| 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
| 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation, either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | Stockfish is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include <algorithm> |
| 22 | #include <cassert> |
| 23 | #include <cstddef> // For offsetof() |
| 24 | #include <cstring> // For std::memset, std::memcmp |
| 25 | #include <iomanip> |
| 26 | #include <sstream> |
| 27 | |
| 28 | #include "bitboard.h" |
| 29 | #include "misc.h" |
| 30 | #include "movegen.h" |
| 31 | #include "position.h" |
| 32 | #include "thread.h" |
| 33 | #include "tt.h" |
| 34 | #include "uci.h" |
| 35 | #include "syzygy/tbprobe.h" |
| 36 | |
| 37 | using std::string; |
| 38 | |
| 39 | namespace Zobrist { |
| 40 | |
| 41 | Key psq[PIECE_NB][SQUARE_NB]; |
| 42 | Key enpassant[FILE_NB]; |
| 43 | Key castling[CASTLING_RIGHT_NB]; |
| 44 | Key side, noPawns; |
| 45 | } |
| 46 | |
| 47 | namespace { |
| 48 | |
| 49 | const string PieceToChar(" PNBRQK pnbrqk" ); |
| 50 | |
| 51 | constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, |
| 52 | B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; |
| 53 | |
| 54 | // min_attacker() is a helper function used by see_ge() to locate the least |
| 55 | // valuable attacker for the side to move, remove the attacker we just found |
| 56 | // from the bitboards and scan for new X-ray attacks behind it. |
| 57 | |
| 58 | template<PieceType Pt> |
| 59 | PieceType min_attacker(const Bitboard* byTypeBB, Square to, Bitboard stmAttackers, |
| 60 | Bitboard& occupied, Bitboard& attackers) { |
| 61 | |
| 62 | Bitboard b = stmAttackers & byTypeBB[Pt]; |
| 63 | if (!b) |
| 64 | return min_attacker<PieceType(Pt + 1)>(byTypeBB, to, stmAttackers, occupied, attackers); |
| 65 | |
| 66 | occupied ^= lsb(b); // Remove the attacker from occupied |
| 67 | |
| 68 | // Add any X-ray attack behind the just removed piece. For instance with |
| 69 | // rooks in a8 and a7 attacking a1, after removing a7 we add rook in a8. |
| 70 | // Note that new added attackers can be of any color. |
| 71 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) |
| 72 | attackers |= attacks_bb<BISHOP>(to, occupied) & (byTypeBB[BISHOP] | byTypeBB[QUEEN]); |
| 73 | |
| 74 | if (Pt == ROOK || Pt == QUEEN) |
| 75 | attackers |= attacks_bb<ROOK>(to, occupied) & (byTypeBB[ROOK] | byTypeBB[QUEEN]); |
| 76 | |
| 77 | // X-ray may add already processed pieces because byTypeBB[] is constant: in |
| 78 | // the rook example, now attackers contains _again_ rook in a7, so remove it. |
| 79 | attackers &= occupied; |
| 80 | return Pt; |
| 81 | } |
| 82 | |
| 83 | template<> |
| 84 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { |
| 85 | return KING; // No need to update bitboards: it is the last cycle |
| 86 | } |
| 87 | |
| 88 | } // namespace |
| 89 | |
| 90 | |
| 91 | /// operator<<(Position) returns an ASCII representation of the position |
| 92 | |
| 93 | std::ostream& operator<<(std::ostream& os, const Position& pos) { |
| 94 | |
| 95 | os << "\n +---+---+---+---+---+---+---+---+\n" ; |
| 96 | |
| 97 | for (Rank r = RANK_8; r >= RANK_1; --r) |
| 98 | { |
| 99 | for (File f = FILE_A; f <= FILE_H; ++f) |
| 100 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; |
| 101 | |
| 102 | os << " |\n +---+---+---+---+---+---+---+---+\n" ; |
| 103 | } |
| 104 | |
| 105 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase |
| 106 | << std::setfill('0') << std::setw(16) << pos.key() |
| 107 | << std::setfill(' ') << std::dec << "\nCheckers: " ; |
| 108 | |
| 109 | for (Bitboard b = pos.checkers(); b; ) |
| 110 | os << UCI::square(pop_lsb(&b)) << " " ; |
| 111 | |
| 112 | if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces()) |
| 113 | && !pos.can_castle(ANY_CASTLING)) |
| 114 | { |
| 115 | StateInfo st; |
| 116 | Position p; |
| 117 | p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread()); |
| 118 | Tablebases::ProbeState s1, s2; |
| 119 | Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1); |
| 120 | int dtz = Tablebases::probe_dtz(p, &s2); |
| 121 | os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")" |
| 122 | << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")" ; |
| 123 | } |
| 124 | |
| 125 | return os; |
| 126 | } |
| 127 | |
| 128 | |
| 129 | // Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition" |
| 130 | // situations. Description of the algorithm in the following paper: |
| 131 | // https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf |
| 132 | |
| 133 | // First and second hash functions for indexing the cuckoo tables |
| 134 | inline int H1(Key h) { return h & 0x1fff; } |
| 135 | inline int H2(Key h) { return (h >> 16) & 0x1fff; } |
| 136 | |
| 137 | // Cuckoo tables with Zobrist hashes of valid reversible moves, and the moves themselves |
| 138 | Key cuckoo[8192]; |
| 139 | Move cuckooMove[8192]; |
| 140 | |
| 141 | |
| 142 | /// Position::init() initializes at startup the various arrays used to compute |
| 143 | /// hash keys. |
| 144 | |
| 145 | void Position::init() { |
| 146 | |
| 147 | PRNG rng(1070372); |
| 148 | |
| 149 | for (Piece pc : Pieces) |
| 150 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
| 151 | Zobrist::psq[pc][s] = rng.rand<Key>(); |
| 152 | |
| 153 | for (File f = FILE_A; f <= FILE_H; ++f) |
| 154 | Zobrist::enpassant[f] = rng.rand<Key>(); |
| 155 | |
| 156 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) |
| 157 | { |
| 158 | Zobrist::castling[cr] = 0; |
| 159 | Bitboard b = cr; |
| 160 | while (b) |
| 161 | { |
| 162 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; |
| 163 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | Zobrist::side = rng.rand<Key>(); |
| 168 | Zobrist::noPawns = rng.rand<Key>(); |
| 169 | |
| 170 | // Prepare the cuckoo tables |
| 171 | std::memset(cuckoo, 0, sizeof(cuckoo)); |
| 172 | std::memset(cuckooMove, 0, sizeof(cuckooMove)); |
| 173 | int count = 0; |
| 174 | for (Piece pc : Pieces) |
| 175 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
| 176 | for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2) |
