1 | #include "duckdb/execution/index/art/art.hpp" |
2 | |
3 | #include "duckdb/common/radix.hpp" |
4 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
5 | #include "duckdb/execution/expression_executor.hpp" |
6 | #include "duckdb/storage/arena_allocator.hpp" |
7 | #include "duckdb/execution/index/art/art_key.hpp" |
8 | #include "duckdb/execution/index/art/prefix_segment.hpp" |
9 | #include "duckdb/execution/index/art/leaf_segment.hpp" |
10 | #include "duckdb/execution/index/art/prefix.hpp" |
11 | #include "duckdb/execution/index/art/leaf.hpp" |
12 | #include "duckdb/execution/index/art/node4.hpp" |
13 | #include "duckdb/execution/index/art/node16.hpp" |
14 | #include "duckdb/execution/index/art/node48.hpp" |
15 | #include "duckdb/execution/index/art/node256.hpp" |
16 | #include "duckdb/execution/index/art/iterator.hpp" |
17 | #include "duckdb/common/types/conflict_manager.hpp" |
18 | #include "duckdb/storage/table/scan_state.hpp" |
19 | |
20 | #include <algorithm> |
21 | |
22 | namespace duckdb { |
23 | |
24 | struct ARTIndexScanState : public IndexScanState { |
25 | |
26 | //! Scan predicates (single predicate scan or range scan) |
27 | Value values[2]; |
28 | //! Expressions of the scan predicates |
29 | ExpressionType expressions[2]; |
30 | bool checked = false; |
31 | //! All scanned row IDs |
32 | vector<row_t> result_ids; |
33 | Iterator iterator; |
34 | }; |
35 | |
36 | ART::ART(const vector<column_t> &column_ids, TableIOManager &table_io_manager, |
37 | const vector<unique_ptr<Expression>> &unbound_expressions, const IndexConstraintType constraint_type, |
38 | AttachedDatabase &db, const idx_t block_id, const idx_t block_offset) |
39 | |
40 | : Index(db, IndexType::ART, table_io_manager, column_ids, unbound_expressions, constraint_type) { |
41 | |
42 | if (!Radix::IsLittleEndian()) { |
43 | throw NotImplementedException("ART indexes are not supported on big endian architectures" ); |
44 | } |
45 | |
46 | // initialize all allocators |
47 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(PrefixSegment), args&: buffer_manager.GetBufferAllocator())); |
48 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(LeafSegment), args&: buffer_manager.GetBufferAllocator())); |
49 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Leaf), args&: buffer_manager.GetBufferAllocator())); |
50 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node4), args&: buffer_manager.GetBufferAllocator())); |
51 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node16), args&: buffer_manager.GetBufferAllocator())); |
52 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node48), args&: buffer_manager.GetBufferAllocator())); |
53 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node256), args&: buffer_manager.GetBufferAllocator())); |
54 | |
55 | // set the root node of the tree |
56 | tree = make_uniq<Node>(); |
57 | if (block_id != DConstants::INVALID_INDEX) { |
58 | tree->buffer_id = block_id; |
59 | tree->offset = block_offset; |
60 | tree->Deserialize(art&: *this); |
61 | } |
62 | serialized_data_pointer = BlockPointer(block_id, block_offset); |
63 | |
64 | // validate the types of the key columns |
65 | for (idx_t i = 0; i < types.size(); i++) { |
66 | switch (types[i]) { |
67 | case PhysicalType::BOOL: |
68 | case PhysicalType::INT8: |
69 | case PhysicalType::INT16: |
70 | case PhysicalType::INT32: |
71 | case PhysicalType::INT64: |
72 | case PhysicalType::INT128: |
73 | case PhysicalType::UINT8: |
74 | case PhysicalType::UINT16: |
75 | case PhysicalType::UINT32: |
76 | case PhysicalType::UINT64: |
77 | case PhysicalType::FLOAT: |
78 | case PhysicalType::DOUBLE: |
79 | case PhysicalType::VARCHAR: |
80 | break; |
81 | default: |
82 | throw InvalidTypeException(logical_types[i], "Invalid type for index key." ); |
83 | } |
84 | } |
85 | } |
86 | |
87 | ART::~ART() { |
88 | tree->Reset(); |
89 | } |
90 | |
91 | //===--------------------------------------------------------------------===// |
92 | // Initialize Predicate Scans |
93 | //===--------------------------------------------------------------------===// |
94 | |
95 | unique_ptr<IndexScanState> ART::InitializeScanSinglePredicate(const Transaction &transaction, const Value &value, |
96 | const ExpressionType expression_type) { |
97 | // initialize point lookup |
98 | auto result = make_uniq<ARTIndexScanState>(); |
99 | result->values[0] = value; |
100 | result->expressions[0] = expression_type; |
101 | return std::move(result); |
102 | } |
103 | |
104 | unique_ptr<IndexScanState> ART::InitializeScanTwoPredicates(const Transaction &transaction, const Value &low_value, |
105 | const ExpressionType low_expression_type, |
106 | const Value &high_value, |
107 | const ExpressionType high_expression_type) { |
108 | // initialize range lookup |
109 | auto result = make_uniq<ARTIndexScanState>(); |
110 | result->values[0] = low_value; |
111 | result->expressions[0] = low_expression_type; |
112 | result->values[1] = high_value; |
113 | result->expressions[1] = high_expression_type; |
114 | return std::move(result); |
115 | } |
116 | |
117 | //===--------------------------------------------------------------------===// |
118 | // Keys |
119 | //===--------------------------------------------------------------------===// |
120 | |
121 | template <class T> |
122 | static void TemplatedGenerateKeys(ArenaAllocator &allocator, Vector &input, idx_t count, vector<ARTKey> &keys) { |
123 | UnifiedVectorFormat idata; |
124 | input.ToUnifiedFormat(count, data&: idata); |
125 | |
126 | D_ASSERT(keys.size() >= count); |
127 | auto input_data = UnifiedVectorFormat::GetData<T>(idata); |
128 | for (idx_t i = 0; i < count; i++) { |
129 | auto idx = idata.sel->get_index(idx: i); |
130 | if (idata.validity.RowIsValid(row_idx: idx)) { |
131 | ARTKey::CreateARTKey<T>(allocator, input.GetType(), keys[i], input_data[idx]); |
