1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #include <algorithm> |
4 | using std::min; |
5 | using std::max; |
6 | using std::swap; |
7 | using std::reverse; |
8 | |
9 | #include <set> |
10 | using std::set; |
11 | using std::multiset; |
12 | |
13 | #include <vector> |
14 | using std::vector; |
15 | |
16 | #include <hash_map> |
17 | using __gnu_cxx::hash_map; |
18 | |
19 | #include <utility> |
20 | using std::pair; |
21 | using std::make_pair; |
22 | |
23 | |
24 | #include "s2loop.h" |
25 | |
26 | // #include "base/commandlineflags.h" |
27 | #include "base/logging.h" |
28 | #include "base/scoped_ptr.h" |
29 | #include "util/coding/coder.h" |
30 | #include "s2cap.h" |
31 | #include "s2cell.h" |
32 | #include "s2edgeindex.h" |
33 | |
34 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
35 | |
36 | // DECLARE_bool(s2debug); // defined in s2.cc |
37 | |
38 | S2Point const* S2LoopIndex::edge_from(int index) const { |
39 | return &loop_->vertex(index); |
40 | } |
41 | |
42 | S2Point const* S2LoopIndex::edge_to(int index) const { |
43 | return &loop_->vertex(index+1); |
44 | } |
45 | |
46 | int S2LoopIndex::num_edges() const { |
47 | return loop_->num_vertices(); |
48 | } |
49 | |
50 | S2Loop::S2Loop() |
51 | : num_vertices_(0), |
52 | vertices_(NULL), |
53 | owns_vertices_(false), |
54 | bound_(S2LatLngRect::Empty()), |
55 | depth_(0), |
56 | index_(this), |
57 | num_find_vertex_calls_(0) { |
58 | } |
59 | |
60 | S2Loop::S2Loop(vector<S2Point> const& vertices) |
61 | : num_vertices_(0), |
62 | vertices_(NULL), |
63 | owns_vertices_(false), |
64 | bound_(S2LatLngRect::Full()), |
65 | depth_(0), |
66 | index_(this), |
67 | num_find_vertex_calls_(0) { |
68 | Init(vertices); |
69 | } |
70 | |
71 | void S2Loop::ResetMutableFields() { |
72 | index_.Reset(); |
73 | num_find_vertex_calls_ = 0; |
74 | vertex_to_index_.clear(); |
75 | } |
76 | |
77 | void S2Loop::Init(vector<S2Point> const& vertices) { |
78 | ResetMutableFields(); |
79 | |
80 | if (owns_vertices_) delete[] vertices_; |
81 | num_vertices_ = vertices.size(); |
82 | if (vertices.empty()) { |
83 | vertices_ = NULL; |
84 | } else { |
85 | vertices_ = new S2Point[num_vertices_]; |
86 | memcpy(vertices_, &vertices[0], num_vertices_ * sizeof(vertices_[0])); |
87 | } |
88 | owns_vertices_ = true; |
89 | bound_ = S2LatLngRect::Full(); |
90 | |
91 | // InitOrigin() must be called before InitBound() because the latter |
92 | // function expects Contains() to work properly. |
93 | InitOrigin(); |
94 | InitBound(); |
95 | } |
96 | |
97 | bool S2Loop::IsValid() const { |
98 | // Loops must have at least 3 vertices. |
99 | if (num_vertices() < 3) { |
100 | VLOG(2) << "Degenerate loop" ; |
101 | return false; |
102 | } |
103 | // All vertices must be unit length. |
104 | for (int i = 0; i < num_vertices(); ++i) { |
105 | if (!S2::IsUnitLength(vertex(i))) { |
106 | VLOG(2) << "Vertex " << i << " is not unit length" ; |
107 | return false; |
108 | } |
109 | } |
110 | // Loops are not allowed to have any duplicate vertices. |
111 | hash_map<S2Point, int> vmap; |
112 | for (int i = 0; i < num_vertices(); ++i) { |
113 | if (!vmap.insert(make_pair(vertex(i), i)).second) { |
114 | VLOG(2) << "Duplicate vertices: " << vmap[vertex(i)] << " and " << i; |
115 | return false; |
116 | } |
117 | } |
118 | // Non-adjacent edges are not allowed to intersect. |
119 | bool crosses = false; |
120 | index_.PredictAdditionalCalls(num_vertices()); |
121 | S2EdgeIndex::Iterator it(&index_); |
122 | for (int i = 0; i < num_vertices(); ++i) { |
123 | S2EdgeUtil::EdgeCrosser crosser(&vertex(i), &vertex(i+1), &vertex(0)); |
124 | int previous_index = -2; |
125 | for (it.GetCandidates(vertex(i), vertex(i+1)); !it.Done(); it.Next()) { |
126 | int ai = it.Index(); |
127 | // There is no need to test the same thing twice. Moreover, two edges |
128 | // that abut at ai+1 will have been tested for equality above. |
129 | if (ai > i+1) { |
130 | if (previous_index != ai) crosser.RestartAt(&vertex(ai)); |
