1 | /* |
2 | * Copyright 2017 ARM Ltd. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkDistanceFieldGen.h" |
9 | #include "src/gpu/GrDistanceFieldGenFromVector.h" |
10 | |
11 | #include "include/core/SkMatrix.h" |
12 | #include "include/gpu/GrConfig.h" |
13 | #include "include/pathops/SkPathOps.h" |
14 | #include "src/core/SkAutoMalloc.h" |
15 | #include "src/core/SkGeometry.h" |
16 | #include "src/core/SkPointPriv.h" |
17 | #include "src/core/SkRectPriv.h" |
18 | #include "src/gpu/geometry/GrPathUtils.h" |
19 | |
20 | #include "src/pathops/SkPathOpsPoint.h" |
21 | |
22 | /** |
23 | * If a scanline (a row of texel) cross from the kRight_SegSide |
24 | * of a segment to the kLeft_SegSide, the winding score should |
25 | * add 1. |
26 | * And winding score should subtract 1 if the scanline cross |
27 | * from kLeft_SegSide to kRight_SegSide. |
28 | * Always return kNA_SegSide if the scanline does not cross over |
29 | * the segment. Winding score should be zero in this case. |
30 | * You can get the winding number for each texel of the scanline |
31 | * by adding the winding score from left to right. |
32 | * Assuming we always start from outside, so the winding number |
33 | * should always start from zero. |
34 | * ________ ________ |
35 | * | | | | |
36 | * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
37 | * |+1 |-1 |-1 |+1 <= Winding score |
38 | * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
39 | * |________| |________| |
40 | * |
41 | * .......NA................NA.......... |
42 | * 0 0 |
43 | */ |
44 | enum SegSide { |
45 | kLeft_SegSide = -1, |
46 | kOn_SegSide = 0, |
47 | kRight_SegSide = 1, |
48 | kNA_SegSide = 2, |
49 | }; |
50 | |
51 | struct DFData { |
52 | float fDistSq; // distance squared to nearest (so far) edge |
53 | int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
54 | }; |
55 | |
56 | /////////////////////////////////////////////////////////////////////////////// |
57 | |
58 | /* |
59 | * Type definition for double precision DAffineMatrix |
60 | */ |
61 | |
62 | // Matrix with double precision for affine transformation. |
63 | // We don't store row 3 because its always (0, 0, 1). |
64 | class DAffineMatrix { |
65 | public: |
66 | double operator[](int index) const { |
67 | SkASSERT((unsigned)index < 6); |
68 | return fMat[index]; |
69 | } |
70 | |
71 | double& operator[](int index) { |
72 | SkASSERT((unsigned)index < 6); |
73 | return fMat[index]; |
74 | } |
75 | |
76 | void setAffine(double m11, double m12, double m13, |
77 | double m21, double m22, double m23) { |
78 | fMat[0] = m11; |
79 | fMat[1] = m12; |
80 | fMat[2] = m13; |
81 | fMat[3] = m21; |
82 | fMat[4] = m22; |
83 | fMat[5] = m23; |
84 | } |
85 | |
86 | /** Set the matrix to identity |
87 | */ |
88 | void reset() { |
89 | fMat[0] = fMat[4] = 1.0; |
90 | fMat[1] = fMat[3] = |
91 | fMat[2] = fMat[5] = 0.0; |
92 | } |
93 | |
94 | // alias for reset() |
95 | void setIdentity() { this->reset(); } |
96 | |
97 | SkDPoint mapPoint(const SkPoint& src) const { |
98 | SkDPoint pt = {src.fX, src.fY}; |
99 | return this->mapPoint(pt); |
100 | } |
101 | |
102 | SkDPoint mapPoint(const SkDPoint& src) const { |
103 | return { fMat[0] * src.fX + fMat[1] * src.fY + fMat[2], |
104 | fMat[3] * src.fX + fMat[4] * src.fY + fMat[5] }; |
105 | } |
106 | private: |
107 | double fMat[6]; |
108 | }; |
109 | |
110 | /////////////////////////////////////////////////////////////////////////////// |
111 | |
112 | static const double kClose = (SK_Scalar1 / 16.0); |
113 | static const double kCloseSqd = kClose * kClose; |
114 | static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); |
115 | static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); |
116 | static const float kConicTolerance = 0.25f; |
117 | |
118 | // returns true if a >= min(b,c) && a < max(b,c) |
119 | static inline bool between_closed_open(double a, double b, double c, |
