| 1 | #include "duckdb/execution/index/art/art.hpp" |
| 2 | |
| 3 | #include "duckdb/common/radix.hpp" |
| 4 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 5 | #include "duckdb/execution/expression_executor.hpp" |
| 6 | #include "duckdb/storage/arena_allocator.hpp" |
| 7 | #include "duckdb/execution/index/art/art_key.hpp" |
| 8 | #include "duckdb/execution/index/art/prefix_segment.hpp" |
| 9 | #include "duckdb/execution/index/art/leaf_segment.hpp" |
| 10 | #include "duckdb/execution/index/art/prefix.hpp" |
| 11 | #include "duckdb/execution/index/art/leaf.hpp" |
| 12 | #include "duckdb/execution/index/art/node4.hpp" |
| 13 | #include "duckdb/execution/index/art/node16.hpp" |
| 14 | #include "duckdb/execution/index/art/node48.hpp" |
| 15 | #include "duckdb/execution/index/art/node256.hpp" |
| 16 | #include "duckdb/execution/index/art/iterator.hpp" |
| 17 | #include "duckdb/common/types/conflict_manager.hpp" |
| 18 | #include "duckdb/storage/table/scan_state.hpp" |
| 19 | |
| 20 | #include <algorithm> |
| 21 | |
| 22 | namespace duckdb { |
| 23 | |
| 24 | struct ARTIndexScanState : public IndexScanState { |
| 25 | |
| 26 | //! Scan predicates (single predicate scan or range scan) |
| 27 | Value values[2]; |
| 28 | //! Expressions of the scan predicates |
| 29 | ExpressionType expressions[2]; |
| 30 | bool checked = false; |
| 31 | //! All scanned row IDs |
| 32 | vector<row_t> result_ids; |
| 33 | Iterator iterator; |
| 34 | }; |
| 35 | |
| 36 | ART::ART(const vector<column_t> &column_ids, TableIOManager &table_io_manager, |
| 37 | const vector<unique_ptr<Expression>> &unbound_expressions, const IndexConstraintType constraint_type, |
| 38 | AttachedDatabase &db, const idx_t block_id, const idx_t block_offset) |
| 39 | |
| 40 | : Index(db, IndexType::ART, table_io_manager, column_ids, unbound_expressions, constraint_type) { |
| 41 | |
| 42 | if (!Radix::IsLittleEndian()) { |
| 43 | throw NotImplementedException("ART indexes are not supported on big endian architectures" ); |
| 44 | } |
| 45 | |
| 46 | // initialize all allocators |
| 47 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(PrefixSegment), args&: buffer_manager.GetBufferAllocator())); |
| 48 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(LeafSegment), args&: buffer_manager.GetBufferAllocator())); |
| 49 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Leaf), args&: buffer_manager.GetBufferAllocator())); |
| 50 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node4), args&: buffer_manager.GetBufferAllocator())); |
| 51 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node16), args&: buffer_manager.GetBufferAllocator())); |
| 52 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node48), args&: buffer_manager.GetBufferAllocator())); |
| 53 | allocators.emplace_back(args: make_uniq<FixedSizeAllocator>(args: sizeof(Node256), args&: buffer_manager.GetBufferAllocator())); |
| 54 | |
| 55 | // set the root node of the tree |
| 56 | tree = make_uniq<Node>(); |
| 57 | if (block_id != DConstants::INVALID_INDEX) { |
| 58 | tree->buffer_id = block_id; |
| 59 | tree->offset = block_offset; |
| 60 | tree->Deserialize(art&: *this); |
| 61 | } |
| 62 | serialized_data_pointer = BlockPointer(block_id, block_offset); |
| 63 | |
| 64 | // validate the types of the key columns |
| 65 | for (idx_t i = 0; i < types.size(); i++) { |
| 66 | switch (types[i]) { |
| 67 | case PhysicalType::BOOL: |
| 68 | case PhysicalType::INT8: |
| 69 | case PhysicalType::INT16: |
| 70 | case PhysicalType::INT32: |
| 71 | case PhysicalType::INT64: |
| 72 | case PhysicalType::INT128: |
| 73 | case PhysicalType::UINT8: |
| 74 | case PhysicalType::UINT16: |
| 75 | case PhysicalType::UINT32: |
| 76 | case PhysicalType::UINT64: |
| 77 | case PhysicalType::FLOAT: |
| 78 | case PhysicalType::DOUBLE: |
| 79 | case PhysicalType::VARCHAR: |
| 80 | break; |
| 81 | default: |
| 82 | throw InvalidTypeException(logical_types[i], "Invalid type for index key." ); |
| 83 | } |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | ART::~ART() { |
| 88 | tree->Reset(); |
| 89 | } |
| 90 | |
| 91 | //===--------------------------------------------------------------------===// |
| 92 | // Initialize Predicate Scans |
| 93 | //===--------------------------------------------------------------------===// |
| 94 | |
| 95 | unique_ptr<IndexScanState> ART::InitializeScanSinglePredicate(const Transaction &transaction, const Value &value, |
| 96 | const ExpressionType expression_type) { |
| 97 | // initialize point lookup |
| 98 | auto result = make_uniq<ARTIndexScanState>(); |
| 99 | result->values[0] = value; |
| 100 | result->expressions[0] = expression_type; |
| 101 | return std::move(result); |
| 102 | } |
| 103 | |
| 104 | unique_ptr<IndexScanState> ART::InitializeScanTwoPredicates(const Transaction &transaction, const Value &low_value, |
| 105 | const ExpressionType low_expression_type, |
| 106 | const Value &high_value, |
| 107 | const ExpressionType high_expression_type) { |
| 108 | // initialize range lookup |
| 109 | auto result = make_uniq<ARTIndexScanState>(); |
| 110 | result->values[0] = low_value; |
| 111 | result->expressions[0] = low_expression_type; |
| 112 | result->values[1] = high_value; |
| 113 | result->expressions[1] = high_expression_type; |
| 114 | return std::move(result); |
| 115 | } |
| 116 | |
| 117 | //===--------------------------------------------------------------------===// |
| 118 | // Keys |
| 119 | //===--------------------------------------------------------------------===// |
| 120 | |
| 121 | template <class T> |
| 122 | static void TemplatedGenerateKeys(ArenaAllocator &allocator, Vector &input, idx_t count, vector<ARTKey> &keys) { |
| 123 | UnifiedVectorFormat idata; |
| 124 | input.ToUnifiedFormat(count, data&: idata); |
| 125 | |
| 126 | D_ASSERT(keys.size() >= count); |
| 127 | auto input_data = UnifiedVectorFormat::GetData<T>(idata); |
| 128 | for (idx_t i = 0; i < count; i++) { |
| 129 | auto idx = idata.sel->get_index(idx: i); |
| 130 | if (idata.validity.RowIsValid(row_idx: idx)) { |
