which is owned by the |
579 | /// uniquing StringMap). |
580 | const char *DataElements; |
581 | |
582 | /// This forms a link list of ConstantDataSequential nodes that have |
583 | /// the same value but different type. For example, 0,0,0,1 could be a 4 |
584 | /// element array of i8, or a 1-element array of i32. They'll both end up in |
585 | /// the same StringMap bucket, linked up. |
586 | ConstantDataSequential *Next; |
587 | |
588 | void destroyConstantImpl(); |
589 | |
590 | protected: |
591 | explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) |
592 | : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {} |
593 | ~ConstantDataSequential() { delete Next; } |
594 | |
595 | static Constant *getImpl(StringRef Bytes, Type *Ty); |
596 | |
597 | public: |
598 | ConstantDataSequential(const ConstantDataSequential &) = delete; |
599 | |
600 | /// Return true if a ConstantDataSequential can be formed with a vector or |
601 | /// array of the specified element type. |
602 | /// ConstantDataArray only works with normal float and int types that are |
603 | /// stored densely in memory, not with things like i42 or x86_f80. |
604 | static bool isElementTypeCompatible(Type *Ty); |
605 | |
606 | /// If this is a sequential container of integers (of any size), return the |
607 | /// specified element in the low bits of a uint64_t. |
608 | uint64_t getElementAsInteger(unsigned i) const; |
609 | |
610 | /// If this is a sequential container of integers (of any size), return the |
611 | /// specified element as an APInt. |
612 | APInt getElementAsAPInt(unsigned i) const; |
613 | |
614 | /// If this is a sequential container of floating point type, return the |
615 | /// specified element as an APFloat. |
616 | APFloat getElementAsAPFloat(unsigned i) const; |
617 | |
618 | /// If this is an sequential container of floats, return the specified element |
619 | /// as a float. |
620 | float getElementAsFloat(unsigned i) const; |
621 | |
622 | /// If this is an sequential container of doubles, return the specified |
623 | /// element as a double. |
624 | double getElementAsDouble(unsigned i) const; |
625 | |
626 | /// Return a Constant for a specified index's element. |
627 | /// Note that this has to compute a new constant to return, so it isn't as |
628 | /// efficient as getElementAsInteger/Float/Double. |
629 | Constant *getElementAsConstant(unsigned i) const; |
630 | |
631 | /// Specialize the getType() method to always return a SequentialType, which |
632 | /// reduces the amount of casting needed in parts of the compiler. |
633 | inline SequentialType *getType() const { |
634 | return cast<SequentialType>(Value::getType()); |
635 | } |
636 | |
637 | /// Return the element type of the array/vector. |
638 | Type *getElementType() const; |
639 | |
640 | /// Return the number of elements in the array or vector. |
641 | unsigned getNumElements() const; |
642 | |
643 | /// Return the size (in bytes) of each element in the array/vector. |
644 | /// The size of the elements is known to be a multiple of one byte. |
645 | uint64_t getElementByteSize() const; |
646 | |
647 | /// This method returns true if this is an array of \p CharSize integers. |
648 | bool isString(unsigned CharSize = 8) const; |
649 | |
650 | /// This method returns true if the array "isString", ends with a null byte, |
651 | /// and does not contains any other null bytes. |
652 | bool isCString() const; |
653 | |
654 | /// If this array is isString(), then this method returns the array as a |
655 | /// StringRef. Otherwise, it asserts out. |
656 | StringRef getAsString() const { |
657 | assert(isString() && "Not a string" ); |
658 | return getRawDataValues(); |
659 | } |
660 | |
661 | /// If this array is isCString(), then this method returns the array (without |
662 | /// the trailing null byte) as a StringRef. Otherwise, it asserts out. |
663 | StringRef getAsCString() const { |
664 | assert(isCString() && "Isn't a C string" ); |
665 | StringRef Str = getAsString(); |
666 | return Str.substr(0, Str.size()-1); |
667 | } |
668 | |
669 | /// Return the raw, underlying, bytes of this data. Note that this is an |
670 | /// extremely tricky thing to work with, as it exposes the host endianness of |
671 | /// the data elements. |