| 177 | if (PseudoAttacks[type_of(pc)][s1] & s2) |
| 178 | { |
| 179 | Move move = make_move(s1, s2); |
| 180 | Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side; |
| 181 | int i = H1(key); |
| 182 | while (true) |
| 183 | { |
| 184 | std::swap(cuckoo[i], key); |
| 185 | std::swap(cuckooMove[i], move); |
| 186 | if (move == MOVE_NONE) // Arrived at empty slot? |
| 187 | break; |
| 188 | i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot |
| 189 | } |
| 190 | count++; |
| 191 | } |
| 192 | assert(count == 3668); |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /// Position::set() initializes the position object with the given FEN string. |
| 197 | /// This function is not very robust - make sure that input FENs are correct, |
| 198 | /// this is assumed to be the responsibility of the GUI. |
| 199 | |
| 200 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { |
| 201 | /* |
| 202 | A FEN string defines a particular position using only the ASCII character set. |
| 203 | |
| 204 | A FEN string contains six fields separated by a space. The fields are: |
| 205 | |
| 206 | 1) Piece placement (from white's perspective). Each rank is described, starting |
| 207 | with rank 8 and ending with rank 1. Within each rank, the contents of each |
| 208 | square are described from file A through file H. Following the Standard |
| 209 | Algebraic Notation (SAN), each piece is identified by a single letter taken |
| 210 | from the standard English names. White pieces are designated using upper-case |
| 211 | letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are |
| 212 | noted using digits 1 through 8 (the number of blank squares), and "/" |
| 213 | separates ranks. |
| 214 | |
| 215 | 2) Active color. "w" means white moves next, "b" means black. |
| 216 | |
| 217 | 3) Castling availability. If neither side can castle, this is "-". Otherwise, |
| 218 | this has one or more letters: "K" (White can castle kingside), "Q" (White |
| 219 | can castle queenside), "k" (Black can castle kingside), and/or "q" (Black |
| 220 | can castle queenside). |
| 221 | |
| 222 | 4) En passant target square (in algebraic notation). If there's no en passant |
| 223 | target square, this is "-". If a pawn has just made a 2-square move, this |
| 224 | is the position "behind" the pawn. This is recorded only if there is a pawn |
| 225 | in position to make an en passant capture, and if there really is a pawn |
| 226 | that might have advanced two squares. |
| 227 | |
| 228 | 5) Halfmove clock. This is the number of halfmoves since the last pawn advance |
| 229 | or capture. This is used to determine if a draw can be claimed under the |
| 230 | fifty-move rule. |
| 231 | |
| 232 | 6) Fullmove number. The number of the full move. It starts at 1, and is |
| 233 | incremented after Black's move. |
| 234 | */ |
| 235 | |
| 236 | unsigned char col, row, token; |
| 237 | size_t idx; |
| 238 | Square sq = SQ_A8; |
| 239 | std::istringstream ss(fenStr); |
| 240 | |
| 241 | std::memset(this, 0, sizeof(Position)); |
| 242 | std::memset(si, 0, sizeof(StateInfo)); |
| 243 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); |
| 244 | st = si; |
| 245 | |
| 246 | ss >> std::noskipws; |
| 247 | |
| 248 | // 1. Piece placement |
| 249 | while ((ss >> token) && !isspace(token)) |
| 250 | { |
| 251 | if (isdigit(token)) |
| 252 | sq += (token - '0') * EAST; // Advance the given number of files |
| 253 | |
| 254 | else if (token == '/') |
| 255 | sq += 2 * SOUTH; |
| 256 | |
| 257 | else if ((idx = PieceToChar.find(token)) != string::npos) |
| 258 | { |
| 259 | put_piece(Piece(idx), sq); |
| 260 | ++sq; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | // 2. Active color |
| 265 | ss >> token; |
| 266 | sideToMove = (token == 'w' ? WHITE : BLACK); |
| 267 | ss >> token; |
| 268 | |
| 269 | // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, |
| 270 | // Shredder-FEN that uses the letters of the columns on which the rooks began |
| 271 | // the game instead of KQkq and also X-FEN standard that, in case of Chess960, |
| 272 | // if an inner rook is associated with the castling right, the castling tag is |
| 273 | // replaced by the file letter of the involved rook, as for the Shredder-FEN. |
| 274 | while ((ss >> token) && !isspace(token)) |
| 275 | { |
| 276 | Square rsq; |
| 277 | Color c = islower(token) ? BLACK : WHITE; |
| 278 | Piece rook = make_piece(c, ROOK); |
| 279 | |
| 280 | token = char(toupper(token)); |
| 281 | |
| 282 | if (token == 'K') |
| 283 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} |
| 284 | |
| 285 | else if (token == 'Q') |
| 286 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} |
| 287 | |
| 288 | else if (token >= 'A' && token <= 'H') |
| 289 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); |
| 290 | |
| 291 | else |
| 292 | continue; |
| 293 | |
| 294 | set_castling_right(c, rsq); |
| 295 | } |
| 296 | |
| 297 | // 4. En passant square. Ignore if no pawn capture is possible |
| 298 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) |
| 299 | && ((ss >> row) && (row == '3' || row == '6'))) |
| 300 | { |
| 301 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); |
| 302 | |
| 303 | if ( !(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)) |
| 304 | || !(pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))) |
| 305 | st->epSquare = SQ_NONE; |
| 306 | } |
| 307 | else |
| 308 | st->epSquare = SQ_NONE; |
| 309 | |
| 310 | // 5-6. Halfmove clock and fullmove number |
| 311 | ss >> std::skipws >> st->rule50 >> gamePly; |
| 312 | |
| 313 | // Convert from fullmove starting from 1 to gamePly starting from 0, |
| 314 | // handle also common incorrect FEN with fullmove = 0. |
| 315 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); |
| 316 | |
| 317 | chess960 = isChess960; |
| 318 | thisThread = th; |
| 319 | set_state(st); |
| 320 | |
| 321 | assert(pos_is_ok()); |
| 322 | |
| 323 | return *this; |
| 324 | } |
| 325 | |
| 326 | |
| 327 | /// Position::set_castling_right() is a helper function used to set castling |
