1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkBlurMask.h" |
9 | |
10 | #include "include/core/SkColorPriv.h" |
11 | #include "include/core/SkMath.h" |
12 | #include "include/private/SkTemplates.h" |
13 | #include "include/private/SkTo.h" |
14 | #include "src/core/SkEndian.h" |
15 | #include "src/core/SkMaskBlurFilter.h" |
16 | #include "src/core/SkMathPriv.h" |
17 | |
18 | // This constant approximates the scaling done in the software path's |
19 | // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). |
20 | // IMHO, it actually should be 1: we blur "less" than we should do |
21 | // according to the CSS and canvas specs, simply because Safari does the same. |
22 | // Firefox used to do the same too, until 4.0 where they fixed it. So at some |
23 | // point we should probably get rid of these scaling constants and rebaseline |
24 | // all the blur tests. |
25 | static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f; |
26 | |
27 | SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) { |
28 | return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; |
29 | } |
30 | |
31 | SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) { |
32 | return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f; |
33 | } |
34 | |
35 | |
36 | template <typename AlphaIter> |
37 | static void merge_src_with_blur(uint8_t dst[], int dstRB, |
38 | AlphaIter src, int srcRB, |
39 | const uint8_t blur[], int blurRB, |
40 | int sw, int sh) { |
41 | dstRB -= sw; |
42 | blurRB -= sw; |
43 | while (--sh >= 0) { |
44 | AlphaIter rowSrc(src); |
45 | for (int x = sw - 1; x >= 0; --x) { |
46 | *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*rowSrc))); |
47 | ++dst; |
48 | ++rowSrc; |
49 | ++blur; |
50 | } |
51 | dst += dstRB; |
52 | src >>= srcRB; |
53 | blur += blurRB; |
54 | } |
55 | } |
56 | |
57 | template <typename AlphaIter> |
58 | static void clamp_solid_with_orig(uint8_t dst[], int dstRowBytes, |
59 | AlphaIter src, int srcRowBytes, |
60 | int sw, int sh) { |
61 | int x; |
62 | while (--sh >= 0) { |
63 | AlphaIter rowSrc(src); |
64 | for (x = sw - 1; x >= 0; --x) { |
65 | int s = *rowSrc; |
66 | int d = *dst; |
67 | *dst = SkToU8(s + d - SkMulDiv255Round(s, d)); |
68 | ++dst; |
69 | ++rowSrc; |
70 | } |
71 | dst += dstRowBytes - sw; |
72 | src >>= srcRowBytes; |
73 | } |
74 | } |
75 | |
76 | template <typename AlphaIter> |
77 | static void clamp_outer_with_orig(uint8_t dst[], int dstRowBytes, |
78 | AlphaIter src, int srcRowBytes, |
79 | int sw, int sh) { |
80 | int x; |
81 | while (--sh >= 0) { |
82 | AlphaIter rowSrc(src); |
83 | for (x = sw - 1; x >= 0; --x) { |
84 | int srcValue = *rowSrc; |
85 | if (srcValue) { |
86 | *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - srcValue))); |
87 | } |
88 | ++dst; |
89 | ++rowSrc; |
90 | } |
91 | dst += dstRowBytes - sw; |
92 | src >>= srcRowBytes; |
93 | } |
94 | } |
95 | /////////////////////////////////////////////////////////////////////////////// |
96 | |
97 | // we use a local function to wrap the class static method to work around |
98 | // a bug in gcc98 |
99 | void SkMask_FreeImage(uint8_t* image); |
100 | void SkMask_FreeImage(uint8_t* image) { |
101 | SkMask::FreeImage(image); |
102 | } |
103 | |
104 | bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src, SkScalar sigma, SkBlurStyle style, |
105 | SkIPoint* margin) { |
106 | if (src.fFormat != SkMask::kBW_Format && |
107 | src.fFormat != SkMask::kA8_Format && |
108 | src.fFormat != SkMask::kARGB32_Format && |
109 | src.fFormat != SkMask::kLCD16_Format) |
110 | { |
111 | return false; |
112 | } |
113 | |
114 | SkMaskBlurFilter blurFilter{sigma, sigma}; |
115 | if (blurFilter.hasNoBlur()) { |
116 | // If there is no effective blur most styles will just produce the original mask. |
117 | // However, kOuter_SkBlurStyle will produce an empty mask. |
118 | if (style == kOuter_SkBlurStyle) { |
