| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include <algorithm> |
| 4 | using std::min; |
| 5 | using std::max; |
| 6 | using std::swap; |
| 7 | using std::reverse; |
| 8 | |
| 9 | |
| 10 | #include "s2latlngrect.h" |
| 11 | |
| 12 | #include "base/logging.h" |
| 13 | #include "util/coding/coder.h" |
| 14 | #include "s2cap.h" |
| 15 | #include "s2cell.h" |
| 16 | #include "s2edgeutil.h" |
| 17 | #include "util/math/mathutil.h" |
| 18 | |
| 19 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
| 20 | |
| 21 | S2LatLngRect S2LatLngRect::FromCenterSize(S2LatLng const& center, |
| 22 | S2LatLng const& size) { |
| 23 | return FromPoint(center).Expanded(0.5 * size); |
| 24 | } |
| 25 | |
| 26 | S2LatLngRect S2LatLngRect::FromPoint(S2LatLng const& p) { |
| 27 | DCHECK(p.is_valid()); |
| 28 | return S2LatLngRect(p, p); |
| 29 | } |
| 30 | |
| 31 | S2LatLngRect S2LatLngRect::FromPointPair(S2LatLng const& p1, |
| 32 | S2LatLng const& p2) { |
| 33 | DCHECK(p1.is_valid()) << p1; |
| 34 | DCHECK(p2.is_valid()) << p2; |
| 35 | return S2LatLngRect(R1Interval::FromPointPair(p1.lat().radians(), |
| 36 | p2.lat().radians()), |
| 37 | S1Interval::FromPointPair(p1.lng().radians(), |
| 38 | p2.lng().radians())); |
| 39 | } |
| 40 | |
| 41 | S2LatLngRect* S2LatLngRect::Clone() const { |
| 42 | return new S2LatLngRect(*this); |
| 43 | } |
| 44 | |
| 45 | S2LatLng S2LatLngRect::GetVertex(int k) const { |
| 46 | // Twiddle bits to return the points in CCW order (SW, SE, NE, NW). |
| 47 | return S2LatLng::FromRadians(lat_.bound(k>>1), lng_.bound((k>>1) ^ (k&1))); |
| 48 | } |
| 49 | |
| 50 | S2LatLng S2LatLngRect::GetCenter() const { |
| 51 | return S2LatLng::FromRadians(lat_.GetCenter(), lng_.GetCenter()); |
| 52 | } |
| 53 | |
| 54 | S2LatLng S2LatLngRect::GetSize() const { |
| 55 | return S2LatLng::FromRadians(lat_.GetLength(), lng_.GetLength()); |
| 56 | } |
| 57 | |
| 58 | double S2LatLngRect::Area() const { |
| 59 | if (is_empty()) return 0.0; |
| 60 | // This is the size difference of the two spherical caps, multiplied by |
| 61 | // the longitude ratio. |
| 62 | return lng().GetLength()* fabs(sin(lat_hi().radians()) - |
| 63 | sin(lat_lo().radians())); |
| 64 | } |
| 65 | |
| 66 | bool S2LatLngRect::Contains(S2LatLng const& ll) const { |
| 67 | DCHECK(ll.is_valid()); |
| 68 | return (lat_.Contains(ll.lat().radians()) && |
| 69 | lng_.Contains(ll.lng().radians())); |
| 70 | } |
| 71 | |
| 72 | bool S2LatLngRect::InteriorContains(S2Point const& p) const { |
| 73 | return InteriorContains(S2LatLng(p)); |
| 74 | } |
| 75 | |
| 76 | bool S2LatLngRect::InteriorContains(S2LatLng const& ll) const { |
| 77 | DCHECK(ll.is_valid()); |
| 78 | return (lat_.InteriorContains(ll.lat().radians()) && |
| 79 | lng_.InteriorContains(ll.lng().radians())); |
| 80 | } |
| 81 | |
| 82 | bool S2LatLngRect::Contains(S2LatLngRect const& other) const { |
| 83 | return lat_.Contains(other.lat_) && lng_.Contains(other.lng_); |
| 84 | } |
| 85 | |
| 86 | bool S2LatLngRect::InteriorContains(S2LatLngRect const& other) const { |
| 87 | return (lat_.InteriorContains(other.lat_) && |
| 88 | lng_.InteriorContains(other.lng_)); |
| 89 | } |
| 90 | |
| 91 | bool S2LatLngRect::Intersects(S2LatLngRect const& other) const { |
