1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #include <algorithm> |
4 | using std::min; |
5 | using std::max; |
6 | using std::swap; |
7 | using std::reverse; |
8 | |
9 | #include <hash_map> |
10 | using __gnu_cxx::hash_map; |
11 | |
12 | #include <set> |
13 | using std::set; |
14 | using std::multiset; |
15 | |
16 | #include <vector> |
17 | using std::vector; |
18 | |
19 | |
20 | // #include "base/commandlineflags.h" |
21 | #include "s2polygon.h" |
22 | |
23 | #include "base/port.h" // for HASH_NAMESPACE_DECLARATION_START |
24 | #include "util/coding/coder.h" |
25 | #include "s2edgeindex.h" |
26 | #include "s2cap.h" |
27 | #include "s2cell.h" |
28 | #include "s2cellunion.h" |
29 | #include "s2latlngrect.h" |
30 | #include "s2polygonbuilder.h" |
31 | #include "s2polyline.h" |
32 | |
33 | // DECLARE_bool(s2debug); // defined in s2.cc |
34 | |
35 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
36 | |
37 | typedef pair<S2Point, S2Point> S2Edge; |
38 | |
39 | S2Polygon::S2Polygon() |
40 | : loops_(), |
41 | bound_(S2LatLngRect::Empty()), |
42 | owns_loops_(true), |
43 | has_holes_(false), |
44 | num_vertices_(0) { |
45 | } |
46 | |
47 | S2Polygon::S2Polygon(vector<S2Loop*>* loops) |
48 | : bound_(S2LatLngRect::Empty()), |
49 | owns_loops_(true) { |
50 | Init(loops); |
51 | } |
52 | |
53 | S2Polygon::S2Polygon(S2Cell const& cell) |
54 | : bound_(S2LatLngRect::Empty()), |
55 | owns_loops_(true), |
56 | has_holes_(false), |
57 | num_vertices_(4) { |
58 | S2Loop* loop = new S2Loop(cell); |
59 | bound_ = loop->GetRectBound(); |
60 | loops_.push_back(loop); |
61 | } |
62 | |
63 | S2Polygon::S2Polygon(S2Loop* loop) |
64 | : bound_(loop->GetRectBound()), |
65 | owns_loops_(false), |
66 | has_holes_(false), |
67 | num_vertices_(loop->num_vertices()) { |
68 | loops_.push_back(loop); |
69 | } |
70 | |
71 | void S2Polygon::Copy(S2Polygon const* src) { |
72 | DCHECK_EQ(0, num_loops()); |
73 | for (int i = 0; i < src->num_loops(); ++i) { |
74 | loops_.push_back(src->loop(i)->Clone()); |
75 | } |
76 | bound_ = src->bound_; |
77 | owns_loops_ = true; |
78 | has_holes_ = src->has_holes_; |
79 | num_vertices_ = src->num_vertices(); |
80 | } |
81 | |
82 | S2Polygon* S2Polygon::Clone() const { |
83 | S2Polygon* result = new S2Polygon; |
84 | result->Copy(this); |
85 | return result; |
86 | } |
87 | |
88 | void S2Polygon::Release(vector<S2Loop*>* loops) { |
89 | if (loops != NULL) { |
90 | loops->insert(loops->end(), loops_.begin(), loops_.end()); |
91 | } |
92 | loops_.clear(); |
93 | bound_ = S2LatLngRect::Empty(); |
94 | has_holes_ = false; |
95 | } |
96 | |
97 | static void DeleteLoopsInVector(vector<S2Loop*>* loops) { |
98 | for (int i = 0; i < loops->size(); ++i) { |
99 | delete loops->at(i); |
100 | } |
101 | loops->clear(); |
102 | } |
103 | |
104 | S2Polygon::~S2Polygon() { |
105 | if (owns_loops_) DeleteLoopsInVector(&loops_); |
106 | } |
107 | |
108 | typedef pair<S2Point, S2Point> S2PointPair; |
109 | |
110 | #include<hash_set> |
111 | namespace __gnu_cxx { |
112 | |
113 | template<> struct hash<S2PointPair> { |
114 | size_t operator()(S2PointPair const& p) const { |
115 | hash<S2Point> h; |
116 | return h(p.first) + (h(p.second) << 1); |
117 | } |
118 | }; |
119 | |
120 | } // namespace __gnu_cxx |
121 | |
122 | |
123 | bool S2Polygon::IsValid(const vector<S2Loop*>& loops) { |
124 | // If a loop contains an edge AB, then no other loop may contain AB or BA. |
125 | if (loops.size() > 1) { |
126 | hash_map<S2PointPair, pair<int, int> > edges; |
127 | for (int i = 0; i < loops.size(); ++i) { |
128 | S2Loop* lp = loops[i]; |
129 | for (int j = 0; j < lp->num_vertices(); ++j) { |
130 | S2PointPair key = make_pair(lp->vertex(j), lp->vertex(j + 1)); |
131 | if (edges.insert(make_pair(key, make_pair(i, j))).second) { |
132 | key = make_pair(lp->vertex(j + 1), lp->vertex(j)); |
133 | if (edges.insert(make_pair(key, make_pair(i, j))).second) |
134 | continue; |
135 | } |
136 | pair<int, int> other = edges[key]; |
137 | VLOG(2) << "Duplicate edge: loop " << i << ", edge " << j |
138 | << " and loop " << other.first << ", edge " << other.second; |
139 | return false; |
140 | } |
141 | } |
142 | } |
143 | |
144 | // Verify that no loop covers more than half of the sphere, and that no |
145 | // two loops cross. |
146 | for (int i = 0; i < loops.size(); ++i) { |
147 | if (!loops[i]->IsNormalized()) { |
148 | VLOG(2) << "Loop " << i << " encloses more than half the sphere" ; |
149 | return false; |
150 | } |
151 | for (int j = i + 1; j < loops.size(); ++j) { |
152 | // This test not only checks for edge crossings, it also detects |
153 | // cases where the two boundaries cross at a shared vertex. |
154 | if (loops[i]->ContainsOrCrosses(loops[j]) < 0) { |
155 | VLOG(2) << "Loop " << i << " crosses loop " << j; |
156 | return false; |
157 | } |
158 | } |
159 | } |
160 | |
161 | return true; |
162 | } |
163 | |
164 | bool S2Polygon::IsValid() const { |
165 | for (int i = 0; i < num_loops(); ++i) { |
166 | if (!loop(i)->IsValid()) { |
167 | return false; |
168 | } |
169 | } |
170 | return IsValid(loops_); |
171 | } |
172 | |
173 | bool S2Polygon::IsValid(bool check_loops, int max_adjacent) const { |
174 | return IsValid(); |
175 | } |
176 | |
177 | void S2Polygon::InsertLoop(S2Loop* new_loop, S2Loop* parent, |
178 | LoopMap* loop_map) { |
179 | vector<S2Loop*>* children = &(*loop_map)[parent]; |
180 | for (int i = 0; i < children->size(); ++i) { |
181 | S2Loop* child = (*children)[i]; |
182 | if (child->ContainsNested(new_loop)) { |
183 | InsertLoop(new_loop, child, loop_map); |
184 | return; |
185 | } |
186 | } |
187 | // No loop may contain the complement of another loop. (Handling this case |
188 | // is significantly more complicated.) |
189 | DCHECK(parent == NULL || !new_loop->ContainsNested(parent)); |
190 | |
