| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include <set> |
| 4 | using std::set; |
| 5 | using std::multiset; |
| 6 | |
| 7 | #include <vector> |
| 8 | using std::vector; |
| 9 | |
| 10 | // #include "base/commandlineflags.h" |
| 11 | #include "base/logging.h" |
| 12 | #include "util/math/matrix3x3-inl.h" |
| 13 | #include "s2polyline.h" |
| 14 | |
| 15 | #include "util/coding/coder.h" |
| 16 | #include "s2cap.h" |
| 17 | #include "s2cell.h" |
| 18 | #include "s2latlng.h" |
| 19 | #include "s2edgeutil.h" |
| 20 | |
| 21 | // DECLARE_bool(s2debug); // defined in s2.cc |
| 22 | |
| 23 | static const unsigned char kCurrentEncodingVersionNumber = 1; |
| 24 | |
| 25 | S2Polyline::S2Polyline() |
| 26 | : num_vertices_(0), |
| 27 | vertices_(NULL) { |
| 28 | } |
| 29 | |
| 30 | S2Polyline::S2Polyline(vector<S2Point> const& vertices) |
| 31 | : num_vertices_(0), |
| 32 | vertices_(NULL) { |
| 33 | Init(vertices); |
| 34 | } |
| 35 | |
| 36 | S2Polyline::S2Polyline(vector<S2LatLng> const& vertices) |
| 37 | : num_vertices_(0), |
| 38 | vertices_(NULL) { |
| 39 | Init(vertices); |
| 40 | } |
| 41 | |
| 42 | S2Polyline::~S2Polyline() { |
| 43 | delete[] vertices_; |
| 44 | } |
| 45 | |
| 46 | void S2Polyline::Init(vector<S2Point> const& vertices) { |
| 47 | if (S2::debug) CHECK(IsValid(vertices)); |
| 48 | |
| 49 | delete[] vertices_; |
| 50 | num_vertices_ = vertices.size(); |
| 51 | vertices_ = new S2Point[num_vertices_]; |
| 52 | // Check (num_vertices_ > 0) to avoid invalid reference to vertices[0]. |
| 53 | if (num_vertices_ > 0) { |
| 54 | memcpy(vertices_, &vertices[0], num_vertices_ * sizeof(vertices_[0])); |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | void S2Polyline::Init(vector<S2LatLng> const& vertices) { |
| 59 | delete[] vertices_; |
| 60 | num_vertices_ = vertices.size(); |
| 61 | vertices_ = new S2Point[num_vertices_]; |
| 62 | for (int i = 0; i < num_vertices_; ++i) { |
| 63 | vertices_[i] = vertices[i].ToPoint(); |
| 64 | } |
| 65 | // if (FLAGS_s2debug) { |
| 66 | if (S2::debug) { |
| 67 | vector<S2Point> vertex_vector(vertices_, vertices_ + num_vertices_); |
| 68 | CHECK(IsValid(vertex_vector)); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | bool S2Polyline::IsValid(vector<S2Point> const& v) { |
| 73 | // All vertices must be unit length. |
| 74 | int n = v.size(); |
| 75 | for (int i = 0; i < n; ++i) { |
| 76 | if (!S2::IsUnitLength(v[i])) { |
| 77 | LOG(INFO) << "Vertex " << i << " is not unit length" ; |
| 78 | return false; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | // Adjacent vertices must not be identical or antipodal. |
| 83 | for (int i = 1; i < n; ++i) { |
| 84 | if (v[i-1] == v[i] || v[i-1] == -v[i]) { |
| 85 | LOG(INFO) << "Vertices " << (i - 1) << " and " << i |
| 86 | << " are identical or antipodal" ; |
| 87 | return false; |
| 88 | } |
| 89 | } |
| 90 | return true; |
| 91 | } |
| 92 | |
| 93 | |
| 94 | S2Polyline::S2Polyline(S2Polyline const* src) |
| 95 | : num_vertices_(src->num_vertices_), |
| 96 | vertices_(new S2Point[num_vertices_]) { |
| 97 | memcpy(vertices_, src->vertices_, num_vertices_ * sizeof(vertices_[0])); |
| 98 | } |
| 99 | |
| 100 | S2Polyline* S2Polyline::Clone() const { |
| 101 | return new S2Polyline(this); |
| 102 | } |
| 103 | |
| 104 | S1Angle S2Polyline::GetLength() const { |
| 105 | S1Angle length; |
| 106 | for (int i = 1; i < num_vertices(); ++i) { |
| 107 | length += S1Angle(vertex(i-1), vertex(i)); |
| 108 | } |
| 109 | return length; |
| 110 | } |
| 111 | |
| 112 | S2Point S2Polyline::GetCentroid() const { |
| 113 | S2Point centroid; |
