| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include <algorithm> |
| 4 | using std::min; |
| 5 | using std::max; |
| 6 | using std::swap; |
| 7 | using std::reverse; |
| 8 | |
| 9 | #include <set> |
| 10 | using std::set; |
| 11 | using std::multiset; |
| 12 | |
| 13 | #include <vector> |
| 14 | using std::vector; |
| 15 | |
| 16 | #include <hash_map> |
| 17 | using __gnu_cxx::hash_map; |
| 18 | |
| 19 | #include <utility> |
| 20 | using std::pair; |
| 21 | using std::make_pair; |
| 22 | |
| 23 | |
| 24 | #include "s2loop.h" |
| 25 | |
| 26 | // #include "base/commandlineflags.h" |
| 27 | #include "base/logging.h" |
| 28 | #include "base/scoped_ptr.h" |
| 29 | #include "util/coding/coder.h" |
| 30 | #include "s2cap.h" |
| 31 | #include "s2cell.h" |
| 32 | #include "s2edgeindex.h" |
| 33 | |
| 34 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
| 35 | |
| 36 | // DECLARE_bool(s2debug); // defined in s2.cc |
| 37 | |
| 38 | S2Point const* S2LoopIndex::edge_from(int index) const { |
| 39 | return &loop_->vertex(index); |
| 40 | } |
| 41 | |
| 42 | S2Point const* S2LoopIndex::edge_to(int index) const { |
| 43 | return &loop_->vertex(index+1); |
| 44 | } |
| 45 | |
| 46 | int S2LoopIndex::num_edges() const { |
| 47 | return loop_->num_vertices(); |
| 48 | } |
| 49 | |
| 50 | S2Loop::S2Loop() |
| 51 | : num_vertices_(0), |
| 52 | vertices_(NULL), |
| 53 | owns_vertices_(false), |
| 54 | bound_(S2LatLngRect::Empty()), |
| 55 | depth_(0), |
| 56 | index_(this), |
| 57 | num_find_vertex_calls_(0) { |
| 58 | } |
| 59 | |
| 60 | S2Loop::S2Loop(vector<S2Point> const& vertices) |
| 61 | : num_vertices_(0), |
| 62 | vertices_(NULL), |
| 63 | owns_vertices_(false), |
| 64 | bound_(S2LatLngRect::Full()), |
| 65 | depth_(0), |
| 66 | index_(this), |
| 67 | num_find_vertex_calls_(0) { |
| 68 | Init(vertices); |
| 69 | } |
| 70 | |
| 71 | void S2Loop::ResetMutableFields() { |
| 72 | index_.Reset(); |
| 73 | num_find_vertex_calls_ = 0; |
| 74 | vertex_to_index_.clear(); |
| 75 | } |
| 76 | |
| 77 | void S2Loop::Init(vector<S2Point> const& vertices) { |
| 78 | ResetMutableFields(); |
| 79 | |
| 80 | if (owns_vertices_) delete[] vertices_; |
| 81 | num_vertices_ = vertices.size(); |
| 82 | if (vertices.empty()) { |
| 83 | vertices_ = NULL; |
| 84 | } else { |
| 85 | vertices_ = new S2Point[num_vertices_]; |
| 86 | memcpy(vertices_, &vertices[0], num_vertices_ * sizeof(vertices_[0])); |
| 87 | } |
| 88 | owns_vertices_ = true; |
| 89 | bound_ = S2LatLngRect::Full(); |
| 90 | |
| 91 | // InitOrigin() must be called before InitBound() because the latter |
| 92 | // function expects Contains() to work properly. |
| 93 | InitOrigin(); |
| 94 | InitBound(); |
| 95 | } |
| 96 | |
| 97 | bool S2Loop::IsValid() const { |
| 98 | // Loops must have at least 3 vertices. |
| 99 | if (num_vertices() < 3) { |
| 100 | VLOG(2) << "Degenerate loop" ; |
| 101 | return false; |
| 102 | } |
| 103 | // All vertices must be unit length. |
| 104 | for (int i = 0; i < num_vertices(); ++i) { |
| 105 | if (!S2::IsUnitLength(vertex(i))) { |
| 106 | VLOG(2) << "Vertex " << i << " is not unit length" ; |
| 107 | return false; |
| 108 | } |
| 109 | } |
| 110 | // Loops are not allowed to have any duplicate vertices. |
| 111 | hash_map<S2Point, int> vmap; |
| 112 | for (int i = 0; i < num_vertices(); ++i) { |
| 113 | if (!vmap.insert(make_pair(vertex(i), i)).second) { |
| 114 | VLOG(2) << "Duplicate vertices: " << vmap[vertex(i)] << " and " << i; |
| 115 | return false; |
| 116 | } |
| 117 | } |
| 118 | // Non-adjacent edges are not allowed to intersect. |
| 119 | bool crosses = false; |
| 120 | index_.PredictAdditionalCalls(num_vertices()); |
| 121 | S2EdgeIndex::Iterator it(&index_); |
| 122 | for (int i = 0; i < num_vertices(); ++i) { |
| 123 | S2EdgeUtil::EdgeCrosser crosser(&vertex(i), &vertex(i+1), &vertex(0)); |
| 124 | int previous_index = -2; |
| 125 | for (it.GetCandidates(vertex(i), vertex(i+1)); !it.Done(); it.Next()) { |
| 126 | int ai = it.Index(); |
| 127 | // There is no need to test the same thing twice. Moreover, two edges |
| 128 | // that abut at ai+1 will have been tested for equality above. |
| 129 | if (ai > i+1) { |
