| 1 | /* |
| 2 | * Copyright 2006-2012 The Android Open Source Project |
| 3 | * Copyright 2012 Mozilla Foundation |
| 4 | * |
| 5 | * Use of this source code is governed by a BSD-style license that can be |
| 6 | * found in the LICENSE file. |
| 7 | */ |
| 8 | |
| 9 | #include "include/core/SkBitmap.h" |
| 10 | #include "include/core/SkCanvas.h" |
| 11 | #include "include/core/SkColor.h" |
| 12 | #include "include/core/SkPath.h" |
| 13 | #include "include/private/SkColorData.h" |
| 14 | #include "include/private/SkTo.h" |
| 15 | #include "src/core/SkFDot6.h" |
| 16 | #include "src/ports/SkFontHost_FreeType_common.h" |
| 17 | |
| 18 | #include <utility> |
| 19 | |
| 20 | #include <ft2build.h> |
| 21 | #include FT_FREETYPE_H |
| 22 | #include FT_BITMAP_H |
| 23 | #ifdef FT_COLOR_H |
| 24 | # include FT_COLOR_H |
| 25 | #endif |
| 26 | #include FT_IMAGE_H |
| 27 | #include FT_OUTLINE_H |
| 28 | // In the past, FT_GlyphSlot_Own_Bitmap was defined in this header file. |
| 29 | #include FT_SYNTHESIS_H |
| 30 | |
| 31 | // FT_LOAD_COLOR and the corresponding FT_Pixel_Mode::FT_PIXEL_MODE_BGRA |
| 32 | // were introduced in FreeType 2.5.0. |
| 33 | // The following may be removed once FreeType 2.5.0 is required to build. |
| 34 | #ifndef FT_LOAD_COLOR |
| 35 | # define FT_LOAD_COLOR ( 1L << 20 ) |
| 36 | # define FT_PIXEL_MODE_BGRA 7 |
| 37 | #endif |
| 38 | |
| 39 | #ifdef SK_DEBUG |
| 40 | const char* SkTraceFtrGetError(int e) { |
| 41 | switch ((FT_Error)e) { |
| 42 | #undef FTERRORS_H_ |
| 43 | #define FT_ERRORDEF( e, v, s ) case v: return s; |
| 44 | #define FT_ERROR_START_LIST |
| 45 | #define FT_ERROR_END_LIST |
| 46 | #include FT_ERRORS_H |
| 47 | #undef FT_ERRORDEF |
| 48 | #undef FT_ERROR_START_LIST |
| 49 | #undef FT_ERROR_END_LIST |
| 50 | default: return "" ; |
| 51 | } |
| 52 | } |
| 53 | #endif // SK_DEBUG |
| 54 | |
| 55 | namespace { |
| 56 | |
| 57 | FT_Pixel_Mode compute_pixel_mode(SkMask::Format format) { |
| 58 | switch (format) { |
| 59 | case SkMask::kBW_Format: |
| 60 | return FT_PIXEL_MODE_MONO; |
| 61 | case SkMask::kA8_Format: |
| 62 | default: |
| 63 | return FT_PIXEL_MODE_GRAY; |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | /////////////////////////////////////////////////////////////////////////////// |
| 68 | |
| 69 | uint16_t packTriple(U8CPU r, U8CPU g, U8CPU b) { |
| 70 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 71 | r = std::max(r, (U8CPU)0x40); |
| 72 | g = std::max(g, (U8CPU)0x40); |
| 73 | b = std::max(b, (U8CPU)0x40); |
| 74 | #endif |
| 75 | return SkPack888ToRGB16(r, g, b); |
| 76 | } |
| 77 | |
| 78 | uint16_t grayToRGB16(U8CPU gray) { |
| 79 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 80 | gray = std::max(gray, (U8CPU)0x40); |
| 81 | #endif |
| 82 | return SkPack888ToRGB16(gray, gray, gray); |
| 83 | } |
| 84 | |
| 85 | int bittst(const uint8_t data[], int bitOffset) { |
| 86 | SkASSERT(bitOffset >= 0); |
| 87 | int lowBit = data[bitOffset >> 3] >> (~bitOffset & 7); |
| 88 | return lowBit & 1; |
| 89 | } |
| 90 | |
| 91 | /** |
| 92 | * Copies a FT_Bitmap into an SkMask with the same dimensions. |
| 93 | * |
| 94 | * FT_PIXEL_MODE_MONO |
| 95 | * FT_PIXEL_MODE_GRAY |
| 96 | * FT_PIXEL_MODE_LCD |
| 97 | * FT_PIXEL_MODE_LCD_V |
| 98 | */ |
| 99 | template<bool APPLY_PREBLEND> |
| 100 | void copyFT2LCD16(const FT_Bitmap& bitmap, const SkMask& mask, int lcdIsBGR, |
| 101 | const uint8_t* tableR, const uint8_t* tableG, const uint8_t* tableB) |
| 102 | { |
| 103 | SkASSERT(SkMask::kLCD16_Format == mask.fFormat); |
| 104 | if (FT_PIXEL_MODE_LCD != bitmap.pixel_mode) { |
| 105 | SkASSERT(mask.fBounds.width() == static_cast<int>(bitmap.width)); |
| 106 | } |
| 107 | if (FT_PIXEL_MODE_LCD_V != bitmap.pixel_mode) { |
| 108 | SkASSERT(mask.fBounds.height() == static_cast<int>(bitmap.rows)); |