120 | double tolerance = 0.0, |
121 | bool xformToleranceToX = false) { |
122 | SkASSERT(tolerance >= 0.0); |
123 | double tolB = tolerance; |
124 | double tolC = tolerance; |
125 | |
126 | if (xformToleranceToX) { |
127 | // Canonical space is y = x^2 and the derivative of x^2 is 2x. |
128 | // So the slope of the tangent line at point (x, x^2) is 2x. |
129 | // |
130 | // /| |
131 | // sqrt(2x * 2x + 1 * 1) / | 2x |
132 | // /__| |
133 | // 1 |
134 | tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
135 | tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
136 | } |
137 | return b < c ? (a >= b - tolB && a < c - tolC) : |
138 | (a >= c - tolC && a < b - tolB); |
139 | } |
140 | |
141 | // returns true if a >= min(b,c) && a <= max(b,c) |
142 | static inline bool between_closed(double a, double b, double c, |
143 | double tolerance = 0.0, |
144 | bool xformToleranceToX = false) { |
145 | SkASSERT(tolerance >= 0.0); |
146 | double tolB = tolerance; |
147 | double tolC = tolerance; |
148 | |
149 | if (xformToleranceToX) { |
150 | tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
151 | tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
152 | } |
153 | return b < c ? (a >= b - tolB && a <= c + tolC) : |
154 | (a >= c - tolC && a <= b + tolB); |
155 | } |
156 | |
157 | static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { |
158 | SkASSERT(tolerance >= 0.0); |
159 | return fabs(x) <= tolerance; |
160 | } |
161 | |
162 | static inline bool nearly_equal(double x, double y, |
163 | double tolerance = kNearlyZero, |
164 | bool xformToleranceToX = false) { |
165 | SkASSERT(tolerance >= 0.0); |
166 | if (xformToleranceToX) { |
167 | tolerance = tolerance / sqrt(4.0 * y * y + 1.0); |
168 | } |
169 | return fabs(x - y) <= tolerance; |
170 | } |
171 | |
172 | static inline double sign_of(const double &val) { |
173 | return std::copysign(1, val); |
174 | } |
175 | |
176 | static bool is_colinear(const SkPoint pts[3]) { |
177 | return nearly_zero((pts[1].fY - pts[0].fY) * (pts[1].fX - pts[2].fX) - |
178 | (pts[1].fY - pts[2].fY) * (pts[1].fX - pts[0].fX), kCloseSqd); |
179 | } |
180 | |
181 | class PathSegment { |
182 | public: |
183 | enum { |
184 | // These enum values are assumed in member functions below. |
185 | kLine = 0, |
186 | kQuad = 1, |
187 | } fType; |
188 | |
189 | // line uses 2 pts, quad uses 3 pts |
190 | SkPoint fPts[3]; |
191 | |
192 | SkDPoint fP0T, fP2T; |
193 | DAffineMatrix fXformMatrix; // transforms the segment into canonical space |
194 | double fScalingFactor; |
195 | double fScalingFactorSqd; |
196 | double fNearlyZeroScaled; |
197 | double fTangentTolScaledSqd; |
198 | SkRect fBoundingBox; |
199 | |
200 | void init(); |
201 | |
202 | int countPoints() { |
203 | static_assert(0 == kLine && 1 == kQuad); |
204 | return fType + 2; |
205 | } |
206 | |
207 | const SkPoint& endPt() const { |
208 | static_assert(0 == kLine && 1 == kQuad); |
209 | return fPts[fType + 1]; |
210 | } |
211 | }; |
212 | |
213 | typedef SkTArray<PathSegment, true> PathSegmentArray; |
214 | |
215 | void PathSegment::init() { |
216 | const SkDPoint p0 = { fPts[0].fX, fPts[0].fY }; |
217 | const SkDPoint p2 = { this->endPt().fX, this->endPt().fY }; |
218 | const double p0x = p0.fX; |
219 | const double p0y = p0.fY; |
220 | const double p2x = p2.fX; |
221 | const double p2y = p2.fY; |
222 | |
223 | fBoundingBox.set(fPts[0], this->endPt()); |
224 | |
225 | if (fType == PathSegment::kLine) { |
226 | fScalingFactorSqd = fScalingFactor = 1.0; |
227 | double hypotenuse = p0.distance(p2); |
228 | |
229 | const double cosTheta = (p2x - p0x) / hypotenuse; |
230 | const double sinTheta = (p2y - p0y) / hypotenuse; |
231 | |
232 | // rotates the segment to the x-axis, with p0 at the origin |
233 | fXformMatrix.setAffine( |
234 | cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), |
235 | -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) |