119 | dst->fImage = nullptr; |
120 | dst->fBounds = SkIRect::MakeEmpty(); |
121 | dst->fRowBytes = dst->fBounds.width(); |
122 | dst->fFormat = SkMask::kA8_Format; |
123 | if (margin != nullptr) { |
124 | // This filter will disregard the src.fImage completely. |
125 | // The margin is actually {-(src.fBounds.width() / 2), -(src.fBounds.height() / 2)} |
126 | // but it is not clear if callers will fall over with negative margins. |
127 | *margin = SkIPoint{0,0}; |
128 | } |
129 | return true; |
130 | } |
131 | return false; |
132 | } |
133 | const SkIPoint border = blurFilter.blur(src, dst); |
134 | // If src.fImage is null, then this call is only to calculate the border. |
135 | if (src.fImage != nullptr && dst->fImage == nullptr) { |
136 | return false; |
137 | } |
138 | |
139 | if (margin != nullptr) { |
140 | *margin = border; |
141 | } |
142 | |
143 | if (src.fImage == nullptr) { |
144 | if (style == kInner_SkBlurStyle) { |
145 | dst->fBounds = src.fBounds; // restore trimmed bounds |
146 | dst->fRowBytes = dst->fBounds.width(); |
147 | } |
148 | return true; |
149 | } |
150 | |
151 | switch (style) { |
152 | case kNormal_SkBlurStyle: |
153 | break; |
154 | case kSolid_SkBlurStyle: { |
155 | auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes]; |
156 | switch (src.fFormat) { |
157 | case SkMask::kBW_Format: |
158 | clamp_solid_with_orig( |
159 | dstStart, dst->fRowBytes, |
160 | SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes, |
161 | src.fBounds.width(), src.fBounds.height()); |
162 | break; |
163 | case SkMask::kA8_Format: |
164 | clamp_solid_with_orig( |
165 | dstStart, dst->fRowBytes, |
166 | SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes, |
167 | src.fBounds.width(), src.fBounds.height()); |
168 | break; |
169 | case SkMask::kARGB32_Format: { |
170 | uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage); |
171 | clamp_solid_with_orig( |
172 | dstStart, dst->fRowBytes, |
173 | SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes, |
174 | src.fBounds.width(), src.fBounds.height()); |
175 | } break; |
176 | case SkMask::kLCD16_Format: { |
177 | uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage); |
178 | clamp_solid_with_orig( |
179 | dstStart, dst->fRowBytes, |
180 | SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes, |
181 | src.fBounds.width(), src.fBounds.height()); |
182 | } break; |
183 | default: |
184 | SK_ABORT("Unhandled format." ); |
185 | } |
186 | } break; |
187 | case kOuter_SkBlurStyle: { |
188 | auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes]; |
189 | switch (src.fFormat) { |
190 | case SkMask::kBW_Format: |
191 | clamp_outer_with_orig( |
192 | dstStart, dst->fRowBytes, |
193 | SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes, |
194 | src.fBounds.width(), src.fBounds.height()); |
195 | break; |
196 | case SkMask::kA8_Format: |
197 | clamp_outer_with_orig( |
198 | dstStart, dst->fRowBytes, |
199 | SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes, |
200 | src.fBounds.width(), src.fBounds.height()); |
201 | break; |
202 | case SkMask::kARGB32_Format: { |
203 | uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage); |
204 | clamp_outer_with_orig( |
205 | dstStart, dst->fRowBytes, |
206 | SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes, |
207 | src.fBounds.width(), src.fBounds.height()); |
208 | } break; |
209 | case SkMask::kLCD16_Format: { |
210 | uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage); |
211 | clamp_outer_with_orig( |
212 | dstStart, dst->fRowBytes, |
213 | SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes, |
214 | src.fBounds.width(), src.fBounds.height()); |
215 | } break; |
216 | default: |
217 | SK_ABORT("Unhandled format." ); |
218 | } |
219 | } break; |
220 | case kInner_SkBlurStyle: { |
221 | // now we allocate the "real" dst, mirror the size of src |