191 | // Some of the children of the parent loop may now be children of |
192 | // the new loop. |
193 | vector<S2Loop*>* new_children = &(*loop_map)[new_loop]; |
194 | for (int i = 0; i < children->size();) { |
195 | S2Loop* child = (*children)[i]; |
196 | if (new_loop->ContainsNested(child)) { |
197 | new_children->push_back(child); |
198 | children->erase(children->begin() + i); |
199 | } else { |
200 | ++i; |
201 | } |
202 | } |
203 | children->push_back(new_loop); |
204 | } |
205 | |
206 | void S2Polygon::InitLoop(S2Loop* loop, int depth, LoopMap* loop_map) { |
207 | if (loop) { |
208 | loop->set_depth(depth); |
209 | loops_.push_back(loop); |
210 | } |
211 | vector<S2Loop*> const& children = (*loop_map)[loop]; |
212 | for (int i = 0; i < children.size(); ++i) { |
213 | InitLoop(children[i], depth + 1, loop_map); |
214 | } |
215 | } |
216 | |
217 | bool S2Polygon::ContainsChild(S2Loop* a, S2Loop* b, LoopMap const& loop_map) { |
218 | // This function is just used to verify that the loop map was |
219 | // constructed correctly. |
220 | |
221 | if (a == b) return true; |
222 | vector<S2Loop*> const& children = loop_map.find(a)->second; |
223 | for (int i = 0; i < children.size(); ++i) { |
224 | if (ContainsChild(children[i], b, loop_map)) return true; |
225 | } |
226 | return false; |
227 | } |
228 | |
229 | void S2Polygon::Init(vector<S2Loop*>* loops) { |
230 | // if (FLAGS_s2debug) CHECK(IsValid(*loops)); |
231 | if (S2::debug) CHECK(IsValid(*loops)); |
232 | DCHECK(loops_.empty()); |
233 | loops_.swap(*loops); |
234 | |
235 | num_vertices_ = 0; |
236 | for (int i = 0; i < num_loops(); ++i) { |
237 | num_vertices_ += loop(i)->num_vertices(); |
238 | } |
239 | |
240 | LoopMap loop_map; |
241 | for (int i = 0; i < num_loops(); ++i) { |
242 | InsertLoop(loop(i), NULL, &loop_map); |
243 | } |
244 | // Reorder the loops in depth-first traversal order. |
245 | loops_.clear(); |
246 | InitLoop(NULL, -1, &loop_map); |
247 | |
248 | // if (FLAGS_s2debug) { |
249 | if (S2::debug) { |
250 | // Check that the LoopMap is correct (this is fairly cheap). |
251 | for (int i = 0; i < num_loops(); ++i) { |
252 | for (int j = 0; j < num_loops(); ++j) { |
253 | if (i == j) continue; |
254 | CHECK_EQ(ContainsChild(loop(i), loop(j), loop_map), |
255 | loop(i)->ContainsNested(loop(j))); |
256 | } |
257 | } |
258 | } |
259 | |
260 | // Compute the bounding rectangle of the entire polygon. |
261 | has_holes_ = false; |
262 | bound_ = S2LatLngRect::Empty(); |
263 | for (int i = 0; i < num_loops(); ++i) { |
264 | if (loop(i)->sign() < 0) { |
265 | has_holes_ = true; |
266 | } else { |
267 | bound_ = bound_.Union(loop(i)->GetRectBound()); |
268 | } |
269 | } |
270 | } |
271 | |
272 | int S2Polygon::GetParent(int k) const { |
273 | int depth = loop(k)->depth(); |
274 | if (depth == 0) return -1; // Optimization. |
275 | while (--k >= 0 && loop(k)->depth() >= depth) continue; |
276 | return k; |
277 | } |
278 | |
279 | int S2Polygon::GetLastDescendant(int k) const { |
280 | if (k < 0) return num_loops() - 1; |
281 | int depth = loop(k)->depth(); |
282 | while (++k < num_loops() && loop(k)->depth() > depth) continue; |
283 | return k - 1; |
284 | } |
285 | |
286 | double S2Polygon::GetArea() const { |
287 | double area = 0; |
288 | for (int i = 0; i < num_loops(); ++i) { |
289 | area += loop(i)->sign() * loop(i)->GetArea(); |
290 | } |
291 | return area; |
292 | } |
293 | |
294 | S2Point S2Polygon::GetCentroid() const { |
295 | S2Point centroid; |
296 | for (int i = 0; i < num_loops(); ++i) { |
297 | centroid += loop(i)->sign() * loop(i)->GetCentroid(); |
298 | } |
299 | return centroid; |
300 | } |
301 | |
302 | int S2Polygon::ContainsOrCrosses(S2Loop const* b) const { |
303 | bool inside = false; |
304 | for (int i = 0; i < num_loops(); ++i) { |
305 | int result = loop(i)->ContainsOrCrosses(b); |
306 | if (result < 0) return -1; // The loop boundaries intersect. |
307 | if (result > 0) inside ^= true; |
308 | } |
309 | return static_cast<int>(inside); // True if loop B is contained by the |
310 | // polygon. |
311 | } |
312 | |
313 | bool S2Polygon::AnyLoopContains(S2Loop const* b) const { |
314 | // Return true if any loop contains the given loop. |
315 | for (int i = 0; i < num_loops(); ++i) { |
316 | if (loop(i)->Contains(b)) return true; |
317 | } |
318 | return false; |
319 | } |
320 | |
321 | bool S2Polygon::ContainsAllShells(S2Polygon const* b) const { |
322 | // Return true if this polygon (A) contains all the shells of B. |
323 | for (int j = 0; j < b->num_loops(); ++j) { |
324 | if (b->loop(j)->sign() < 0) continue; |
325 | if (ContainsOrCrosses(b->loop(j)) <= 0) { |
326 | // Shell of B is not contained by A, or the boundaries intersect. |
327 | return false; |
328 | } |
329 | } |
330 | return true; |
331 | } |
332 | |
333 | bool S2Polygon::ExcludesAllHoles(S2Polygon const* b) const { |
334 | // Return true if this polygon (A) excludes (i.e. does not intersect) |
335 | // all holes of B. |
336 | for (int j = 0; j < b->num_loops(); ++j) { |
337 | if (b->loop(j)->sign() > 0) continue; |
338 | if (ContainsOrCrosses(b->loop(j)) != 0) { |
339 | // Hole of B is contained by A, or the boundaries intersect. |
340 | return false; |
341 | } |
342 | } |
343 | return true; |
344 | } |
345 | |
346 | bool S2Polygon::IntersectsAnyShell(S2Polygon const* b) const { |
347 | // Return true if this polygon (A) intersects any shell of B. |
348 | for (int j = 0; j < b->num_loops(); ++j) { |
349 | if (b->loop(j)->sign() < 0) continue; |
350 | if (IntersectsShell(b->loop(j)) != 0) |
351 | return true; |
352 | } |
353 | return false; |
354 | } |
355 | |
356 | bool S2Polygon::IntersectsShell(S2Loop const* b) const { |
357 | bool inside = false; |
358 | for (int i = 0; i < num_loops(); ++i) { |
359 | if (loop(i)->Contains(b)) { |
360 | inside ^= true; |