| 328 | /// rights given the corresponding color and the rook starting square. |
| 329 | |
| 330 | void Position::set_castling_right(Color c, Square rfrom) { |
| 331 | |
| 332 | Square kfrom = square<KING>(c); |
| 333 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; |
| 334 | CastlingRight cr = (c | cs); |
| 335 | |
| 336 | st->castlingRights |= cr; |
| 337 | castlingRightsMask[kfrom] |= cr; |
| 338 | castlingRightsMask[rfrom] |= cr; |
| 339 | castlingRookSquare[cr] = rfrom; |
| 340 | |
| 341 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); |
| 342 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); |
| 343 | |
| 344 | castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto) | rto | kto) |
| 345 | & ~(square_bb(kfrom) | rfrom); |
| 346 | } |
| 347 | |
| 348 | |
| 349 | /// Position::set_check_info() sets king attacks to detect if a move gives check |
| 350 | |
| 351 | void Position::set_check_info(StateInfo* si) const { |
| 352 | |
| 353 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinners[BLACK]); |
| 354 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinners[WHITE]); |
| 355 | |
| 356 | Square ksq = square<KING>(~sideToMove); |
| 357 | |
| 358 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove); |
| 359 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq); |
| 360 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq); |
| 361 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq); |
| 362 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; |
| 363 | si->checkSquares[KING] = 0; |
| 364 | } |
| 365 | |
| 366 | |
| 367 | /// Position::set_state() computes the hash keys of the position, and other |
| 368 | /// data that once computed is updated incrementally as moves are made. |
| 369 | /// The function is only used when a new position is set up, and to verify |
| 370 | /// the correctness of the StateInfo data when running in debug mode. |
| 371 | |
| 372 | void Position::set_state(StateInfo* si) const { |
| 373 | |
| 374 | si->key = si->materialKey = 0; |
| 375 | si->pawnKey = Zobrist::noPawns; |
| 376 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; |
| 377 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); |
| 378 | |
| 379 | set_check_info(si); |
| 380 | |
| 381 | for (Bitboard b = pieces(); b; ) |
| 382 | { |
| 383 | Square s = pop_lsb(&b); |
| 384 | Piece pc = piece_on(s); |
| 385 | si->key ^= Zobrist::psq[pc][s]; |
| 386 | |
| 387 | if (type_of(pc) == PAWN) |
| 388 | si->pawnKey ^= Zobrist::psq[pc][s]; |
| 389 | |
| 390 | else if (type_of(pc) != KING) |
| 391 | si->nonPawnMaterial[color_of(pc)] += PieceValue[MG][pc]; |
| 392 | } |
| 393 | |
| 394 | if (si->epSquare != SQ_NONE) |
| 395 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; |
| 396 | |
| 397 | if (sideToMove == BLACK) |
| 398 | si->key ^= Zobrist::side; |
| 399 | |
| 400 | si->key ^= Zobrist::castling[si->castlingRights]; |
| 401 | |
| 402 | for (Piece pc : Pieces) |
| 403 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) |
| 404 | si->materialKey ^= Zobrist::psq[pc][cnt]; |
| 405 | } |
| 406 | |
| 407 | |
| 408 | /// Position::set() is an overload to initialize the position object with |
| 409 | /// the given endgame code string like "KBPKN". It is mainly a helper to |
| 410 | /// get the material key out of an endgame code. |
| 411 | |
| 412 | Position& Position::set(const string& code, Color c, StateInfo* si) { |
| 413 | |
| 414 | assert(code.length() > 0 && code.length() < 8); |
| 415 | assert(code[0] == 'K'); |
| 416 | |
| 417 | string sides[] = { code.substr(code.find('K', 1)), // Weak |
| 418 | code.substr(0, code.find('K', 1)) }; // Strong |
| 419 | |
| 420 | std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); |
| 421 | |
| 422 | string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/" |
| 423 | + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10" ; |
| 424 | |
| 425 | return set(fenStr, false, si, nullptr); |
| 426 | } |
| 427 | |
| 428 | |
| 429 | /// Position::fen() returns a FEN representation of the position. In case of |
| 430 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. |
| 431 | |
| 432 | const string Position::fen() const { |
| 433 | |
| 434 | int emptyCnt; |
| 435 | std::ostringstream ss; |
| 436 | |
| 437 | for (Rank r = RANK_8; r >= RANK_1; --r) |
| 438 | { |
| 439 | for (File f = FILE_A; f <= FILE_H; ++f) |
| 440 | { |
| 441 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) |
| 442 | ++emptyCnt; |
| 443 | |
| 444 | if (emptyCnt) |
| 445 | ss << emptyCnt; |
| 446 | |
| 447 | if (f <= FILE_H) |
| 448 | ss << PieceToChar[piece_on(make_square(f, r))]; |
| 449 | } |
| 450 | |
| 451 | if (r > RANK_1) |
| 452 | ss << '/'; |
| 453 | } |
| 454 | |
| 455 | ss << (sideToMove == WHITE ? " w " : " b " ); |
| 456 | |
| 457 | if (can_castle(WHITE_OO)) |
| 458 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OO ))) : 'K'); |
| 459 | |
| 460 | if (can_castle(WHITE_OOO)) |
| 461 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OOO))) : 'Q'); |
| 462 | |
| 463 | if (can_castle(BLACK_OO)) |
| 464 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OO ))) : 'k'); |
| 465 | |
| 466 | if (can_castle(BLACK_OOO)) |
| 467 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OOO))) : 'q'); |
| 468 | |
| 469 | if (!can_castle(ANY_CASTLING)) |
| 470 | ss << '-'; |
| 471 | |
| 472 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " " ) |
| 473 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; |
| 474 | |
| 475 | return ss.str(); |
| 476 | } |
| 477 | |
| 478 | |
| 479 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) |
| 480 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a |
| 481 | /// slider if removing that piece from the board would result in a position where |
| 482 | /// square 's' is attacked. For example, a king-attack blocking piece can be either |
| 483 | /// a pinned or a discovered check piece, according if its color is the opposite |
| 484 | /// or the same of the color of the slider. |
| 485 | |
| 486 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { |
| 487 | |
| 488 | Bitboard blockers = 0; |
| 489 | pinners = 0; |
| 490 | |
| 491 | // Snipers are sliders that attack 's' when a piece and other snipers are removed |
| 492 | Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK)) |
| 493 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; |
| 494 | Bitboard occupancy = pieces() ^ snipers; |
| 495 | |
| 496 | while (snipers) |
| 497 | { |
| 498 | Square sniperSq = pop_lsb(&snipers); |
| 499 | Bitboard b = between_bb(s, sniperSq) & occupancy; |
| 500 | |
| 501 | if (b && !more_than_one(b)) |
| 502 | { |
| 503 | blockers |= b; |
| 504 | if (b & pieces(color_of(piece_on(s)))) |
| 505 | pinners |= sniperSq; |
| 506 | } |
| 507 | } |
| 508 | return blockers; |
| 509 | } |
| 510 | |
| 511 | |
| 512 | /// Position::attackers_to() computes a bitboard of all pieces which attack a |
| 513 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. |
| 514 | |
| 515 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { |
| 516 | |
| 517 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) |
| 518 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) |
| 519 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) |
| 520 | | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN)) |
| 521 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) |
| 522 | | (attacks_from<KING>(s) & pieces(KING)); |
| 523 | } |
| 524 | |
| 525 | |
| 526 | /// Position::legal() tests whether a pseudo-legal move is legal |
| 527 | |
| 528 | bool Position::legal(Move m) const { |
| 529 | |
| 530 | assert(is_ok(m)); |
| 531 | |
| 532 | Color us = sideToMove; |
| 533 | Square from = from_sq(m); |
| 534 | Square to = to_sq(m); |
| 535 | |
| 536 | assert(color_of(moved_piece(m)) == us); |
| 537 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); |
| 538 | |
| 539 | // En passant captures are a tricky special case. Because they are rather |
| 540 | // uncommon, we do it simply by testing whether the king is attacked after |
| 541 | // the move is made. |
| 542 | if (type_of(m) == ENPASSANT) |
| 543 | { |
| 544 | Square ksq = square<KING>(us); |
| 545 | Square capsq = to - pawn_push(us); |
| 546 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; |
| 547 | |
| 548 | assert(to == ep_square()); |
| 549 | assert(moved_piece(m) == make_piece(us, PAWN)); |
| 550 | assert(piece_on(capsq) == make_piece(~us, PAWN)); |
| 551 | assert(piece_on(to) == NO_PIECE); |
| 552 | |
| 553 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) |
| 554 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); |
| 555 | } |
| 556 | |
| 557 | // Castling moves generation does not check if the castling path is clear of |
| 558 | // enemy attacks, it is delayed at a later time: now! |
| 559 | if (type_of(m) == CASTLING) |
| 560 | { |
| 561 | // After castling, the rook and king final positions are the same in |
| 562 | // Chess960 as they would be in standard chess. |
| 563 | to = relative_square(us, to > from ? SQ_G1 : SQ_C1); |
| 564 | Direction step = to > from ? WEST : EAST; |
| 565 | |
| 566 | for (Square s = to; s != from; s += step) |
| 567 | if (attackers_to(s) & pieces(~us)) |
| 568 | return false; |
| 569 | |
| 570 | // In case of Chess960, verify that when moving the castling rook we do |
| 571 | // not discover some hidden checker. |
| 572 | // For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1. |
| 573 | return !chess960 |
| 574 | || !(attacks_bb<ROOK>(to, pieces() ^ to_sq(m)) & pieces(~us, ROOK, QUEEN)); |
| 575 | } |
| 576 | |
| 577 | // If the moving piece is a king, check whether the destination square is |
| 578 | // attacked by the opponent. |
| 579 | if (type_of(piece_on(from)) == KING) |
| 580 | return !(attackers_to(to) & pieces(~us)); |
| 581 | |
| 582 | // A non-king move is legal if and only if it is not pinned or it |
| 583 | // is moving along the ray towards or away from the king. |
| 584 | return !(blockers_for_king(us) & from) |
| 585 | || aligned(from, to, square<KING>(us)); |
| 586 | } |
| 587 | |
| 588 | |
| 589 | /// Position::pseudo_legal() takes a random move and tests whether the move is |
| 590 | /// pseudo legal. It is used to validate moves from TT that can be corrupted |
| 591 | /// due to SMP concurrent access or hash position key aliasing. |
| 592 | |
| 593 | bool Position::pseudo_legal(const Move m) const { |
| 594 | |
| 595 | Color us = sideToMove; |
| 596 | Square from = from_sq(m); |
| 597 | Square to = to_sq(m); |
| 598 | Piece pc = moved_piece(m); |
| 599 | |
| 600 | // Use a slower but simpler function for uncommon cases |
| 601 | if (type_of(m) != NORMAL) |
| 602 | return MoveList<LEGAL>(*this).contains(m); |
| 603 | |
| 604 | // Is not a promotion, so promotion piece must be empty |
| 605 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) |
| 606 | return false; |
| 607 | |
| 608 | // If the 'from' square is not occupied by a piece belonging to the side to |
| 609 | // move, the move is obviously not legal. |
| 610 | if (pc == NO_PIECE || color_of(pc) != us) |
| 611 | return false; |
| 612 | |
| 613 | // The destination square cannot be occupied by a friendly piece |
| 614 | if (pieces(us) & to) |
| 615 | return false; |
| 616 | |
| 617 | // Handle the special case of a pawn move |
| 618 | if (type_of(pc) == PAWN) |
| 619 | { |
| 620 | // We have already handled promotion moves, so destination |
| 621 | // cannot be on the 8th/1st rank. |
| 622 | if ((Rank8BB | Rank1BB) & to) |
| 623 | return false; |
| 624 | |
| 625 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture |
| 626 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push |
| 627 | && !( (from + 2 * pawn_push(us) == to) // Not a double push |
| 628 | && (rank_of(from) == relative_rank(us, RANK_2)) |
| 629 | && empty(to) |
| 630 | && empty(to - pawn_push(us)))) |
| 631 | return false; |
| 632 | } |
| 633 | else if (!(attacks_from(type_of(pc), from) & to)) |
| 634 | return false; |
| 635 | |
| 636 | // Evasions generator already takes care to avoid some kind of illegal moves |
| 637 | // and legal() relies on this. We therefore have to take care that the same |