| 109 | } |
| 110 | |
| 111 | const uint8_t* src = bitmap.buffer; |
| 112 | uint16_t* dst = reinterpret_cast<uint16_t*>(mask.fImage); |
| 113 | const size_t dstRB = mask.fRowBytes; |
| 114 | |
| 115 | const int width = mask.fBounds.width(); |
| 116 | const int height = mask.fBounds.height(); |
| 117 | |
| 118 | switch (bitmap.pixel_mode) { |
| 119 | case FT_PIXEL_MODE_MONO: |
| 120 | for (int y = height; y --> 0;) { |
| 121 | for (int x = 0; x < width; ++x) { |
| 122 | dst[x] = -bittst(src, x); |
| 123 | } |
| 124 | dst = (uint16_t*)((char*)dst + dstRB); |
| 125 | src += bitmap.pitch; |
| 126 | } |
| 127 | break; |
| 128 | case FT_PIXEL_MODE_GRAY: |
| 129 | for (int y = height; y --> 0;) { |
| 130 | for (int x = 0; x < width; ++x) { |
| 131 | dst[x] = grayToRGB16(src[x]); |
| 132 | } |
| 133 | dst = (uint16_t*)((char*)dst + dstRB); |
| 134 | src += bitmap.pitch; |
| 135 | } |
| 136 | break; |
| 137 | case FT_PIXEL_MODE_LCD: |
| 138 | SkASSERT(3 * mask.fBounds.width() == static_cast<int>(bitmap.width)); |
| 139 | for (int y = height; y --> 0;) { |
| 140 | const uint8_t* triple = src; |
| 141 | if (lcdIsBGR) { |
| 142 | for (int x = 0; x < width; x++) { |
| 143 | dst[x] = packTriple(sk_apply_lut_if<APPLY_PREBLEND>(triple[2], tableR), |
| 144 | sk_apply_lut_if<APPLY_PREBLEND>(triple[1], tableG), |
| 145 | sk_apply_lut_if<APPLY_PREBLEND>(triple[0], tableB)); |
| 146 | triple += 3; |
| 147 | } |
| 148 | } else { |
| 149 | for (int x = 0; x < width; x++) { |
| 150 | dst[x] = packTriple(sk_apply_lut_if<APPLY_PREBLEND>(triple[0], tableR), |
| 151 | sk_apply_lut_if<APPLY_PREBLEND>(triple[1], tableG), |
| 152 | sk_apply_lut_if<APPLY_PREBLEND>(triple[2], tableB)); |
| 153 | triple += 3; |
| 154 | } |
| 155 | } |
| 156 | src += bitmap.pitch; |
| 157 | dst = (uint16_t*)((char*)dst + dstRB); |
| 158 | } |
| 159 | break; |
| 160 | case FT_PIXEL_MODE_LCD_V: |
| 161 | SkASSERT(3 * mask.fBounds.height() == static_cast<int>(bitmap.rows)); |
| 162 | for (int y = height; y --> 0;) { |
| 163 | const uint8_t* srcR = src; |
| 164 | const uint8_t* srcG = srcR + bitmap.pitch; |
| 165 | const uint8_t* srcB = srcG + bitmap.pitch; |
| 166 | if (lcdIsBGR) { |
| 167 | using std::swap; |
| 168 | swap(srcR, srcB); |
| 169 | } |
| 170 | for (int x = 0; x < width; x++) { |
| 171 | dst[x] = packTriple(sk_apply_lut_if<APPLY_PREBLEND>(*srcR++, tableR), |
| 172 | sk_apply_lut_if<APPLY_PREBLEND>(*srcG++, tableG), |
| 173 | sk_apply_lut_if<APPLY_PREBLEND>(*srcB++, tableB)); |
| 174 | } |
| 175 | src += 3 * bitmap.pitch; |
| 176 | dst = (uint16_t*)((char*)dst + dstRB); |
| 177 | } |
| 178 | break; |
| 179 | default: |
| 180 | SkDEBUGF("FT_Pixel_Mode %d" , bitmap.pixel_mode); |
| 181 | SkDEBUGFAIL("unsupported FT_Pixel_Mode for LCD16" ); |
| 182 | break; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * Copies a FT_Bitmap into an SkMask with the same dimensions. |
| 188 | * |
| 189 | * Yes, No, Never Requested, Never Produced |
| 190 | * |
| 191 | * kBW kA8 k3D kARGB32 kLCD16 |
| 192 | * FT_PIXEL_MODE_MONO Y Y NR N Y |
| 193 | * FT_PIXEL_MODE_GRAY N Y NR N Y |
| 194 | * FT_PIXEL_MODE_GRAY2 NP NP NR NP NP |
| 195 | * FT_PIXEL_MODE_GRAY4 NP NP NR NP NP |
| 196 | * FT_PIXEL_MODE_LCD NP NP NR NP NP |
| 197 | * FT_PIXEL_MODE_LCD_V NP NP NR NP NP |
| 198 | * FT_PIXEL_MODE_BGRA N N NR Y N |
| 199 | * |
| 200 | * TODO: All of these N need to be Y or otherwise ruled out. |
| 201 | */ |
| 202 | void copyFTBitmap(const FT_Bitmap& srcFTBitmap, SkMask& dstMask) { |
| 203 | SkASSERTF(dstMask.fBounds.width() == static_cast<int>(srcFTBitmap.width), |
| 204 | "dstMask.fBounds.width() = %d\n" |
| 205 | "static_cast<int>(srcFTBitmap.width) = %d" , |
| 206 | dstMask.fBounds.width(), |
| 207 | static_cast<int>(srcFTBitmap.width) |
| 208 | ); |
| 209 | SkASSERTF(dstMask.fBounds.height() == static_cast<int>(srcFTBitmap.rows), |