672 | StringRef getRawDataValues() const; |
673 | |
674 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
675 | static bool classof(const Value *V) { |
676 | return V->getValueID() == ConstantDataArrayVal || |
677 | V->getValueID() == ConstantDataVectorVal; |
678 | } |
679 | |
680 | private: |
681 | const char *getElementPointer(unsigned Elt) const; |
682 | }; |
683 | |
684 | //===----------------------------------------------------------------------===// |
685 | /// An array constant whose element type is a simple 1/2/4/8-byte integer or |
686 | /// float/double, and whose elements are just simple data values |
687 | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
688 | /// stores all of the elements of the constant as densely packed data, instead |
689 | /// of as Value*'s. |
690 | class ConstantDataArray final : public ConstantDataSequential { |
691 | friend class ConstantDataSequential; |
692 | |
693 | explicit ConstantDataArray(Type *ty, const char *Data) |
694 | : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} |
695 | |
696 | public: |
697 | ConstantDataArray(const ConstantDataArray &) = delete; |
698 | |
699 | /// get() constructor - Return a constant with array type with an element |
700 | /// count and element type matching the ArrayRef passed in. Note that this |
701 | /// can return a ConstantAggregateZero object. |
702 | template <typename ElementTy> |
703 | static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { |
704 | const char *Data = reinterpret_cast<const char *>(Elts.data()); |
705 | return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), |
706 | Type::getScalarTy<ElementTy>(Context)); |
707 | } |
708 | |
709 | /// get() constructor - ArrayTy needs to be compatible with |
710 | /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). |
711 | template <typename ArrayTy> |
712 | static Constant *get(LLVMContext &Context, ArrayTy &Elts) { |
713 | return ConstantDataArray::get(Context, makeArrayRef(Elts)); |
714 | } |
715 | |
716 | /// get() constructor - Return a constant with array type with an element |
717 | /// count and element type matching the NumElements and ElementTy parameters |
718 | /// passed in. Note that this can return a ConstantAggregateZero object. |
719 | /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the |
720 | /// buffer containing the elements. Be careful to make sure Data uses the |
721 | /// right endianness, the buffer will be used as-is. |
722 | static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { |
723 | Type *Ty = ArrayType::get(ElementTy, NumElements); |
724 | return getImpl(Data, Ty); |
725 | } |
726 | |
727 | /// getFP() constructors - Return a constant with array type with an element |
728 | /// count and element type of float with precision matching the number of |
729 | /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, |
730 | /// double for 64bits) Note that this can return a ConstantAggregateZero |
731 | /// object. |
732 | static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
733 | static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
734 | static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
735 | |
736 | /// This method constructs a CDS and initializes it with a text string. |
737 | /// The default behavior (AddNull==true) causes a null terminator to |
738 | /// be placed at the end of the array (increasing the length of the string by |
739 | /// one more than the StringRef would normally indicate. Pass AddNull=false |
740 | /// to disable this behavior. |
741 | static Constant *getString(LLVMContext &Context, StringRef Initializer, |
742 | bool AddNull = true); |
743 | |
744 | /// Specialize the getType() method to always return an ArrayType, |
745 | /// which reduces the amount of casting needed in parts of the compiler. |
746 | inline ArrayType *getType() const { |
747 | return cast<ArrayType>(Value::getType()); |
748 | } |
749 | |
750 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
751 | static bool classof(const Value *V) { |
752 | return V->getValueID() == ConstantDataArrayVal; |
753 | } |
754 | }; |
755 | |
756 | //===----------------------------------------------------------------------===// |