132 | } else { |
133 | // we need to possibly reset the former key value in the keys vector |
134 | keys[i] = ARTKey(); |
135 | } |
136 | } |
137 | } |
138 | |
139 | template <class T> |
140 | static void ConcatenateKeys(ArenaAllocator &allocator, Vector &input, idx_t count, vector<ARTKey> &keys) { |
141 | UnifiedVectorFormat idata; |
142 | input.ToUnifiedFormat(count, data&: idata); |
143 | |
144 | auto input_data = UnifiedVectorFormat::GetData<T>(idata); |
145 | for (idx_t i = 0; i < count; i++) { |
146 | auto idx = idata.sel->get_index(idx: i); |
147 | |
148 | // key is not NULL (no previous column entry was NULL) |
149 | if (!keys[i].Empty()) { |
150 | if (!idata.validity.RowIsValid(row_idx: idx)) { |
151 | // this column entry is NULL, set whole key to NULL |
152 | keys[i] = ARTKey(); |
153 | } else { |
154 | auto other_key = ARTKey::CreateARTKey<T>(allocator, input.GetType(), input_data[idx]); |
155 | keys[i].ConcatenateARTKey(allocator, other_key); |
156 | } |
157 | } |
158 | } |
159 | } |
160 | |
161 | void ART::GenerateKeys(ArenaAllocator &allocator, DataChunk &input, vector<ARTKey> &keys) { |
162 | // generate keys for the first input column |
163 | switch (input.data[0].GetType().InternalType()) { |
164 | case PhysicalType::BOOL: |
165 | TemplatedGenerateKeys<bool>(allocator, input&: input.data[0], count: input.size(), keys); |
166 | break; |
167 | case PhysicalType::INT8: |
168 | TemplatedGenerateKeys<int8_t>(allocator, input&: input.data[0], count: input.size(), keys); |
169 | break; |
170 | case PhysicalType::INT16: |
171 | TemplatedGenerateKeys<int16_t>(allocator, input&: input.data[0], count: input.size(), keys); |
172 | break; |
173 | case PhysicalType::INT32: |
174 | TemplatedGenerateKeys<int32_t>(allocator, input&: input.data[0], count: input.size(), keys); |
175 | break; |
176 | case PhysicalType::INT64: |
177 | TemplatedGenerateKeys<int64_t>(allocator, input&: input.data[0], count: input.size(), keys); |
178 | break; |
179 | case PhysicalType::INT128: |
180 | TemplatedGenerateKeys<hugeint_t>(allocator, input&: input.data[0], count: input.size(), keys); |
181 | break; |
182 | case PhysicalType::UINT8: |
183 | TemplatedGenerateKeys<uint8_t>(allocator, input&: input.data[0], count: input.size(), keys); |
184 | break; |
185 | case PhysicalType::UINT16: |
186 | TemplatedGenerateKeys<uint16_t>(allocator, input&: input.data[0], count: input.size(), keys); |
187 | break; |
188 | case PhysicalType::UINT32: |
189 | TemplatedGenerateKeys<uint32_t>(allocator, input&: input.data[0], count: input.size(), keys); |
190 | break; |
191 | case PhysicalType::UINT64: |
192 | TemplatedGenerateKeys<uint64_t>(allocator, input&: input.data[0], count: input.size(), keys); |
193 | break; |
194 | case PhysicalType::FLOAT: |
195 | TemplatedGenerateKeys<float>(allocator, input&: input.data[0], count: input.size(), keys); |
196 | break; |
197 | case PhysicalType::DOUBLE: |
198 | TemplatedGenerateKeys<double>(allocator, input&: input.data[0], count: input.size(), keys); |
199 | break; |
200 | case PhysicalType::VARCHAR: |
201 | TemplatedGenerateKeys<string_t>(allocator, input&: input.data[0], count: input.size(), keys); |
202 | break; |
203 | default: |
204 | throw InternalException("Invalid type for index" ); |
205 | } |
206 | |
207 | for (idx_t i = 1; i < input.ColumnCount(); i++) { |
208 | // for each of the remaining columns, concatenate |
209 | switch (input.data[i].GetType().InternalType()) { |
210 | case PhysicalType::BOOL: |
211 | ConcatenateKeys<bool>(allocator, input&: input.data[i], count: input.size(), keys); |
212 | break; |
213 | case PhysicalType::INT8: |
214 | ConcatenateKeys<int8_t>(allocator, input&: input.data[i], count: input.size(), keys); |
215 | break; |
216 | case PhysicalType::INT16: |
217 | ConcatenateKeys<int16_t>(allocator, input&: input.data[i], count: input.size(), keys); |
218 | break; |
219 | case PhysicalType::INT32: |
220 | ConcatenateKeys<int32_t>(allocator, input&: input.data[i], count: input.size(), keys); |
221 | break; |
222 | case PhysicalType::INT64: |
223 | ConcatenateKeys<int64_t>(allocator, input&: input.data[i], count: input.size(), keys); |
224 | break; |
225 | case PhysicalType::INT128: |
226 | ConcatenateKeys<hugeint_t>(allocator, input&: input.data[i], count: input.size(), keys); |
227 | break; |
228 | case PhysicalType::UINT8: |
229 | ConcatenateKeys<uint8_t>(allocator, input&: input.data[i], count: input.size(), keys); |
230 | break; |
231 | case PhysicalType::UINT16: |
232 | ConcatenateKeys<uint16_t>(allocator, input&: input.data[i], count: input.size(), keys); |
233 | break; |
234 | case PhysicalType::UINT32: |
235 | ConcatenateKeys<uint32_t>(allocator, input&: input.data[i], count: input.size(), keys); |
236 | break; |
237 | case PhysicalType::UINT64: |
238 | ConcatenateKeys<uint64_t>(allocator, input&: input.data[i], count: input.size(), keys); |
239 | break; |
240 | case PhysicalType::FLOAT: |
241 | ConcatenateKeys<float>(allocator, input&: input.data[i], count: input.size(), keys); |
242 | break; |
243 | case PhysicalType::DOUBLE: |
244 | ConcatenateKeys<double>(allocator, input&: input.data[i], count: input.size(), keys); |
245 | break; |
246 | case PhysicalType::VARCHAR: |
247 | ConcatenateKeys<string_t>(allocator, input&: input.data[i], count: input.size(), keys); |
248 | break; |
249 | default: |
250 | throw InternalException("Invalid type for index" ); |
251 | } |
252 | } |
253 | } |
254 | |
255 | //===--------------------------------------------------------------------===// |
256 | // Construct from sorted data (only during CREATE (UNIQUE) INDEX statements) |
257 | //===--------------------------------------------------------------------===// |
258 | |
259 | struct KeySection { |