361 | } else if (!b->Contains(loop(i)) && loop(i)->Intersects(b)) { |
362 | // We definitely have an intersection if the loops intersect AND one |
363 | // is not properly contained in the other. If A (this) is properly |
364 | // contained in a loop of B, we don't know yet if it may be actually |
365 | // inside a hole within B. |
366 | return true; |
367 | } |
368 | } |
369 | return inside; |
370 | } |
371 | |
372 | bool S2Polygon::Contains(S2Polygon const* b) const { |
373 | // If both polygons have one loop, use the more efficient S2Loop method. |
374 | // Note that S2Loop::Contains does its own bounding rectangle check. |
375 | if (num_loops() == 1 && b->num_loops() == 1) { |
376 | return loop(0)->Contains(b->loop(0)); |
377 | } |
378 | |
379 | // Otherwise if neither polygon has holes, we can still use the more |
380 | // efficient S2Loop::Contains method (rather than ContainsOrCrosses), |
381 | // but it's worthwhile to do our own bounds check first. |
382 | if (!bound_.Contains(b->bound_)) { |
383 | // If the union of the bounding boxes spans the full longitude range, |
384 | // it is still possible that polygon A contains B. (This is only |
385 | // possible if at least one polygon has multiple shells.) |
386 | if (!bound_.lng().Union(b->bound_.lng()).is_full()) return false; |
387 | } |
388 | if (!has_holes_ && !b->has_holes_) { |
389 | for (int j = 0; j < b->num_loops(); ++j) { |
390 | if (!AnyLoopContains(b->loop(j))) return false; |
391 | } |
392 | return true; |
393 | } |
394 | |
395 | // This could be implemented more efficiently for polygons with lots of |
396 | // holes by keeping a copy of the LoopMap computed during initialization. |
397 | // However, in practice most polygons are one loop, and multiloop polygons |
398 | // tend to consist of many shells rather than holes. In any case, the real |
399 | // way to get more efficiency is to implement a sub-quadratic algorithm |
400 | // such as building a trapezoidal map. |
401 | |
402 | // Every shell of B must be contained by an odd number of loops of A, |
403 | // and every hole of A must be contained by an even number of loops of B. |
404 | return ContainsAllShells(b) && b->ExcludesAllHoles(this); |
405 | } |
406 | |
407 | bool S2Polygon::Intersects(S2Polygon const* b) const { |
408 | // A.Intersects(B) if and only if !Complement(A).Contains(B). However, |
409 | // implementing a Complement() operation is trickier than it sounds, |
410 | // and in any case it's more efficient to test for intersection directly. |
411 | |
412 | // If both polygons have one loop, use the more efficient S2Loop method. |
413 | // Note that S2Loop::Intersects does its own bounding rectangle check. |
414 | if (num_loops() == 1 && b->num_loops() == 1) { |
415 | return loop(0)->Intersects(b->loop(0)); |
416 | } |
417 | |
418 | // Otherwise if neither polygon has holes, we can still use the more |
419 | // efficient S2Loop::Intersects method. The polygons intersect if and |
420 | // only if some pair of loop regions intersect. |
421 | if (!bound_.Intersects(b->bound_)) return false; |
422 | if (!has_holes_ && !b->has_holes_) { |
423 | for (int i = 0; i < num_loops(); ++i) { |
424 | for (int j = 0; j < b->num_loops(); ++j) { |
425 | if (loop(i)->Intersects(b->loop(j))) return true; |
426 | } |
427 | } |
428 | return false; |
429 | } |
430 | |
431 | // Otherwise if any shell of B is contained by an odd number of loops of A, |
432 | // or any shell of A is contained by an odd number of loops of B, or there is |
433 | // an intersection without containment, then there is an intersection. |
434 | return IntersectsAnyShell(b) || b->IntersectsAnyShell(this); |
435 | } |
436 | |
437 | S2Cap S2Polygon::GetCapBound() const { |
438 | return bound_.GetCapBound(); |
439 | } |
440 | |
441 | bool S2Polygon::Contains(S2Cell const& cell) const { |
442 | if (num_loops() == 1) { |
443 | return loop(0)->Contains(cell); |
444 | } |
445 | |
446 | // We can't check bound_.Contains(cell.GetRectBound()) because S2Cell's |
447 | // GetRectBound() calculation is not precise. |
448 | if (!bound_.Contains(cell.GetCenter())) return false; |
449 | |
450 | S2Loop cell_loop(cell); |
451 | S2Polygon cell_poly(&cell_loop); |
452 | bool contains = Contains(&cell_poly); |
453 | if (contains) DCHECK(Contains(cell.GetCenter())); |
454 | return contains; |
455 | } |
456 | |
457 | bool S2Polygon::ApproxContains(S2Polygon const* b, |
458 | S1Angle vertex_merge_radius) const { |
459 | S2Polygon difference; |
460 | difference.InitToDifferenceSloppy(b, this, vertex_merge_radius); |
461 | return difference.num_loops() == 0; |
462 | } |
463 | |
464 | bool S2Polygon::MayIntersect(S2Cell const& cell) const { |
465 | if (num_loops() == 1) { |
466 | return loop(0)->MayIntersect(cell); |
467 | } |
468 | if (!bound_.Intersects(cell.GetRectBound())) return false; |
469 | |
470 | S2Loop cell_loop(cell); |
471 | S2Polygon cell_poly(&cell_loop); |
472 | bool intersects = Intersects(&cell_poly); |
473 | if (!intersects) DCHECK(!Contains(cell.GetCenter())); |
474 | return intersects; |
475 | } |
476 | |
477 | bool S2Polygon::VirtualContainsPoint(S2Point const& p) const { |
478 | return Contains(p); // The same as Contains() below, just virtual. |
479 | } |
480 | |
481 | bool S2Polygon::Contains(S2Point const& p) const { |
482 | if (num_loops() == 1) { |
483 | return loop(0)->Contains(p); // Optimization. |
484 | } |
485 | if (!bound_.Contains(p)) return false; |
486 | bool inside = false; |
487 | for (int i = 0; i < num_loops(); ++i) { |
488 | inside ^= loop(i)->Contains(p); |
489 | if (inside && !has_holes_) break; // Shells are disjoint. |
490 | } |
491 | return inside; |
492 | } |
493 | |
494 | void S2Polygon::Encode(Encoder* const encoder) const { |
495 | encoder->Ensure(10); // Sufficient |