| 114 | for (int i = 1; i < num_vertices(); ++i) { |
| 115 | // The centroid (multiplied by length) is a vector toward the midpoint |
| 116 | // of the edge, whose length is twice the sin of half the angle between |
| 117 | // the two vertices. Defining theta to be this angle, we have: |
| 118 | S2Point vsum = vertex(i-1) + vertex(i); // Length == 2*cos(theta) |
| 119 | S2Point vdiff = vertex(i-1) - vertex(i); // Length == 2*sin(theta) |
| 120 | double cos2 = vsum.Norm2(); |
| 121 | double sin2 = vdiff.Norm2(); |
| 122 | DCHECK_GT(cos2, 0); // Otherwise edge is undefined, and result is NaN. |
| 123 | centroid += sqrt(sin2 / cos2) * vsum; // Length == 2*sin(theta) |
| 124 | } |
| 125 | return centroid; |
| 126 | } |
| 127 | |
| 128 | S2Point S2Polyline::GetSuffix(double fraction, int* next_vertex) const { |
| 129 | DCHECK_GT(num_vertices(), 0); |
| 130 | // We intentionally let the (fraction >= 1) case fall through, since |
| 131 | // we need to handle it in the loop below in any case because of |
| 132 | // possible roundoff errors. |
| 133 | if (fraction <= 0) { |
| 134 | *next_vertex = 1; |
| 135 | return vertex(0); |
| 136 | } |
| 137 | S1Angle length_sum; |
| 138 | for (int i = 1; i < num_vertices(); ++i) { |
| 139 | length_sum += S1Angle(vertex(i-1), vertex(i)); |
| 140 | } |
| 141 | S1Angle target = fraction * length_sum; |
| 142 | for (int i = 1; i < num_vertices(); ++i) { |
| 143 | S1Angle length(vertex(i-1), vertex(i)); |
| 144 | if (target < length) { |
| 145 | // This interpolates with respect to arc length rather than |
| 146 | // straight-line distance, and produces a unit-length result. |
| 147 | S2Point result = S2EdgeUtil::InterpolateAtDistance(target, vertex(i-1), |
| 148 | vertex(i), length); |
| 149 | // It is possible that (result == vertex(i)) due to rounding errors. |
| 150 | *next_vertex = (result == vertex(i)) ? (i + 1) : i; |
| 151 | return result; |
| 152 | } |
| 153 | target -= length; |
| 154 | } |
| 155 | *next_vertex = num_vertices(); |
| 156 | return vertex(num_vertices() - 1); |
| 157 | } |
| 158 | |
| 159 | S2Point S2Polyline::Interpolate(double fraction) const { |
| 160 | int next_vertex; |
| 161 | return GetSuffix(fraction, &next_vertex); |
| 162 | } |
| 163 | |
| 164 | double S2Polyline::UnInterpolate(S2Point const& point, int next_vertex) const { |
| 165 | DCHECK_GT(num_vertices(), 0); |
| 166 | if (num_vertices() < 2) { |
| 167 | return 0; |
| 168 | } |
| 169 | S1Angle length_sum; |
| 170 | for (int i = 1; i < next_vertex; ++i) { |
| 171 | length_sum += S1Angle(vertex(i-1), vertex(i)); |
| 172 | } |
| 173 | S1Angle length_to_point = length_sum + S1Angle(vertex(next_vertex-1), point); |
| 174 | for (int i = next_vertex; i < num_vertices(); ++i) { |
| 175 | length_sum += S1Angle(vertex(i-1), vertex(i)); |
| 176 | } |
| 177 | // The ratio can be greater than 1.0 due to rounding errors or because the |
| 178 | // point is not exactly on the polyline. |
| 179 | return min(1.0, length_to_point / length_sum); |
| 180 | } |
| 181 | |
| 182 | S2Point S2Polyline::Project(S2Point const& point, int* next_vertex) const { |
| 183 | DCHECK_GT(num_vertices(), 0); |
| 184 | |
| 185 | if (num_vertices() == 1) { |
| 186 | // If there is only one vertex, it is always closest to any given point. |
| 187 | *next_vertex = 1; |
| 188 | return vertex(0); |
| 189 | } |
| 190 | |
| 191 | // Initial value larger than any possible distance on the unit sphere. |
| 192 | S1Angle min_distance = S1Angle::Radians(10); |
| 193 | int min_index = -1; |
| 194 | |
| 195 | // Find the line segment in the polyline that is closest to the point given. |