260 | KeySection(idx_t start_p, idx_t end_p, idx_t depth_p, data_t key_byte_p) |
261 | : start(start_p), end(end_p), depth(depth_p), key_byte(key_byte_p) {}; |
262 | KeySection(idx_t start_p, idx_t end_p, vector<ARTKey> &keys, KeySection &key_section) |
263 | : start(start_p), end(end_p), depth(key_section.depth + 1), key_byte(keys[end_p].data[key_section.depth]) {}; |
264 | idx_t start; |
265 | idx_t end; |
266 | idx_t depth; |
267 | data_t key_byte; |
268 | }; |
269 | |
270 | void GetChildSections(vector<KeySection> &child_sections, vector<ARTKey> &keys, KeySection &key_section) { |
271 | |
272 | idx_t child_start_idx = key_section.start; |
273 | for (idx_t i = key_section.start + 1; i <= key_section.end; i++) { |
274 | if (keys[i - 1].data[key_section.depth] != keys[i].data[key_section.depth]) { |
275 | child_sections.emplace_back(args&: child_start_idx, args: i - 1, args&: keys, args&: key_section); |
276 | child_start_idx = i; |
277 | } |
278 | } |
279 | child_sections.emplace_back(args&: child_start_idx, args&: key_section.end, args&: keys, args&: key_section); |
280 | } |
281 | |
282 | bool Construct(ART &art, vector<ARTKey> &keys, row_t *row_ids, Node &node, KeySection &key_section, |
283 | bool &has_constraint) { |
284 | |
285 | D_ASSERT(key_section.start < keys.size()); |
286 | D_ASSERT(key_section.end < keys.size()); |
287 | D_ASSERT(key_section.start <= key_section.end); |
288 | |
289 | auto &start_key = keys[key_section.start]; |
290 | auto &end_key = keys[key_section.end]; |
291 | |
292 | // increment the depth until we reach a leaf or find a mismatching byte |
293 | auto prefix_start = key_section.depth; |
294 | while (start_key.len != key_section.depth && start_key.ByteMatches(other: end_key, depth: key_section.depth)) { |
295 | key_section.depth++; |
296 | } |
297 | |
298 | // we reached a leaf, i.e. all the bytes of start_key and end_key match |
299 | if (start_key.len == key_section.depth) { |
300 | // end_idx is inclusive |
301 | auto num_row_ids = key_section.end - key_section.start + 1; |
302 | |
303 | // check for possible constraint violation |
304 | auto single_row_id = num_row_ids == 1; |
305 | if (has_constraint && !single_row_id) { |
306 | return false; |
307 | } |
308 | |
309 | if (single_row_id) { |
310 | Leaf::New(art, node, key: start_key, depth: prefix_start, row_id: row_ids[key_section.start]); |
311 | } else { |
312 | Leaf::New(art, node, key: start_key, depth: prefix_start, row_ids: row_ids + key_section.start, count: num_row_ids); |
313 | } |
314 | return true; |
315 | } |
316 | |
317 | // create a new node and recurse |
318 | |
319 | // we will find at least two child entries of this node, otherwise we'd have reached a leaf |
320 | vector<KeySection> child_sections; |
321 | GetChildSections(child_sections, keys, key_section); |
322 | |
323 | auto node_type = Node::GetARTNodeTypeByCount(count: child_sections.size()); |
324 | Node::New(art, node, type: node_type); |
325 | |
326 | auto prefix_length = key_section.depth - prefix_start; |
327 | node.GetPrefix(art).Initialize(art, key: start_key, depth: prefix_start, count_p: prefix_length); |
328 | |
329 | // recurse on each child section |
330 | for (auto &child_section : child_sections) { |
331 | Node new_child; |
332 | auto no_violation = Construct(art, keys, row_ids, node&: new_child, key_section&: child_section, has_constraint); |
333 | Node::InsertChild(art, node, byte: child_section.key_byte, child: new_child); |
334 | if (!no_violation) { |
335 | return false; |
336 | } |
337 | } |
338 | return true; |
339 | } |
340 | |
341 | bool ART::ConstructFromSorted(idx_t count, vector<ARTKey> &keys, Vector &row_identifiers) { |
342 | |
343 | // prepare the row_identifiers |
344 | row_identifiers.Flatten(count); |
345 | auto row_ids = FlatVector::GetData<row_t>(vector&: row_identifiers); |
346 | |
347 | auto key_section = KeySection(0, count - 1, 0, 0); |
348 | auto has_constraint = IsUnique(); |
349 | if (!Construct(art&: *this, keys, row_ids, node&: *this->tree, key_section, has_constraint)) { |
350 | return false; |
351 | } |
352 | |
353 | #ifdef DEBUG |
354 | D_ASSERT(!VerifyAndToStringInternal(true).empty()); |
355 | for (idx_t i = 0; i < count; i++) { |
356 | D_ASSERT(!keys[i].Empty()); |
357 | auto leaf_node = Lookup(*tree, keys[i], 0); |
358 | D_ASSERT(leaf_node.IsSet()); |
359 | auto &leaf = Leaf::Get(*this, leaf_node); |
360 | |
361 | if (leaf.IsInlined()) { |
362 | D_ASSERT(row_ids[i] == leaf.row_ids.inlined); |
363 | continue; |
364 | } |
365 | |
366 | D_ASSERT(leaf.row_ids.ptr.IsSet()); |
367 | Node leaf_segment = leaf.row_ids.ptr; |
368 | auto position = leaf.FindRowId(*this, leaf_segment, row_ids[i]); |
369 | D_ASSERT(position != (uint32_t)DConstants::INVALID_INDEX); |
370 | } |
371 | #endif |
372 | |
373 | return true; |
374 | } |
375 | |
376 | //===--------------------------------------------------------------------===// |
377 | // Insert / Verification / Constraint Checking |
378 | //===--------------------------------------------------------------------===// |
379 | PreservedError ART::Insert(IndexLock &lock, DataChunk &input, Vector &row_ids) { |
380 | |
381 | D_ASSERT(row_ids.GetType().InternalType() == ROW_TYPE); |
382 | D_ASSERT(logical_types[0] == input.data[0].GetType()); |
383 | |
384 | // generate the keys for the given input |
385 | ArenaAllocator arena_allocator(BufferAllocator::Get(db)); |
386 | vector<ARTKey> keys(input.size()); |
387 | GenerateKeys(allocator&: arena_allocator, input, keys); |
388 | |
389 | // get the corresponding row IDs |
390 | row_ids.Flatten(count: input.size()); |
391 | auto row_identifiers = FlatVector::GetData<row_t>(vector&: row_ids); |
392 | |
393 | // now insert the elements into the index |
394 | idx_t failed_index = DConstants::INVALID_INDEX; |
395 | for (idx_t i = 0; i < input.size(); i++) { |
