1 | /* |
2 | * Copyright 2013 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkMipMap.h" |
9 | |
10 | #include "include/core/SkBitmap.h" |
11 | #include "include/core/SkTypes.h" |
12 | #include "include/private/SkColorData.h" |
13 | #include "include/private/SkHalf.h" |
14 | #include "include/private/SkImageInfoPriv.h" |
15 | #include "include/private/SkNx.h" |
16 | #include "include/private/SkTo.h" |
17 | #include "include/private/SkVx.h" |
18 | #include "src/core/SkMathPriv.h" |
19 | #include <new> |
20 | |
21 | // |
22 | // ColorTypeFilter is the "Type" we pass to some downsample template functions. |
23 | // It controls how we expand a pixel into a large type, with space between each component, |
24 | // so we can then perform our simple filter (either box or triangle) and store the intermediates |
25 | // in the expanded type. |
26 | // |
27 | |
28 | struct ColorTypeFilter_8888 { |
29 | typedef uint32_t Type; |
30 | static Sk4h Expand(uint32_t x) { |
31 | return SkNx_cast<uint16_t>(Sk4b::Load(&x)); |
32 | } |
33 | static uint32_t Compact(const Sk4h& x) { |
34 | uint32_t r; |
35 | SkNx_cast<uint8_t>(x).store(&r); |
36 | return r; |
37 | } |
38 | }; |
39 | |
40 | struct ColorTypeFilter_565 { |
41 | typedef uint16_t Type; |
42 | static uint32_t Expand(uint16_t x) { |
43 | return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); |
44 | } |
45 | static uint16_t Compact(uint32_t x) { |
46 | return ((x & ~SK_G16_MASK_IN_PLACE) & 0xFFFF) | ((x >> 16) & SK_G16_MASK_IN_PLACE); |
47 | } |
48 | }; |
49 | |
50 | struct ColorTypeFilter_4444 { |
51 | typedef uint16_t Type; |
52 | static uint32_t Expand(uint16_t x) { |
53 | return (x & 0xF0F) | ((x & ~0xF0F) << 12); |
54 | } |
55 | static uint16_t Compact(uint32_t x) { |
56 | return (x & 0xF0F) | ((x >> 12) & ~0xF0F); |
57 | } |
58 | }; |
59 | |
60 | struct ColorTypeFilter_8 { |
61 | typedef uint8_t Type; |
62 | static unsigned Expand(unsigned x) { |
63 | return x; |
64 | } |
65 | static uint8_t Compact(unsigned x) { |
66 | return (uint8_t)x; |
67 | } |
68 | }; |
69 | |
70 | struct ColorTypeFilter_Alpha_F16 { |
71 | typedef uint16_t Type; |
72 | static Sk4f Expand(uint16_t x) { |
73 | return SkHalfToFloat_finite_ftz((uint64_t) x); // expand out to four lanes |
74 | |
75 | } |
76 | static uint16_t Compact(const Sk4f& x) { |
77 | uint64_t r; |
78 | SkFloatToHalf_finite_ftz(x).store(&r); |
79 | return r & 0xFFFF; // but ignore the extra 3 here |
80 | } |
81 | }; |
82 | |
83 | struct ColorTypeFilter_RGBA_F16 { |
84 | typedef uint64_t Type; // SkHalf x4 |
85 | static Sk4f Expand(uint64_t x) { |
86 | return SkHalfToFloat_finite_ftz(x); |
87 | } |
88 | static uint64_t Compact(const Sk4f& x) { |
89 | uint64_t r; |
90 | SkFloatToHalf_finite_ftz(x).store(&r); |
91 | return r; |
92 | } |
93 | }; |
94 | |
95 | struct ColorTypeFilter_88 { |
96 | typedef uint16_t Type; |
97 | static uint32_t Expand(uint16_t x) { |
98 | return (x & 0xFF) | ((x & ~0xFF) << 8); |
99 | } |
100 | static uint16_t Compact(uint32_t x) { |
101 | return (x & 0xFF) | ((x >> 8) & ~0xFF); |
102 | } |
103 | }; |
104 | |
105 | struct ColorTypeFilter_1616 { |
106 | typedef uint32_t Type; |
107 | static uint64_t Expand(uint32_t x) { |
108 | return (x & 0xFFFF) | ((x & ~0xFFFF) << 16); |
109 | } |
110 | static uint16_t Compact(uint64_t x) { |
111 | return (x & 0xFFFF) | ((x >> 16) & ~0xFFFF); |
112 | } |
113 | }; |
114 | |
115 | struct ColorTypeFilter_F16F16 { |
116 | typedef uint32_t Type; |
117 | static Sk4f Expand(uint32_t x) { |
