1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #include <algorithm> |
4 | using std::min; |
5 | using std::max; |
6 | using std::swap; |
7 | using std::reverse; |
8 | |
9 | |
10 | #include "s2latlngrect.h" |
11 | |
12 | #include "base/logging.h" |
13 | #include "util/coding/coder.h" |
14 | #include "s2cap.h" |
15 | #include "s2cell.h" |
16 | #include "s2edgeutil.h" |
17 | #include "util/math/mathutil.h" |
18 | |
19 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
20 | |
21 | S2LatLngRect S2LatLngRect::FromCenterSize(S2LatLng const& center, |
22 | S2LatLng const& size) { |
23 | return FromPoint(center).Expanded(0.5 * size); |
24 | } |
25 | |
26 | S2LatLngRect S2LatLngRect::FromPoint(S2LatLng const& p) { |
27 | DCHECK(p.is_valid()); |
28 | return S2LatLngRect(p, p); |
29 | } |
30 | |
31 | S2LatLngRect S2LatLngRect::FromPointPair(S2LatLng const& p1, |
32 | S2LatLng const& p2) { |
33 | DCHECK(p1.is_valid()) << p1; |
34 | DCHECK(p2.is_valid()) << p2; |
35 | return S2LatLngRect(R1Interval::FromPointPair(p1.lat().radians(), |
36 | p2.lat().radians()), |
37 | S1Interval::FromPointPair(p1.lng().radians(), |
38 | p2.lng().radians())); |
39 | } |
40 | |
41 | S2LatLngRect* S2LatLngRect::Clone() const { |
42 | return new S2LatLngRect(*this); |
43 | } |
44 | |
45 | S2LatLng S2LatLngRect::GetVertex(int k) const { |
46 | // Twiddle bits to return the points in CCW order (SW, SE, NE, NW). |
47 | return S2LatLng::FromRadians(lat_.bound(k>>1), lng_.bound((k>>1) ^ (k&1))); |
48 | } |
49 | |
50 | S2LatLng S2LatLngRect::GetCenter() const { |
51 | return S2LatLng::FromRadians(lat_.GetCenter(), lng_.GetCenter()); |
52 | } |
53 | |
54 | S2LatLng S2LatLngRect::GetSize() const { |
55 | return S2LatLng::FromRadians(lat_.GetLength(), lng_.GetLength()); |
56 | } |
57 | |
58 | double S2LatLngRect::Area() const { |
59 | if (is_empty()) return 0.0; |
60 | // This is the size difference of the two spherical caps, multiplied by |
61 | // the longitude ratio. |
62 | return lng().GetLength()* fabs(sin(lat_hi().radians()) - |
63 | sin(lat_lo().radians())); |
64 | } |
65 | |
66 | bool S2LatLngRect::Contains(S2LatLng const& ll) const { |
67 | DCHECK(ll.is_valid()); |
68 | return (lat_.Contains(ll.lat().radians()) && |
69 | lng_.Contains(ll.lng().radians())); |
70 | } |
71 | |
72 | bool S2LatLngRect::InteriorContains(S2Point const& p) const { |
73 | return InteriorContains(S2LatLng(p)); |
74 | } |
75 | |
76 | bool S2LatLngRect::InteriorContains(S2LatLng const& ll) const { |
77 | DCHECK(ll.is_valid()); |
78 | return (lat_.InteriorContains(ll.lat().radians()) && |
79 | lng_.InteriorContains(ll.lng().radians())); |
80 | } |
81 | |
82 | bool S2LatLngRect::Contains(S2LatLngRect const& other) const { |
83 | return lat_.Contains(other.lat_) && lng_.Contains(other.lng_); |
84 | } |
85 | |
86 | bool S2LatLngRect::InteriorContains(S2LatLngRect const& other) const { |
87 | return (lat_.InteriorContains(other.lat_) && |
88 | lng_.InteriorContains(other.lng_)); |
89 | } |
90 | |
91 | bool S2LatLngRect::Intersects(S2LatLngRect const& other) const { |
92 | return lat_.Intersects(other.lat_) && lng_.Intersects(other.lng_); |
