| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include <algorithm> |
| 4 | using std::min; |
| 5 | using std::max; |
| 6 | using std::swap; |
| 7 | using std::reverse; |
| 8 | |
| 9 | #include <hash_map> |
| 10 | using __gnu_cxx::hash_map; |
| 11 | |
| 12 | #include <set> |
| 13 | using std::set; |
| 14 | using std::multiset; |
| 15 | |
| 16 | #include <vector> |
| 17 | using std::vector; |
| 18 | |
| 19 | |
| 20 | // #include "base/commandlineflags.h" |
| 21 | #include "s2polygon.h" |
| 22 | |
| 23 | #include "base/port.h" // for HASH_NAMESPACE_DECLARATION_START |
| 24 | #include "util/coding/coder.h" |
| 25 | #include "s2edgeindex.h" |
| 26 | #include "s2cap.h" |
| 27 | #include "s2cell.h" |
| 28 | #include "s2cellunion.h" |
| 29 | #include "s2latlngrect.h" |
| 30 | #include "s2polygonbuilder.h" |
| 31 | #include "s2polyline.h" |
| 32 | |
| 33 | // DECLARE_bool(s2debug); // defined in s2.cc |
| 34 | |
| 35 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
| 36 | |
| 37 | typedef pair<S2Point, S2Point> S2Edge; |
| 38 | |
| 39 | S2Polygon::S2Polygon() |
| 40 | : loops_(), |
| 41 | bound_(S2LatLngRect::Empty()), |
| 42 | owns_loops_(true), |
| 43 | has_holes_(false), |
| 44 | num_vertices_(0) { |
| 45 | } |
| 46 | |
| 47 | S2Polygon::S2Polygon(vector<S2Loop*>* loops) |
| 48 | : bound_(S2LatLngRect::Empty()), |
| 49 | owns_loops_(true) { |
| 50 | Init(loops); |
| 51 | } |
| 52 | |
| 53 | S2Polygon::S2Polygon(S2Cell const& cell) |
| 54 | : bound_(S2LatLngRect::Empty()), |
| 55 | owns_loops_(true), |
| 56 | has_holes_(false), |
| 57 | num_vertices_(4) { |
| 58 | S2Loop* loop = new S2Loop(cell); |
| 59 | bound_ = loop->GetRectBound(); |
| 60 | loops_.push_back(loop); |
| 61 | } |
| 62 | |
| 63 | S2Polygon::S2Polygon(S2Loop* loop) |
| 64 | : bound_(loop->GetRectBound()), |
| 65 | owns_loops_(false), |
| 66 | has_holes_(false), |
| 67 | num_vertices_(loop->num_vertices()) { |
| 68 | loops_.push_back(loop); |
| 69 | } |
| 70 | |
| 71 | void S2Polygon::Copy(S2Polygon const* src) { |
| 72 | DCHECK_EQ(0, num_loops()); |
| 73 | for (int i = 0; i < src->num_loops(); ++i) { |
| 74 | loops_.push_back(src->loop(i)->Clone()); |
| 75 | } |
| 76 | bound_ = src->bound_; |
| 77 | owns_loops_ = true; |
| 78 | has_holes_ = src->has_holes_; |
| 79 | num_vertices_ = src->num_vertices(); |
| 80 | } |
| 81 | |
| 82 | S2Polygon* S2Polygon::Clone() const { |
| 83 | S2Polygon* result = new S2Polygon; |
| 84 | result->Copy(this); |
| 85 | return result; |
| 86 | } |
| 87 | |
| 88 | void S2Polygon::Release(vector<S2Loop*>* loops) { |
| 89 | if (loops != NULL) { |
| 90 | loops->insert(loops->end(), loops_.begin(), loops_.end()); |
| 91 | } |
| 92 | loops_.clear(); |
| 93 | bound_ = S2LatLngRect::Empty(); |
| 94 | has_holes_ = false; |
| 95 | } |
| 96 | |
| 97 | static void DeleteLoopsInVector(vector<S2Loop*>* loops) { |
| 98 | for (int i = 0; i < loops->size(); ++i) { |
| 99 | delete loops->at(i); |
| 100 | } |
| 101 | loops->clear(); |
| 102 | } |
| 103 | |
| 104 | S2Polygon::~S2Polygon() { |
| 105 | if (owns_loops_) DeleteLoopsInVector(&loops_); |
| 106 | } |
| 107 | |
| 108 | typedef pair<S2Point, S2Point> S2PointPair; |
| 109 | |
| 110 | #include<hash_set> |
| 111 | namespace __gnu_cxx { |
| 112 | |
| 113 | template<> struct hash<S2PointPair> { |
| 114 | size_t operator()(S2PointPair const& p) const { |
| 115 | hash<S2Point> h; |
| 116 | return h(p.first) + (h(p.second) << 1); |
| 117 | } |
| 118 | }; |
| 119 | |
| 120 | } // namespace __gnu_cxx |
| 121 | |
| 122 | |
| 123 | bool S2Polygon::IsValid(const vector<S2Loop*>& loops) { |
| 124 | // If a loop contains an edge AB, then no other loop may contain AB or BA. |
| 125 | if (loops.size() > 1) { |
| 126 | hash_map<S2PointPair, pair<int, int> > edges; |
| 127 | for (int i = 0; i < loops.size(); ++i) { |
| 128 | S2Loop* lp = loops[i]; |
| 129 | for (int j = 0; j < lp->num_vertices(); ++j) { |
| 130 | S2PointPair key = make_pair(lp->vertex(j), lp->vertex(j + 1)); |
| 131 | if (edges.insert(make_pair(key, make_pair(i, j))).second) { |
| 132 | key = make_pair(lp->vertex(j + 1), lp->vertex(j)); |
| 133 | if (edges.insert(make_pair(key, make_pair(i, j))).second) |
| 134 | continue; |
| 135 | } |
| 136 | pair<int, int> other = edges[key]; |
| 137 | VLOG(2) << "Duplicate edge: loop " << i << ", edge " << j |
| 138 | << " and loop " << other.first << ", edge " << other.second; |
| 139 | return false; |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | // Verify that no loop covers more than half of the sphere, and that no |
| 145 | // two loops cross. |
| 146 | for (int i = 0; i < loops.size(); ++i) { |
| 147 | if (!loops[i]->IsNormalized()) { |
| 148 | VLOG(2) << "Loop " << i << " encloses more than half the sphere" ; |
| 149 | return false; |
| 150 | } |
| 151 | for (int j = i + 1; j < loops.size(); ++j) { |
| 152 | // This test not only checks for edge crossings, it also detects |
| 153 | // cases where the two boundaries cross at a shared vertex. |
| 154 | if (loops[i]->ContainsOrCrosses(loops[j]) < 0) { |
| 155 | VLOG(2) << "Loop " << i << " crosses loop " << j; |
| 156 | return false; |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | bool S2Polygon::IsValid() const { |
| 165 | for (int i = 0; i < num_loops(); ++i) { |
| 166 | if (!loop(i)->IsValid()) { |
| 167 | return false; |
| 168 | } |
| 169 | } |
| 170 | return IsValid(loops_); |
| 171 | } |
| 172 | |
| 173 | bool S2Polygon::IsValid(bool check_loops, int max_adjacent) const { |
| 174 | return IsValid(); |
| 175 | } |
| 176 | |
| 177 | void S2Polygon::InsertLoop(S2Loop* new_loop, S2Loop* parent, |
| 178 | LoopMap* loop_map) { |
| 179 | vector<S2Loop*>* children = &(*loop_map)[parent]; |
| 180 | for (int i = 0; i < children->size(); ++i) { |
| 181 | S2Loop* child = (*children)[i]; |
| 182 | if (child->ContainsNested(new_loop)) { |
| 183 | InsertLoop(new_loop, child, loop_map); |
| 184 | return; |
| 185 | } |
| 186 | } |
| 187 | // No loop may contain the complement of another loop. (Handling this case |
| 188 | // is significantly more complicated.) |
| 189 | DCHECK(parent == NULL || !new_loop->ContainsNested(parent)); |