496 | encoder->put8(kCurrentEncodingVersionNumber); |
497 | encoder->put8(owns_loops_); |
498 | encoder->put8(has_holes_); |
499 | encoder->put32(loops_.size()); |
500 | DCHECK_GE(encoder->avail(), 0); |
501 | |
502 | for (int i = 0; i < num_loops(); ++i) { |
503 | loop(i)->Encode(encoder); |
504 | } |
505 | bound_.Encode(encoder); |
506 | } |
507 | |
508 | bool S2Polygon::Decode(Decoder* const decoder) { |
509 | return DecodeInternal(decoder, false); |
510 | } |
511 | |
512 | bool S2Polygon::DecodeWithinScope(Decoder* const decoder) { |
513 | return DecodeInternal(decoder, true); |
514 | } |
515 | |
516 | bool S2Polygon::DecodeInternal(Decoder* const decoder, bool within_scope) { |
517 | unsigned char version = decoder->get8(); |
518 | if (version > kCurrentEncodingVersionNumber) return false; |
519 | |
520 | if (owns_loops_) DeleteLoopsInVector(&loops_); |
521 | |
522 | owns_loops_ = decoder->get8(); |
523 | has_holes_ = decoder->get8(); |
524 | int num_loops = decoder->get32(); |
525 | loops_.clear(); |
526 | loops_.reserve(num_loops); |
527 | num_vertices_ = 0; |
528 | for (int i = 0; i < num_loops; ++i) { |
529 | loops_.push_back(new S2Loop); |
530 | if (within_scope) { |
531 | if (!loops_.back()->DecodeWithinScope(decoder)) return false; |
532 | } else { |
533 | if (!loops_.back()->Decode(decoder)) return false; |
534 | } |
535 | num_vertices_ += loops_.back()->num_vertices(); |
536 | } |
537 | if (!bound_.Decode(decoder)) return false; |
538 | |
539 | DCHECK(IsValid(loops_)); |
540 | |
541 | return decoder->avail() >= 0; |
542 | } |
543 | |
544 | // Indexing structure to efficiently ClipEdge() of a polygon. This is |
545 | // an abstract class because we need to use if for both polygons (for |
546 | // InitToIntersection() and friends) and for sets of vectors of points |
547 | // (for InitToSimplified()). |
548 | // |
549 | // Usage -- in your subclass: |
550 | // - Call AddLoop() for each of your loops -- and keep them accessible in |
551 | // your subclass. |
552 | // - Overwrite EdgeFromTo(), calling DecodeIndex() and accessing your |
553 | // underlying data with the resulting two indices. |
554 | class S2LoopSequenceIndex: public S2EdgeIndex { |
555 | public: |
556 | S2LoopSequenceIndex(): num_edges_(0), num_loops_(0) {} |
557 | ~S2LoopSequenceIndex() {} |
558 | |
559 | void AddLoop(int num_vertices) { |
560 | int vertices_so_far = num_edges_; |
561 | loop_to_first_index_.push_back(vertices_so_far); |
562 | index_to_loop_.resize(vertices_so_far + num_vertices); |
563 | for (int i = 0; i < num_vertices; ++i) { |
564 | index_to_loop_[vertices_so_far] = num_loops_; |
565 | vertices_so_far++; |
566 | } |
567 | num_edges_ += num_vertices; |
568 | num_loops_++; |
569 | } |
570 | |
571 | inline void DecodeIndex(int index, |
572 | int* loop_index, int* vertex_in_loop) const { |
573 | *loop_index = index_to_loop_[index]; |
574 | *vertex_in_loop = index - loop_to_first_index_[*loop_index]; |
575 | } |
576 | |
577 | // It is faster to return both vertices at once. It makes a difference |
578 | // for small polygons. |
579 | virtual void EdgeFromTo(int index, |
580 | S2Point const* * from, S2Point const* * to) const = 0; |
581 | |
582 | int num_edges() const { return num_edges_; } |
583 | |
584 | virtual S2Point const* edge_from(int index) const { |
585 | S2Point const* from; |
586 | S2Point const* to; |
587 | EdgeFromTo(index, &from, &to); |
588 | return from; |
589 | } |
590 | |
591 | virtual S2Point const* edge_to(int index) const { |
592 | S2Point const* from; |
593 | S2Point const* to; |
594 | EdgeFromTo(index, &from, &to); |
595 | return to; |
596 | } |
597 | |
598 | protected: |
599 | // Map from the unidimensional edge index to the loop this edge |
600 | // belongs to. |
601 | vector<int> index_to_loop_; |
602 | |
603 | // Reverse of index_to_loop_: maps a loop index to the |
604 | // unidimensional index of the first edge in the loop. |
605 | vector<int> loop_to_first_index_; |
606 | |
607 | // Total number of edges. |
608 | int num_edges_; |
609 | |
610 | // Total number of loops. |
611 | int num_loops_; |
612 | }; |
613 | |
614 | // Indexing structure for an S2Polygon. |
615 | class S2PolygonIndex: public S2LoopSequenceIndex { |
616 | public: |
617 | S2PolygonIndex(S2Polygon const* poly, bool reverse): |
618 | poly_(poly), |
619 | reverse_(reverse) { |
620 | for (int iloop = 0; iloop < poly_->num_loops(); ++iloop) { |
621 | AddLoop(poly_->loop(iloop)->num_vertices()); |
622 | } |
623 | } |
624 | |
625 | virtual ~S2PolygonIndex() {} |
626 | |
627 | virtual void EdgeFromTo(int index, |
628 | S2Point const* * from, S2Point const* * to) const { |
629 | int loop_index; |
630 | int vertex_in_loop; |
631 | DecodeIndex(index, &loop_index, &vertex_in_loop); |
632 | S2Loop const* loop(poly_->loop(loop_index)); |
633 | int from_index, to_index; |
634 | if (loop->is_hole() ^ reverse_) { |
635 | from_index = loop->num_vertices() - 1 - vertex_in_loop; |
636 | to_index = 2 * loop->num_vertices() - 2 - vertex_in_loop; |
637 | } else { |
638 | from_index = vertex_in_loop; |
639 | to_index = vertex_in_loop + 1; |
640 | } |
641 | *from = &(loop->vertex(from_index)); |
642 | *to = &(loop->vertex(to_index)); |
643 | } |
644 | |
645 | private: |
646 | S2Polygon const* poly_; |
647 | bool reverse_; |
648 | }; |
649 | |
650 | // Indexing structure for a sequence of loops (not in the sense of S2: |
651 | // the loops can self-intersect). Each loop is given in a vector<S2Point> |
652 | // where, as in S2Loop, the last vertex is implicitely joined to the first. |
653 | // Add each loop individually with AddVector(). The caller owns |
654 | // the vector<S2Point>'s. |
655 | class S2LoopsAsVectorsIndex: public S2LoopSequenceIndex { |
656 | public: |
657 | S2LoopsAsVectorsIndex() {} |
658 | ~S2LoopsAsVectorsIndex() {} |
659 | |
