1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #include <algorithm> |
4 | using std::min; |
5 | using std::max; |
6 | using std::swap; |
7 | using std::reverse; |
8 | |
9 | #include "s2edgeutil.h" |
10 | |
11 | #include "base/logging.h" |
12 | |
13 | bool S2EdgeUtil::SimpleCrossing(S2Point const& a, S2Point const& b, |
14 | S2Point const& c, S2Point const& d) { |
15 | // We compute SimpleCCW() for triangles ACB, CBD, BDA, and DAC. All |
16 | // of these triangles need to have the same orientation (CW or CCW) |
17 | // for an intersection to exist. Note that this is slightly more |
18 | // restrictive than the corresponding definition for planar edges, |
19 | // since we need to exclude pairs of line segments that would |
20 | // otherwise "intersect" by crossing two antipodal points. |
21 | |
22 | S2Point ab = a.CrossProd(b); |
23 | double acb = -(ab.DotProd(c)); |
24 | double bda = ab.DotProd(d); |
25 | if (acb * bda <= 0) return false; |
26 | |
27 | S2Point cd = c.CrossProd(d); |
28 | double cbd = -(cd.DotProd(b)); |
29 | double dac = cd.DotProd(a); |
30 | return (acb * cbd > 0) && (acb * dac > 0); |
31 | } |
32 | |
33 | int S2EdgeUtil::RobustCrossing(S2Point const& a, S2Point const& b, |
34 | S2Point const& c, S2Point const& d) { |
35 | S2EdgeUtil::EdgeCrosser crosser(&a, &b, &c); |
36 | return crosser.RobustCrossing(&d); |
37 | } |
38 | |
39 | bool S2EdgeUtil::VertexCrossing(S2Point const& a, S2Point const& b, |
40 | S2Point const& c, S2Point const& d) { |
41 | // If A == B or C == D there is no intersection. We need to check this |
42 | // case first in case 3 or more input points are identical. |
43 | if (a == b || c == d) return false; |
44 | |
45 | // If any other pair of vertices is equal, there is a crossing if and only |
46 | // if OrderedCCW() indicates that the edge AB is further CCW around the |
47 | // shared vertex O (either A or B) than the edge CD, starting from an |
48 | // arbitrary fixed reference point. |
49 | if (a == d) return S2::OrderedCCW(S2::Ortho(a), c, b, a); |
50 | if (b == c) return S2::OrderedCCW(S2::Ortho(b), d, a, b); |
51 | if (a == c) return S2::OrderedCCW(S2::Ortho(a), d, b, a); |
52 | if (b == d) return S2::OrderedCCW(S2::Ortho(b), c, a, b); |
53 | |
54 | LOG(DFATAL) << "VertexCrossing called with 4 distinct vertices" ; |
55 | return false; |
56 | } |
57 | |
58 | bool S2EdgeUtil::EdgeOrVertexCrossing(S2Point const& a, S2Point const& b, |
59 | S2Point const& c, S2Point const& d) { |
60 | int crossing = RobustCrossing(a, b, c, d); |
61 | if (crossing < 0) return false; |
62 | if (crossing > 0) return true; |
63 | return VertexCrossing(a, b, c, d); |
64 | } |
65 | |
66 | static void ReplaceIfCloser(S2Point const& x, S2Point const& y, |
67 | double *dmin2, S2Point* vmin) { |
68 | // If the squared distance from x to y is less than dmin2, then replace |
69 | // vmin by y and update dmin2 accordingly. |
70 | |
71 | double d2 = (x - y).Norm2(); |
72 | if (d2 < *dmin2 || (d2 == *dmin2 && y < *vmin)) { |
73 | *dmin2 = d2; |
74 | *vmin = y; |
75 | } |
76 | } |
77 | |
78 | S2Point S2EdgeUtil::GetIntersection(S2Point const& a0, S2Point const& a1, |
79 | S2Point const& b0, S2Point const& b1) { |
80 | DCHECK_GT(RobustCrossing(a0, a1, b0, b1), 0); |
81 | |
82 | // We use RobustCrossProd() to get accurate results even when two endpoints |
83 | // are close together, or when the two line segments are nearly parallel. |
84 | |
85 | S2Point a_norm = S2::RobustCrossProd(a0, a1).Normalize(); |
86 | S2Point b_norm = S2::RobustCrossProd(b0, b1).Normalize(); |
87 | S2Point x = S2::RobustCrossProd(a_norm, b_norm).Normalize(); |
88 | |
89 | // Make sure the intersection point is on the correct side of the sphere. |