93 | } |
94 | |
95 | bool S2LatLngRect::InteriorIntersects(S2LatLngRect const& other) const { |
96 | return (lat_.InteriorIntersects(other.lat_) && |
97 | lng_.InteriorIntersects(other.lng_)); |
98 | } |
99 | |
100 | void S2LatLngRect::AddPoint(S2Point const& p) { |
101 | AddPoint(S2LatLng(p)); |
102 | } |
103 | |
104 | void S2LatLngRect::AddPoint(S2LatLng const& ll) { |
105 | DCHECK(ll.is_valid()); |
106 | lat_.AddPoint(ll.lat().radians()); |
107 | lng_.AddPoint(ll.lng().radians()); |
108 | } |
109 | |
110 | S2LatLngRect S2LatLngRect::Expanded(S2LatLng const& margin) const { |
111 | DCHECK_GE(margin.lat().radians(), 0); |
112 | DCHECK_GE(margin.lng().radians(), 0); |
113 | return S2LatLngRect( |
114 | lat_.Expanded(margin.lat().radians()).Intersection(FullLat()), |
115 | lng_.Expanded(margin.lng().radians())); |
116 | } |
117 | |
118 | S2LatLngRect S2LatLngRect::Union(S2LatLngRect const& other) const { |
119 | return S2LatLngRect(lat_.Union(other.lat_), |
120 | lng_.Union(other.lng_)); |
121 | } |
122 | |
123 | S2LatLngRect S2LatLngRect::Intersection(S2LatLngRect const& other) const { |
124 | R1Interval lat = lat_.Intersection(other.lat_); |
125 | S1Interval lng = lng_.Intersection(other.lng_); |
126 | if (lat.is_empty() || lng.is_empty()) { |
127 | // The lat/lng ranges must either be both empty or both non-empty. |
128 | return Empty(); |
129 | } |
130 | return S2LatLngRect(lat, lng); |
131 | } |
132 | |
133 | S2LatLngRect S2LatLngRect::ConvolveWithCap(S1Angle const& angle) const { |
134 | // The most straightforward approach is to build a cap centered on each |
135 | // vertex and take the union of all the bounding rectangles (including the |
136 | // original rectangle; this is necessary for very large rectangles). |
137 | |
138 | // Optimization: convert the angle to a height exactly once. |
139 | S2Cap cap = S2Cap::FromAxisAngle(S2Point(1, 0, 0), angle); |
140 | |
141 | S2LatLngRect r = *this; |
142 | for (int k = 0; k < 4; ++k) { |
143 | S2Cap vertex_cap = S2Cap::FromAxisHeight(GetVertex(k).ToPoint(), |
144 | cap.height()); |
145 | r = r.Union(vertex_cap.GetRectBound()); |
146 | } |
147 | return r; |
148 | } |
149 | |
150 | S2Cap S2LatLngRect::GetCapBound() const { |
151 | // We consider two possible bounding caps, one whose axis passes |
152 | // through the center of the lat-long rectangle and one whose axis |
153 | // is the north or south pole. We return the smaller of the two caps. |
154 | |
155 | if (is_empty()) return S2Cap::Empty(); |
156 | |
157 | double pole_z, pole_angle; |
158 | if (lat_.lo() + lat_.hi() < 0) { |
159 | // South pole axis yields smaller cap. |
160 | pole_z = -1; |
161 | pole_angle = M_PI_2 + lat_.hi(); |
162 | } else { |
163 | pole_z = 1; |
164 | pole_angle = M_PI_2 - lat_.lo(); |
165 | } |
166 | S2Cap pole_cap = S2Cap::FromAxisAngle(S2Point(0, 0, pole_z), |
167 | S1Angle::Radians(pole_angle)); |
168 | |
169 | // For bounding rectangles that span 180 degrees or less in longitude, the |
170 | // maximum cap size is achieved at one of the rectangle vertices. For |
171 | // rectangles that are larger than 180 degrees, we punt and always return a |