118 | return SkHalfToFloat_finite_ftz((uint64_t) x); // expand out to four lanes |
119 | } |
120 | static uint32_t Compact(const Sk4f& x) { |
121 | uint64_t r; |
122 | SkFloatToHalf_finite_ftz(x).store(&r); |
123 | return (uint32_t) (r & 0xFFFFFFFF); // but ignore the extra 2 here |
124 | } |
125 | }; |
126 | |
127 | struct ColorTypeFilter_16161616 { |
128 | typedef uint64_t Type; |
129 | static skvx::Vec<4, uint32_t> Expand(uint64_t x) { |
130 | return skvx::cast<uint32_t>(skvx::Vec<4, uint16_t>::Load(&x)); |
131 | } |
132 | static uint64_t Compact(const skvx::Vec<4, uint32_t>& x) { |
133 | uint64_t r; |
134 | skvx::cast<uint16_t>(x).store(&r); |
135 | return r; |
136 | } |
137 | }; |
138 | |
139 | struct ColorTypeFilter_16 { |
140 | typedef uint16_t Type; |
141 | static uint32_t Expand(uint16_t x) { |
142 | return x; |
143 | } |
144 | static uint16_t Compact(uint32_t x) { |
145 | return (uint16_t) x; |
146 | } |
147 | }; |
148 | |
149 | struct ColorTypeFilter_1010102 { |
150 | typedef uint32_t Type; |
151 | static uint64_t Expand(uint64_t x) { |
152 | return (((x ) & 0x3ff) ) | |
153 | (((x >> 10) & 0x3ff) << 20) | |
154 | (((x >> 20) & 0x3ff) << 40) | |
155 | (((x >> 30) & 0x3 ) << 60); |
156 | } |
157 | static uint32_t Compact(uint64_t x) { |
158 | return (((x ) & 0x3ff) ) | |
159 | (((x >> 20) & 0x3ff) << 10) | |
160 | (((x >> 40) & 0x3ff) << 20) | |
161 | (((x >> 60) & 0x3 ) << 30); |
162 | } |
163 | }; |
164 | |
165 | template <typename T> T add_121(const T& a, const T& b, const T& c) { |
166 | return a + b + b + c; |
167 | } |
168 | |
169 | template <typename T> T shift_right(const T& x, int bits) { |
170 | return x >> bits; |
171 | } |
172 | |
173 | Sk4f shift_right(const Sk4f& x, int bits) { |
174 | return x * (1.0f / (1 << bits)); |
175 | } |
176 | |
177 | template <typename T> T shift_left(const T& x, int bits) { |
178 | return x << bits; |
179 | } |
180 | |
181 | Sk4f shift_left(const Sk4f& x, int bits) { |
182 | return x * (1 << bits); |
183 | } |
184 | |
185 | // |
186 | // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) |
187 | // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) |
188 | // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, |
189 | // else for even cases, we just use a 2x box filter. |
190 | // |
191 | // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of |
192 | // src pixels we need to sample in each dimension to produce 1 dst pixel. |
193 | // |
194 | // OpenGL expects a full mipmap stack to contain anisotropic space as well. |
195 | // This means a 100x1 image would continue down to a 50x1 image, 25x1 image... |
196 | // Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. |
197 | |
198 | template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { |
199 | SkASSERT(count > 0); |
200 | auto p0 = static_cast<const typename F::Type*>(src); |
201 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
202 | auto d = static_cast<typename F::Type*>(dst); |
203 | |
204 | for (int i = 0; i < count; ++i) { |
205 | auto c00 = F::Expand(p0[0]); |
206 | auto c10 = F::Expand(p1[0]); |
207 | |
208 | auto c = c00 + c10; |
209 | d[i] = F::Compact(shift_right(c, 1)); |
210 | p0 += 2; |
211 | p1 += 2; |
212 | } |
213 | } |
214 | |
215 | template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { |
216 | SkASSERT(count > 0); |
217 | auto p0 = static_cast<const typename F::Type*>(src); |
218 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
219 | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
220 | auto d = static_cast<typename F::Type*>(dst); |
221 | |