| 92 | return lat_.Intersects(other.lat_) && lng_.Intersects(other.lng_); |
| 93 | } |
| 94 | |
| 95 | bool S2LatLngRect::InteriorIntersects(S2LatLngRect const& other) const { |
| 96 | return (lat_.InteriorIntersects(other.lat_) && |
| 97 | lng_.InteriorIntersects(other.lng_)); |
| 98 | } |
| 99 | |
| 100 | void S2LatLngRect::AddPoint(S2Point const& p) { |
| 101 | AddPoint(S2LatLng(p)); |
| 102 | } |
| 103 | |
| 104 | void S2LatLngRect::AddPoint(S2LatLng const& ll) { |
| 105 | DCHECK(ll.is_valid()); |
| 106 | lat_.AddPoint(ll.lat().radians()); |
| 107 | lng_.AddPoint(ll.lng().radians()); |
| 108 | } |
| 109 | |
| 110 | S2LatLngRect S2LatLngRect::Expanded(S2LatLng const& margin) const { |
| 111 | DCHECK_GE(margin.lat().radians(), 0); |
| 112 | DCHECK_GE(margin.lng().radians(), 0); |
| 113 | return S2LatLngRect( |
| 114 | lat_.Expanded(margin.lat().radians()).Intersection(FullLat()), |
| 115 | lng_.Expanded(margin.lng().radians())); |
| 116 | } |
| 117 | |
| 118 | S2LatLngRect S2LatLngRect::Union(S2LatLngRect const& other) const { |
| 119 | return S2LatLngRect(lat_.Union(other.lat_), |
| 120 | lng_.Union(other.lng_)); |
| 121 | } |
| 122 | |
| 123 | S2LatLngRect S2LatLngRect::Intersection(S2LatLngRect const& other) const { |
| 124 | R1Interval lat = lat_.Intersection(other.lat_); |
| 125 | S1Interval lng = lng_.Intersection(other.lng_); |
| 126 | if (lat.is_empty() || lng.is_empty()) { |
| 127 | // The lat/lng ranges must either be both empty or both non-empty. |
| 128 | return Empty(); |
| 129 | } |
| 130 | return S2LatLngRect(lat, lng); |
| 131 | } |
| 132 | |
| 133 | S2LatLngRect S2LatLngRect::ConvolveWithCap(S1Angle const& angle) const { |
| 134 | // The most straightforward approach is to build a cap centered on each |
| 135 | // vertex and take the union of all the bounding rectangles (including the |
| 136 | // original rectangle; this is necessary for very large rectangles). |
| 137 | |
| 138 | // Optimization: convert the angle to a height exactly once. |
| 139 | S2Cap cap = S2Cap::FromAxisAngle(S2Point(1, 0, 0), angle); |
| 140 | |
| 141 | S2LatLngRect r = *this; |
| 142 | for (int k = 0; k < 4; ++k) { |
| 143 | S2Cap vertex_cap = S2Cap::FromAxisHeight(GetVertex(k).ToPoint(), |
| 144 | cap.height()); |
| 145 | r = r.Union(vertex_cap.GetRectBound()); |
| 146 | } |
| 147 | return r; |
| 148 | } |
| 149 | |
| 150 | S2Cap S2LatLngRect::GetCapBound() const { |
| 151 | // We consider two possible bounding caps, one whose axis passes |
| 152 | // through the center of the lat-long rectangle and one whose axis |
| 153 | // is the north or south pole. We return the smaller of the two caps. |
| 154 | |
| 155 | if (is_empty()) return S2Cap::Empty(); |
| 156 | |
| 157 | double pole_z, pole_angle; |
| 158 | if (lat_.lo() + lat_.hi() < 0) { |
| 159 | // South pole axis yields smaller cap. |
| 160 | pole_z = -1; |
| 161 | pole_angle = M_PI_2 + lat_.hi(); |
| 162 | } else { |
| 163 | pole_z = 1; |
| 164 | pole_angle = M_PI_2 - lat_.lo(); |
| 165 | } |
| 166 | S2Cap pole_cap = S2Cap::FromAxisAngle(S2Point(0, 0, pole_z), |
| 167 | S1Angle::Radians(pole_angle)); |
| 168 | |
| 169 | // For bounding rectangles that span 180 degrees or less in longitude, the |
| 170 | // maximum cap size is achieved at one of the rectangle vertices. For |