| 638 | // kind of moves are filtered out here. |
| 639 | if (checkers()) |
| 640 | { |
| 641 | if (type_of(pc) != KING) |
| 642 | { |
| 643 | // Double check? In this case a king move is required |
| 644 | if (more_than_one(checkers())) |
| 645 | return false; |
| 646 | |
| 647 | // Our move must be a blocking evasion or a capture of the checking piece |
| 648 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) |
| 649 | return false; |
| 650 | } |
| 651 | // In case of king moves under check we have to remove king so as to catch |
| 652 | // invalid moves like b1a1 when opposite queen is on c1. |
| 653 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) |
| 654 | return false; |
| 655 | } |
| 656 | |
| 657 | return true; |
| 658 | } |
| 659 | |
| 660 | |
| 661 | /// Position::gives_check() tests whether a pseudo-legal move gives a check |
| 662 | |
| 663 | bool Position::gives_check(Move m) const { |
| 664 | |
| 665 | assert(is_ok(m)); |
| 666 | assert(color_of(moved_piece(m)) == sideToMove); |
| 667 | |
| 668 | Square from = from_sq(m); |
| 669 | Square to = to_sq(m); |
| 670 | |
| 671 | // Is there a direct check? |
| 672 | if (st->checkSquares[type_of(piece_on(from))] & to) |
| 673 | return true; |
| 674 | |
| 675 | // Is there a discovered check? |
| 676 | if ( (st->blockersForKing[~sideToMove] & from) |
| 677 | && !aligned(from, to, square<KING>(~sideToMove))) |
| 678 | return true; |
| 679 | |
| 680 | switch (type_of(m)) |
| 681 | { |
| 682 | case NORMAL: |
| 683 | return false; |
| 684 | |
| 685 | case PROMOTION: |
| 686 | return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove); |
| 687 | |
| 688 | // En passant capture with check? We have already handled the case |
| 689 | // of direct checks and ordinary discovered check, so the only case we |
| 690 | // need to handle is the unusual case of a discovered check through |
| 691 | // the captured pawn. |
| 692 | case ENPASSANT: |
| 693 | { |
| 694 | Square capsq = make_square(file_of(to), rank_of(from)); |
| 695 | Bitboard b = (pieces() ^ from ^ capsq) | to; |
| 696 | |
| 697 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) |
| 698 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); |
| 699 | } |
| 700 | case CASTLING: |
| 701 | { |
| 702 | Square kfrom = from; |
| 703 | Square rfrom = to; // Castling is encoded as 'King captures the rook' |
| 704 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); |
| 705 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); |
| 706 | |
| 707 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove)) |
| 708 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove)); |
| 709 | } |
| 710 | default: |
| 711 | assert(false); |
| 712 | return false; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | |
| 717 | /// Position::do_move() makes a move, and saves all information necessary |
| 718 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal |
| 719 | /// moves should be filtered out before this function is called. |
| 720 | |
| 721 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { |
| 722 | |
| 723 | assert(is_ok(m)); |
| 724 | assert(&newSt != st); |
| 725 | |
| 726 | thisThread->nodes.fetch_add(1, std::memory_order_relaxed); |
| 727 | Key k = st->key ^ Zobrist::side; |
| 728 | |
| 729 | // Copy some fields of the old state to our new StateInfo object except the |
| 730 | // ones which are going to be recalculated from scratch anyway and then switch |
| 731 | // our state pointer to point to the new (ready to be updated) state. |
| 732 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); |
| 733 | newSt.previous = st; |
| 734 | st = &newSt; |
| 735 | |
| 736 | // Increment ply counters. In particular, rule50 will be reset to zero later on |
| 737 | // in case of a capture or a pawn move. |
| 738 | ++gamePly; |
| 739 | ++st->rule50; |
| 740 | ++st->pliesFromNull; |
| 741 | |
| 742 | Color us = sideToMove; |
| 743 | Color them = ~us; |
| 744 | Square from = from_sq(m); |
| 745 | Square to = to_sq(m); |
| 746 | Piece pc = piece_on(from); |
| 747 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); |
| 748 | |
| 749 | assert(color_of(pc) == us); |
| 750 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); |
| 751 | assert(type_of(captured) != KING); |
| 752 | |
| 753 | if (type_of(m) == CASTLING) |
| 754 | { |
| 755 | assert(pc == make_piece(us, KING)); |
| 756 | assert(captured == make_piece(us, ROOK)); |
| 757 | |
| 758 | Square rfrom, rto; |
| 759 | do_castling<true>(us, from, to, rfrom, rto); |
| 760 | |
| 761 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; |
| 762 | captured = NO_PIECE; |
| 763 | } |
| 764 | |
| 765 | if (captured) |
| 766 | { |
| 767 | Square capsq = to; |
| 768 | |
| 769 | // If the captured piece is a pawn, update pawn hash key, otherwise |
| 770 | // update non-pawn material. |
| 771 | if (type_of(captured) == PAWN) |
| 772 | { |
| 773 | if (type_of(m) == ENPASSANT) |
| 774 | { |
| 775 | capsq -= pawn_push(us); |
| 776 | |
| 777 | assert(pc == make_piece(us, PAWN)); |
| 778 | assert(to == st->epSquare); |
| 779 | assert(relative_rank(us, to) == RANK_6); |
| 780 | assert(piece_on(to) == NO_PIECE); |
| 781 | assert(piece_on(capsq) == make_piece(them, PAWN)); |
| 782 | |
| 783 | board[capsq] = NO_PIECE; // Not done by remove_piece() |
| 784 | } |
| 785 | |
| 786 | st->pawnKey ^= Zobrist::psq[captured][capsq]; |
| 787 | } |
| 788 | else |
| 789 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; |
| 790 | |
| 791 | // Update board and piece lists |
| 792 | remove_piece(captured, capsq); |
| 793 | |
| 794 | // Update material hash key and prefetch access to materialTable |
| 795 | k ^= Zobrist::psq[captured][capsq]; |
| 796 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; |
| 797 | prefetch(thisThread->materialTable[st->materialKey]); |
| 798 | |
| 799 | // Reset rule 50 counter |
| 800 | st->rule50 = 0; |
| 801 | } |
| 802 | |
| 803 | // Update hash key |
| 804 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
| 805 | |
| 806 | // Reset en passant square |