660 | void AddVector(vector<S2Point> const* v) { |
661 | loops_.push_back(v); |
662 | AddLoop(v->size()); |
663 | } |
664 | |
665 | virtual void EdgeFromTo(int index, |
666 | S2Point const* *from, S2Point const* *to) const { |
667 | int loop_index; |
668 | int vertex_in_loop; |
669 | DecodeIndex(index, &loop_index, &vertex_in_loop); |
670 | vector<S2Point> const* loop = loops_[loop_index]; |
671 | *from = &loop->at(vertex_in_loop); |
672 | *to = &loop->at(vertex_in_loop == loop->size() - 1 |
673 | ? 0 |
674 | : vertex_in_loop + 1); |
675 | } |
676 | |
677 | private: |
678 | vector< vector<S2Point> const* > loops_; |
679 | }; |
680 | |
681 | typedef vector<pair<double, S2Point> > IntersectionSet; |
682 | |
683 | static void AddIntersection(S2Point const& a0, S2Point const& a1, |
684 | S2Point const& b0, S2Point const& b1, |
685 | bool add_shared_edges, int crossing, |
686 | IntersectionSet* intersections) { |
687 | if (crossing > 0) { |
688 | // There is a proper edge crossing. |
689 | S2Point x = S2EdgeUtil::GetIntersection(a0, a1, b0, b1); |
690 | double t = S2EdgeUtil::GetDistanceFraction(x, a0, a1); |
691 | intersections->push_back(make_pair(t, x)); |
692 | |
693 | } else if (S2EdgeUtil::VertexCrossing(a0, a1, b0, b1)) { |
694 | // There is a crossing at one of the vertices. The basic rule is simple: |
695 | // if a0 equals one of the "b" vertices, the crossing occurs at t=0; |
696 | // otherwise, it occurs at t=1. |
697 | // |
698 | // This has the effect that when two symmetric edges are |
699 | // encountered (an edge an its reverse), neither one is included |
700 | // in the output. When two duplicate edges are encountered, both |
701 | // are included in the output. The "add_shared_edges" flag allows |
702 | // one of these two copies to be removed by changing its |
703 | // intersection parameter from 0 to 1. |
704 | |
705 | double t = (a0 == b0 || a0 == b1) ? 0 : 1; |
706 | if (!add_shared_edges && a1 == b1) t = 1; |
707 | intersections->push_back(make_pair(t, t == 0 ? a0 : a1)); |
708 | } |
709 | } |
710 | |
711 | static void ClipEdge(S2Point const& a0, S2Point const& a1, |
712 | S2LoopSequenceIndex* b_index, |
713 | bool add_shared_edges, IntersectionSet* intersections) { |
714 | // Find all points where the polygon B intersects the edge (a0,a1), |
715 | // and add the corresponding parameter values (in the range [0,1]) to |
716 | // "intersections". |
717 | S2LoopSequenceIndex::Iterator it(b_index); |
718 | it.GetCandidates(a0, a1); |
719 | S2EdgeUtil::EdgeCrosser crosser(&a0, &a1, &a0); |
720 | S2Point const* from; |
721 | S2Point const* to = NULL; |
722 | for (; !it.Done(); it.Next()) { |
723 | S2Point const* const previous_to = to; |
724 | b_index->EdgeFromTo(it.Index(), &from, &to); |
725 | if (previous_to != from) crosser.RestartAt(from); |
726 | int crossing = crosser.RobustCrossing(to); |
727 | if (crossing < 0) continue; |
728 | AddIntersection(a0, a1, *from, *to, |
729 | add_shared_edges, crossing, intersections); |
730 | } |
731 | } |
732 | |
733 | |
734 | static void ClipBoundary(S2Polygon const* a, bool reverse_a, |
735 | S2Polygon const* b, bool reverse_b, bool invert_b, |
736 | bool add_shared_edges, S2PolygonBuilder* builder) { |
737 | // Clip the boundary of A to the interior of B, and add the resulting edges |
738 | // to "builder". Shells are directed CCW and holes are directed clockwise, |
739 | // unless "reverse_a" or "reverse_b" is true in which case these directions |
740 | // in the corresponding polygon are reversed. If "invert_b" is true, the |
741 | // boundary of A is clipped to the exterior rather than the interior of B. |
742 | // If "add_shared_edges" is true, then the output will include any edges |
743 | // that are shared between A and B (both edges must be in the same direction |
744 | // after any edge reversals are taken into account). |
745 | |
746 | S2PolygonIndex b_index(b, reverse_b); |
747 | b_index.PredictAdditionalCalls(a->num_vertices()); |
748 | |
749 | IntersectionSet intersections; |
750 | for (int i = 0; i < a->num_loops(); ++i) { |
751 | S2Loop* a_loop = a->loop(i); |
752 | int n = a_loop->num_vertices(); |
753 | int dir = (a_loop->is_hole() ^ reverse_a) ? -1 : 1; |
754 | bool inside = b->Contains(a_loop->vertex(0)) ^ invert_b; |
755 | for (int j = (dir > 0) ? 0 : n; n > 0; --n, j += dir) { |
756 | S2Point const& a0 = a_loop->vertex(j); |
757 | S2Point const& a1 = a_loop->vertex(j + dir); |
758 | intersections.clear(); |
759 | ClipEdge(a0, a1, &b_index, add_shared_edges, &intersections); |
760 | |
761 | if (inside) intersections.push_back(make_pair(0, a0)); |
762 | inside = (intersections.size() & 1); |
763 | DCHECK_EQ((b->Contains(a1) ^ invert_b), inside); |
764 | if (inside) intersections.push_back(make_pair(1, a1)); |
765 | sort(intersections.begin(), intersections.end()); |
766 | for (int k = 0; k < intersections.size(); k += 2) { |
767 | if (intersections[k] == intersections[k+1]) continue; |
768 | builder->AddEdge(intersections[k].second, intersections[k+1].second); |
769 | } |
770 | } |
771 | } |
772 | } |
773 | |
774 | void S2Polygon::InitToIntersection(S2Polygon const* a, S2Polygon const* b) { |
775 | InitToIntersectionSloppy(a, b, S2EdgeUtil::kIntersectionTolerance); |
776 | } |
777 | |
778 | void S2Polygon::InitToIntersectionSloppy(S2Polygon const* a, S2Polygon const* b, |
779 | S1Angle vertex_merge_radius) { |
780 | DCHECK_EQ(0, num_loops()); |
781 | if (!a->bound_.Intersects(b->bound_)) return; |
782 | |
783 | // We want the boundary of A clipped to the interior of B, |
784 | // plus the boundary of B clipped to the interior of A, |
785 | // plus one copy of any directed edges that are in both boundaries. |
786 | |
787 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
788 | options.set_vertex_merge_radius(vertex_merge_radius); |