| 171 | // rectangles that are larger than 180 degrees, we punt and always return a |
| 172 | // bounding cap centered at one of the two poles. |
| 173 | double lng_span = lng_.hi() - lng_.lo(); |
| 174 | if (drem(lng_span, 2 * M_PI) >= 0) { |
| 175 | if (lng_span < 2 * M_PI) { |
| 176 | S2Cap mid_cap = S2Cap::FromAxisAngle(GetCenter().ToPoint(), |
| 177 | S1Angle::Radians(0)); |
| 178 | for (int k = 0; k < 4; ++k) { |
| 179 | mid_cap.AddPoint(GetVertex(k).ToPoint()); |
| 180 | } |
| 181 | if (mid_cap.height() < pole_cap.height()) |
| 182 | return mid_cap; |
| 183 | } |
| 184 | } |
| 185 | return pole_cap; |
| 186 | } |
| 187 | |
| 188 | S2LatLngRect S2LatLngRect::GetRectBound() const { |
| 189 | return *this; |
| 190 | } |
| 191 | |
| 192 | bool S2LatLngRect::Contains(S2Cell const& cell) const { |
| 193 | // A latitude-longitude rectangle contains a cell if and only if it contains |
| 194 | // the cell's bounding rectangle. This test is exact from a mathematical |
| 195 | // point of view, assuming that the bounds returned by S2Cell::GetRectBound() |
| 196 | // are tight. However, note that there can be a loss of precision when |
| 197 | // converting between representations -- for example, if an S2Cell is |
| 198 | // converted to a polygon, the polygon's bounding rectangle may not contain |
| 199 | // the cell's bounding rectangle. This has some slightly unexpected side |
| 200 | // effects; for instance, if one creates an S2Polygon from an S2Cell, the |
| 201 | // polygon will contain the cell, but the polygon's bounding box will not. |
| 202 | return Contains(cell.GetRectBound()); |
| 203 | } |
| 204 | |
| 205 | bool S2LatLngRect::MayIntersect(S2Cell const& cell) const { |
| 206 | // This test is cheap but is NOT exact (see s2latlngrect.h). |
| 207 | return Intersects(cell.GetRectBound()); |
| 208 | } |
| 209 | |
| 210 | void S2LatLngRect::Encode(Encoder* encoder) const { |
| 211 | encoder->Ensure(40); // sufficient |
| 212 | |
| 213 | encoder->put8(kCurrentEncodingVersionNumber); |
| 214 | encoder->putdouble(lat_.lo()); |
| 215 | encoder->putdouble(lat_.hi()); |
| 216 | encoder->putdouble(lng_.lo()); |
| 217 | encoder->putdouble(lng_.hi()); |
| 218 | |
| 219 | DCHECK_GE(encoder->avail(), 0); |
| 220 | } |
| 221 | |
| 222 | bool S2LatLngRect::Decode(Decoder* decoder) { |
| 223 | unsigned char version = decoder->get8(); |
| 224 | if (version > kCurrentEncodingVersionNumber) return false; |
| 225 | |
| 226 | double lat_lo = decoder->getdouble(); |
| 227 | double lat_hi = decoder->getdouble(); |
| 228 | lat_ = R1Interval(lat_lo, lat_hi); |
| 229 | double lng_lo = decoder->getdouble(); |
| 230 | double lng_hi = decoder->getdouble(); |
| 231 | lng_ = S1Interval(lng_lo, lng_hi); |
| 232 | |
| 233 | DCHECK(is_valid()); |
| 234 | |
| 235 | return decoder->avail() >= 0; |
| 236 | } |
| 237 | |
| 238 | bool S2LatLngRect::IntersectsLngEdge(S2Point const& a, S2Point const& b, |
| 239 | R1Interval const& lat, double lng) { |
| 240 | // Return true if the segment AB intersects the given edge of constant |
| 241 | // longitude. The nice thing about edges of constant longitude is that |
| 242 | // they are straight lines on the sphere (geodesics). |
| 243 | |
| 244 | return S2EdgeUtil::SimpleCrossing( |
