| 1 | // Copyright 2005 Google Inc. All Rights Reserved. | 
|---|
| 2 |  | 
|---|
| 3 | #include <algorithm> | 
|---|
| 4 | using std::min; | 
|---|
| 5 | using std::max; | 
|---|
| 6 | using std::swap; | 
|---|
| 7 | using std::reverse; | 
|---|
| 8 |  | 
|---|
| 9 | #include <set> | 
|---|
| 10 | using std::set; | 
|---|
| 11 | using std::multiset; | 
|---|
| 12 |  | 
|---|
| 13 | #include <vector> | 
|---|
| 14 | using std::vector; | 
|---|
| 15 |  | 
|---|
| 16 | #include <hash_map> | 
|---|
| 17 | using __gnu_cxx::hash_map; | 
|---|
| 18 |  | 
|---|
| 19 | #include <utility> | 
|---|
| 20 | using std::pair; | 
|---|
| 21 | using std::make_pair; | 
|---|
| 22 |  | 
|---|
| 23 |  | 
|---|
| 24 | #include "s2loop.h" | 
|---|
| 25 |  | 
|---|
| 26 | // #include "base/commandlineflags.h" | 
|---|
| 27 | #include "base/logging.h" | 
|---|
| 28 | #include "base/scoped_ptr.h" | 
|---|
| 29 | #include "util/coding/coder.h" | 
|---|
| 30 | #include "s2cap.h" | 
|---|
| 31 | #include "s2cell.h" | 
|---|
| 32 | #include "s2edgeindex.h" | 
|---|
| 33 |  | 
|---|
| 34 | static const unsigned char kCurrentEncodingVersionNumber = 1; | 
|---|
| 35 |  | 
|---|
| 36 | // DECLARE_bool(s2debug);  // defined in s2.cc | 
|---|
| 37 |  | 
|---|
| 38 | S2Point const* S2LoopIndex::edge_from(int index) const { | 
|---|
| 39 | return &loop_->vertex(index); | 
|---|
| 40 | } | 
|---|
| 41 |  | 
|---|
| 42 | S2Point const* S2LoopIndex::edge_to(int index) const { | 
|---|
| 43 | return &loop_->vertex(index+1); | 
|---|
| 44 | } | 
|---|
| 45 |  | 
|---|
| 46 | int S2LoopIndex::num_edges() const { | 
|---|
| 47 | return loop_->num_vertices(); | 
|---|
| 48 | } | 
|---|
| 49 |  | 
|---|
| 50 | S2Loop::S2Loop() | 
|---|
| 51 | : num_vertices_(0), | 
|---|
| 52 | vertices_(NULL), | 
|---|
| 53 | owns_vertices_(false), | 
|---|
| 54 | bound_(S2LatLngRect::Empty()), | 
|---|
| 55 | depth_(0), | 
|---|
| 56 | index_(this), | 
|---|
| 57 | num_find_vertex_calls_(0) { | 
|---|
| 58 | } | 
|---|
| 59 |  | 
|---|
| 60 | S2Loop::S2Loop(vector<S2Point> const& vertices) | 
|---|
| 61 | : num_vertices_(0), | 
|---|
| 62 | vertices_(NULL), | 
|---|
| 63 | owns_vertices_(false), | 
|---|
| 64 | bound_(S2LatLngRect::Full()), | 
|---|
| 65 | depth_(0), | 
|---|
| 66 | index_(this), | 
|---|
| 67 | num_find_vertex_calls_(0) { | 
|---|
| 68 | Init(vertices); | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 | void S2Loop::ResetMutableFields() { | 
|---|
| 72 | index_.Reset(); | 
|---|
| 73 | num_find_vertex_calls_ = 0; | 
|---|
| 74 | vertex_to_index_.clear(); | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | void S2Loop::Init(vector<S2Point> const& vertices) { | 
|---|
| 78 | ResetMutableFields(); | 
|---|
| 79 |  | 
|---|
| 80 | if (owns_vertices_) delete[] vertices_; | 
|---|
| 81 | num_vertices_ = vertices.size(); | 
|---|
| 82 | if (vertices.empty()) { | 
|---|
| 83 | vertices_ = NULL; | 
|---|
| 84 | } else { | 
|---|
| 85 | vertices_ = new S2Point[num_vertices_]; | 
|---|
| 86 | memcpy(vertices_, &vertices[0], num_vertices_ * sizeof(vertices_[0])); | 
|---|
| 87 | } | 
|---|
| 88 | owns_vertices_ = true; | 
|---|
| 89 | bound_ = S2LatLngRect::Full(); | 
|---|
| 90 |  | 
|---|
| 91 | // InitOrigin() must be called before InitBound() because the latter | 
|---|
| 92 | // function expects Contains() to work properly. | 
|---|
| 93 | InitOrigin(); | 
|---|
| 94 | InitBound(); | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | bool S2Loop::IsValid() const { | 
|---|
| 98 | // Loops must have at least 3 vertices. | 
|---|
| 99 | if (num_vertices() < 3) { | 
|---|
| 100 | VLOG(2) << "Degenerate loop"; | 
|---|
| 101 | return false; | 
|---|
| 102 | } | 
|---|
| 103 | // All vertices must be unit length. | 
|---|
| 104 | for (int i = 0; i < num_vertices(); ++i) { | 
|---|
| 105 | if (!S2::IsUnitLength(vertex(i))) { | 
|---|
| 106 | VLOG(2) << "Vertex "<< i << " is not unit length"; | 
|---|
| 107 | return false; | 
|---|
| 108 | } | 
|---|
| 109 | } | 
|---|
| 110 | // Loops are not allowed to have any duplicate vertices. | 
|---|
| 111 | hash_map<S2Point, int> vmap; | 
|---|
| 112 | for (int i = 0; i < num_vertices(); ++i) { | 
|---|
| 113 | if (!vmap.insert(make_pair(vertex(i), i)).second) { | 
|---|
| 114 | VLOG(2) << "Duplicate vertices: "<< vmap[vertex(i)] << " and "<< i; | 
|---|
| 115 | return false; | 
|---|
| 116 | } | 
|---|
| 117 | } | 
|---|
| 118 | // Non-adjacent edges are not allowed to intersect. | 
|---|
| 119 | bool crosses = false; | 
|---|
| 120 | index_.PredictAdditionalCalls(num_vertices()); | 
|---|
| 121 | S2EdgeIndex::Iterator it(&index_); | 
|---|
| 122 | for (int i = 0; i < num_vertices(); ++i) { | 
|---|
| 123 | S2EdgeUtil::EdgeCrosser crosser(&vertex(i), &vertex(i+1), &vertex(0)); | 
|---|
| 124 | int previous_index = -2; | 
|---|
| 125 | for (it.GetCandidates(vertex(i), vertex(i+1)); !it.Done(); it.Next()) { | 
|---|