396 | if (keys[i].Empty()) { |
397 | continue; |
398 | } |
399 | |
400 | row_t row_id = row_identifiers[i]; |
401 | if (!Insert(node&: *tree, key: keys[i], depth: 0, row_id)) { |
402 | // failed to insert because of constraint violation |
403 | failed_index = i; |
404 | break; |
405 | } |
406 | } |
407 | |
408 | // failed to insert because of constraint violation: remove previously inserted entries |
409 | if (failed_index != DConstants::INVALID_INDEX) { |
410 | for (idx_t i = 0; i < failed_index; i++) { |
411 | if (keys[i].Empty()) { |
412 | continue; |
413 | } |
414 | row_t row_id = row_identifiers[i]; |
415 | Erase(node&: *tree, key: keys[i], depth: 0, row_id); |
416 | } |
417 | } |
418 | |
419 | if (failed_index != DConstants::INVALID_INDEX) { |
420 | return PreservedError(ConstraintException("PRIMARY KEY or UNIQUE constraint violated: duplicate key \"%s\"" , |
421 | AppendRowError(input, index: failed_index))); |
422 | } |
423 | |
424 | #ifdef DEBUG |
425 | for (idx_t i = 0; i < input.size(); i++) { |
426 | if (keys[i].Empty()) { |
427 | continue; |
428 | } |
429 | |
430 | auto leaf_node = Lookup(*tree, keys[i], 0); |
431 | D_ASSERT(leaf_node.IsSet()); |
432 | auto &leaf = Leaf::Get(*this, leaf_node); |
433 | |
434 | if (leaf.IsInlined()) { |
435 | D_ASSERT(row_identifiers[i] == leaf.row_ids.inlined); |
436 | continue; |
437 | } |
438 | |
439 | D_ASSERT(leaf.row_ids.ptr.IsSet()); |
440 | Node leaf_segment = leaf.row_ids.ptr; |
441 | auto position = leaf.FindRowId(*this, leaf_segment, row_identifiers[i]); |
442 | D_ASSERT(position != (uint32_t)DConstants::INVALID_INDEX); |
443 | } |
444 | #endif |
445 | |
446 | return PreservedError(); |
447 | } |
448 | |
449 | PreservedError ART::Append(IndexLock &lock, DataChunk &appended_data, Vector &row_identifiers) { |
450 | DataChunk expression_result; |
451 | expression_result.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
452 | |
453 | // first resolve the expressions for the index |
454 | ExecuteExpressions(input&: appended_data, result&: expression_result); |
455 | |
456 | // now insert into the index |
457 | return Insert(lock, input&: expression_result, row_ids&: row_identifiers); |
458 | } |
459 | |
460 | void ART::VerifyAppend(DataChunk &chunk) { |
461 | ConflictManager conflict_manager(VerifyExistenceType::APPEND, chunk.size()); |
462 | CheckConstraintsForChunk(input&: chunk, conflict_manager); |
463 | } |
464 | |
465 | void ART::VerifyAppend(DataChunk &chunk, ConflictManager &conflict_manager) { |
466 | D_ASSERT(conflict_manager.LookupType() == VerifyExistenceType::APPEND); |
467 | CheckConstraintsForChunk(input&: chunk, conflict_manager); |
468 | } |
469 | |
470 | bool ART::InsertToLeaf(Node &leaf_node, const row_t &row_id) { |
471 | |
472 | auto &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
473 | |
474 | #ifdef DEBUG |
475 | for (idx_t k = 0; k < leaf.count; k++) { |
476 | D_ASSERT(leaf.GetRowId(*this, k) != row_id); |
477 | } |
478 | #endif |
479 | if (IsUnique() && leaf.count != 0) { |
480 | return false; |
481 | } |
482 | leaf.Insert(art&: *this, row_id); |
483 | return true; |
484 | } |
485 | |
486 | bool ART::Insert(Node &node, const ARTKey &key, idx_t depth, const row_t &row_id) { |
487 | |
488 | if (!node.IsSet()) { |
489 | // node is currently empty, create a leaf here with the key |
490 | Leaf::New(art&: *this, node, key, depth, row_id); |
491 | return true; |
492 | } |
493 | |
494 | if (node.DecodeARTNodeType() == NType::LEAF) { |
495 | |
496 | // add a row ID to a leaf, if they have the same key |
497 | auto &leaf = Leaf::Get(art: *this, ptr: node); |
498 | auto mismatch_position = leaf.prefix.KeyMismatchPosition(art: *this, key, depth); |
499 | if (mismatch_position == leaf.prefix.count && depth + leaf.prefix.count == key.len) { |
500 | return InsertToLeaf(leaf_node&: node, row_id); |
501 | } |
502 | |
503 | // replace leaf with Node4 and store both leaves in it |
504 | auto old_node = node; |
505 | auto &new_n4 = Node4::New(art&: *this, node); |
506 | new_n4.prefix.Initialize(art&: *this, key, depth, count_p: mismatch_position); |
507 | |
508 | auto key_byte = old_node.GetPrefix(art&: *this).Reduce(art&: *this, reduce_count: mismatch_position); |
509 | Node4::InsertChild(art&: *this, node, byte: key_byte, child: old_node); |
510 | |
511 | Node leaf_node; |
512 | Leaf::New(art&: *this, node&: leaf_node, key, depth: depth + mismatch_position + 1, row_id); |
513 | Node4::InsertChild(art&: *this, node, byte: key[depth + mismatch_position], child: leaf_node); |
514 | |
515 | return true; |
516 | } |
517 | |
518 | // handle prefix of inner node |
519 | auto &old_node_prefix = node.GetPrefix(art&: *this); |
520 | if (old_node_prefix.count) { |
521 | |
522 | auto mismatch_position = old_node_prefix.KeyMismatchPosition(art: *this, key, depth); |
523 | if (mismatch_position != old_node_prefix.count) { |
524 | |
525 | // prefix differs, create new node |
526 | auto old_node = node; |
527 | auto &new_n4 = Node4::New(art&: *this, node); |
528 | new_n4.prefix.Initialize(art&: *this, key, depth, count_p: mismatch_position); |
529 | |
530 | auto key_byte = old_node_prefix.Reduce(art&: *this, reduce_count: mismatch_position); |
531 | Node4::InsertChild(art&: *this, node, byte: key_byte, child: old_node); |
532 | |
533 | Node leaf_node; |
534 | Leaf::New(art&: *this, node&: leaf_node, key, depth: depth + mismatch_position + 1, row_id); |
535 | Node4::InsertChild(art&: *this, node, byte: key[depth + mismatch_position], child: leaf_node); |
536 | |
537 | return true; |
538 | } |
539 | depth += node.GetPrefix(art&: *this).count; |
540 | } |
541 | |
542 | // recurse |
543 | D_ASSERT(depth < key.len); |
544 | auto child = node.GetChild(art&: *this, byte: key[depth]); |
545 | if (child) { |
546 | bool success = Insert(node&: *child, key, depth: depth + 1, row_id); |