| 245 | a, b, S2LatLng::FromRadians(lat.lo(), lng).ToPoint(), |
| 246 | S2LatLng::FromRadians(lat.hi(), lng).ToPoint()); |
| 247 | } |
| 248 | |
| 249 | bool S2LatLngRect::IntersectsLatEdge(S2Point const& a, S2Point const& b, |
| 250 | double lat, S1Interval const& lng) { |
| 251 | // Return true if the segment AB intersects the given edge of constant |
| 252 | // latitude. Unfortunately, lines of constant latitude are curves on |
| 253 | // the sphere. They can intersect a straight edge in 0, 1, or 2 points. |
| 254 | DCHECK(S2::IsUnitLength(a)); |
| 255 | DCHECK(S2::IsUnitLength(b)); |
| 256 | |
| 257 | // First, compute the normal to the plane AB that points vaguely north. |
| 258 | S2Point z = S2::RobustCrossProd(a, b).Normalize(); |
| 259 | if (z[2] < 0) z = -z; |
| 260 | |
| 261 | // Extend this to an orthonormal frame (x,y,z) where x is the direction |
| 262 | // where the great circle through AB achieves its maximium latitude. |
| 263 | S2Point y = S2::RobustCrossProd(z, S2Point(0, 0, 1)).Normalize(); |
| 264 | S2Point x = y.CrossProd(z); |
| 265 | DCHECK(S2::IsUnitLength(x)); |
| 266 | DCHECK_GE(x[2], 0); |
| 267 | |
| 268 | // Compute the angle "theta" from the x-axis (in the x-y plane defined |
| 269 | // above) where the great circle intersects the given line of latitude. |
| 270 | double sin_lat = sin(lat); |
| 271 | if (fabs(sin_lat) >= x[2]) { |
| 272 | return false; // The great circle does not reach the given latitude. |
| 273 | } |
| 274 | DCHECK_GT(x[2], 0); |
| 275 | double cos_theta = sin_lat / x[2]; |
| 276 | double sin_theta = sqrt(1 - cos_theta * cos_theta); |
| 277 | double theta = atan2(sin_theta, cos_theta); |
| 278 | |
| 279 | // The candidate intersection points are located +/- theta in the x-y |
| 280 | // plane. For an intersection to be valid, we need to check that the |
| 281 | // intersection point is contained in the interior of the edge AB and |
| 282 | // also that it is contained within the given longitude interval "lng". |
| 283 | |
| 284 | // Compute the range of theta values spanned by the edge AB. |
| 285 | S1Interval ab_theta = S1Interval::FromPointPair( |
| 286 | atan2(a.DotProd(y), a.DotProd(x)), |
| 287 | atan2(b.DotProd(y), b.DotProd(x))); |
| 288 | |
| 289 | if (ab_theta.Contains(theta)) { |
| 290 | // Check if the intersection point is also in the given "lng" interval. |
| 291 | S2Point isect = x * cos_theta + y * sin_theta; |
| 292 | if (lng.Contains(atan2(isect[1], isect[0]))) return true; |
| 293 | } |
| 294 | if (ab_theta.Contains(-theta)) { |
| 295 | // Check if the intersection point is also in the given "lng" interval. |
| 296 | S2Point isect = x * cos_theta - y * sin_theta; |
| 297 | if (lng.Contains(atan2(isect[1], isect[0]))) return true; |
| 298 | } |
| 299 | return false; |
| 300 | } |
| 301 | |
| 302 | bool S2LatLngRect::Intersects(S2Cell const& cell) const { |
| 303 | // First we eliminate the cases where one region completely contains the |
| 304 | // other. Once these are disposed of, then the regions will intersect |
| 305 | // if and only if their boundaries intersect. |
| 306 | |
| 307 | if (is_empty()) return false; |
| 308 | if (Contains(cell.GetCenterRaw())) return true; |
| 309 | if (cell.Contains(GetCenter().ToPoint())) return true; |
| 310 | |