789 | S2PolygonBuilder builder(options); |
790 | ClipBoundary(a, false, b, false, false, true, &builder); |
791 | ClipBoundary(b, false, a, false, false, false, &builder); |
792 | if (!builder.AssemblePolygon(this, NULL)) { |
793 | LOG(DFATAL) << "Bad directed edges in InitToIntersection" ; |
794 | } |
795 | } |
796 | |
797 | void S2Polygon::InitToUnion(S2Polygon const* a, S2Polygon const* b) { |
798 | InitToUnionSloppy(a, b, S2EdgeUtil::kIntersectionTolerance); |
799 | } |
800 | |
801 | void S2Polygon::InitToUnionSloppy(S2Polygon const* a, S2Polygon const* b, |
802 | S1Angle vertex_merge_radius) { |
803 | DCHECK_EQ(0, num_loops()); |
804 | |
805 | // We want the boundary of A clipped to the exterior of B, |
806 | // plus the boundary of B clipped to the exterior of A, |
807 | // plus one copy of any directed edges that are in both boundaries. |
808 | |
809 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
810 | options.set_vertex_merge_radius(vertex_merge_radius); |
811 | S2PolygonBuilder builder(options); |
812 | ClipBoundary(a, false, b, false, true, true, &builder); |
813 | ClipBoundary(b, false, a, false, true, false, &builder); |
814 | if (!builder.AssemblePolygon(this, NULL)) { |
815 | LOG(DFATAL) << "Bad directed edges" ; |
816 | } |
817 | } |
818 | |
819 | void S2Polygon::InitToDifference(S2Polygon const* a, S2Polygon const* b) { |
820 | InitToDifferenceSloppy(a, b, S2EdgeUtil::kIntersectionTolerance); |
821 | } |
822 | |
823 | void S2Polygon::InitToDifferenceSloppy(S2Polygon const* a, S2Polygon const* b, |
824 | S1Angle vertex_merge_radius) { |
825 | DCHECK_EQ(0, num_loops()); |
826 | |
827 | // We want the boundary of A clipped to the exterior of B, |
828 | // plus the reversed boundary of B clipped to the interior of A, |
829 | // plus one copy of any edge in A that is also a reverse edge in B. |
830 | |
831 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
832 | options.set_vertex_merge_radius(vertex_merge_radius); |
833 | S2PolygonBuilder builder(options); |
834 | ClipBoundary(a, false, b, true, true, true, &builder); |
835 | ClipBoundary(b, true, a, false, false, false, &builder); |
836 | if (!builder.AssemblePolygon(this, NULL)) { |
837 | LOG(DFATAL) << "Bad directed edges in InitToDifference" ; |
838 | } |
839 | } |
840 | |
841 | // Takes a loop and simplifies it. This may return a self-intersecting |
842 | // polyline. Always keeps the first vertex from the loop. |
843 | vector<S2Point>* SimplifyLoopAsPolyline(S2Loop const* loop, S1Angle tolerance) { |
844 | vector<S2Point> points(loop->num_vertices() + 1); |
845 | // Add the first vertex at the beginning and at the end. |
846 | for (int i = 0; i <= loop->num_vertices(); ++i) { |
847 | points[i] = loop->vertex(i); |
848 | } |
849 | S2Polyline line(points); |
850 | vector<int> indices; |
851 | line.SubsampleVertices(tolerance, &indices); |
852 | if (indices.size() <= 2) return NULL; |
853 | // Add them all except the last: it is the same as the first. |
854 | vector<S2Point>* simplified_line = new vector<S2Point>(indices.size() - 1); |
855 | VLOG(4) << "Now simplified to: " ; |
856 | for (int i = 0; i + 1 < indices.size(); ++i) { |
857 | (*simplified_line)[i] = line.vertex(indices[i]); |
858 | VLOG(4) << S2LatLng(line.vertex(indices[i])); |
859 | } |
860 | return simplified_line; |
861 | } |
862 | |
863 | // Takes a set of possibly intersecting edges, stored in an |
864 | // S2EdgeIndex. Breaks the edges into small pieces so that there is |
865 | // no intersection anymore, and adds all these edges to the builder. |
866 | void BreakEdgesAndAddToBuilder(S2LoopsAsVectorsIndex* edge_index, |
867 | S2PolygonBuilder* builder) { |
868 | // If there are self intersections, we add the pieces separately. |
869 | for (int i = 0; i < edge_index->num_edges(); ++i) { |
870 | S2Point const* from; |
871 | S2Point const* to; |
872 | edge_index->EdgeFromTo(i, &from, &to); |
873 | |
874 | IntersectionSet intersections; |
875 | intersections.push_back(make_pair(0, *from)); |
876 | // add_shared_edges can be false or true: it makes no difference |
877 | // due to the way we call ClipEdge. |
878 | ClipEdge(*from, *to, edge_index, false, &intersections); |
879 | intersections.push_back(make_pair(1, *to)); |
880 | sort(intersections.begin(), intersections.end()); |
881 | for (int k = 0; k + 1 < intersections.size(); ++k) { |
882 | if (intersections[k] == intersections[k+1]) continue; |
883 | builder->AddEdge(intersections[k].second, intersections[k+1].second); |
884 | } |
885 | } |
886 | } |
887 | |
888 | // Simplifies the polygon. The algorithm is straightforward and naive: |
889 | // 1. Simplify each loop by removing points while staying in the |
890 | // tolerance zone. This uses S2Polyline::SubsampleVertices(), |
891 | // which is not guaranteed to be optimal in terms of number of |
892 | // points. |
893 | // 2. Break any edge in pieces such that no piece intersects any |
894 | // other. |
895 | // 3. Use the polygon builder to regenerate the full polygon. |
896 | void S2Polygon::InitToSimplified(S2Polygon const* a, S1Angle tolerance) { |
897 | S2PolygonBuilderOptions builder_options = |
898 | S2PolygonBuilderOptions::UNDIRECTED_XOR(); |
899 | builder_options.set_validate(false); |
900 | // Ideally, we would want to set the vertex_merge_radius of the |
901 | // builder roughly to tolerance (and in fact forego the edge |
902 | // splitting step). Alas, if we do that, we are liable to the |
903 | // 'chain effect', where vertices are merged with closeby vertices |
904 | // and so on, so that a vertex can move by an arbitrary distance. |
905 | // So we remain conservative: |
906 | builder_options.set_vertex_merge_radius(tolerance * 0.10); |
907 | S2PolygonBuilder builder(builder_options); |
908 | |
909 | // Simplify each loop separately and add to the edge index |