131 | // Beware, this may return the loop is valid if there is a |
132 | // "vertex crossing". |
133 | // TODO(user): Fix that. |
134 | crosses = crosser.RobustCrossing(&vertex(ai+1)) > 0; |
135 | previous_index = ai + 1; |
136 | if (crosses) { |
137 | VLOG(2) << "Edges " << i << " and " << ai << " cross" ; |
138 | // additional debugging information: |
139 | VLOG(2) << "Edge locations in degrees: " |
140 | << S2LatLng(vertex(i)) << "-" << S2LatLng(vertex(i+1)) |
141 | << " and " |
142 | << S2LatLng(vertex(ai)) << "-" << S2LatLng(vertex(ai+1)); |
143 | break; |
144 | } |
145 | } |
146 | } |
147 | if (crosses) break; |
148 | } |
149 | |
150 | return !crosses; |
151 | } |
152 | |
153 | bool S2Loop::IsValid(vector<S2Point> const& vertices, int max_adjacent) { |
154 | if (vertices.size() < 3) return false; |
155 | |
156 | S2Loop loop(vertices); |
157 | return loop.IsValid(); |
158 | } |
159 | |
160 | bool S2Loop::IsValid(int max_adjacent) const { |
161 | return IsValid(); |
162 | } |
163 | |
164 | void S2Loop::InitOrigin() { |
165 | // The bounding box does not need to be correct before calling this |
166 | // function, but it must at least contain vertex(1) since we need to |
167 | // do a Contains() test on this point below. |
168 | DCHECK(bound_.Contains(vertex(1))); |
169 | |
170 | // To ensure that every point is contained in exactly one face of a |
171 | // subdivision of the sphere, all containment tests are done by counting the |
172 | // edge crossings starting at a fixed point on the sphere (S2::Origin()). |
173 | // We need to know whether this point is inside or outside of the loop. |
174 | // We do this by first guessing that it is outside, and then seeing whether |
175 | // we get the correct containment result for vertex 1. If the result is |
176 | // incorrect, the origin must be inside the loop. |
177 | // |
178 | // A loop with consecutive vertices A,B,C contains vertex B if and only if |
179 | // the fixed vector R = S2::Ortho(B) is on the left side of the wedge ABC. |
180 | // The test below is written so that B is inside if C=R but not if A=R. |
181 | |
182 | origin_inside_ = false; // Initialize before calling Contains(). |
183 | bool v1_inside = S2::OrderedCCW(S2::Ortho(vertex(1)), vertex(0), vertex(2), |
184 | vertex(1)); |
185 | if (v1_inside != Contains(vertex(1))) |
186 | origin_inside_ = true; |
187 | } |
188 | |
189 | void S2Loop::InitBound() { |
190 | // The bounding rectangle of a loop is not necessarily the same as the |
191 | // bounding rectangle of its vertices. First, the loop may wrap entirely |
192 | // around the sphere (e.g. a loop that defines two revolutions of a |
193 | // candy-cane stripe). Second, the loop may include one or both poles. |
194 | // Note that a small clockwise loop near the equator contains both poles. |
195 | |
196 | S2EdgeUtil::RectBounder bounder; |
197 | for (int i = 0; i <= num_vertices(); ++i) { |
198 | bounder.AddPoint(&vertex(i)); |
199 | } |
200 | S2LatLngRect b = bounder.GetBound(); |
201 | // Note that we need to initialize bound_ with a temporary value since |
202 | // Contains() does a bounding rectangle check before doing anything else. |
203 | bound_ = S2LatLngRect::Full(); |
204 | if (Contains(S2Point(0, 0, 1))) { |
205 | b = S2LatLngRect(R1Interval(b.lat().lo(), M_PI_2), S1Interval::Full()); |
206 | } |
207 | // If a loop contains the south pole, then either it wraps entirely |
208 | // around the sphere (full longitude range), or it also contains the |
209 | // north pole in which case b.lng().is_full() due to the test above. |
210 | // Either way, we only need to do the south pole containment test if |
211 | // b.lng().is_full(). |
212 | if (b.lng().is_full() && Contains(S2Point(0, 0, -1))) { |
213 | b.mutable_lat()->set_lo(-M_PI_2); |
214 | } |
215 | bound_ = b; |
216 | } |
217 | |
218 | S2Loop::S2Loop(S2Cell const& cell) |
219 | : bound_(cell.GetRectBound()), |
220 | index_(this), |
221 | num_find_vertex_calls_(0) { |