| 130 | if (previous_index != ai) crosser.RestartAt(&vertex(ai)); |
| 131 | // Beware, this may return the loop is valid if there is a |
| 132 | // "vertex crossing". |
| 133 | // TODO(user): Fix that. |
| 134 | crosses = crosser.RobustCrossing(&vertex(ai+1)) > 0; |
| 135 | previous_index = ai + 1; |
| 136 | if (crosses) { |
| 137 | VLOG(2) << "Edges " << i << " and " << ai << " cross" ; |
| 138 | // additional debugging information: |
| 139 | VLOG(2) << "Edge locations in degrees: " |
| 140 | << S2LatLng(vertex(i)) << "-" << S2LatLng(vertex(i+1)) |
| 141 | << " and " |
| 142 | << S2LatLng(vertex(ai)) << "-" << S2LatLng(vertex(ai+1)); |
| 143 | break; |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | if (crosses) break; |
| 148 | } |
| 149 | |
| 150 | return !crosses; |
| 151 | } |
| 152 | |
| 153 | bool S2Loop::IsValid(vector<S2Point> const& vertices, int max_adjacent) { |
| 154 | if (vertices.size() < 3) return false; |
| 155 | |
| 156 | S2Loop loop(vertices); |
| 157 | return loop.IsValid(); |
| 158 | } |
| 159 | |
| 160 | bool S2Loop::IsValid(int max_adjacent) const { |
| 161 | return IsValid(); |
| 162 | } |
| 163 | |
| 164 | void S2Loop::InitOrigin() { |
| 165 | // The bounding box does not need to be correct before calling this |
| 166 | // function, but it must at least contain vertex(1) since we need to |
| 167 | // do a Contains() test on this point below. |
| 168 | DCHECK(bound_.Contains(vertex(1))); |
| 169 | |
| 170 | // To ensure that every point is contained in exactly one face of a |
| 171 | // subdivision of the sphere, all containment tests are done by counting the |
| 172 | // edge crossings starting at a fixed point on the sphere (S2::Origin()). |
| 173 | // We need to know whether this point is inside or outside of the loop. |
| 174 | // We do this by first guessing that it is outside, and then seeing whether |
| 175 | // we get the correct containment result for vertex 1. If the result is |
| 176 | // incorrect, the origin must be inside the loop. |
| 177 | // |
| 178 | // A loop with consecutive vertices A,B,C contains vertex B if and only if |
| 179 | // the fixed vector R = S2::Ortho(B) is on the left side of the wedge ABC. |
| 180 | // The test below is written so that B is inside if C=R but not if A=R. |
| 181 | |
| 182 | origin_inside_ = false; // Initialize before calling Contains(). |
| 183 | bool v1_inside = S2::OrderedCCW(S2::Ortho(vertex(1)), vertex(0), vertex(2), |
| 184 | vertex(1)); |
| 185 | if (v1_inside != Contains(vertex(1))) |
| 186 | origin_inside_ = true; |
| 187 | } |
| 188 | |
| 189 | void S2Loop::InitBound() { |
| 190 | // The bounding rectangle of a loop is not necessarily the same as the |
| 191 | // bounding rectangle of its vertices. First, the loop may wrap entirely |
| 192 | // around the sphere (e.g. a loop that defines two revolutions of a |
| 193 | // candy-cane stripe). Second, the loop may include one or both poles. |
| 194 | // Note that a small clockwise loop near the equator contains both poles. |
| 195 | |
| 196 | S2EdgeUtil::RectBounder bounder; |
| 197 | for (int i = 0; i <= num_vertices(); ++i) { |
| 198 | bounder.AddPoint(&vertex(i)); |
| 199 | } |
| 200 | S2LatLngRect b = bounder.GetBound(); |
| 201 | // Note that we need to initialize bound_ with a temporary value since |
| 202 | // Contains() does a bounding rectangle check before doing anything else. |
| 203 | bound_ = S2LatLngRect::Full(); |
| 204 | if (Contains(S2Point(0, 0, 1))) { |
| 205 | b = S2LatLngRect(R1Interval(b.lat().lo(), M_PI_2), S1Interval::Full()); |
| 206 | } |
| 207 | // If a loop contains the south pole, then either it wraps entirely |
| 208 | // around the sphere (full longitude range), or it also contains the |
| 209 | // north pole in which case b.lng().is_full() due to the test above. |
| 210 | // Either way, we only need to do the south pole containment test if |
| 211 | // b.lng().is_full(). |
| 212 | if (b.lng().is_full() && Contains(S2Point(0, 0, -1))) { |
| 213 | b.mutable_lat()->set_lo(-M_PI_2); |
| 214 | } |
| 215 | bound_ = b; |
| 216 | } |
| 217 | |
| 218 | S2Loop::S2Loop(S2Cell const& cell) |
| 219 | : bound_(cell.GetRectBound()), |
| 220 | index_(this), |