910 | S2LoopsAsVectorsIndex index; |
911 | vector<vector<S2Point>*> simplified_loops; |
912 | for (int i = 0; i < a->num_loops(); ++i) { |
913 | vector<S2Point>* simpler = SimplifyLoopAsPolyline(a->loop(i), tolerance); |
914 | if (NULL == simpler) continue; |
915 | simplified_loops.push_back(simpler); |
916 | index.AddVector(simpler); |
917 | } |
918 | if (0 != index.num_edges()) { |
919 | BreakEdgesAndAddToBuilder(&index, &builder); |
920 | |
921 | if (!builder.AssemblePolygon(this, NULL)) { |
922 | LOG(DFATAL) << "Bad edges in InitToSimplified." ; |
923 | } |
924 | } |
925 | |
926 | for (int i = 0; i < simplified_loops.size(); ++i) { |
927 | delete simplified_loops[i]; |
928 | } |
929 | simplified_loops.clear(); |
930 | } |
931 | |
932 | void S2Polygon::InternalClipPolyline(bool invert, |
933 | S2Polyline const* a, |
934 | vector<S2Polyline*> *out, |
935 | S1Angle merge_radius) const { |
936 | // Clip the polyline A to the interior of this polygon. |
937 | // The resulting polyline(s) will be appended to 'out'. |
938 | // If invert is true, we clip A to the exterior of this polygon instead. |
939 | // Vertices will be dropped such that adjacent vertices will not |
940 | // be closer than 'merge_radius'. |
941 | // |
942 | // We do the intersection/subtraction by walking the polyline edges. |
943 | // For each edge, we compute all intersections with the polygon boundary |
944 | // and sort them in increasing order of distance along that edge. |
945 | // We then divide the intersection points into pairs, and output a |
946 | // clipped polyline segment for each one. |
947 | // We keep track of whether we're inside or outside of the polygon at |
948 | // all times to decide which segments to output. |
949 | |
950 | CHECK(out->empty()); |
951 | |
952 | IntersectionSet intersections; |
953 | vector<S2Point> vertices; |
954 | S2PolygonIndex poly_index(this, false); |
955 | int n = a->num_vertices(); |
956 | bool inside = Contains(a->vertex(0)) ^ invert; |
957 | for (int j = 0; j < n-1; j++) { |
958 | S2Point const& a0 = a->vertex(j); |
959 | S2Point const& a1 = a->vertex(j + 1); |
960 | ClipEdge(a0, a1, &poly_index, true, &intersections); |
961 | if (inside) intersections.push_back(make_pair(0, a0)); |
962 | inside = (intersections.size() & 1); |
963 | DCHECK_EQ((Contains(a1) ^ invert), inside); |
964 | if (inside) intersections.push_back(make_pair(1, a1)); |
965 | sort(intersections.begin(), intersections.end()); |
966 | // At this point we have a sorted array of vertex pairs representing |
967 | // the edge(s) obtained after clipping (a0,a1) against the polygon. |
968 | for (int k = 0; k < intersections.size(); k += 2) { |
969 | if (intersections[k] == intersections[k+1]) continue; |
970 | S2Point const& v0 = intersections[k].second; |
971 | S2Point const& v1 = intersections[k+1].second; |
972 | |
973 | // If the gap from the previous vertex to this one is large |
974 | // enough, start a new polyline. |
975 | if (!vertices.empty() && |
976 | vertices.back().Angle(v0) > merge_radius.radians()) { |
977 | out->push_back(new S2Polyline(vertices)); |
978 | vertices.clear(); |
979 | } |
980 | // Append this segment to the current polyline, ignoring any |
981 | // vertices that are too close to the previous vertex. |
982 | if (vertices.empty()) vertices.push_back(v0); |
983 | if (vertices.back().Angle(v1) > merge_radius.radians()) { |
984 | vertices.push_back(v1); |
985 | } |
986 | } |
987 | intersections.clear(); |
988 | } |
989 | if (!vertices.empty()) { |
990 | out->push_back(new S2Polyline(vertices)); |
991 | } |
992 | } |
993 | |
994 | void S2Polygon::IntersectWithPolyline( |
995 | S2Polyline const* a, |
996 | vector<S2Polyline*> *out) const { |
997 | IntersectWithPolylineSloppy(a, out, S2EdgeUtil::kIntersectionTolerance); |
998 | } |
999 | |
1000 | void S2Polygon::IntersectWithPolylineSloppy( |
1001 | S2Polyline const* a, |
1002 | vector<S2Polyline*> *out, |
1003 | S1Angle vertex_merge_radius) const { |
1004 | InternalClipPolyline(false, a, out, vertex_merge_radius); |
1005 | } |
1006 | |
1007 | void S2Polygon::SubtractFromPolyline(S2Polyline const* a, |
1008 | vector<S2Polyline*> *out) const { |
1009 | SubtractFromPolylineSloppy(a, out, S2EdgeUtil::kIntersectionTolerance); |
1010 | } |
1011 | |
1012 | void S2Polygon::SubtractFromPolylineSloppy( |
1013 | S2Polyline const* a, |
1014 | vector<S2Polyline*> *out, |
1015 | S1Angle vertex_merge_radius) const { |
1016 | InternalClipPolyline(true, a, out, vertex_merge_radius); |
1017 | } |
1018 | |
1019 | |
1020 | S2Polygon* S2Polygon::DestructiveUnion(vector<S2Polygon*>* polygons) { |
1021 | return DestructiveUnionSloppy(polygons, S2EdgeUtil::kIntersectionTolerance); |
1022 | } |
1023 | |
1024 | S2Polygon* S2Polygon::DestructiveUnionSloppy(vector<S2Polygon*>* polygons, |
1025 | S1Angle vertex_merge_radius) { |
1026 | // Effectively create a priority queue of polygons in order of number of |
1027 | // vertices. Repeatedly union the two smallest polygons and add the result |
1028 | // to the queue until we have a single polygon to return. |
1029 | typedef multimap<int, S2Polygon*> QueueType; |
1030 | QueueType queue; // Map from # of vertices to polygon. |
1031 | for (int i = 0; i < polygons->size(); ++i) |
1032 | queue.insert(make_pair((*polygons)[i]->num_vertices(), (*polygons)[i])); |
1033 | polygons->clear(); |
1034 | |
1035 | while (queue.size() > 1) { |
1036 | // Pop two simplest polygons from queue. |
1037 | QueueType::iterator smallest_it = queue.begin(); |
1038 | int a_size = smallest_it->first; |
1039 | S2Polygon* a_polygon = smallest_it->second; |
1040 | queue.erase(smallest_it); |
1041 | smallest_it = queue.begin(); |
1042 | int b_size = smallest_it->first; |
1043 | S2Polygon* b_polygon = smallest_it->second; |
1044 | queue.erase(smallest_it); |