| 126 | int ai = it.Index(); | 
|---|
| 127 | // There is no need to test the same thing twice.  Moreover, two edges | 
|---|
| 128 | // that abut at ai+1 will have been tested for equality above. | 
|---|
| 129 | if (ai > i+1) { | 
|---|
| 130 | if (previous_index != ai) crosser.RestartAt(&vertex(ai)); | 
|---|
| 131 | // Beware, this may return the loop is valid if there is a | 
|---|
| 132 | // "vertex crossing". | 
|---|
| 133 | // TODO(user): Fix that. | 
|---|
| 134 | crosses = crosser.RobustCrossing(&vertex(ai+1)) > 0; | 
|---|
| 135 | previous_index = ai + 1; | 
|---|
| 136 | if (crosses) { | 
|---|
| 137 | VLOG(2) << "Edges "<< i << " and "<< ai << " cross"; | 
|---|
| 138 | // additional debugging information: | 
|---|
| 139 | VLOG(2) << "Edge locations in degrees: " | 
|---|
| 140 | << S2LatLng(vertex(i)) << "-"<< S2LatLng(vertex(i+1)) | 
|---|
| 141 | << " and " | 
|---|
| 142 | << S2LatLng(vertex(ai)) << "-"<< S2LatLng(vertex(ai+1)); | 
|---|
| 143 | break; | 
|---|
| 144 | } | 
|---|
| 145 | } | 
|---|
| 146 | } | 
|---|
| 147 | if (crosses) break; | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | return !crosses; | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | bool S2Loop::IsValid(vector<S2Point> const& vertices, int max_adjacent) { | 
|---|
| 154 | if (vertices.size() < 3) return false; | 
|---|
| 155 |  | 
|---|
| 156 | S2Loop loop(vertices); | 
|---|
| 157 | return loop.IsValid(); | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | bool S2Loop::IsValid(int max_adjacent) const { | 
|---|
| 161 | return IsValid(); | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 | void S2Loop::InitOrigin() { | 
|---|
| 165 | // The bounding box does not need to be correct before calling this | 
|---|
| 166 | // function, but it must at least contain vertex(1) since we need to | 
|---|
| 167 | // do a Contains() test on this point below. | 
|---|
| 168 | DCHECK(bound_.Contains(vertex(1))); | 
|---|
| 169 |  | 
|---|
| 170 | // To ensure that every point is contained in exactly one face of a | 
|---|
| 171 | // subdivision of the sphere, all containment tests are done by counting the | 
|---|
| 172 | // edge crossings starting at a fixed point on the sphere (S2::Origin()). | 
|---|
| 173 | // We need to know whether this point is inside or outside of the loop. | 
|---|
| 174 | // We do this by first guessing that it is outside, and then seeing whether | 
|---|
| 175 | // we get the correct containment result for vertex 1.  If the result is | 
|---|
| 176 | // incorrect, the origin must be inside the loop. | 
|---|
| 177 | // | 
|---|
| 178 | // A loop with consecutive vertices A,B,C contains vertex B if and only if | 
|---|
| 179 | // the fixed vector R = S2::Ortho(B) is on the left side of the wedge ABC. | 
|---|
| 180 | // The test below is written so that B is inside if C=R but not if A=R. | 
|---|
| 181 |  | 
|---|
| 182 | origin_inside_ = false;  // Initialize before calling Contains(). | 
|---|
| 183 | bool v1_inside = S2::OrderedCCW(S2::Ortho(vertex(1)), vertex(0), vertex(2), | 
|---|
| 184 | vertex(1)); | 
|---|
| 185 | if (v1_inside != Contains(vertex(1))) | 
|---|
| 186 | origin_inside_ = true; | 
|---|
| 187 | } | 
|---|
| 188 |  | 
|---|
| 189 | void S2Loop::InitBound() { | 
|---|
| 190 | // The bounding rectangle of a loop is not necessarily the same as the | 
|---|
| 191 | // bounding rectangle of its vertices.  First, the loop may wrap entirely | 
|---|
| 192 | // around the sphere (e.g. a loop that defines two revolutions of a | 
|---|
| 193 | // candy-cane stripe).  Second, the loop may include one or both poles. | 
|---|
| 194 | // Note that a small clockwise loop near the equator contains both poles. | 
|---|
| 195 |  | 
|---|
| 196 | S2EdgeUtil::RectBounder bounder; | 
|---|
| 197 | for (int i = 0; i <= num_vertices(); ++i) { | 
|---|
| 198 | bounder.AddPoint(&vertex(i)); | 
|---|
| 199 | } | 
|---|
| 200 | S2LatLngRect b = bounder.GetBound(); | 
|---|
| 201 | // Note that we need to initialize bound_ with a temporary value since | 
|---|
| 202 | // Contains() does a bounding rectangle check before doing anything else. | 
|---|
| 203 | bound_ = S2LatLngRect::Full(); | 
|---|
| 204 | if (Contains(S2Point(0, 0, 1))) { | 
|---|
| 205 | b = S2LatLngRect(R1Interval(b.lat().lo(), M_PI_2), S1Interval::Full()); | 
|---|
| 206 | } | 
|---|
| 207 | // If a loop contains the south pole, then either it wraps entirely | 
|---|
| 208 | // around the sphere (full longitude range), or it also contains the | 
|---|
| 209 | // north pole in which case b.lng().is_full() due to the test above. | 
|---|
| 210 | // Either way, we only need to do the south pole containment test if | 
|---|
| 211 | // b.lng().is_full(). | 
|---|
| 212 | if (b.lng().is_full() && Contains(S2Point(0, 0, -1))) { | 
|---|
| 213 | b.mutable_lat()->set_lo(-M_PI_2); | 
|---|
| 214 | } | 
|---|