| 221 | num_find_vertex_calls_(0) { |
| 222 | num_vertices_ = 4; |
| 223 | vertices_ = new S2Point[num_vertices_]; |
| 224 | depth_ = 0; |
| 225 | for (int i = 0; i < 4; ++i) { |
| 226 | vertices_[i] = cell.GetVertex(i); |
| 227 | } |
| 228 | owns_vertices_ = true; |
| 229 | InitOrigin(); |
| 230 | InitBound(); |
| 231 | } |
| 232 | |
| 233 | S2Loop::~S2Loop() { |
| 234 | if (owns_vertices_) { |
| 235 | delete[] vertices_; |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | S2Loop::S2Loop(S2Loop const* src) |
| 240 | : num_vertices_(src->num_vertices_), |
| 241 | vertices_(new S2Point[num_vertices_]), |
| 242 | owns_vertices_(true), |
| 243 | bound_(src->bound_), |
| 244 | origin_inside_(src->origin_inside_), |
| 245 | depth_(src->depth_), |
| 246 | index_(this), |
| 247 | num_find_vertex_calls_(0) { |
| 248 | memcpy(vertices_, src->vertices_, num_vertices_ * sizeof(vertices_[0])); |
| 249 | } |
| 250 | |
| 251 | S2Loop* S2Loop::Clone() const { |
| 252 | return new S2Loop(this); |
| 253 | } |
| 254 | |
| 255 | int S2Loop::FindVertex(S2Point const& p) const { |
| 256 | num_find_vertex_calls_++; |
| 257 | if (num_vertices() < 10 || num_find_vertex_calls_ < 20) { |
| 258 | // Exhaustive search |
| 259 | for (int i = 1; i <= num_vertices(); ++i) { |
| 260 | if (vertex(i) == p) return i; |
| 261 | } |
| 262 | return -1; |
| 263 | } |
| 264 | |
| 265 | if (vertex_to_index_.empty()) { // We haven't computed it yet. |
| 266 | for (int i = num_vertices(); i > 0; --i) { |
| 267 | vertex_to_index_[vertex(i)] = i; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | map<S2Point, int>::const_iterator it; |
| 272 | it = vertex_to_index_.find(p); |
| 273 | if (it == vertex_to_index_.end()) return -1; |
| 274 | return it->second; |
| 275 | } |
| 276 | |
| 277 | |
| 278 | bool S2Loop::IsNormalized() const { |
| 279 | // Optimization: if the longitude span is less than 180 degrees, then the |
| 280 | // loop covers less than half the sphere and is therefore normalized. |
| 281 | if (bound_.lng().GetLength() < M_PI) return true; |
| 282 | |
| 283 | // We allow some error so that hemispheres are always considered normalized. |
| 284 | // TODO(user): This might not be necessary once S2Polygon is enhanced so |
| 285 | // that it does not require its input loops to be normalized. |
| 286 | return GetTurningAngle() >= -1e-14; |
| 287 | } |
| 288 | |
| 289 | void S2Loop::Normalize() { |
| 290 | CHECK(owns_vertices_); |
| 291 | if (!IsNormalized()) Invert(); |
| 292 | DCHECK(IsNormalized()); |
| 293 | } |
| 294 | |
| 295 | void S2Loop::Invert() { |
| 296 | CHECK(owns_vertices_); |
| 297 | |
| 298 | ResetMutableFields(); |
| 299 | reverse(vertices_, vertices_ + num_vertices()); |
| 300 | origin_inside_ ^= true; |
| 301 | if (bound_.lat().lo() > -M_PI_2 && bound_.lat().hi() < M_PI_2) { |
| 302 | // The complement of this loop contains both poles. |
| 303 | bound_ = S2LatLngRect::Full(); |
| 304 | } else { |
| 305 | InitBound(); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | double S2Loop::GetArea() const { |
| 310 | double area = GetSurfaceIntegral(S2::SignedArea); |
| 311 | // The signed area should be between approximately -4*Pi and 4*Pi. |
| 312 | DCHECK_LE(fabs(area), 4 * M_PI + 1e-12); |
| 313 | if (area < 0) { |
| 314 | // We have computed the negative of the area of the loop exterior. |
| 315 | area += 4 * M_PI; |
| 316 | } |
| 317 | return max(0.0, min(4 * M_PI, area)); |
| 318 | } |
| 319 | |
| 320 | S2Point S2Loop::GetCentroid() const { |
| 321 | // GetSurfaceIntegral() returns either the integral of position over loop |
| 322 | // interior, or the negative of the integral of position over the loop |
| 323 | // exterior. But these two values are the same (!), because the integral of |
| 324 | // position over the entire sphere is (0, 0, 0). |
| 325 | return GetSurfaceIntegral(S2::TrueCentroid); |
| 326 | } |
| 327 | |
| 328 | // Return (first, dir) such that first..first+n*dir are valid indices. |
| 329 | int S2Loop::GetCanonicalFirstVertex(int* dir) const { |
| 330 | int first = 0; |
| 331 | int n = num_vertices(); |
| 332 | for (int i = 1; i < n; ++i) { |
| 333 | if (vertex(i) < vertex(first)) first = i; |
| 334 | } |