222 | num_vertices_ = 4; |
223 | vertices_ = new S2Point[num_vertices_]; |
224 | depth_ = 0; |
225 | for (int i = 0; i < 4; ++i) { |
226 | vertices_[i] = cell.GetVertex(i); |
227 | } |
228 | owns_vertices_ = true; |
229 | InitOrigin(); |
230 | InitBound(); |
231 | } |
232 | |
233 | S2Loop::~S2Loop() { |
234 | if (owns_vertices_) { |
235 | delete[] vertices_; |
236 | } |
237 | } |
238 | |
239 | S2Loop::S2Loop(S2Loop const* src) |
240 | : num_vertices_(src->num_vertices_), |
241 | vertices_(new S2Point[num_vertices_]), |
242 | owns_vertices_(true), |
243 | bound_(src->bound_), |
244 | origin_inside_(src->origin_inside_), |
245 | depth_(src->depth_), |
246 | index_(this), |
247 | num_find_vertex_calls_(0) { |
248 | memcpy(vertices_, src->vertices_, num_vertices_ * sizeof(vertices_[0])); |
249 | } |
250 | |
251 | S2Loop* S2Loop::Clone() const { |
252 | return new S2Loop(this); |
253 | } |
254 | |
255 | int S2Loop::FindVertex(S2Point const& p) const { |
256 | num_find_vertex_calls_++; |
257 | if (num_vertices() < 10 || num_find_vertex_calls_ < 20) { |
258 | // Exhaustive search |
259 | for (int i = 1; i <= num_vertices(); ++i) { |
260 | if (vertex(i) == p) return i; |
261 | } |
262 | return -1; |
263 | } |
264 | |
265 | if (vertex_to_index_.empty()) { // We haven't computed it yet. |
266 | for (int i = num_vertices(); i > 0; --i) { |
267 | vertex_to_index_[vertex(i)] = i; |
268 | } |
269 | } |
270 | |
271 | map<S2Point, int>::const_iterator it; |
272 | it = vertex_to_index_.find(p); |
273 | if (it == vertex_to_index_.end()) return -1; |
274 | return it->second; |
275 | } |
276 | |
277 | |
278 | bool S2Loop::IsNormalized() const { |
279 | // Optimization: if the longitude span is less than 180 degrees, then the |
280 | // loop covers less than half the sphere and is therefore normalized. |
281 | if (bound_.lng().GetLength() < M_PI) return true; |
282 | |
283 | // We allow some error so that hemispheres are always considered normalized. |
284 | // TODO(user): This might not be necessary once S2Polygon is enhanced so |
285 | // that it does not require its input loops to be normalized. |
286 | return GetTurningAngle() >= -1e-14; |
287 | } |
288 | |
289 | void S2Loop::Normalize() { |
290 | CHECK(owns_vertices_); |
291 | if (!IsNormalized()) Invert(); |
292 | DCHECK(IsNormalized()); |
293 | } |
294 | |
295 | void S2Loop::Invert() { |
296 | CHECK(owns_vertices_); |
297 | |
298 | ResetMutableFields(); |
299 | reverse(vertices_, vertices_ + num_vertices()); |
300 | origin_inside_ ^= true; |
301 | if (bound_.lat().lo() > -M_PI_2 && bound_.lat().hi() < M_PI_2) { |
302 | // The complement of this loop contains both poles. |
303 | bound_ = S2LatLngRect::Full(); |
304 | } else { |
305 | InitBound(); |
306 | } |
307 | } |
308 | |
309 | double S2Loop::GetArea() const { |
310 | double area = GetSurfaceIntegral(S2::SignedArea); |
311 | // The signed area should be between approximately -4*Pi and 4*Pi. |
312 | DCHECK_LE(fabs(area), 4 * M_PI + 1e-12); |
313 | if (area < 0) { |
314 | // We have computed the negative of the area of the loop exterior. |
315 | area += 4 * M_PI; |
316 | } |
317 | return max(0.0, min(4 * M_PI, area)); |
318 | } |
319 | |
320 | S2Point S2Loop::GetCentroid() const { |
321 | // GetSurfaceIntegral() returns either the integral of position over loop |
322 | // interior, or the negative of the integral of position over the loop |
323 | // exterior. But these two values are the same (!), because the integral of |
324 | // position over the entire sphere is (0, 0, 0). |
325 | return GetSurfaceIntegral(S2::TrueCentroid); |
326 | } |
327 | |
328 | // Return (first, dir) such that first..first+n*dir are valid indices. |
329 | int S2Loop::GetCanonicalFirstVertex(int* dir) const { |
330 | int first = 0; |
331 | int n = num_vertices(); |
332 | for (int i = 1; i < n; ++i) { |
333 | if (vertex(i) < vertex(first)) first = i; |
334 | } |
335 | if (vertex(first + 1) < vertex(first + n - 1)) { |
336 | *dir = 1; |