222 | for (int i = 0; i < count; ++i) { |
223 | auto c00 = F::Expand(p0[0]); |
224 | auto c10 = F::Expand(p1[0]); |
225 | auto c20 = F::Expand(p2[0]); |
226 | |
227 | auto c = add_121(c00, c10, c20); |
228 | d[i] = F::Compact(shift_right(c, 2)); |
229 | p0 += 2; |
230 | p1 += 2; |
231 | p2 += 2; |
232 | } |
233 | } |
234 | |
235 | template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { |
236 | SkASSERT(count > 0); |
237 | auto p0 = static_cast<const typename F::Type*>(src); |
238 | auto d = static_cast<typename F::Type*>(dst); |
239 | |
240 | for (int i = 0; i < count; ++i) { |
241 | auto c00 = F::Expand(p0[0]); |
242 | auto c01 = F::Expand(p0[1]); |
243 | |
244 | auto c = c00 + c01; |
245 | d[i] = F::Compact(shift_right(c, 1)); |
246 | p0 += 2; |
247 | } |
248 | } |
249 | |
250 | template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { |
251 | SkASSERT(count > 0); |
252 | auto p0 = static_cast<const typename F::Type*>(src); |
253 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
254 | auto d = static_cast<typename F::Type*>(dst); |
255 | |
256 | for (int i = 0; i < count; ++i) { |
257 | auto c00 = F::Expand(p0[0]); |
258 | auto c01 = F::Expand(p0[1]); |
259 | auto c10 = F::Expand(p1[0]); |
260 | auto c11 = F::Expand(p1[1]); |
261 | |
262 | auto c = c00 + c10 + c01 + c11; |
263 | d[i] = F::Compact(shift_right(c, 2)); |
264 | p0 += 2; |
265 | p1 += 2; |
266 | } |
267 | } |
268 | |
269 | template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { |
270 | SkASSERT(count > 0); |
271 | auto p0 = static_cast<const typename F::Type*>(src); |
272 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
273 | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
274 | auto d = static_cast<typename F::Type*>(dst); |
275 | |
276 | for (int i = 0; i < count; ++i) { |
277 | auto c00 = F::Expand(p0[0]); |
278 | auto c01 = F::Expand(p0[1]); |
279 | auto c10 = F::Expand(p1[0]); |
280 | auto c11 = F::Expand(p1[1]); |
281 | auto c20 = F::Expand(p2[0]); |
282 | auto c21 = F::Expand(p2[1]); |
283 | |
284 | auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); |
285 | d[i] = F::Compact(shift_right(c, 3)); |
286 | p0 += 2; |
287 | p1 += 2; |
288 | p2 += 2; |
289 | } |
290 | } |
291 | |
292 | template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { |
293 | SkASSERT(count > 0); |
294 | auto p0 = static_cast<const typename F::Type*>(src); |
295 | auto d = static_cast<typename F::Type*>(dst); |
296 | |
297 | auto c02 = F::Expand(p0[0]); |
298 | for (int i = 0; i < count; ++i) { |
299 | auto c00 = c02; |
300 | auto c01 = F::Expand(p0[1]); |
301 | c02 = F::Expand(p0[2]); |
302 | |
303 | auto c = add_121(c00, c01, c02); |
304 | d[i] = F::Compact(shift_right(c, 2)); |
305 | p0 += 2; |
306 | } |
307 | } |
308 | |
309 | template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { |
310 | SkASSERT(count > 0); |
311 | auto p0 = static_cast<const typename F::Type*>(src); |
312 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
313 | auto d = static_cast<typename F::Type*>(dst); |
314 | |
315 | // Given pixels: |
316 | // a0 b0 c0 d0 e0 ... |
317 | // a1 b1 c1 d1 e1 ... |
318 | // We want: |
319 | // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 |
320 | // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 |
321 | // ... |
322 | |
323 | auto c0 = F::Expand(p0[0]); |
324 | auto c1 = F::Expand(p1[0]); |
325 | auto c = c0 + c1; |
326 | for (int i = 0; i < count; ++i) { |
327 | auto a = c; |
328 | |
329 | auto b0 = F::Expand(p0[1]); |
330 | auto b1 = F::Expand(p1[1]); |