| 335 | if (vertex(first + 1) < vertex(first + n - 1)) { |
| 336 | *dir = 1; |
| 337 | // 0 <= first <= n-1, so (first+n*dir) <= 2*n-1. |
| 338 | } else { |
| 339 | *dir = -1; |
| 340 | first += n; |
| 341 | // n <= first <= 2*n-1, so (first+n*dir) >= 0. |
| 342 | } |
| 343 | return first; |
| 344 | } |
| 345 | |
| 346 | double S2Loop::GetTurningAngle() const { |
| 347 | // Don't crash even if the loop is not well-defined. |
| 348 | if (num_vertices() < 3) return 0; |
| 349 | |
| 350 | // To ensure that we get the same result when the loop vertex order is |
| 351 | // rotated, and that we get the same result with the opposite sign when the |
| 352 | // vertices are reversed, we need to be careful to add up the individual |
| 353 | // turn angles in a consistent order. In general, adding up a set of |
| 354 | // numbers in a different order can change the sum due to rounding errors. |
| 355 | int n = num_vertices(); |
| 356 | int dir, i = GetCanonicalFirstVertex(&dir); |
| 357 | double angle = S2::TurnAngle(vertex((i + n - dir) % n), vertex(i), |
| 358 | vertex((i + dir) % n)); |
| 359 | while (--n > 0) { |
| 360 | i += dir; |
| 361 | angle += S2::TurnAngle(vertex(i - dir), vertex(i), vertex(i + dir)); |
| 362 | } |
| 363 | return dir * angle; |
| 364 | } |
| 365 | |
| 366 | S2Cap S2Loop::GetCapBound() const { |
| 367 | return bound_.GetCapBound(); |
| 368 | } |
| 369 | |
| 370 | bool S2Loop::Contains(S2Cell const& cell) const { |
| 371 | // A future optimization could also take advantage of the fact than an S2Cell |
| 372 | // is convex. |
| 373 | |
| 374 | // It's not necessarily true that bound_.Contains(cell.GetRectBound()) |
| 375 | // because S2Cell bounds are slightly conservative. |
| 376 | if (!bound_.Contains(cell.GetCenter())) return false; |
| 377 | S2Loop cell_loop(cell); |
| 378 | return Contains(&cell_loop); |
| 379 | } |
| 380 | |
| 381 | bool S2Loop::MayIntersect(S2Cell const& cell) const { |
| 382 | // It is faster to construct a bounding rectangle for an S2Cell than for |
| 383 | // a general polygon. A future optimization could also take advantage of |
| 384 | // the fact than an S2Cell is convex. |
| 385 | |
| 386 | if (!bound_.Intersects(cell.GetRectBound())) return false; |
| 387 | return S2Loop(cell).Intersects(this); |
| 388 | } |
| 389 | |
| 390 | bool S2Loop::Contains(S2Point const& p) const { |
| 391 | if (!bound_.Contains(p)) return false; |
| 392 | |
| 393 | bool inside = origin_inside_; |
| 394 | S2Point origin = S2::Origin(); |
| 395 | S2EdgeUtil::EdgeCrosser crosser(&origin, &p, &vertex(0)); |
| 396 | |
| 397 | // The s2edgeindex library is not optimized yet for long edges, |
| 398 | // so the tradeoff to using it comes later. |
| 399 | if (num_vertices() < 2000) { |
| 400 | for (int i = 1; i <= num_vertices(); ++i) { |
| 401 | inside ^= crosser.EdgeOrVertexCrossing(&vertex(i)); |
| 402 | } |
| 403 | return inside; |
| 404 | } |
| 405 | |
| 406 | S2EdgeIndex::Iterator it(&index_); |
| 407 | int previous_index = -2; |
| 408 | for (it.GetCandidates(origin, p); !it.Done(); it.Next()) { |
| 409 | int ai = it.Index(); |
| 410 | if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); |
| 411 | previous_index = ai; |
| 412 | inside ^= crosser.EdgeOrVertexCrossing(&vertex(ai+1)); |
| 413 | } |
| 414 | return inside; |
| 415 | } |
| 416 | |
| 417 | void S2Loop::Encode(Encoder* const encoder) const { |
| 418 | encoder->Ensure(num_vertices_ * sizeof(*vertices_) + 20); // sufficient |
| 419 | |
| 420 | encoder->put8(kCurrentEncodingVersionNumber); |
| 421 | encoder->put32(num_vertices_); |
| 422 | encoder->putn(vertices_, sizeof(*vertices_) * num_vertices_); |
| 423 | encoder->put8(origin_inside_); |
| 424 | encoder->put32(depth_); |
| 425 | DCHECK_GE(encoder->avail(), 0); |
| 426 | |
| 427 | bound_.Encode(encoder); |
| 428 | } |
| 429 | |
| 430 | bool S2Loop::Decode(Decoder* const decoder) { |
| 431 | return DecodeInternal(decoder, false); |
| 432 | } |
| 433 | |
| 434 | bool S2Loop::DecodeWithinScope(Decoder* const decoder) { |
| 435 | return DecodeInternal(decoder, true); |
| 436 | } |
| 437 | |
| 438 | bool S2Loop::DecodeInternal(Decoder* const decoder, |
| 439 | bool within_scope) { |