337 | // 0 <= first <= n-1, so (first+n*dir) <= 2*n-1. |
338 | } else { |
339 | *dir = -1; |
340 | first += n; |
341 | // n <= first <= 2*n-1, so (first+n*dir) >= 0. |
342 | } |
343 | return first; |
344 | } |
345 | |
346 | double S2Loop::GetTurningAngle() const { |
347 | // Don't crash even if the loop is not well-defined. |
348 | if (num_vertices() < 3) return 0; |
349 | |
350 | // To ensure that we get the same result when the loop vertex order is |
351 | // rotated, and that we get the same result with the opposite sign when the |
352 | // vertices are reversed, we need to be careful to add up the individual |
353 | // turn angles in a consistent order. In general, adding up a set of |
354 | // numbers in a different order can change the sum due to rounding errors. |
355 | int n = num_vertices(); |
356 | int dir, i = GetCanonicalFirstVertex(&dir); |
357 | double angle = S2::TurnAngle(vertex((i + n - dir) % n), vertex(i), |
358 | vertex((i + dir) % n)); |
359 | while (--n > 0) { |
360 | i += dir; |
361 | angle += S2::TurnAngle(vertex(i - dir), vertex(i), vertex(i + dir)); |
362 | } |
363 | return dir * angle; |
364 | } |
365 | |
366 | S2Cap S2Loop::GetCapBound() const { |
367 | return bound_.GetCapBound(); |
368 | } |
369 | |
370 | bool S2Loop::Contains(S2Cell const& cell) const { |
371 | // A future optimization could also take advantage of the fact than an S2Cell |
372 | // is convex. |
373 | |
374 | // It's not necessarily true that bound_.Contains(cell.GetRectBound()) |
375 | // because S2Cell bounds are slightly conservative. |
376 | if (!bound_.Contains(cell.GetCenter())) return false; |
377 | S2Loop cell_loop(cell); |
378 | return Contains(&cell_loop); |
379 | } |
380 | |
381 | bool S2Loop::MayIntersect(S2Cell const& cell) const { |
382 | // It is faster to construct a bounding rectangle for an S2Cell than for |
383 | // a general polygon. A future optimization could also take advantage of |
384 | // the fact than an S2Cell is convex. |
385 | |
386 | if (!bound_.Intersects(cell.GetRectBound())) return false; |
387 | return S2Loop(cell).Intersects(this); |
388 | } |
389 | |
390 | bool S2Loop::Contains(S2Point const& p) const { |
391 | if (!bound_.Contains(p)) return false; |
392 | |
393 | bool inside = origin_inside_; |
394 | S2Point origin = S2::Origin(); |
395 | S2EdgeUtil::EdgeCrosser crosser(&origin, &p, &vertex(0)); |
396 | |
397 | // The s2edgeindex library is not optimized yet for long edges, |
398 | // so the tradeoff to using it comes later. |
399 | if (num_vertices() < 2000) { |
400 | for (int i = 1; i <= num_vertices(); ++i) { |
401 | inside ^= crosser.EdgeOrVertexCrossing(&vertex(i)); |
402 | } |
403 | return inside; |
404 | } |
405 | |
406 | S2EdgeIndex::Iterator it(&index_); |
407 | int previous_index = -2; |
408 | for (it.GetCandidates(origin, p); !it.Done(); it.Next()) { |
409 | int ai = it.Index(); |
410 | if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); |
411 | previous_index = ai; |
412 | inside ^= crosser.EdgeOrVertexCrossing(&vertex(ai+1)); |
413 | } |
414 | return inside; |
415 | } |
416 | |
417 | void S2Loop::Encode(Encoder* const encoder) const { |
418 | encoder->Ensure(num_vertices_ * sizeof(*vertices_) + 20); // sufficient |
419 | |
420 | encoder->put8(kCurrentEncodingVersionNumber); |
421 | encoder->put32(num_vertices_); |
422 | encoder->putn(vertices_, sizeof(*vertices_) * num_vertices_); |
423 | encoder->put8(origin_inside_); |
424 | encoder->put32(depth_); |
425 | DCHECK_GE(encoder->avail(), 0); |
426 | |
427 | bound_.Encode(encoder); |
428 | } |
429 | |
430 | bool S2Loop::Decode(Decoder* const decoder) { |
431 | return DecodeInternal(decoder, false); |
432 | } |
433 | |
434 | bool S2Loop::DecodeWithinScope(Decoder* const decoder) { |
435 | return DecodeInternal(decoder, true); |
436 | } |
437 | |
438 | bool S2Loop::DecodeInternal(Decoder* const decoder, |
439 | bool within_scope) { |
440 | unsigned char version = decoder->get8(); |