| 210 | "dstMask.fBounds.height() = %d\n" |
| 211 | "static_cast<int>(srcFTBitmap.rows) = %d" , |
| 212 | dstMask.fBounds.height(), |
| 213 | static_cast<int>(srcFTBitmap.rows) |
| 214 | ); |
| 215 | |
| 216 | const uint8_t* src = reinterpret_cast<const uint8_t*>(srcFTBitmap.buffer); |
| 217 | const FT_Pixel_Mode srcFormat = static_cast<FT_Pixel_Mode>(srcFTBitmap.pixel_mode); |
| 218 | // FT_Bitmap::pitch is an int and allowed to be negative. |
| 219 | const int srcPitch = srcFTBitmap.pitch; |
| 220 | const size_t srcRowBytes = SkTAbs(srcPitch); |
| 221 | |
| 222 | uint8_t* dst = dstMask.fImage; |
| 223 | const SkMask::Format dstFormat = static_cast<SkMask::Format>(dstMask.fFormat); |
| 224 | const size_t dstRowBytes = dstMask.fRowBytes; |
| 225 | |
| 226 | const size_t width = srcFTBitmap.width; |
| 227 | const size_t height = srcFTBitmap.rows; |
| 228 | |
| 229 | if (SkMask::kLCD16_Format == dstFormat) { |
| 230 | copyFT2LCD16<false>(srcFTBitmap, dstMask, false, nullptr, nullptr, nullptr); |
| 231 | return; |
| 232 | } |
| 233 | |
| 234 | if ((FT_PIXEL_MODE_MONO == srcFormat && SkMask::kBW_Format == dstFormat) || |
| 235 | (FT_PIXEL_MODE_GRAY == srcFormat && SkMask::kA8_Format == dstFormat)) |
| 236 | { |
| 237 | size_t commonRowBytes = std::min(srcRowBytes, dstRowBytes); |
| 238 | for (size_t y = height; y --> 0;) { |
| 239 | memcpy(dst, src, commonRowBytes); |
| 240 | src += srcPitch; |
| 241 | dst += dstRowBytes; |
| 242 | } |
| 243 | } else if (FT_PIXEL_MODE_MONO == srcFormat && SkMask::kA8_Format == dstFormat) { |
| 244 | for (size_t y = height; y --> 0;) { |
| 245 | uint8_t byte = 0; |
| 246 | int bits = 0; |
| 247 | const uint8_t* src_row = src; |
| 248 | uint8_t* dst_row = dst; |
| 249 | for (size_t x = width; x --> 0;) { |
| 250 | if (0 == bits) { |
| 251 | byte = *src_row++; |
| 252 | bits = 8; |
| 253 | } |
| 254 | *dst_row++ = byte & 0x80 ? 0xff : 0x00; |
| 255 | bits--; |
| 256 | byte <<= 1; |
| 257 | } |
| 258 | src += srcPitch; |
| 259 | dst += dstRowBytes; |
| 260 | } |
| 261 | } else if (FT_PIXEL_MODE_BGRA == srcFormat && SkMask::kARGB32_Format == dstFormat) { |
| 262 | // FT_PIXEL_MODE_BGRA is pre-multiplied. |
| 263 | for (size_t y = height; y --> 0;) { |
| 264 | const uint8_t* src_row = src; |
| 265 | SkPMColor* dst_row = reinterpret_cast<SkPMColor*>(dst); |
| 266 | for (size_t x = 0; x < width; ++x) { |
| 267 | uint8_t b = *src_row++; |
| 268 | uint8_t g = *src_row++; |
| 269 | uint8_t r = *src_row++; |
| 270 | uint8_t a = *src_row++; |
| 271 | *dst_row++ = SkPackARGB32(a, r, g, b); |
| 272 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 273 | *(dst_row-1) = SkFourByteInterp256(*(dst_row-1), SK_ColorWHITE, 0x40); |
| 274 | #endif |
| 275 | } |
| 276 | src += srcPitch; |
| 277 | dst += dstRowBytes; |
| 278 | } |
| 279 | } else { |
| 280 | SkDEBUGF("FT_Pixel_Mode %d, SkMask::Format %d\n" , srcFormat, dstFormat); |
| 281 | SkDEBUGFAIL("unsupported combination of FT_Pixel_Mode and SkMask::Format" ); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | inline int convert_8_to_1(unsigned byte) { |
| 286 | SkASSERT(byte <= 0xFF); |
| 287 | // Arbitrary decision that making the cutoff at 1/4 instead of 1/2 in general looks better. |
| 288 | return (byte >> 6) != 0; |
| 289 | } |
| 290 | |
| 291 | uint8_t pack_8_to_1(const uint8_t alpha[8]) { |
| 292 | unsigned bits = 0; |
| 293 | for (int i = 0; i < 8; ++i) { |
| 294 | bits <<= 1; |
| 295 | bits |= convert_8_to_1(alpha[i]); |
| 296 | } |
| 297 | return SkToU8(bits); |
| 298 | } |
| 299 | |
| 300 | void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) { |
| 301 | const int height = mask.fBounds.height(); |
| 302 | const int width = mask.fBounds.width(); |
| 303 | const int octs = width >> 3; |
| 304 | const int leftOverBits = width & 7; |
| 305 | |