| 131 | ARTKey::CreateARTKey<T>(allocator, input.GetType(), keys[i], input_data[idx]); |
| 132 | } else { |
| 133 | // we need to possibly reset the former key value in the keys vector |
| 134 | keys[i] = ARTKey(); |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | template <class T> |
| 140 | static void ConcatenateKeys(ArenaAllocator &allocator, Vector &input, idx_t count, vector<ARTKey> &keys) { |
| 141 | UnifiedVectorFormat idata; |
| 142 | input.ToUnifiedFormat(count, data&: idata); |
| 143 | |
| 144 | auto input_data = UnifiedVectorFormat::GetData<T>(idata); |
| 145 | for (idx_t i = 0; i < count; i++) { |
| 146 | auto idx = idata.sel->get_index(idx: i); |
| 147 | |
| 148 | // key is not NULL (no previous column entry was NULL) |
| 149 | if (!keys[i].Empty()) { |
| 150 | if (!idata.validity.RowIsValid(row_idx: idx)) { |
| 151 | // this column entry is NULL, set whole key to NULL |
| 152 | keys[i] = ARTKey(); |
| 153 | } else { |
| 154 | auto other_key = ARTKey::CreateARTKey<T>(allocator, input.GetType(), input_data[idx]); |
| 155 | keys[i].ConcatenateARTKey(allocator, other_key); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | void ART::GenerateKeys(ArenaAllocator &allocator, DataChunk &input, vector<ARTKey> &keys) { |
| 162 | // generate keys for the first input column |
| 163 | switch (input.data[0].GetType().InternalType()) { |
| 164 | case PhysicalType::BOOL: |
| 165 | TemplatedGenerateKeys<bool>(allocator, input&: input.data[0], count: input.size(), keys); |
| 166 | break; |
| 167 | case PhysicalType::INT8: |
| 168 | TemplatedGenerateKeys<int8_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 169 | break; |
| 170 | case PhysicalType::INT16: |
| 171 | TemplatedGenerateKeys<int16_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 172 | break; |
| 173 | case PhysicalType::INT32: |
| 174 | TemplatedGenerateKeys<int32_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 175 | break; |
| 176 | case PhysicalType::INT64: |
| 177 | TemplatedGenerateKeys<int64_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 178 | break; |
| 179 | case PhysicalType::INT128: |
| 180 | TemplatedGenerateKeys<hugeint_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 181 | break; |
| 182 | case PhysicalType::UINT8: |
| 183 | TemplatedGenerateKeys<uint8_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 184 | break; |
| 185 | case PhysicalType::UINT16: |
| 186 | TemplatedGenerateKeys<uint16_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 187 | break; |
| 188 | case PhysicalType::UINT32: |
| 189 | TemplatedGenerateKeys<uint32_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 190 | break; |
| 191 | case PhysicalType::UINT64: |
| 192 | TemplatedGenerateKeys<uint64_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 193 | break; |
| 194 | case PhysicalType::FLOAT: |
| 195 | TemplatedGenerateKeys<float>(allocator, input&: input.data[0], count: input.size(), keys); |
| 196 | break; |
| 197 | case PhysicalType::DOUBLE: |
| 198 | TemplatedGenerateKeys<double>(allocator, input&: input.data[0], count: input.size(), keys); |
| 199 | break; |
| 200 | case PhysicalType::VARCHAR: |
| 201 | TemplatedGenerateKeys<string_t>(allocator, input&: input.data[0], count: input.size(), keys); |
| 202 | break; |
| 203 | default: |
| 204 | throw InternalException("Invalid type for index" ); |
| 205 | } |
| 206 | |
| 207 | for (idx_t i = 1; i < input.ColumnCount(); i++) { |
| 208 | // for each of the remaining columns, concatenate |
| 209 | switch (input.data[i].GetType().InternalType()) { |
| 210 | case PhysicalType::BOOL: |
| 211 | ConcatenateKeys<bool>(allocator, input&: input.data[i], count: input.size(), keys); |
| 212 | break; |
| 213 | case PhysicalType::INT8: |
| 214 | ConcatenateKeys<int8_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 215 | break; |
| 216 | case PhysicalType::INT16: |
| 217 | ConcatenateKeys<int16_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 218 | break; |
| 219 | case PhysicalType::INT32: |
| 220 | ConcatenateKeys<int32_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 221 | break; |
| 222 | case PhysicalType::INT64: |
| 223 | ConcatenateKeys<int64_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 224 | break; |
| 225 | case PhysicalType::INT128: |
| 226 | ConcatenateKeys<hugeint_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 227 | break; |
| 228 | case PhysicalType::UINT8: |
| 229 | ConcatenateKeys<uint8_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 230 | break; |
| 231 | case PhysicalType::UINT16: |
| 232 | ConcatenateKeys<uint16_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 233 | break; |
| 234 | case PhysicalType::UINT32: |
| 235 | ConcatenateKeys<uint32_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 236 | break; |
| 237 | case PhysicalType::UINT64: |
| 238 | ConcatenateKeys<uint64_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 239 | break; |
| 240 | case PhysicalType::FLOAT: |
| 241 | ConcatenateKeys<float>(allocator, input&: input.data[i], count: input.size(), keys); |
| 242 | break; |
| 243 | case PhysicalType::DOUBLE: |
| 244 | ConcatenateKeys<double>(allocator, input&: input.data[i], count: input.size(), keys); |
| 245 | break; |
| 246 | case PhysicalType::VARCHAR: |
| 247 | ConcatenateKeys<string_t>(allocator, input&: input.data[i], count: input.size(), keys); |
| 248 | break; |
| 249 | default: |
| 250 | throw InternalException("Invalid type for index" ); |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | //===--------------------------------------------------------------------===// |
| 256 | // Construct from sorted data (only during CREATE (UNIQUE) INDEX statements) |
| 257 | //===--------------------------------------------------------------------===// |
| 258 | |
| 259 | struct KeySection { |
| 260 | KeySection(idx_t start_p, idx_t end_p, idx_t depth_p, data_t key_byte_p) |
| 261 | : start(start_p), end(end_p), depth(depth_p), key_byte(key_byte_p) {}; |
| 262 | KeySection(idx_t start_p, idx_t end_p, vector<ARTKey> &keys, KeySection &key_section) |