| 807 | if (st->epSquare != SQ_NONE) |
| 808 | { |
| 809 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
| 810 | st->epSquare = SQ_NONE; |
| 811 | } |
| 812 | |
| 813 | // Update castling rights if needed |
| 814 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) |
| 815 | { |
| 816 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; |
| 817 | k ^= Zobrist::castling[st->castlingRights & cr]; |
| 818 | st->castlingRights &= ~cr; |
| 819 | } |
| 820 | |
| 821 | // Move the piece. The tricky Chess960 castling is handled earlier |
| 822 | if (type_of(m) != CASTLING) |
| 823 | move_piece(pc, from, to); |
| 824 | |
| 825 | // If the moving piece is a pawn do some special extra work |
| 826 | if (type_of(pc) == PAWN) |
| 827 | { |
| 828 | // Set en-passant square if the moved pawn can be captured |
| 829 | if ( (int(to) ^ int(from)) == 16 |
| 830 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) |
| 831 | { |
| 832 | st->epSquare = to - pawn_push(us); |
| 833 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; |
| 834 | } |
| 835 | |
| 836 | else if (type_of(m) == PROMOTION) |
| 837 | { |
| 838 | Piece promotion = make_piece(us, promotion_type(m)); |
| 839 | |
| 840 | assert(relative_rank(us, to) == RANK_8); |
| 841 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); |
| 842 | |
| 843 | remove_piece(pc, to); |
| 844 | put_piece(promotion, to); |
| 845 | |
| 846 | // Update hash keys |
| 847 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; |
| 848 | st->pawnKey ^= Zobrist::psq[pc][to]; |
| 849 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] |
| 850 | ^ Zobrist::psq[pc][pieceCount[pc]]; |
| 851 | |
| 852 | // Update material |
| 853 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; |
| 854 | } |
| 855 | |
| 856 | // Update pawn hash key and prefetch access to pawnsTable |
| 857 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; |
| 858 | |
| 859 | // Reset rule 50 draw counter |
| 860 | st->rule50 = 0; |
| 861 | } |
| 862 | |
| 863 | // Set capture piece |
| 864 | st->capturedPiece = captured; |
| 865 | |
| 866 | // Update the key with the final value |
| 867 | st->key = k; |
| 868 | |
| 869 | // Calculate checkers bitboard (if move gives check) |
| 870 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; |
| 871 | |
| 872 | sideToMove = ~sideToMove; |
| 873 | |
| 874 | // Update king attacks used for fast check detection |
| 875 | set_check_info(st); |
| 876 | |
| 877 | // Calculate the repetition info. It is the ply distance from the previous |
| 878 | // occurrence of the same position, negative in the 3-fold case, or zero |
| 879 | // if the position was not repeated. |
| 880 | st->repetition = 0; |
| 881 | int end = std::min(st->rule50, st->pliesFromNull); |
| 882 | if (end >= 4) |
| 883 | { |
| 884 | StateInfo* stp = st->previous->previous; |
| 885 | for (int i = 4; i <= end; i += 2) |
| 886 | { |
| 887 | stp = stp->previous->previous; |
| 888 | if (stp->key == st->key) |
| 889 | { |
| 890 | st->repetition = stp->repetition ? -i : i; |
| 891 | break; |
| 892 | } |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | assert(pos_is_ok()); |
| 897 | } |
| 898 | |
| 899 | |
| 900 | /// Position::undo_move() unmakes a move. When it returns, the position should |
| 901 | /// be restored to exactly the same state as before the move was made. |
| 902 | |
| 903 | void Position::undo_move(Move m) { |
| 904 | |
| 905 | assert(is_ok(m)); |
| 906 | |
| 907 | sideToMove = ~sideToMove; |
| 908 | |
| 909 | Color us = sideToMove; |
| 910 | Square from = from_sq(m); |
| 911 | Square to = to_sq(m); |
| 912 | Piece pc = piece_on(to); |
| 913 | |
| 914 | assert(empty(from) || type_of(m) == CASTLING); |
| 915 | assert(type_of(st->capturedPiece) != KING); |
| 916 | |
| 917 | if (type_of(m) == PROMOTION) |
| 918 | { |
| 919 | assert(relative_rank(us, to) == RANK_8); |
| 920 | assert(type_of(pc) == promotion_type(m)); |
| 921 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); |
| 922 | |
| 923 | remove_piece(pc, to); |
| 924 | pc = make_piece(us, PAWN); |
| 925 | put_piece(pc, to); |
| 926 | } |
| 927 | |
| 928 | if (type_of(m) == CASTLING) |
| 929 | { |
| 930 | Square rfrom, rto; |
| 931 | do_castling<false>(us, from, to, rfrom, rto); |
| 932 | } |
| 933 | else |
| 934 | { |
| 935 | move_piece(pc, to, from); // Put the piece back at the source square |
| 936 | |
| 937 | if (st->capturedPiece) |
| 938 | { |
| 939 | Square capsq = to; |
| 940 | |
| 941 | if (type_of(m) == ENPASSANT) |
| 942 | { |
| 943 | capsq -= pawn_push(us); |
| 944 | |
| 945 | assert(type_of(pc) == PAWN); |
| 946 | assert(to == st->previous->epSquare); |
| 947 | assert(relative_rank(us, to) == RANK_6); |
| 948 | assert(piece_on(capsq) == NO_PIECE); |
| 949 | assert(st->capturedPiece == make_piece(~us, PAWN)); |
| 950 | } |
| 951 | |
| 952 | put_piece(st->capturedPiece, capsq); // Restore the captured piece |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | // Finally point our state pointer back to the previous state |
| 957 | st = st->previous; |
| 958 | --gamePly; |
| 959 | |
| 960 | assert(pos_is_ok()); |
| 961 | } |
| 962 | |
| 963 | |
| 964 | /// Position::do_castling() is a helper used to do/undo a castling move. This |
| 965 | /// is a bit tricky in Chess960 where from/to squares can overlap. |
| 966 | template<bool Do> |
| 967 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { |
| 968 | |
| 969 | bool kingSide = to > from; |
| 970 | rfrom = to; // Castling is encoded as "king captures friendly rook" |
| 971 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); |
| 972 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); |
| 973 | |
| 974 | // Remove both pieces first since squares could overlap in Chess960 |
| 975 | remove_piece(make_piece(us, KING), Do ? from : to); |
| 976 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); |
| 977 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us |
| 978 | put_piece(make_piece(us, KING), Do ? to : from); |
| 979 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom); |
| 980 | } |
| 981 | |