236 | ); |
237 | } else { |
238 | SkASSERT(fType == PathSegment::kQuad); |
239 | |
240 | // Calculate bounding box |
241 | const SkPoint _P1mP0 = fPts[1] - fPts[0]; |
242 | SkPoint t = _P1mP0 - fPts[2] + fPts[1]; |
243 | t.fX = _P1mP0.fX / t.fX; |
244 | t.fY = _P1mP0.fY / t.fY; |
245 | t.fX = SkTPin(t.fX, 0.0f, 1.0f); |
246 | t.fY = SkTPin(t.fY, 0.0f, 1.0f); |
247 | t.fX = _P1mP0.fX * t.fX; |
248 | t.fY = _P1mP0.fY * t.fY; |
249 | const SkPoint m = fPts[0] + t; |
250 | SkRectPriv::GrowToInclude(&fBoundingBox, m); |
251 | |
252 | const double p1x = fPts[1].fX; |
253 | const double p1y = fPts[1].fY; |
254 | |
255 | const double p0xSqd = p0x * p0x; |
256 | const double p0ySqd = p0y * p0y; |
257 | const double p2xSqd = p2x * p2x; |
258 | const double p2ySqd = p2y * p2y; |
259 | const double p1xSqd = p1x * p1x; |
260 | const double p1ySqd = p1y * p1y; |
261 | |
262 | const double p01xProd = p0x * p1x; |
263 | const double p02xProd = p0x * p2x; |
264 | const double b12xProd = p1x * p2x; |
265 | const double p01yProd = p0y * p1y; |
266 | const double p02yProd = p0y * p2y; |
267 | const double b12yProd = p1y * p2y; |
268 | |
269 | // calculate quadratic params |
270 | const double sqrtA = p0y - (2.0 * p1y) + p2y; |
271 | const double a = sqrtA * sqrtA; |
272 | const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); |
273 | const double sqrtB = p0x - (2.0 * p1x) + p2x; |
274 | const double b = sqrtB * sqrtB; |
275 | const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) |
276 | - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) |
277 | + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) |
278 | + (p2xSqd * p0ySqd); |
279 | const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) |
280 | + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) |
281 | + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) |
282 | + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) |
283 | + (2.0 * p2x * p01yProd) + (p2x * p02yProd) |
284 | - (2.0 * p2x * p1ySqd); |
285 | const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) |
286 | - (2.0 * p01xProd * p2y) - (p02xProd * p0y) |
287 | + (4.0 * p02xProd * p1y) - (p02xProd * p2y) |
288 | + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) |
289 | - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) |
290 | + (p2xSqd * p0y)); |
291 | |
292 | const double cosTheta = sqrt(a / (a + b)); |
293 | const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
294 | |
295 | const double gDef = cosTheta * g - sinTheta * f; |
296 | const double fDef = sinTheta * g + cosTheta * f; |
297 | |
298 | |
299 | const double x0 = gDef / (a + b); |
300 | const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); |
301 | |
302 | |
303 | const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
304 | fScalingFactor = fabs(1.0 / lambda); |
305 | fScalingFactorSqd = fScalingFactor * fScalingFactor; |
306 | |
307 | const double lambda_cosTheta = lambda * cosTheta; |
308 | const double lambda_sinTheta = lambda * sinTheta; |
309 | |
310 | // transforms to lie on a canonical y = x^2 parabola |
311 | fXformMatrix.setAffine( |
312 | lambda_cosTheta, -lambda_sinTheta, lambda * x0, |
313 | lambda_sinTheta, lambda_cosTheta, lambda * y0 |
314 | ); |
315 | } |
316 | |
317 | fNearlyZeroScaled = kNearlyZero / fScalingFactor; |
318 | fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; |
319 | |
320 | fP0T = fXformMatrix.mapPoint(p0); |
321 | fP2T = fXformMatrix.mapPoint(p2); |
322 | } |
323 | |
324 | static void init_distances(DFData* data, int size) { |
325 | DFData* currData = data; |
326 | |
327 | for (int i = 0; i < size; ++i) { |
328 | // init distance to "far away" |
329 | currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
330 | currData->fDeltaWindingScore = 0; |
331 | ++currData; |
332 | } |
333 | } |
334 | |
335 | static inline void add_line(const SkPoint pts[2], PathSegmentArray* segments) { |