| 263 | : start(start_p), end(end_p), depth(key_section.depth + 1), key_byte(keys[end_p].data[key_section.depth]) {}; |
| 264 | idx_t start; |
| 265 | idx_t end; |
| 266 | idx_t depth; |
| 267 | data_t key_byte; |
| 268 | }; |
| 269 | |
| 270 | void GetChildSections(vector<KeySection> &child_sections, vector<ARTKey> &keys, KeySection &key_section) { |
| 271 | |
| 272 | idx_t child_start_idx = key_section.start; |
| 273 | for (idx_t i = key_section.start + 1; i <= key_section.end; i++) { |
| 274 | if (keys[i - 1].data[key_section.depth] != keys[i].data[key_section.depth]) { |
| 275 | child_sections.emplace_back(args&: child_start_idx, args: i - 1, args&: keys, args&: key_section); |
| 276 | child_start_idx = i; |
| 277 | } |
| 278 | } |
| 279 | child_sections.emplace_back(args&: child_start_idx, args&: key_section.end, args&: keys, args&: key_section); |
| 280 | } |
| 281 | |
| 282 | bool Construct(ART &art, vector<ARTKey> &keys, row_t *row_ids, Node &node, KeySection &key_section, |
| 283 | bool &has_constraint) { |
| 284 | |
| 285 | D_ASSERT(key_section.start < keys.size()); |
| 286 | D_ASSERT(key_section.end < keys.size()); |
| 287 | D_ASSERT(key_section.start <= key_section.end); |
| 288 | |
| 289 | auto &start_key = keys[key_section.start]; |
| 290 | auto &end_key = keys[key_section.end]; |
| 291 | |
| 292 | // increment the depth until we reach a leaf or find a mismatching byte |
| 293 | auto prefix_start = key_section.depth; |
| 294 | while (start_key.len != key_section.depth && start_key.ByteMatches(other: end_key, depth: key_section.depth)) { |
| 295 | key_section.depth++; |
| 296 | } |
| 297 | |
| 298 | // we reached a leaf, i.e. all the bytes of start_key and end_key match |
| 299 | if (start_key.len == key_section.depth) { |
| 300 | // end_idx is inclusive |
| 301 | auto num_row_ids = key_section.end - key_section.start + 1; |
| 302 | |
| 303 | // check for possible constraint violation |
| 304 | auto single_row_id = num_row_ids == 1; |
| 305 | if (has_constraint && !single_row_id) { |
| 306 | return false; |
| 307 | } |
| 308 | |
| 309 | if (single_row_id) { |
| 310 | Leaf::New(art, node, key: start_key, depth: prefix_start, row_id: row_ids[key_section.start]); |
| 311 | } else { |
| 312 | Leaf::New(art, node, key: start_key, depth: prefix_start, row_ids: row_ids + key_section.start, count: num_row_ids); |
| 313 | } |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | // create a new node and recurse |
| 318 | |
| 319 | // we will find at least two child entries of this node, otherwise we'd have reached a leaf |
| 320 | vector<KeySection> child_sections; |
| 321 | GetChildSections(child_sections, keys, key_section); |
| 322 | |
| 323 | auto node_type = Node::GetARTNodeTypeByCount(count: child_sections.size()); |
| 324 | Node::New(art, node, type: node_type); |
| 325 | |
| 326 | auto prefix_length = key_section.depth - prefix_start; |
| 327 | node.GetPrefix(art).Initialize(art, key: start_key, depth: prefix_start, count_p: prefix_length); |
| 328 | |
| 329 | // recurse on each child section |
| 330 | for (auto &child_section : child_sections) { |
| 331 | Node new_child; |
| 332 | auto no_violation = Construct(art, keys, row_ids, node&: new_child, key_section&: child_section, has_constraint); |
| 333 | Node::InsertChild(art, node, byte: child_section.key_byte, child: new_child); |
| 334 | if (!no_violation) { |
| 335 | return false; |
| 336 | } |
| 337 | } |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | bool ART::ConstructFromSorted(idx_t count, vector<ARTKey> &keys, Vector &row_identifiers) { |
| 342 | |
| 343 | // prepare the row_identifiers |
| 344 | row_identifiers.Flatten(count); |
| 345 | auto row_ids = FlatVector::GetData<row_t>(vector&: row_identifiers); |
| 346 | |
| 347 | auto key_section = KeySection(0, count - 1, 0, 0); |
| 348 | auto has_constraint = IsUnique(); |
| 349 | if (!Construct(art&: *this, keys, row_ids, node&: *this->tree, key_section, has_constraint)) { |
| 350 | return false; |
| 351 | } |
| 352 | |
| 353 | #ifdef DEBUG |
| 354 | D_ASSERT(!VerifyAndToStringInternal(true).empty()); |
| 355 | for (idx_t i = 0; i < count; i++) { |
| 356 | D_ASSERT(!keys[i].Empty()); |
| 357 | auto leaf_node = Lookup(*tree, keys[i], 0); |
| 358 | D_ASSERT(leaf_node.IsSet()); |
| 359 | auto &leaf = Leaf::Get(*this, leaf_node); |
| 360 | |
| 361 | if (leaf.IsInlined()) { |
| 362 | D_ASSERT(row_ids[i] == leaf.row_ids.inlined); |
| 363 | continue; |
| 364 | } |
| 365 | |
| 366 | D_ASSERT(leaf.row_ids.ptr.IsSet()); |
| 367 | Node leaf_segment = leaf.row_ids.ptr; |
| 368 | auto position = leaf.FindRowId(*this, leaf_segment, row_ids[i]); |
| 369 | D_ASSERT(position != (uint32_t)DConstants::INVALID_INDEX); |
| 370 | } |
| 371 | #endif |
| 372 | |
| 373 | return true; |
| 374 | } |
| 375 | |
| 376 | //===--------------------------------------------------------------------===// |
| 377 | // Insert / Verification / Constraint Checking |
| 378 | //===--------------------------------------------------------------------===// |
| 379 | PreservedError ART::Insert(IndexLock &lock, DataChunk &input, Vector &row_ids) { |
| 380 | |
| 381 | D_ASSERT(row_ids.GetType().InternalType() == ROW_TYPE); |
| 382 | D_ASSERT(logical_types[0] == input.data[0].GetType()); |
| 383 | |
| 384 | // generate the keys for the given input |
| 385 | ArenaAllocator arena_allocator(BufferAllocator::Get(db)); |
| 386 | vector<ARTKey> keys(input.size()); |
| 387 | GenerateKeys(allocator&: arena_allocator, input, keys); |
| 388 | |
| 389 | // get the corresponding row IDs |
| 390 | row_ids.Flatten(count: input.size()); |
| 391 | auto row_identifiers = FlatVector::GetData<row_t>(vector&: row_ids); |
| 392 | |
| 393 | // now insert the elements into the index |
| 394 | idx_t failed_index = DConstants::INVALID_INDEX; |
| 395 | for (idx_t i = 0; i < input.size(); i++) { |
| 396 | if (keys[i].Empty()) { |
| 397 | continue; |
| 398 | } |
| 399 | |
| 400 | row_t row_id = row_identifiers[i]; |
| 401 | if (!Insert(node&: *tree, key: keys[i], depth: 0, row_id)) { |
| 402 | // failed to insert because of constraint violation |
| 403 | failed_index = i; |
