| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include "base/integral_types.h" |
| 4 | #include "base/logging.h" |
| 5 | #include "s2.h" |
| 6 | #include "s2cap.h" |
| 7 | #include "s2cell.h" |
| 8 | #include "s2latlngrect.h" |
| 9 | |
| 10 | namespace { |
| 11 | |
| 12 | // Multiply a positive number by this constant to ensure that the result |
| 13 | // of a floating point operation is at least as large as the true |
| 14 | // infinite-precision result. |
| 15 | double const kRoundUp = 1.0 + 1.0 / (uint64(1) << 52); |
| 16 | |
| 17 | // Return the cap height corresponding to the given non-negative cap angle in |
| 18 | // radians. Cap angles of Pi radians or larger yield a full cap. |
| 19 | double GetHeightForAngle(double radians) { |
| 20 | DCHECK_GE(radians, 0); |
| 21 | |
| 22 | // Caps of Pi radians or more are full. |
| 23 | if (radians >= M_PI) return 2; |
| 24 | |
| 25 | // The height of the cap can be computed as 1 - cos(radians), but this isn't |
| 26 | // very accurate for angles close to zero (where cos(radians) is almost 1). |
| 27 | // Computing it as 2 * (sin(radians / 2) ** 2) gives much better precision. |
| 28 | double d = sin(0.5 * radians); |
| 29 | return 2 * d * d; |
| 30 | } |
| 31 | |
| 32 | } // namespace |
| 33 | |
| 34 | S2Cap S2Cap::FromAxisAngle(S2Point const& axis, S1Angle const& angle) { |
| 35 | DCHECK(S2::IsUnitLength(axis)); |
| 36 | DCHECK_GE(angle.radians(), 0); |
| 37 | return S2Cap(axis, GetHeightForAngle(angle.radians())); |
| 38 | } |
| 39 | |
| 40 | S1Angle S2Cap::angle() const { |
| 41 | // This could also be computed as acos(1 - height_), but the following |
| 42 | // formula is much more accurate when the cap height is small. It |
| 43 | // follows from the relationship h = 1 - cos(theta) = 2 sin^2(theta/2). |
| 44 | if (is_empty()) return S1Angle::Radians(-1); |
| 45 | return S1Angle::Radians(2 * asin(sqrt(0.5 * height_))); |
| 46 | } |
| 47 | |
| 48 | S2Cap S2Cap::Complement() const { |
| 49 | // The complement of a full cap is an empty cap, not a singleton. |
| 50 | // Also make sure that the complement of an empty cap has height 2. |
| 51 | double height = is_full() ? -1 : 2 - max(height_, 0.0); |
| 52 | return S2Cap::FromAxisHeight(-axis_, height); |
| 53 | } |
| 54 | |
| 55 | bool S2Cap::Contains(S2Cap const& other) const { |
| 56 | if (is_full() || other.is_empty()) return true; |
| 57 | return angle().radians() >= axis_.Angle(other.axis_) + |
| 58 | other.angle().radians(); |
| 59 | } |
| 60 | |
| 61 | bool S2Cap::Intersects(S2Cap const& other) const { |
| 62 | if (is_empty() || other.is_empty()) return false; |
| 63 | |
| 64 | return (angle().radians() + other.angle().radians() >= |
| 65 | axis_.Angle(other.axis_)); |
| 66 | } |
| 67 | |
| 68 | bool S2Cap::InteriorIntersects(S2Cap const& other) const { |
| 69 | // Make sure this cap has an interior and the other cap is non-empty. |
| 70 | if (height_ <= 0 || other.is_empty()) return false; |
| 71 | |
| 72 | return (angle().radians() + other.angle().radians() > |
| 73 | axis_.Angle(other.axis_)); |
| 74 | } |
| 75 | |
| 76 | void S2Cap::AddPoint(S2Point const& p) { |
| 77 | // Compute the squared chord length, then convert it into a height. |
| 78 | DCHECK(S2::IsUnitLength(p)); |
| 79 | if (is_empty()) { |
| 80 | axis_ = p; |
| 81 | height_ = 0; |
| 82 | } else { |
| 83 | // To make sure that the resulting cap actually includes this point, |
| 84 | // we need to round up the distance calculation. That is, after |
| 85 | // calling cap.AddPoint(p), cap.Contains(p) should be true. |
| 86 | double dist2 = (axis_ - p).Norm2(); |
| 87 | height_ = max(height_, kRoundUp * 0.5 * dist2); |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | void S2Cap::AddCap(S2Cap const& other) { |
| 92 | if (is_empty()) { |
| 93 | *this = other; |
| 94 | } else { |