90 | // Since all vertices are unit length, and edges are less than 180 degrees, |
91 | // (a0 + a1) and (b0 + b1) both have positive dot product with the |
92 | // intersection point. We use the sum of all vertices to make sure that the |
93 | // result is unchanged when the edges are reversed or exchanged. |
94 | |
95 | if (x.DotProd((a0 + a1) + (b0 + b1)) < 0) x = -x; |
96 | |
97 | // The calculation above is sufficient to ensure that "x" is within |
98 | // kIntersectionTolerance of the great circles through (a0,a1) and (b0,b1). |
99 | // However, if these two great circles are very close to parallel, it is |
100 | // possible that "x" does not lie between the endpoints of the given line |
101 | // segments. In other words, "x" might be on the great circle through |
102 | // (a0,a1) but outside the range covered by (a0,a1). In this case we do |
103 | // additional clipping to ensure that it does. |
104 | |
105 | if (S2::OrderedCCW(a0, x, a1, a_norm) && S2::OrderedCCW(b0, x, b1, b_norm)) |
106 | return x; |
107 | |
108 | // Find the acceptable endpoint closest to x and return it. An endpoint is |
109 | // acceptable if it lies between the endpoints of the other line segment. |
110 | double dmin2 = 10; |
111 | S2Point vmin = x; |
112 | if (S2::OrderedCCW(b0, a0, b1, b_norm)) ReplaceIfCloser(x, a0, &dmin2, &vmin); |
113 | if (S2::OrderedCCW(b0, a1, b1, b_norm)) ReplaceIfCloser(x, a1, &dmin2, &vmin); |
114 | if (S2::OrderedCCW(a0, b0, a1, a_norm)) ReplaceIfCloser(x, b0, &dmin2, &vmin); |
115 | if (S2::OrderedCCW(a0, b1, a1, a_norm)) ReplaceIfCloser(x, b1, &dmin2, &vmin); |
116 | |
117 | DCHECK(S2::OrderedCCW(a0, vmin, a1, a_norm)); |
118 | DCHECK(S2::OrderedCCW(b0, vmin, b1, b_norm)); |
119 | return vmin; |
120 | } |
121 | |
122 | // IEEE floating-point operations have a maximum error of 0.5 ULPS (units in |
123 | // the last place). For double-precision numbers, this works out to 2**-53 |
124 | // (about 1.11e-16) times the magnitude of the result. It is possible to |
125 | // analyze the calculation done by GetIntersection() and work out the |
126 | // worst-case rounding error. I have done a rough version of this, and my |
127 | // estimate is that the worst case distance from the intersection point X to |
128 | // the great circle through (a0, a1) is about 12 ULPS, or about 1.3e-15. |
129 | // This needs to be increased by a factor of (1/0.866) to account for the |
130 | // edge_splice_fraction() in S2PolygonBuilder. Note that the maximum error |
131 | // measured by the unittest in 1,000,000 trials is less than 3e-16. |
132 | S1Angle const S2EdgeUtil::kIntersectionTolerance = S1Angle::Radians(1.5e-15); |
133 | |
134 | double S2EdgeUtil::GetDistanceFraction(S2Point const& x, |
135 | S2Point const& a0, S2Point const& a1) { |
136 | DCHECK_NE(a0, a1); |
137 | double d0 = x.Angle(a0); |
138 | double d1 = x.Angle(a1); |
139 | return d0 / (d0 + d1); |
140 | } |
141 | |
142 | S2Point S2EdgeUtil::InterpolateAtDistance(S1Angle const& ax, |
143 | S2Point const& a, S2Point const& b, |
144 | S1Angle const& ab) { |
145 | DCHECK(S2::IsUnitLength(a)); |
146 | DCHECK(S2::IsUnitLength(b)); |
147 | |
148 | // As of crosstool v14, gcc tries to calculate sin(ax_radians), |
149 | // cos(ax_radians), sin(ab_radians), cos(ab_radians) in the |
150 | // following section by two sincos() calls. However, for some |
151 | // inputs, sincos() returns significantly different values between |
152 | // AMD and Intel. |
153 | // |
154 | // As a temporary workaround, "volatile" is added to ax_radians and |
155 | // ab_radians, to prohibit the compiler to use such sincos() call, |
156 | // because sin() and cos() don't seem to have the problem. See |