| 190 | |
| 191 | // Some of the children of the parent loop may now be children of |
| 192 | // the new loop. |
| 193 | vector<S2Loop*>* new_children = &(*loop_map)[new_loop]; |
| 194 | for (int i = 0; i < children->size();) { |
| 195 | S2Loop* child = (*children)[i]; |
| 196 | if (new_loop->ContainsNested(child)) { |
| 197 | new_children->push_back(child); |
| 198 | children->erase(children->begin() + i); |
| 199 | } else { |
| 200 | ++i; |
| 201 | } |
| 202 | } |
| 203 | children->push_back(new_loop); |
| 204 | } |
| 205 | |
| 206 | void S2Polygon::InitLoop(S2Loop* loop, int depth, LoopMap* loop_map) { |
| 207 | if (loop) { |
| 208 | loop->set_depth(depth); |
| 209 | loops_.push_back(loop); |
| 210 | } |
| 211 | vector<S2Loop*> const& children = (*loop_map)[loop]; |
| 212 | for (int i = 0; i < children.size(); ++i) { |
| 213 | InitLoop(children[i], depth + 1, loop_map); |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | bool S2Polygon::ContainsChild(S2Loop* a, S2Loop* b, LoopMap const& loop_map) { |
| 218 | // This function is just used to verify that the loop map was |
| 219 | // constructed correctly. |
| 220 | |
| 221 | if (a == b) return true; |
| 222 | vector<S2Loop*> const& children = loop_map.find(a)->second; |
| 223 | for (int i = 0; i < children.size(); ++i) { |
| 224 | if (ContainsChild(children[i], b, loop_map)) return true; |
| 225 | } |
| 226 | return false; |
| 227 | } |
| 228 | |
| 229 | void S2Polygon::Init(vector<S2Loop*>* loops) { |
| 230 | // if (FLAGS_s2debug) CHECK(IsValid(*loops)); |
| 231 | if (S2::debug) CHECK(IsValid(*loops)); |
| 232 | DCHECK(loops_.empty()); |
| 233 | loops_.swap(*loops); |
| 234 | |
| 235 | num_vertices_ = 0; |
| 236 | for (int i = 0; i < num_loops(); ++i) { |
| 237 | num_vertices_ += loop(i)->num_vertices(); |
| 238 | } |
| 239 | |
| 240 | LoopMap loop_map; |
| 241 | for (int i = 0; i < num_loops(); ++i) { |
| 242 | InsertLoop(loop(i), NULL, &loop_map); |
| 243 | } |
| 244 | // Reorder the loops in depth-first traversal order. |
| 245 | loops_.clear(); |
| 246 | InitLoop(NULL, -1, &loop_map); |
| 247 | |
| 248 | // if (FLAGS_s2debug) { |
| 249 | if (S2::debug) { |
| 250 | // Check that the LoopMap is correct (this is fairly cheap). |
| 251 | for (int i = 0; i < num_loops(); ++i) { |
| 252 | for (int j = 0; j < num_loops(); ++j) { |
| 253 | if (i == j) continue; |
| 254 | CHECK_EQ(ContainsChild(loop(i), loop(j), loop_map), |
| 255 | loop(i)->ContainsNested(loop(j))); |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | // Compute the bounding rectangle of the entire polygon. |
| 261 | has_holes_ = false; |
| 262 | bound_ = S2LatLngRect::Empty(); |
| 263 | for (int i = 0; i < num_loops(); ++i) { |
| 264 | if (loop(i)->sign() < 0) { |
| 265 | has_holes_ = true; |
| 266 | } else { |
| 267 | bound_ = bound_.Union(loop(i)->GetRectBound()); |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | int S2Polygon::GetParent(int k) const { |
| 273 | int depth = loop(k)->depth(); |
| 274 | if (depth == 0) return -1; // Optimization. |
| 275 | while (--k >= 0 && loop(k)->depth() >= depth) continue; |
| 276 | return k; |
| 277 | } |
| 278 | |
| 279 | int S2Polygon::GetLastDescendant(int k) const { |
| 280 | if (k < 0) return num_loops() - 1; |
| 281 | int depth = loop(k)->depth(); |
| 282 | while (++k < num_loops() && loop(k)->depth() > depth) continue; |
| 283 | return k - 1; |
| 284 | } |
| 285 | |
| 286 | double S2Polygon::GetArea() const { |
| 287 | double area = 0; |
| 288 | for (int i = 0; i < num_loops(); ++i) { |
| 289 | area += loop(i)->sign() * loop(i)->GetArea(); |
| 290 | } |
| 291 | return area; |
| 292 | } |
| 293 | |
| 294 | S2Point S2Polygon::GetCentroid() const { |
| 295 | S2Point centroid; |
| 296 | for (int i = 0; i < num_loops(); ++i) { |
| 297 | centroid += loop(i)->sign() * loop(i)->GetCentroid(); |
| 298 | } |
| 299 | return centroid; |
| 300 | } |
| 301 | |
| 302 | int S2Polygon::ContainsOrCrosses(S2Loop const* b) const { |
| 303 | bool inside = false; |
| 304 | for (int i = 0; i < num_loops(); ++i) { |
| 305 | int result = loop(i)->ContainsOrCrosses(b); |
| 306 | if (result < 0) return -1; // The loop boundaries intersect. |
| 307 | if (result > 0) inside ^= true; |
| 308 | } |
| 309 | return static_cast<int>(inside); // True if loop B is contained by the |
| 310 | // polygon. |
| 311 | } |
| 312 | |
| 313 | bool S2Polygon::AnyLoopContains(S2Loop const* b) const { |
| 314 | // Return true if any loop contains the given loop. |
| 315 | for (int i = 0; i < num_loops(); ++i) { |
| 316 | if (loop(i)->Contains(b)) return true; |
| 317 | } |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | bool S2Polygon::ContainsAllShells(S2Polygon const* b) const { |
| 322 | // Return true if this polygon (A) contains all the shells of B. |
| 323 | for (int j = 0; j < b->num_loops(); ++j) { |
| 324 | if (b->loop(j)->sign() < 0) continue; |
| 325 | if (ContainsOrCrosses(b->loop(j)) <= 0) { |
| 326 | // Shell of B is not contained by A, or the boundaries intersect. |
| 327 | return false; |
| 328 | } |
| 329 | } |
| 330 | return true; |
| 331 | } |
| 332 | |
| 333 | bool S2Polygon::ExcludesAllHoles(S2Polygon const* b) const { |
| 334 | // Return true if this polygon (A) excludes (i.e. does not intersect) |
| 335 | // all holes of B. |
| 336 | for (int j = 0; j < b->num_loops(); ++j) { |
| 337 | if (b->loop(j)->sign() > 0) continue; |
| 338 | if (ContainsOrCrosses(b->loop(j)) != 0) { |
| 339 | // Hole of B is contained by A, or the boundaries intersect. |
| 340 | return false; |
| 341 | } |
| 342 | } |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | bool S2Polygon::IntersectsAnyShell(S2Polygon const* b) const { |
| 347 | // Return true if this polygon (A) intersects any shell of B. |
| 348 | for (int j = 0; j < b->num_loops(); ++j) { |
| 349 | if (b->loop(j)->sign() < 0) continue; |
| 350 | if (IntersectsShell(b->loop(j)) != 0) |
| 351 | return true; |
| 352 | } |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | bool S2Polygon::IntersectsShell(S2Loop const* b) const { |
| 357 | bool inside = false; |
| 358 | for (int i = 0; i < num_loops(); ++i) { |