547 | node.ReplaceChild(art: *this, byte: key[depth], child: *child); |
548 | return success; |
549 | } |
550 | |
551 | // insert at position |
552 | Node leaf_node; |
553 | Leaf::New(art&: *this, node&: leaf_node, key, depth: depth + 1, row_id); |
554 | Node::InsertChild(art&: *this, node, byte: key[depth], child: leaf_node); |
555 | return true; |
556 | } |
557 | |
558 | //===--------------------------------------------------------------------===// |
559 | // Delete |
560 | //===--------------------------------------------------------------------===// |
561 | |
562 | void ART::Delete(IndexLock &state, DataChunk &input, Vector &row_ids) { |
563 | |
564 | DataChunk expression; |
565 | expression.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
566 | |
567 | // first resolve the expressions |
568 | ExecuteExpressions(input, result&: expression); |
569 | |
570 | // then generate the keys for the given input |
571 | ArenaAllocator arena_allocator(BufferAllocator::Get(db)); |
572 | vector<ARTKey> keys(expression.size()); |
573 | GenerateKeys(allocator&: arena_allocator, input&: expression, keys); |
574 | |
575 | // now erase the elements from the database |
576 | row_ids.Flatten(count: input.size()); |
577 | auto row_identifiers = FlatVector::GetData<row_t>(vector&: row_ids); |
578 | |
579 | for (idx_t i = 0; i < input.size(); i++) { |
580 | if (keys[i].Empty()) { |
581 | continue; |
582 | } |
583 | Erase(node&: *tree, key: keys[i], depth: 0, row_id: row_identifiers[i]); |
584 | } |
585 | |
586 | #ifdef DEBUG |
587 | // verify that we removed all row IDs |
588 | for (idx_t i = 0; i < input.size(); i++) { |
589 | if (keys[i].Empty()) { |
590 | continue; |
591 | } |
592 | |
593 | auto node = Lookup(*tree, keys[i], 0); |
594 | if (node.IsSet()) { |
595 | auto &leaf = Leaf::Get(*this, node); |
596 | |
597 | if (leaf.IsInlined()) { |
598 | D_ASSERT(row_identifiers[i] != leaf.row_ids.inlined); |
599 | continue; |
600 | } |
601 | |
602 | D_ASSERT(leaf.row_ids.ptr.IsSet()); |
603 | Node leaf_segment = leaf.row_ids.ptr; |
604 | auto position = leaf.FindRowId(*this, leaf_segment, row_identifiers[i]); |
605 | D_ASSERT(position == (uint32_t)DConstants::INVALID_INDEX); |
606 | } |
607 | } |
608 | #endif |
609 | } |
610 | |
611 | void ART::Erase(Node &node, const ARTKey &key, idx_t depth, const row_t &row_id) { |
612 | |
613 | if (!node.IsSet()) { |
614 | return; |
615 | } |
616 | |
617 | // delete a row ID from a leaf |
618 | if (node.DecodeARTNodeType() == NType::LEAF) { |
619 | auto &leaf = Leaf::Get(art: *this, ptr: node); |
620 | leaf.Remove(art&: *this, row_id); |
621 | |
622 | if (leaf.count == 0) { |
623 | Node::Free(art&: *this, node); |
624 | node.Reset(); |
625 | } |
626 | return; |
627 | } |
628 | |
629 | // handle prefix |
630 | auto &node_prefix = node.GetPrefix(art&: *this); |
631 | if (node_prefix.count) { |
632 | if (node_prefix.KeyMismatchPosition(art: *this, key, depth) != node_prefix.count) { |
633 | return; |
634 | } |
635 | depth += node_prefix.count; |
636 | } |
637 | |
638 | auto child = node.GetChild(art&: *this, byte: key[depth]); |
639 | if (child) { |
640 | D_ASSERT(child->IsSet()); |
641 | |
642 | if (child->DecodeARTNodeType() == NType::LEAF) { |
643 | // leaf found, remove entry |
644 | auto &leaf = Leaf::Get(art: *this, ptr: *child); |
645 | leaf.Remove(art&: *this, row_id); |
646 | |
647 | if (leaf.count == 0) { |
648 | // leaf is empty, delete leaf, decrement node counter and maybe shrink node |
649 | Node::DeleteChild(art&: *this, node, byte: key[depth]); |
650 | } |
651 | return; |
652 | } |
653 | |
654 | // recurse |
655 | Erase(node&: *child, key, depth: depth + 1, row_id); |
656 | node.ReplaceChild(art: *this, byte: key[depth], child: *child); |
657 | } |
658 | } |
659 | |
660 | //===--------------------------------------------------------------------===// |
661 | // Point Query (Equal) |
662 | //===--------------------------------------------------------------------===// |
663 | |
664 | static ARTKey CreateKey(ArenaAllocator &allocator, PhysicalType type, Value &value) { |
665 | D_ASSERT(type == value.type().InternalType()); |
666 | switch (type) { |
667 | case PhysicalType::BOOL: |
668 | return ARTKey::CreateARTKey<bool>(allocator, type: value.type(), element: value); |
669 | case PhysicalType::INT8: |
670 | return ARTKey::CreateARTKey<int8_t>(allocator, type: value.type(), element: value); |
671 | case PhysicalType::INT16: |
672 | return ARTKey::CreateARTKey<int16_t>(allocator, type: value.type(), element: value); |
673 | case PhysicalType::INT32: |
674 | return ARTKey::CreateARTKey<int32_t>(allocator, type: value.type(), element: value); |
675 | case PhysicalType::INT64: |
676 | return ARTKey::CreateARTKey<int64_t>(allocator, type: value.type(), element: value); |
677 | case PhysicalType::UINT8: |
678 | return ARTKey::CreateARTKey<uint8_t>(allocator, type: value.type(), element: value); |
679 | case PhysicalType::UINT16: |
680 | return ARTKey::CreateARTKey<uint16_t>(allocator, type: value.type(), element: value); |
681 | case PhysicalType::UINT32: |
682 | return ARTKey::CreateARTKey<uint32_t>(allocator, type: value.type(), element: value); |
683 | case PhysicalType::UINT64: |
684 | return ARTKey::CreateARTKey<uint64_t>(allocator, type: value.type(), element: value); |
685 | case PhysicalType::INT128: |
686 | return ARTKey::CreateARTKey<hugeint_t>(allocator, type: value.type(), element: value); |
687 | case PhysicalType::FLOAT: |
688 | return ARTKey::CreateARTKey<float>(allocator, type: value.type(), element: value); |
689 | case PhysicalType::DOUBLE: |
690 | return ARTKey::CreateARTKey<double>(allocator, type: value.type(), element: value); |
691 | case PhysicalType::VARCHAR: |
692 | return ARTKey::CreateARTKey<string_t>(allocator, type: value.type(), element: value); |