| 95 | // See comments for AddPoint(). This could be optimized by doing the |
| 96 | // calculation in terms of cap heights rather than cap opening angles. |
| 97 | double radians = axis_.Angle(other.axis_) + other.angle().radians(); |
| 98 | height_ = max(height_, kRoundUp * GetHeightForAngle(radians)); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | S2Cap S2Cap::Expanded(S1Angle const& distance) const { |
| 103 | DCHECK_GE(distance.radians(), 0); |
| 104 | if (is_empty()) return Empty(); |
| 105 | return FromAxisAngle(axis_, angle() + distance); |
| 106 | } |
| 107 | |
| 108 | S2Cap* S2Cap::Clone() const { |
| 109 | return new S2Cap(*this); |
| 110 | } |
| 111 | |
| 112 | S2Cap S2Cap::GetCapBound() const { |
| 113 | return *this; |
| 114 | } |
| 115 | |
| 116 | S2LatLngRect S2Cap::GetRectBound() const { |
| 117 | if (is_empty()) return S2LatLngRect::Empty(); |
| 118 | |
| 119 | // Convert the axis to a (lat,lng) pair, and compute the cap angle. |
| 120 | S2LatLng axis_ll(axis_); |
| 121 | double cap_angle = angle().radians(); |
| 122 | |
| 123 | bool all_longitudes = false; |
| 124 | double lat[2], lng[2]; |
| 125 | lng[0] = -M_PI; |
| 126 | lng[1] = M_PI; |
| 127 | |
| 128 | // Check whether cap includes the south pole. |
| 129 | lat[0] = axis_ll.lat().radians() - cap_angle; |
| 130 | if (lat[0] <= -M_PI_2) { |
| 131 | lat[0] = -M_PI_2; |
| 132 | all_longitudes = true; |
| 133 | } |
| 134 | // Check whether cap includes the north pole. |
| 135 | lat[1] = axis_ll.lat().radians() + cap_angle; |
| 136 | if (lat[1] >= M_PI_2) { |
| 137 | lat[1] = M_PI_2; |
| 138 | all_longitudes = true; |
| 139 | } |
| 140 | if (!all_longitudes) { |
| 141 | // Compute the range of longitudes covered by the cap. We use the law |
| 142 | // of sines for spherical triangles. Consider the triangle ABC where |
| 143 | // A is the north pole, B is the center of the cap, and C is the point |
| 144 | // of tangency between the cap boundary and a line of longitude. Then |
| 145 | // C is a right angle, and letting a,b,c denote the sides opposite A,B,C, |
| 146 | // we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c). |
| 147 | // Here "a" is the cap angle, and "c" is the colatitude (90 degrees |
| 148 | // minus the latitude). This formula also works for negative latitudes. |
| 149 | // |
| 150 | // The formula for sin(a) follows from the relationship h = 1 - cos(a). |
| 151 | |
| 152 | double sin_a = sqrt(height_ * (2 - height_)); |
| 153 | double sin_c = cos(axis_ll.lat().radians()); |
| 154 | if (sin_a <= sin_c) { |
| 155 | double angle_A = asin(sin_a / sin_c); |
| 156 | lng[0] = drem(axis_ll.lng().radians() - angle_A, 2 * M_PI); |
| 157 | lng[1] = drem(axis_ll.lng().radians() + angle_A, 2 * M_PI); |
| 158 | } |
| 159 | } |
| 160 | return S2LatLngRect(R1Interval(lat[0], lat[1]), |
| 161 | S1Interval(lng[0], lng[1])); |
| 162 | } |
| 163 | |
| 164 | bool S2Cap::Intersects(S2Cell const& cell, S2Point const* vertices) const { |
| 165 | // Return true if this cap intersects any point of 'cell' excluding its |
| 166 | // vertices (which are assumed to already have been checked). |
| 167 | |
| 168 | // If the cap is a hemisphere or larger, the cell and the complement of the |
| 169 | // cap are both convex. Therefore since no vertex of the cell is contained, |
| 170 | // no other interior point of the cell is contained either. |
| 171 | if (height_ >= 1) return false; |
| 172 | |
| 173 | // We need to check for empty caps due to the axis check just below. |
| 174 | if (is_empty()) return false; |
| 175 | |
| 176 | // Optimization: return true if the cell contains the cap axis. (This |
| 177 | // allows half of the edge checks below to be skipped.) |
| 178 | if (cell.Contains(axis_)) return true; |
| 179 | |
| 180 | // At this point we know that the cell does not contain the cap axis, |