| 359 | if (loop(i)->Contains(b)) { |
| 360 | inside ^= true; |
| 361 | } else if (!b->Contains(loop(i)) && loop(i)->Intersects(b)) { |
| 362 | // We definitely have an intersection if the loops intersect AND one |
| 363 | // is not properly contained in the other. If A (this) is properly |
| 364 | // contained in a loop of B, we don't know yet if it may be actually |
| 365 | // inside a hole within B. |
| 366 | return true; |
| 367 | } |
| 368 | } |
| 369 | return inside; |
| 370 | } |
| 371 | |
| 372 | bool S2Polygon::Contains(S2Polygon const* b) const { |
| 373 | // If both polygons have one loop, use the more efficient S2Loop method. |
| 374 | // Note that S2Loop::Contains does its own bounding rectangle check. |
| 375 | if (num_loops() == 1 && b->num_loops() == 1) { |
| 376 | return loop(0)->Contains(b->loop(0)); |
| 377 | } |
| 378 | |
| 379 | // Otherwise if neither polygon has holes, we can still use the more |
| 380 | // efficient S2Loop::Contains method (rather than ContainsOrCrosses), |
| 381 | // but it's worthwhile to do our own bounds check first. |
| 382 | if (!bound_.Contains(b->bound_)) { |
| 383 | // If the union of the bounding boxes spans the full longitude range, |
| 384 | // it is still possible that polygon A contains B. (This is only |
| 385 | // possible if at least one polygon has multiple shells.) |
| 386 | if (!bound_.lng().Union(b->bound_.lng()).is_full()) return false; |
| 387 | } |
| 388 | if (!has_holes_ && !b->has_holes_) { |
| 389 | for (int j = 0; j < b->num_loops(); ++j) { |
| 390 | if (!AnyLoopContains(b->loop(j))) return false; |
| 391 | } |
| 392 | return true; |
| 393 | } |
| 394 | |
| 395 | // This could be implemented more efficiently for polygons with lots of |
| 396 | // holes by keeping a copy of the LoopMap computed during initialization. |
| 397 | // However, in practice most polygons are one loop, and multiloop polygons |
| 398 | // tend to consist of many shells rather than holes. In any case, the real |
| 399 | // way to get more efficiency is to implement a sub-quadratic algorithm |
| 400 | // such as building a trapezoidal map. |
| 401 | |
| 402 | // Every shell of B must be contained by an odd number of loops of A, |
| 403 | // and every hole of A must be contained by an even number of loops of B. |
| 404 | return ContainsAllShells(b) && b->ExcludesAllHoles(this); |
| 405 | } |
| 406 | |
| 407 | bool S2Polygon::Intersects(S2Polygon const* b) const { |
| 408 | // A.Intersects(B) if and only if !Complement(A).Contains(B). However, |
| 409 | // implementing a Complement() operation is trickier than it sounds, |
| 410 | // and in any case it's more efficient to test for intersection directly. |
| 411 | |
| 412 | // If both polygons have one loop, use the more efficient S2Loop method. |
| 413 | // Note that S2Loop::Intersects does its own bounding rectangle check. |
| 414 | if (num_loops() == 1 && b->num_loops() == 1) { |
| 415 | return loop(0)->Intersects(b->loop(0)); |
| 416 | } |
| 417 | |
| 418 | // Otherwise if neither polygon has holes, we can still use the more |
| 419 | // efficient S2Loop::Intersects method. The polygons intersect if and |
| 420 | // only if some pair of loop regions intersect. |
| 421 | if (!bound_.Intersects(b->bound_)) return false; |
| 422 | if (!has_holes_ && !b->has_holes_) { |
| 423 | for (int i = 0; i < num_loops(); ++i) { |
| 424 | for (int j = 0; j < b->num_loops(); ++j) { |
| 425 | if (loop(i)->Intersects(b->loop(j))) return true; |
| 426 | } |
| 427 | } |
| 428 | return false; |
| 429 | } |
| 430 | |
| 431 | // Otherwise if any shell of B is contained by an odd number of loops of A, |
| 432 | // or any shell of A is contained by an odd number of loops of B, or there is |
| 433 | // an intersection without containment, then there is an intersection. |
| 434 | return IntersectsAnyShell(b) || b->IntersectsAnyShell(this); |
| 435 | } |
| 436 | |
| 437 | S2Cap S2Polygon::GetCapBound() const { |
| 438 | return bound_.GetCapBound(); |
| 439 | } |
| 440 | |
| 441 | bool S2Polygon::Contains(S2Cell const& cell) const { |
| 442 | if (num_loops() == 1) { |
| 443 | return loop(0)->Contains(cell); |
| 444 | } |
| 445 | |
| 446 | // We can't check bound_.Contains(cell.GetRectBound()) because S2Cell's |
| 447 | // GetRectBound() calculation is not precise. |
| 448 | if (!bound_.Contains(cell.GetCenter())) return false; |
| 449 | |
| 450 | S2Loop cell_loop(cell); |
| 451 | S2Polygon cell_poly(&cell_loop); |
| 452 | bool contains = Contains(&cell_poly); |
| 453 | if (contains) DCHECK(Contains(cell.GetCenter())); |
| 454 | return contains; |
| 455 | } |
| 456 | |
| 457 | bool S2Polygon::ApproxContains(S2Polygon const* b, |
| 458 | S1Angle vertex_merge_radius) const { |
| 459 | S2Polygon difference; |
| 460 | difference.InitToDifferenceSloppy(b, this, vertex_merge_radius); |
| 461 | return difference.num_loops() == 0; |
| 462 | } |
| 463 | |
| 464 | bool S2Polygon::MayIntersect(S2Cell const& cell) const { |
| 465 | if (num_loops() == 1) { |
| 466 | return loop(0)->MayIntersect(cell); |
| 467 | } |
| 468 | if (!bound_.Intersects(cell.GetRectBound())) return false; |
| 469 | |
| 470 | S2Loop cell_loop(cell); |
| 471 | S2Polygon cell_poly(&cell_loop); |
| 472 | bool intersects = Intersects(&cell_poly); |
| 473 | if (!intersects) DCHECK(!Contains(cell.GetCenter())); |
| 474 | return intersects; |
| 475 | } |
| 476 | |
| 477 | bool S2Polygon::VirtualContainsPoint(S2Point const& p) const { |
| 478 | return Contains(p); // The same as Contains() below, just virtual. |
| 479 | } |
| 480 | |
| 481 | bool S2Polygon::Contains(S2Point const& p) const { |
| 482 | if (num_loops() == 1) { |
| 483 | return loop(0)->Contains(p); // Optimization. |
| 484 | } |
| 485 | if (!bound_.Contains(p)) return false; |
| 486 | bool inside = false; |
| 487 | for (int i = 0; i < num_loops(); ++i) { |
| 488 | inside ^= loop(i)->Contains(p); |
| 489 | if (inside && !has_holes_) break; // Shells are disjoint. |
| 490 | } |
| 491 | return inside; |
| 492 | } |
| 493 | |
| 494 | void S2Polygon::Encode(Encoder* const encoder) const { |
| 495 | encoder->Ensure(10); // Sufficient |