| 196 | for (int i = 1; i < num_vertices(); ++i) { |
| 197 | S1Angle distance_to_segment = S2EdgeUtil::GetDistance(point, vertex(i-1), |
| 198 | vertex(i)); |
| 199 | if (distance_to_segment < min_distance) { |
| 200 | min_distance = distance_to_segment; |
| 201 | min_index = i; |
| 202 | } |
| 203 | } |
| 204 | DCHECK_NE(min_index, -1); |
| 205 | |
| 206 | // Compute the point on the segment found that is closest to the point given. |
| 207 | S2Point closest_point = S2EdgeUtil::GetClosestPoint( |
| 208 | point, vertex(min_index-1), vertex(min_index)); |
| 209 | |
| 210 | *next_vertex = min_index + (closest_point == vertex(min_index) ? 1 : 0); |
| 211 | return closest_point; |
| 212 | } |
| 213 | |
| 214 | bool S2Polyline::IsOnRight(S2Point const& point) const { |
| 215 | DCHECK_GE(num_vertices(), 2); |
| 216 | |
| 217 | int next_vertex; |
| 218 | S2Point closest_point = Project(point, &next_vertex); |
| 219 | |
| 220 | DCHECK_GE(next_vertex, 1); |
| 221 | DCHECK_LE(next_vertex, num_vertices()); |
| 222 | |
| 223 | // If the closest point C is an interior vertex of the polyline, let B and D |
| 224 | // be the previous and next vertices. The given point P is on the right of |
| 225 | // the polyline (locally) if B, P, D are ordered CCW around vertex C. |
| 226 | if (closest_point == vertex(next_vertex-1) && next_vertex > 1 && |
| 227 | next_vertex < num_vertices()) { |
| 228 | if (point == vertex(next_vertex-1)) |
| 229 | return false; // Polyline vertices are not on the RHS. |
| 230 | return S2::OrderedCCW(vertex(next_vertex-2), point, vertex(next_vertex), |
| 231 | vertex(next_vertex-1)); |
| 232 | } |
| 233 | |
| 234 | // Otherwise, the closest point C is incident to exactly one polyline edge. |
| 235 | // We test the point P against that edge. |
| 236 | if (next_vertex == num_vertices()) |
| 237 | --next_vertex; |
| 238 | |
| 239 | return S2::RobustCCW(point, vertex(next_vertex), vertex(next_vertex-1)) > 0; |
| 240 | } |
| 241 | |
| 242 | bool S2Polyline::Intersects(S2Polyline const* line) const { |
| 243 | if (num_vertices() <= 0 || line->num_vertices() <= 0) { |
| 244 | return false; |
| 245 | } |
| 246 | |
| 247 | if (!GetRectBound().Intersects(line->GetRectBound())) { |
| 248 | return false; |
| 249 | } |
| 250 | |
| 251 | // TODO(user) look into S2EdgeIndex to make this near linear in performance. |
| 252 | for (int i = 1; i < num_vertices(); ++i) { |
| 253 | S2EdgeUtil::EdgeCrosser crosser( |
| 254 | &vertex(i - 1), &vertex(i), &line->vertex(0)); |
| 255 | for (int j = 1; j < line->num_vertices(); ++j) { |
| 256 | if (crosser.RobustCrossing(&line->vertex(j)) >= 0) { |
| 257 | return true; |
| 258 | } |
| 259 | } |
| 260 | } |
| 261 | return false; |
| 262 | } |
| 263 | |
| 264 | void S2Polyline::Reverse() { |
| 265 | reverse(vertices_, vertices_ + num_vertices_); |
| 266 | } |
| 267 | |
| 268 | S2LatLngRect S2Polyline::GetRectBound() const { |
| 269 | S2EdgeUtil::RectBounder bounder; |
| 270 | for (int i = 0; i < num_vertices(); ++i) { |
| 271 | bounder.AddPoint(&vertex(i)); |
| 272 | } |
| 273 | return bounder.GetBound(); |
| 274 | } |
| 275 | |
| 276 | S2Cap S2Polyline::GetCapBound() const { |
| 277 | return GetRectBound().GetCapBound(); |
| 278 | } |
| 279 | |
| 280 | bool S2Polyline::MayIntersect(S2Cell const& cell) const { |
| 281 | if (num_vertices() == 0) return false; |
| 282 | |
| 283 | // We only need to check whether the cell contains vertex 0 for correctness, |
| 284 | // but these tests are cheap compared to edge crossings so we might as well |
| 285 | // check all the vertices. |