157 | // b/3088321 for details. |
158 | volatile double ax_radians = ax.radians(); |
159 | volatile double ab_radians = ab.radians(); |
160 | |
161 | // The result X is some linear combination X = e*A + f*B of the input |
162 | // points. The fractions "e" and "f" can be derived by looking at the |
163 | // components of this equation that are parallel and perpendicular to A. |
164 | // Let E = e*A and F = f*B. Then OEXF is a parallelogram. You can obtain |
165 | // the distance f = OF by considering the similar triangles produced by |
166 | // dropping perpendiculars from the segments OF and OB to OA. |
167 | double f = sin(ax_radians) / sin(ab_radians); |
168 | |
169 | // Form the dot product of the first equation with A to obtain |
170 | // A.X = e*A.A + f*A.B. Since A, B, and X are all unit vectors, |
171 | // cos(ax) = e*1 + f*cos(ab), so |
172 | double e = cos(ax_radians) - f * cos(ab_radians); |
173 | |
174 | // Mathematically speaking, if "a" and "b" are unit length then the result |
175 | // is unit length as well. But we normalize it anyway to prevent points |
176 | // from drifting away from unit length when multiple interpolations are done |
177 | // in succession (i.e. the result of one interpolation is fed into another). |
178 | return (e * a + f * b).Normalize(); |
179 | } |
180 | |
181 | S2Point S2EdgeUtil::InterpolateAtDistance(S1Angle const& ax, |
182 | S2Point const& a, S2Point const& b) { |
183 | return InterpolateAtDistance(ax, a, b, S1Angle(a, b)); |
184 | } |
185 | |
186 | S2Point S2EdgeUtil::Interpolate(double t, S2Point const& a, S2Point const& b) { |
187 | if (t == 0) return a; |
188 | if (t == 1) return b; |
189 | S1Angle ab(a, b); |
190 | return InterpolateAtDistance(t * ab, a, b, ab); |
191 | } |
192 | |
193 | S1Angle S2EdgeUtil::GetDistance(S2Point const& x, |
194 | S2Point const& a, S2Point const& b, |
195 | S2Point const& a_cross_b) { |
196 | DCHECK(S2::IsUnitLength(a)); |
197 | DCHECK(S2::IsUnitLength(b)); |
198 | DCHECK(S2::IsUnitLength(x)); |
199 | |
200 | // There are three cases. If X is located in the spherical wedge defined by |
201 | // A, B, and the axis A x B, then the closest point is on the segment AB. |
202 | // Otherwise the closest point is either A or B; the dividing line between |
203 | // these two cases is the great circle passing through (A x B) and the |
204 | // midpoint of AB. |
205 | |
206 | if (S2::SimpleCCW(a_cross_b, a, x) && S2::SimpleCCW(x, b, a_cross_b)) { |
207 | // The closest point to X lies on the segment AB. We compute the distance |
208 | // to the corresponding great circle. The result is accurate for small |
209 | // distances but not necessarily for large distances (approaching Pi/2). |
210 | |
211 | DCHECK_NE(a, b); // Due to the guarantees of SimpleCCW(). |
212 | double sin_dist = fabs(x.DotProd(a_cross_b)) / a_cross_b.Norm(); |
213 | return S1Angle::Radians(asin(min(1.0, sin_dist))); |
214 | } |
215 | // Otherwise, the closest point is either A or B. The cheapest method is |
216 | // just to compute the minimum of the two linear (as opposed to spherical) |
217 | // distances and convert the result to an angle. Again, this method is |
218 | // accurate for small but not large distances (approaching Pi). |
219 | |
220 | double linear_dist2 = min((x-a).Norm2(), (x-b).Norm2()); |
221 | return S1Angle::Radians(2 * asin(min(1.0, 0.5 * sqrt(linear_dist2)))); |
222 | } |
223 | |
224 | S1Angle S2EdgeUtil::GetDistance(S2Point const& x, |
225 | S2Point const& a, S2Point const& b) { |
226 | return GetDistance(x, a, b, S2::RobustCrossProd(a, b)); |
227 | } |
228 | |
229 | S2Point S2EdgeUtil::GetClosestPoint(S2Point const& x, |