331 | auto b = b0 + b0 + b1 + b1; |
332 | |
333 | c0 = F::Expand(p0[2]); |
334 | c1 = F::Expand(p1[2]); |
335 | c = c0 + c1; |
336 | |
337 | auto sum = a + b + c; |
338 | d[i] = F::Compact(shift_right(sum, 3)); |
339 | p0 += 2; |
340 | p1 += 2; |
341 | } |
342 | } |
343 | |
344 | template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { |
345 | SkASSERT(count > 0); |
346 | auto p0 = static_cast<const typename F::Type*>(src); |
347 | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
348 | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
349 | auto d = static_cast<typename F::Type*>(dst); |
350 | |
351 | // Given pixels: |
352 | // a0 b0 c0 d0 e0 ... |
353 | // a1 b1 c1 d1 e1 ... |
354 | // a2 b2 c2 d2 e2 ... |
355 | // We want: |
356 | // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 |
357 | // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 |
358 | // ... |
359 | |
360 | auto c0 = F::Expand(p0[0]); |
361 | auto c1 = F::Expand(p1[0]); |
362 | auto c2 = F::Expand(p2[0]); |
363 | auto c = add_121(c0, c1, c2); |
364 | for (int i = 0; i < count; ++i) { |
365 | auto a = c; |
366 | |
367 | auto b0 = F::Expand(p0[1]); |
368 | auto b1 = F::Expand(p1[1]); |
369 | auto b2 = F::Expand(p2[1]); |
370 | auto b = shift_left(add_121(b0, b1, b2), 1); |
371 | |
372 | c0 = F::Expand(p0[2]); |
373 | c1 = F::Expand(p1[2]); |
374 | c2 = F::Expand(p2[2]); |
375 | c = add_121(c0, c1, c2); |
376 | |
377 | auto sum = a + b + c; |
378 | d[i] = F::Compact(shift_right(sum, 4)); |
379 | p0 += 2; |
380 | p1 += 2; |
381 | p2 += 2; |
382 | } |
383 | } |
384 | |
385 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
386 | |
387 | size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) { |
388 | if (levelCount < 0) { |
389 | return 0; |
390 | } |
391 | int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; |
392 | if (!SkTFitsIn<int32_t>(size)) { |
393 | return 0; |
394 | } |
395 | return SkTo<int32_t>(size); |
396 | } |
397 | |
398 | SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) { |
399 | typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); |
400 | |
401 | FilterProc* proc_1_2 = nullptr; |
402 | FilterProc* proc_1_3 = nullptr; |
403 | FilterProc* proc_2_1 = nullptr; |
404 | FilterProc* proc_2_2 = nullptr; |
405 | FilterProc* proc_2_3 = nullptr; |
406 | FilterProc* proc_3_1 = nullptr; |
407 | FilterProc* proc_3_2 = nullptr; |
408 | FilterProc* proc_3_3 = nullptr; |
409 | |
410 | const SkColorType ct = src.colorType(); |
411 | const SkAlphaType at = src.alphaType(); |
412 | |
413 | switch (ct) { |
414 | case kRGBA_8888_SkColorType: |
415 | case kBGRA_8888_SkColorType: |
416 | proc_1_2 = downsample_1_2<ColorTypeFilter_8888>; |
417 | proc_1_3 = downsample_1_3<ColorTypeFilter_8888>; |
418 | proc_2_1 = downsample_2_1<ColorTypeFilter_8888>; |
419 | proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; |
420 | proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; |
421 | proc_3_1 = downsample_3_1<ColorTypeFilter_8888>; |
422 | proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; |
423 | proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; |
424 | break; |
425 | case kRGB_565_SkColorType: |
426 | proc_1_2 = downsample_1_2<ColorTypeFilter_565>; |
427 | proc_1_3 = downsample_1_3<ColorTypeFilter_565>; |
428 | proc_2_1 = downsample_2_1<ColorTypeFilter_565>; |
429 | proc_2_2 = downsample_2_2<ColorTypeFilter_565>; |
430 | proc_2_3 = downsample_2_3<ColorTypeFilter_565>; |
431 | proc_3_1 = downsample_3_1<ColorTypeFilter_565>; |
432 | proc_3_2 = downsample_3_2<ColorTypeFilter_565>; |