| 286 | for (int i = 0; i < num_vertices(); ++i) { |
| 287 | if (cell.Contains(vertex(i))) return true; |
| 288 | } |
| 289 | S2Point cell_vertices[4]; |
| 290 | for (int i = 0; i < 4; ++i) { |
| 291 | cell_vertices[i] = cell.GetVertex(i); |
| 292 | } |
| 293 | for (int j = 0; j < 4; ++j) { |
| 294 | S2EdgeUtil::EdgeCrosser crosser(&cell_vertices[j], &cell_vertices[(j+1)&3], |
| 295 | &vertex(0)); |
| 296 | for (int i = 1; i < num_vertices(); ++i) { |
| 297 | if (crosser.RobustCrossing(&vertex(i)) >= 0) { |
| 298 | // There is a proper crossing, or two vertices were the same. |
| 299 | return true; |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | return false; |
| 304 | } |
| 305 | |
| 306 | void S2Polyline::Encode(Encoder* const encoder) const { |
| 307 | encoder->Ensure(num_vertices_ * sizeof(*vertices_) + 10); // sufficient |
| 308 | |
| 309 | encoder->put8(kCurrentEncodingVersionNumber); |
| 310 | encoder->put32(num_vertices_); |
| 311 | encoder->putn(vertices_, sizeof(*vertices_) * num_vertices_); |
| 312 | |
| 313 | DCHECK_GE(encoder->avail(), 0); |
| 314 | } |
| 315 | |
| 316 | bool S2Polyline::Decode(Decoder* const decoder) { |
| 317 | unsigned char version = decoder->get8(); |
| 318 | if (version > kCurrentEncodingVersionNumber) return false; |
| 319 | |
| 320 | num_vertices_ = decoder->get32(); |
| 321 | delete[] vertices_; |
| 322 | vertices_ = new S2Point[num_vertices_]; |
| 323 | decoder->getn(vertices_, num_vertices_ * sizeof(*vertices_)); |
| 324 | |
| 325 | // if (FLAGS_s2debug) { |
| 326 | if (S2::debug) { |
| 327 | vector<S2Point> vertex_vector(vertices_, vertices_ + num_vertices_); |
| 328 | CHECK(IsValid(vertex_vector)); |
| 329 | } |
| 330 | |
| 331 | return decoder->avail() >= 0; |
| 332 | } |
| 333 | |
| 334 | namespace { |
| 335 | |
| 336 | // Given a polyline, a tolerance distance, and a start index, this function |
| 337 | // returns the maximal end index such that the line segment between these two |
| 338 | // vertices passes within "tolerance" of all interior vertices, in order. |
| 339 | int FindEndVertex(S2Polyline const& polyline, |
| 340 | S1Angle const& tolerance, int index) { |
| 341 | DCHECK_GE(tolerance.radians(), 0); |
| 342 | DCHECK_LT((index + 1), polyline.num_vertices()); |
| 343 | |
| 344 | // The basic idea is to keep track of the "pie wedge" of angles from the |
| 345 | // starting vertex such that a ray from the starting vertex at that angle |
| 346 | // will pass through the discs of radius "tolerance" centered around all |
| 347 | // vertices processed so far. |
| 348 | |
| 349 | // First we define a "coordinate frame" for the tangent and normal spaces |
| 350 | // at the starting vertex. Essentially this means picking three |
| 351 | // orthonormal vectors X,Y,Z such that X and Y span the tangent plane at |
| 352 | // the starting vertex, and Z is "up". We use the coordinate frame to |
| 353 | // define a mapping from 3D direction vectors to a one-dimensional "ray |
| 354 | // angle" in the range (-Pi, Pi]. The angle of a direction vector is |
| 355 | // computed by transforming it into the X,Y,Z basis, and then calculating |
| 356 | // atan2(y,x). This mapping allows us to represent a wedge of angles as a |
| 357 | // 1D interval. Since the interval wraps around, we represent it as an |
| 358 | // S1Interval, i.e. an interval on the unit circle. |
| 359 | Matrix3x3_d frame; |
| 360 | S2Point const& origin = polyline.vertex(index); |
| 361 | S2::GetFrame(origin, &frame); |
| 362 | |
| 363 | // As we go along, we keep track of the current wedge of angles and the |