757 | /// A vector constant whose element type is a simple 1/2/4/8-byte integer or |
758 | /// float/double, and whose elements are just simple data values |
759 | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
760 | /// stores all of the elements of the constant as densely packed data, instead |
761 | /// of as Value*'s. |
762 | class ConstantDataVector final : public ConstantDataSequential { |
763 | friend class ConstantDataSequential; |
764 | |
765 | explicit ConstantDataVector(Type *ty, const char *Data) |
766 | : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} |
767 | |
768 | public: |
769 | ConstantDataVector(const ConstantDataVector &) = delete; |
770 | |
771 | /// get() constructors - Return a constant with vector type with an element |
772 | /// count and element type matching the ArrayRef passed in. Note that this |
773 | /// can return a ConstantAggregateZero object. |
774 | static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); |
775 | static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
776 | static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
777 | static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
778 | static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); |
779 | static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); |
780 | |
781 | /// getFP() constructors - Return a constant with vector type with an element |
782 | /// count and element type of float with the precision matching the number of |
783 | /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, |
784 | /// double for 64bits) Note that this can return a ConstantAggregateZero |
785 | /// object. |
786 | static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
787 | static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
788 | static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
789 | |
790 | /// Return a ConstantVector with the specified constant in each element. |
791 | /// The specified constant has to be a of a compatible type (i8/i16/ |
792 | /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. |
793 | static Constant *getSplat(unsigned NumElts, Constant *Elt); |
794 | |
795 | /// Returns true if this is a splat constant, meaning that all elements have |
796 | /// the same value. |
797 | bool isSplat() const; |
798 | |
799 | /// If this is a splat constant, meaning that all of the elements have the |
800 | /// same value, return that value. Otherwise return NULL. |
801 | Constant *getSplatValue() const; |
802 | |
803 | /// Specialize the getType() method to always return a VectorType, |
804 | /// which reduces the amount of casting needed in parts of the compiler. |
805 | inline VectorType *getType() const { |
806 | return cast<VectorType>(Value::getType()); |
807 | } |
808 | |
809 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
810 | static bool classof(const Value *V) { |
811 | return V->getValueID() == ConstantDataVectorVal; |
812 | } |
813 | }; |
814 | |
815 | //===----------------------------------------------------------------------===// |
816 | /// A constant token which is empty |
817 | /// |
818 | class ConstantTokenNone final : public ConstantData { |
819 | friend class Constant; |
820 | |
821 | explicit ConstantTokenNone(LLVMContext &Context) |
822 | : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} |
823 | |
824 | void destroyConstantImpl(); |
825 | |
826 | public: |
827 | ConstantTokenNone(const ConstantTokenNone &) = delete; |
828 | |
829 | /// Return the ConstantTokenNone. |
830 | static ConstantTokenNone *get(LLVMContext &Context); |
831 | |
832 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
833 | static bool classof(const Value *V) { |
834 | return V->getValueID() == ConstantTokenNoneVal; |
835 | } |
836 | }; |
837 | |
838 | /// The address of a basic block. |
839 | /// |
840 | class BlockAddress final : public Constant { |
841 | friend class Constant; |
842 | |
843 | BlockAddress(Function *F, BasicBlock *BB); |
844 | |
845 | void *operator new(size_t s) { return User::operator new(s, 2); } |
846 | |
847 | void destroyConstantImpl(); |
848 | Value *handleOperandChangeImpl(Value *From, Value *To); |
849 | |
850 | public: |
851 | /// Return a BlockAddress for the specified function and basic block. |