336 | segments->push_back(); |
337 | segments->back().fType = PathSegment::kLine; |
338 | segments->back().fPts[0] = pts[0]; |
339 | segments->back().fPts[1] = pts[1]; |
340 | |
341 | segments->back().init(); |
342 | } |
343 | |
344 | static inline void add_quad(const SkPoint pts[3], PathSegmentArray* segments) { |
345 | if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd || |
346 | SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd || |
347 | is_colinear(pts)) { |
348 | if (pts[0] != pts[2]) { |
349 | SkPoint line_pts[2]; |
350 | line_pts[0] = pts[0]; |
351 | line_pts[1] = pts[2]; |
352 | add_line(line_pts, segments); |
353 | } |
354 | } else { |
355 | segments->push_back(); |
356 | segments->back().fType = PathSegment::kQuad; |
357 | segments->back().fPts[0] = pts[0]; |
358 | segments->back().fPts[1] = pts[1]; |
359 | segments->back().fPts[2] = pts[2]; |
360 | |
361 | segments->back().init(); |
362 | } |
363 | } |
364 | |
365 | static inline void add_cubic(const SkPoint pts[4], |
366 | PathSegmentArray* segments) { |
367 | SkSTArray<15, SkPoint, true> quads; |
368 | GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); |
369 | int count = quads.count(); |
370 | for (int q = 0; q < count; q += 3) { |
371 | add_quad(&quads[q], segments); |
372 | } |
373 | } |
374 | |
375 | static float calculate_nearest_point_for_quad( |
376 | const PathSegment& segment, |
377 | const SkDPoint &xFormPt) { |
378 | static const float kThird = 0.33333333333f; |
379 | static const float kTwentySeventh = 0.037037037f; |
380 | |
381 | const float a = 0.5f - (float)xFormPt.fY; |
382 | const float b = -0.5f * (float)xFormPt.fX; |
383 | |
384 | const float a3 = a * a * a; |
385 | const float b2 = b * b; |
386 | |
387 | const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); |
388 | |
389 | if (c >= 0.f) { |
390 | const float sqrtC = sqrt(c); |
391 | const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
392 | return result; |
393 | } else { |
394 | const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
395 | const float phi = (float)acos(cosPhi); |
396 | float result; |
397 | if (xFormPt.fX > 0.f) { |
398 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
399 | if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) { |
400 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
401 | } |
402 | } else { |
403 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
404 | if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) { |
405 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
406 | } |
407 | } |
408 | return result; |
409 | } |
410 | } |
411 | |
412 | // This structure contains some intermediate values shared by the same row. |
413 | // It is used to calculate segment side of a quadratic bezier. |
414 | struct RowData { |
415 | // The intersection type of a scanline and y = x * x parabola in canonical space. |
416 | enum IntersectionType { |
417 | kNoIntersection, |
418 | kVerticalLine, |
419 | kTangentLine, |
420 | kTwoPointsIntersect |
421 | } fIntersectionType; |
422 | |
423 | // The direction of the quadratic segment/scanline in the canonical space. |
424 | // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis. |
425 | // 0: The scanline is a vertical line in the canonical space. |
426 | // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. |
427 | int fQuadXDirection; |
428 | int fScanlineXDirection; |
429 | |
430 | // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. |
431 | double fYAtIntersection; |
432 | |
433 | // The x-value for two intersection points. |
434 | double fXAtIntersection1; |
435 | double fXAtIntersection2; |
436 | }; |
437 | |
438 | void precomputation_for_row(RowData *rowData, const PathSegment& segment, |
439 | const SkPoint& pointLeft, const SkPoint& pointRight) { |
440 | if (segment.fType != PathSegment::kQuad) { |
441 | return; |
442 | } |
443 | |
444 | const SkDPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