222 | SkMask blur = *dst; |
223 | SkAutoMaskFreeImage autoFreeBlurMask(blur.fImage); |
224 | dst->fBounds = src.fBounds; |
225 | dst->fRowBytes = dst->fBounds.width(); |
226 | size_t dstSize = dst->computeImageSize(); |
227 | if (0 == dstSize) { |
228 | return false; // too big to allocate, abort |
229 | } |
230 | dst->fImage = SkMask::AllocImage(dstSize); |
231 | auto blurStart = &blur.fImage[border.x() + border.y() * blur.fRowBytes]; |
232 | switch (src.fFormat) { |
233 | case SkMask::kBW_Format: |
234 | merge_src_with_blur( |
235 | dst->fImage, dst->fRowBytes, |
236 | SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes, |
237 | blurStart, blur.fRowBytes, |
238 | src.fBounds.width(), src.fBounds.height()); |
239 | break; |
240 | case SkMask::kA8_Format: |
241 | merge_src_with_blur( |
242 | dst->fImage, dst->fRowBytes, |
243 | SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes, |
244 | blurStart, blur.fRowBytes, |
245 | src.fBounds.width(), src.fBounds.height()); |
246 | break; |
247 | case SkMask::kARGB32_Format: { |
248 | uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage); |
249 | merge_src_with_blur( |
250 | dst->fImage, dst->fRowBytes, |
251 | SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes, |
252 | blurStart, blur.fRowBytes, |
253 | src.fBounds.width(), src.fBounds.height()); |
254 | } break; |
255 | case SkMask::kLCD16_Format: { |
256 | uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage); |
257 | merge_src_with_blur( |
258 | dst->fImage, dst->fRowBytes, |
259 | SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes, |
260 | blurStart, blur.fRowBytes, |
261 | src.fBounds.width(), src.fBounds.height()); |
262 | } break; |
263 | default: |
264 | SK_ABORT("Unhandled format." ); |
265 | } |
266 | } break; |
267 | } |
268 | |
269 | return true; |
270 | } |
271 | |
272 | /* Convolving a box with itself three times results in a piecewise |
273 | quadratic function: |
274 | |
275 | 0 x <= -1.5 |
276 | 9/8 + 3/2 x + 1/2 x^2 -1.5 < x <= -.5 |
277 | 3/4 - x^2 -.5 < x <= .5 |
278 | 9/8 - 3/2 x + 1/2 x^2 0.5 < x <= 1.5 |
279 | 0 1.5 < x |
280 | |
281 | Mathematica: |
282 | |
283 | g[x_] := Piecewise [ { |
284 | {9/8 + 3/2 x + 1/2 x^2 , -1.5 < x <= -.5}, |
285 | {3/4 - x^2 , -.5 < x <= .5}, |
286 | {9/8 - 3/2 x + 1/2 x^2 , 0.5 < x <= 1.5} |
287 | }, 0] |
288 | |
289 | To get the profile curve of the blurred step function at the rectangle |
290 | edge, we evaluate the indefinite integral, which is piecewise cubic: |
291 | |
292 | 0 x <= -1.5 |
293 | 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3 -1.5 < x <= -0.5 |
294 | 1/2 + 3/4 x - 1/3 x^3 -.5 < x <= .5 |
295 | 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3 .5 < x <= 1.5 |
296 | 1 1.5 < x |
297 | |
298 | in Mathematica code: |
299 | |
300 | gi[x_] := Piecewise[ { |
301 | { 0 , x <= -1.5 }, |
302 | { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 }, |
303 | { 1/2 + 3/4 x - 1/3 x^3 , -.5 < x <= .5}, |
304 | { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3, .5 < x <= 1.5} |
305 | },1] |
306 | */ |
307 | |
308 | static float gaussianIntegral(float x) { |
309 | if (x > 1.5f) { |
310 | return 0.0f; |
311 | } |
312 | if (x < -1.5f) { |
313 | return 1.0f; |
314 | } |
315 | |
316 | float x2 = x*x; |
317 | float x3 = x2*x; |
318 | |
319 | if ( x > 0.5f ) { |
320 | return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x); |
321 | } |
322 | if ( x > -0.5f ) { |
323 | return 0.5f - (0.75f * x - x3 / 3.0f); |
324 | } |
325 | return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x); |
326 | } |
327 | |
328 | /* ComputeBlurProfile fills in an array of floating |
329 | point values between 0 and 255 for the profile signature of |
330 | a blurred half-plane with the given blur radius. Since we're |
331 | going to be doing screened multiplications (i.e., 1 - (1-x)(1-y)) |