852 | static BlockAddress *get(Function *F, BasicBlock *BB); |
853 | |
854 | /// Return a BlockAddress for the specified basic block. The basic |
855 | /// block must be embedded into a function. |
856 | static BlockAddress *get(BasicBlock *BB); |
857 | |
858 | /// Lookup an existing \c BlockAddress constant for the given BasicBlock. |
859 | /// |
860 | /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. |
861 | static BlockAddress *lookup(const BasicBlock *BB); |
862 | |
863 | /// Transparently provide more efficient getOperand methods. |
864 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
865 | |
866 | Function *getFunction() const { return (Function*)Op<0>().get(); } |
867 | BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } |
868 | |
869 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
870 | static bool classof(const Value *V) { |
871 | return V->getValueID() == BlockAddressVal; |
872 | } |
873 | }; |
874 | |
875 | template <> |
876 | struct OperandTraits<BlockAddress> : |
877 | public FixedNumOperandTraits<BlockAddress, 2> { |
878 | }; |
879 | |
880 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) |
881 | |
882 | //===----------------------------------------------------------------------===// |
883 | /// A constant value that is initialized with an expression using |
884 | /// other constant values. |
885 | /// |
886 | /// This class uses the standard Instruction opcodes to define the various |
887 | /// constant expressions. The Opcode field for the ConstantExpr class is |
888 | /// maintained in the Value::SubclassData field. |
889 | class ConstantExpr : public Constant { |
890 | friend struct ConstantExprKeyType; |
891 | friend class Constant; |
892 | |
893 | void destroyConstantImpl(); |
894 | Value *handleOperandChangeImpl(Value *From, Value *To); |
895 | |
896 | protected: |
897 | ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) |
898 | : Constant(ty, ConstantExprVal, Ops, NumOps) { |
899 | // Operation type (an Instruction opcode) is stored as the SubclassData. |
900 | setValueSubclassData(Opcode); |
901 | } |
902 | |
903 | public: |
904 | // Static methods to construct a ConstantExpr of different kinds. Note that |
905 | // these methods may return a object that is not an instance of the |
906 | // ConstantExpr class, because they will attempt to fold the constant |
907 | // expression into something simpler if possible. |
908 | |
909 | /// getAlignOf constant expr - computes the alignment of a type in a target |
910 | /// independent way (Note: the return type is an i64). |
911 | static Constant *getAlignOf(Type *Ty); |
912 | |
913 | /// getSizeOf constant expr - computes the (alloc) size of a type (in |
914 | /// address-units, not bits) in a target independent way (Note: the return |
915 | /// type is an i64). |
916 | /// |
917 | static Constant *getSizeOf(Type *Ty); |
918 | |
919 | /// getOffsetOf constant expr - computes the offset of a struct field in a |
920 | /// target independent way (Note: the return type is an i64). |
921 | /// |
922 | static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); |
923 | |
924 | /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, |
925 | /// which supports any aggregate type, and any Constant index. |
926 | /// |
927 | static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); |
928 | |
929 | static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); |
930 | static Constant *getFNeg(Constant *C); |
931 | static Constant *getNot(Constant *C); |
932 | static Constant *getAdd(Constant *C1, Constant *C2, |
933 | bool HasNUW = false, bool HasNSW = false); |
934 | static Constant *getFAdd(Constant *C1, Constant *C2); |
935 | static Constant *getSub(Constant *C1, Constant *C2, |
936 | bool HasNUW = false, bool HasNSW = false); |
937 | static Constant *getFSub(Constant *C1, Constant *C2); |
938 | static Constant *getMul(Constant *C1, Constant *C2, |
939 | bool HasNUW = false, bool HasNSW = false); |
940 | static Constant *getFMul(Constant *C1, Constant *C2); |
941 | static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); |
942 | static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); |
943 | static Constant *getFDiv(Constant *C1, Constant *C2); |
944 | static Constant *getURem(Constant *C1, Constant *C2); |