| 440 | unsigned char version = decoder->get8(); |
| 441 | if (version > kCurrentEncodingVersionNumber) return false; |
| 442 | |
| 443 | num_vertices_ = decoder->get32(); |
| 444 | if (owns_vertices_) delete[] vertices_; |
| 445 | if (within_scope) { |
| 446 | vertices_ = const_cast<S2Point *>(reinterpret_cast<S2Point const*>( |
| 447 | decoder->ptr())); |
| 448 | decoder->skip(num_vertices_ * sizeof(*vertices_)); |
| 449 | owns_vertices_ = false; |
| 450 | } else { |
| 451 | vertices_ = new S2Point[num_vertices_]; |
| 452 | decoder->getn(vertices_, num_vertices_ * sizeof(*vertices_)); |
| 453 | owns_vertices_ = true; |
| 454 | } |
| 455 | origin_inside_ = decoder->get8(); |
| 456 | depth_ = decoder->get32(); |
| 457 | if (!bound_.Decode(decoder)) return false; |
| 458 | |
| 459 | DCHECK(IsValid()); |
| 460 | |
| 461 | return decoder->avail() >= 0; |
| 462 | } |
| 463 | |
| 464 | // This is a helper class for the AreBoundariesCrossing function. |
| 465 | // Each time there is a point in common between the two loops passed |
| 466 | // as parameters, the two associated wedges centered at this point are |
| 467 | // passed to the ProcessWedge function of this processor. The function |
| 468 | // updates an internal state based on the wedges, and returns true to |
| 469 | // signal that no further processing is needed. |
| 470 | // |
| 471 | // To use AreBoundariesCrossing, subclass this class and keep an |
| 472 | // internal state that you update each time ProcessWedge is called, |
| 473 | // then query this internal state in the function that called |
| 474 | // AreBoundariesCrossing. |
| 475 | class WedgeProcessor { |
| 476 | public: |
| 477 | virtual ~WedgeProcessor() { } |
| 478 | |
| 479 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
| 480 | S2Point const& a2, S2Point const& b0, |
| 481 | S2Point const& b2) = 0; |
| 482 | }; |
| 483 | |
| 484 | bool S2Loop::AreBoundariesCrossing( |
| 485 | S2Loop const* b, WedgeProcessor* wedge_processor) const { |
| 486 | // See the header file for a description of what this method does. |
| 487 | index_.PredictAdditionalCalls(b->num_vertices()); |
| 488 | S2EdgeIndex::Iterator it(&index_); |
| 489 | for (int j = 0; j < b->num_vertices(); ++j) { |
| 490 | S2EdgeUtil::EdgeCrosser crosser(&b->vertex(j), &b->vertex(j+1), |
| 491 | &b->vertex(0)); |
| 492 | int previous_index = -2; |
| 493 | for (it.GetCandidates(b->vertex(j), b->vertex(j+1)); |
| 494 | !it.Done(); it.Next()) { |
| 495 | int ai = it.Index(); |
| 496 | if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); |
| 497 | previous_index = ai; |
| 498 | int crossing = crosser.RobustCrossing(&vertex(ai + 1)); |
| 499 | if (crossing < 0) continue; |
| 500 | if (crossing > 0) return true; |
| 501 | // We only need to check each shared vertex once, so we only |
| 502 | // consider the case where vertex(i+1) == b->vertex(j+1). |
| 503 | if (vertex(ai+1) == b->vertex(j+1) && |
| 504 | wedge_processor->ProcessWedge(vertex(ai), vertex(ai+1), vertex(ai+2), |
| 505 | b->vertex(j), b->vertex(j+2))) { |
| 506 | return false; |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | return false; |
| 511 | } |
| 512 | |
| 513 | // WedgeProcessor to be used to check if loop A contains loop B. |
| 514 | // DoesntContain() then returns true if there is a wedge of B not |
| 515 | // contained in the associated wedge of A (and hence loop B is not |
| 516 | // contained in loop A). |
| 517 | class ContainsWedgeProcessor: public WedgeProcessor { |
| 518 | public: |
| 519 | ContainsWedgeProcessor(): doesnt_contain_(false) {} |
| 520 | bool DoesntContain() { return doesnt_contain_; } |
| 521 | |
| 522 | protected: |
| 523 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
| 524 | S2Point const& a2, S2Point const& b0, |
| 525 | S2Point const& b2) { |
| 526 | doesnt_contain_ = !S2EdgeUtil::WedgeContains(a0, ab1, a2, b0, b2); |
| 527 | return doesnt_contain_; |
| 528 | } |
| 529 | |
| 530 | private: |
| 531 | bool doesnt_contain_; |
| 532 | }; |
| 533 | |
| 534 | bool S2Loop::Contains(S2Loop const* b) const { |
| 535 | // For this loop A to contains the given loop B, all of the following must |
| 536 | // be true: |