230 | S2Point const& a, S2Point const& b, |
231 | S2Point const& a_cross_b) { |
232 | DCHECK(S2::IsUnitLength(a)); |
233 | DCHECK(S2::IsUnitLength(b)); |
234 | DCHECK(S2::IsUnitLength(x)); |
235 | |
236 | // Find the closest point to X along the great circle through AB. |
237 | S2Point p = x - (x.DotProd(a_cross_b) / a_cross_b.Norm2()) * a_cross_b; |
238 | |
239 | // If this point is on the edge AB, then it's the closest point. |
240 | if (S2::SimpleCCW(a_cross_b, a, p) && S2::SimpleCCW(p, b, a_cross_b)) |
241 | return p.Normalize(); |
242 | |
243 | // Otherwise, the closest point is either A or B. |
244 | return ((x - a).Norm2() <= (x - b).Norm2()) ? a : b; |
245 | } |
246 | |
247 | S2Point S2EdgeUtil::GetClosestPoint(S2Point const& x, |
248 | S2Point const& a, S2Point const& b) { |
249 | return GetClosestPoint(x, a, b, S2::RobustCrossProd(a, b)); |
250 | } |
251 | |
252 | bool S2EdgeUtil::IsEdgeBNearEdgeA(S2Point const& a0, S2Point const& a1, |
253 | S2Point const& b0, S2Point const& b1, |
254 | S1Angle const& tolerance) { |
255 | DCHECK_LT(tolerance.radians(), M_PI / 2); |
256 | DCHECK_GT(tolerance.radians(), 0); |
257 | // The point on edge B=b0b1 furthest from edge A=a0a1 is either b0, b1, or |
258 | // some interior point on B. If it is an interior point on B, then it must be |
259 | // one of the two points where the great circle containing B (circ(B)) is |
260 | // furthest from the great circle containing A (circ(A)). At these points, |
261 | // the distance between circ(B) and circ(A) is the angle between the planes |
262 | // containing them. |
263 | |
264 | S2Point a_ortho = S2::RobustCrossProd(a0, a1).Normalize(); |
265 | S2Point const a_nearest_b0 = GetClosestPoint(b0, a0, a1, a_ortho); |
266 | S2Point const a_nearest_b1 = GetClosestPoint(b1, a0, a1, a_ortho); |
267 | // If a_nearest_b0 and a_nearest_b1 have opposite orientation from a0 and a1, |
268 | // we invert a_ortho so that it points in the same direction as a_nearest_b0 x |
269 | // a_nearest_b1. This helps us handle the case where A and B are oppositely |
270 | // oriented but otherwise might be near each other. We check orientation and |
271 | // invert rather than computing a_nearest_b0 x a_nearest_b1 because those two |
272 | // points might be equal, and have an unhelpful cross product. |
273 | if (S2::RobustCCW(a_ortho, a_nearest_b0, a_nearest_b1) < 0) |
274 | a_ortho *= -1; |
275 | |
276 | // To check if all points on B are within tolerance of A, we first check to |
277 | // see if the endpoints of B are near A. If they are not, B is not near A. |
278 | S1Angle const b0_distance(b0, a_nearest_b0); |
279 | S1Angle const b1_distance(b1, a_nearest_b1); |
280 | if (b0_distance > tolerance || b1_distance > tolerance) |
281 | return false; |
282 | |
283 | // If b0 and b1 are both within tolerance of A, we check to see if the angle |
284 | // between the planes containing B and A is greater than tolerance. If it is |
285 | // not, no point on B can be further than tolerance from A (recall that we |
286 | // already know that b0 and b1 are close to A, and S2Edges are all shorter |
287 | // than 180 degrees). The angle between the planes containing circ(A) and |
288 | // circ(B) is the angle between their normal vectors. |
289 | S2Point const b_ortho = S2::RobustCrossProd(b0, b1).Normalize(); |
290 | S1Angle const planar_angle(a_ortho, b_ortho); |
291 | if (planar_angle <= tolerance) |
292 | return true; |
293 | |
294 | |
295 | // As planar_angle approaches M_PI, the projection of a_ortho onto the plane |
296 | // of B approaches the null vector, and normalizing it is numerically |
297 | // unstable. This makes it unreliable or impossible to identify pairs of |