| 215 | bound_ = b; | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | S2Loop::S2Loop(S2Cell const& cell) | 
|---|
| 219 | : bound_(cell.GetRectBound()), | 
|---|
| 220 | index_(this), | 
|---|
| 221 | num_find_vertex_calls_(0) { | 
|---|
| 222 | num_vertices_ = 4; | 
|---|
| 223 | vertices_ = new S2Point[num_vertices_]; | 
|---|
| 224 | depth_ = 0; | 
|---|
| 225 | for (int i = 0; i < 4; ++i) { | 
|---|
| 226 | vertices_[i] = cell.GetVertex(i); | 
|---|
| 227 | } | 
|---|
| 228 | owns_vertices_ = true; | 
|---|
| 229 | InitOrigin(); | 
|---|
| 230 | InitBound(); | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | S2Loop::~S2Loop() { | 
|---|
| 234 | if (owns_vertices_) { | 
|---|
| 235 | delete[] vertices_; | 
|---|
| 236 | } | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | S2Loop::S2Loop(S2Loop const* src) | 
|---|
| 240 | : num_vertices_(src->num_vertices_), | 
|---|
| 241 | vertices_(new S2Point[num_vertices_]), | 
|---|
| 242 | owns_vertices_(true), | 
|---|
| 243 | bound_(src->bound_), | 
|---|
| 244 | origin_inside_(src->origin_inside_), | 
|---|
| 245 | depth_(src->depth_), | 
|---|
| 246 | index_(this), | 
|---|
| 247 | num_find_vertex_calls_(0) { | 
|---|
| 248 | memcpy(vertices_, src->vertices_, num_vertices_ * sizeof(vertices_[0])); | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | S2Loop* S2Loop::Clone() const { | 
|---|
| 252 | return new S2Loop(this); | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | int S2Loop::FindVertex(S2Point const& p) const { | 
|---|
| 256 | num_find_vertex_calls_++; | 
|---|
| 257 | if (num_vertices() < 10 || num_find_vertex_calls_ < 20) { | 
|---|
| 258 | // Exhaustive search | 
|---|
| 259 | for (int i = 1; i <= num_vertices(); ++i) { | 
|---|
| 260 | if (vertex(i) == p) return i; | 
|---|
| 261 | } | 
|---|
| 262 | return -1; | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | if (vertex_to_index_.empty()) {  // We haven't computed it yet. | 
|---|
| 266 | for (int i = num_vertices(); i > 0; --i) { | 
|---|
| 267 | vertex_to_index_[vertex(i)] = i; | 
|---|
| 268 | } | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | map<S2Point, int>::const_iterator it; | 
|---|
| 272 | it = vertex_to_index_.find(p); | 
|---|
| 273 | if (it == vertex_to_index_.end()) return -1; | 
|---|
| 274 | return it->second; | 
|---|
| 275 | } | 
|---|
| 276 |  | 
|---|
| 277 |  | 
|---|
| 278 | bool S2Loop::IsNormalized() const { | 
|---|
| 279 | // Optimization: if the longitude span is less than 180 degrees, then the | 
|---|
| 280 | // loop covers less than half the sphere and is therefore normalized. | 
|---|
| 281 | if (bound_.lng().GetLength() < M_PI) return true; | 
|---|
| 282 |  | 
|---|
| 283 | // We allow some error so that hemispheres are always considered normalized. | 
|---|
| 284 | // TODO(user): This might not be necessary once S2Polygon is enhanced so | 
|---|
| 285 | // that it does not require its input loops to be normalized. | 
|---|
| 286 | return GetTurningAngle() >= -1e-14; | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | void S2Loop::Normalize() { | 
|---|
| 290 | CHECK(owns_vertices_); | 
|---|
| 291 | if (!IsNormalized()) Invert(); | 
|---|
| 292 | DCHECK(IsNormalized()); | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | void S2Loop::Invert() { | 
|---|
| 296 | CHECK(owns_vertices_); | 
|---|
| 297 |  | 
|---|
| 298 | ResetMutableFields(); | 
|---|
| 299 | reverse(vertices_, vertices_ + num_vertices()); | 
|---|
| 300 | origin_inside_ ^= true; | 
|---|
| 301 | if (bound_.lat().lo() > -M_PI_2 && bound_.lat().hi() < M_PI_2) { | 
|---|
| 302 | // The complement of this loop contains both poles. | 
|---|
| 303 | bound_ = S2LatLngRect::Full(); | 
|---|
| 304 | } else { | 
|---|
| 305 | InitBound(); | 
|---|
| 306 | } | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | double S2Loop::GetArea() const { | 
|---|
| 310 | double area = GetSurfaceIntegral(S2::SignedArea); | 
|---|
| 311 | // The signed area should be between approximately -4*Pi and 4*Pi. | 
|---|
| 312 | DCHECK_LE(fabs(area), 4 * M_PI + 1e-12); | 
|---|
| 313 | if (area < 0) { | 
|---|
| 314 | // We have computed the negative of the area of the loop exterior. | 
|---|
| 315 | area += 4 * M_PI; | 
|---|
| 316 | } | 
|---|
| 317 | return max(0.0, min(4 * M_PI, area)); | 
|---|
| 318 | } | 
|---|
| 319 |  | 
|---|
| 320 | S2Point S2Loop::GetCentroid() const { | 
|---|
| 321 | // GetSurfaceIntegral() returns either the integral of position over loop | 
|---|
| 322 | // interior, or the negative of the integral of position over the loop | 
|---|
| 323 | // exterior.  But these two values are the same (!), because the integral of | 
|---|
| 324 | // position over the entire sphere is (0, 0, 0). | 
|---|
| 325 | return GetSurfaceIntegral(S2::TrueCentroid); | 
|---|
| 326 | } | 
|---|
| 327 |  | 
|---|
| 328 | // Return (first, dir) such that first..first+n*dir are valid indices. | 
|---|
| 329 | int S2Loop::GetCanonicalFirstVertex(int* dir) const { | 