| 496 | encoder->put8(kCurrentEncodingVersionNumber); |
| 497 | encoder->put8(owns_loops_); |
| 498 | encoder->put8(has_holes_); |
| 499 | encoder->put32(loops_.size()); |
| 500 | DCHECK_GE(encoder->avail(), 0); |
| 501 | |
| 502 | for (int i = 0; i < num_loops(); ++i) { |
| 503 | loop(i)->Encode(encoder); |
| 504 | } |
| 505 | bound_.Encode(encoder); |
| 506 | } |
| 507 | |
| 508 | bool S2Polygon::Decode(Decoder* const decoder) { |
| 509 | return DecodeInternal(decoder, false); |
| 510 | } |
| 511 | |
| 512 | bool S2Polygon::DecodeWithinScope(Decoder* const decoder) { |
| 513 | return DecodeInternal(decoder, true); |
| 514 | } |
| 515 | |
| 516 | bool S2Polygon::DecodeInternal(Decoder* const decoder, bool within_scope) { |
| 517 | unsigned char version = decoder->get8(); |
| 518 | if (version > kCurrentEncodingVersionNumber) return false; |
| 519 | |
| 520 | if (owns_loops_) DeleteLoopsInVector(&loops_); |
| 521 | |
| 522 | owns_loops_ = decoder->get8(); |
| 523 | has_holes_ = decoder->get8(); |
| 524 | int num_loops = decoder->get32(); |
| 525 | loops_.clear(); |
| 526 | loops_.reserve(num_loops); |
| 527 | num_vertices_ = 0; |
| 528 | for (int i = 0; i < num_loops; ++i) { |
| 529 | loops_.push_back(new S2Loop); |
| 530 | if (within_scope) { |
| 531 | if (!loops_.back()->DecodeWithinScope(decoder)) return false; |
| 532 | } else { |
| 533 | if (!loops_.back()->Decode(decoder)) return false; |
| 534 | } |
| 535 | num_vertices_ += loops_.back()->num_vertices(); |
| 536 | } |
| 537 | if (!bound_.Decode(decoder)) return false; |
| 538 | |
| 539 | DCHECK(IsValid(loops_)); |
| 540 | |
| 541 | return decoder->avail() >= 0; |
| 542 | } |
| 543 | |
| 544 | // Indexing structure to efficiently ClipEdge() of a polygon. This is |
| 545 | // an abstract class because we need to use if for both polygons (for |
| 546 | // InitToIntersection() and friends) and for sets of vectors of points |
| 547 | // (for InitToSimplified()). |
| 548 | // |
| 549 | // Usage -- in your subclass: |
| 550 | // - Call AddLoop() for each of your loops -- and keep them accessible in |
| 551 | // your subclass. |
| 552 | // - Overwrite EdgeFromTo(), calling DecodeIndex() and accessing your |
| 553 | // underlying data with the resulting two indices. |
| 554 | class S2LoopSequenceIndex: public S2EdgeIndex { |
| 555 | public: |
| 556 | S2LoopSequenceIndex(): num_edges_(0), num_loops_(0) {} |
| 557 | ~S2LoopSequenceIndex() {} |
| 558 | |
| 559 | void AddLoop(int num_vertices) { |
| 560 | int vertices_so_far = num_edges_; |
| 561 | loop_to_first_index_.push_back(vertices_so_far); |
| 562 | index_to_loop_.resize(vertices_so_far + num_vertices); |
| 563 | for (int i = 0; i < num_vertices; ++i) { |
| 564 | index_to_loop_[vertices_so_far] = num_loops_; |
| 565 | vertices_so_far++; |
| 566 | } |
| 567 | num_edges_ += num_vertices; |
| 568 | num_loops_++; |
| 569 | } |
| 570 | |
| 571 | inline void DecodeIndex(int index, |
| 572 | int* loop_index, int* vertex_in_loop) const { |
| 573 | *loop_index = index_to_loop_[index]; |
| 574 | *vertex_in_loop = index - loop_to_first_index_[*loop_index]; |
| 575 | } |
| 576 | |
| 577 | // It is faster to return both vertices at once. It makes a difference |
| 578 | // for small polygons. |
| 579 | virtual void EdgeFromTo(int index, |
| 580 | S2Point const* * from, S2Point const* * to) const = 0; |
| 581 | |
| 582 | int num_edges() const { return num_edges_; } |
| 583 | |
| 584 | virtual S2Point const* edge_from(int index) const { |
| 585 | S2Point const* from; |
| 586 | S2Point const* to; |
| 587 | EdgeFromTo(index, &from, &to); |
| 588 | return from; |
| 589 | } |
| 590 | |
| 591 | virtual S2Point const* edge_to(int index) const { |
| 592 | S2Point const* from; |
| 593 | S2Point const* to; |
| 594 | EdgeFromTo(index, &from, &to); |
| 595 | return to; |
| 596 | } |
| 597 | |
| 598 | protected: |
| 599 | // Map from the unidimensional edge index to the loop this edge |
| 600 | // belongs to. |
| 601 | vector<int> index_to_loop_; |
| 602 | |
| 603 | // Reverse of index_to_loop_: maps a loop index to the |
| 604 | // unidimensional index of the first edge in the loop. |
| 605 | vector<int> loop_to_first_index_; |
| 606 | |
| 607 | // Total number of edges. |
| 608 | int num_edges_; |
| 609 | |
| 610 | // Total number of loops. |
| 611 | int num_loops_; |
| 612 | }; |
| 613 | |
| 614 | // Indexing structure for an S2Polygon. |
| 615 | class S2PolygonIndex: public S2LoopSequenceIndex { |
| 616 | public: |
| 617 | S2PolygonIndex(S2Polygon const* poly, bool reverse): |
| 618 | poly_(poly), |
| 619 | reverse_(reverse) { |
| 620 | for (int iloop = 0; iloop < poly_->num_loops(); ++iloop) { |
| 621 | AddLoop(poly_->loop(iloop)->num_vertices()); |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | virtual ~S2PolygonIndex() {} |
| 626 | |
| 627 | virtual void EdgeFromTo(int index, |
| 628 | S2Point const* * from, S2Point const* * to) const { |
| 629 | int loop_index; |
| 630 | int vertex_in_loop; |
| 631 | DecodeIndex(index, &loop_index, &vertex_in_loop); |
| 632 | S2Loop const* loop(poly_->loop(loop_index)); |
| 633 | int from_index, to_index; |
| 634 | if (loop->is_hole() ^ reverse_) { |
| 635 | from_index = loop->num_vertices() - 1 - vertex_in_loop; |
| 636 | to_index = 2 * loop->num_vertices() - 2 - vertex_in_loop; |
| 637 | } else { |
| 638 | from_index = vertex_in_loop; |
| 639 | to_index = vertex_in_loop + 1; |
| 640 | } |
| 641 | *from = &(loop->vertex(from_index)); |
| 642 | *to = &(loop->vertex(to_index)); |
| 643 | } |
| 644 | |
| 645 | private: |
| 646 | S2Polygon const* poly_; |
| 647 | bool reverse_; |
| 648 | }; |
| 649 | |
| 650 | // Indexing structure for a sequence of loops (not in the sense of S2: |
| 651 | // the loops can self-intersect). Each loop is given in a vector<S2Point> |
| 652 | // where, as in S2Loop, the last vertex is implicitely joined to the first. |
| 653 | // Add each loop individually with AddVector(). The caller owns |
| 654 | // the vector<S2Point>'s. |
| 655 | class S2LoopsAsVectorsIndex: public S2LoopSequenceIndex { |
| 656 | public: |
| 657 | S2LoopsAsVectorsIndex() {} |