172 | // bounding cap centered at one of the two poles. |
173 | double lng_span = lng_.hi() - lng_.lo(); |
174 | if (drem(lng_span, 2 * M_PI) >= 0) { |
175 | if (lng_span < 2 * M_PI) { |
176 | S2Cap mid_cap = S2Cap::FromAxisAngle(GetCenter().ToPoint(), |
177 | S1Angle::Radians(0)); |
178 | for (int k = 0; k < 4; ++k) { |
179 | mid_cap.AddPoint(GetVertex(k).ToPoint()); |
180 | } |
181 | if (mid_cap.height() < pole_cap.height()) |
182 | return mid_cap; |
183 | } |
184 | } |
185 | return pole_cap; |
186 | } |
187 | |
188 | S2LatLngRect S2LatLngRect::GetRectBound() const { |
189 | return *this; |
190 | } |
191 | |
192 | bool S2LatLngRect::Contains(S2Cell const& cell) const { |
193 | // A latitude-longitude rectangle contains a cell if and only if it contains |
194 | // the cell's bounding rectangle. This test is exact from a mathematical |
195 | // point of view, assuming that the bounds returned by S2Cell::GetRectBound() |
196 | // are tight. However, note that there can be a loss of precision when |
197 | // converting between representations -- for example, if an S2Cell is |
198 | // converted to a polygon, the polygon's bounding rectangle may not contain |
199 | // the cell's bounding rectangle. This has some slightly unexpected side |
200 | // effects; for instance, if one creates an S2Polygon from an S2Cell, the |
201 | // polygon will contain the cell, but the polygon's bounding box will not. |
202 | return Contains(cell.GetRectBound()); |
203 | } |
204 | |
205 | bool S2LatLngRect::MayIntersect(S2Cell const& cell) const { |
206 | // This test is cheap but is NOT exact (see s2latlngrect.h). |
207 | return Intersects(cell.GetRectBound()); |
208 | } |
209 | |
210 | void S2LatLngRect::Encode(Encoder* encoder) const { |
211 | encoder->Ensure(40); // sufficient |
212 | |
213 | encoder->put8(kCurrentEncodingVersionNumber); |
214 | encoder->putdouble(lat_.lo()); |
215 | encoder->putdouble(lat_.hi()); |
216 | encoder->putdouble(lng_.lo()); |
217 | encoder->putdouble(lng_.hi()); |
218 | |
219 | DCHECK_GE(encoder->avail(), 0); |
220 | } |
221 | |
222 | bool S2LatLngRect::Decode(Decoder* decoder) { |
223 | unsigned char version = decoder->get8(); |
224 | if (version > kCurrentEncodingVersionNumber) return false; |
225 | |
226 | double lat_lo = decoder->getdouble(); |
227 | double lat_hi = decoder->getdouble(); |
228 | lat_ = R1Interval(lat_lo, lat_hi); |
229 | double lng_lo = decoder->getdouble(); |
230 | double lng_hi = decoder->getdouble(); |
231 | lng_ = S1Interval(lng_lo, lng_hi); |
232 | |
233 | DCHECK(is_valid()); |
234 | |
235 | return decoder->avail() >= 0; |
236 | } |
237 | |
238 | bool S2LatLngRect::IntersectsLngEdge(S2Point const& a, S2Point const& b, |
239 | R1Interval const& lat, double lng) { |
240 | // Return true if the segment AB intersects the given edge of constant |
241 | // longitude. The nice thing about edges of constant longitude is that |
242 | // they are straight lines on the sphere (geodesics). |
243 | |
244 | return S2EdgeUtil::SimpleCrossing( |
245 | a, b, S2LatLng::FromRadians(lat.lo(), lng).ToPoint(), |