| 311 | // Quick rejection test (not required for correctness). |
| 312 | if (!Intersects(cell.GetRectBound())) return false; |
| 313 | |
| 314 | // Precompute the cell vertices as points and latitude-longitudes. We also |
| 315 | // check whether the S2Cell contains any corner of the rectangle, or |
| 316 | // vice-versa, since the edge-crossing tests only check the edge interiors. |
| 317 | |
| 318 | S2Point cell_v[4]; |
| 319 | S2LatLng cell_ll[4]; |
| 320 | for (int i = 0; i < 4; ++i) { |
| 321 | cell_v[i] = cell.GetVertex(i); // Must be normalized. |
| 322 | cell_ll[i] = S2LatLng(cell_v[i]); |
| 323 | if (Contains(cell_ll[i])) return true; |
| 324 | if (cell.Contains(GetVertex(i).ToPoint())) return true; |
| 325 | } |
| 326 | |
| 327 | // Now check whether the boundaries intersect. Unfortunately, a |
| 328 | // latitude-longitude rectangle does not have straight edges -- two edges |
| 329 | // are curved, and at least one of them is concave. |
| 330 | |
| 331 | for (int i = 0; i < 4; ++i) { |
| 332 | S1Interval edge_lng = S1Interval::FromPointPair( |
| 333 | cell_ll[i].lng().radians(), cell_ll[(i+1)&3].lng().radians()); |
| 334 | if (!lng_.Intersects(edge_lng)) continue; |
| 335 | |
| 336 | S2Point const& a = cell_v[i]; |
| 337 | S2Point const& b = cell_v[(i+1)&3]; |
| 338 | if (edge_lng.Contains(lng_.lo())) { |
| 339 | if (IntersectsLngEdge(a, b, lat_, lng_.lo())) return true; |
| 340 | } |
| 341 | if (edge_lng.Contains(lng_.hi())) { |
| 342 | if (IntersectsLngEdge(a, b, lat_, lng_.hi())) return true; |
| 343 | } |
| 344 | if (IntersectsLatEdge(a, b, lat_.lo(), lng_)) return true; |
| 345 | if (IntersectsLatEdge(a, b, lat_.hi(), lng_)) return true; |
| 346 | } |
| 347 | return false; |
| 348 | } |
| 349 | |
| 350 | S1Angle S2LatLngRect::GetDistance(S2LatLngRect const& other) const { |
| 351 | S2LatLngRect const& a = *this; |
| 352 | S2LatLngRect const& b = other; |
| 353 | DCHECK(!a.is_empty()); |
| 354 | DCHECK(!b.is_empty()); |
| 355 | |
| 356 | // First, handle the trivial cases where the longitude intervals overlap. |
| 357 | if (a.lng().Intersects(b.lng())) { |
| 358 | if (a.lat().Intersects(b.lat())) |
| 359 | return S1Angle::Radians(0); // Intersection between a and b. |
| 360 | |
| 361 | // We found an overlap in the longitude interval, but not in the latitude |
| 362 | // interval. This means the shortest path travels along some line of |
| 363 | // longitude connecting the high-latitude of the lower rect with the |
| 364 | // low-latitude of the higher rect. |
| 365 | S1Angle lo, hi; |
| 366 | if (a.lat().lo() > b.lat().hi()) { |
| 367 | lo = b.lat_hi(); |
| 368 | hi = a.lat_lo(); |
| 369 | } else { |
| 370 | lo = a.lat_hi(); |
| 371 | hi = b.lat_lo(); |
| 372 | } |
| 373 | return hi - lo; |
| 374 | } |
| 375 | |
| 376 | // The longitude intervals don't overlap. In this case, the closest points |
| 377 | // occur somewhere on the pair of longitudinal edges which are nearest in |
| 378 | // longitude-space. |
| 379 | S1Angle a_lng, b_lng; |
| 380 | S1Interval lo_hi = S1Interval::FromPointPair(a.lng().lo(), b.lng().hi()); |
| 381 | S1Interval hi_lo = S1Interval::FromPointPair(a.lng().hi(), b.lng().lo()); |
| 382 | if (lo_hi.GetLength() < hi_lo.GetLength()) { |
| 383 | a_lng = a.lng_lo(); |
| 384 | b_lng = b.lng_hi(); |