945 | static Constant *getSRem(Constant *C1, Constant *C2); |
946 | static Constant *getFRem(Constant *C1, Constant *C2); |
947 | static Constant *getAnd(Constant *C1, Constant *C2); |
948 | static Constant *getOr(Constant *C1, Constant *C2); |
949 | static Constant *getXor(Constant *C1, Constant *C2); |
950 | static Constant *getShl(Constant *C1, Constant *C2, |
951 | bool HasNUW = false, bool HasNSW = false); |
952 | static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); |
953 | static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); |
954 | static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
955 | static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
956 | static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
957 | static Constant *getFPTrunc(Constant *C, Type *Ty, |
958 | bool OnlyIfReduced = false); |
959 | static Constant *getFPExtend(Constant *C, Type *Ty, |
960 | bool OnlyIfReduced = false); |
961 | static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
962 | static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
963 | static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
964 | static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
965 | static Constant *getPtrToInt(Constant *C, Type *Ty, |
966 | bool OnlyIfReduced = false); |
967 | static Constant *getIntToPtr(Constant *C, Type *Ty, |
968 | bool OnlyIfReduced = false); |
969 | static Constant *getBitCast(Constant *C, Type *Ty, |
970 | bool OnlyIfReduced = false); |
971 | static Constant *getAddrSpaceCast(Constant *C, Type *Ty, |
972 | bool OnlyIfReduced = false); |
973 | |
974 | static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } |
975 | static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } |
976 | |
977 | static Constant *getNSWAdd(Constant *C1, Constant *C2) { |
978 | return getAdd(C1, C2, false, true); |
979 | } |
980 | |
981 | static Constant *getNUWAdd(Constant *C1, Constant *C2) { |
982 | return getAdd(C1, C2, true, false); |
983 | } |
984 | |
985 | static Constant *getNSWSub(Constant *C1, Constant *C2) { |
986 | return getSub(C1, C2, false, true); |
987 | } |
988 | |
989 | static Constant *getNUWSub(Constant *C1, Constant *C2) { |
990 | return getSub(C1, C2, true, false); |
991 | } |
992 | |
993 | static Constant *getNSWMul(Constant *C1, Constant *C2) { |
994 | return getMul(C1, C2, false, true); |
995 | } |
996 | |
997 | static Constant *getNUWMul(Constant *C1, Constant *C2) { |
998 | return getMul(C1, C2, true, false); |
999 | } |
1000 | |
1001 | static Constant *getNSWShl(Constant *C1, Constant *C2) { |
1002 | return getShl(C1, C2, false, true); |
1003 | } |
1004 | |
1005 | static Constant *getNUWShl(Constant *C1, Constant *C2) { |
1006 | return getShl(C1, C2, true, false); |
1007 | } |
1008 | |
1009 | static Constant *getExactSDiv(Constant *C1, Constant *C2) { |
1010 | return getSDiv(C1, C2, true); |
1011 | } |
1012 | |
1013 | static Constant *getExactUDiv(Constant *C1, Constant *C2) { |
1014 | return getUDiv(C1, C2, true); |
1015 | } |
1016 | |
1017 | static Constant *getExactAShr(Constant *C1, Constant *C2) { |
1018 | return getAShr(C1, C2, true); |
1019 | } |
1020 | |
1021 | static Constant *getExactLShr(Constant *C1, Constant *C2) { |
1022 | return getLShr(C1, C2, true); |
1023 | } |
1024 | |
1025 | /// Return the identity constant for a binary opcode. |
1026 | /// The identity constant C is defined as X op C = X and C op X = X for every |
1027 | /// X when the binary operation is commutative. If the binop is not |
1028 | /// commutative, callers can acquire the operand 1 identity constant by |
1029 | /// setting AllowRHSConstant to true. For example, any shift has a zero |
1030 | /// identity constant for operand 1: X shift 0 = X. |
1031 | /// Return nullptr if the operator does not have an identity constant. |
1032 | static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, |
1033 | bool AllowRHSConstant = false); |
1034 | |
1035 | /// Return the absorbing element for the given binary |
1036 | /// operation, i.e. a constant C such that X op C = C and C op X = C for |
1037 | /// every X. For example, this returns zero for integer multiplication. |
1038 | /// It returns null if the operator doesn't have an absorbing element. |