|---|
| 330 | int first = 0; | 
|---|
| 331 | int n = num_vertices(); | 
|---|
| 332 | for (int i = 1; i < n; ++i) { | 
|---|
| 333 | if (vertex(i) < vertex(first)) first = i; | 
|---|
| 334 | } | 
|---|
| 335 | if (vertex(first + 1) < vertex(first + n - 1)) { | 
|---|
| 336 | *dir = 1; | 
|---|
| 337 | // 0 <= first <= n-1, so (first+n*dir) <= 2*n-1. | 
|---|
| 338 | } else { | 
|---|
| 339 | *dir = -1; | 
|---|
| 340 | first += n; | 
|---|
| 341 | // n <= first <= 2*n-1, so (first+n*dir) >= 0. | 
|---|
| 342 | } | 
|---|
| 343 | return first; | 
|---|
| 344 | } | 
|---|
| 345 |  | 
|---|
| 346 | double S2Loop::GetTurningAngle() const { | 
|---|
| 347 | // Don't crash even if the loop is not well-defined. | 
|---|
| 348 | if (num_vertices() < 3) return 0; | 
|---|
| 349 |  | 
|---|
| 350 | // To ensure that we get the same result when the loop vertex order is | 
|---|
| 351 | // rotated, and that we get the same result with the opposite sign when the | 
|---|
| 352 | // vertices are reversed, we need to be careful to add up the individual | 
|---|
| 353 | // turn angles in a consistent order.  In general, adding up a set of | 
|---|
| 354 | // numbers in a different order can change the sum due to rounding errors. | 
|---|
| 355 | int n = num_vertices(); | 
|---|
| 356 | int dir, i = GetCanonicalFirstVertex(&dir); | 
|---|
| 357 | double angle = S2::TurnAngle(vertex((i + n - dir) % n), vertex(i), | 
|---|
| 358 | vertex((i + dir) % n)); | 
|---|
| 359 | while (--n > 0) { | 
|---|
| 360 | i += dir; | 
|---|
| 361 | angle += S2::TurnAngle(vertex(i - dir), vertex(i), vertex(i + dir)); | 
|---|
| 362 | } | 
|---|
| 363 | return dir * angle; | 
|---|
| 364 | } | 
|---|
| 365 |  | 
|---|
| 366 | S2Cap S2Loop::GetCapBound() const { | 
|---|
| 367 | return bound_.GetCapBound(); | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | bool S2Loop::Contains(S2Cell const& cell) const { | 
|---|
| 371 | // A future optimization could also take advantage of the fact than an S2Cell | 
|---|
| 372 | // is convex. | 
|---|
| 373 |  | 
|---|
| 374 | // It's not necessarily true that bound_.Contains(cell.GetRectBound()) | 
|---|
| 375 | // because S2Cell bounds are slightly conservative. | 
|---|
| 376 | if (!bound_.Contains(cell.GetCenter())) return false; | 
|---|
| 377 | S2Loop cell_loop(cell); | 
|---|
| 378 | return Contains(&cell_loop); | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | bool S2Loop::MayIntersect(S2Cell const& cell) const { | 
|---|
| 382 | // It is faster to construct a bounding rectangle for an S2Cell than for | 
|---|
| 383 | // a general polygon.  A future optimization could also take advantage of | 
|---|
| 384 | // the fact than an S2Cell is convex. | 
|---|
| 385 |  | 
|---|
| 386 | if (!bound_.Intersects(cell.GetRectBound())) return false; | 
|---|
| 387 | return S2Loop(cell).Intersects(this); | 
|---|
| 388 | } | 
|---|
| 389 |  | 
|---|
| 390 | bool S2Loop::Contains(S2Point const& p) const { | 
|---|
| 391 | if (!bound_.Contains(p)) return false; | 
|---|
| 392 |  | 
|---|
| 393 | bool inside = origin_inside_; | 
|---|
| 394 | S2Point origin = S2::Origin(); | 
|---|
| 395 | S2EdgeUtil::EdgeCrosser crosser(&origin, &p, &vertex(0)); | 
|---|
| 396 |  | 
|---|
| 397 | // The s2edgeindex library is not optimized yet for long edges, | 
|---|
| 398 | // so the tradeoff to using it comes later. | 
|---|
| 399 | if (num_vertices() < 2000) { | 
|---|
| 400 | for (int i = 1; i <= num_vertices(); ++i) { | 
|---|
| 401 | inside ^= crosser.EdgeOrVertexCrossing(&vertex(i)); | 
|---|
| 402 | } | 
|---|
| 403 | return inside; | 
|---|
| 404 | } | 
|---|
| 405 |  | 
|---|
| 406 | S2EdgeIndex::Iterator it(&index_); | 
|---|
| 407 | int previous_index = -2; | 
|---|
| 408 | for (it.GetCandidates(origin, p); !it.Done(); it.Next()) { | 
|---|
| 409 | int ai = it.Index(); | 
|---|
| 410 | if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); | 
|---|
| 411 | previous_index = ai; | 
|---|
| 412 | inside ^= crosser.EdgeOrVertexCrossing(&vertex(ai+1)); | 
|---|
| 413 | } | 
|---|
| 414 | return inside; | 
|---|
| 415 | } | 
|---|
| 416 |  | 
|---|
| 417 | void S2Loop::Encode(Encoder* const encoder) const { | 
|---|
| 418 | encoder->Ensure(num_vertices_ * sizeof(*vertices_) + 20);  // sufficient | 
|---|
| 419 |  | 
|---|
| 420 | encoder->put8(kCurrentEncodingVersionNumber); | 
|---|
| 421 | encoder->put32(num_vertices_); | 
|---|
| 422 | encoder->putn(vertices_, sizeof(*vertices_) * num_vertices_); | 
|---|
| 423 | encoder->put8(origin_inside_); | 
|---|
| 424 | encoder->put32(depth_); | 
|---|
| 425 | DCHECK_GE(encoder->avail(), 0); | 
|---|
| 426 |  | 
|---|
| 427 | bound_.Encode(encoder); | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | bool S2Loop::Decode(Decoder* const decoder) { | 
|---|
| 431 | return DecodeInternal(decoder, false); | 
|---|
| 432 | } | 
|---|
| 433 |  | 
|---|