| 385 | } else { |
| 386 | a_lng = a.lng_hi(); |
| 387 | b_lng = b.lng_lo(); |
| 388 | } |
| 389 | |
| 390 | // The shortest distance between the two longitudinal segments will include at |
| 391 | // least one segment endpoint. We could probably narrow this down further to a |
| 392 | // single point-edge distance by comparing the relative latitudes of the |
| 393 | // endpoints, but for the sake of clarity, we'll do all four point-edge |
| 394 | // distance tests. |
| 395 | S2Point a_lo = S2LatLng(a.lat_lo(), a_lng).ToPoint(); |
| 396 | S2Point a_hi = S2LatLng(a.lat_hi(), a_lng).ToPoint(); |
| 397 | S2Point a_lo_cross_hi = |
| 398 | S2LatLng::FromRadians(0, a_lng.radians() - M_PI_2).Normalized().ToPoint(); |
| 399 | S2Point b_lo = S2LatLng(b.lat_lo(), b_lng).ToPoint(); |
| 400 | S2Point b_hi = S2LatLng(b.lat_hi(), b_lng).ToPoint(); |
| 401 | S2Point b_lo_cross_hi = |
| 402 | S2LatLng::FromRadians(0, b_lng.radians() - M_PI_2).Normalized().ToPoint(); |
| 403 | return min(S2EdgeUtil::GetDistance(a_lo, b_lo, b_hi, b_lo_cross_hi), |
| 404 | min(S2EdgeUtil::GetDistance(a_hi, b_lo, b_hi, b_lo_cross_hi), |
| 405 | min(S2EdgeUtil::GetDistance(b_lo, a_lo, a_hi, a_lo_cross_hi), |
| 406 | S2EdgeUtil::GetDistance(b_hi, a_lo, a_hi, a_lo_cross_hi)))); |
| 407 | } |
| 408 | |
| 409 | S1Angle S2LatLngRect::GetDistance(S2LatLng const& p) const { |
| 410 | // The algorithm here is the same as in GetDistance(S2LagLngRect), only |
| 411 | // with simplified calculations. |
| 412 | S2LatLngRect const& a = *this; |
| 413 | DCHECK(!a.is_empty()); |
| 414 | DCHECK(p.is_valid()); |
| 415 | |
| 416 | if (a.lng().Contains(p.lng().radians())) { |
| 417 | return S1Angle::Radians(max(0.0, max(p.lat().radians() - a.lat().hi(), |
| 418 | a.lat().lo() - p.lat().radians()))); |
| 419 | } |
| 420 | |
| 421 | S1Interval interval(a.lng().hi(), a.lng().GetComplementCenter()); |
| 422 | double a_lng; |
| 423 | if (interval.Contains(p.lng().radians())) { |
| 424 | a_lng = a.lng().hi(); |
| 425 | } else { |
| 426 | a_lng = a.lng().lo(); |
| 427 | } |
| 428 | S2Point lo = S2LatLng::FromRadians(a.lat().lo(), a_lng).ToPoint(); |
| 429 | S2Point hi = S2LatLng::FromRadians(a.lat().hi(), a_lng).ToPoint(); |
| 430 | S2Point lo_cross_hi = |
| 431 | S2LatLng::FromRadians(0, a_lng - M_PI_2).Normalized().ToPoint(); |
| 432 | return S2EdgeUtil::GetDistance(p.ToPoint(), lo, hi, lo_cross_hi); |
| 433 | } |
| 434 | |
| 435 | S1Angle S2LatLngRect::GetHausdorffDistance(S2LatLngRect const& other) const { |
| 436 | return max(GetDirectedHausdorffDistance(other), |
| 437 | other.GetDirectedHausdorffDistance(*this)); |
| 438 | } |
| 439 | |
| 440 | S1Angle S2LatLngRect::GetDirectedHausdorffDistance( |
| 441 | S2LatLngRect const& other) const { |
| 442 | if (is_empty()) { |
| 443 | return S1Angle::Radians(0); |
| 444 | } |
| 445 | if (other.is_empty()) { |
| 446 | return S1Angle::Radians(M_PI); // maximum possible distance on S2 |
| 447 | } |
| 448 | |
| 449 | double lng_distance = lng().GetDirectedHausdorffDistance(other.lng()); |
| 450 | DCHECK_GE(lng_distance, 0); |
| 451 | return GetDirectedHausdorffDistance(lng_distance, lat(), other.lat()); |
| 452 | } |
| 453 | |
| 454 | // Return the directed Hausdorff distance from one longitudinal edge spanning |