441 | if (version > kCurrentEncodingVersionNumber) return false; |
442 | |
443 | num_vertices_ = decoder->get32(); |
444 | if (owns_vertices_) delete[] vertices_; |
445 | if (within_scope) { |
446 | vertices_ = const_cast<S2Point *>(reinterpret_cast<S2Point const*>( |
447 | decoder->ptr())); |
448 | decoder->skip(num_vertices_ * sizeof(*vertices_)); |
449 | owns_vertices_ = false; |
450 | } else { |
451 | vertices_ = new S2Point[num_vertices_]; |
452 | decoder->getn(vertices_, num_vertices_ * sizeof(*vertices_)); |
453 | owns_vertices_ = true; |
454 | } |
455 | origin_inside_ = decoder->get8(); |
456 | depth_ = decoder->get32(); |
457 | if (!bound_.Decode(decoder)) return false; |
458 | |
459 | DCHECK(IsValid()); |
460 | |
461 | return decoder->avail() >= 0; |
462 | } |
463 | |
464 | // This is a helper class for the AreBoundariesCrossing function. |
465 | // Each time there is a point in common between the two loops passed |
466 | // as parameters, the two associated wedges centered at this point are |
467 | // passed to the ProcessWedge function of this processor. The function |
468 | // updates an internal state based on the wedges, and returns true to |
469 | // signal that no further processing is needed. |
470 | // |
471 | // To use AreBoundariesCrossing, subclass this class and keep an |
472 | // internal state that you update each time ProcessWedge is called, |
473 | // then query this internal state in the function that called |
474 | // AreBoundariesCrossing. |
475 | class WedgeProcessor { |
476 | public: |
477 | virtual ~WedgeProcessor() { } |
478 | |
479 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
480 | S2Point const& a2, S2Point const& b0, |
481 | S2Point const& b2) = 0; |
482 | }; |
483 | |
484 | bool S2Loop::AreBoundariesCrossing( |
485 | S2Loop const* b, WedgeProcessor* wedge_processor) const { |
486 | // See the header file for a description of what this method does. |
487 | index_.PredictAdditionalCalls(b->num_vertices()); |
488 | S2EdgeIndex::Iterator it(&index_); |
489 | for (int j = 0; j < b->num_vertices(); ++j) { |
490 | S2EdgeUtil::EdgeCrosser crosser(&b->vertex(j), &b->vertex(j+1), |
491 | &b->vertex(0)); |
492 | int previous_index = -2; |
493 | for (it.GetCandidates(b->vertex(j), b->vertex(j+1)); |
494 | !it.Done(); it.Next()) { |
495 | int ai = it.Index(); |
496 | if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); |
497 | previous_index = ai; |
498 | int crossing = crosser.RobustCrossing(&vertex(ai + 1)); |
499 | if (crossing < 0) continue; |
500 | if (crossing > 0) return true; |
501 | // We only need to check each shared vertex once, so we only |
502 | // consider the case where vertex(i+1) == b->vertex(j+1). |
503 | if (vertex(ai+1) == b->vertex(j+1) && |
504 | wedge_processor->ProcessWedge(vertex(ai), vertex(ai+1), vertex(ai+2), |
505 | b->vertex(j), b->vertex(j+2))) { |
506 | return false; |
507 | } |
508 | } |
509 | } |
510 | return false; |
511 | } |
512 | |
513 | // WedgeProcessor to be used to check if loop A contains loop B. |
514 | // DoesntContain() then returns true if there is a wedge of B not |
515 | // contained in the associated wedge of A (and hence loop B is not |
516 | // contained in loop A). |
517 | class ContainsWedgeProcessor: public WedgeProcessor { |
518 | public: |
519 | ContainsWedgeProcessor(): doesnt_contain_(false) {} |
520 | bool DoesntContain() { return doesnt_contain_; } |
521 | |
522 | protected: |
523 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
524 | S2Point const& a2, S2Point const& b0, |
525 | S2Point const& b2) { |
526 | doesnt_contain_ = !S2EdgeUtil::WedgeContains(a0, ab1, a2, b0, b2); |
527 | return doesnt_contain_; |
528 | } |
529 | |
530 | private: |
531 | bool doesnt_contain_; |
532 | }; |
533 | |
534 | bool S2Loop::Contains(S2Loop const* b) const { |
535 | // For this loop A to contains the given loop B, all of the following must |
536 | // be true: |
537 | // |
538 | // (1) There are no edge crossings between A and B except at vertices. |