| 982 | |
| 983 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips |
| 984 | /// the side to move without executing any move on the board. |
| 985 | |
| 986 | void Position::do_null_move(StateInfo& newSt) { |
| 987 | |
| 988 | assert(!checkers()); |
| 989 | assert(&newSt != st); |
| 990 | |
| 991 | std::memcpy(&newSt, st, sizeof(StateInfo)); |
| 992 | newSt.previous = st; |
| 993 | st = &newSt; |
| 994 | |
| 995 | if (st->epSquare != SQ_NONE) |
| 996 | { |
| 997 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; |
| 998 | st->epSquare = SQ_NONE; |
| 999 | } |
| 1000 | |
| 1001 | st->key ^= Zobrist::side; |
| 1002 | prefetch(TT.first_entry(st->key)); |
| 1003 | |
| 1004 | ++st->rule50; |
| 1005 | st->pliesFromNull = 0; |
| 1006 | |
| 1007 | sideToMove = ~sideToMove; |
| 1008 | |
| 1009 | set_check_info(st); |
| 1010 | |
| 1011 | st->repetition = 0; |
| 1012 | |
| 1013 | assert(pos_is_ok()); |
| 1014 | } |
| 1015 | |
| 1016 | void Position::undo_null_move() { |
| 1017 | |
| 1018 | assert(!checkers()); |
| 1019 | |
| 1020 | st = st->previous; |
| 1021 | sideToMove = ~sideToMove; |
| 1022 | } |
| 1023 | |
| 1024 | |
| 1025 | /// Position::key_after() computes the new hash key after the given move. Needed |
| 1026 | /// for speculative prefetch. It doesn't recognize special moves like castling, |
| 1027 | /// en-passant and promotions. |
| 1028 | |
| 1029 | Key Position::key_after(Move m) const { |
| 1030 | |
| 1031 | Square from = from_sq(m); |
| 1032 | Square to = to_sq(m); |
| 1033 | Piece pc = piece_on(from); |
| 1034 | Piece captured = piece_on(to); |
| 1035 | Key k = st->key ^ Zobrist::side; |
| 1036 | |
| 1037 | if (captured) |
| 1038 | k ^= Zobrist::psq[captured][to]; |
| 1039 | |
| 1040 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; |
| 1041 | } |
| 1042 | |
| 1043 | |
| 1044 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the |
| 1045 | /// SEE value of move is greater or equal to the given threshold. We'll use an |
| 1046 | /// algorithm similar to alpha-beta pruning with a null window. |
| 1047 | |
| 1048 | bool Position::see_ge(Move m, Value threshold) const { |
| 1049 | |
| 1050 | assert(is_ok(m)); |
| 1051 | |
| 1052 | // Only deal with normal moves, assume others pass a simple see |
| 1053 | if (type_of(m) != NORMAL) |
| 1054 | return VALUE_ZERO >= threshold; |
| 1055 | |
| 1056 | Bitboard stmAttackers; |
| 1057 | Square from = from_sq(m), to = to_sq(m); |
| 1058 | PieceType nextVictim = type_of(piece_on(from)); |
| 1059 | Color us = color_of(piece_on(from)); |
| 1060 | Color stm = ~us; // First consider opponent's move |
| 1061 | Value balance; // Values of the pieces taken by us minus opponent's ones |
| 1062 | |
| 1063 | // The opponent may be able to recapture so this is the best result |
| 1064 | // we can hope for. |
| 1065 | balance = PieceValue[MG][piece_on(to)] - threshold; |
| 1066 | |
| 1067 | if (balance < VALUE_ZERO) |
| 1068 | return false; |
| 1069 | |
| 1070 | // Now assume the worst possible result: that the opponent can |
| 1071 | // capture our piece for free. |
| 1072 | balance -= PieceValue[MG][nextVictim]; |
| 1073 | |
| 1074 | // If it is enough (like in PxQ) then return immediately. Note that |
| 1075 | // in case nextVictim == KING we always return here, this is ok |
| 1076 | // if the given move is legal. |
| 1077 | if (balance >= VALUE_ZERO) |
| 1078 | return true; |
| 1079 | |
| 1080 | // Find all attackers to the destination square, with the moving piece |
| 1081 | // removed, but possibly an X-ray attacker added behind it. |
| 1082 | Bitboard occupied = pieces() ^ from ^ to; |
| 1083 | Bitboard attackers = attackers_to(to, occupied) & occupied; |
| 1084 | |
| 1085 | while (true) |
| 1086 | { |
| 1087 | stmAttackers = attackers & pieces(stm); |
| 1088 | |
| 1089 | // Don't allow pinned pieces to attack (except the king) as long as |
| 1090 | // any pinners are on their original square. |
| 1091 | if (st->pinners[~stm] & occupied) |
| 1092 | stmAttackers &= ~st->blockersForKing[stm]; |
| 1093 | |
| 1094 | // If stm has no more attackers then give up: stm loses |
| 1095 | if (!stmAttackers) |
| 1096 | break; |
| 1097 | |
| 1098 | // Locate and remove the next least valuable attacker, and add to |
| 1099 | // the bitboard 'attackers' the possibly X-ray attackers behind it. |
| 1100 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); |
| 1101 | |
| 1102 | stm = ~stm; // Switch side to move |
| 1103 | |
| 1104 | // Negamax the balance with alpha = balance, beta = balance+1 and |
| 1105 | // add nextVictim's value. |
| 1106 | // |
| 1107 | // (balance, balance+1) -> (-balance-1, -balance) |
| 1108 | // |
| 1109 | assert(balance < VALUE_ZERO); |
| 1110 | |
| 1111 | balance = -balance - 1 - PieceValue[MG][nextVictim]; |
| 1112 | |
| 1113 | // If balance is still non-negative after giving away nextVictim then we |
| 1114 | // win. The only thing to be careful about it is that we should revert |
| 1115 | // stm if we captured with the king when the opponent still has attackers. |
| 1116 | if (balance >= VALUE_ZERO) |
| 1117 | { |
| 1118 | if (nextVictim == KING && (attackers & pieces(stm))) |
| 1119 | stm = ~stm; |
| 1120 | break; |
| 1121 | } |
| 1122 | assert(nextVictim != KING); |
| 1123 | } |
| 1124 | return us != stm; // We break the above loop when stm loses |
| 1125 | } |
| 1126 | |
| 1127 | |
| 1128 | /// Position::is_draw() tests whether the position is drawn by 50-move rule |
| 1129 | /// or by repetition. It does not detect stalemates. |
| 1130 | |
| 1131 | bool Position::is_draw(int ply) const { |
| 1132 | |
| 1133 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) |
| 1134 | return true; |
| 1135 | |
| 1136 | // Return a draw score if a position repeats once earlier but strictly |
| 1137 | // after the root, or repeats twice before or at the root. |
| 1138 | if (st->repetition && st->repetition < ply) |
| 1139 | return true; |
| 1140 | |
| 1141 | return false; |
| 1142 | } |
| 1143 | |
| 1144 | |
| 1145 | // Position::has_repeated() tests whether there has been at least one repetition |