| 455 | // latitude range 'a_lat' to the other longitudinal edge spanning latitude |
| 456 | // range 'b_lat', with their longitudinal difference given by 'lng_diff'. |
| 457 | S1Angle S2LatLngRect::GetDirectedHausdorffDistance( |
| 458 | double lng_diff, R1Interval const& a, R1Interval const& b) { |
| 459 | // By symmetry, we can assume a's longtitude is 0 and b's longtitude is |
| 460 | // lng_diff. Call b's two endpoints b_lo and b_hi. Let H be the hemisphere |
| 461 | // containing a and delimited by the longitude line of b. The Voronoi diagram |
| 462 | // of b on H has three edges (portions of great circles) all orthogonal to b |
| 463 | // and meeting at b_lo_cross_b_hi. |
| 464 | // E1: (b_lo, b_lo_cross_b_hi) |
| 465 | // E2: (b_hi, b_lo_cross_b_hi) |
| 466 | // E3: (-b_mid, b_lo_cross_b_hi), where b_mid is the midpoint of b |
| 467 | // |
| 468 | // They subdivide H into three Voronoi regions. Depending on how longitude 0 |
| 469 | // (which contains edge a) intersects these regions, we distinguish two cases: |
| 470 | // Case 1: it intersects three regions. This occurs when lng_diff <= M_PI_2. |
| 471 | // Case 2: it intersects only two regions. This occurs when lng_diff > M_PI_2. |
| 472 | // |
| 473 | // In the first case, the directed Hausdorff distance to edge b can only be |
| 474 | // realized by the following points on a: |
| 475 | // A1: two endpoints of a. |
| 476 | // A2: intersection of a with the equator, if b also intersects the equator. |
| 477 | // |
| 478 | // In the second case, the directed Hausdorff distance to edge b can only be |
| 479 | // realized by the following points on a: |
| 480 | // B1: two endpoints of a. |
| 481 | // B2: intersection of a with E3 |
| 482 | // B3: farthest point from b_lo to the interior of D, and farthest point from |
| 483 | // b_hi to the interior of U, if any, where D (resp. U) is the portion |
| 484 | // of edge a below (resp. above) the intersection point from B2. |
| 485 | |
| 486 | DCHECK_GE(lng_diff, 0); |
| 487 | DCHECK_LE(lng_diff, M_PI); |
| 488 | |
| 489 | if (lng_diff == 0) { |
| 490 | return S1Angle::Radians(a.GetDirectedHausdorffDistance(b)); |
| 491 | } |
| 492 | |
| 493 | // Assumed longtitude of b. |
| 494 | double b_lng = lng_diff; |
| 495 | // Two endpoints of b. |
| 496 | S2Point b_lo = S2LatLng::FromRadians(b.lo(), b_lng).ToPoint(); |
| 497 | S2Point b_hi = S2LatLng::FromRadians(b.hi(), b_lng).ToPoint(); |
| 498 | // Cross product of b_lo and b_hi. |
| 499 | const S2Point& b_lo_cross_b_hi = |
| 500 | S2LatLng::FromRadians(0, b_lng - M_PI_2).ToPoint(); |
| 501 | |
| 502 | // Handling of each case outlined at the top of the function starts here. |
| 503 | // This is initialized a few lines below. |
| 504 | S1Angle max_distance; |
| 505 | |
| 506 | // Cases A1 and B1. |
| 507 | S2Point a_lo = S2LatLng::FromRadians(a.lo(), 0).ToPoint(); |
| 508 | S2Point a_hi = S2LatLng::FromRadians(a.hi(), 0).ToPoint(); |
| 509 | max_distance = S2EdgeUtil::GetDistance(a_lo, b_lo, b_hi, b_lo_cross_b_hi); |
| 510 | max_distance = max( |
| 511 | max_distance, S2EdgeUtil::GetDistance(a_hi, b_lo, b_hi, b_lo_cross_b_hi)); |
| 512 | |
| 513 | if (lng_diff <= M_PI_2) { |
| 514 | // Case A2. |
| 515 | if (a.Contains(0) && b.Contains(0)) { |