| 658 | ~S2LoopsAsVectorsIndex() {} |
| 659 | |
| 660 | void AddVector(vector<S2Point> const* v) { |
| 661 | loops_.push_back(v); |
| 662 | AddLoop(v->size()); |
| 663 | } |
| 664 | |
| 665 | virtual void EdgeFromTo(int index, |
| 666 | S2Point const* *from, S2Point const* *to) const { |
| 667 | int loop_index; |
| 668 | int vertex_in_loop; |
| 669 | DecodeIndex(index, &loop_index, &vertex_in_loop); |
| 670 | vector<S2Point> const* loop = loops_[loop_index]; |
| 671 | *from = &loop->at(vertex_in_loop); |
| 672 | *to = &loop->at(vertex_in_loop == loop->size() - 1 |
| 673 | ? 0 |
| 674 | : vertex_in_loop + 1); |
| 675 | } |
| 676 | |
| 677 | private: |
| 678 | vector< vector<S2Point> const* > loops_; |
| 679 | }; |
| 680 | |
| 681 | typedef vector<pair<double, S2Point> > IntersectionSet; |
| 682 | |
| 683 | static void AddIntersection(S2Point const& a0, S2Point const& a1, |
| 684 | S2Point const& b0, S2Point const& b1, |
| 685 | bool add_shared_edges, int crossing, |
| 686 | IntersectionSet* intersections) { |
| 687 | if (crossing > 0) { |
| 688 | // There is a proper edge crossing. |
| 689 | S2Point x = S2EdgeUtil::GetIntersection(a0, a1, b0, b1); |
| 690 | double t = S2EdgeUtil::GetDistanceFraction(x, a0, a1); |
| 691 | intersections->push_back(make_pair(t, x)); |
| 692 | |
| 693 | } else if (S2EdgeUtil::VertexCrossing(a0, a1, b0, b1)) { |
| 694 | // There is a crossing at one of the vertices. The basic rule is simple: |
| 695 | // if a0 equals one of the "b" vertices, the crossing occurs at t=0; |
| 696 | // otherwise, it occurs at t=1. |
| 697 | // |
| 698 | // This has the effect that when two symmetric edges are |
| 699 | // encountered (an edge an its reverse), neither one is included |
| 700 | // in the output. When two duplicate edges are encountered, both |
| 701 | // are included in the output. The "add_shared_edges" flag allows |
| 702 | // one of these two copies to be removed by changing its |
| 703 | // intersection parameter from 0 to 1. |
| 704 | |
| 705 | double t = (a0 == b0 || a0 == b1) ? 0 : 1; |
| 706 | if (!add_shared_edges && a1 == b1) t = 1; |
| 707 | intersections->push_back(make_pair(t, t == 0 ? a0 : a1)); |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | static void ClipEdge(S2Point const& a0, S2Point const& a1, |
| 712 | S2LoopSequenceIndex* b_index, |
| 713 | bool add_shared_edges, IntersectionSet* intersections) { |
| 714 | // Find all points where the polygon B intersects the edge (a0,a1), |
| 715 | // and add the corresponding parameter values (in the range [0,1]) to |
| 716 | // "intersections". |
| 717 | S2LoopSequenceIndex::Iterator it(b_index); |
| 718 | it.GetCandidates(a0, a1); |
| 719 | S2EdgeUtil::EdgeCrosser crosser(&a0, &a1, &a0); |
| 720 | S2Point const* from; |
| 721 | S2Point const* to = NULL; |
| 722 | for (; !it.Done(); it.Next()) { |
| 723 | S2Point const* const previous_to = to; |
| 724 | b_index->EdgeFromTo(it.Index(), &from, &to); |
| 725 | if (previous_to != from) crosser.RestartAt(from); |
| 726 | int crossing = crosser.RobustCrossing(to); |
| 727 | if (crossing < 0) continue; |
| 728 | AddIntersection(a0, a1, *from, *to, |
| 729 | add_shared_edges, crossing, intersections); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | |
| 734 | static void ClipBoundary(S2Polygon const* a, bool reverse_a, |
| 735 | S2Polygon const* b, bool reverse_b, bool invert_b, |
| 736 | bool add_shared_edges, S2PolygonBuilder* builder) { |
| 737 | // Clip the boundary of A to the interior of B, and add the resulting edges |
| 738 | // to "builder". Shells are directed CCW and holes are directed clockwise, |
| 739 | // unless "reverse_a" or "reverse_b" is true in which case these directions |
| 740 | // in the corresponding polygon are reversed. If "invert_b" is true, the |
| 741 | // boundary of A is clipped to the exterior rather than the interior of B. |
| 742 | // If "add_shared_edges" is true, then the output will include any edges |
| 743 | // that are shared between A and B (both edges must be in the same direction |
| 744 | // after any edge reversals are taken into account). |
| 745 | |
| 746 | S2PolygonIndex b_index(b, reverse_b); |
| 747 | b_index.PredictAdditionalCalls(a->num_vertices()); |
| 748 | |
| 749 | IntersectionSet intersections; |
| 750 | for (int i = 0; i < a->num_loops(); ++i) { |
| 751 | S2Loop* a_loop = a->loop(i); |
| 752 | int n = a_loop->num_vertices(); |
| 753 | int dir = (a_loop->is_hole() ^ reverse_a) ? -1 : 1; |
| 754 | bool inside = b->Contains(a_loop->vertex(0)) ^ invert_b; |
| 755 | for (int j = (dir > 0) ? 0 : n; n > 0; --n, j += dir) { |
| 756 | S2Point const& a0 = a_loop->vertex(j); |
| 757 | S2Point const& a1 = a_loop->vertex(j + dir); |
| 758 | intersections.clear(); |
| 759 | ClipEdge(a0, a1, &b_index, add_shared_edges, &intersections); |
| 760 | |
| 761 | if (inside) intersections.push_back(make_pair(0, a0)); |
| 762 | inside = (intersections.size() & 1); |
| 763 | DCHECK_EQ((b->Contains(a1) ^ invert_b), inside); |
| 764 | if (inside) intersections.push_back(make_pair(1, a1)); |
| 765 | sort(intersections.begin(), intersections.end()); |
| 766 | for (int k = 0; k < intersections.size(); k += 2) { |
| 767 | if (intersections[k] == intersections[k+1]) continue; |
| 768 | builder->AddEdge(intersections[k].second, intersections[k+1].second); |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | void S2Polygon::InitToIntersection(S2Polygon const* a, S2Polygon const* b) { |
| 775 | InitToIntersectionSloppy(a, b, S2EdgeUtil::kIntersectionTolerance); |
| 776 | } |
| 777 | |
| 778 | void S2Polygon::InitToIntersectionSloppy(S2Polygon const* a, S2Polygon const* b, |
| 779 | S1Angle vertex_merge_radius) { |
| 780 | DCHECK_EQ(0, num_loops()); |
| 781 | if (!a->bound_.Intersects(b->bound_)) return; |
| 782 | |
| 783 | // We want the boundary of A clipped to the interior of B, |
| 784 | // plus the boundary of B clipped to the interior of A, |
| 785 | // plus one copy of any directed edges that are in both boundaries. |
| 786 | |
| 787 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
| 788 | options.set_vertex_merge_radius(vertex_merge_radius); |