1039 | static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); |
1040 | |
1041 | /// Transparently provide more efficient getOperand methods. |
1042 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
1043 | |
1044 | /// Convenience function for getting a Cast operation. |
1045 | /// |
1046 | /// \param ops The opcode for the conversion |
1047 | /// \param C The constant to be converted |
1048 | /// \param Ty The type to which the constant is converted |
1049 | /// \param OnlyIfReduced see \a getWithOperands() docs. |
1050 | static Constant *getCast(unsigned ops, Constant *C, Type *Ty, |
1051 | bool OnlyIfReduced = false); |
1052 | |
1053 | // Create a ZExt or BitCast cast constant expression |
1054 | static Constant *getZExtOrBitCast( |
1055 | Constant *C, ///< The constant to zext or bitcast |
1056 | Type *Ty ///< The type to zext or bitcast C to |
1057 | ); |
1058 | |
1059 | // Create a SExt or BitCast cast constant expression |
1060 | static Constant *getSExtOrBitCast( |
1061 | Constant *C, ///< The constant to sext or bitcast |
1062 | Type *Ty ///< The type to sext or bitcast C to |
1063 | ); |
1064 | |
1065 | // Create a Trunc or BitCast cast constant expression |
1066 | static Constant *getTruncOrBitCast( |
1067 | Constant *C, ///< The constant to trunc or bitcast |
1068 | Type *Ty ///< The type to trunc or bitcast C to |
1069 | ); |
1070 | |
1071 | /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant |
1072 | /// expression. |
1073 | static Constant *getPointerCast( |
1074 | Constant *C, ///< The pointer value to be casted (operand 0) |
1075 | Type *Ty ///< The type to which cast should be made |
1076 | ); |
1077 | |
1078 | /// Create a BitCast or AddrSpaceCast for a pointer type depending on |
1079 | /// the address space. |
1080 | static Constant *getPointerBitCastOrAddrSpaceCast( |
1081 | Constant *C, ///< The constant to addrspacecast or bitcast |
1082 | Type *Ty ///< The type to bitcast or addrspacecast C to |
1083 | ); |
1084 | |
1085 | /// Create a ZExt, Bitcast or Trunc for integer -> integer casts |
1086 | static Constant *getIntegerCast( |
1087 | Constant *C, ///< The integer constant to be casted |
1088 | Type *Ty, ///< The integer type to cast to |
1089 | bool isSigned ///< Whether C should be treated as signed or not |
1090 | ); |
1091 | |
1092 | /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts |
1093 | static Constant *getFPCast( |
1094 | Constant *C, ///< The integer constant to be casted |
1095 | Type *Ty ///< The integer type to cast to |
1096 | ); |
1097 | |
1098 | /// Return true if this is a convert constant expression |
1099 | bool isCast() const; |
1100 | |
1101 | /// Return true if this is a compare constant expression |
1102 | bool isCompare() const; |
1103 | |
1104 | /// Return true if this is an insertvalue or extractvalue expression, |
1105 | /// and the getIndices() method may be used. |
1106 | bool hasIndices() const; |
1107 | |
1108 | /// Return true if this is a getelementptr expression and all |
1109 | /// the index operands are compile-time known integers within the |
1110 | /// corresponding notional static array extents. Note that this is |
1111 | /// not equivalant to, a subset of, or a superset of the "inbounds" |
1112 | /// property. |
1113 | bool isGEPWithNoNotionalOverIndexing() const; |
1114 | |
1115 | /// Select constant expr |
1116 | /// |
1117 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1118 | static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, |
1119 | Type *OnlyIfReducedTy = nullptr); |
1120 | |
1121 | /// get - Return a unary operator constant expression, |
1122 | /// folding if possible. |
1123 | /// |
1124 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1125 | static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0, |
1126 | Type *OnlyIfReducedTy = nullptr); |
1127 | |
1128 | /// get - Return a binary or shift operator constant expression, |
1129 | /// folding if possible. |
1130 | /// |
1131 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1132 | static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, |
1133 | unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); |
1134 | |
1135 | /// Return an ICmp or FCmp comparison operator constant expression. |