| 404 | break; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | // failed to insert because of constraint violation: remove previously inserted entries |
| 409 | if (failed_index != DConstants::INVALID_INDEX) { |
| 410 | for (idx_t i = 0; i < failed_index; i++) { |
| 411 | if (keys[i].Empty()) { |
| 412 | continue; |
| 413 | } |
| 414 | row_t row_id = row_identifiers[i]; |
| 415 | Erase(node&: *tree, key: keys[i], depth: 0, row_id); |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | if (failed_index != DConstants::INVALID_INDEX) { |
| 420 | return PreservedError(ConstraintException("PRIMARY KEY or UNIQUE constraint violated: duplicate key \"%s\"" , |
| 421 | AppendRowError(input, index: failed_index))); |
| 422 | } |
| 423 | |
| 424 | #ifdef DEBUG |
| 425 | for (idx_t i = 0; i < input.size(); i++) { |
| 426 | if (keys[i].Empty()) { |
| 427 | continue; |
| 428 | } |
| 429 | |
| 430 | auto leaf_node = Lookup(*tree, keys[i], 0); |
| 431 | D_ASSERT(leaf_node.IsSet()); |
| 432 | auto &leaf = Leaf::Get(*this, leaf_node); |
| 433 | |
| 434 | if (leaf.IsInlined()) { |
| 435 | D_ASSERT(row_identifiers[i] == leaf.row_ids.inlined); |
| 436 | continue; |
| 437 | } |
| 438 | |
| 439 | D_ASSERT(leaf.row_ids.ptr.IsSet()); |
| 440 | Node leaf_segment = leaf.row_ids.ptr; |
| 441 | auto position = leaf.FindRowId(*this, leaf_segment, row_identifiers[i]); |
| 442 | D_ASSERT(position != (uint32_t)DConstants::INVALID_INDEX); |
| 443 | } |
| 444 | #endif |
| 445 | |
| 446 | return PreservedError(); |
| 447 | } |
| 448 | |
| 449 | PreservedError ART::Append(IndexLock &lock, DataChunk &appended_data, Vector &row_identifiers) { |
| 450 | DataChunk expression_result; |
| 451 | expression_result.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
| 452 | |
| 453 | // first resolve the expressions for the index |
| 454 | ExecuteExpressions(input&: appended_data, result&: expression_result); |
| 455 | |
| 456 | // now insert into the index |
| 457 | return Insert(lock, input&: expression_result, row_ids&: row_identifiers); |
| 458 | } |
| 459 | |
| 460 | void ART::VerifyAppend(DataChunk &chunk) { |
| 461 | ConflictManager conflict_manager(VerifyExistenceType::APPEND, chunk.size()); |
| 462 | CheckConstraintsForChunk(input&: chunk, conflict_manager); |
| 463 | } |
| 464 | |
| 465 | void ART::VerifyAppend(DataChunk &chunk, ConflictManager &conflict_manager) { |
| 466 | D_ASSERT(conflict_manager.LookupType() == VerifyExistenceType::APPEND); |
| 467 | CheckConstraintsForChunk(input&: chunk, conflict_manager); |
| 468 | } |
| 469 | |
| 470 | bool ART::InsertToLeaf(Node &leaf_node, const row_t &row_id) { |
| 471 | |
| 472 | auto &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
| 473 | |
| 474 | #ifdef DEBUG |
| 475 | for (idx_t k = 0; k < leaf.count; k++) { |
| 476 | D_ASSERT(leaf.GetRowId(*this, k) != row_id); |
| 477 | } |
| 478 | #endif |
| 479 | if (IsUnique() && leaf.count != 0) { |
| 480 | return false; |
| 481 | } |
| 482 | leaf.Insert(art&: *this, row_id); |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | bool ART::Insert(Node &node, const ARTKey &key, idx_t depth, const row_t &row_id) { |
| 487 | |
| 488 | if (!node.IsSet()) { |
| 489 | // node is currently empty, create a leaf here with the key |
| 490 | Leaf::New(art&: *this, node, key, depth, row_id); |
| 491 | return true; |
| 492 | } |
| 493 | |
| 494 | if (node.DecodeARTNodeType() == NType::LEAF) { |
| 495 | |
| 496 | // add a row ID to a leaf, if they have the same key |
| 497 | auto &leaf = Leaf::Get(art: *this, ptr: node); |
| 498 | auto mismatch_position = leaf.prefix.KeyMismatchPosition(art: *this, key, depth); |
| 499 | if (mismatch_position == leaf.prefix.count && depth + leaf.prefix.count == key.len) { |
| 500 | return InsertToLeaf(leaf_node&: node, row_id); |
| 501 | } |
| 502 | |
| 503 | // replace leaf with Node4 and store both leaves in it |
| 504 | auto old_node = node; |
| 505 | auto &new_n4 = Node4::New(art&: *this, node); |
| 506 | new_n4.prefix.Initialize(art&: *this, key, depth, count_p: mismatch_position); |
| 507 | |
| 508 | auto key_byte = old_node.GetPrefix(art&: *this).Reduce(art&: *this, reduce_count: mismatch_position); |
| 509 | Node4::InsertChild(art&: *this, node, byte: key_byte, child: old_node); |
| 510 | |
| 511 | Node leaf_node; |
| 512 | Leaf::New(art&: *this, node&: leaf_node, key, depth: depth + mismatch_position + 1, row_id); |
| 513 | Node4::InsertChild(art&: *this, node, byte: key[depth + mismatch_position], child: leaf_node); |
| 514 | |
| 515 | return true; |
| 516 | } |
| 517 | |
| 518 | // handle prefix of inner node |
| 519 | auto &old_node_prefix = node.GetPrefix(art&: *this); |
| 520 | if (old_node_prefix.count) { |
| 521 | |
| 522 | auto mismatch_position = old_node_prefix.KeyMismatchPosition(art: *this, key, depth); |
| 523 | if (mismatch_position != old_node_prefix.count) { |
| 524 | |
| 525 | // prefix differs, create new node |
| 526 | auto old_node = node; |
| 527 | auto &new_n4 = Node4::New(art&: *this, node); |
| 528 | new_n4.prefix.Initialize(art&: *this, key, depth, count_p: mismatch_position); |
| 529 | |
| 530 | auto key_byte = old_node_prefix.Reduce(art&: *this, reduce_count: mismatch_position); |
| 531 | Node4::InsertChild(art&: *this, node, byte: key_byte, child: old_node); |
| 532 | |
| 533 | Node leaf_node; |
| 534 | Leaf::New(art&: *this, node&: leaf_node, key, depth: depth + mismatch_position + 1, row_id); |
| 535 | Node4::InsertChild(art&: *this, node, byte: key[depth + mismatch_position], child: leaf_node); |
| 536 | |
| 537 | return true; |
| 538 | } |
| 539 | depth += node.GetPrefix(art&: *this).count; |
| 540 | } |
| 541 | |
| 542 | // recurse |
| 543 | D_ASSERT(depth < key.len); |
| 544 | auto child = node.GetChild(art&: *this, byte: key[depth]); |
| 545 | if (child) { |
| 546 | bool success = Insert(node&: *child, key, depth: depth + 1, row_id); |
| 547 | node.ReplaceChild(art: *this, byte: key[depth], child: *child); |
| 548 | return success; |
| 549 | } |
| 550 | |
| 551 | // insert at position |
| 552 | Node leaf_node; |