433 | proc_3_3 = downsample_3_3<ColorTypeFilter_565>; |
434 | break; |
435 | case kARGB_4444_SkColorType: |
436 | proc_1_2 = downsample_1_2<ColorTypeFilter_4444>; |
437 | proc_1_3 = downsample_1_3<ColorTypeFilter_4444>; |
438 | proc_2_1 = downsample_2_1<ColorTypeFilter_4444>; |
439 | proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; |
440 | proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; |
441 | proc_3_1 = downsample_3_1<ColorTypeFilter_4444>; |
442 | proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; |
443 | proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; |
444 | break; |
445 | case kAlpha_8_SkColorType: |
446 | case kGray_8_SkColorType: |
447 | proc_1_2 = downsample_1_2<ColorTypeFilter_8>; |
448 | proc_1_3 = downsample_1_3<ColorTypeFilter_8>; |
449 | proc_2_1 = downsample_2_1<ColorTypeFilter_8>; |
450 | proc_2_2 = downsample_2_2<ColorTypeFilter_8>; |
451 | proc_2_3 = downsample_2_3<ColorTypeFilter_8>; |
452 | proc_3_1 = downsample_3_1<ColorTypeFilter_8>; |
453 | proc_3_2 = downsample_3_2<ColorTypeFilter_8>; |
454 | proc_3_3 = downsample_3_3<ColorTypeFilter_8>; |
455 | break; |
456 | case kRGBA_F16Norm_SkColorType: |
457 | case kRGBA_F16_SkColorType: |
458 | proc_1_2 = downsample_1_2<ColorTypeFilter_RGBA_F16>; |
459 | proc_1_3 = downsample_1_3<ColorTypeFilter_RGBA_F16>; |
460 | proc_2_1 = downsample_2_1<ColorTypeFilter_RGBA_F16>; |
461 | proc_2_2 = downsample_2_2<ColorTypeFilter_RGBA_F16>; |
462 | proc_2_3 = downsample_2_3<ColorTypeFilter_RGBA_F16>; |
463 | proc_3_1 = downsample_3_1<ColorTypeFilter_RGBA_F16>; |
464 | proc_3_2 = downsample_3_2<ColorTypeFilter_RGBA_F16>; |
465 | proc_3_3 = downsample_3_3<ColorTypeFilter_RGBA_F16>; |
466 | break; |
467 | case kR8G8_unorm_SkColorType: |
468 | proc_1_2 = downsample_1_2<ColorTypeFilter_88>; |
469 | proc_1_3 = downsample_1_3<ColorTypeFilter_88>; |
470 | proc_2_1 = downsample_2_1<ColorTypeFilter_88>; |
471 | proc_2_2 = downsample_2_2<ColorTypeFilter_88>; |
472 | proc_2_3 = downsample_2_3<ColorTypeFilter_88>; |
473 | proc_3_1 = downsample_3_1<ColorTypeFilter_88>; |
474 | proc_3_2 = downsample_3_2<ColorTypeFilter_88>; |
475 | proc_3_3 = downsample_3_3<ColorTypeFilter_88>; |
476 | break; |
477 | case kR16G16_unorm_SkColorType: |
478 | proc_1_2 = downsample_1_2<ColorTypeFilter_1616>; |
479 | proc_1_3 = downsample_1_3<ColorTypeFilter_1616>; |
480 | proc_2_1 = downsample_2_1<ColorTypeFilter_1616>; |
481 | proc_2_2 = downsample_2_2<ColorTypeFilter_1616>; |
482 | proc_2_3 = downsample_2_3<ColorTypeFilter_1616>; |
483 | proc_3_1 = downsample_3_1<ColorTypeFilter_1616>; |
484 | proc_3_2 = downsample_3_2<ColorTypeFilter_1616>; |
485 | proc_3_3 = downsample_3_3<ColorTypeFilter_1616>; |
486 | break; |
487 | case kA16_unorm_SkColorType: |
488 | proc_1_2 = downsample_1_2<ColorTypeFilter_16>; |
489 | proc_1_3 = downsample_1_3<ColorTypeFilter_16>; |
490 | proc_2_1 = downsample_2_1<ColorTypeFilter_16>; |
491 | proc_2_2 = downsample_2_2<ColorTypeFilter_16>; |
492 | proc_2_3 = downsample_2_3<ColorTypeFilter_16>; |
493 | proc_3_1 = downsample_3_1<ColorTypeFilter_16>; |
494 | proc_3_2 = downsample_3_2<ColorTypeFilter_16>; |
495 | proc_3_3 = downsample_3_3<ColorTypeFilter_16>; |
496 | break; |
497 | case kRGBA_1010102_SkColorType: |
498 | case kBGRA_1010102_SkColorType: |
499 | proc_1_2 = downsample_1_2<ColorTypeFilter_1010102>; |
500 | proc_1_3 = downsample_1_3<ColorTypeFilter_1010102>; |
501 | proc_2_1 = downsample_2_1<ColorTypeFilter_1010102>; |
502 | proc_2_2 = downsample_2_2<ColorTypeFilter_1010102>; |