246 | S2LatLng::FromRadians(lat.hi(), lng).ToPoint()); |
247 | } |
248 | |
249 | bool S2LatLngRect::IntersectsLatEdge(S2Point const& a, S2Point const& b, |
250 | double lat, S1Interval const& lng) { |
251 | // Return true if the segment AB intersects the given edge of constant |
252 | // latitude. Unfortunately, lines of constant latitude are curves on |
253 | // the sphere. They can intersect a straight edge in 0, 1, or 2 points. |
254 | DCHECK(S2::IsUnitLength(a)); |
255 | DCHECK(S2::IsUnitLength(b)); |
256 | |
257 | // First, compute the normal to the plane AB that points vaguely north. |
258 | S2Point z = S2::RobustCrossProd(a, b).Normalize(); |
259 | if (z[2] < 0) z = -z; |
260 | |
261 | // Extend this to an orthonormal frame (x,y,z) where x is the direction |
262 | // where the great circle through AB achieves its maximium latitude. |
263 | S2Point y = S2::RobustCrossProd(z, S2Point(0, 0, 1)).Normalize(); |
264 | S2Point x = y.CrossProd(z); |
265 | DCHECK(S2::IsUnitLength(x)); |
266 | DCHECK_GE(x[2], 0); |
267 | |
268 | // Compute the angle "theta" from the x-axis (in the x-y plane defined |
269 | // above) where the great circle intersects the given line of latitude. |
270 | double sin_lat = sin(lat); |
271 | if (fabs(sin_lat) >= x[2]) { |
272 | return false; // The great circle does not reach the given latitude. |
273 | } |
274 | DCHECK_GT(x[2], 0); |
275 | double cos_theta = sin_lat / x[2]; |
276 | double sin_theta = sqrt(1 - cos_theta * cos_theta); |
277 | double theta = atan2(sin_theta, cos_theta); |
278 | |
279 | // The candidate intersection points are located +/- theta in the x-y |
280 | // plane. For an intersection to be valid, we need to check that the |
281 | // intersection point is contained in the interior of the edge AB and |
282 | // also that it is contained within the given longitude interval "lng". |
283 | |
284 | // Compute the range of theta values spanned by the edge AB. |
285 | S1Interval ab_theta = S1Interval::FromPointPair( |
286 | atan2(a.DotProd(y), a.DotProd(x)), |
287 | atan2(b.DotProd(y), b.DotProd(x))); |
288 | |
289 | if (ab_theta.Contains(theta)) { |
290 | // Check if the intersection point is also in the given "lng" interval. |
291 | S2Point isect = x * cos_theta + y * sin_theta; |
292 | if (lng.Contains(atan2(isect[1], isect[0]))) return true; |
293 | } |
294 | if (ab_theta.Contains(-theta)) { |
295 | // Check if the intersection point is also in the given "lng" interval. |
296 | S2Point isect = x * cos_theta - y * sin_theta; |
297 | if (lng.Contains(atan2(isect[1], isect[0]))) return true; |
298 | } |
299 | return false; |
300 | } |
301 | |
302 | bool S2LatLngRect::Intersects(S2Cell const& cell) const { |
303 | // First we eliminate the cases where one region completely contains the |
304 | // other. Once these are disposed of, then the regions will intersect |
305 | // if and only if their boundaries intersect. |
306 | |
307 | if (is_empty()) return false; |
308 | if (Contains(cell.GetCenterRaw())) return true; |
309 | if (cell.Contains(GetCenter().ToPoint())) return true; |
310 | |
311 | // Quick rejection test (not required for correctness). |