1136 | /// |
1137 | /// \param OnlyIfReduced see \a getWithOperands() docs. |
1138 | static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, |
1139 | bool OnlyIfReduced = false); |
1140 | |
1141 | /// get* - Return some common constants without having to |
1142 | /// specify the full Instruction::OPCODE identifier. |
1143 | /// |
1144 | static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, |
1145 | bool OnlyIfReduced = false); |
1146 | static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, |
1147 | bool OnlyIfReduced = false); |
1148 | |
1149 | /// Getelementptr form. Value* is only accepted for convenience; |
1150 | /// all elements must be Constants. |
1151 | /// |
1152 | /// \param InRangeIndex the inrange index if present or None. |
1153 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1154 | static Constant *getGetElementPtr(Type *Ty, Constant *C, |
1155 | ArrayRef<Constant *> IdxList, |
1156 | bool InBounds = false, |
1157 | Optional<unsigned> InRangeIndex = None, |
1158 | Type *OnlyIfReducedTy = nullptr) { |
1159 | return getGetElementPtr( |
1160 | Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), |
1161 | InBounds, InRangeIndex, OnlyIfReducedTy); |
1162 | } |
1163 | static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, |
1164 | bool InBounds = false, |
1165 | Optional<unsigned> InRangeIndex = None, |
1166 | Type *OnlyIfReducedTy = nullptr) { |
1167 | // This form of the function only exists to avoid ambiguous overload |
1168 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
1169 | // ArrayRef<Value *>. |
1170 | return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, |
1171 | OnlyIfReducedTy); |
1172 | } |
1173 | static Constant *getGetElementPtr(Type *Ty, Constant *C, |
1174 | ArrayRef<Value *> IdxList, |
1175 | bool InBounds = false, |
1176 | Optional<unsigned> InRangeIndex = None, |
1177 | Type *OnlyIfReducedTy = nullptr); |
1178 | |
1179 | /// Create an "inbounds" getelementptr. See the documentation for the |
1180 | /// "inbounds" flag in LangRef.html for details. |
1181 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1182 | ArrayRef<Constant *> IdxList) { |
1183 | return getGetElementPtr(Ty, C, IdxList, true); |
1184 | } |
1185 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1186 | Constant *Idx) { |
1187 | // This form of the function only exists to avoid ambiguous overload |
1188 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
1189 | // ArrayRef<Value *>. |
1190 | return getGetElementPtr(Ty, C, Idx, true); |
1191 | } |
1192 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1193 | ArrayRef<Value *> IdxList) { |
1194 | return getGetElementPtr(Ty, C, IdxList, true); |
1195 | } |
1196 | |
1197 | static Constant *(Constant *Vec, Constant *Idx, |
1198 | Type *OnlyIfReducedTy = nullptr); |
1199 | static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, |
1200 | Type *OnlyIfReducedTy = nullptr); |
1201 | static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, |
1202 | Type *OnlyIfReducedTy = nullptr); |
1203 | static Constant *(Constant *Agg, ArrayRef<unsigned> Idxs, |
1204 | Type *OnlyIfReducedTy = nullptr); |
1205 | static Constant *getInsertValue(Constant *Agg, Constant *Val, |
1206 | ArrayRef<unsigned> Idxs, |
1207 | Type *OnlyIfReducedTy = nullptr); |
1208 | |
1209 | /// Return the opcode at the root of this constant expression |
1210 | unsigned getOpcode() const { return getSubclassDataFromValue(); } |
1211 | |
1212 | /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or |
1213 | /// FCMP constant expression. |
1214 | unsigned getPredicate() const; |
1215 | |
1216 | /// Assert that this is an insertvalue or exactvalue |
1217 | /// expression and return the list of indices. |
1218 | ArrayRef<unsigned> getIndices() const; |
1219 | |
1220 | /// Return a string representation for an opcode. |
1221 | const char *getOpcodeName() const; |
1222 | |
1223 | /// Return a constant expression identical to this one, but with the specified |
1224 | /// operand set to the specified value. |
1225 | Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; |
1226 | |
1227 | /// This returns the current constant expression with the operands replaced |
1228 | /// with the specified values. The specified array must have the same number |