332 | all the time, we actually fill in the profile pre-inverted |
333 | (already done 255-x). |
334 | */ |
335 | |
336 | void SkBlurMask::ComputeBlurProfile(uint8_t* profile, int size, SkScalar sigma) { |
337 | SkASSERT(SkScalarCeilToInt(6*sigma) == size); |
338 | |
339 | int center = size >> 1; |
340 | |
341 | float invr = 1.f/(2*sigma); |
342 | |
343 | profile[0] = 255; |
344 | for (int x = 1 ; x < size ; ++x) { |
345 | float scaled_x = (center - x - .5f) * invr; |
346 | float gi = gaussianIntegral(scaled_x); |
347 | profile[x] = 255 - (uint8_t) (255.f * gi); |
348 | } |
349 | } |
350 | |
351 | // TODO MAYBE: Maintain a profile cache to avoid recomputing this for |
352 | // commonly used radii. Consider baking some of the most common blur radii |
353 | // directly in as static data? |
354 | |
355 | // Implementation adapted from Michael Herf's approach: |
356 | // http://stereopsis.com/shadowrect/ |
357 | |
358 | uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, |
359 | int blurredWidth, int sharpWidth) { |
360 | // how far are we from the original edge? |
361 | int dx = SkAbs32(((loc << 1) + 1) - blurredWidth) - sharpWidth; |
362 | int ox = dx >> 1; |
363 | if (ox < 0) { |
364 | ox = 0; |
365 | } |
366 | |
367 | return profile[ox]; |
368 | } |
369 | |
370 | void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile, |
371 | unsigned int width, SkScalar sigma) { |
372 | |
373 | unsigned int profile_size = SkScalarCeilToInt(6*sigma); |
374 | SkAutoTMalloc<uint8_t> horizontalScanline(width); |
375 | |
376 | unsigned int sw = width - profile_size; |
377 | // nearest odd number less than the profile size represents the center |
378 | // of the (2x scaled) profile |
379 | int center = ( profile_size & ~1 ) - 1; |
380 | |
381 | int w = sw - center; |
382 | |
383 | for (unsigned int x = 0 ; x < width ; ++x) { |
384 | if (profile_size <= sw) { |
385 | pixels[x] = ProfileLookup(profile, x, width, w); |
386 | } else { |
387 | float span = float(sw)/(2*sigma); |
388 | float giX = 1.5f - (x+.5f)/(2*sigma); |
389 | pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span))); |
390 | } |
391 | } |
392 | } |
393 | |
394 | bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst, |
395 | const SkRect &src, SkBlurStyle style, |
396 | SkIPoint *margin, SkMask::CreateMode createMode) { |
397 | int profileSize = SkScalarCeilToInt(6*sigma); |
398 | if (profileSize <= 0) { |
399 | return false; // no blur to compute |
400 | } |
401 | |
402 | int pad = profileSize/2; |
403 | if (margin) { |
404 | margin->set( pad, pad ); |
405 | } |
406 | |
407 | dst->fBounds.setLTRB(SkScalarRoundToInt(src.fLeft - pad), |
408 | SkScalarRoundToInt(src.fTop - pad), |
409 | SkScalarRoundToInt(src.fRight + pad), |
410 | SkScalarRoundToInt(src.fBottom + pad)); |
411 | |
412 | dst->fRowBytes = dst->fBounds.width(); |
413 | dst->fFormat = SkMask::kA8_Format; |
414 | dst->fImage = nullptr; |
415 | |
416 | int sw = SkScalarFloorToInt(src.width()); |
417 | int sh = SkScalarFloorToInt(src.height()); |
418 | |
419 | if (createMode == SkMask::kJustComputeBounds_CreateMode) { |
420 | if (style == kInner_SkBlurStyle) { |
421 | dst->fBounds = src.round(); // restore trimmed bounds |
422 | dst->fRowBytes = sw; |
423 | } |
424 | return true; |
425 | } |
426 | |
427 | SkAutoTMalloc<uint8_t> profile(profileSize); |
428 | |
429 | ComputeBlurProfile(profile, profileSize, sigma); |
430 | |
431 | size_t dstSize = dst->computeImageSize(); |
432 | if (0 == dstSize) { |
433 | return false; // too big to allocate, abort |
434 | } |
435 | |
436 | uint8_t* dp = SkMask::AllocImage(dstSize); |
437 | |
438 | dst->fImage = dp; |
439 | |
440 | int dstHeight = dst->fBounds.height(); |
441 | int dstWidth = dst->fBounds.width(); |
442 | |
443 | uint8_t *outptr = dp; |
444 | |
445 | SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth); |
446 | SkAutoTMalloc<uint8_t> verticalScanline(dstHeight); |