312 | if (!Intersects(cell.GetRectBound())) return false; |
313 | |
314 | // Precompute the cell vertices as points and latitude-longitudes. We also |
315 | // check whether the S2Cell contains any corner of the rectangle, or |
316 | // vice-versa, since the edge-crossing tests only check the edge interiors. |
317 | |
318 | S2Point cell_v[4]; |
319 | S2LatLng cell_ll[4]; |
320 | for (int i = 0; i < 4; ++i) { |
321 | cell_v[i] = cell.GetVertex(i); // Must be normalized. |
322 | cell_ll[i] = S2LatLng(cell_v[i]); |
323 | if (Contains(cell_ll[i])) return true; |
324 | if (cell.Contains(GetVertex(i).ToPoint())) return true; |
325 | } |
326 | |
327 | // Now check whether the boundaries intersect. Unfortunately, a |
328 | // latitude-longitude rectangle does not have straight edges -- two edges |
329 | // are curved, and at least one of them is concave. |
330 | |
331 | for (int i = 0; i < 4; ++i) { |
332 | S1Interval edge_lng = S1Interval::FromPointPair( |
333 | cell_ll[i].lng().radians(), cell_ll[(i+1)&3].lng().radians()); |
334 | if (!lng_.Intersects(edge_lng)) continue; |
335 | |
336 | S2Point const& a = cell_v[i]; |
337 | S2Point const& b = cell_v[(i+1)&3]; |
338 | if (edge_lng.Contains(lng_.lo())) { |
339 | if (IntersectsLngEdge(a, b, lat_, lng_.lo())) return true; |
340 | } |
341 | if (edge_lng.Contains(lng_.hi())) { |
342 | if (IntersectsLngEdge(a, b, lat_, lng_.hi())) return true; |
343 | } |
344 | if (IntersectsLatEdge(a, b, lat_.lo(), lng_)) return true; |
345 | if (IntersectsLatEdge(a, b, lat_.hi(), lng_)) return true; |
346 | } |
347 | return false; |
348 | } |
349 | |
350 | S1Angle S2LatLngRect::GetDistance(S2LatLngRect const& other) const { |
351 | S2LatLngRect const& a = *this; |
352 | S2LatLngRect const& b = other; |
353 | DCHECK(!a.is_empty()); |
354 | DCHECK(!b.is_empty()); |
355 | |
356 | // First, handle the trivial cases where the longitude intervals overlap. |
357 | if (a.lng().Intersects(b.lng())) { |
358 | if (a.lat().Intersects(b.lat())) |
359 | return S1Angle::Radians(0); // Intersection between a and b. |
360 | |
361 | // We found an overlap in the longitude interval, but not in the latitude |
362 | // interval. This means the shortest path travels along some line of |
363 | // longitude connecting the high-latitude of the lower rect with the |
364 | // low-latitude of the higher rect. |
365 | S1Angle lo, hi; |
366 | if (a.lat().lo() > b.lat().hi()) { |
367 | lo = b.lat_hi(); |
368 | hi = a.lat_lo(); |
369 | } else { |
370 | lo = a.lat_hi(); |
371 | hi = b.lat_lo(); |
372 | } |
373 | return hi - lo; |
374 | } |
375 | |
376 | // The longitude intervals don't overlap. In this case, the closest points |
377 | // occur somewhere on the pair of longitudinal edges which are nearest in |
378 | // longitude-space. |
379 | S1Angle a_lng, b_lng; |
380 | S1Interval lo_hi = S1Interval::FromPointPair(a.lng().lo(), b.lng().hi()); |
381 | S1Interval hi_lo = S1Interval::FromPointPair(a.lng().hi(), b.lng().lo()); |
382 | if (lo_hi.GetLength() < hi_lo.GetLength()) { |
383 | a_lng = a.lng_lo(); |
384 | b_lng = b.lng_hi(); |
385 | } else { |