1229 | /// of operands as our current one. |
1230 | Constant *getWithOperands(ArrayRef<Constant*> Ops) const { |
1231 | return getWithOperands(Ops, getType()); |
1232 | } |
1233 | |
1234 | /// Get the current expression with the operands replaced. |
1235 | /// |
1236 | /// Return the current constant expression with the operands replaced with \c |
1237 | /// Ops and the type with \c Ty. The new operands must have the same number |
1238 | /// as the current ones. |
1239 | /// |
1240 | /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something |
1241 | /// gets constant-folded, the type changes, or the expression is otherwise |
1242 | /// canonicalized. This parameter should almost always be \c false. |
1243 | Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, |
1244 | bool OnlyIfReduced = false, |
1245 | Type *SrcTy = nullptr) const; |
1246 | |
1247 | /// Returns an Instruction which implements the same operation as this |
1248 | /// ConstantExpr. The instruction is not linked to any basic block. |
1249 | /// |
1250 | /// A better approach to this could be to have a constructor for Instruction |
1251 | /// which would take a ConstantExpr parameter, but that would have spread |
1252 | /// implementation details of ConstantExpr outside of Constants.cpp, which |
1253 | /// would make it harder to remove ConstantExprs altogether. |
1254 | Instruction *getAsInstruction(); |
1255 | |
1256 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1257 | static bool classof(const Value *V) { |
1258 | return V->getValueID() == ConstantExprVal; |
1259 | } |
1260 | |
1261 | private: |
1262 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
1263 | // subclasses cannot accidentally use it. |
1264 | void setValueSubclassData(unsigned short D) { |
1265 | Value::setValueSubclassData(D); |
1266 | } |
1267 | }; |
1268 | |
1269 | template <> |
1270 | struct OperandTraits<ConstantExpr> : |
1271 | public VariadicOperandTraits<ConstantExpr, 1> { |
1272 | }; |
1273 | |
1274 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) |
1275 | |
1276 | //===----------------------------------------------------------------------===// |
1277 | /// 'undef' values are things that do not have specified contents. |
1278 | /// These are used for a variety of purposes, including global variable |
1279 | /// initializers and operands to instructions. 'undef' values can occur with |
1280 | /// any first-class type. |
1281 | /// |
1282 | /// Undef values aren't exactly constants; if they have multiple uses, they |
1283 | /// can appear to have different bit patterns at each use. See |
1284 | /// LangRef.html#undefvalues for details. |
1285 | /// |
1286 | class UndefValue final : public ConstantData { |
1287 | friend class Constant; |
1288 | |
1289 | explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} |
1290 | |
1291 | void destroyConstantImpl(); |
1292 | |
1293 | public: |
1294 | UndefValue(const UndefValue &) = delete; |
1295 | |
1296 | /// Static factory methods - Return an 'undef' object of the specified type. |
1297 | static UndefValue *get(Type *T); |
1298 | |
1299 | /// If this Undef has array or vector type, return a undef with the right |
1300 | /// element type. |
1301 | UndefValue *getSequentialElement() const; |
1302 | |
1303 | /// If this undef has struct type, return a undef with the right element type |
1304 | /// for the specified element. |
1305 | UndefValue *getStructElement(unsigned Elt) const; |
1306 | |
1307 | /// Return an undef of the right value for the specified GEP index if we can, |
1308 | /// otherwise return null (e.g. if C is a ConstantExpr). |
1309 | UndefValue *getElementValue(Constant *C) const; |
1310 | |
1311 | /// Return an undef of the right value for the specified GEP index. |
1312 | UndefValue *getElementValue(unsigned Idx) const; |
1313 | |
1314 | /// Return the number of elements in the array, vector, or struct. |
1315 | unsigned getNumElements() const; |
1316 | |
1317 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1318 | static bool classof(const Value *V) { |
1319 | return V->getValueID() == UndefValueVal; |
1320 | } |
1321 | }; |
1322 | |
1323 | } // end namespace llvm |
1324 | |
1325 | #endif // LLVM_IR_CONSTANTS_H |
1326 | |