| 434 | bool S2Loop::DecodeWithinScope(Decoder* const decoder) { | 
|---|
| 435 | return DecodeInternal(decoder, true); | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | bool S2Loop::DecodeInternal(Decoder* const decoder, | 
|---|
| 439 | bool within_scope) { | 
|---|
| 440 | unsigned char version = decoder->get8(); | 
|---|
| 441 | if (version > kCurrentEncodingVersionNumber) return false; | 
|---|
| 442 |  | 
|---|
| 443 | num_vertices_ = decoder->get32(); | 
|---|
| 444 | if (owns_vertices_) delete[] vertices_; | 
|---|
| 445 | if (within_scope) { | 
|---|
| 446 | vertices_ = const_cast<S2Point *>(reinterpret_cast<S2Point const*>( | 
|---|
| 447 | decoder->ptr())); | 
|---|
| 448 | decoder->skip(num_vertices_ * sizeof(*vertices_)); | 
|---|
| 449 | owns_vertices_ = false; | 
|---|
| 450 | } else { | 
|---|
| 451 | vertices_ = new S2Point[num_vertices_]; | 
|---|
| 452 | decoder->getn(vertices_, num_vertices_ * sizeof(*vertices_)); | 
|---|
| 453 | owns_vertices_ = true; | 
|---|
| 454 | } | 
|---|
| 455 | origin_inside_ = decoder->get8(); | 
|---|
| 456 | depth_ = decoder->get32(); | 
|---|
| 457 | if (!bound_.Decode(decoder)) return false; | 
|---|
| 458 |  | 
|---|
| 459 | DCHECK(IsValid()); | 
|---|
| 460 |  | 
|---|
| 461 | return decoder->avail() >= 0; | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | // This is a helper class for the AreBoundariesCrossing function. | 
|---|
| 465 | // Each time there is a point in common between the two loops passed | 
|---|
| 466 | // as parameters, the two associated wedges centered at this point are | 
|---|
| 467 | // passed to the ProcessWedge function of this processor. The function | 
|---|
| 468 | // updates an internal state based on the wedges, and returns true to | 
|---|
| 469 | // signal that no further processing is needed. | 
|---|
| 470 | // | 
|---|
| 471 | // To use AreBoundariesCrossing, subclass this class and keep an | 
|---|
| 472 | // internal state that you update each time ProcessWedge is called, | 
|---|
| 473 | // then query this internal state in the function that called | 
|---|
| 474 | // AreBoundariesCrossing. | 
|---|
| 475 | class WedgeProcessor { | 
|---|
| 476 | public: | 
|---|
| 477 | virtual ~WedgeProcessor() { } | 
|---|
| 478 |  | 
|---|
| 479 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, | 
|---|
| 480 | S2Point const& a2, S2Point const& b0, | 
|---|
| 481 | S2Point const& b2) = 0; | 
|---|
| 482 | }; | 
|---|
| 483 |  | 
|---|
| 484 | bool S2Loop::AreBoundariesCrossing( | 
|---|
| 485 | S2Loop const* b, WedgeProcessor* wedge_processor) const { | 
|---|
| 486 | // See the header file for a description of what this method does. | 
|---|
| 487 | index_.PredictAdditionalCalls(b->num_vertices()); | 
|---|
| 488 | S2EdgeIndex::Iterator it(&index_); | 
|---|
| 489 | for (int j = 0; j < b->num_vertices(); ++j) { | 
|---|
| 490 | S2EdgeUtil::EdgeCrosser crosser(&b->vertex(j), &b->vertex(j+1), | 
|---|
| 491 | &b->vertex(0)); | 
|---|
| 492 | int previous_index = -2; | 
|---|
| 493 | for (it.GetCandidates(b->vertex(j), b->vertex(j+1)); | 
|---|
| 494 | !it.Done(); it.Next()) { | 
|---|
| 495 | int ai = it.Index(); | 
|---|
| 496 | if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); | 
|---|
| 497 | previous_index = ai; | 
|---|
| 498 | int crossing = crosser.RobustCrossing(&vertex(ai + 1)); | 
|---|
| 499 | if (crossing < 0) continue; | 
|---|
| 500 | if (crossing > 0) return true; | 
|---|
| 501 | // We only need to check each shared vertex once, so we only | 
|---|
| 502 | // consider the case where vertex(i+1) == b->vertex(j+1). | 
|---|
| 503 | if (vertex(ai+1) == b->vertex(j+1) && | 
|---|
| 504 | wedge_processor->ProcessWedge(vertex(ai), vertex(ai+1), vertex(ai+2), | 
|---|
| 505 | b->vertex(j), b->vertex(j+2))) { | 
|---|
| 506 | return false; | 
|---|
| 507 | } | 
|---|
| 508 | } | 
|---|
| 509 | } | 
|---|
| 510 | return false; | 
|---|
| 511 | } | 
|---|
| 512 |  | 
|---|
| 513 | // WedgeProcessor to be used to check if loop A contains loop B. | 
|---|
| 514 | // DoesntContain() then returns true if there is a wedge of B not | 
|---|
| 515 | // contained in the associated wedge of A (and hence loop B is not | 
|---|
| 516 | // contained in loop A). | 
|---|
| 517 | class ContainsWedgeProcessor: public WedgeProcessor { | 
|---|
| 518 | public: | 
|---|
| 519 | ContainsWedgeProcessor(): doesnt_contain_(false) {} | 
|---|
| 520 | bool DoesntContain() { return doesnt_contain_; } | 
|---|
| 521 |  | 
|---|
| 522 | protected: | 
|---|
| 523 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, | 
|---|
| 524 | S2Point const& a2, S2Point const& b0, | 
|---|
| 525 | S2Point const& b2) { | 
|---|
| 526 | doesnt_contain_ = !S2EdgeUtil::WedgeContains(a0, ab1, a2, b0, b2); | 
|---|
| 527 | return doesnt_contain_; | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 | private: | 
|---|
| 531 | bool doesnt_contain_; | 
|---|
| 532 | }; | 
|---|
| 533 |  | 