| 553 | Leaf::New(art&: *this, node&: leaf_node, key, depth: depth + 1, row_id); |
| 554 | Node::InsertChild(art&: *this, node, byte: key[depth], child: leaf_node); |
| 555 | return true; |
| 556 | } |
| 557 | |
| 558 | //===--------------------------------------------------------------------===// |
| 559 | // Delete |
| 560 | //===--------------------------------------------------------------------===// |
| 561 | |
| 562 | void ART::Delete(IndexLock &state, DataChunk &input, Vector &row_ids) { |
| 563 | |
| 564 | DataChunk expression; |
| 565 | expression.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
| 566 | |
| 567 | // first resolve the expressions |
| 568 | ExecuteExpressions(input, result&: expression); |
| 569 | |
| 570 | // then generate the keys for the given input |
| 571 | ArenaAllocator arena_allocator(BufferAllocator::Get(db)); |
| 572 | vector<ARTKey> keys(expression.size()); |
| 573 | GenerateKeys(allocator&: arena_allocator, input&: expression, keys); |
| 574 | |
| 575 | // now erase the elements from the database |
| 576 | row_ids.Flatten(count: input.size()); |
| 577 | auto row_identifiers = FlatVector::GetData<row_t>(vector&: row_ids); |
| 578 | |
| 579 | for (idx_t i = 0; i < input.size(); i++) { |
| 580 | if (keys[i].Empty()) { |
| 581 | continue; |
| 582 | } |
| 583 | Erase(node&: *tree, key: keys[i], depth: 0, row_id: row_identifiers[i]); |
| 584 | } |
| 585 | |
| 586 | #ifdef DEBUG |
| 587 | // verify that we removed all row IDs |
| 588 | for (idx_t i = 0; i < input.size(); i++) { |
| 589 | if (keys[i].Empty()) { |
| 590 | continue; |
| 591 | } |
| 592 | |
| 593 | auto node = Lookup(*tree, keys[i], 0); |
| 594 | if (node.IsSet()) { |
| 595 | auto &leaf = Leaf::Get(*this, node); |
| 596 | |
| 597 | if (leaf.IsInlined()) { |
| 598 | D_ASSERT(row_identifiers[i] != leaf.row_ids.inlined); |
| 599 | continue; |
| 600 | } |
| 601 | |
| 602 | D_ASSERT(leaf.row_ids.ptr.IsSet()); |
| 603 | Node leaf_segment = leaf.row_ids.ptr; |
| 604 | auto position = leaf.FindRowId(*this, leaf_segment, row_identifiers[i]); |
| 605 | D_ASSERT(position == (uint32_t)DConstants::INVALID_INDEX); |
| 606 | } |
| 607 | } |
| 608 | #endif |
| 609 | } |
| 610 | |
| 611 | void ART::Erase(Node &node, const ARTKey &key, idx_t depth, const row_t &row_id) { |
| 612 | |
| 613 | if (!node.IsSet()) { |
| 614 | return; |
| 615 | } |
| 616 | |
| 617 | // delete a row ID from a leaf |
| 618 | if (node.DecodeARTNodeType() == NType::LEAF) { |
| 619 | auto &leaf = Leaf::Get(art: *this, ptr: node); |
| 620 | leaf.Remove(art&: *this, row_id); |
| 621 | |
| 622 | if (leaf.count == 0) { |
| 623 | Node::Free(art&: *this, node); |
| 624 | node.Reset(); |
| 625 | } |
| 626 | return; |
| 627 | } |
| 628 | |
| 629 | // handle prefix |
| 630 | auto &node_prefix = node.GetPrefix(art&: *this); |
| 631 | if (node_prefix.count) { |
| 632 | if (node_prefix.KeyMismatchPosition(art: *this, key, depth) != node_prefix.count) { |
| 633 | return; |
| 634 | } |
| 635 | depth += node_prefix.count; |
| 636 | } |
| 637 | |
| 638 | auto child = node.GetChild(art&: *this, byte: key[depth]); |
| 639 | if (child) { |
| 640 | D_ASSERT(child->IsSet()); |
| 641 | |
| 642 | if (child->DecodeARTNodeType() == NType::LEAF) { |
| 643 | // leaf found, remove entry |
| 644 | auto &leaf = Leaf::Get(art: *this, ptr: *child); |
| 645 | leaf.Remove(art&: *this, row_id); |
| 646 | |
| 647 | if (leaf.count == 0) { |
| 648 | // leaf is empty, delete leaf, decrement node counter and maybe shrink node |
| 649 | Node::DeleteChild(art&: *this, node, byte: key[depth]); |
| 650 | } |
| 651 | return; |
| 652 | } |
| 653 | |
| 654 | // recurse |
| 655 | Erase(node&: *child, key, depth: depth + 1, row_id); |
| 656 | node.ReplaceChild(art: *this, byte: key[depth], child: *child); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | //===--------------------------------------------------------------------===// |
| 661 | // Point Query (Equal) |
| 662 | //===--------------------------------------------------------------------===// |
| 663 | |
| 664 | static ARTKey CreateKey(ArenaAllocator &allocator, PhysicalType type, Value &value) { |
| 665 | D_ASSERT(type == value.type().InternalType()); |
| 666 | switch (type) { |
| 667 | case PhysicalType::BOOL: |
| 668 | return ARTKey::CreateARTKey<bool>(allocator, type: value.type(), element: value); |
| 669 | case PhysicalType::INT8: |
| 670 | return ARTKey::CreateARTKey<int8_t>(allocator, type: value.type(), element: value); |
| 671 | case PhysicalType::INT16: |
| 672 | return ARTKey::CreateARTKey<int16_t>(allocator, type: value.type(), element: value); |
| 673 | case PhysicalType::INT32: |
| 674 | return ARTKey::CreateARTKey<int32_t>(allocator, type: value.type(), element: value); |
| 675 | case PhysicalType::INT64: |
| 676 | return ARTKey::CreateARTKey<int64_t>(allocator, type: value.type(), element: value); |
| 677 | case PhysicalType::UINT8: |
| 678 | return ARTKey::CreateARTKey<uint8_t>(allocator, type: value.type(), element: value); |
| 679 | case PhysicalType::UINT16: |
| 680 | return ARTKey::CreateARTKey<uint16_t>(allocator, type: value.type(), element: value); |
| 681 | case PhysicalType::UINT32: |
| 682 | return ARTKey::CreateARTKey<uint32_t>(allocator, type: value.type(), element: value); |
| 683 | case PhysicalType::UINT64: |
| 684 | return ARTKey::CreateARTKey<uint64_t>(allocator, type: value.type(), element: value); |
| 685 | case PhysicalType::INT128: |
| 686 | return ARTKey::CreateARTKey<hugeint_t>(allocator, type: value.type(), element: value); |
| 687 | case PhysicalType::FLOAT: |
| 688 | return ARTKey::CreateARTKey<float>(allocator, type: value.type(), element: value); |
| 689 | case PhysicalType::DOUBLE: |
| 690 | return ARTKey::CreateARTKey<double>(allocator, type: value.type(), element: value); |
| 691 | case PhysicalType::VARCHAR: |
| 692 | return ARTKey::CreateARTKey<string_t>(allocator, type: value.type(), element: value); |
| 693 | default: |
| 694 | throw InternalException("Invalid type for the ART key" ); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | bool ART::SearchEqual(ARTKey &key, idx_t max_count, vector<row_t> &result_ids) { |