| 306 | uint8_t* dst = mask.fImage; |
| 307 | const int dstPad = mask.fRowBytes - SkAlign8(width)/8; |
| 308 | SkASSERT(dstPad >= 0); |
| 309 | |
| 310 | const int srcPad = srcRB - width; |
| 311 | SkASSERT(srcPad >= 0); |
| 312 | |
| 313 | for (int y = 0; y < height; ++y) { |
| 314 | for (int i = 0; i < octs; ++i) { |
| 315 | *dst++ = pack_8_to_1(src); |
| 316 | src += 8; |
| 317 | } |
| 318 | if (leftOverBits > 0) { |
| 319 | unsigned bits = 0; |
| 320 | int shift = 7; |
| 321 | for (int i = 0; i < leftOverBits; ++i, --shift) { |
| 322 | bits |= convert_8_to_1(*src++) << shift; |
| 323 | } |
| 324 | *dst++ = bits; |
| 325 | } |
| 326 | src += srcPad; |
| 327 | dst += dstPad; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | inline SkMask::Format SkMaskFormat_for_SkColorType(SkColorType colorType) { |
| 332 | switch (colorType) { |
| 333 | case kAlpha_8_SkColorType: |
| 334 | return SkMask::kA8_Format; |
| 335 | case kN32_SkColorType: |
| 336 | return SkMask::kARGB32_Format; |
| 337 | default: |
| 338 | SkDEBUGFAIL("unsupported SkBitmap::Config" ); |
| 339 | return SkMask::kA8_Format; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | inline SkColorType SkColorType_for_FTPixelMode(FT_Pixel_Mode pixel_mode) { |
| 344 | switch (pixel_mode) { |
| 345 | case FT_PIXEL_MODE_MONO: |
| 346 | case FT_PIXEL_MODE_GRAY: |
| 347 | return kAlpha_8_SkColorType; |
| 348 | case FT_PIXEL_MODE_BGRA: |
| 349 | return kN32_SkColorType; |
| 350 | default: |
| 351 | SkDEBUGFAIL("unsupported FT_PIXEL_MODE" ); |
| 352 | return kAlpha_8_SkColorType; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | inline SkColorType SkColorType_for_SkMaskFormat(SkMask::Format format) { |
| 357 | switch (format) { |
| 358 | case SkMask::kBW_Format: |
| 359 | case SkMask::kA8_Format: |
| 360 | case SkMask::kLCD16_Format: |
| 361 | return kAlpha_8_SkColorType; |
| 362 | case SkMask::kARGB32_Format: |
| 363 | return kN32_SkColorType; |
| 364 | default: |
| 365 | SkDEBUGFAIL("unsupported destination SkBitmap::Config" ); |
| 366 | return kAlpha_8_SkColorType; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | } // namespace |
| 371 | |
| 372 | void SkScalerContext_FreeType_Base::generateGlyphImage( |
| 373 | FT_Face face, |
| 374 | const SkGlyph& glyph, |
| 375 | const SkMatrix& bitmapTransform) |
| 376 | { |
| 377 | const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); |
| 378 | const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); |
| 379 | |
| 380 | switch ( face->glyph->format ) { |
| 381 | case FT_GLYPH_FORMAT_OUTLINE: { |
| 382 | FT_Outline* outline = &face->glyph->outline; |
| 383 | |
| 384 | int dx = 0, dy = 0; |
| 385 | if (this->isSubpixel()) { |
| 386 | dx = SkFixedToFDot6(glyph.getSubXFixed()); |
| 387 | dy = SkFixedToFDot6(glyph.getSubYFixed()); |
| 388 | // negate dy since freetype-y-goes-up and skia-y-goes-down |
| 389 | dy = -dy; |
| 390 | } |
| 391 | |
| 392 | memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); |
| 393 | |
| 394 | #ifdef FT_COLOR_H |
| 395 | if (SkMask::kARGB32_Format == glyph.fMaskFormat) { |
| 396 | SkBitmap dstBitmap; |
| 397 | // TODO: mark this as sRGB when the blits will be sRGB. |
| 398 | dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight, |
| 399 | kN32_SkColorType, |
| 400 | kPremul_SkAlphaType), |
| 401 | glyph.rowBytes()); |
| 402 | dstBitmap.setPixels(glyph.fImage); |
| 403 | |
| 404 | // Scale unscaledBitmap into dstBitmap. |
| 405 | SkCanvas canvas(dstBitmap); |
| 406 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 407 | canvas.clear(0x33FF0000); |
| 408 | #else |
| 409 | canvas.clear(SK_ColorTRANSPARENT); |
| 410 | #endif |
| 411 | canvas.translate(-glyph.fLeft, -glyph.fTop); |
| 412 | |
| 413 | if (this->isSubpixel()) { |
| 414 | canvas.translate(SkFixedToScalar(glyph.getSubXFixed()), |