298 | // points where circ(A) is furthest from circ(B). At this point in the |
299 | // algorithm, this can only occur for two reasons: |
300 | // |
301 | // 1.) b0 and b1 are closest to A at distinct endpoints of A, in which case |
302 | // the opposite orientation of a_ortho and b_ortho means that A and B are |
303 | // in opposite hemispheres and hence not close to each other. |
304 | // |
305 | // 2.) b0 and b1 are closest to A at the same endpoint of A, in which case |
306 | // the orientation of a_ortho was chosen arbitrarily to be that of a0 |
307 | // cross a1. B must be shorter than 2*tolerance and all points in B are |
308 | // close to one endpoint of A, and hence to A. |
309 | // |
310 | // The logic applies when planar_angle is robustly greater than M_PI/2, but |
311 | // may be more computationally expensive than the logic beyond, so we choose a |
312 | // value close to M_PI. |
313 | if (planar_angle >= S1Angle::Radians(M_PI - 0.01)) { |
314 | return (S1Angle(b0, a0) < S1Angle(b0, a1)) == |
315 | (S1Angle(b1, a0) < S1Angle(b1, a1)); |
316 | } |
317 | |
318 | // Finally, if either of the two points on circ(B) where circ(B) is furthest |
319 | // from circ(A) lie on edge B, edge B is not near edge A. |
320 | // |
321 | // The normalized projection of a_ortho onto the plane of circ(B) is one of |
322 | // the two points along circ(B) where it is furthest from circ(A). The other |
323 | // is -1 times the normalized projection. |
324 | S2Point furthest = (a_ortho - a_ortho.DotProd(b_ortho) * b_ortho).Normalize(); |
325 | DCHECK(S2::IsUnitLength(furthest)); |
326 | S2Point furthest_inv = -1 * furthest; |
327 | |
328 | // A point p lies on B if you can proceed from b_ortho to b0 to p to b1 and |
329 | // back to b_ortho without ever turning right. We test this for furthest and |
330 | // furthest_inv, and return true if neither point lies on B. |
331 | return !((S2::RobustCCW(b_ortho, b0, furthest) > 0 && |
332 | S2::RobustCCW(furthest, b1, b_ortho) > 0) || |
333 | (S2::RobustCCW(b_ortho, b0, furthest_inv) > 0 && |
334 | S2::RobustCCW(furthest_inv, b1, b_ortho) > 0)); |
335 | } |
336 | |
337 | |
338 | bool S2EdgeUtil::WedgeContains(S2Point const& a0, S2Point const& ab1, |
339 | S2Point const& a2, S2Point const& b0, |
340 | S2Point const& b2) { |
341 | // For A to contain B (where each loop interior is defined to be its left |
342 | // side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split |
343 | // this test into two parts that test three vertices each. |
344 | return S2::OrderedCCW(a2, b2, b0, ab1) && S2::OrderedCCW(b0, a0, a2, ab1); |
345 | } |
346 | |
347 | bool S2EdgeUtil::WedgeIntersects(S2Point const& a0, S2Point const& ab1, |
348 | S2Point const& a2, S2Point const& b0, |
349 | S2Point const& b2) { |
350 | // For A not to intersect B (where each loop interior is defined to be |
351 | // its left side), the CCW edge order around ab1 must be a0 b2 b0 a2. |
352 | // Note that it's important to write these conditions as negatives |
353 | // (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct |
354 | // results when two vertices are the same. |
355 | return !(S2::OrderedCCW(a0, b2, b0, ab1) && S2::OrderedCCW(b0, a2, a0, ab1)); |
356 | } |
357 | |
358 | S2EdgeUtil::WedgeRelation S2EdgeUtil::GetWedgeRelation( |
359 | S2Point const& a0, S2Point const& ab1, S2Point const& a2, |
360 | S2Point const& b0, S2Point const& b2) { |
361 | // There are 6 possible edge orderings at a shared vertex (all |
362 | // of these orderings are circular, i.e. abcd == bcda): |
363 | // |
364 | // (1) a2 b2 b0 a0: A contains B |
365 | // (2) a2 a0 b0 b2: B contains A |
366 | // (3) a2 a0 b2 b0: A and B are disjoint |