| 364 | // distance to the last vertex (which must be non-decreasing). |
| 365 | S1Interval current_wedge = S1Interval::Full(); |
| 366 | double last_distance = 0; |
| 367 | |
| 368 | for (++index; index < polyline.num_vertices(); ++index) { |
| 369 | S2Point const& candidate = polyline.vertex(index); |
| 370 | double distance = origin.Angle(candidate); |
| 371 | |
| 372 | // We don't allow simplification to create edges longer than 90 degrees, |
| 373 | // to avoid numeric instability as lengths approach 180 degrees. (We do |
| 374 | // need to allow for original edges longer than 90 degrees, though.) |
| 375 | if (distance > M_PI/2 && last_distance > 0) break; |
| 376 | |
| 377 | // Vertices must be in increasing order along the ray, except for the |
| 378 | // initial disc around the origin. |
| 379 | if (distance < last_distance && last_distance > tolerance.radians()) break; |
| 380 | last_distance = distance; |
| 381 | |
| 382 | // Points that are within the tolerance distance of the origin do not |
| 383 | // constrain the ray direction, so we can ignore them. |
| 384 | if (distance <= tolerance.radians()) continue; |
| 385 | |
| 386 | // If the current wedge of angles does not contain the angle to this |
| 387 | // vertex, then stop right now. Note that the wedge of possible ray |
| 388 | // angles is not necessarily empty yet, but we can't continue unless we |
| 389 | // are willing to backtrack to the last vertex that was contained within |
| 390 | // the wedge (since we don't create new vertices). This would be more |
| 391 | // complicated and also make the worst-case running time more than linear. |
| 392 | S2Point direction = S2::ToFrame(frame, candidate); |
| 393 | double center = atan2(direction.y(), direction.x()); |
| 394 | if (!current_wedge.Contains(center)) break; |
| 395 | |
| 396 | // To determine how this vertex constrains the possible ray angles, |
| 397 | // consider the triangle ABC where A is the origin, B is the candidate |
| 398 | // vertex, and C is one of the two tangent points between A and the |
| 399 | // spherical cap of radius "tolerance" centered at B. Then from the |
| 400 | // spherical law of sines, sin(a)/sin(A) = sin(c)/sin(C), where "a" and |
| 401 | // "c" are the lengths of the edges opposite A and C. In our case C is a |
| 402 | // 90 degree angle, therefore A = asin(sin(a) / sin(c)). Angle A is the |
| 403 | // half-angle of the allowable wedge. |
| 404 | |
| 405 | double half_angle = asin(sin(tolerance.radians()) / sin(distance)); |
| 406 | S1Interval target = S1Interval::FromPoint(center).Expanded(half_angle); |
| 407 | current_wedge = current_wedge.Intersection(target); |
| 408 | DCHECK(!current_wedge.is_empty()); |
| 409 | } |
| 410 | // We break out of the loop when we reach a vertex index that can't be |
| 411 | // included in the line segment, so back up by one vertex. |
| 412 | return index - 1; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | void S2Polyline::SubsampleVertices(S1Angle const& tolerance, |
| 417 | vector<int>* indices) const { |
| 418 | indices->clear(); |
| 419 | if (num_vertices() == 0) return; |
| 420 | |
| 421 | indices->push_back(0); |
| 422 | S1Angle clamped_tolerance = max(tolerance, S1Angle::Radians(0)); |
| 423 | for (int index = 0; index + 1 < num_vertices(); ) { |
| 424 | int next_index = FindEndVertex(*this, clamped_tolerance, index); |
| 425 | // Don't create duplicate adjacent vertices. |
| 426 | if (vertex(next_index) != vertex(index)) { |
| 427 | indices->push_back(next_index); |
| 428 | } |