447 | |
448 | ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma); |
449 | ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma); |
450 | |
451 | for (int y = 0 ; y < dstHeight ; ++y) { |
452 | for (int x = 0 ; x < dstWidth ; x++) { |
453 | unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]); |
454 | *(outptr++) = maskval; |
455 | } |
456 | } |
457 | |
458 | if (style == kInner_SkBlurStyle) { |
459 | // now we allocate the "real" dst, mirror the size of src |
460 | size_t srcSize = (size_t)(src.width() * src.height()); |
461 | if (0 == srcSize) { |
462 | return false; // too big to allocate, abort |
463 | } |
464 | dst->fImage = SkMask::AllocImage(srcSize); |
465 | for (int y = 0 ; y < sh ; y++) { |
466 | uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad; |
467 | uint8_t *inner_scanline = dst->fImage + y*sw; |
468 | memcpy(inner_scanline, blur_scanline, sw); |
469 | } |
470 | SkMask::FreeImage(dp); |
471 | |
472 | dst->fBounds = src.round(); // restore trimmed bounds |
473 | dst->fRowBytes = sw; |
474 | |
475 | } else if (style == kOuter_SkBlurStyle) { |
476 | for (int y = pad ; y < dstHeight-pad ; y++) { |
477 | uint8_t *dst_scanline = dp + y*dstWidth + pad; |
478 | memset(dst_scanline, 0, sw); |
479 | } |
480 | } else if (style == kSolid_SkBlurStyle) { |
481 | for (int y = pad ; y < dstHeight-pad ; y++) { |
482 | uint8_t *dst_scanline = dp + y*dstWidth + pad; |
483 | memset(dst_scanline, 0xff, sw); |
484 | } |
485 | } |
486 | // normal and solid styles are the same for analytic rect blurs, so don't |
487 | // need to handle solid specially. |
488 | |
489 | return true; |
490 | } |
491 | |
492 | bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst, |
493 | const SkRRect &src, SkBlurStyle style, |
494 | SkIPoint *margin, SkMask::CreateMode createMode) { |
495 | // Temporary for now -- always fail, should cause caller to fall back |
496 | // to old path. Plumbing just to land API and parallelize effort. |
497 | |
498 | return false; |
499 | } |
500 | |
501 | // The "simple" blur is a direct implementation of separable convolution with a discrete |
502 | // gaussian kernel. It's "ground truth" in a sense; too slow to be used, but very |
503 | // useful for correctness comparisons. |
504 | |
505 | bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src, |
506 | SkBlurStyle style, SkIPoint* margin) { |
507 | |
508 | if (src.fFormat != SkMask::kA8_Format) { |
509 | return false; |
510 | } |
511 | |
512 | float variance = sigma * sigma; |
513 | |
514 | int windowSize = SkScalarCeilToInt(sigma*6); |
515 | // round window size up to nearest odd number |
516 | windowSize |= 1; |
517 | |
518 | SkAutoTMalloc<float> gaussWindow(windowSize); |
519 | |
520 | int halfWindow = windowSize >> 1; |
521 | |
522 | gaussWindow[halfWindow] = 1; |
523 | |
524 | float windowSum = 1; |
525 | for (int x = 1 ; x <= halfWindow ; ++x) { |
526 | float gaussian = expf(-x*x / (2*variance)); |
527 | gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian; |
528 | windowSum += 2*gaussian; |
529 | } |
530 | |
531 | // leave the filter un-normalized for now; we will divide by the normalization |
532 | // sum later; |
533 | |
534 | int pad = halfWindow; |
535 | if (margin) { |
536 | margin->set( pad, pad ); |
537 | } |
538 | |
539 | dst->fBounds = src.fBounds; |
540 | dst->fBounds.outset(pad, pad); |
541 | |
542 | dst->fRowBytes = dst->fBounds.width(); |
543 | dst->fFormat = SkMask::kA8_Format; |
544 | dst->fImage = nullptr; |
545 | |
546 | if (src.fImage) { |
547 | |
548 | size_t dstSize = dst->computeImageSize(); |
549 | if (0 == dstSize) { |
550 | return false; // too big to allocate, abort |
551 | } |
552 | |
553 | int srcWidth = src.fBounds.width(); |
554 | int srcHeight = src.fBounds.height(); |
555 | int dstWidth = dst->fBounds.width(); |
556 | |
557 | const uint8_t* srcPixels = src.fImage; |