445 | const SkDPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight); |
446 | |
447 | rowData->fQuadXDirection = (int)sign_of(segment.fP2T.fX - segment.fP0T.fX); |
448 | rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.fX - xFormPtLeft.fX); |
449 | |
450 | const double x1 = xFormPtLeft.fX; |
451 | const double y1 = xFormPtLeft.fY; |
452 | const double x2 = xFormPtRight.fX; |
453 | const double y2 = xFormPtRight.fY; |
454 | |
455 | if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { |
456 | rowData->fIntersectionType = RowData::kVerticalLine; |
457 | rowData->fYAtIntersection = x1 * x1; |
458 | rowData->fScanlineXDirection = 0; |
459 | return; |
460 | } |
461 | |
462 | // Line y = mx + b |
463 | const double m = (y2 - y1) / (x2 - x1); |
464 | const double b = -m * x1 + y1; |
465 | |
466 | const double m2 = m * m; |
467 | const double c = m2 + 4.0 * b; |
468 | |
469 | const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); |
470 | |
471 | // Check if the scanline is the tangent line of the curve, |
472 | // and the curve start or end at the same y-coordinate of the scanline |
473 | if ((rowData->fScanlineXDirection == 1 && |
474 | (segment.fPts[0].fY == pointLeft.fY || |
475 | segment.fPts[2].fY == pointLeft.fY)) && |
476 | nearly_zero(c, tol)) { |
477 | rowData->fIntersectionType = RowData::kTangentLine; |
478 | rowData->fXAtIntersection1 = m / 2.0; |
479 | rowData->fXAtIntersection2 = m / 2.0; |
480 | } else if (c <= 0.0) { |
481 | rowData->fIntersectionType = RowData::kNoIntersection; |
482 | return; |
483 | } else { |
484 | rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
485 | const double d = sqrt(c); |
486 | rowData->fXAtIntersection1 = (m + d) / 2.0; |
487 | rowData->fXAtIntersection2 = (m - d) / 2.0; |
488 | } |
489 | } |
490 | |
491 | SegSide calculate_side_of_quad( |
492 | const PathSegment& segment, |
493 | const SkPoint& point, |
494 | const SkDPoint& xFormPt, |
495 | const RowData& rowData) { |
496 | SegSide side = kNA_SegSide; |
497 | |
498 | if (RowData::kVerticalLine == rowData.fIntersectionType) { |
499 | side = (SegSide)(int)(sign_of(xFormPt.fY - rowData.fYAtIntersection) * rowData.fQuadXDirection); |
500 | } |
501 | else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { |
502 | const double p1 = rowData.fXAtIntersection1; |
503 | const double p2 = rowData.fXAtIntersection2; |
504 | |
505 | int signP1 = (int)sign_of(p1 - xFormPt.fX); |
506 | bool includeP1 = true; |
507 | bool includeP2 = true; |
508 | |
509 | if (rowData.fScanlineXDirection == 1) { |
510 | if ((rowData.fQuadXDirection == -1 && segment.fPts[0].fY <= point.fY && |
511 | nearly_equal(segment.fP0T.fX, p1, segment.fNearlyZeroScaled, true)) || |
512 | (rowData.fQuadXDirection == 1 && segment.fPts[2].fY <= point.fY && |
513 | nearly_equal(segment.fP2T.fX, p1, segment.fNearlyZeroScaled, true))) { |
514 | includeP1 = false; |
515 | } |
516 | if ((rowData.fQuadXDirection == -1 && segment.fPts[2].fY <= point.fY && |
517 | nearly_equal(segment.fP2T.fX, p2, segment.fNearlyZeroScaled, true)) || |
518 | (rowData.fQuadXDirection == 1 && segment.fPts[0].fY <= point.fY && |
519 | nearly_equal(segment.fP0T.fX, p2, segment.fNearlyZeroScaled, true))) { |
520 | includeP2 = false; |
521 | } |
522 | } |
523 | |
524 | if (includeP1 && between_closed(p1, segment.fP0T.fX, segment.fP2T.fX, |
525 | segment.fNearlyZeroScaled, true)) { |
526 | side = (SegSide)(signP1 * rowData.fQuadXDirection); |
527 | } |
528 | if (includeP2 && between_closed(p2, segment.fP0T.fX, segment.fP2T.fX, |
529 | segment.fNearlyZeroScaled, true)) { |
530 | int signP2 = (int)sign_of(p2 - xFormPt.fX); |
531 | if (side == kNA_SegSide || signP2 == 1) { |
532 | side = (SegSide)(-signP2 * rowData.fQuadXDirection); |
533 | } |
534 | } |
535 | } else if (RowData::kTangentLine == rowData.fIntersectionType) { |
536 | // The scanline is the tangent line of current quadratic segment. |