|---|
| 534 | bool S2Loop::Contains(S2Loop const* b) const { | 
|---|
| 535 | // For this loop A to contains the given loop B, all of the following must | 
|---|
| 536 | // be true: | 
|---|
| 537 | // | 
|---|
| 538 | //  (1) There are no edge crossings between A and B except at vertices. | 
|---|
| 539 | // | 
|---|
| 540 | //  (2) At every vertex that is shared between A and B, the local edge | 
|---|
| 541 | //      ordering implies that A contains B. | 
|---|
| 542 | // | 
|---|
| 543 | //  (3) If there are no shared vertices, then A must contain a vertex of B | 
|---|
| 544 | //      and B must not contain a vertex of A.  (An arbitrary vertex may be | 
|---|
| 545 | //      chosen in each case.) | 
|---|
| 546 | // | 
|---|
| 547 | // The second part of (3) is necessary to detect the case of two loops whose | 
|---|
| 548 | // union is the entire sphere, i.e. two loops that contains each other's | 
|---|
| 549 | // boundaries but not each other's interiors. | 
|---|
| 550 |  | 
|---|
| 551 | if (!bound_.Contains(b->bound_)) return false; | 
|---|
| 552 |  | 
|---|
| 553 | // Unless there are shared vertices, we need to check whether A contains a | 
|---|
| 554 | // vertex of B.  Since shared vertices are rare, it is more efficient to do | 
|---|
| 555 | // this test up front as a quick rejection test. | 
|---|
| 556 | if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) | 
|---|
| 557 | return false; | 
|---|
| 558 |  | 
|---|
| 559 | // Now check whether there are any edge crossings, and also check the loop | 
|---|
| 560 | // relationship at any shared vertices. | 
|---|
| 561 | ContainsWedgeProcessor p_wedge; | 
|---|
| 562 | if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.DoesntContain()) { | 
|---|
| 563 | return false; | 
|---|
| 564 | } | 
|---|
| 565 |  | 
|---|
| 566 | // At this point we know that the boundaries of A and B do not intersect, | 
|---|
| 567 | // and that A contains a vertex of B.  However we still need to check for | 
|---|
| 568 | // the case mentioned above, where (A union B) is the entire sphere. | 
|---|
| 569 | // Normally this check is very cheap due to the bounding box precondition. | 
|---|
| 570 | if (bound_.Union(b->bound_).is_full()) { | 
|---|
| 571 | if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return false; | 
|---|
| 572 | } | 
|---|
| 573 | return true; | 
|---|
| 574 | } | 
|---|
| 575 |  | 
|---|
| 576 | // WedgeProcessor to be used to check if loop A intersects loop B. | 
|---|
| 577 | // Intersects() then returns true when A and B have at least one pair | 
|---|
| 578 | // of associated wedges that intersect. | 
|---|
| 579 | class IntersectsWedgeProcessor: public WedgeProcessor { | 
|---|
| 580 | public: | 
|---|
| 581 | IntersectsWedgeProcessor(): intersects_(false) {} | 
|---|
| 582 | bool Intersects() { return intersects_; } | 
|---|
| 583 |  | 
|---|
| 584 | protected: | 
|---|
| 585 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, | 
|---|
| 586 | S2Point const& a2, S2Point const& b0, | 
|---|
| 587 | S2Point const& b2) { | 
|---|
| 588 | intersects_ = S2EdgeUtil::WedgeIntersects(a0, ab1, a2, b0, b2); | 
|---|
| 589 | return intersects_; | 
|---|
| 590 | } | 
|---|
| 591 |  | 
|---|
| 592 | private: | 
|---|
| 593 | bool intersects_; | 
|---|
| 594 | }; | 
|---|
| 595 |  | 
|---|
| 596 | bool S2Loop::Intersects(S2Loop const* b) const { | 
|---|
| 597 | // a->Intersects(b) if and only if !a->Complement()->Contains(b). | 
|---|
| 598 | // This code is similar to Contains(), but is optimized for the case | 
|---|
| 599 | // where both loops enclose less than half of the sphere. | 
|---|
| 600 |  | 
|---|
| 601 | // The largest of the two loops should be edgeindex'd. | 
|---|
| 602 | if (b->num_vertices() > num_vertices()) return b->Intersects(this); | 
|---|
| 603 |  | 
|---|
| 604 | if (!bound_.Intersects(b->bound_)) return false; | 
|---|
| 605 |  | 
|---|
| 606 | // Unless there are shared vertices, we need to check whether A contains a | 
|---|
| 607 | // vertex of B.  Since shared vertices are rare, it is more efficient to do | 
|---|
| 608 | // this test up front as a quick acceptance test. | 
|---|
| 609 | if (Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) | 
|---|
| 610 | return true; | 
|---|
| 611 |  | 
|---|
| 612 | // Now check whether there are any edge crossings, and also check the loop | 
|---|
| 613 | // relationship at any shared vertices. | 
|---|
| 614 | IntersectsWedgeProcessor p_wedge; | 
|---|
| 615 | if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.Intersects()) { | 
|---|
| 616 | return true; | 
|---|
| 617 | } | 
|---|
| 618 |  | 
|---|
| 619 | // We know that A does not contain a vertex of B, and that there are no edge | 
|---|
| 620 | // crossings.  Therefore the only way that A can intersect B is if B | 
|---|
| 621 | // entirely contains A.  We can check this by testing whether B contains an | 
|---|