558 | uint8_t* dstPixels = SkMask::AllocImage(dstSize); |
559 | SkAutoMaskFreeImage autoFreeDstPixels(dstPixels); |
560 | |
561 | // do the actual blur. First, make a padded copy of the source. |
562 | // use double pad so we never have to check if we're outside anything |
563 | |
564 | int padWidth = srcWidth + 4*pad; |
565 | int padHeight = srcHeight; |
566 | int padSize = padWidth * padHeight; |
567 | |
568 | SkAutoTMalloc<uint8_t> padPixels(padSize); |
569 | memset(padPixels, 0, padSize); |
570 | |
571 | for (int y = 0 ; y < srcHeight; ++y) { |
572 | uint8_t* padptr = padPixels + y * padWidth + 2*pad; |
573 | const uint8_t* srcptr = srcPixels + y * srcWidth; |
574 | memcpy(padptr, srcptr, srcWidth); |
575 | } |
576 | |
577 | // blur in X, transposing the result into a temporary floating point buffer. |
578 | // also double-pad the intermediate result so that the second blur doesn't |
579 | // have to do extra conditionals. |
580 | |
581 | int tmpWidth = padHeight + 4*pad; |
582 | int tmpHeight = padWidth - 2*pad; |
583 | int tmpSize = tmpWidth * tmpHeight; |
584 | |
585 | SkAutoTMalloc<float> tmpImage(tmpSize); |
586 | memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0])); |
587 | |
588 | for (int y = 0 ; y < padHeight ; ++y) { |
589 | uint8_t *srcScanline = padPixels + y*padWidth; |
590 | for (int x = pad ; x < padWidth - pad ; ++x) { |
591 | float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output |
592 | uint8_t *windowCenter = srcScanline + x; |
593 | for (int i = -pad ; i <= pad ; ++i) { |
594 | *outPixel += gaussWindow[pad+i]*windowCenter[i]; |
595 | } |
596 | *outPixel /= windowSum; |
597 | } |
598 | } |
599 | |
600 | // blur in Y; now filling in the actual desired destination. We have to do |
601 | // the transpose again; these transposes guarantee that we read memory in |
602 | // linear order. |
603 | |
604 | for (int y = 0 ; y < tmpHeight ; ++y) { |
605 | float *srcScanline = tmpImage + y*tmpWidth; |
606 | for (int x = pad ; x < tmpWidth - pad ; ++x) { |
607 | float *windowCenter = srcScanline + x; |
608 | float finalValue = 0; |
609 | for (int i = -pad ; i <= pad ; ++i) { |
610 | finalValue += gaussWindow[pad+i]*windowCenter[i]; |
611 | } |
612 | finalValue /= windowSum; |
613 | uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output |
614 | int integerPixel = int(finalValue + 0.5f); |
615 | *outPixel = SkTPin(SkClampPos(integerPixel), 0, 255); |
616 | } |
617 | } |
618 | |
619 | dst->fImage = dstPixels; |
620 | switch (style) { |
621 | case kNormal_SkBlurStyle: |
622 | break; |
623 | case kSolid_SkBlurStyle: { |
624 | clamp_solid_with_orig( |
625 | dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, |
626 | SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes, |
627 | srcWidth, srcHeight); |
628 | } break; |
629 | case kOuter_SkBlurStyle: { |
630 | clamp_outer_with_orig( |
631 | dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes, |
632 | SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes, |
633 | srcWidth, srcHeight); |
634 | } break; |
635 | case kInner_SkBlurStyle: { |
636 | // now we allocate the "real" dst, mirror the size of src |
637 | size_t srcSize = src.computeImageSize(); |
638 | if (0 == srcSize) { |
639 | return false; // too big to allocate, abort |
640 | } |
641 | dst->fImage = SkMask::AllocImage(srcSize); |
642 | merge_src_with_blur(dst->fImage, src.fRowBytes, |
643 | SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes, |
644 | dstPixels + pad*dst->fRowBytes + pad, |
645 | dst->fRowBytes, srcWidth, srcHeight); |
646 | SkMask::FreeImage(dstPixels); |
647 | } break; |
648 | } |
649 | autoFreeDstPixels.release(); |
650 | } |
651 | |
652 | if (style == kInner_SkBlurStyle) { |
653 | dst->fBounds = src.fBounds; // restore trimmed bounds |
654 | dst->fRowBytes = src.fRowBytes; |
655 | } |
656 | |
657 | return true; |
658 | } |
659 | |