539 | // |
540 | // (2) At every vertex that is shared between A and B, the local edge |
541 | // ordering implies that A contains B. |
542 | // |
543 | // (3) If there are no shared vertices, then A must contain a vertex of B |
544 | // and B must not contain a vertex of A. (An arbitrary vertex may be |
545 | // chosen in each case.) |
546 | // |
547 | // The second part of (3) is necessary to detect the case of two loops whose |
548 | // union is the entire sphere, i.e. two loops that contains each other's |
549 | // boundaries but not each other's interiors. |
550 | |
551 | if (!bound_.Contains(b->bound_)) return false; |
552 | |
553 | // Unless there are shared vertices, we need to check whether A contains a |
554 | // vertex of B. Since shared vertices are rare, it is more efficient to do |
555 | // this test up front as a quick rejection test. |
556 | if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) |
557 | return false; |
558 | |
559 | // Now check whether there are any edge crossings, and also check the loop |
560 | // relationship at any shared vertices. |
561 | ContainsWedgeProcessor p_wedge; |
562 | if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.DoesntContain()) { |
563 | return false; |
564 | } |
565 | |
566 | // At this point we know that the boundaries of A and B do not intersect, |
567 | // and that A contains a vertex of B. However we still need to check for |
568 | // the case mentioned above, where (A union B) is the entire sphere. |
569 | // Normally this check is very cheap due to the bounding box precondition. |
570 | if (bound_.Union(b->bound_).is_full()) { |
571 | if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return false; |
572 | } |
573 | return true; |
574 | } |
575 | |
576 | // WedgeProcessor to be used to check if loop A intersects loop B. |
577 | // Intersects() then returns true when A and B have at least one pair |
578 | // of associated wedges that intersect. |
579 | class IntersectsWedgeProcessor: public WedgeProcessor { |
580 | public: |
581 | IntersectsWedgeProcessor(): intersects_(false) {} |
582 | bool Intersects() { return intersects_; } |
583 | |
584 | protected: |
585 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
586 | S2Point const& a2, S2Point const& b0, |
587 | S2Point const& b2) { |
588 | intersects_ = S2EdgeUtil::WedgeIntersects(a0, ab1, a2, b0, b2); |
589 | return intersects_; |
590 | } |
591 | |
592 | private: |
593 | bool intersects_; |
594 | }; |
595 | |
596 | bool S2Loop::Intersects(S2Loop const* b) const { |
597 | // a->Intersects(b) if and only if !a->Complement()->Contains(b). |
598 | // This code is similar to Contains(), but is optimized for the case |
599 | // where both loops enclose less than half of the sphere. |
600 | |
601 | // The largest of the two loops should be edgeindex'd. |
602 | if (b->num_vertices() > num_vertices()) return b->Intersects(this); |
603 | |
604 | if (!bound_.Intersects(b->bound_)) return false; |
605 | |
606 | // Unless there are shared vertices, we need to check whether A contains a |
607 | // vertex of B. Since shared vertices are rare, it is more efficient to do |
608 | // this test up front as a quick acceptance test. |
609 | if (Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) |
610 | return true; |
611 | |
612 | // Now check whether there are any edge crossings, and also check the loop |
613 | // relationship at any shared vertices. |
614 | IntersectsWedgeProcessor p_wedge; |
615 | if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.Intersects()) { |
616 | return true; |
617 | } |
618 | |
619 | // We know that A does not contain a vertex of B, and that there are no edge |
620 | // crossings. Therefore the only way that A can intersect B is if B |
621 | // entirely contains A. We can check this by testing whether B contains an |
622 | // arbitrary non-shared vertex of A. Note that this check is usually cheap |
623 | // because of the bounding box precondition. |