| 429 | index = next_index; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | bool S2Polyline::ApproxEquals(S2Polyline const* b, double max_error) const { |
| 434 | if (num_vertices() != b->num_vertices()) return false; |
| 435 | for (int offset = 0; offset < num_vertices(); ++offset) { |
| 436 | if (!S2::ApproxEquals(vertex(offset), b->vertex(offset), max_error)) { |
| 437 | return false; |
| 438 | } |
| 439 | } |
| 440 | return true; |
| 441 | } |
| 442 | |
| 443 | namespace { |
| 444 | // Return the first i > "index" such that the ith vertex of "pline" is not at |
| 445 | // the same point as the "index"th vertex. Returns pline.num_vertices() if |
| 446 | // there is no such value of i. |
| 447 | inline int NextDistinctVertex(S2Polyline const& pline, int index) { |
| 448 | S2Point const& initial = pline.vertex(index); |
| 449 | do { |
| 450 | ++index; |
| 451 | } while (index < pline.num_vertices() && pline.vertex(index) == initial); |
| 452 | return index; |
| 453 | } |
| 454 | |
| 455 | // This struct represents a search state in the NearlyCoversPolyline algorithm |
| 456 | // below. See the description of the algorithm for details. |
| 457 | struct SearchState { |
| 458 | inline SearchState(int i_val, int j_val, bool i_in_progress_val) |
| 459 | : i(i_val), j(j_val), i_in_progress(i_in_progress_val) {} |
| 460 | |
| 461 | int i; |
| 462 | int j; |
| 463 | bool i_in_progress; |
| 464 | }; |
| 465 | } // namespace |
| 466 | |
| 467 | namespace std { |
| 468 | template<> |
| 469 | struct less<SearchState> { |
| 470 | // This operator is needed for storing SearchStates in a set. The ordering |
| 471 | // chosen has no special meaning. |
| 472 | inline bool operator()(SearchState const& lhs, SearchState const& rhs) const { |
| 473 | if (lhs.i < rhs.i) return true; |
| 474 | if (lhs.i > rhs.i) return false; |
| 475 | if (lhs.j < rhs.j) return true; |
| 476 | if (lhs.j > rhs.j) return false; |
| 477 | return !lhs.i_in_progress && rhs.i_in_progress; |
| 478 | } |
| 479 | }; |
| 480 | } // namespace std |
| 481 | |
| 482 | bool S2Polyline::NearlyCoversPolyline(S2Polyline const& covered, |
| 483 | S1Angle const& max_error) const { |
| 484 | // NOTE: This algorithm is described assuming that adjacent vertices in a |
| 485 | // polyline are never at the same point. That is, the ith and i+1th vertices |
| 486 | // of a polyline are never at the same point in space. The implementation |
| 487 | // does not make this assumption. |
| 488 | |
| 489 | // DEFINITIONS: |
| 490 | // - edge "i" of a polyline is the edge from the ith to i+1th vertex. |
| 491 | // - covered_j is a polyline consisting of edges 0 through j of "covered." |
| 492 | // - this_i is a polyline consisting of edges 0 through i of this polyline. |
| 493 | // |
| 494 | // A search state is represented as an (int, int, bool) tuple, (i, j, |
| 495 | // i_in_progress). Using the "drive a car" analogy from the header comment, a |
| 496 | // search state signifies that you can drive one car along "covered" from its |
| 497 | // first vertex through a point on its jth edge, and another car along this |
| 498 | // polyline from some point on or before its ith edge to a to a point on its |
| 499 | // ith edge, such that no car ever goes backward, and the cars are always |
| 500 | // within "max_error" of each other. If i_in_progress is true, it means that |
| 501 | // you can definitely drive along "covered" through the jth vertex (beginning |
| 502 | // of the jth edge). Otherwise, you can definitely drive along "covered" |
| 503 | // through the point on the jth edge of "covered" closest to the ith vertex of |