| 699 | |
| 700 | auto leaf_node = Lookup(node: *tree, key, depth: 0); |
| 701 | if (!leaf_node.IsSet()) { |
| 702 | return true; |
| 703 | } |
| 704 | |
| 705 | auto &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
| 706 | if (leaf.count > max_count) { |
| 707 | return false; |
| 708 | } |
| 709 | for (idx_t i = 0; i < leaf.count; i++) { |
| 710 | row_t row_id = leaf.GetRowId(art: *this, position: i); |
| 711 | result_ids.push_back(x: row_id); |
| 712 | } |
| 713 | return true; |
| 714 | } |
| 715 | |
| 716 | void ART::SearchEqualJoinNoFetch(ARTKey &key, idx_t &result_size) { |
| 717 | |
| 718 | // we need to look for a leaf |
| 719 | auto leaf_node = Lookup(node: *tree, key, depth: 0); |
| 720 | if (!leaf_node.IsSet()) { |
| 721 | result_size = 0; |
| 722 | return; |
| 723 | } |
| 724 | |
| 725 | auto &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
| 726 | result_size = leaf.count; |
| 727 | } |
| 728 | |
| 729 | //===--------------------------------------------------------------------===// |
| 730 | // Lookup |
| 731 | //===--------------------------------------------------------------------===// |
| 732 | |
| 733 | Node ART::Lookup(Node node, const ARTKey &key, idx_t depth) { |
| 734 | |
| 735 | while (node.IsSet()) { |
| 736 | if (node.DecodeARTNodeType() == NType::LEAF) { |
| 737 | auto &leaf = Leaf::Get(art: *this, ptr: node); |
| 738 | |
| 739 | // check if leaf contains key |
| 740 | for (idx_t i = 0; i < leaf.prefix.count; i++) { |
| 741 | if (leaf.prefix.GetByte(art: *this, position: i) != key[i + depth]) { |
| 742 | return Node(); |
| 743 | } |
| 744 | } |
| 745 | return node; |
| 746 | } |
| 747 | auto &node_prefix = node.GetPrefix(art&: *this); |
| 748 | if (node_prefix.count) { |
| 749 | for (idx_t pos = 0; pos < node_prefix.count; pos++) { |
| 750 | if (key[depth + pos] != node_prefix.GetByte(art: *this, position: pos)) { |
| 751 | // prefix mismatch, subtree of node does not contain key |
| 752 | return Node(); |
| 753 | } |
| 754 | } |
| 755 | depth += node_prefix.count; |
| 756 | } |
| 757 | |
| 758 | // prefix matches key, but no child at byte, does not contain key |
| 759 | auto child = node.GetChild(art&: *this, byte: key[depth]); |
| 760 | if (!child) { |
| 761 | return Node(); |
| 762 | } |
| 763 | |
| 764 | // recurse into child |
| 765 | node = *child; |
| 766 | D_ASSERT(node.IsSet()); |
| 767 | depth++; |
| 768 | } |
| 769 | |
| 770 | return Node(); |
| 771 | } |
| 772 | |
| 773 | //===--------------------------------------------------------------------===// |
| 774 | // Greater Than |
| 775 | // Returns: True (If found leaf >= key) |
| 776 | // False (Otherwise) |
| 777 | //===--------------------------------------------------------------------===// |
| 778 | |
| 779 | bool ART::SearchGreater(ARTIndexScanState &state, ARTKey &key, bool inclusive, idx_t max_count, |
| 780 | vector<row_t> &result_ids) { |
| 781 | |
| 782 | auto &it = state.iterator; |
| 783 | |
| 784 | // greater than scan: first set the iterator to the node at which we will start our scan by finding the lowest node |
| 785 | // that satisfies our requirement |
| 786 | if (!it.art) { |
| 787 | it.art = this; |
| 788 | if (!it.LowerBound(node: *tree, key, is_inclusive: inclusive)) { |
| 789 | return true; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | // after that we continue the scan; we don't need to check the bounds as any value following this value is |
| 794 | // automatically bigger and hence satisfies our predicate |
| 795 | ARTKey empty_key = ARTKey(); |
| 796 | return it.Scan(key: empty_key, max_count, result_ids, is_inclusive: false); |
| 797 | } |
| 798 | |
| 799 | //===--------------------------------------------------------------------===// |
| 800 | // Less Than |
| 801 | //===--------------------------------------------------------------------===// |
| 802 | |
| 803 | bool ART::SearchLess(ARTIndexScanState &state, ARTKey &upper_bound, bool inclusive, idx_t max_count, |
| 804 | vector<row_t> &result_ids) { |
| 805 | |
| 806 | if (!tree->IsSet()) { |
| 807 | return true; |
| 808 | } |
| 809 | |
| 810 | auto &it = state.iterator; |
| 811 | |
| 812 | if (!it.art) { |
| 813 | it.art = this; |
| 814 | // first find the minimum value in the ART: we start scanning from this value |
| 815 | it.FindMinimum(node&: *tree); |
| 816 | // early out min value higher than upper bound query |
| 817 | if (it.cur_key > upper_bound) { |
| 818 | return true; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | // now continue the scan until we reach the upper bound |
| 823 | return it.Scan(key: upper_bound, max_count, result_ids, is_inclusive: inclusive); |
| 824 | } |
| 825 | |
| 826 | //===--------------------------------------------------------------------===// |
| 827 | // Closed Range Query |
| 828 | //===--------------------------------------------------------------------===// |
| 829 | |
| 830 | bool ART::SearchCloseRange(ARTIndexScanState &state, ARTKey &lower_bound, ARTKey &upper_bound, bool left_inclusive, |
| 831 | bool right_inclusive, idx_t max_count, vector<row_t> &result_ids) { |
| 832 | auto &it = state.iterator; |
| 833 | |
| 834 | // first find the first node that satisfies the left predicate |
| 835 | if (!it.art) { |
| 836 | it.art = this; |
| 837 | if (!it.LowerBound(node: *tree, key: lower_bound, is_inclusive: left_inclusive)) { |
| 838 | return true; |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | // now continue the scan until we reach the upper bound |
| 843 | return it.Scan(key: upper_bound, max_count, result_ids, is_inclusive: right_inclusive); |
| 844 | } |
| 845 | |
| 846 | bool ART::Scan(const Transaction &transaction, const DataTable &table, IndexScanState &table_state, |
| 847 | const idx_t max_count, vector<row_t> &result_ids) { |
| 848 | auto &state = table_state.Cast<ARTIndexScanState>(); |
| 849 | vector<row_t> row_ids; |
| 850 | bool success; |
| 851 | |
| 852 | // FIXME: the key directly owning the data for a single key might be more efficient |
| 853 | D_ASSERT(state.values[0].type().InternalType() == types[0]); |