| 789 | S2PolygonBuilder builder(options); |
| 790 | ClipBoundary(a, false, b, false, false, true, &builder); |
| 791 | ClipBoundary(b, false, a, false, false, false, &builder); |
| 792 | if (!builder.AssemblePolygon(this, NULL)) { |
| 793 | LOG(DFATAL) << "Bad directed edges in InitToIntersection" ; |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | void S2Polygon::InitToUnion(S2Polygon const* a, S2Polygon const* b) { |
| 798 | InitToUnionSloppy(a, b, S2EdgeUtil::kIntersectionTolerance); |
| 799 | } |
| 800 | |
| 801 | void S2Polygon::InitToUnionSloppy(S2Polygon const* a, S2Polygon const* b, |
| 802 | S1Angle vertex_merge_radius) { |
| 803 | DCHECK_EQ(0, num_loops()); |
| 804 | |
| 805 | // We want the boundary of A clipped to the exterior of B, |
| 806 | // plus the boundary of B clipped to the exterior of A, |
| 807 | // plus one copy of any directed edges that are in both boundaries. |
| 808 | |
| 809 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
| 810 | options.set_vertex_merge_radius(vertex_merge_radius); |
| 811 | S2PolygonBuilder builder(options); |
| 812 | ClipBoundary(a, false, b, false, true, true, &builder); |
| 813 | ClipBoundary(b, false, a, false, true, false, &builder); |
| 814 | if (!builder.AssemblePolygon(this, NULL)) { |
| 815 | LOG(DFATAL) << "Bad directed edges" ; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | void S2Polygon::InitToDifference(S2Polygon const* a, S2Polygon const* b) { |
| 820 | InitToDifferenceSloppy(a, b, S2EdgeUtil::kIntersectionTolerance); |
| 821 | } |
| 822 | |
| 823 | void S2Polygon::InitToDifferenceSloppy(S2Polygon const* a, S2Polygon const* b, |
| 824 | S1Angle vertex_merge_radius) { |
| 825 | DCHECK_EQ(0, num_loops()); |
| 826 | |
| 827 | // We want the boundary of A clipped to the exterior of B, |
| 828 | // plus the reversed boundary of B clipped to the interior of A, |
| 829 | // plus one copy of any edge in A that is also a reverse edge in B. |
| 830 | |
| 831 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
| 832 | options.set_vertex_merge_radius(vertex_merge_radius); |
| 833 | S2PolygonBuilder builder(options); |
| 834 | ClipBoundary(a, false, b, true, true, true, &builder); |
| 835 | ClipBoundary(b, true, a, false, false, false, &builder); |
| 836 | if (!builder.AssemblePolygon(this, NULL)) { |
| 837 | LOG(DFATAL) << "Bad directed edges in InitToDifference" ; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | // Takes a loop and simplifies it. This may return a self-intersecting |
| 842 | // polyline. Always keeps the first vertex from the loop. |
| 843 | vector<S2Point>* SimplifyLoopAsPolyline(S2Loop const* loop, S1Angle tolerance) { |
| 844 | vector<S2Point> points(loop->num_vertices() + 1); |
| 845 | // Add the first vertex at the beginning and at the end. |
| 846 | for (int i = 0; i <= loop->num_vertices(); ++i) { |
| 847 | points[i] = loop->vertex(i); |
| 848 | } |
| 849 | S2Polyline line(points); |
| 850 | vector<int> indices; |
| 851 | line.SubsampleVertices(tolerance, &indices); |
| 852 | if (indices.size() <= 2) return NULL; |
| 853 | // Add them all except the last: it is the same as the first. |
| 854 | vector<S2Point>* simplified_line = new vector<S2Point>(indices.size() - 1); |
| 855 | VLOG(4) << "Now simplified to: " ; |
| 856 | for (int i = 0; i + 1 < indices.size(); ++i) { |
| 857 | (*simplified_line)[i] = line.vertex(indices[i]); |
| 858 | VLOG(4) << S2LatLng(line.vertex(indices[i])); |
| 859 | } |
| 860 | return simplified_line; |
| 861 | } |
| 862 | |
| 863 | // Takes a set of possibly intersecting edges, stored in an |
| 864 | // S2EdgeIndex. Breaks the edges into small pieces so that there is |
| 865 | // no intersection anymore, and adds all these edges to the builder. |
| 866 | void BreakEdgesAndAddToBuilder(S2LoopsAsVectorsIndex* edge_index, |
| 867 | S2PolygonBuilder* builder) { |
| 868 | // If there are self intersections, we add the pieces separately. |
| 869 | for (int i = 0; i < edge_index->num_edges(); ++i) { |
| 870 | S2Point const* from; |
| 871 | S2Point const* to; |
| 872 | edge_index->EdgeFromTo(i, &from, &to); |
| 873 | |
| 874 | IntersectionSet intersections; |
| 875 | intersections.push_back(make_pair(0, *from)); |
| 876 | // add_shared_edges can be false or true: it makes no difference |
| 877 | // due to the way we call ClipEdge. |
| 878 | ClipEdge(*from, *to, edge_index, false, &intersections); |
| 879 | intersections.push_back(make_pair(1, *to)); |
| 880 | sort(intersections.begin(), intersections.end()); |
| 881 | for (int k = 0; k + 1 < intersections.size(); ++k) { |
| 882 | if (intersections[k] == intersections[k+1]) continue; |
| 883 | builder->AddEdge(intersections[k].second, intersections[k+1].second); |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | // Simplifies the polygon. The algorithm is straightforward and naive: |
| 889 | // 1. Simplify each loop by removing points while staying in the |
| 890 | // tolerance zone. This uses S2Polyline::SubsampleVertices(), |
| 891 | // which is not guaranteed to be optimal in terms of number of |
| 892 | // points. |
| 893 | // 2. Break any edge in pieces such that no piece intersects any |
| 894 | // other. |
| 895 | // 3. Use the polygon builder to regenerate the full polygon. |
| 896 | void S2Polygon::InitToSimplified(S2Polygon const* a, S1Angle tolerance) { |
| 897 | S2PolygonBuilderOptions builder_options = |
| 898 | S2PolygonBuilderOptions::UNDIRECTED_XOR(); |
| 899 | builder_options.set_validate(false); |
| 900 | // Ideally, we would want to set the vertex_merge_radius of the |
| 901 | // builder roughly to tolerance (and in fact forego the edge |
| 902 | // splitting step). Alas, if we do that, we are liable to the |
| 903 | // 'chain effect', where vertices are merged with closeby vertices |
| 904 | // and so on, so that a vertex can move by an arbitrary distance. |
| 905 | // So we remain conservative: |
| 906 | builder_options.set_vertex_merge_radius(tolerance * 0.10); |
| 907 | S2PolygonBuilder builder(builder_options); |
| 908 | |
| 909 | // Simplify each loop separately and add to the edge index |
| 910 | S2LoopsAsVectorsIndex index; |
