| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #pragma once |
| 4 | |
| 5 | #include "BsCorePrerequisites.h" |
| 6 | #include "Image/BsColor.h" |
| 7 | #include "Image/BsColorGradient.h" |
| 8 | #include "Math/BsVector3.h" |
| 9 | #include "Math/BsRandom.h" |
| 10 | #include "Animation/BsAnimationCurve.h" |
| 11 | #include "Animation/BsAnimationUtility.h" |
| 12 | #include "Utility/BsBitwise.h" |
| 13 | #include "Utility/BsLookupTable.h" |
| 14 | |
| 15 | namespace bs |
| 16 | { |
| 17 | /** @addtogroup Particles-Internal |
| 18 | * @{ |
| 19 | */ |
| 20 | |
| 21 | /** Determines type of distribution used by distribution properties. */ |
| 22 | enum BS_SCRIPT_EXPORT(m:Particles) PropertyDistributionType |
| 23 | { |
| 24 | /** The distribution is a costant value. */ |
| 25 | PDT_Constant BS_SCRIPT_EXPORT(n:Constant), |
| 26 | /** The distribution is a random value in a specified constant range. */ |
| 27 | PDT_RandomRange BS_SCRIPT_EXPORT(n:RandomRange), |
| 28 | /** The distribution is a time-varying value. */ |
| 29 | PDT_Curve BS_SCRIPT_EXPORT(n:Curve), |
| 30 | /** The distribution is a random value in a specified time-varying range. */ |
| 31 | PDT_RandomCurveRange BS_SCRIPT_EXPORT(n:RandomCurveRange) |
| 32 | }; |
| 33 | |
| 34 | /* @} */ |
| 35 | |
| 36 | /** @addtogroup Particles |
| 37 | * @{ |
| 38 | */ |
| 39 | |
| 40 | /** Specifies a color as a distribution, which can include a constant color, random color range or a color gradient. */ |
| 41 | struct BS_CORE_EXPORT BS_SCRIPT_EXPORT(m:Particles) ColorDistribution |
| 42 | { |
| 43 | /** Creates a new empty distribution. */ |
| 44 | BS_SCRIPT_EXPORT() |
| 45 | ColorDistribution() |
| 46 | : mType(PDT_Constant) |
| 47 | , mMinGradient({ ColorGradientKey(Color::Black, 0.0f) }) |
| 48 | , mMaxGradient({ ColorGradientKey(Color::Black, 0.0f) }) |
| 49 | { } |
| 50 | |
| 51 | /** Creates a new distribution that returns a constant color. */ |
| 52 | BS_SCRIPT_EXPORT() |
| 53 | ColorDistribution(const Color& color) |
| 54 | : mType(PDT_Constant) |
| 55 | , mMinGradient({ ColorGradientKey(color, 0.0f) }) |
| 56 | , mMaxGradient({ ColorGradientKey(color, 0.0f) }) |
| 57 | { } |
| 58 | |
| 59 | /** Creates a new distribution that returns a random color in the specified range. */ |
| 60 | BS_SCRIPT_EXPORT() |
| 61 | ColorDistribution(const Color& minColor, const Color& maxColor) |
| 62 | : mType(PDT_RandomRange) |
| 63 | , mMinGradient({ ColorGradientKey(minColor, 0.0f) }) |
| 64 | , mMaxGradient({ ColorGradientKey(maxColor, 0.0f) }) |
| 65 | { } |
| 66 | |
| 67 | /** Creates a new distribution that evaluates a color gradient. */ |
| 68 | BS_SCRIPT_EXPORT() |
| 69 | ColorDistribution(const ColorGradient& gradient) |
| 70 | : mType(PDT_Curve), mMinGradient(gradient), mMaxGradient(gradient) |
| 71 | { |
| 72 | if(mMinGradient.getNumKeys() == 0) |
| 73 | mMinGradient = ColorGradient({ ColorGradientKey(Color::Black, 0.0f) }); |
| 74 | |
| 75 | if(mMaxGradient.getNumKeys() == 0) |
| 76 | mMaxGradient = ColorGradient({ ColorGradientKey(Color::Black, 0.0f) }); |
| 77 | } |
| 78 | |
| 79 | /** Creates a new distribution that returns a random color in a range determined by two gradients. */ |
| 80 | BS_SCRIPT_EXPORT() |
| 81 | ColorDistribution(const ColorGradient& minGradient, const ColorGradient& maxGradient) |
| 82 | : mType(PDT_RandomCurveRange), mMinGradient(minGradient), mMaxGradient(maxGradient) |
| 83 | { |
| 84 | if(mMinGradient.getNumKeys() == 0) |
| 85 | mMinGradient = ColorGradient({ ColorGradientKey(Color::Black, 0.0f) }); |
| 86 | |
| 87 | if(mMaxGradient.getNumKeys() == 0) |
| 88 | mMaxGradient = ColorGradient({ ColorGradientKey(Color::Black, 0.0f) }); |
| 89 | } |
| 90 | |
| 91 | /** Returns the type of the represented distribution. */ |
| 92 | BS_SCRIPT_EXPORT(pr:getter,n:DistributionType) |