1045 | |
1046 | // Union and add result back to queue. |
1047 | S2Polygon* union_polygon = new S2Polygon(); |
1048 | union_polygon->InitToUnionSloppy(a_polygon, b_polygon, vertex_merge_radius); |
1049 | delete a_polygon; |
1050 | delete b_polygon; |
1051 | queue.insert(make_pair(a_size + b_size, union_polygon)); |
1052 | // We assume that the number of vertices in the union polygon is the |
1053 | // sum of the number of vertices in the original polygons, which is not |
1054 | // always true, but will almost always be a decent approximation, and |
1055 | // faster than recomputing. |
1056 | } |
1057 | |
1058 | if (queue.empty()) |
1059 | return new S2Polygon(); |
1060 | else |
1061 | return queue.begin()->second; |
1062 | } |
1063 | |
1064 | void S2Polygon::InitToCellUnionBorder(S2CellUnion const& cells) { |
1065 | // Use a polygon builder to union the cells in the union. Due to rounding |
1066 | // errors, we can't do an exact union - when a small cell is adjacent to a |
1067 | // larger cell, the shared edges can fail to line up exactly. Two cell edges |
1068 | // cannot come closer then kMinWidth, so if we have the polygon builder merge |
1069 | // edges within half that distance, we should always merge shared edges |
1070 | // without merging different edges. |
1071 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
1072 | double min_cell_angle = S2::kMinWidth.GetValue(S2CellId::kMaxLevel); |
1073 | options.set_vertex_merge_radius(S1Angle::Radians(min_cell_angle / 2)); |
1074 | S2PolygonBuilder builder(options); |
1075 | for (int i = 0; i < cells.num_cells(); ++i) { |
1076 | S2Loop cell_loop(S2Cell(cells.cell_id(i))); |
1077 | builder.AddLoop(&cell_loop); |
1078 | } |
1079 | if (!builder.AssemblePolygon(this, NULL)) { |
1080 | LOG(DFATAL) << "AssemblePolygon failed in InitToCellUnionBorder" ; |
1081 | } |
1082 | } |
1083 | |
1084 | bool S2Polygon::IsNormalized() const { |
1085 | set<S2Point> vertices; |
1086 | S2Loop* last_parent = NULL; |
1087 | for (int i = 0; i < num_loops(); ++i) { |
1088 | S2Loop* child = loop(i); |
1089 | if (child->depth() == 0) continue; |
1090 | S2Loop* parent = loop(GetParent(i)); |
1091 | if (parent != last_parent) { |
1092 | vertices.clear(); |
1093 | for (int j = 0; j < parent->num_vertices(); ++j) { |
1094 | vertices.insert(parent->vertex(j)); |
1095 | } |
1096 | last_parent = parent; |
1097 | } |
1098 | int count = 0; |
1099 | for (int j = 0; j < child->num_vertices(); ++j) { |
1100 | if (vertices.count(child->vertex(j)) > 0) ++count; |
1101 | } |
1102 | if (count > 1) return false; |
1103 | } |
1104 | return true; |
1105 | } |
1106 | |
1107 | bool S2Polygon::BoundaryEquals(S2Polygon const* b) const { |
1108 | if (num_loops() != b->num_loops()) return false; |
1109 | |
1110 | for (int i = 0; i < num_loops(); ++i) { |
1111 | S2Loop* a_loop = loop(i); |
1112 | bool success = false; |
1113 | for (int j = 0; j < num_loops(); ++j) { |
1114 | S2Loop* b_loop = b->loop(j); |
1115 | if ((b_loop->depth() == a_loop->depth()) && |
1116 | b_loop->BoundaryEquals(a_loop)) { |
1117 | success = true; |
1118 | break; |
1119 | } |
1120 | } |
1121 | if (!success) return false; |
1122 | } |
1123 | return true; |
1124 | } |
1125 | |
1126 | bool S2Polygon::BoundaryApproxEquals(S2Polygon const* b, |
1127 | double max_error) const { |
1128 | if (num_loops() != b->num_loops()) return false; |
1129 | |
1130 | // For now, we assume that there is at most one candidate match for each |
1131 | // loop. (So far this method is just used for testing.) |
1132 | |
1133 | for (int i = 0; i < num_loops(); ++i) { |
1134 | S2Loop* a_loop = loop(i); |
1135 | bool success = false; |
1136 | for (int j = 0; j < num_loops(); ++j) { |
1137 | S2Loop* b_loop = b->loop(j); |
1138 | if (b_loop->depth() == a_loop->depth() && |
1139 | b_loop->BoundaryApproxEquals(a_loop, max_error)) { |
1140 | success = true; |
1141 | break; |
1142 | } |
1143 | } |
1144 | if (!success) return false; |
1145 | } |
1146 | return true; |
1147 | } |
1148 | |
1149 | bool S2Polygon::BoundaryNear(S2Polygon const* b, double max_error) const { |
1150 | if (num_loops() != b->num_loops()) return false; |
1151 | |
1152 | // For now, we assume that there is at most one candidate match for each |
1153 | // loop. (So far this method is just used for testing.) |
1154 | |
1155 | for (int i = 0; i < num_loops(); ++i) { |
1156 | S2Loop* a_loop = loop(i); |
1157 | bool success = false; |
1158 | for (int j = 0; j < num_loops(); ++j) { |
1159 | S2Loop* b_loop = b->loop(j); |
1160 | if (b_loop->depth() == a_loop->depth() && |
1161 | b_loop->BoundaryNear(a_loop, max_error)) { |
1162 | success = true; |
1163 | break; |
1164 | } |
1165 | } |
1166 | if (!success) return false; |
1167 | } |
1168 | return true; |
1169 | } |
1170 | |
1171 | S2Point S2Polygon::Project(S2Point const& point) const { |
1172 | DCHECK(!loops_.empty()); |
1173 | |
1174 | if (Contains(point)) { |
1175 | return point; |
1176 | } |
1177 | |
1178 | S1Angle min_distance = S1Angle::Radians(10); |
1179 | int min_loop_index = 0; |
1180 | int min_vertex_index = 0; |
1181 | |
1182 | for (int l = 0; l < num_loops(); ++l) { |
1183 | S2Loop *a_loop = loop(l); |
1184 | for (int v = 0; v < a_loop->num_vertices(); ++v) { |
1185 | S1Angle distance_to_segment = |
1186 | S2EdgeUtil::GetDistance(point, |
1187 | a_loop->vertex(v), |
1188 | a_loop->vertex(v + 1)); |
1189 | if (distance_to_segment < min_distance) { |
1190 | min_distance = distance_to_segment; |
1191 | min_loop_index = l; |
1192 | min_vertex_index = v; |
1193 | } |
1194 | } |
1195 | } |
1196 | |
1197 | S2Point closest_point = S2EdgeUtil::GetClosestPoint( |
1198 | point, |
1199 | loop(min_loop_index)->vertex(min_vertex_index), |
1200 | loop(min_loop_index)->vertex(min_vertex_index + 1)); |
1201 | |
1202 | return closest_point; |
1203 | } |
1204 | |