| 911 | vector<vector<S2Point>*> simplified_loops; |
| 912 | for (int i = 0; i < a->num_loops(); ++i) { |
| 913 | vector<S2Point>* simpler = SimplifyLoopAsPolyline(a->loop(i), tolerance); |
| 914 | if (NULL == simpler) continue; |
| 915 | simplified_loops.push_back(simpler); |
| 916 | index.AddVector(simpler); |
| 917 | } |
| 918 | if (0 != index.num_edges()) { |
| 919 | BreakEdgesAndAddToBuilder(&index, &builder); |
| 920 | |
| 921 | if (!builder.AssemblePolygon(this, NULL)) { |
| 922 | LOG(DFATAL) << "Bad edges in InitToSimplified." ; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | for (int i = 0; i < simplified_loops.size(); ++i) { |
| 927 | delete simplified_loops[i]; |
| 928 | } |
| 929 | simplified_loops.clear(); |
| 930 | } |
| 931 | |
| 932 | void S2Polygon::InternalClipPolyline(bool invert, |
| 933 | S2Polyline const* a, |
| 934 | vector<S2Polyline*> *out, |
| 935 | S1Angle merge_radius) const { |
| 936 | // Clip the polyline A to the interior of this polygon. |
| 937 | // The resulting polyline(s) will be appended to 'out'. |
| 938 | // If invert is true, we clip A to the exterior of this polygon instead. |
| 939 | // Vertices will be dropped such that adjacent vertices will not |
| 940 | // be closer than 'merge_radius'. |
| 941 | // |
| 942 | // We do the intersection/subtraction by walking the polyline edges. |
| 943 | // For each edge, we compute all intersections with the polygon boundary |
| 944 | // and sort them in increasing order of distance along that edge. |
| 945 | // We then divide the intersection points into pairs, and output a |
| 946 | // clipped polyline segment for each one. |
| 947 | // We keep track of whether we're inside or outside of the polygon at |
| 948 | // all times to decide which segments to output. |
| 949 | |
| 950 | CHECK(out->empty()); |
| 951 | |
| 952 | IntersectionSet intersections; |
| 953 | vector<S2Point> vertices; |
| 954 | S2PolygonIndex poly_index(this, false); |
| 955 | int n = a->num_vertices(); |
| 956 | bool inside = Contains(a->vertex(0)) ^ invert; |
| 957 | for (int j = 0; j < n-1; j++) { |
| 958 | S2Point const& a0 = a->vertex(j); |
| 959 | S2Point const& a1 = a->vertex(j + 1); |
| 960 | ClipEdge(a0, a1, &poly_index, true, &intersections); |
| 961 | if (inside) intersections.push_back(make_pair(0, a0)); |
| 962 | inside = (intersections.size() & 1); |
| 963 | DCHECK_EQ((Contains(a1) ^ invert), inside); |
| 964 | if (inside) intersections.push_back(make_pair(1, a1)); |
| 965 | sort(intersections.begin(), intersections.end()); |
| 966 | // At this point we have a sorted array of vertex pairs representing |
| 967 | // the edge(s) obtained after clipping (a0,a1) against the polygon. |
| 968 | for (int k = 0; k < intersections.size(); k += 2) { |
| 969 | if (intersections[k] == intersections[k+1]) continue; |
| 970 | S2Point const& v0 = intersections[k].second; |
| 971 | S2Point const& v1 = intersections[k+1].second; |
| 972 | |
| 973 | // If the gap from the previous vertex to this one is large |
| 974 | // enough, start a new polyline. |
| 975 | if (!vertices.empty() && |
| 976 | vertices.back().Angle(v0) > merge_radius.radians()) { |
| 977 | out->push_back(new S2Polyline(vertices)); |
| 978 | vertices.clear(); |
| 979 | } |
| 980 | // Append this segment to the current polyline, ignoring any |
| 981 | // vertices that are too close to the previous vertex. |
| 982 | if (vertices.empty()) vertices.push_back(v0); |
| 983 | if (vertices.back().Angle(v1) > merge_radius.radians()) { |
| 984 | vertices.push_back(v1); |
| 985 | } |
| 986 | } |
| 987 | intersections.clear(); |
| 988 | } |
| 989 | if (!vertices.empty()) { |
| 990 | out->push_back(new S2Polyline(vertices)); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | void S2Polygon::IntersectWithPolyline( |
| 995 | S2Polyline const* a, |
| 996 | vector<S2Polyline*> *out) const { |
| 997 | IntersectWithPolylineSloppy(a, out, S2EdgeUtil::kIntersectionTolerance); |
| 998 | } |
| 999 | |
| 1000 | void S2Polygon::IntersectWithPolylineSloppy( |
| 1001 | S2Polyline const* a, |
| 1002 | vector<S2Polyline*> *out, |
| 1003 | S1Angle vertex_merge_radius) const { |
| 1004 | InternalClipPolyline(false, a, out, vertex_merge_radius); |
| 1005 | } |
| 1006 | |
| 1007 | void S2Polygon::SubtractFromPolyline(S2Polyline const* a, |
| 1008 | vector<S2Polyline*> *out) const { |
| 1009 | SubtractFromPolylineSloppy(a, out, S2EdgeUtil::kIntersectionTolerance); |
| 1010 | } |
| 1011 | |
| 1012 | void S2Polygon::SubtractFromPolylineSloppy( |
| 1013 | S2Polyline const* a, |
| 1014 | vector<S2Polyline*> *out, |
| 1015 | S1Angle vertex_merge_radius) const { |
| 1016 | InternalClipPolyline(true, a, out, vertex_merge_radius); |
| 1017 | } |
| 1018 | |
| 1019 | |
| 1020 | S2Polygon* S2Polygon::DestructiveUnion(vector<S2Polygon*>* polygons) { |
| 1021 | return DestructiveUnionSloppy(polygons, S2EdgeUtil::kIntersectionTolerance); |
| 1022 | } |
| 1023 | |
| 1024 | S2Polygon* S2Polygon::DestructiveUnionSloppy(vector<S2Polygon*>* polygons, |
| 1025 | S1Angle vertex_merge_radius) { |
| 1026 | // Effectively create a priority queue of polygons in order of number of |
| 1027 | // vertices. Repeatedly union the two smallest polygons and add the result |
| 1028 | // to the queue until we have a single polygon to return. |
| 1029 | typedef multimap<int, S2Polygon*> QueueType; |
| 1030 | QueueType queue; // Map from # of vertices to polygon. |
| 1031 | for (int i = 0; i < polygons->size(); ++i) |
| 1032 | queue.insert(make_pair((*polygons)[i]->num_vertices(), (*polygons)[i])); |
| 1033 | polygons->clear(); |
| 1034 | |
| 1035 | while (queue.size() > 1) { |
| 1036 | // Pop two simplest polygons from queue. |
| 1037 | QueueType::iterator smallest_it = queue.begin(); |
| 1038 | int a_size = smallest_it->first; |
| 1039 | S2Polygon* a_polygon = smallest_it->second; |
| 1040 | queue.erase(smallest_it); |
| 1041 | smallest_it = queue.begin(); |
| 1042 | int b_size = smallest_it->first; |
| 1043 | S2Polygon* b_polygon = smallest_it->second; |
| 1044 | queue.erase(smallest_it); |
| 1045 | |
| 1046 | // Union and add result back to queue. |