693 | default: |
694 | throw InternalException("Invalid type for the ART key" ); |
695 | } |
696 | } |
697 | |
698 | bool ART::SearchEqual(ARTKey &key, idx_t max_count, vector<row_t> &result_ids) { |
699 | |
700 | auto leaf_node = Lookup(node: *tree, key, depth: 0); |
701 | if (!leaf_node.IsSet()) { |
702 | return true; |
703 | } |
704 | |
705 | auto &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
706 | if (leaf.count > max_count) { |
707 | return false; |
708 | } |
709 | for (idx_t i = 0; i < leaf.count; i++) { |
710 | row_t row_id = leaf.GetRowId(art: *this, position: i); |
711 | result_ids.push_back(x: row_id); |
712 | } |
713 | return true; |
714 | } |
715 | |
716 | void ART::SearchEqualJoinNoFetch(ARTKey &key, idx_t &result_size) { |
717 | |
718 | // we need to look for a leaf |
719 | auto leaf_node = Lookup(node: *tree, key, depth: 0); |
720 | if (!leaf_node.IsSet()) { |
721 | result_size = 0; |
722 | return; |
723 | } |
724 | |
725 | auto &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
726 | result_size = leaf.count; |
727 | } |
728 | |
729 | //===--------------------------------------------------------------------===// |
730 | // Lookup |
731 | //===--------------------------------------------------------------------===// |
732 | |
733 | Node ART::Lookup(Node node, const ARTKey &key, idx_t depth) { |
734 | |
735 | while (node.IsSet()) { |
736 | if (node.DecodeARTNodeType() == NType::LEAF) { |
737 | auto &leaf = Leaf::Get(art: *this, ptr: node); |
738 | |
739 | // check if leaf contains key |
740 | for (idx_t i = 0; i < leaf.prefix.count; i++) { |
741 | if (leaf.prefix.GetByte(art: *this, position: i) != key[i + depth]) { |
742 | return Node(); |
743 | } |
744 | } |
745 | return node; |
746 | } |
747 | auto &node_prefix = node.GetPrefix(art&: *this); |
748 | if (node_prefix.count) { |
749 | for (idx_t pos = 0; pos < node_prefix.count; pos++) { |
750 | if (key[depth + pos] != node_prefix.GetByte(art: *this, position: pos)) { |
751 | // prefix mismatch, subtree of node does not contain key |
752 | return Node(); |
753 | } |
754 | } |
755 | depth += node_prefix.count; |
756 | } |
757 | |
758 | // prefix matches key, but no child at byte, does not contain key |
759 | auto child = node.GetChild(art&: *this, byte: key[depth]); |
760 | if (!child) { |
761 | return Node(); |
762 | } |
763 | |
764 | // recurse into child |
765 | node = *child; |
766 | D_ASSERT(node.IsSet()); |
767 | depth++; |
768 | } |
769 | |
770 | return Node(); |
771 | } |
772 | |
773 | //===--------------------------------------------------------------------===// |
774 | // Greater Than |
775 | // Returns: True (If found leaf >= key) |
776 | // False (Otherwise) |
777 | //===--------------------------------------------------------------------===// |
778 | |
779 | bool ART::SearchGreater(ARTIndexScanState &state, ARTKey &key, bool inclusive, idx_t max_count, |
780 | vector<row_t> &result_ids) { |
781 | |
782 | auto &it = state.iterator; |
783 | |
784 | // greater than scan: first set the iterator to the node at which we will start our scan by finding the lowest node |
785 | // that satisfies our requirement |
786 | if (!it.art) { |
787 | it.art = this; |
788 | if (!it.LowerBound(node: *tree, key, is_inclusive: inclusive)) { |
789 | return true; |
790 | } |
791 | } |
792 | |
793 | // after that we continue the scan; we don't need to check the bounds as any value following this value is |
794 | // automatically bigger and hence satisfies our predicate |
795 | ARTKey empty_key = ARTKey(); |
796 | return it.Scan(key: empty_key, max_count, result_ids, is_inclusive: false); |
797 | } |
798 | |
799 | //===--------------------------------------------------------------------===// |
800 | // Less Than |
801 | //===--------------------------------------------------------------------===// |
802 | |
803 | bool ART::SearchLess(ARTIndexScanState &state, ARTKey &upper_bound, bool inclusive, idx_t max_count, |
804 | vector<row_t> &result_ids) { |
805 | |
806 | if (!tree->IsSet()) { |
807 | return true; |
808 | } |
809 | |
810 | auto &it = state.iterator; |
811 | |
812 | if (!it.art) { |
813 | it.art = this; |
814 | // first find the minimum value in the ART: we start scanning from this value |
815 | it.FindMinimum(node&: *tree); |
816 | // early out min value higher than upper bound query |
817 | if (it.cur_key > upper_bound) { |
818 | return true; |
819 | } |
820 | } |
821 | |
822 | // now continue the scan until we reach the upper bound |
823 | return it.Scan(key: upper_bound, max_count, result_ids, is_inclusive: inclusive); |
824 | } |
825 | |
826 | //===--------------------------------------------------------------------===// |
827 | // Closed Range Query |
828 | //===--------------------------------------------------------------------===// |
829 | |
830 | bool ART::SearchCloseRange(ARTIndexScanState &state, ARTKey &lower_bound, ARTKey &upper_bound, bool left_inclusive, |
831 | bool right_inclusive, idx_t max_count, vector<row_t> &result_ids) { |
832 | auto &it = state.iterator; |
833 | |
834 | // first find the first node that satisfies the left predicate |
835 | if (!it.art) { |
836 | it.art = this; |
837 | if (!it.LowerBound(node: *tree, key: lower_bound, is_inclusive: left_inclusive)) { |
838 | return true; |
839 | } |
840 | } |
841 | |
842 | // now continue the scan until we reach the upper bound |
843 | return it.Scan(key: upper_bound, max_count, result_ids, is_inclusive: right_inclusive); |
844 | } |
845 | |
846 | bool ART::Scan(const Transaction &transaction, const DataTable &table, IndexScanState &table_state, |
847 | const idx_t max_count, vector<row_t> &result_ids) { |
848 | auto &state = table_state.Cast<ARTIndexScanState>(); |
849 | vector<row_t> row_ids; |
850 | bool success; |
851 | |