| 415 | SkFixedToScalar(glyph.getSubYFixed())); |
| 416 | } |
| 417 | |
| 418 | SkPaint paint; |
| 419 | paint.setAntiAlias(true); |
| 420 | |
| 421 | FT_Color *palette; |
| 422 | FT_Error err = FT_Palette_Select(face, 0, &palette); |
| 423 | if (err) { |
| 424 | SK_TRACEFTR(err, "Could not get palette from %s fontFace." , face->family_name); |
| 425 | return; |
| 426 | } |
| 427 | FT_LayerIterator layerIterator; |
| 428 | layerIterator.p = NULL; |
| 429 | FT_Bool haveLayers = false; |
| 430 | FT_UInt layerGlyphIndex; |
| 431 | FT_UInt layerColorIndex; |
| 432 | |
| 433 | while (FT_Get_Color_Glyph_Layer(face, glyph.getGlyphID(), &layerGlyphIndex, |
| 434 | &layerColorIndex, |
| 435 | &layerIterator)) { |
| 436 | haveLayers = true; |
| 437 | if (layerColorIndex == 0xFFFF) { |
| 438 | paint.setColor(SK_ColorBLACK); |
| 439 | } else { |
| 440 | SkColor color = SkColorSetARGB(palette[layerColorIndex].alpha, |
| 441 | palette[layerColorIndex].red, |
| 442 | palette[layerColorIndex].green, |
| 443 | palette[layerColorIndex].blue); |
| 444 | paint.setColor(color); |
| 445 | } |
| 446 | SkPath path; |
| 447 | if (this->generateFacePath(face, layerGlyphIndex, &path)) { |
| 448 | canvas.drawPath(path, paint); |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | if (!haveLayers) { |
| 453 | SK_TRACEFTR(err, "Could not get layers from %s fontFace." , face->family_name); |
| 454 | return; |
| 455 | } |
| 456 | } else |
| 457 | #endif |
| 458 | if (SkMask::kLCD16_Format == glyph.fMaskFormat) { |
| 459 | FT_Outline_Translate(outline, dx, dy); |
| 460 | FT_Error err = FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : |
| 461 | FT_RENDER_MODE_LCD); |
| 462 | if (err) { |
| 463 | SK_TRACEFTR(err, "Could not render glyph %x." , face->glyph); |
| 464 | return; |
| 465 | } |
| 466 | |
| 467 | SkMask mask = glyph.mask(); |
| 468 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 469 | memset(mask.fImage, 0x80, mask.fBounds.height() * mask.fRowBytes); |
| 470 | #endif |
| 471 | FT_GlyphSlotRec& ftGlyph = *face->glyph; |
| 472 | |
| 473 | if (!SkIRect::Intersects(mask.fBounds, |
| 474 | SkIRect::MakeXYWH( ftGlyph.bitmap_left, |
| 475 | -ftGlyph.bitmap_top, |
| 476 | ftGlyph.bitmap.width, |
| 477 | ftGlyph.bitmap.rows))) |
| 478 | { |
| 479 | return; |
| 480 | } |
| 481 | |
| 482 | // If the FT_Bitmap extent is larger, discard bits of the bitmap outside the mask. |
| 483 | // If the SkMask extent is larger, shrink mask to fit bitmap (clearing discarded). |
| 484 | unsigned char* origBuffer = ftGlyph.bitmap.buffer; |
| 485 | // First align the top left (origin). |
| 486 | if (-ftGlyph.bitmap_top < mask.fBounds.fTop) { |
| 487 | int32_t topDiff = mask.fBounds.fTop - (-ftGlyph.bitmap_top); |
| 488 | ftGlyph.bitmap.buffer += ftGlyph.bitmap.pitch * topDiff; |
| 489 | ftGlyph.bitmap.rows -= topDiff; |
| 490 | ftGlyph.bitmap_top = -mask.fBounds.fTop; |
| 491 | } |
| 492 | if (ftGlyph.bitmap_left < mask.fBounds.fLeft) { |
| 493 | int32_t leftDiff = mask.fBounds.fLeft - ftGlyph.bitmap_left; |
| 494 | ftGlyph.bitmap.buffer += leftDiff; |
| 495 | ftGlyph.bitmap.width -= leftDiff; |
| 496 | ftGlyph.bitmap_left = mask.fBounds.fLeft; |
| 497 | } |
| 498 | if (mask.fBounds.fTop < -ftGlyph.bitmap_top) { |
| 499 | mask.fImage += mask.fRowBytes * (-ftGlyph.bitmap_top - mask.fBounds.fTop); |
| 500 | mask.fBounds.fTop = -ftGlyph.bitmap_top; |
| 501 | } |
| 502 | if (mask.fBounds.fLeft < ftGlyph.bitmap_left) { |
| 503 | mask.fImage += sizeof(uint16_t) * (ftGlyph.bitmap_left - mask.fBounds.fLeft); |
| 504 | mask.fBounds.fLeft = ftGlyph.bitmap_left; |
| 505 | } |
| 506 | // Origins aligned, clean up the width and height. |
| 507 | int ftVertScale = (doVert ? 3 : 1); |
| 508 | int ftHoriScale = (doVert ? 1 : 3); |
| 509 | if (mask.fBounds.height() * ftVertScale < SkToInt(ftGlyph.bitmap.rows)) { |