537 | |
538 | const double p = rowData.fXAtIntersection1; |
539 | int signP = (int)sign_of(p - xFormPt.fX); |
540 | if (rowData.fScanlineXDirection == 1) { |
541 | // The path start or end at the tangent point. |
542 | if (segment.fPts[0].fY == point.fY) { |
543 | side = (SegSide)(signP); |
544 | } else if (segment.fPts[2].fY == point.fY) { |
545 | side = (SegSide)(-signP); |
546 | } |
547 | } |
548 | } |
549 | |
550 | return side; |
551 | } |
552 | |
553 | static float distance_to_segment(const SkPoint& point, |
554 | const PathSegment& segment, |
555 | const RowData& rowData, |
556 | SegSide* side) { |
557 | SkASSERT(side); |
558 | |
559 | const SkDPoint xformPt = segment.fXformMatrix.mapPoint(point); |
560 | |
561 | if (segment.fType == PathSegment::kLine) { |
562 | float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
563 | |
564 | if (between_closed(xformPt.fX, segment.fP0T.fX, segment.fP2T.fX)) { |
565 | result = (float)(xformPt.fY * xformPt.fY); |
566 | } else if (xformPt.fX < segment.fP0T.fX) { |
567 | result = (float)(xformPt.fX * xformPt.fX + xformPt.fY * xformPt.fY); |
568 | } else { |
569 | result = (float)((xformPt.fX - segment.fP2T.fX) * (xformPt.fX - segment.fP2T.fX) |
570 | + xformPt.fY * xformPt.fY); |
571 | } |
572 | |
573 | if (between_closed_open(point.fY, segment.fBoundingBox.fTop, |
574 | segment.fBoundingBox.fBottom)) { |
575 | *side = (SegSide)(int)sign_of(xformPt.fY); |
576 | } else { |
577 | *side = kNA_SegSide; |
578 | } |
579 | return result; |
580 | } else { |
581 | SkASSERT(segment.fType == PathSegment::kQuad); |
582 | |
583 | const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
584 | |
585 | float dist; |
586 | |
587 | if (between_closed(nearestPoint, segment.fP0T.fX, segment.fP2T.fX)) { |
588 | SkDPoint x = { nearestPoint, nearestPoint * nearestPoint }; |
589 | dist = (float)xformPt.distanceSquared(x); |
590 | } else { |
591 | const float distToB0T = (float)xformPt.distanceSquared(segment.fP0T); |
592 | const float distToB2T = (float)xformPt.distanceSquared(segment.fP2T); |
593 | |
594 | if (distToB0T < distToB2T) { |
595 | dist = distToB0T; |
596 | } else { |
597 | dist = distToB2T; |
598 | } |
599 | } |
600 | |
601 | if (between_closed_open(point.fY, segment.fBoundingBox.fTop, |
602 | segment.fBoundingBox.fBottom)) { |
603 | *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
604 | } else { |
605 | *side = kNA_SegSide; |
606 | } |
607 | |
608 | return (float)(dist * segment.fScalingFactorSqd); |
609 | } |
610 | } |
611 | |
612 | static void calculate_distance_field_data(PathSegmentArray* segments, |
613 | DFData* dataPtr, |
614 | int width, int height) { |
615 | int count = segments->count(); |
616 | // for each segment |
617 | for (int a = 0; a < count; ++a) { |
618 | PathSegment& segment = (*segments)[a]; |
619 | const SkRect& segBB = segment.fBoundingBox; |
620 | // get the bounding box, outset by distance field pad, and clip to total bounds |
621 | const SkRect& paddedBB = segBB.makeOutset(SK_DistanceFieldPad, SK_DistanceFieldPad); |
622 | int startColumn = (int)paddedBB.fLeft; |
623 | int endColumn = SkScalarCeilToInt(paddedBB.fRight); |
624 | |
625 | int startRow = (int)paddedBB.fTop; |
626 | int endRow = SkScalarCeilToInt(paddedBB.fBottom); |
627 | |
628 | SkASSERT((startColumn >= 0) && "StartColumn < 0!" ); |
629 | SkASSERT((endColumn <= width) && "endColumn > width!" ); |
630 | SkASSERT((startRow >= 0) && "StartRow < 0!" ); |
631 | SkASSERT((endRow <= height) && "EndRow > height!" ); |
632 | |
633 | // Clip inside the distance field to avoid overflow |
634 | startColumn = std::max(startColumn, 0); |
635 | endColumn = std::min(endColumn, width); |
636 | startRow = std::max(startRow, 0); |
637 | endRow = std::min(endRow, height); |
638 | |
639 | // for each row in the padded bounding box |
640 | for (int row = startRow; row < endRow; ++row) { |