367 | // (4) a2 b0 a0 b2: A and B intersect in one wedge |
368 | // (5) a2 b2 a0 b0: A and B intersect in one wedge |
369 | // (6) a2 b0 b2 a0: A and B intersect in two wedges |
370 | // |
371 | // We do not distinguish between 4, 5, and 6. |
372 | // We pay extra attention when some of the edges overlap.When edges |
373 | // overlap, several of these orderings can be satisfied, and we take |
374 | // the most specific. |
375 | if (a0 == b0 && a2 == b2) return WEDGE_EQUALS; |
376 | |
377 | if (S2::OrderedCCW(a0, a2, b2, ab1)) { |
378 | // The cases with this vertex ordering are 1, 5, and 6, |
379 | // although case 2 is also possible if a2 == b2. |
380 | if (S2::OrderedCCW(b2, b0, a0, ab1)) return WEDGE_PROPERLY_CONTAINS; |
381 | |
382 | // We are in case 5 or 6, or case 2 if a2 == b2. |
383 | return (a2 == b2) ? WEDGE_IS_PROPERLY_CONTAINED : WEDGE_PROPERLY_OVERLAPS; |
384 | } |
385 | |
386 | // We are in case 2, 3, or 4. |
387 | if (S2::OrderedCCW(a0, b0, b2, ab1)) return WEDGE_IS_PROPERLY_CONTAINED; |
388 | return S2::OrderedCCW(a0, b0, a2, ab1) ? |
389 | WEDGE_IS_DISJOINT : WEDGE_PROPERLY_OVERLAPS; |
390 | } |
391 | |
392 | int S2EdgeUtil::EdgeCrosser::RobustCrossingInternal(S2Point const* d) { |
393 | // ACB and BDA have the appropriate orientations, so now we check the |
394 | // triangles CBD and DAC. |
395 | S2Point c_cross_d = c_->CrossProd(*d); |
396 | int cbd = -S2::RobustCCW(*c_, *d, *b_, c_cross_d); |
397 | if (cbd != acb_) return -1; |
398 | |
399 | int dac = S2::RobustCCW(*c_, *d, *a_, c_cross_d); |
400 | return (dac == acb_) ? 1 : -1; |
401 | } |
402 | |
403 | void S2EdgeUtil::RectBounder::AddPoint(S2Point const* b) { |
404 | DCHECK(S2::IsUnitLength(*b)); |
405 | S2LatLng b_latlng(*b); |
406 | if (bound_.is_empty()) { |
407 | bound_.AddPoint(b_latlng); |
408 | } else { |
409 | // We can't just call bound_.AddPoint(b_latlng) here, since we need to |
410 | // ensure that all the longitudes between "a" and "b" are included. |
411 | bound_ = bound_.Union(S2LatLngRect::FromPointPair(a_latlng_, b_latlng)); |
412 | |
413 | // Check whether the min/max latitude occurs in the edge interior. We find |
414 | // the normal to the plane containing AB, and then a vector "dir" in this |
415 | // plane that also passes through the equator. We use RobustCrossProd to |
416 | // ensure that the edge normal is accurate even when the two points are very |
417 | // close together. |
418 | S2Point a_cross_b = S2::RobustCrossProd(*a_, *b); |
419 | S2Point dir = a_cross_b.CrossProd(S2Point(0, 0, 1)); |
420 | double da = dir.DotProd(*a_); |
421 | double db = dir.DotProd(*b); |
422 | if (da * db < 0) { |
423 | // Minimum/maximum latitude occurs in the edge interior. |
424 | double abs_lat = acos(fabs(a_cross_b[2] / a_cross_b.Norm())); |
425 | if (da < 0) { |
426 | // It's possible that abs_lat < lat_.lo() due to numerical errors. |
427 | bound_.mutable_lat()->set_hi(max(abs_lat, bound_.lat().hi())); |
428 | } else { |
429 | bound_.mutable_lat()->set_lo(min(-abs_lat, bound_.lat().lo())); |
430 | } |
431 | |
432 | // If the edge comes very close to the north or south pole then we may |
433 | // not be certain which side of the pole it is on. We handle this by |
434 | // expanding the longitude bounds if the maximum absolute latitude is |
435 | // approximately Pi/2. |
436 | if (abs_lat >= M_PI_2 - 1e-15) { |
437 | *bound_.mutable_lng() = S1Interval::Full(); |
438 | } |
439 | } |
440 | } |
441 | a_ = b; |
442 | a_latlng_ = b_latlng; |
443 | } |
444 | |
445 | S2EdgeUtil::LongitudePruner::LongitudePruner(S1Interval const& interval, |
446 | S2Point const& v0) |
447 | : interval_(interval), lng0_(S2LatLng::Longitude(v0).radians()) { |
448 | } |
449 | |