| 622 | // arbitrary non-shared vertex of A.  Note that this check is usually cheap | 
|---|
| 623 | // because of the bounding box precondition. | 
|---|
| 624 | if (b->bound_.Contains(bound_)) { | 
|---|
| 625 | if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return true; | 
|---|
| 626 | } | 
|---|
| 627 | return false; | 
|---|
| 628 | } | 
|---|
| 629 |  | 
|---|
| 630 | // WedgeProcessor to be used to check if the interior of loop A | 
|---|
| 631 | // contains the interior of loop B, or their boundaries cross each | 
|---|
| 632 | // other (therefore they have a proper intersection). | 
|---|
| 633 | // CrossesOrMayContain() then returns -1 if A crossed B, 0 if it is | 
|---|
| 634 | // not possible for A to contain B, and 1 otherwise. | 
|---|
| 635 | class ContainsOrCrossesProcessor: public WedgeProcessor { | 
|---|
| 636 | public: | 
|---|
| 637 | ContainsOrCrossesProcessor(): | 
|---|
| 638 | has_boundary_crossing_(false), | 
|---|
| 639 | a_has_strictly_super_wedge_(false), b_has_strictly_super_wedge_(false), | 
|---|
| 640 | has_disjoint_wedge_(false) {} | 
|---|
| 641 |  | 
|---|
| 642 | int CrossesOrMayContain() { | 
|---|
| 643 | if (has_boundary_crossing_) return -1; | 
|---|
| 644 | if (has_disjoint_wedge_ || b_has_strictly_super_wedge_) return 0; | 
|---|
| 645 | return 1; | 
|---|
| 646 | } | 
|---|
| 647 |  | 
|---|
| 648 | protected: | 
|---|
| 649 | virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, | 
|---|
| 650 | S2Point const& a2, S2Point const& b0, | 
|---|
| 651 | S2Point const& b2) { | 
|---|
| 652 | const S2EdgeUtil::WedgeRelation wedge_relation = | 
|---|
| 653 | S2EdgeUtil::GetWedgeRelation(a0, ab1, a2, b0, b2); | 
|---|
| 654 | if (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_OVERLAPS) { | 
|---|
| 655 | has_boundary_crossing_ = true; | 
|---|
| 656 | return true; | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | a_has_strictly_super_wedge_ |= | 
|---|
| 660 | (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_CONTAINS); | 
|---|
| 661 | b_has_strictly_super_wedge_ |= | 
|---|
| 662 | (wedge_relation == S2EdgeUtil::WEDGE_IS_PROPERLY_CONTAINED); | 
|---|
| 663 | if (a_has_strictly_super_wedge_ && b_has_strictly_super_wedge_) { | 
|---|
| 664 | has_boundary_crossing_ = true; | 
|---|
| 665 | return true; | 
|---|
| 666 | } | 
|---|
| 667 |  | 
|---|
| 668 | has_disjoint_wedge_ |= (wedge_relation == S2EdgeUtil::WEDGE_IS_DISJOINT); | 
|---|
| 669 | return false; | 
|---|
| 670 | } | 
|---|
| 671 |  | 
|---|
| 672 | private: | 
|---|
| 673 | // True if any crossing on the boundary is discovered. | 
|---|
| 674 | bool has_boundary_crossing_; | 
|---|
| 675 | // True if A (B) has a strictly superwedge on a pair of wedges that | 
|---|
| 676 | // share a common center point. | 
|---|
| 677 | bool a_has_strictly_super_wedge_; | 
|---|
| 678 | bool b_has_strictly_super_wedge_; | 
|---|
| 679 | // True if there is a pair of disjoint wedges with common center | 
|---|
| 680 | // point. | 
|---|
| 681 | bool has_disjoint_wedge_; | 
|---|
| 682 | }; | 
|---|
| 683 |  | 
|---|
| 684 | int S2Loop::ContainsOrCrosses(S2Loop const* b) const { | 
|---|
| 685 | // There can be containment or crossing only if the bounds intersect. | 
|---|
| 686 | if (!bound_.Intersects(b->bound_)) return 0; | 
|---|
| 687 |  | 
|---|
| 688 | // Now check whether there are any edge crossings, and also check the loop | 
|---|
| 689 | // relationship at any shared vertices.  Note that unlike Contains() or | 
|---|
| 690 | // Intersects(), we can't do a point containment test as a shortcut because | 
|---|
| 691 | // we need to detect whether there are any edge crossings. | 
|---|
| 692 | ContainsOrCrossesProcessor p_wedge; | 
|---|
| 693 | if (AreBoundariesCrossing(b, &p_wedge)) { | 
|---|
| 694 | return -1; | 
|---|
| 695 | } | 
|---|
| 696 | const int result = p_wedge.CrossesOrMayContain(); | 
|---|
| 697 | if (result <= 0) return result; | 
|---|
| 698 |  | 
|---|
| 699 | // At this point we know that the boundaries do not intersect, and we are | 
|---|
| 700 | // given that (A union B) is a proper subset of the sphere.  Furthermore | 
|---|
| 701 | // either A contains B, or there are no shared vertices (due to the check | 
|---|
| 702 | // above).  So now we just need to distinguish the case where A contains B | 
|---|
| 703 | // from the case where B contains A or the two loops are disjoint. | 
|---|
| 704 | if (!bound_.Contains(b->bound_)) return 0; | 
|---|
| 705 | if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) return 0; | 
|---|
| 706 | return 1; | 
|---|
| 707 | } | 
|---|
| 708 |  | 
|---|
| 709 | bool S2Loop::ContainsNested(S2Loop const* b) const { | 
|---|
| 710 | if (!bound_.Contains(b->bound_)) return false; | 
|---|
| 711 |  | 
|---|
| 712 | // We are given that A and B do not share any edges, and that either one | 
|---|
| 713 | // loop contains the other or they do not intersect. | 