641 | SegSide prevSide = kNA_SegSide; // track side for winding count |
642 | const float pY = row + 0.5f; // offset by 1/2? why? |
643 | RowData rowData; |
644 | |
645 | const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); |
646 | const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); |
647 | |
648 | // if this is a row inside the original segment bounding box |
649 | if (between_closed_open(pY, segBB.fTop, segBB.fBottom)) { |
650 | // compute intersections with the row |
651 | precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
652 | } |
653 | |
654 | // adjust distances and windings in each column based on the row calculation |
655 | for (int col = startColumn; col < endColumn; ++col) { |
656 | int idx = (row * width) + col; |
657 | |
658 | const float pX = col + 0.5f; |
659 | const SkPoint point = SkPoint::Make(pX, pY); |
660 | |
661 | const float distSq = dataPtr[idx].fDistSq; |
662 | |
663 | // Optimization for not calculating some points. |
664 | int dilation = distSq < 1.5f * 1.5f ? 1 : |
665 | distSq < 2.5f * 2.5f ? 2 : |
666 | distSq < 3.5f * 3.5f ? 3 : SK_DistanceFieldPad; |
667 | if (dilation < SK_DistanceFieldPad && |
668 | !segBB.roundOut().makeOutset(dilation, dilation).contains(col, row)) { |
669 | continue; |
670 | } |
671 | |
672 | SegSide side = kNA_SegSide; |
673 | int deltaWindingScore = 0; |
674 | float currDistSq = distance_to_segment(point, segment, rowData, &side); |
675 | if (prevSide == kLeft_SegSide && side == kRight_SegSide) { |
676 | deltaWindingScore = -1; |
677 | } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { |
678 | deltaWindingScore = 1; |
679 | } |
680 | |
681 | prevSide = side; |
682 | |
683 | if (currDistSq < distSq) { |
684 | dataPtr[idx].fDistSq = currDistSq; |
685 | } |
686 | |
687 | dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
688 | } |
689 | } |
690 | } |
691 | } |
692 | |
693 | template <int distanceMagnitude> |
694 | static unsigned char pack_distance_field_val(float dist) { |
695 | // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
696 | // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
697 | // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
698 | dist = SkTPin<float>(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
699 | |
700 | // Scale into the positive range for unsigned distance. |
701 | dist += distanceMagnitude; |
702 | |
703 | // Scale into unsigned char range. |
704 | // Round to place negative and positive values as equally as possible around 128 |
705 | // (which represents zero). |
706 | return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); |
707 | } |
708 | |
709 | bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
710 | const SkPath& path, const SkMatrix& drawMatrix, |
711 | int width, int height, size_t rowBytes) { |
712 | SkASSERT(distanceField); |
713 | |
714 | // transform to device space, then: |
715 | // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) |
716 | SkMatrix dfMatrix(drawMatrix); |
717 | dfMatrix.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
718 | |
719 | #ifdef SK_DEBUG |
720 | SkPath xformPath; |
721 | path.transform(dfMatrix, &xformPath); |
722 | SkIRect pathBounds = xformPath.getBounds().roundOut(); |
723 | SkIRect expectPathBounds = SkIRect::MakeWH(width, height); |
724 | #endif |
725 | |
726 | SkASSERT(expectPathBounds.isEmpty() || |
727 | expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop)); |
728 | SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
729 | expectPathBounds.contains(pathBounds)); |
730 | |
731 | // TODO: restore when Simplify() is working correctly |
732 | // see https://bugs.chromium.org/p/skia/issues/detail?id=9732 |
733 | // SkPath simplifiedPath; |
734 | SkPath workingPath; |
735 | // if (Simplify(path, &simplifiedPath)) { |
736 | // workingPath = simplifiedPath; |
737 | // } else { |
738 | workingPath = path; |
739 | // } |