503 | proc_2_3 = downsample_2_3<ColorTypeFilter_1010102>; |
504 | proc_3_1 = downsample_3_1<ColorTypeFilter_1010102>; |
505 | proc_3_2 = downsample_3_2<ColorTypeFilter_1010102>; |
506 | proc_3_3 = downsample_3_3<ColorTypeFilter_1010102>; |
507 | break; |
508 | case kA16_float_SkColorType: |
509 | proc_1_2 = downsample_1_2<ColorTypeFilter_Alpha_F16>; |
510 | proc_1_3 = downsample_1_3<ColorTypeFilter_Alpha_F16>; |
511 | proc_2_1 = downsample_2_1<ColorTypeFilter_Alpha_F16>; |
512 | proc_2_2 = downsample_2_2<ColorTypeFilter_Alpha_F16>; |
513 | proc_2_3 = downsample_2_3<ColorTypeFilter_Alpha_F16>; |
514 | proc_3_1 = downsample_3_1<ColorTypeFilter_Alpha_F16>; |
515 | proc_3_2 = downsample_3_2<ColorTypeFilter_Alpha_F16>; |
516 | proc_3_3 = downsample_3_3<ColorTypeFilter_Alpha_F16>; |
517 | break; |
518 | case kR16G16_float_SkColorType: |
519 | proc_1_2 = downsample_1_2<ColorTypeFilter_F16F16>; |
520 | proc_1_3 = downsample_1_3<ColorTypeFilter_F16F16>; |
521 | proc_2_1 = downsample_2_1<ColorTypeFilter_F16F16>; |
522 | proc_2_2 = downsample_2_2<ColorTypeFilter_F16F16>; |
523 | proc_2_3 = downsample_2_3<ColorTypeFilter_F16F16>; |
524 | proc_3_1 = downsample_3_1<ColorTypeFilter_F16F16>; |
525 | proc_3_2 = downsample_3_2<ColorTypeFilter_F16F16>; |
526 | proc_3_3 = downsample_3_3<ColorTypeFilter_F16F16>; |
527 | break; |
528 | case kR16G16B16A16_unorm_SkColorType: |
529 | proc_1_2 = downsample_1_2<ColorTypeFilter_16161616>; |
530 | proc_1_3 = downsample_1_3<ColorTypeFilter_16161616>; |
531 | proc_2_1 = downsample_2_1<ColorTypeFilter_16161616>; |
532 | proc_2_2 = downsample_2_2<ColorTypeFilter_16161616>; |
533 | proc_2_3 = downsample_2_3<ColorTypeFilter_16161616>; |
534 | proc_3_1 = downsample_3_1<ColorTypeFilter_16161616>; |
535 | proc_3_2 = downsample_3_2<ColorTypeFilter_16161616>; |
536 | proc_3_3 = downsample_3_3<ColorTypeFilter_16161616>; |
537 | break; |
538 | |
539 | case kUnknown_SkColorType: |
540 | case kRGB_888x_SkColorType: // TODO: use 8888? |
541 | case kRGB_101010x_SkColorType: // TODO: use 1010102? |
542 | case kBGR_101010x_SkColorType: // TODO: use 1010102? |
543 | case kRGBA_F32_SkColorType: |
544 | return nullptr; |
545 | } |
546 | |
547 | if (src.width() <= 1 && src.height() <= 1) { |
548 | return nullptr; |
549 | } |
550 | // whip through our loop to compute the exact size needed |
551 | size_t size = 0; |
552 | int countLevels = ComputeLevelCount(src.width(), src.height()); |
553 | for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { |
554 | SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); |
555 | size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; |
556 | } |
557 | |
558 | size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size); |
559 | if (0 == storageSize) { |
560 | return nullptr; |
561 | } |
562 | |
563 | SkMipMap* mipmap; |
564 | if (fact) { |
565 | SkDiscardableMemory* dm = fact(storageSize); |
566 | if (nullptr == dm) { |
567 | return nullptr; |
568 | } |
569 | mipmap = new SkMipMap(storageSize, dm); |
570 | } else { |
571 | mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize); |
572 | } |
573 | |
574 | // init |
575 | mipmap->fCS = sk_ref_sp(src.info().colorSpace()); |
576 | mipmap->fCount = countLevels; |
577 | mipmap->fLevels = (Level*)mipmap->writable_data(); |
578 | SkASSERT(mipmap->fLevels); |
579 | |
580 | Level* levels = mipmap->fLevels; |
581 | uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; |
582 | uint8_t* addr = baseAddr; |
583 | int width = src.width(); |
584 | int height = src.height(); |
585 | uint32_t rowBytes; |