|---|
| 714 | int m = FindVertex(b->vertex(1)); | 
|---|
| 715 | if (m < 0) { | 
|---|
| 716 | // Since b->vertex(1) is not shared, we can check whether A contains it. | 
|---|
| 717 | return Contains(b->vertex(1)); | 
|---|
| 718 | } | 
|---|
| 719 | // Check whether the edge order around b->vertex(1) is compatible with | 
|---|
| 720 | // A containing B. | 
|---|
| 721 | return S2EdgeUtil::WedgeContains(vertex(m-1), vertex(m), vertex(m+1), | 
|---|
| 722 | b->vertex(0), b->vertex(2)); | 
|---|
| 723 | } | 
|---|
| 724 |  | 
|---|
| 725 | bool S2Loop::BoundaryEquals(S2Loop const* b) const { | 
|---|
| 726 | if (num_vertices() != b->num_vertices()) return false; | 
|---|
| 727 | for (int offset = 0; offset < num_vertices(); ++offset) { | 
|---|
| 728 | if (vertex(offset) == b->vertex(0)) { | 
|---|
| 729 | // There is at most one starting offset since loop vertices are unique. | 
|---|
| 730 | for (int i = 0; i < num_vertices(); ++i) { | 
|---|
| 731 | if (vertex(i + offset) != b->vertex(i)) return false; | 
|---|
| 732 | } | 
|---|
| 733 | return true; | 
|---|
| 734 | } | 
|---|
| 735 | } | 
|---|
| 736 | return false; | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | bool S2Loop::BoundaryApproxEquals(S2Loop const* b, double max_error) const { | 
|---|
| 740 | if (num_vertices() != b->num_vertices()) return false; | 
|---|
| 741 | for (int offset = 0; offset < num_vertices(); ++offset) { | 
|---|
| 742 | if (S2::ApproxEquals(vertex(offset), b->vertex(0), max_error)) { | 
|---|
| 743 | bool success = true; | 
|---|
| 744 | for (int i = 0; i < num_vertices(); ++i) { | 
|---|
| 745 | if (!S2::ApproxEquals(vertex(i + offset), b->vertex(i), max_error)) { | 
|---|
| 746 | success = false; | 
|---|
| 747 | break; | 
|---|
| 748 | } | 
|---|
| 749 | } | 
|---|
| 750 | if (success) return true; | 
|---|
| 751 | // Otherwise continue looping.  There may be more than one candidate | 
|---|
| 752 | // starting offset since vertices are only matched approximately. | 
|---|
| 753 | } | 
|---|
| 754 | } | 
|---|
| 755 | return false; | 
|---|
| 756 | } | 
|---|
| 757 |  | 
|---|
| 758 | static bool MatchBoundaries(S2Loop const* a, S2Loop const* b, int a_offset, | 
|---|
| 759 | double max_error) { | 
|---|
| 760 | // The state consists of a pair (i,j).  A state transition consists of | 
|---|
| 761 | // incrementing either "i" or "j".  "i" can be incremented only if | 
|---|
| 762 | // a(i+1+a_offset) is near the edge from b(j) to b(j+1), and a similar rule | 
|---|
| 763 | // applies to "j".  The function returns true iff we can proceed all the way | 
|---|
| 764 | // around both loops in this way. | 
|---|
| 765 | // | 
|---|
| 766 | // Note that when "i" and "j" can both be incremented, sometimes only one | 
|---|
| 767 | // choice leads to a solution.  We handle this using a stack and | 
|---|
| 768 | // backtracking.  We also keep track of which states have already been | 
|---|
| 769 | // explored to avoid duplicating work. | 
|---|
| 770 |  | 
|---|
| 771 | vector<pair<int, int> > pending; | 
|---|
| 772 | set<pair<int, int> > done; | 
|---|
| 773 | pending.push_back(make_pair(0, 0)); | 
|---|
| 774 | while (!pending.empty()) { | 
|---|
| 775 | int i = pending.back().first; | 
|---|
| 776 | int j = pending.back().second; | 
|---|
| 777 | pending.pop_back(); | 
|---|
| 778 | if (i == a->num_vertices() && j == b->num_vertices()) { | 
|---|
| 779 | return true; | 
|---|
| 780 | } | 
|---|
| 781 | done.insert(make_pair(i, j)); | 
|---|
| 782 |  | 
|---|
| 783 | // If (i == na && offset == na-1) where na == a->num_vertices(), then | 
|---|
| 784 | // then (i+1+offset) overflows the [0, 2*na-1] range allowed by vertex(). | 
|---|
| 785 | // So we reduce the range if necessary. | 
|---|
| 786 | int io = i + a_offset; | 
|---|
| 787 | if (io >= a->num_vertices()) io -= a->num_vertices(); | 
|---|
| 788 |  | 
|---|
| 789 | if (i < a->num_vertices() && done.count(make_pair(i+1, j)) == 0 && | 
|---|
| 790 | S2EdgeUtil::GetDistance(a->vertex(io+1), | 
|---|
| 791 | b->vertex(j), | 
|---|
| 792 | b->vertex(j+1)).radians() <= max_error) { | 
|---|
| 793 | pending.push_back(make_pair(i+1, j)); | 
|---|
| 794 | } | 
|---|
| 795 | if (j < b->num_vertices() && done.count(make_pair(i, j+1)) == 0 && | 
|---|
| 796 | S2EdgeUtil::GetDistance(b->vertex(j+1), | 
|---|
| 797 | a->vertex(io), | 
|---|
| 798 | a->vertex(io+1)).radians() <= max_error) { | 
|---|
| 799 | pending.push_back(make_pair(i, j+1)); | 
|---|
| 800 | } | 
|---|
| 801 | } | 
|---|
| 802 | return false; | 
|---|
| 803 | } | 
|---|
| 804 |  | 
|---|
| 805 | bool S2Loop::BoundaryNear(S2Loop const* b, double max_error) const { | 
|---|
| 806 | for (int a_offset = 0; a_offset < num_vertices(); ++a_offset) { | 
|---|
| 807 | if (MatchBoundaries(this, b, a_offset, max_error)) return true; | 
|---|
| 808 | } | 
|---|
| 809 | return false; | 
|---|
| 810 | } | 
|---|
| 811 |  | 
|---|