| 537 | // |
| 538 | // (1) There are no edge crossings between A and B except at vertices. |
| 539 | // |
| 540 | // (2) At every vertex that is shared between A and B, the local edge |
| 541 | // ordering implies that A contains B. |
| 542 | // |
| 543 | // (3) If there are no shared vertices, then A must contain a vertex of B |
| 544 | // and B must not contain a vertex of A. (An arbitrary vertex may be |
| 545 | // chosen in each case.) |
| 546 | // |
| 547 | // The second part of (3) is necessary to detect the case of two loops whose |
| 548 | // union is the entire sphere, i.e. two loops that contains each other's |
| 549 | // boundaries but not each other's interiors. |
| 550 | |
| 551 | if (!bound_.Contains(b->bound_)) return false; |
| 552 | |
| 553 | // Unless there are shared vertices, we need to check whether A contains a |
| 554 | // vertex of B. Since shared vertices are rare, it is more efficient to do |
| 555 | // this test up front as a quick rejection test. |
| 556 | if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) |
| 557 | return false; |
| 558 | |
| 559 | // Now check whether there are any edge crossings, and also check the loop |
| 560 | // relationship at any shared vertices. |
| 561 | ContainsWedgeProcessor p_wedge; |
| 562 | if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.DoesntContain()) { |
| 563 | return false; |
| 564 | } |
| 565 | |
| 566 | // At this point we know that the boundaries of A and B do not intersect, |
| 567 | // and that A contains a vertex of B. However we still need to check for |
| 568 | // the case mentioned above, where (A union B) is the entire sphere. |
| 569 | // Normally this check is very cheap due to the bounding box precondition. |
| 570 | if (bound_.Union(b->bound_).is_full()) { |
| 571 | if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return false; |
| 572 | } |
| 573 | return true; |
| 574 | } |
| 575 | |
| 576 | // WedgeProcessor to be used to check if loop A intersects loop B. |
| 577 | // Intersects() then returns true when A and B have at least one pair |
| 578 | // of associated wedges that intersect. |
| 579 | class IntersectsWedgeProcessor: public WedgeProcessor { |
| 580 | public: |
| 581 | IntersectsWedgeProcessor(): intersects_(false) {} |
| 582 | bool Intersects() { return intersects_; } |
| 583 | |
| 584 | protected: |
| 585 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
| 586 | S2Point const& a2, S2Point const& b0, |
| 587 | S2Point const& b2) { |
| 588 | intersects_ = S2EdgeUtil::WedgeIntersects(a0, ab1, a2, b0, b2); |
| 589 | return intersects_; |
| 590 | } |
| 591 | |
| 592 | private: |
| 593 | bool intersects_; |
| 594 | }; |
| 595 | |
| 596 | bool S2Loop::Intersects(S2Loop const* b) const { |
| 597 | // a->Intersects(b) if and only if !a->Complement()->Contains(b). |
| 598 | // This code is similar to Contains(), but is optimized for the case |
| 599 | // where both loops enclose less than half of the sphere. |
| 600 | |
| 601 | // The largest of the two loops should be edgeindex'd. |
| 602 | if (b->num_vertices() > num_vertices()) return b->Intersects(this); |
| 603 | |
| 604 | if (!bound_.Intersects(b->bound_)) return false; |
| 605 | |
| 606 | // Unless there are shared vertices, we need to check whether A contains a |
| 607 | // vertex of B. Since shared vertices are rare, it is more efficient to do |
| 608 | // this test up front as a quick acceptance test. |
| 609 | if (Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) |
| 610 | return true; |
| 611 | |
| 612 | // Now check whether there are any edge crossings, and also check the loop |
| 613 | // relationship at any shared vertices. |
| 614 | IntersectsWedgeProcessor p_wedge; |
| 615 | if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.Intersects()) { |
| 616 | return true; |
| 617 | } |
| 618 | |
| 619 | // We know that A does not contain a vertex of B, and that there are no edge |
| 620 | // crossings. Therefore the only way that A can intersect B is if B |
| 621 | // entirely contains A. We can check this by testing whether B contains an |
| 622 | // arbitrary non-shared vertex of A. Note that this check is usually cheap |