| 516 | max_distance = max(max_distance, S1Angle::Radians(lng_diff)); |
| 517 | } |
| 518 | } else { |
| 519 | // Case B2. |
| 520 | const S2Point& p = GetBisectorIntersection(b, b_lng); |
| 521 | double p_lat = S2LatLng::Latitude(p).radians(); |
| 522 | if (a.Contains(p_lat)) { |
| 523 | max_distance = max(max_distance, S1Angle::Radians(p.Angle(b_lo))); |
| 524 | } |
| 525 | |
| 526 | // Case B3. |
| 527 | if (p_lat > a.lo()) { |
| 528 | max_distance = max(max_distance, GetInteriorMaxDistance( |
| 529 | R1Interval(a.lo(), min(p_lat, a.hi())), b_lo)); |
| 530 | } |
| 531 | if (p_lat < a.hi()) { |
| 532 | max_distance = max(max_distance, GetInteriorMaxDistance( |
| 533 | R1Interval(max(p_lat, a.lo()), a.hi()), b_hi)); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | return max_distance; |
| 538 | } |
| 539 | |
| 540 | // Return the intersection of longitude 0 with the bisector of an edge |
| 541 | // on longitude 'lng' and spanning latitude range 'lat'. |
| 542 | S2Point S2LatLngRect::GetBisectorIntersection(R1Interval const& lat, |
| 543 | double lng) { |
| 544 | lng = fabs(lng); |
| 545 | double lat_center = lat.GetCenter(); |
| 546 | // A vector orthogonal to the bisector of the given longitudinal edge. |
| 547 | S2LatLng ortho_bisector; |
| 548 | if (lat_center >= 0) { |
| 549 | ortho_bisector = S2LatLng::FromRadians(lat_center - M_PI_2, lng); |
| 550 | } else { |
| 551 | ortho_bisector = S2LatLng::FromRadians(-lat_center - M_PI_2, lng - M_PI); |
| 552 | } |
| 553 | // A vector orthogonal to longitude 0. |
| 554 | static const S2Point ortho_lng = S2Point(0, -1, 0); |
| 555 | return S2::RobustCrossProd(ortho_lng, ortho_bisector.ToPoint()); |
| 556 | } |
| 557 | |
| 558 | // Return max distance from a point b to the segment spanning latitude range |
| 559 | // a_lat on longitude 0, if the max occurs in the interior of a_lat. Otherwise |
| 560 | // return -1. |
| 561 | S1Angle S2LatLngRect::GetInteriorMaxDistance(R1Interval const& a_lat, |
| 562 | S2Point const& b) { |
| 563 | // Longitude 0 is in the y=0 plane. b.x() >= 0 implies that the maximum |
| 564 | // does not occur in the interior of a_lat. |
| 565 | if (a_lat.is_empty() || b.x() >= 0) return S1Angle::Radians(-1); |
| 566 | |
| 567 | // Project b to the y=0 plane. The antipodal of the normalized projection is |
| 568 | // the point at which the maxium distance from b occurs, if it is contained |
| 569 | // in a_lat. |
| 570 | S2Point intersection_point = S2Point(-b.x(), 0, -b.z()).Normalize(); |
| 571 | if (a_lat.InteriorContains( |
| 572 | S2LatLng::Latitude(intersection_point).radians())) { |
| 573 | return S1Angle::Radians(b.Angle(intersection_point)); |
| 574 | } else { |
| 575 | return S1Angle::Radians(-1); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | bool S2LatLngRect::Contains(S2Point const& p) const { |
| 580 | return Contains(S2LatLng(p)); |
| 581 | } |
| 582 | |
| 583 | bool S2LatLngRect::ApproxEquals(S2LatLngRect const& other, |
| 584 | double max_error) const { |
| 585 | return (lat_.ApproxEquals(other.lat_, max_error) && |
| 586 | lng_.ApproxEquals(other.lng_, max_error)); |
| 587 | } |
| 588 | |
| 589 | ostream& operator<<(ostream& os, S2LatLngRect const& r) { |
| 590 | return os << "[Lo" << r.lo() << ", Hi" << r.hi() << "]" ; |
| 591 | } |
| 592 | |