| 510 | ftGlyph.bitmap.rows = mask.fBounds.height() * ftVertScale; |
| 511 | } |
| 512 | if (mask.fBounds.width() * ftHoriScale < SkToInt(ftGlyph.bitmap.width)) { |
| 513 | ftGlyph.bitmap.width = mask.fBounds.width() * ftHoriScale; |
| 514 | } |
| 515 | if (SkToInt(ftGlyph.bitmap.rows) < mask.fBounds.height() * ftVertScale) { |
| 516 | mask.fBounds.fBottom = mask.fBounds.fTop + ftGlyph.bitmap.rows / ftVertScale; |
| 517 | } |
| 518 | if (SkToInt(ftGlyph.bitmap.width) < mask.fBounds.width() * ftHoriScale) { |
| 519 | mask.fBounds.fRight = mask.fBounds.fLeft + ftGlyph.bitmap.width / ftHoriScale; |
| 520 | } |
| 521 | if (fPreBlend.isApplicable()) { |
| 522 | copyFT2LCD16<true>(ftGlyph.bitmap, mask, doBGR, |
| 523 | fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); |
| 524 | } else { |
| 525 | copyFT2LCD16<false>(ftGlyph.bitmap, mask, doBGR, |
| 526 | fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); |
| 527 | } |
| 528 | // Restore the buffer pointer so FreeType can properly free it. |
| 529 | ftGlyph.bitmap.buffer = origBuffer; |
| 530 | } else { |
| 531 | FT_BBox bbox; |
| 532 | FT_Bitmap target; |
| 533 | FT_Outline_Get_CBox(outline, &bbox); |
| 534 | /* |
| 535 | what we really want to do for subpixel is |
| 536 | offset(dx, dy) |
| 537 | compute_bounds |
| 538 | offset(bbox & !63) |
| 539 | but that is two calls to offset, so we do the following, which |
| 540 | achieves the same thing with only one offset call. |
| 541 | */ |
| 542 | FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63), |
| 543 | dy - ((bbox.yMin + dy) & ~63)); |
| 544 | |
| 545 | target.width = glyph.fWidth; |
| 546 | target.rows = glyph.fHeight; |
| 547 | target.pitch = glyph.rowBytes(); |
| 548 | target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage); |
| 549 | target.pixel_mode = compute_pixel_mode( (SkMask::Format)glyph.fMaskFormat); |
| 550 | target.num_grays = 256; |
| 551 | |
| 552 | FT_Outline_Get_Bitmap(face->glyph->library, outline, &target); |
| 553 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 554 | for (int y = 0; y < glyph.fHeight; ++y) { |
| 555 | for (int x = 0; x < glyph.fWidth; ++x) { |
| 556 | uint8_t& a = ((uint8_t*)glyph.fImage)[(glyph.rowBytes() * y) + x]; |
| 557 | a = std::max<uint8_t>(a, 0x20); |
| 558 | } |
| 559 | } |
| 560 | #endif |
| 561 | } |
| 562 | } break; |
| 563 | |
| 564 | case FT_GLYPH_FORMAT_BITMAP: { |
| 565 | FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode); |
| 566 | SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); |
| 567 | |
| 568 | // Assume that the other formats do not exist. |
| 569 | SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode || |
| 570 | FT_PIXEL_MODE_GRAY == pixel_mode || |
| 571 | FT_PIXEL_MODE_BGRA == pixel_mode); |
| 572 | |
| 573 | // These are the only formats this ScalerContext should request. |
| 574 | SkASSERT(SkMask::kBW_Format == maskFormat || |
| 575 | SkMask::kA8_Format == maskFormat || |
| 576 | SkMask::kARGB32_Format == maskFormat || |
| 577 | SkMask::kLCD16_Format == maskFormat); |
| 578 | |
| 579 | // If no scaling needed, directly copy glyph bitmap. |
| 580 | if (bitmapTransform.isIdentity()) { |
| 581 | SkMask dstMask = glyph.mask(); |
| 582 | copyFTBitmap(face->glyph->bitmap, dstMask); |
| 583 | break; |
| 584 | } |
| 585 | |
| 586 | // Otherwise, scale the bitmap. |
| 587 | |
| 588 | // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB) |
| 589 | SkBitmap unscaledBitmap; |
| 590 | // TODO: mark this as sRGB when the blits will be sRGB. |
| 591 | unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width, |
| 592 | face->glyph->bitmap.rows, |
| 593 | SkColorType_for_FTPixelMode(pixel_mode), |
| 594 | kPremul_SkAlphaType)); |
| 595 | |
| 596 | SkMask unscaledBitmapAlias; |
| 597 | unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels()); |