386 | a_lng = a.lng_hi(); |
387 | b_lng = b.lng_lo(); |
388 | } |
389 | |
390 | // The shortest distance between the two longitudinal segments will include at |
391 | // least one segment endpoint. We could probably narrow this down further to a |
392 | // single point-edge distance by comparing the relative latitudes of the |
393 | // endpoints, but for the sake of clarity, we'll do all four point-edge |
394 | // distance tests. |
395 | S2Point a_lo = S2LatLng(a.lat_lo(), a_lng).ToPoint(); |
396 | S2Point a_hi = S2LatLng(a.lat_hi(), a_lng).ToPoint(); |
397 | S2Point a_lo_cross_hi = |
398 | S2LatLng::FromRadians(0, a_lng.radians() - M_PI_2).Normalized().ToPoint(); |
399 | S2Point b_lo = S2LatLng(b.lat_lo(), b_lng).ToPoint(); |
400 | S2Point b_hi = S2LatLng(b.lat_hi(), b_lng).ToPoint(); |
401 | S2Point b_lo_cross_hi = |
402 | S2LatLng::FromRadians(0, b_lng.radians() - M_PI_2).Normalized().ToPoint(); |
403 | return min(S2EdgeUtil::GetDistance(a_lo, b_lo, b_hi, b_lo_cross_hi), |
404 | min(S2EdgeUtil::GetDistance(a_hi, b_lo, b_hi, b_lo_cross_hi), |
405 | min(S2EdgeUtil::GetDistance(b_lo, a_lo, a_hi, a_lo_cross_hi), |
406 | S2EdgeUtil::GetDistance(b_hi, a_lo, a_hi, a_lo_cross_hi)))); |
407 | } |
408 | |
409 | S1Angle S2LatLngRect::GetDistance(S2LatLng const& p) const { |
410 | // The algorithm here is the same as in GetDistance(S2LagLngRect), only |
411 | // with simplified calculations. |
412 | S2LatLngRect const& a = *this; |
413 | DCHECK(!a.is_empty()); |
414 | DCHECK(p.is_valid()); |
415 | |
416 | if (a.lng().Contains(p.lng().radians())) { |
417 | return S1Angle::Radians(max(0.0, max(p.lat().radians() - a.lat().hi(), |
418 | a.lat().lo() - p.lat().radians()))); |
419 | } |
420 | |
421 | S1Interval interval(a.lng().hi(), a.lng().GetComplementCenter()); |
422 | double a_lng; |
423 | if (interval.Contains(p.lng().radians())) { |
424 | a_lng = a.lng().hi(); |
425 | } else { |
426 | a_lng = a.lng().lo(); |
427 | } |
428 | S2Point lo = S2LatLng::FromRadians(a.lat().lo(), a_lng).ToPoint(); |
429 | S2Point hi = S2LatLng::FromRadians(a.lat().hi(), a_lng).ToPoint(); |
430 | S2Point lo_cross_hi = |
431 | S2LatLng::FromRadians(0, a_lng - M_PI_2).Normalized().ToPoint(); |
432 | return S2EdgeUtil::GetDistance(p.ToPoint(), lo, hi, lo_cross_hi); |
433 | } |
434 | |
435 | S1Angle S2LatLngRect::GetHausdorffDistance(S2LatLngRect const& other) const { |
436 | return max(GetDirectedHausdorffDistance(other), |
437 | other.GetDirectedHausdorffDistance(*this)); |
438 | } |
439 | |
440 | S1Angle S2LatLngRect::GetDirectedHausdorffDistance( |
441 | S2LatLngRect const& other) const { |
442 | if (is_empty()) { |
443 | return S1Angle::Radians(0); |
444 | } |
445 | if (other.is_empty()) { |
446 | return S1Angle::Radians(M_PI); // maximum possible distance on S2 |
447 | } |
448 | |
449 | double lng_distance = lng().GetDirectedHausdorffDistance(other.lng()); |
450 | DCHECK_GE(lng_distance, 0); |
451 | return GetDirectedHausdorffDistance(lng_distance, lat(), other.lat()); |
452 | } |
453 | |
454 | // Return the directed Hausdorff distance from one longitudinal edge spanning |