| 181 | // and the cap does not contain any cell vertex. The only way that they |
| 182 | // can intersect is if the cap intersects the interior of some edge. |
| 183 | |
| 184 | double sin2_angle = height_ * (2 - height_); // sin^2(cap_angle) |
| 185 | for (int k = 0; k < 4; ++k) { |
| 186 | S2Point edge = cell.GetEdgeRaw(k); |
| 187 | double dot = axis_.DotProd(edge); |
| 188 | if (dot > 0) { |
| 189 | // The axis is in the interior half-space defined by the edge. We don't |
| 190 | // need to consider these edges, since if the cap intersects this edge |
| 191 | // then it also intersects the edge on the opposite side of the cell |
| 192 | // (because we know the axis is not contained with the cell). |
| 193 | continue; |
| 194 | } |
| 195 | // The Norm2() factor is necessary because "edge" is not normalized. |
| 196 | if (dot * dot > sin2_angle * edge.Norm2()) { |
| 197 | return false; // Entire cap is on the exterior side of this edge. |
| 198 | } |
| 199 | // Otherwise, the great circle containing this edge intersects |
| 200 | // the interior of the cap. We just need to check whether the point |
| 201 | // of closest approach occurs between the two edge endpoints. |
| 202 | S2Point dir = edge.CrossProd(axis_); |
| 203 | if (dir.DotProd(vertices[k]) < 0 && dir.DotProd(vertices[(k+1)&3]) > 0) |
| 204 | return true; |
| 205 | } |
| 206 | return false; |
| 207 | } |
| 208 | |
| 209 | bool S2Cap::Contains(S2Cell const& cell) const { |
| 210 | // If the cap does not contain all cell vertices, return false. |
| 211 | // We check the vertices before taking the Complement() because we can't |
| 212 | // accurately represent the complement of a very small cap (a height |
| 213 | // of 2-epsilon is rounded off to 2). |
| 214 | S2Point vertices[4]; |
| 215 | for (int k = 0; k < 4; ++k) { |
| 216 | vertices[k] = cell.GetVertex(k); |
| 217 | if (!Contains(vertices[k])) return false; |
| 218 | } |
| 219 | // Otherwise, return true if the complement of the cap does not intersect |
| 220 | // the cell. (This test is slightly conservative, because technically we |
| 221 | // want Complement().InteriorIntersects() here.) |
| 222 | return !Complement().Intersects(cell, vertices); |
| 223 | } |
| 224 | |
| 225 | bool S2Cap::MayIntersect(S2Cell const& cell) const { |
| 226 | // If the cap contains any cell vertex, return true. |
| 227 | S2Point vertices[4]; |
| 228 | for (int k = 0; k < 4; ++k) { |
| 229 | vertices[k] = cell.GetVertex(k); |
| 230 | if (Contains(vertices[k])) return true; |
| 231 | } |
| 232 | return Intersects(cell, vertices); |
| 233 | } |
| 234 | |
| 235 | bool S2Cap::Contains(S2Point const& p) const { |
| 236 | DCHECK(S2::IsUnitLength(p)); |
| 237 | return (axis_ - p).Norm2() <= 2 * height_; |
| 238 | } |
| 239 | |
| 240 | bool S2Cap::InteriorContains(S2Point const& p) const { |
| 241 | DCHECK(S2::IsUnitLength(p)); |
| 242 | return is_full() || (axis_ - p).Norm2() < 2 * height_; |
| 243 | } |
| 244 | |
| 245 | bool S2Cap::operator==(S2Cap const& other) const { |
| 246 | return (axis_ == other.axis_ && height_ == other.height_) || |
| 247 | (is_empty() && other.is_empty()) || |
| 248 | (is_full() && other.is_full()); |
| 249 | } |
| 250 | |
| 251 | bool S2Cap::ApproxEquals(S2Cap const& other, double max_error) { |
| 252 | return (S2::ApproxEquals(axis_, other.axis_, max_error) && |
| 253 | fabs(height_ - other.height_) <= max_error) || |
| 254 | (is_empty() && other.height_ <= max_error) || |
| 255 | (other.is_empty() && height_ <= max_error) || |
| 256 | (is_full() && other.height_ >= 2 - max_error) || |
| 257 | (other.is_full() && height_ >= 2 - max_error); |
| 258 | } |
| 259 | |
| 260 | ostream& operator<<(ostream& os, S2Cap const& cap) { |
| 261 | return os << "[Axis=" << cap.axis() << ", Angle=" << cap.angle() << "]" ; |
| 262 | } |
| 263 | |