| 598 | unscaledBitmapAlias.fBounds.setWH(unscaledBitmap.width(), unscaledBitmap.height()); |
| 599 | unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes(); |
| 600 | unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType()); |
| 601 | copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias); |
| 602 | |
| 603 | // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD. |
| 604 | // BW requires an A8 target for resizing, which can then be down sampled. |
| 605 | // LCD should use a 4x A8 target, which will then be down sampled. |
| 606 | // For simplicity, LCD uses A8 and is replicated. |
| 607 | int bitmapRowBytes = 0; |
| 608 | if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) { |
| 609 | bitmapRowBytes = glyph.rowBytes(); |
| 610 | } |
| 611 | SkBitmap dstBitmap; |
| 612 | // TODO: mark this as sRGB when the blits will be sRGB. |
| 613 | dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight, |
| 614 | SkColorType_for_SkMaskFormat(maskFormat), |
| 615 | kPremul_SkAlphaType), |
| 616 | bitmapRowBytes); |
| 617 | if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) { |
| 618 | dstBitmap.allocPixels(); |
| 619 | } else { |
| 620 | dstBitmap.setPixels(glyph.fImage); |
| 621 | } |
| 622 | |
| 623 | // Scale unscaledBitmap into dstBitmap. |
| 624 | SkCanvas canvas(dstBitmap); |
| 625 | #ifdef SK_SHOW_TEXT_BLIT_COVERAGE |
| 626 | canvas.clear(0x33FF0000); |
| 627 | #else |
| 628 | canvas.clear(SK_ColorTRANSPARENT); |
| 629 | #endif |
| 630 | canvas.translate(-glyph.fLeft, -glyph.fTop); |
| 631 | canvas.concat(bitmapTransform); |
| 632 | canvas.translate(face->glyph->bitmap_left, -face->glyph->bitmap_top); |
| 633 | |
| 634 | SkPaint paint; |
| 635 | // Using kMedium FilterQuality will cause mipmaps to be generated. Use |
| 636 | // kLow when the results will be roughly the same in order to avoid |
| 637 | // the mipmap generation cost. |
| 638 | // See skbug.com/6967 |
| 639 | if (bitmapTransform.getMinScale() < 0.5) { |
| 640 | paint.setFilterQuality(kMedium_SkFilterQuality); |
| 641 | } else { |
| 642 | paint.setFilterQuality(kLow_SkFilterQuality); |
| 643 | } |
| 644 | canvas.drawBitmap(unscaledBitmap, 0, 0, &paint); |
| 645 | |
| 646 | // If the destination is BW or LCD, convert from A8. |
| 647 | if (SkMask::kBW_Format == maskFormat) { |
| 648 | // Copy the A8 dstBitmap into the A1 glyph.fImage. |
| 649 | SkMask dstMask = glyph.mask(); |
| 650 | packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes()); |
| 651 | } else if (SkMask::kLCD16_Format == maskFormat) { |
| 652 | // Copy the A8 dstBitmap into the LCD16 glyph.fImage. |
| 653 | uint8_t* src = dstBitmap.getAddr8(0, 0); |
| 654 | uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage); |
| 655 | for (int y = dstBitmap.height(); y --> 0;) { |
| 656 | for (int x = 0; x < dstBitmap.width(); ++x) { |
| 657 | dst[x] = grayToRGB16(src[x]); |
| 658 | } |
| 659 | dst = (uint16_t*)((char*)dst + glyph.rowBytes()); |
| 660 | src += dstBitmap.rowBytes(); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | } break; |
| 665 | |
| 666 | default: |
| 667 | SkDEBUGFAIL("unknown glyph format" ); |
| 668 | memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); |
| 669 | return; |
| 670 | } |
| 671 | |
| 672 | // We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum, |
| 673 | // it is optional |
| 674 | #if defined(SK_GAMMA_APPLY_TO_A8) |
| 675 | if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) { |
| 676 | uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage; |
| 677 | unsigned rowBytes = glyph.rowBytes(); |
| 678 | |
| 679 | for (int y = glyph.fHeight - 1; y >= 0; --y) { |
| 680 | for (int x = glyph.fWidth - 1; x >= 0; --x) { |
| 681 | dst[x] = fPreBlend.fG[dst[x]]; |
| 682 | } |
| 683 | dst += rowBytes; |
| 684 | } |
| 685 | } |
| 686 | #endif |
| 687 | } |