| 854 | ArenaAllocator arena_allocator(Allocator::Get(db)); |
| 855 | auto key = CreateKey(allocator&: arena_allocator, type: types[0], value&: state.values[0]); |
| 856 | |
| 857 | if (state.values[1].IsNull()) { |
| 858 | |
| 859 | // single predicate |
| 860 | lock_guard<mutex> l(lock); |
| 861 | switch (state.expressions[0]) { |
| 862 | case ExpressionType::COMPARE_EQUAL: |
| 863 | success = SearchEqual(key, max_count, result_ids&: row_ids); |
| 864 | break; |
| 865 | case ExpressionType::COMPARE_GREATERTHANOREQUALTO: |
| 866 | success = SearchGreater(state, key, inclusive: true, max_count, result_ids&: row_ids); |
| 867 | break; |
| 868 | case ExpressionType::COMPARE_GREATERTHAN: |
| 869 | success = SearchGreater(state, key, inclusive: false, max_count, result_ids&: row_ids); |
| 870 | break; |
| 871 | case ExpressionType::COMPARE_LESSTHANOREQUALTO: |
| 872 | success = SearchLess(state, upper_bound&: key, inclusive: true, max_count, result_ids&: row_ids); |
| 873 | break; |
| 874 | case ExpressionType::COMPARE_LESSTHAN: |
| 875 | success = SearchLess(state, upper_bound&: key, inclusive: false, max_count, result_ids&: row_ids); |
| 876 | break; |
| 877 | default: |
| 878 | throw InternalException("Operation not implemented" ); |
| 879 | } |
| 880 | |
| 881 | } else { |
| 882 | |
| 883 | // two predicates |
| 884 | lock_guard<mutex> l(lock); |
| 885 | |
| 886 | D_ASSERT(state.values[1].type().InternalType() == types[0]); |
| 887 | auto upper_bound = CreateKey(allocator&: arena_allocator, type: types[0], value&: state.values[1]); |
| 888 | |
| 889 | bool left_inclusive = state.expressions[0] == ExpressionType ::COMPARE_GREATERTHANOREQUALTO; |
| 890 | bool right_inclusive = state.expressions[1] == ExpressionType ::COMPARE_LESSTHANOREQUALTO; |
| 891 | success = SearchCloseRange(state, lower_bound&: key, upper_bound, left_inclusive, right_inclusive, max_count, result_ids&: row_ids); |
| 892 | } |
| 893 | |
| 894 | if (!success) { |
| 895 | return false; |
| 896 | } |
| 897 | if (row_ids.empty()) { |
| 898 | return true; |
| 899 | } |
| 900 | |
| 901 | // sort the row ids |
| 902 | sort(first: row_ids.begin(), last: row_ids.end()); |
| 903 | // duplicate eliminate the row ids and append them to the row ids of the state |
| 904 | result_ids.reserve(n: row_ids.size()); |
| 905 | |
| 906 | result_ids.push_back(x: row_ids[0]); |
| 907 | for (idx_t i = 1; i < row_ids.size(); i++) { |
| 908 | if (row_ids[i] != row_ids[i - 1]) { |
| 909 | result_ids.push_back(x: row_ids[i]); |
| 910 | } |
| 911 | } |
| 912 | return true; |
| 913 | } |
| 914 | |
| 915 | //===--------------------------------------------------------------------===// |
| 916 | // More Verification / Constraint Checking |
| 917 | //===--------------------------------------------------------------------===// |
| 918 | |
| 919 | string ART::GenerateErrorKeyName(DataChunk &input, idx_t row) { |
| 920 | |
| 921 | // FIXME: why exactly can we not pass the expression_chunk as an argument to this |
| 922 | // FIXME: function instead of re-executing? |
| 923 | // re-executing the expressions is not very fast, but we're going to throw, so we don't care |
| 924 | DataChunk expression_chunk; |
| 925 | expression_chunk.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
| 926 | ExecuteExpressions(input, result&: expression_chunk); |
| 927 | |
| 928 | string key_name; |
| 929 | for (idx_t k = 0; k < expression_chunk.ColumnCount(); k++) { |
| 930 | if (k > 0) { |
| 931 | key_name += ", " ; |
| 932 | } |
| 933 | key_name += unbound_expressions[k]->GetName() + ": " + expression_chunk.data[k].GetValue(index: row).ToString(); |
| 934 | } |
| 935 | return key_name; |
| 936 | } |
| 937 | |
| 938 | string ART::GenerateConstraintErrorMessage(VerifyExistenceType verify_type, const string &key_name) { |
| 939 | switch (verify_type) { |
| 940 | case VerifyExistenceType::APPEND: { |
| 941 | // APPEND to PK/UNIQUE table, but node/key already exists in PK/UNIQUE table |
| 942 | string type = IsPrimary() ? "primary key" : "unique" ; |
| 943 | return StringUtil::Format( |
| 944 | fmt_str: "Duplicate key \"%s\" violates %s constraint. " |
| 945 | "If this is an unexpected constraint violation please double " |
| 946 | "check with the known index limitations section in our documentation (docs - sql - indexes)." , |
| 947 | params: key_name, params: type); |
| 948 | } |
| 949 | case VerifyExistenceType::APPEND_FK: { |
| 950 | // APPEND_FK to FK table, node/key does not exist in PK/UNIQUE table |
| 951 | return StringUtil::Format( |
| 952 | fmt_str: "Violates foreign key constraint because key \"%s\" does not exist in the referenced table" , params: key_name); |
| 953 | } |
| 954 | case VerifyExistenceType::DELETE_FK: { |
| 955 | // DELETE_FK that still exists in a FK table, i.e., not a valid delete |
| 956 | return StringUtil::Format(fmt_str: "Violates foreign key constraint because key \"%s\" is still referenced by a foreign " |
| 957 | "key in a different table" , |
| 958 | params: key_name); |
| 959 | } |
| 960 | default: |
| 961 | throw NotImplementedException("Type not implemented for VerifyExistenceType" ); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | void ART::CheckConstraintsForChunk(DataChunk &input, ConflictManager &conflict_manager) { |
| 966 | |
| 967 | // don't alter the index during constraint checking |
| 968 | lock_guard<mutex> l(lock); |
| 969 | |
| 970 | // first resolve the expressions for the index |
| 971 | DataChunk expression_chunk; |
| 972 | expression_chunk.Initialize(allocator&: Allocator::DefaultAllocator(), types: logical_types); |
| 973 | ExecuteExpressions(input, result&: expression_chunk); |
| 974 | |
| 975 | // generate the keys for the given input |
| 976 | ArenaAllocator arena_allocator(BufferAllocator::Get(db)); |
| 977 | vector<ARTKey> keys(expression_chunk.size()); |
| 978 | GenerateKeys(allocator&: arena_allocator, input&: expression_chunk, keys); |
| 979 | |
| 980 | idx_t found_conflict = DConstants::INVALID_INDEX; |
| 981 | for (idx_t i = 0; found_conflict == DConstants::INVALID_INDEX && i < input.size(); i++) { |