586 | SkPixmap srcPM(src); |
587 | |
588 | // Depending on architecture and other factors, the pixel data alignment may need to be as |
589 | // large as 8 (for F16 pixels). See the comment on SkMipMap::Level. |
590 | SkASSERT(SkIsAlign8((uintptr_t)addr)); |
591 | |
592 | for (int i = 0; i < countLevels; ++i) { |
593 | FilterProc* proc; |
594 | if (height & 1) { |
595 | if (height == 1) { // src-height is 1 |
596 | if (width & 1) { // src-width is 3 |
597 | proc = proc_3_1; |
598 | } else { // src-width is 2 |
599 | proc = proc_2_1; |
600 | } |
601 | } else { // src-height is 3 |
602 | if (width & 1) { |
603 | if (width == 1) { // src-width is 1 |
604 | proc = proc_1_3; |
605 | } else { // src-width is 3 |
606 | proc = proc_3_3; |
607 | } |
608 | } else { // src-width is 2 |
609 | proc = proc_2_3; |
610 | } |
611 | } |
612 | } else { // src-height is 2 |
613 | if (width & 1) { |
614 | if (width == 1) { // src-width is 1 |
615 | proc = proc_1_2; |
616 | } else { // src-width is 3 |
617 | proc = proc_3_2; |
618 | } |
619 | } else { // src-width is 2 |
620 | proc = proc_2_2; |
621 | } |
622 | } |
623 | width = std::max(1, width >> 1); |
624 | height = std::max(1, height >> 1); |
625 | rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); |
626 | |
627 | // We make the Info w/o any colorspace, since that storage is not under our control, and |
628 | // will not be deleted in a controlled fashion. When the caller is given the pixmap for |
629 | // a given level, we augment this pixmap with fCS (which we do manage). |
630 | new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); |
631 | levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), |
632 | SkIntToScalar(height) / src.height()); |
633 | |
634 | const SkPixmap& dstPM = levels[i].fPixmap; |
635 | const void* srcBasePtr = srcPM.addr(); |
636 | void* dstBasePtr = dstPM.writable_addr(); |
637 | |
638 | const size_t srcRB = srcPM.rowBytes(); |
639 | for (int y = 0; y < height; y++) { |
640 | proc(dstBasePtr, srcBasePtr, srcRB, width); |
641 | srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows |
642 | dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); |
643 | } |
644 | srcPM = dstPM; |
645 | addr += height * rowBytes; |
646 | } |
647 | SkASSERT(addr == baseAddr + size); |
648 | |
649 | SkASSERT(mipmap->fLevels); |
650 | return mipmap; |
651 | } |
652 | |
653 | int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) { |
654 | if (baseWidth < 1 || baseHeight < 1) { |
655 | return 0; |
656 | } |
657 | |
658 | // OpenGL's spec requires that each mipmap level have height/width equal to |
659 | // max(1, floor(original_height / 2^i) |
660 | // (or original_width) where i is the mipmap level. |
661 | // Continue scaling down until both axes are size 1. |
662 | |
663 | const int largestAxis = std::max(baseWidth, baseHeight); |
664 | if (largestAxis < 2) { |
665 | // SkMipMap::Build requires a minimum size of 2. |
666 | return 0; |
667 | } |
668 | const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis)); |
669 | // If the value 00011010 has 3 leading 0s then it has 5 significant bits |
670 | // (the bits which are not leading zeros) |
671 | const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; |
672 | // This is making the assumption that the size of a byte is 8 bits |
673 | // and that sizeof(uint32_t)'s implementation-defined behavior is 4. |
674 | int mipLevelCount = significantBits; |
675 | |
676 | // SkMipMap does not include the base mip level. |
677 | // For example, it contains levels 1-x instead of 0-x. |