| 688 | |
| 689 | /////////////////////////////////////////////////////////////////////////////// |
| 690 | |
| 691 | namespace { |
| 692 | |
| 693 | class SkFTGeometrySink { |
| 694 | SkPath* fPath; |
| 695 | bool fStarted; |
| 696 | FT_Vector fCurrent; |
| 697 | |
| 698 | void goingTo(const FT_Vector* pt) { |
| 699 | if (!fStarted) { |
| 700 | fStarted = true; |
| 701 | fPath->moveTo(SkFDot6ToScalar(fCurrent.x), -SkFDot6ToScalar(fCurrent.y)); |
| 702 | } |
| 703 | fCurrent = *pt; |
| 704 | } |
| 705 | |
| 706 | bool currentIsNot(const FT_Vector* pt) { |
| 707 | return fCurrent.x != pt->x || fCurrent.y != pt->y; |
| 708 | } |
| 709 | |
| 710 | static int Move(const FT_Vector* pt, void* ctx) { |
| 711 | SkFTGeometrySink& self = *(SkFTGeometrySink*)ctx; |
| 712 | if (self.fStarted) { |
| 713 | self.fPath->close(); |
| 714 | self.fStarted = false; |
| 715 | } |
| 716 | self.fCurrent = *pt; |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | static int Line(const FT_Vector* pt, void* ctx) { |
| 721 | SkFTGeometrySink& self = *(SkFTGeometrySink*)ctx; |
| 722 | if (self.currentIsNot(pt)) { |
| 723 | self.goingTo(pt); |
| 724 | self.fPath->lineTo(SkFDot6ToScalar(pt->x), -SkFDot6ToScalar(pt->y)); |
| 725 | } |
| 726 | return 0; |
| 727 | } |
| 728 | |
| 729 | static int Quad(const FT_Vector* pt0, const FT_Vector* pt1, void* ctx) { |
| 730 | SkFTGeometrySink& self = *(SkFTGeometrySink*)ctx; |
| 731 | if (self.currentIsNot(pt0) || self.currentIsNot(pt1)) { |
| 732 | self.goingTo(pt1); |
| 733 | self.fPath->quadTo(SkFDot6ToScalar(pt0->x), -SkFDot6ToScalar(pt0->y), |
| 734 | SkFDot6ToScalar(pt1->x), -SkFDot6ToScalar(pt1->y)); |
| 735 | } |
| 736 | return 0; |
| 737 | } |
| 738 | |
| 739 | static int Cubic(const FT_Vector* pt0, const FT_Vector* pt1, const FT_Vector* pt2, void* ctx) { |
| 740 | SkFTGeometrySink& self = *(SkFTGeometrySink*)ctx; |
| 741 | if (self.currentIsNot(pt0) || self.currentIsNot(pt1) || self.currentIsNot(pt2)) { |
| 742 | self.goingTo(pt2); |
| 743 | self.fPath->cubicTo(SkFDot6ToScalar(pt0->x), -SkFDot6ToScalar(pt0->y), |
| 744 | SkFDot6ToScalar(pt1->x), -SkFDot6ToScalar(pt1->y), |
| 745 | SkFDot6ToScalar(pt2->x), -SkFDot6ToScalar(pt2->y)); |
| 746 | } |
| 747 | return 0; |
| 748 | } |
| 749 | |
| 750 | public: |
| 751 | SkFTGeometrySink(SkPath* path) : fPath{path}, fStarted{false}, fCurrent{0,0} {} |
| 752 | |
| 753 | static constexpr const FT_Outline_Funcs Funcs{ |
| 754 | /*move_to =*/ SkFTGeometrySink::Move, |
| 755 | /*line_to =*/ SkFTGeometrySink::Line, |
| 756 | /*conic_to =*/ SkFTGeometrySink::Quad, |
| 757 | /*cubic_to =*/ SkFTGeometrySink::Cubic, |
| 758 | /*shift = */ 0, |
| 759 | /*delta =*/ 0, |
| 760 | }; |
| 761 | }; |
| 762 | |
| 763 | } // namespace |
| 764 | |
| 765 | bool SkScalerContext_FreeType_Base::generateGlyphPath(FT_Face face, SkPath* path) { |
| 766 | SkFTGeometrySink sink{path}; |
| 767 | FT_Error err = FT_Outline_Decompose(&face->glyph->outline, &SkFTGeometrySink::Funcs, &sink); |
| 768 | |
| 769 | if (err != 0) { |
| 770 | path->reset(); |
| 771 | return false; |
| 772 | } |
| 773 | |
| 774 | path->close(); |
| 775 | return true; |
| 776 | } |
| 777 | |
| 778 | bool SkScalerContext_FreeType_Base::generateFacePath(FT_Face face, SkGlyphID glyphID, SkPath* path) { |
| 779 | uint32_t flags = 0; //fLoadGlyphFlags; |
| 780 | flags |= FT_LOAD_NO_BITMAP; // ignore embedded bitmaps so we're sure to get the outline |
| 781 | flags &= ~FT_LOAD_RENDER; // don't scan convert (we just want the outline) |
| 782 | |
| 783 | FT_Error err = FT_Load_Glyph(face, glyphID, flags); |
| 784 | if (err != 0) { |
| 785 | path->reset(); |
| 786 | return false; |
| 787 | } |
| 788 | |
| 789 | if (!generateGlyphPath(face, path)) { |
| 790 | path->reset(); |
| 791 | return false; |
| 792 | } |
| 793 | return true; |
| 794 | } |
| 795 | |