| 982 | |
| 983 | if (keys[i].Empty()) { |
| 984 | if (conflict_manager.AddNull(chunk_index: i)) { |
| 985 | found_conflict = i; |
| 986 | } |
| 987 | continue; |
| 988 | } |
| 989 | |
| 990 | auto leaf_node = Lookup(node: *tree, key: keys[i], depth: 0); |
| 991 | if (!leaf_node.IsSet()) { |
| 992 | if (conflict_manager.AddMiss(chunk_index: i)) { |
| 993 | found_conflict = i; |
| 994 | } |
| 995 | continue; |
| 996 | } |
| 997 | |
| 998 | // When we find a node, we need to update the 'matches' and 'row_ids' |
| 999 | // NOTE: Leafs can have more than one row_id, but for UNIQUE/PRIMARY KEY they will only have one |
| 1000 | Leaf &leaf = Leaf::Get(art: *this, ptr: leaf_node); |
| 1001 | D_ASSERT(leaf.count == 1); |
| 1002 | auto row_id = leaf.GetRowId(art: *this, position: 0); |
| 1003 | if (conflict_manager.AddHit(chunk_index: i, row_id)) { |
| 1004 | found_conflict = i; |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | conflict_manager.FinishLookup(); |
| 1009 | |
| 1010 | if (found_conflict == DConstants::INVALID_INDEX) { |
| 1011 | return; |
| 1012 | } |
| 1013 | |
| 1014 | auto key_name = GenerateErrorKeyName(input, row: found_conflict); |
| 1015 | auto exception_msg = GenerateConstraintErrorMessage(verify_type: conflict_manager.LookupType(), key_name); |
| 1016 | throw ConstraintException(exception_msg); |
| 1017 | } |
| 1018 | |
| 1019 | //===--------------------------------------------------------------------===// |
| 1020 | // Serialization |
| 1021 | //===--------------------------------------------------------------------===// |
| 1022 | |
| 1023 | BlockPointer ART::Serialize(MetaBlockWriter &writer) { |
| 1024 | |
| 1025 | lock_guard<mutex> l(lock); |
| 1026 | if (tree->IsSet()) { |
| 1027 | serialized_data_pointer = tree->Serialize(art&: *this, writer); |
| 1028 | } else { |
| 1029 | serialized_data_pointer = {(block_id_t)DConstants::INVALID_INDEX, (uint32_t)DConstants::INVALID_INDEX}; |
| 1030 | } |
| 1031 | |
| 1032 | return serialized_data_pointer; |
| 1033 | } |
| 1034 | |
| 1035 | //===--------------------------------------------------------------------===// |
| 1036 | // Vacuum |
| 1037 | //===--------------------------------------------------------------------===// |
| 1038 | |
| 1039 | void ART::InitializeVacuum(ARTFlags &flags) { |
| 1040 | |
| 1041 | flags.vacuum_flags.reserve(n: allocators.size()); |
| 1042 | for (auto &allocator : allocators) { |
| 1043 | flags.vacuum_flags.push_back(x: allocator->InitializeVacuum()); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | void ART::FinalizeVacuum(const ARTFlags &flags) { |
| 1048 | |
| 1049 | for (idx_t i = 0; i < allocators.size(); i++) { |
| 1050 | if (flags.vacuum_flags[i]) { |
| 1051 | allocators[i]->FinalizeVacuum(); |
| 1052 | } |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | void ART::Vacuum(IndexLock &state) { |
| 1057 | |
| 1058 | if (!tree->IsSet()) { |
| 1059 | for (auto &allocator : allocators) { |
| 1060 | allocator->Reset(); |
| 1061 | } |
| 1062 | return; |
| 1063 | } |
| 1064 | |
| 1065 | // holds true, if an allocator needs a vacuum, and false otherwise |
| 1066 | ARTFlags flags; |
| 1067 | InitializeVacuum(flags); |
| 1068 | |
| 1069 | // skip vacuum if no allocators require it |
| 1070 | auto perform_vacuum = false; |
| 1071 | for (const auto &vacuum_flag : flags.vacuum_flags) { |
| 1072 | if (vacuum_flag) { |
| 1073 | perform_vacuum = true; |
| 1074 | break; |
| 1075 | } |
| 1076 | } |
| 1077 | if (!perform_vacuum) { |
| 1078 | return; |
| 1079 | } |
| 1080 | |
| 1081 | // traverse the allocated memory of the tree to perform a vacuum |
| 1082 | Node::Vacuum(art&: *this, node&: *tree, flags); |
| 1083 | |
| 1084 | // finalize the vacuum operation |
| 1085 | FinalizeVacuum(flags); |
| 1086 | |
| 1087 | for (auto &allocator : allocators) { |
| 1088 | allocator->Verify(); |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | //===--------------------------------------------------------------------===// |
| 1093 | // Merging |
| 1094 | //===--------------------------------------------------------------------===// |
| 1095 | |
| 1096 | void ART::InitializeMerge(ARTFlags &flags) { |
| 1097 | |
| 1098 | flags.merge_buffer_counts.reserve(n: allocators.size()); |
| 1099 | for (auto &allocator : allocators) { |
| 1100 | flags.merge_buffer_counts.emplace_back(args: allocator->buffers.size()); |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | bool ART::MergeIndexes(IndexLock &state, Index &other_index) { |
| 1105 | |
| 1106 | auto &other_art = other_index.Cast<ART>(); |
| 1107 | if (!other_art.tree->IsSet()) { |
| 1108 | return true; |
| 1109 | } |
| 1110 | |
| 1111 | if (tree->IsSet()) { |
| 1112 | // fully deserialize other_index, and traverse it to increment its buffer IDs |
| 1113 | ARTFlags flags; |
| 1114 | InitializeMerge(flags); |
| 1115 | other_art.tree->InitializeMerge(art&: other_art, flags); |
| 1116 | } |
| 1117 | |
| 1118 | // merge the node storage |
| 1119 | for (idx_t i = 0; i < allocators.size(); i++) { |
| 1120 | allocators[i]->Merge(other&: *other_art.allocators[i]); |
| 1121 | } |
| 1122 | |
| 1123 | // merge the ARTs |
| 1124 | if (!tree->Merge(art&: *this, other&: *other_art.tree)) { |
| 1125 | return false; |
| 1126 | } |
| 1127 | |
| 1128 | for (auto &allocator : allocators) { |
| 1129 | allocator->Verify(); |
| 1130 | } |
| 1131 | return true; |
| 1132 | } |
| 1133 | |
| 1134 | //===--------------------------------------------------------------------===// |
| 1135 | // Utility |
| 1136 | //===--------------------------------------------------------------------===// |
| 1137 | |
| 1138 | string ART::VerifyAndToString(IndexLock &state, const bool only_verify) { |
| 1139 | return VerifyAndToStringInternal(only_verify); |
| 1140 | } |
| 1141 | |
| 1142 | string ART::VerifyAndToStringInternal(const bool only_verify) { |
| 1143 | if (tree->IsSet()) { |
| 1144 | return "ART: " + tree->VerifyAndToString(art&: *this, only_verify); |
| 1145 | } |
| 1146 | return "[empty]" ; |
| 1147 | } |
| 1148 | |
| 1149 | } // namespace duckdb |
| 1150 | |