852 | // FIXME: the key directly owning the data for a single key might be more efficient |
853 | D_ASSERT(state.values[0].type().InternalType() == types[0]); |
854 | ArenaAllocator arena_allocator(Allocator::Get(db)); |
855 | auto key = CreateKey(allocator&: arena_allocator, type: types[0], value&: state.values[0]); |
856 | |
857 | if (state.values[1].IsNull()) { |
858 | |
859 | // single predicate |
860 | lock_guard<mutex> l(lock); |
861 | switch (state.expressions[0]) { |
862 | case ExpressionType::COMPARE_EQUAL: |
863 | success = SearchEqual(key, max_count, result_ids&: row_ids); |
864 | break; |
865 | case ExpressionType::COMPARE_GREATERTHANOREQUALTO: |
866 | success = SearchGreater(state, key, inclusive: true, max_count, result_ids&: row_ids); |
867 | break; |
868 | case ExpressionType::COMPARE_GREATERTHAN: |
869 | success = SearchGreater(state, key, inclusive: false, max_count, result_ids&: row_ids); |
870 | break; |
871 | case ExpressionType::COMPARE_LESSTHANOREQUALTO: |
872 | success = SearchLess(state, upper_bound&: key, inclusive: true, max_count, result_ids&: row_ids); |
873 | break; |
874 | case ExpressionType::COMPARE_LESSTHAN: |
875 | success = SearchLess(state, upper_bound&: key, inclusive: false, max_count, result_ids&: row_ids); |
876 | break; |
877 | default: |
878 | throw InternalException("Operation not implemented" ); |
879 | } |
880 | |
881 | } else { |
882 | |
883 | // two predicates |
884 | lock_guard<mutex> l(lock); |
885 | |
886 | D_ASSERT(state.values[1].type().InternalType() == types[0]); |
887 | auto upper_bound = CreateKey(allocator&: arena_allocator, type: types[0], value&: state.values[1]); |
888 | |
889 | bool left_inclusive = state.expressions[0] == ExpressionType ::COMPARE_GREATERTHANOREQUALTO; |
890 | bool right_inclusive = state.expressions[1] == ExpressionType ::COMPARE_LESSTHANOREQUALTO; |
891 | success = SearchCloseRange(state, lower_bound&: key, upper_bound, left_inclusive, right_inclusive, max_count, result_ids&: row_ids); |
892 | } |
893 | |
894 | if (!success) { |
895 | return false; |
896 | } |
897 | if (row_ids.empty()) { |
898 | return true; |
899 | } |
900 | |
901 | // sort the row ids |
902 | sort(first: row_ids.begin(), last: row_ids.end()); |
903 | // duplicate eliminate the row ids and append them to the row ids of the state |
904 | result_ids.reserve(n: row_ids.size()); |
905 | |
906 | result_ids.push_back(x: row_ids[0]); |
907 | for (idx_t i = 1; i < row_ids.size(); i++) { |
908 | if (row_ids[i] != row_ids[i - 1]) { |
909 | result_ids.push_back(x: row_ids[i]); |
910 | } |
911 | } |
912 | return true; |
913 | } |
914 | |
915 | //===--------------------------------------------------------------------===// |
916 | // More Verification / Constraint Checking |
917 | //===--------------------------------------------------------------------===// |
918 | |
919 | string ART::GenerateErrorKeyName(DataChunk &input, idx_t row) { |
920 | |
921 | // FIXME: why exactly can we not pass the expression_chunk as an argument to this |
922 | // FIXME: function instead of re-executing? |
923 | // re-executing the expressions is not very fast, but we're going to throw, so we don't care |
924 | DataChunk expression_chunk; |
925 | expression_chunk.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
926 | ExecuteExpressions(input, result&: expression_chunk); |
927 | |
928 | string key_name; |
929 | for (idx_t k = 0; k < expression_chunk.ColumnCount(); k++) { |
930 | if (k > 0) { |
931 | key_name += ", " ; |
932 | } |
933 | key_name += unbound_expressions[k]->GetName() + ": " + expression_chunk.data[k].GetValue(index: row).ToString(); |
934 | } |
935 | return key_name; |
936 | } |
937 | |
938 | string ART::GenerateConstraintErrorMessage(VerifyExistenceType verify_type, const string &key_name) { |
939 | switch (verify_type) { |
940 | case VerifyExistenceType::APPEND: { |
941 | // APPEND to PK/UNIQUE table, but node/key already exists in PK/UNIQUE table |
942 | string type = IsPrimary() ? "primary key" : "unique" ; |
943 | return StringUtil::Format( |
944 | fmt_str: "Duplicate key \"%s\" violates %s constraint. " |
945 | "If this is an unexpected constraint violation please double " |
946 | "check with the known index limitations section in our documentation (docs - sql - indexes)." , |
947 | params: key_name, params: type); |
948 | } |
949 | case VerifyExistenceType::APPEND_FK: { |
950 | // APPEND_FK to FK table, node/key does not exist in PK/UNIQUE table |
951 | return StringUtil::Format( |
952 | fmt_str: "Violates foreign key constraint because key \"%s\" does not exist in the referenced table" , params: key_name); |
953 | } |
954 | case VerifyExistenceType::DELETE_FK: { |
955 | // DELETE_FK that still exists in a FK table, i.e., not a valid delete |
956 | return StringUtil::Format(fmt_str: "Violates foreign key constraint because key \"%s\" is still referenced by a foreign " |
957 | "key in a different table" , |
958 | params: key_name); |
959 | } |
960 | default: |
961 | throw NotImplementedException("Type not implemented for VerifyExistenceType" ); |
962 | } |
963 | } |
964 | |
965 | void ART::CheckConstraintsForChunk(DataChunk &input, ConflictManager &conflict_manager) { |
966 | |
967 | // don't alter the index during constraint checking |
968 | lock_guard<mutex> l(lock); |
969 | |
970 | // first resolve the expressions for the index |
971 | DataChunk expression_chunk; |
972 | expression_chunk.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
973 | ExecuteExpressions(input, result&: expression_chunk); |
974 | |
975 | // generate the keys for the given input |
976 | ArenaAllocator arena_allocator(BufferAllocator::Get(db)); |
977 | vector<ARTKey> keys(expression_chunk.size()); |
978 | GenerateKeys(allocator&: arena_allocator, input&: expression_chunk, keys); |
979 | |
980 | idx_t found_conflict = DConstants::INVALID_INDEX; |