| 504 | // this polyline. |
| 505 | // |
| 506 | // The algorithm begins by finding all edges of this polyline that are within |
| 507 | // "max_error" of the first vertex of "covered," and adding search states |
| 508 | // representing all of these possible starting states to the stack of |
| 509 | // "pending" states. |
| 510 | // |
| 511 | // The algorithm proceeds by popping the next pending state, |
| 512 | // (i,j,i_in_progress), off of the stack. First it checks to see if that |
| 513 | // state represents finding a valid covering of "covered" and returns true if |
| 514 | // so. Next, if the state represents reaching the end of this polyline |
| 515 | // without finding a successful covering, the algorithm moves on to the next |
| 516 | // state in the stack. Otherwise, if state (i+1,j,false) is valid, it is |
| 517 | // added to the stack of pending states. Same for state (i,j+1,true). |
| 518 | // |
| 519 | // We need the stack because when "i" and "j" can both be incremented, |
| 520 | // sometimes only one choice leads to a solution. We use a set to keep track |
| 521 | // of visited states to avoid duplicating work. With the set, the worst-case |
| 522 | // number of states examined is O(n+m) where n = this->num_vertices() and m = |
| 523 | // covered.num_vertices(). Without it, the amount of work could be as high as |
| 524 | // O((n*m)^2). Using set, the running time is O((n*m) log (n*m)). |
| 525 | // |
| 526 | // TODO(user): Benchmark this, and see if the set is worth it. |
| 527 | vector<SearchState> pending; |
| 528 | set<SearchState> done; |
| 529 | |
| 530 | // Find all possible starting states. |
| 531 | for (int i = 0, next_i = NextDistinctVertex(*this, 0); |
| 532 | next_i < this->num_vertices(); |
| 533 | i = next_i, next_i = NextDistinctVertex(*this, next_i)) { |
| 534 | S2Point closest_point = S2EdgeUtil::GetClosestPoint( |
| 535 | covered.vertex(0), this->vertex(i), this->vertex(next_i)); |
| 536 | if (closest_point != this->vertex(next_i) && |
| 537 | S1Angle(closest_point, covered.vertex(0)) <= max_error) { |
| 538 | pending.push_back(SearchState(i, 0, true)); |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | while (!pending.empty()) { |
| 543 | SearchState const state = pending.back(); |
| 544 | pending.pop_back(); |
| 545 | if (!done.insert(state).second) continue; |
| 546 | |
| 547 | int const next_i = NextDistinctVertex(*this, state.i); |
| 548 | int const next_j = NextDistinctVertex(covered, state.j); |
| 549 | if (next_j == covered.num_vertices()) { |
| 550 | return true; |
| 551 | } else if (next_i == this->num_vertices()) { |
| 552 | continue; |
| 553 | } |
| 554 | |
| 555 | S2Point i_begin, j_begin; |
| 556 | if (state.i_in_progress) { |
| 557 | j_begin = covered.vertex(state.j); |
| 558 | i_begin = S2EdgeUtil::GetClosestPoint( |
| 559 | j_begin, this->vertex(state.i), this->vertex(next_i)); |
| 560 | } else { |
| 561 | i_begin = this->vertex(state.i); |
| 562 | j_begin = S2EdgeUtil::GetClosestPoint( |
| 563 | i_begin, covered.vertex(state.j), covered.vertex(next_j)); |
| 564 | } |
| 565 | |
| 566 | if (S2EdgeUtil::IsEdgeBNearEdgeA(j_begin, covered.vertex(next_j), |
| 567 | i_begin, this->vertex(next_i), |
| 568 | max_error)) { |
| 569 | pending.push_back(SearchState(next_i, state.j, false)); |
| 570 | } |
| 571 | if (S2EdgeUtil::IsEdgeBNearEdgeA(i_begin, this->vertex(next_i), |
| 572 | j_begin, covered.vertex(next_j), |
| 573 | max_error)) { |
| 574 | pending.push_back(SearchState(state.i, next_j, true)); |
| 575 | } |
| 576 | } |
| 577 | return false; |
| 578 | } |
| 579 | |