455 | // latitude range 'a_lat' to the other longitudinal edge spanning latitude |
456 | // range 'b_lat', with their longitudinal difference given by 'lng_diff'. |
457 | S1Angle S2LatLngRect::GetDirectedHausdorffDistance( |
458 | double lng_diff, R1Interval const& a, R1Interval const& b) { |
459 | // By symmetry, we can assume a's longtitude is 0 and b's longtitude is |
460 | // lng_diff. Call b's two endpoints b_lo and b_hi. Let H be the hemisphere |
461 | // containing a and delimited by the longitude line of b. The Voronoi diagram |
462 | // of b on H has three edges (portions of great circles) all orthogonal to b |
463 | // and meeting at b_lo_cross_b_hi. |
464 | // E1: (b_lo, b_lo_cross_b_hi) |
465 | // E2: (b_hi, b_lo_cross_b_hi) |
466 | // E3: (-b_mid, b_lo_cross_b_hi), where b_mid is the midpoint of b |
467 | // |
468 | // They subdivide H into three Voronoi regions. Depending on how longitude 0 |
469 | // (which contains edge a) intersects these regions, we distinguish two cases: |
470 | // Case 1: it intersects three regions. This occurs when lng_diff <= M_PI_2. |
471 | // Case 2: it intersects only two regions. This occurs when lng_diff > M_PI_2. |
472 | // |
473 | // In the first case, the directed Hausdorff distance to edge b can only be |
474 | // realized by the following points on a: |
475 | // A1: two endpoints of a. |
476 | // A2: intersection of a with the equator, if b also intersects the equator. |
477 | // |
478 | // In the second case, the directed Hausdorff distance to edge b can only be |
479 | // realized by the following points on a: |
480 | // B1: two endpoints of a. |
481 | // B2: intersection of a with E3 |
482 | // B3: farthest point from b_lo to the interior of D, and farthest point from |
483 | // b_hi to the interior of U, if any, where D (resp. U) is the portion |
484 | // of edge a below (resp. above) the intersection point from B2. |
485 | |
486 | DCHECK_GE(lng_diff, 0); |
487 | DCHECK_LE(lng_diff, M_PI); |
488 | |
489 | if (lng_diff == 0) { |
490 | return S1Angle::Radians(a.GetDirectedHausdorffDistance(b)); |
491 | } |
492 | |
493 | // Assumed longtitude of b. |
494 | double b_lng = lng_diff; |
495 | // Two endpoints of b. |
496 | S2Point b_lo = S2LatLng::FromRadians(b.lo(), b_lng).ToPoint(); |
497 | S2Point b_hi = S2LatLng::FromRadians(b.hi(), b_lng).ToPoint(); |
498 | // Cross product of b_lo and b_hi. |
499 | const S2Point& b_lo_cross_b_hi = |
500 | S2LatLng::FromRadians(0, b_lng - M_PI_2).ToPoint(); |
501 | |
502 | // Handling of each case outlined at the top of the function starts here. |
503 | // This is initialized a few lines below. |
504 | S1Angle max_distance; |
505 | |
506 | // Cases A1 and B1. |
507 | S2Point a_lo = S2LatLng::FromRadians(a.lo(), 0).ToPoint(); |
508 | S2Point a_hi = S2LatLng::FromRadians(a.hi(), 0).ToPoint(); |
509 | max_distance = S2EdgeUtil::GetDistance(a_lo, b_lo, b_hi, b_lo_cross_b_hi); |
510 | max_distance = max( |
511 | max_distance, S2EdgeUtil::GetDistance(a_hi, b_lo, b_hi, b_lo_cross_b_hi)); |
512 | |
513 | if (lng_diff <= M_PI_2) { |
514 | // Case A2. |
515 | if (a.Contains(0) && b.Contains(0)) { |