624 | if (b->bound_.Contains(bound_)) { |
625 | if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return true; |
626 | } |
627 | return false; |
628 | } |
629 | |
630 | // WedgeProcessor to be used to check if the interior of loop A |
631 | // contains the interior of loop B, or their boundaries cross each |
632 | // other (therefore they have a proper intersection). |
633 | // CrossesOrMayContain() then returns -1 if A crossed B, 0 if it is |
634 | // not possible for A to contain B, and 1 otherwise. |
635 | class ContainsOrCrossesProcessor: public WedgeProcessor { |
636 | public: |
637 | ContainsOrCrossesProcessor(): |
638 | has_boundary_crossing_(false), |
639 | a_has_strictly_super_wedge_(false), b_has_strictly_super_wedge_(false), |
640 | has_disjoint_wedge_(false) {} |
641 | |
642 | int CrossesOrMayContain() { |
643 | if (has_boundary_crossing_) return -1; |
644 | if (has_disjoint_wedge_ || b_has_strictly_super_wedge_) return 0; |
645 | return 1; |
646 | } |
647 | |
648 | protected: |
649 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
650 | S2Point const& a2, S2Point const& b0, |
651 | S2Point const& b2) { |
652 | const S2EdgeUtil::WedgeRelation wedge_relation = |
653 | S2EdgeUtil::GetWedgeRelation(a0, ab1, a2, b0, b2); |
654 | if (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_OVERLAPS) { |
655 | has_boundary_crossing_ = true; |
656 | return true; |
657 | } |
658 | |
659 | a_has_strictly_super_wedge_ |= |
660 | (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_CONTAINS); |
661 | b_has_strictly_super_wedge_ |= |
662 | (wedge_relation == S2EdgeUtil::WEDGE_IS_PROPERLY_CONTAINED); |
663 | if (a_has_strictly_super_wedge_ && b_has_strictly_super_wedge_) { |
664 | has_boundary_crossing_ = true; |
665 | return true; |
666 | } |
667 | |
668 | has_disjoint_wedge_ |= (wedge_relation == S2EdgeUtil::WEDGE_IS_DISJOINT); |
669 | return false; |
670 | } |
671 | |
672 | private: |
673 | // True if any crossing on the boundary is discovered. |
674 | bool has_boundary_crossing_; |
675 | // True if A (B) has a strictly superwedge on a pair of wedges that |
676 | // share a common center point. |
677 | bool a_has_strictly_super_wedge_; |
678 | bool b_has_strictly_super_wedge_; |
679 | // True if there is a pair of disjoint wedges with common center |
680 | // point. |
681 | bool has_disjoint_wedge_; |
682 | }; |
683 | |
684 | int S2Loop::ContainsOrCrosses(S2Loop const* b) const { |
685 | // There can be containment or crossing only if the bounds intersect. |
686 | if (!bound_.Intersects(b->bound_)) return 0; |
687 | |
688 | // Now check whether there are any edge crossings, and also check the loop |
689 | // relationship at any shared vertices. Note that unlike Contains() or |
690 | // Intersects(), we can't do a point containment test as a shortcut because |
691 | // we need to detect whether there are any edge crossings. |
692 | ContainsOrCrossesProcessor p_wedge; |
693 | if (AreBoundariesCrossing(b, &p_wedge)) { |
694 | return -1; |
695 | } |
696 | const int result = p_wedge.CrossesOrMayContain(); |
697 | if (result <= 0) return result; |
698 | |
699 | // At this point we know that the boundaries do not intersect, and we are |
700 | // given that (A union B) is a proper subset of the sphere. Furthermore |
701 | // either A contains B, or there are no shared vertices (due to the check |
702 | // above). So now we just need to distinguish the case where A contains B |
703 | // from the case where B contains A or the two loops are disjoint. |
704 | if (!bound_.Contains(b->bound_)) return 0; |
705 | if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) return 0; |
706 | return 1; |
707 | } |
708 | |
709 | bool S2Loop::ContainsNested(S2Loop const* b) const { |
710 | if (!bound_.Contains(b->bound_)) return false; |
711 | |
712 | // We are given that A and B do not share any edges, and that either one |
713 | // loop contains the other or they do not intersect. |
714 | int m = FindVertex(b->vertex(1)); |