| 623 | // because of the bounding box precondition. |
| 624 | if (b->bound_.Contains(bound_)) { |
| 625 | if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return true; |
| 626 | } |
| 627 | return false; |
| 628 | } |
| 629 | |
| 630 | // WedgeProcessor to be used to check if the interior of loop A |
| 631 | // contains the interior of loop B, or their boundaries cross each |
| 632 | // other (therefore they have a proper intersection). |
| 633 | // CrossesOrMayContain() then returns -1 if A crossed B, 0 if it is |
| 634 | // not possible for A to contain B, and 1 otherwise. |
| 635 | class ContainsOrCrossesProcessor: public WedgeProcessor { |
| 636 | public: |
| 637 | ContainsOrCrossesProcessor(): |
| 638 | has_boundary_crossing_(false), |
| 639 | a_has_strictly_super_wedge_(false), b_has_strictly_super_wedge_(false), |
| 640 | has_disjoint_wedge_(false) {} |
| 641 | |
| 642 | int CrossesOrMayContain() { |
| 643 | if (has_boundary_crossing_) return -1; |
| 644 | if (has_disjoint_wedge_ || b_has_strictly_super_wedge_) return 0; |
| 645 | return 1; |
| 646 | } |
| 647 | |
| 648 | protected: |
| 649 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, |
| 650 | S2Point const& a2, S2Point const& b0, |
| 651 | S2Point const& b2) { |
| 652 | const S2EdgeUtil::WedgeRelation wedge_relation = |
| 653 | S2EdgeUtil::GetWedgeRelation(a0, ab1, a2, b0, b2); |
| 654 | if (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_OVERLAPS) { |
| 655 | has_boundary_crossing_ = true; |
| 656 | return true; |
| 657 | } |
| 658 | |
| 659 | a_has_strictly_super_wedge_ |= |
| 660 | (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_CONTAINS); |
| 661 | b_has_strictly_super_wedge_ |= |
| 662 | (wedge_relation == S2EdgeUtil::WEDGE_IS_PROPERLY_CONTAINED); |
| 663 | if (a_has_strictly_super_wedge_ && b_has_strictly_super_wedge_) { |
| 664 | has_boundary_crossing_ = true; |
| 665 | return true; |
| 666 | } |
| 667 | |
| 668 | has_disjoint_wedge_ |= (wedge_relation == S2EdgeUtil::WEDGE_IS_DISJOINT); |
| 669 | return false; |
| 670 | } |
| 671 | |
| 672 | private: |
| 673 | // True if any crossing on the boundary is discovered. |
| 674 | bool has_boundary_crossing_; |
| 675 | // True if A (B) has a strictly superwedge on a pair of wedges that |
| 676 | // share a common center point. |
| 677 | bool a_has_strictly_super_wedge_; |
| 678 | bool b_has_strictly_super_wedge_; |
| 679 | // True if there is a pair of disjoint wedges with common center |
| 680 | // point. |
| 681 | bool has_disjoint_wedge_; |
| 682 | }; |
| 683 | |
| 684 | int S2Loop::ContainsOrCrosses(S2Loop const* b) const { |
| 685 | // There can be containment or crossing only if the bounds intersect. |
| 686 | if (!bound_.Intersects(b->bound_)) return 0; |
| 687 | |
| 688 | // Now check whether there are any edge crossings, and also check the loop |
| 689 | // relationship at any shared vertices. Note that unlike Contains() or |
| 690 | // Intersects(), we can't do a point containment test as a shortcut because |
| 691 | // we need to detect whether there are any edge crossings. |
| 692 | ContainsOrCrossesProcessor p_wedge; |
| 693 | if (AreBoundariesCrossing(b, &p_wedge)) { |
| 694 | return -1; |
| 695 | } |
| 696 | const int result = p_wedge.CrossesOrMayContain(); |
| 697 | if (result <= 0) return result; |
| 698 | |
| 699 | // At this point we know that the boundaries do not intersect, and we are |
| 700 | // given that (A union B) is a proper subset of the sphere. Furthermore |
| 701 | // either A contains B, or there are no shared vertices (due to the check |
| 702 | // above). So now we just need to distinguish the case where A contains B |
| 703 | // from the case where B contains A or the two loops are disjoint. |
| 704 | if (!bound_.Contains(b->bound_)) return 0; |
| 705 | if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) return 0; |
| 706 | return 1; |
| 707 | } |
| 708 | |
| 709 | bool S2Loop::ContainsNested(S2Loop const* b) const { |
| 710 | if (!bound_.Contains(b->bound_)) return false; |
| 711 | |
| 712 | // We are given that A and B do not share any edges, and that either one |
| 713 | // loop contains the other or they do not intersect. |