678 | // This is because the image used to create SkMipMap is the base level. |
679 | // So subtract 1 from the mip level count. |
680 | if (mipLevelCount > 0) { |
681 | --mipLevelCount; |
682 | } |
683 | |
684 | return mipLevelCount; |
685 | } |
686 | |
687 | SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { |
688 | if (baseWidth < 1 || baseHeight < 1) { |
689 | return SkISize::Make(0, 0); |
690 | } |
691 | |
692 | int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); |
693 | if (level >= maxLevelCount || level < 0) { |
694 | return SkISize::Make(0, 0); |
695 | } |
696 | // OpenGL's spec requires that each mipmap level have height/width equal to |
697 | // max(1, floor(original_height / 2^i) |
698 | // (or original_width) where i is the mipmap level. |
699 | |
700 | // SkMipMap does not include the base mip level. |
701 | // For example, it contains levels 1-x instead of 0-x. |
702 | // This is because the image used to create SkMipMap is the base level. |
703 | // So subtract 1 from the mip level to get the index stored by SkMipMap. |
704 | int width = std::max(1, baseWidth >> (level + 1)); |
705 | int height = std::max(1, baseHeight >> (level + 1)); |
706 | |
707 | return SkISize::Make(width, height); |
708 | } |
709 | |
710 | /////////////////////////////////////////////////////////////////////////////// |
711 | |
712 | bool SkMipMap::(const SkSize& scaleSize, Level* levelPtr) const { |
713 | if (nullptr == fLevels) { |
714 | return false; |
715 | } |
716 | |
717 | SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); |
718 | |
719 | #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE |
720 | // Use the smallest scale to match the GPU impl. |
721 | const SkScalar scale = std::min(scaleSize.width(), scaleSize.height()); |
722 | #else |
723 | // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the |
724 | // scales can produce some atrocious results, so for now we use the geometric mean. |
725 | // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) |
726 | const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height()); |
727 | #endif |
728 | |
729 | if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { |
730 | return false; |
731 | } |
732 | |
733 | SkScalar L = -SkScalarLog2(scale); |
734 | if (!SkScalarIsFinite(L)) { |
735 | return false; |
736 | } |
737 | SkASSERT(L >= 0); |
738 | int level = SkScalarFloorToInt(L); |
739 | |
740 | SkASSERT(level >= 0); |
741 | if (level <= 0) { |
742 | return false; |
743 | } |
744 | |
745 | if (level > fCount) { |
746 | level = fCount; |
747 | } |
748 | if (levelPtr) { |
749 | *levelPtr = fLevels[level - 1]; |
750 | // need to augment with our colorspace |
751 | levelPtr->fPixmap.setColorSpace(fCS); |
752 | } |
753 | return true; |
754 | } |
755 | |
756 | // Helper which extracts a pixmap from the src bitmap |
757 | // |
758 | SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) { |
759 | SkPixmap srcPixmap; |
760 | if (!src.peekPixels(&srcPixmap)) { |
761 | return nullptr; |
762 | } |
763 | return Build(srcPixmap, fact); |
764 | } |
765 | |
766 | int SkMipMap::countLevels() const { |
767 | return fCount; |
768 | } |
769 | |
770 | bool SkMipMap::getLevel(int index, Level* levelPtr) const { |
771 | if (nullptr == fLevels) { |
772 | return false; |
773 | } |
774 | if (index < 0) { |
775 | return false; |
776 | } |
777 | if (index > fCount - 1) { |
778 | return false; |
779 | } |
780 | if (levelPtr) { |
781 | *levelPtr = fLevels[index]; |
782 | } |
783 | return true; |
784 | } |
785 | |