715 | if (m < 0) { |
716 | // Since b->vertex(1) is not shared, we can check whether A contains it. |
717 | return Contains(b->vertex(1)); |
718 | } |
719 | // Check whether the edge order around b->vertex(1) is compatible with |
720 | // A containing B. |
721 | return S2EdgeUtil::WedgeContains(vertex(m-1), vertex(m), vertex(m+1), |
722 | b->vertex(0), b->vertex(2)); |
723 | } |
724 | |
725 | bool S2Loop::BoundaryEquals(S2Loop const* b) const { |
726 | if (num_vertices() != b->num_vertices()) return false; |
727 | for (int offset = 0; offset < num_vertices(); ++offset) { |
728 | if (vertex(offset) == b->vertex(0)) { |
729 | // There is at most one starting offset since loop vertices are unique. |
730 | for (int i = 0; i < num_vertices(); ++i) { |
731 | if (vertex(i + offset) != b->vertex(i)) return false; |
732 | } |
733 | return true; |
734 | } |
735 | } |
736 | return false; |
737 | } |
738 | |
739 | bool S2Loop::BoundaryApproxEquals(S2Loop const* b, double max_error) const { |
740 | if (num_vertices() != b->num_vertices()) return false; |
741 | for (int offset = 0; offset < num_vertices(); ++offset) { |
742 | if (S2::ApproxEquals(vertex(offset), b->vertex(0), max_error)) { |
743 | bool success = true; |
744 | for (int i = 0; i < num_vertices(); ++i) { |
745 | if (!S2::ApproxEquals(vertex(i + offset), b->vertex(i), max_error)) { |
746 | success = false; |
747 | break; |
748 | } |
749 | } |
750 | if (success) return true; |
751 | // Otherwise continue looping. There may be more than one candidate |
752 | // starting offset since vertices are only matched approximately. |
753 | } |
754 | } |
755 | return false; |
756 | } |
757 | |
758 | static bool MatchBoundaries(S2Loop const* a, S2Loop const* b, int a_offset, |
759 | double max_error) { |
760 | // The state consists of a pair (i,j). A state transition consists of |
761 | // incrementing either "i" or "j". "i" can be incremented only if |
762 | // a(i+1+a_offset) is near the edge from b(j) to b(j+1), and a similar rule |
763 | // applies to "j". The function returns true iff we can proceed all the way |
764 | // around both loops in this way. |
765 | // |
766 | // Note that when "i" and "j" can both be incremented, sometimes only one |
767 | // choice leads to a solution. We handle this using a stack and |
768 | // backtracking. We also keep track of which states have already been |
769 | // explored to avoid duplicating work. |
770 | |
771 | vector<pair<int, int> > pending; |
772 | set<pair<int, int> > done; |
773 | pending.push_back(make_pair(0, 0)); |
774 | while (!pending.empty()) { |
775 | int i = pending.back().first; |
776 | int j = pending.back().second; |
777 | pending.pop_back(); |
778 | if (i == a->num_vertices() && j == b->num_vertices()) { |
779 | return true; |
780 | } |
781 | done.insert(make_pair(i, j)); |
782 | |
783 | // If (i == na && offset == na-1) where na == a->num_vertices(), then |
784 | // then (i+1+offset) overflows the [0, 2*na-1] range allowed by vertex(). |
785 | // So we reduce the range if necessary. |
786 | int io = i + a_offset; |
787 | if (io >= a->num_vertices()) io -= a->num_vertices(); |
788 | |
789 | if (i < a->num_vertices() && done.count(make_pair(i+1, j)) == 0 && |
790 | S2EdgeUtil::GetDistance(a->vertex(io+1), |
791 | b->vertex(j), |
792 | b->vertex(j+1)).radians() <= max_error) { |
793 | pending.push_back(make_pair(i+1, j)); |
794 | } |
795 | if (j < b->num_vertices() && done.count(make_pair(i, j+1)) == 0 && |
796 | S2EdgeUtil::GetDistance(b->vertex(j+1), |
797 | a->vertex(io), |
798 | a->vertex(io+1)).radians() <= max_error) { |
799 | pending.push_back(make_pair(i, j+1)); |
800 | } |
801 | } |
802 | return false; |
803 | } |
804 | |
805 | bool S2Loop::BoundaryNear(S2Loop const* b, double max_error) const { |
806 | for (int a_offset = 0; a_offset < num_vertices(); ++a_offset) { |
807 | if (MatchBoundaries(this, b, a_offset, max_error)) return true; |
808 | } |
809 | return false; |
810 | } |
811 | |