740 | // only even-odd and inverse even-odd supported |
741 | if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { |
742 | return false; |
743 | } |
744 | |
745 | // transform to device space + SDF offset |
746 | workingPath.transform(dfMatrix); |
747 | |
748 | SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut()); |
749 | SkASSERT(expectPathBounds.isEmpty() || |
750 | expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop)); |
751 | SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
752 | expectPathBounds.contains(pathBounds)); |
753 | |
754 | // create temp data |
755 | size_t dataSize = width * height * sizeof(DFData); |
756 | SkAutoSMalloc<1024> dfStorage(dataSize); |
757 | DFData* dataPtr = (DFData*) dfStorage.get(); |
758 | |
759 | // create initial distance data (init to "far away") |
760 | init_distances(dataPtr, width * height); |
761 | |
762 | // polygonize path into line and quad segments |
763 | SkPathEdgeIter iter(workingPath); |
764 | SkSTArray<15, PathSegment, true> segments; |
765 | while (auto e = iter.next()) { |
766 | switch (e.fEdge) { |
767 | case SkPathEdgeIter::Edge::kLine: { |
768 | add_line(e.fPts, &segments); |
769 | break; |
770 | } |
771 | case SkPathEdgeIter::Edge::kQuad: |
772 | add_quad(e.fPts, &segments); |
773 | break; |
774 | case SkPathEdgeIter::Edge::kConic: { |
775 | SkScalar weight = iter.conicWeight(); |
776 | SkAutoConicToQuads converter; |
777 | const SkPoint* quadPts = converter.computeQuads(e.fPts, weight, kConicTolerance); |
778 | for (int i = 0; i < converter.countQuads(); ++i) { |
779 | add_quad(quadPts + 2*i, &segments); |
780 | } |
781 | break; |
782 | } |
783 | case SkPathEdgeIter::Edge::kCubic: { |
784 | add_cubic(e.fPts, &segments); |
785 | break; |
786 | } |
787 | } |
788 | } |
789 | |
790 | // do all the work |
791 | calculate_distance_field_data(&segments, dataPtr, width, height); |
792 | |
793 | // adjust distance based on winding |
794 | for (int row = 0; row < height; ++row) { |
795 | int windingNumber = 0; // Winding number start from zero for each scanline |
796 | for (int col = 0; col < width; ++col) { |
797 | int idx = (row * width) + col; |
798 | windingNumber += dataPtr[idx].fDeltaWindingScore; |
799 | |
800 | enum DFSign { |
801 | kInside = -1, |
802 | kOutside = 1 |
803 | } dfSign; |
804 | |
805 | switch (workingPath.getFillType()) { |
806 | case SkPathFillType::kWinding: |
807 | dfSign = windingNumber ? kInside : kOutside; |
808 | break; |
809 | case SkPathFillType::kInverseWinding: |
810 | dfSign = windingNumber ? kOutside : kInside; |
811 | break; |
812 | case SkPathFillType::kEvenOdd: |
813 | dfSign = (windingNumber % 2) ? kInside : kOutside; |
814 | break; |
815 | case SkPathFillType::kInverseEvenOdd: |
816 | dfSign = (windingNumber % 2) ? kOutside : kInside; |
817 | break; |
818 | } |
819 | |
820 | // The winding number at the end of a scanline should be zero. |
821 | SkASSERT(((col != width - 1) || (windingNumber == 0)) && |
822 | "Winding number should be zero at the end of a scan line." ); |
823 | // Fallback to use SkPath::contains to determine the sign of pixel in release build. |
824 | if (col == width - 1 && windingNumber != 0) { |
825 | for (int col = 0; col < width; ++col) { |
826 | int idx = (row * width) + col; |
827 | dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; |
828 | const float miniDist = sqrt(dataPtr[idx].fDistSq); |
829 | const float dist = dfSign * miniDist; |
830 | |
831 | unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
832 | |
833 | distanceField[(row * rowBytes) + col] = pixelVal; |
834 | } |
835 | continue; |
836 | } |
837 | |
838 | const float miniDist = sqrt(dataPtr[idx].fDistSq); |
839 | const float dist = dfSign * miniDist; |
840 | |
841 | unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
842 | |
843 | distanceField[(row * rowBytes) + col] = pixelVal; |
844 | } |
845 | } |
846 | return true; |
847 | } |
848 | |