| 1146 | // of positions since the last capture or pawn move. |
| 1147 | |
| 1148 | bool Position::has_repeated() const { |
| 1149 | |
| 1150 | StateInfo* stc = st; |
| 1151 | int end = std::min(st->rule50, st->pliesFromNull); |
| 1152 | while (end-- >= 4) |
| 1153 | { |
| 1154 | if (stc->repetition) |
| 1155 | return true; |
| 1156 | |
| 1157 | stc = stc->previous; |
| 1158 | } |
| 1159 | return false; |
| 1160 | } |
| 1161 | |
| 1162 | |
| 1163 | /// Position::has_game_cycle() tests if the position has a move which draws by repetition, |
| 1164 | /// or an earlier position has a move that directly reaches the current position. |
| 1165 | |
| 1166 | bool Position::has_game_cycle(int ply) const { |
| 1167 | |
| 1168 | int j; |
| 1169 | |
| 1170 | int end = std::min(st->rule50, st->pliesFromNull); |
| 1171 | |
| 1172 | if (end < 3) |
| 1173 | return false; |
| 1174 | |
| 1175 | Key originalKey = st->key; |
| 1176 | StateInfo* stp = st->previous; |
| 1177 | |
| 1178 | for (int i = 3; i <= end; i += 2) |
| 1179 | { |
| 1180 | stp = stp->previous->previous; |
| 1181 | |
| 1182 | Key moveKey = originalKey ^ stp->key; |
| 1183 | if ( (j = H1(moveKey), cuckoo[j] == moveKey) |
| 1184 | || (j = H2(moveKey), cuckoo[j] == moveKey)) |
| 1185 | { |
| 1186 | Move move = cuckooMove[j]; |
| 1187 | Square s1 = from_sq(move); |
| 1188 | Square s2 = to_sq(move); |
| 1189 | |
| 1190 | if (!(between_bb(s1, s2) & pieces())) |
| 1191 | { |
| 1192 | if (ply > i) |
| 1193 | return true; |
| 1194 | |
| 1195 | // For nodes before or at the root, check that the move is a |
| 1196 | // repetition rather than a move to the current position. |
| 1197 | // In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in |
| 1198 | // the same location, so we have to select which square to check. |
| 1199 | if (color_of(piece_on(empty(s1) ? s2 : s1)) != side_to_move()) |
| 1200 | continue; |
| 1201 | |
| 1202 | // For repetitions before or at the root, require one more |
| 1203 | if (stp->repetition) |
| 1204 | return true; |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | return false; |
| 1209 | } |
| 1210 | |
| 1211 | |
| 1212 | /// Position::flip() flips position with the white and black sides reversed. This |
| 1213 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. |
| 1214 | |
| 1215 | void Position::flip() { |
| 1216 | |
| 1217 | string f, token; |
| 1218 | std::stringstream ss(fen()); |
| 1219 | |
| 1220 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement |
| 1221 | { |
| 1222 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); |
| 1223 | f.insert(0, token + (f.empty() ? " " : "/" )); |
| 1224 | } |
| 1225 | |
| 1226 | ss >> token; // Active color |
| 1227 | f += (token == "w" ? "B " : "W " ); // Will be lowercased later |
| 1228 | |
| 1229 | ss >> token; // Castling availability |
| 1230 | f += token + " " ; |
| 1231 | |
| 1232 | std::transform(f.begin(), f.end(), f.begin(), |
| 1233 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); |
| 1234 | |
| 1235 | ss >> token; // En passant square |
| 1236 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3" )); |
| 1237 | |
| 1238 | std::getline(ss, token); // Half and full moves |
| 1239 | f += token; |
| 1240 | |
| 1241 | set(f, is_chess960(), st, this_thread()); |
| 1242 | |
| 1243 | assert(pos_is_ok()); |
| 1244 | } |
| 1245 | |
| 1246 | |
| 1247 | /// Position::pos_is_ok() performs some consistency checks for the |
| 1248 | /// position object and raises an asserts if something wrong is detected. |
| 1249 | /// This is meant to be helpful when debugging. |
| 1250 | |
| 1251 | bool Position::pos_is_ok() const { |
| 1252 | |
| 1253 | constexpr bool Fast = true; // Quick (default) or full check? |
| 1254 | |
| 1255 | if ( (sideToMove != WHITE && sideToMove != BLACK) |
| 1256 | || piece_on(square<KING>(WHITE)) != W_KING |
| 1257 | || piece_on(square<KING>(BLACK)) != B_KING |
| 1258 | || ( ep_square() != SQ_NONE |
| 1259 | && relative_rank(sideToMove, ep_square()) != RANK_6)) |
| 1260 | assert(0 && "pos_is_ok: Default" ); |
| 1261 | |
| 1262 | if (Fast) |
| 1263 | return true; |
| 1264 | |
| 1265 | if ( pieceCount[W_KING] != 1 |
| 1266 | || pieceCount[B_KING] != 1 |
| 1267 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) |
| 1268 | assert(0 && "pos_is_ok: Kings" ); |
| 1269 | |
| 1270 | if ( (pieces(PAWN) & (Rank1BB | Rank8BB)) |
| 1271 | || pieceCount[W_PAWN] > 8 |
| 1272 | || pieceCount[B_PAWN] > 8) |
| 1273 | assert(0 && "pos_is_ok: Pawns" ); |
| 1274 | |
| 1275 | if ( (pieces(WHITE) & pieces(BLACK)) |
| 1276 | || (pieces(WHITE) | pieces(BLACK)) != pieces() |
| 1277 | || popcount(pieces(WHITE)) > 16 |
| 1278 | || popcount(pieces(BLACK)) > 16) |
| 1279 | assert(0 && "pos_is_ok: Bitboards" ); |
| 1280 | |
| 1281 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) |
| 1282 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) |
| 1283 | if (p1 != p2 && (pieces(p1) & pieces(p2))) |
| 1284 | assert(0 && "pos_is_ok: Bitboards" ); |
| 1285 | |
| 1286 | StateInfo si = *st; |
| 1287 | set_state(&si); |
| 1288 | if (std::memcmp(&si, st, sizeof(StateInfo))) |
| 1289 | assert(0 && "pos_is_ok: State" ); |
| 1290 | |
| 1291 | for (Piece pc : Pieces) |
| 1292 | { |
| 1293 | if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))) |
| 1294 | || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc)) |
| 1295 | assert(0 && "pos_is_ok: Pieces" ); |
| 1296 | |
| 1297 | for (int i = 0; i < pieceCount[pc]; ++i) |
| 1298 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) |
| 1299 | assert(0 && "pos_is_ok: Index" ); |
| 1300 | } |
| 1301 | |
| 1302 | for (Color c : { WHITE, BLACK }) |
| 1303 | for (CastlingSide s : {KING_SIDE, QUEEN_SIDE}) |
| 1304 | { |
| 1305 | if (!can_castle(c | s)) |
| 1306 | continue; |
| 1307 | |
| 1308 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) |
| 1309 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) |
| 1310 | || (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) |
| 1311 | assert(0 && "pos_is_ok: Castling" ); |
| 1312 | } |
| 1313 | |
| 1314 | return true; |
| 1315 | } |
| 1316 | |