516 | max_distance = max(max_distance, S1Angle::Radians(lng_diff)); |
517 | } |
518 | } else { |
519 | // Case B2. |
520 | const S2Point& p = GetBisectorIntersection(b, b_lng); |
521 | double p_lat = S2LatLng::Latitude(p).radians(); |
522 | if (a.Contains(p_lat)) { |
523 | max_distance = max(max_distance, S1Angle::Radians(p.Angle(b_lo))); |
524 | } |
525 | |
526 | // Case B3. |
527 | if (p_lat > a.lo()) { |
528 | max_distance = max(max_distance, GetInteriorMaxDistance( |
529 | R1Interval(a.lo(), min(p_lat, a.hi())), b_lo)); |
530 | } |
531 | if (p_lat < a.hi()) { |
532 | max_distance = max(max_distance, GetInteriorMaxDistance( |
533 | R1Interval(max(p_lat, a.lo()), a.hi()), b_hi)); |
534 | } |
535 | } |
536 | |
537 | return max_distance; |
538 | } |
539 | |
540 | // Return the intersection of longitude 0 with the bisector of an edge |
541 | // on longitude 'lng' and spanning latitude range 'lat'. |
542 | S2Point S2LatLngRect::GetBisectorIntersection(R1Interval const& lat, |
543 | double lng) { |
544 | lng = fabs(lng); |
545 | double lat_center = lat.GetCenter(); |
546 | // A vector orthogonal to the bisector of the given longitudinal edge. |
547 | S2LatLng ortho_bisector; |
548 | if (lat_center >= 0) { |
549 | ortho_bisector = S2LatLng::FromRadians(lat_center - M_PI_2, lng); |
550 | } else { |
551 | ortho_bisector = S2LatLng::FromRadians(-lat_center - M_PI_2, lng - M_PI); |
552 | } |
553 | // A vector orthogonal to longitude 0. |
554 | static const S2Point ortho_lng = S2Point(0, -1, 0); |
555 | return S2::RobustCrossProd(ortho_lng, ortho_bisector.ToPoint()); |
556 | } |
557 | |
558 | // Return max distance from a point b to the segment spanning latitude range |
559 | // a_lat on longitude 0, if the max occurs in the interior of a_lat. Otherwise |
560 | // return -1. |
561 | S1Angle S2LatLngRect::GetInteriorMaxDistance(R1Interval const& a_lat, |
562 | S2Point const& b) { |
563 | // Longitude 0 is in the y=0 plane. b.x() >= 0 implies that the maximum |
564 | // does not occur in the interior of a_lat. |
565 | if (a_lat.is_empty() || b.x() >= 0) return S1Angle::Radians(-1); |
566 | |
567 | // Project b to the y=0 plane. The antipodal of the normalized projection is |
568 | // the point at which the maxium distance from b occurs, if it is contained |
569 | // in a_lat. |
570 | S2Point intersection_point = S2Point(-b.x(), 0, -b.z()).Normalize(); |
571 | if (a_lat.InteriorContains( |
572 | S2LatLng::Latitude(intersection_point).radians())) { |
573 | return S1Angle::Radians(b.Angle(intersection_point)); |
574 | } else { |
575 | return S1Angle::Radians(-1); |
576 | } |
577 | } |
578 | |
579 | bool S2LatLngRect::Contains(S2Point const& p) const { |
580 | return Contains(S2LatLng(p)); |
581 | } |
582 | |
583 | bool S2LatLngRect::ApproxEquals(S2LatLngRect const& other, |
584 | double max_error) const { |
585 | return (lat_.ApproxEquals(other.lat_, max_error) && |
586 | lng_.ApproxEquals(other.lng_, max_error)); |
587 | } |
588 | |
589 | ostream& operator<<(ostream& os, S2LatLngRect const& r) { |
590 | return os << "[Lo" << r.lo() << ", Hi" << r.hi() << "]" ; |
591 | } |
592 | |