| 1047 | S2Polygon* union_polygon = new S2Polygon(); |
| 1048 | union_polygon->InitToUnionSloppy(a_polygon, b_polygon, vertex_merge_radius); |
| 1049 | delete a_polygon; |
| 1050 | delete b_polygon; |
| 1051 | queue.insert(make_pair(a_size + b_size, union_polygon)); |
| 1052 | // We assume that the number of vertices in the union polygon is the |
| 1053 | // sum of the number of vertices in the original polygons, which is not |
| 1054 | // always true, but will almost always be a decent approximation, and |
| 1055 | // faster than recomputing. |
| 1056 | } |
| 1057 | |
| 1058 | if (queue.empty()) |
| 1059 | return new S2Polygon(); |
| 1060 | else |
| 1061 | return queue.begin()->second; |
| 1062 | } |
| 1063 | |
| 1064 | void S2Polygon::InitToCellUnionBorder(S2CellUnion const& cells) { |
| 1065 | // Use a polygon builder to union the cells in the union. Due to rounding |
| 1066 | // errors, we can't do an exact union - when a small cell is adjacent to a |
| 1067 | // larger cell, the shared edges can fail to line up exactly. Two cell edges |
| 1068 | // cannot come closer then kMinWidth, so if we have the polygon builder merge |
| 1069 | // edges within half that distance, we should always merge shared edges |
| 1070 | // without merging different edges. |
| 1071 | S2PolygonBuilderOptions options(S2PolygonBuilderOptions::DIRECTED_XOR()); |
| 1072 | double min_cell_angle = S2::kMinWidth.GetValue(S2CellId::kMaxLevel); |
| 1073 | options.set_vertex_merge_radius(S1Angle::Radians(min_cell_angle / 2)); |
| 1074 | S2PolygonBuilder builder(options); |
| 1075 | for (int i = 0; i < cells.num_cells(); ++i) { |
| 1076 | S2Loop cell_loop(S2Cell(cells.cell_id(i))); |
| 1077 | builder.AddLoop(&cell_loop); |
| 1078 | } |
| 1079 | if (!builder.AssemblePolygon(this, NULL)) { |
| 1080 | LOG(DFATAL) << "AssemblePolygon failed in InitToCellUnionBorder" ; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | bool S2Polygon::IsNormalized() const { |
| 1085 | set<S2Point> vertices; |
| 1086 | S2Loop* last_parent = NULL; |
| 1087 | for (int i = 0; i < num_loops(); ++i) { |
| 1088 | S2Loop* child = loop(i); |
| 1089 | if (child->depth() == 0) continue; |
| 1090 | S2Loop* parent = loop(GetParent(i)); |
| 1091 | if (parent != last_parent) { |
| 1092 | vertices.clear(); |
| 1093 | for (int j = 0; j < parent->num_vertices(); ++j) { |
| 1094 | vertices.insert(parent->vertex(j)); |
| 1095 | } |
| 1096 | last_parent = parent; |
| 1097 | } |
| 1098 | int count = 0; |
| 1099 | for (int j = 0; j < child->num_vertices(); ++j) { |
| 1100 | if (vertices.count(child->vertex(j)) > 0) ++count; |
| 1101 | } |
| 1102 | if (count > 1) return false; |
| 1103 | } |
| 1104 | return true; |
| 1105 | } |
| 1106 | |
| 1107 | bool S2Polygon::BoundaryEquals(S2Polygon const* b) const { |
| 1108 | if (num_loops() != b->num_loops()) return false; |
| 1109 | |
| 1110 | for (int i = 0; i < num_loops(); ++i) { |
| 1111 | S2Loop* a_loop = loop(i); |
| 1112 | bool success = false; |
| 1113 | for (int j = 0; j < num_loops(); ++j) { |
| 1114 | S2Loop* b_loop = b->loop(j); |
| 1115 | if ((b_loop->depth() == a_loop->depth()) && |
| 1116 | b_loop->BoundaryEquals(a_loop)) { |
| 1117 | success = true; |
| 1118 | break; |
| 1119 | } |
| 1120 | } |
| 1121 | if (!success) return false; |
| 1122 | } |
| 1123 | return true; |
| 1124 | } |
| 1125 | |
| 1126 | bool S2Polygon::BoundaryApproxEquals(S2Polygon const* b, |
| 1127 | double max_error) const { |
| 1128 | if (num_loops() != b->num_loops()) return false; |
| 1129 | |
| 1130 | // For now, we assume that there is at most one candidate match for each |
| 1131 | // loop. (So far this method is just used for testing.) |
| 1132 | |
| 1133 | for (int i = 0; i < num_loops(); ++i) { |
| 1134 | S2Loop* a_loop = loop(i); |
| 1135 | bool success = false; |
| 1136 | for (int j = 0; j < num_loops(); ++j) { |
| 1137 | S2Loop* b_loop = b->loop(j); |
| 1138 | if (b_loop->depth() == a_loop->depth() && |
| 1139 | b_loop->BoundaryApproxEquals(a_loop, max_error)) { |
| 1140 | success = true; |
| 1141 | break; |
| 1142 | } |
| 1143 | } |
| 1144 | if (!success) return false; |
| 1145 | } |
| 1146 | return true; |
| 1147 | } |
| 1148 | |
| 1149 | bool S2Polygon::BoundaryNear(S2Polygon const* b, double max_error) const { |
| 1150 | if (num_loops() != b->num_loops()) return false; |
| 1151 | |
| 1152 | // For now, we assume that there is at most one candidate match for each |
| 1153 | // loop. (So far this method is just used for testing.) |
| 1154 | |
| 1155 | for (int i = 0; i < num_loops(); ++i) { |
| 1156 | S2Loop* a_loop = loop(i); |
| 1157 | bool success = false; |
| 1158 | for (int j = 0; j < num_loops(); ++j) { |
| 1159 | S2Loop* b_loop = b->loop(j); |
| 1160 | if (b_loop->depth() == a_loop->depth() && |
| 1161 | b_loop->BoundaryNear(a_loop, max_error)) { |
| 1162 | success = true; |
| 1163 | break; |
| 1164 | } |
| 1165 | } |
| 1166 | if (!success) return false; |
| 1167 | } |
| 1168 | return true; |
| 1169 | } |
| 1170 | |
| 1171 | S2Point S2Polygon::Project(S2Point const& point) const { |
| 1172 | DCHECK(!loops_.empty()); |
| 1173 | |
| 1174 | if (Contains(point)) { |
| 1175 | return point; |
| 1176 | } |
| 1177 | |
| 1178 | S1Angle min_distance = S1Angle::Radians(10); |
| 1179 | int min_loop_index = 0; |
| 1180 | int min_vertex_index = 0; |
| 1181 | |
| 1182 | for (int l = 0; l < num_loops(); ++l) { |
| 1183 | S2Loop *a_loop = loop(l); |
| 1184 | for (int v = 0; v < a_loop->num_vertices(); ++v) { |
| 1185 | S1Angle distance_to_segment = |
| 1186 | S2EdgeUtil::GetDistance(point, |
| 1187 | a_loop->vertex(v), |
| 1188 | a_loop->vertex(v + 1)); |
| 1189 | if (distance_to_segment < min_distance) { |
| 1190 | min_distance = distance_to_segment; |
| 1191 | min_loop_index = l; |
| 1192 | min_vertex_index = v; |
| 1193 | } |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | S2Point closest_point = S2EdgeUtil::GetClosestPoint( |
| 1198 | point, |
| 1199 | loop(min_loop_index)->vertex(min_vertex_index), |
| 1200 | loop(min_loop_index)->vertex(min_vertex_index + 1)); |
| 1201 | |
| 1202 | return closest_point; |
| 1203 | } |
| 1204 | |