| 714 | int m = FindVertex(b->vertex(1)); |
| 715 | if (m < 0) { |
| 716 | // Since b->vertex(1) is not shared, we can check whether A contains it. |
| 717 | return Contains(b->vertex(1)); |
| 718 | } |
| 719 | // Check whether the edge order around b->vertex(1) is compatible with |
| 720 | // A containing B. |
| 721 | return S2EdgeUtil::WedgeContains(vertex(m-1), vertex(m), vertex(m+1), |
| 722 | b->vertex(0), b->vertex(2)); |
| 723 | } |
| 724 | |
| 725 | bool S2Loop::BoundaryEquals(S2Loop const* b) const { |
| 726 | if (num_vertices() != b->num_vertices()) return false; |
| 727 | for (int offset = 0; offset < num_vertices(); ++offset) { |
| 728 | if (vertex(offset) == b->vertex(0)) { |
| 729 | // There is at most one starting offset since loop vertices are unique. |
| 730 | for (int i = 0; i < num_vertices(); ++i) { |
| 731 | if (vertex(i + offset) != b->vertex(i)) return false; |
| 732 | } |
| 733 | return true; |
| 734 | } |
| 735 | } |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | bool S2Loop::BoundaryApproxEquals(S2Loop const* b, double max_error) const { |
| 740 | if (num_vertices() != b->num_vertices()) return false; |
| 741 | for (int offset = 0; offset < num_vertices(); ++offset) { |
| 742 | if (S2::ApproxEquals(vertex(offset), b->vertex(0), max_error)) { |
| 743 | bool success = true; |
| 744 | for (int i = 0; i < num_vertices(); ++i) { |
| 745 | if (!S2::ApproxEquals(vertex(i + offset), b->vertex(i), max_error)) { |
| 746 | success = false; |
| 747 | break; |
| 748 | } |
| 749 | } |
| 750 | if (success) return true; |
| 751 | // Otherwise continue looping. There may be more than one candidate |
| 752 | // starting offset since vertices are only matched approximately. |
| 753 | } |
| 754 | } |
| 755 | return false; |
| 756 | } |
| 757 | |
| 758 | static bool MatchBoundaries(S2Loop const* a, S2Loop const* b, int a_offset, |
| 759 | double max_error) { |
| 760 | // The state consists of a pair (i,j). A state transition consists of |
| 761 | // incrementing either "i" or "j". "i" can be incremented only if |
| 762 | // a(i+1+a_offset) is near the edge from b(j) to b(j+1), and a similar rule |
| 763 | // applies to "j". The function returns true iff we can proceed all the way |
| 764 | // around both loops in this way. |
| 765 | // |
| 766 | // Note that when "i" and "j" can both be incremented, sometimes only one |
| 767 | // choice leads to a solution. We handle this using a stack and |
| 768 | // backtracking. We also keep track of which states have already been |
| 769 | // explored to avoid duplicating work. |
| 770 | |
| 771 | vector<pair<int, int> > pending; |
| 772 | set<pair<int, int> > done; |
| 773 | pending.push_back(make_pair(0, 0)); |
| 774 | while (!pending.empty()) { |
| 775 | int i = pending.back().first; |
| 776 | int j = pending.back().second; |
| 777 | pending.pop_back(); |
| 778 | if (i == a->num_vertices() && j == b->num_vertices()) { |
| 779 | return true; |
| 780 | } |
| 781 | done.insert(make_pair(i, j)); |
| 782 | |
| 783 | // If (i == na && offset == na-1) where na == a->num_vertices(), then |
| 784 | // then (i+1+offset) overflows the [0, 2*na-1] range allowed by vertex(). |
| 785 | // So we reduce the range if necessary. |
| 786 | int io = i + a_offset; |
| 787 | if (io >= a->num_vertices()) io -= a->num_vertices(); |
| 788 | |
| 789 | if (i < a->num_vertices() && done.count(make_pair(i+1, j)) == 0 && |
| 790 | S2EdgeUtil::GetDistance(a->vertex(io+1), |
| 791 | b->vertex(j), |
| 792 | b->vertex(j+1)).radians() <= max_error) { |
| 793 | pending.push_back(make_pair(i+1, j)); |
| 794 | } |
| 795 | if (j < b->num_vertices() && done.count(make_pair(i, j+1)) == 0 && |
| 796 | S2EdgeUtil::GetDistance(b->vertex(j+1), |
| 797 | a->vertex(io), |
| 798 | a->vertex(io+1)).radians() <= max_error) { |
| 799 | pending.push_back(make_pair(i, j+1)); |
| 800 | } |
| 801 | } |
| 802 | return false; |
| 803 | } |
| 804 | |
| 805 | bool S2Loop::BoundaryNear(S2Loop const* b, double max_error) const { |
| 806 | for (int a_offset = 0; a_offset < num_vertices(); ++a_offset) { |
| 807 | if (MatchBoundaries(this, b, a_offset, max_error)) return true; |
| 808 | } |
| 809 | return false; |
| 810 | } |
| 811 | |