981 | for (idx_t i = 0; found_conflict == DConstants::INVALID_INDEX && i < input.size(); i++) { |
982 | |
983 | if (keys[i].Empty()) { |
984 | if (conflict_manager.AddNull(chunk_index: i)) { |
985 | found_conflict = i; |
986 | } |
987 | continue; |
988 | } |
989 | |
990 | auto leaf_node = Lookup(node: *tree, key: keys[i], depth: 0); |
991 | if (!leaf_node.IsSet()) { |
992 | if (conflict_manager.AddMiss(chunk_index: i)) { |
993 | found_conflict = i; |
994 | } |
995 | continue; |
996 | } |
997 | |
998 | // When we find a node, we need to update the 'matches' and 'row_ids' |
999 | // NOTE: Leafs can have more than one row_id, but for UNIQUE/PRIMARY KEY they will only have one |
1000 | Leaf &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
1001 | D_ASSERT(leaf.count == 1); |
1002 | auto row_id = leaf.GetRowId(art: *this, position: 0); |
1003 | if (conflict_manager.AddHit(chunk_index: i, row_id)) { |
1004 | found_conflict = i; |
1005 | } |
1006 | } |
1007 | |
1008 | conflict_manager.FinishLookup(); |
1009 | |
1010 | if (found_conflict == DConstants::INVALID_INDEX) { |
1011 | return; |
1012 | } |
1013 | |
1014 | auto key_name = GenerateErrorKeyName(input, row: found_conflict); |
1015 | auto exception_msg = GenerateConstraintErrorMessage(verify_type: conflict_manager.LookupType(), key_name); |
1016 | throw ConstraintException(exception_msg); |
1017 | } |
1018 | |
1019 | //===--------------------------------------------------------------------===// |
1020 | // Serialization |
1021 | //===--------------------------------------------------------------------===// |
1022 | |
1023 | BlockPointer ART::Serialize(MetaBlockWriter &writer) { |
1024 | |
1025 | lock_guard<mutex> l(lock); |
1026 | if (tree->IsSet()) { |
1027 | serialized_data_pointer = tree->Serialize(art&: *this, writer); |
1028 | } else { |
1029 | serialized_data_pointer = {(block_id_t)DConstants::INVALID_INDEX, (uint32_t)DConstants::INVALID_INDEX}; |
1030 | } |
1031 | |
1032 | return serialized_data_pointer; |
1033 | } |
1034 | |
1035 | //===--------------------------------------------------------------------===// |
1036 | // Vacuum |
1037 | //===--------------------------------------------------------------------===// |
1038 | |
1039 | void ART::InitializeVacuum(ARTFlags &flags) { |
1040 | |
1041 | flags.vacuum_flags.reserve(n: allocators.size()); |
1042 | for (auto &allocator : allocators) { |
1043 | flags.vacuum_flags.push_back(x: allocator->InitializeVacuum()); |
1044 | } |
1045 | } |
1046 | |
1047 | void ART::FinalizeVacuum(const ARTFlags &flags) { |
1048 | |
1049 | for (idx_t i = 0; i < allocators.size(); i++) { |
1050 | if (flags.vacuum_flags[i]) { |
1051 | allocators[i]->FinalizeVacuum(); |
1052 | } |
1053 | } |
1054 | } |
1055 | |
1056 | void ART::Vacuum(IndexLock &state) { |
1057 | |
1058 | if (!tree->IsSet()) { |
1059 | for (auto &allocator : allocators) { |
1060 | allocator->Reset(); |
1061 | } |
1062 | return; |
1063 | } |
1064 | |
1065 | // holds true, if an allocator needs a vacuum, and false otherwise |
1066 | ARTFlags flags; |
1067 | InitializeVacuum(flags); |
1068 | |
1069 | // skip vacuum if no allocators require it |
1070 | auto perform_vacuum = false; |
1071 | for (const auto &vacuum_flag : flags.vacuum_flags) { |
1072 | if (vacuum_flag) { |
1073 | perform_vacuum = true; |
1074 | break; |
1075 | } |
1076 | } |
1077 | if (!perform_vacuum) { |
1078 | return; |
1079 | } |
1080 | |
1081 | // traverse the allocated memory of the tree to perform a vacuum |
1082 | Node::Vacuum(art&: *this, node&: *tree, flags); |
1083 | |
1084 | // finalize the vacuum operation |
1085 | FinalizeVacuum(flags); |
1086 | |
1087 | for (auto &allocator : allocators) { |
1088 | allocator->Verify(); |
1089 | } |
1090 | } |
1091 | |
1092 | //===--------------------------------------------------------------------===// |
1093 | // Merging |
1094 | //===--------------------------------------------------------------------===// |
1095 | |
1096 | void ART::InitializeMerge(ARTFlags &flags) { |
1097 | |
1098 | flags.merge_buffer_counts.reserve(n: allocators.size()); |
1099 | for (auto &allocator : allocators) { |
1100 | flags.merge_buffer_counts.emplace_back(args: allocator->buffers.size()); |
1101 | } |
1102 | } |
1103 | |
1104 | bool ART::MergeIndexes(IndexLock &state, Index &other_index) { |
1105 | |
1106 | auto &other_art = other_index.Cast<ART>(); |
1107 | if (!other_art.tree->IsSet()) { |
1108 | return true; |
1109 | } |
1110 | |
1111 | if (tree->IsSet()) { |
1112 | // fully deserialize other_index, and traverse it to increment its buffer IDs |
1113 | ARTFlags flags; |
1114 | InitializeMerge(flags); |
1115 | other_art.tree->InitializeMerge(art&: other_art, flags); |
1116 | } |
1117 | |
1118 | // merge the node storage |
1119 | for (idx_t i = 0; i < allocators.size(); i++) { |
1120 | allocators[i]->Merge(other&: *other_art.allocators[i]); |
1121 | } |
1122 | |
1123 | // merge the ARTs |
1124 | if (!tree->Merge(art&: *this, other&: *other_art.tree)) { |
1125 | return false; |
1126 | } |
1127 | |
1128 | for (auto &allocator : allocators) { |
1129 | allocator->Verify(); |
1130 | } |
1131 | return true; |
1132 | } |
1133 | |
1134 | //===--------------------------------------------------------------------===// |
1135 | // Utility |
1136 | //===--------------------------------------------------------------------===// |
1137 | |
1138 | string ART::VerifyAndToString(IndexLock &state, const bool only_verify) { |
1139 | return VerifyAndToStringInternal(only_verify); |
1140 | } |
1141 | |
1142 | string ART::VerifyAndToStringInternal(const bool only_verify) { |
1143 | if (tree->IsSet()) { |
1144 | return "ART: " + tree->VerifyAndToString(art&: *this, only_verify); |
1145 | } |
1146 | return "[empty]" ; |
1147 | } |
1148 | |
1149 | } // namespace duckdb |
1150 | |