| 93 | PropertyDistributionType getType() const { return mType; } |
| 94 | |
| 95 | /** |
| 96 | * Returns the constant value of the distribution, or the minimal value of a constant range. Undefined if |
| 97 | * the distribution is represented by a gradient. |
| 98 | */ |
| 99 | BS_SCRIPT_EXPORT() |
| 100 | Color getMinConstant() const { return mMinGradient.getKey(0).color; } |
| 101 | |
| 102 | /** |
| 103 | * Returns the maximum value of a constant range. Only defined if the distribution represents a non-gradient range. |
| 104 | */ |
| 105 | BS_SCRIPT_EXPORT() |
| 106 | Color getMaxConstant() const { return mMaxGradient.getKey(0).color; } |
| 107 | |
| 108 | /** |
| 109 | * Returns the gradient representing the distribution, or the first gradient representing a gradient range. |
| 110 | * Undefined if the distribution is represented by a constant or a non-gradient range. |
| 111 | */ |
| 112 | BS_SCRIPT_EXPORT() |
| 113 | const ColorGradient& getMinGradient() const { return mMinGradient; } |
| 114 | |
| 115 | /** |
| 116 | * Returns the curve representing the second gradient of a gradient range. Only defined if the distribution |
| 117 | * represents a gradient range. |
| 118 | */ |
| 119 | BS_SCRIPT_EXPORT() |
| 120 | const ColorGradient& getMaxGradient() const { return mMaxGradient; } |
| 121 | |
| 122 | /** |
| 123 | * Evaluates the value of the distribution. |
| 124 | * |
| 125 | * @param[in] t Time at which to evaluate the distribution. This is only relevant if the distribution |
| 126 | * contains gradients. |
| 127 | * @param[in] factor Value in range [0, 1] that determines how to interpolate between min/max value, if the |
| 128 | * distribution represents a range. Value of 0 will return the minimum value, while value of 1 |
| 129 | * will return the maximum value, and interpolate the values in-between. |
| 130 | * @return Evaluated color. |
| 131 | * |
| 132 | */ |
| 133 | RGBA evaluate(float t, float factor) const |
| 134 | { |
| 135 | const UINT32 byteFactor = Bitwise::unormToUint<8>(factor); |
| 136 | switch(mType) |
| 137 | { |
| 138 | default: |
| 139 | case PDT_Constant: |
| 140 | return mMinGradient.evaluate(0.0f); |
| 141 | case PDT_RandomRange: |
| 142 | { |
| 143 | const RGBA minColor = mMinGradient.evaluate(0.0f); |
| 144 | const RGBA maxColor = mMaxGradient.evaluate(0.0f); |
| 145 | |
| 146 | return Color::lerp(byteFactor, minColor, maxColor); |
| 147 | } |
| 148 | case PDT_Curve: |
| 149 | return mMinGradient.evaluate(t); |
| 150 | case PDT_RandomCurveRange: |
| 151 | { |
| 152 | const RGBA minColor = mMinGradient.evaluate(t); |
| 153 | const RGBA maxColor = mMaxGradient.evaluate(t); |
| 154 | |
| 155 | return Color::lerp(byteFactor, minColor, maxColor); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * Evaluates the value of the distribution. |
| 162 | * |
| 163 | * @param[in] t Time at which to evaluate the distribution. This is only relevant if the distribution |
| 164 | * contains gradients. |
| 165 | * @param[in] factor Random number generator that determines the factor. Factor determines how to interpolate |
| 166 | * between min/max value, if the distribution represents a range. |
| 167 | * @return Evaluated color. |
| 168 | * |
| 169 | */ |
| 170 | RGBA evaluate(float t, const Random& factor) const |
| 171 | { |
| 172 | switch(mType) |
| 173 | { |
| 174 | default: |
| 175 | case PDT_Constant: |
| 176 | return mMinGradient.evaluate(0.0f); |
| 177 | case PDT_RandomRange: |
| 178 | { |
| 179 | const RGBA minColor = mMinGradient.evaluate(0.0f); |
| 180 | const RGBA maxColor = mMaxGradient.evaluate(0.0f); |
| 181 | |
| 182 | const UINT32 byteFactor = Bitwise::unormToUint<8>(factor.getUNorm()); |
| 183 | return Color::lerp(byteFactor, minColor, maxColor); |
| 184 | } |
| 185 | case PDT_Curve: |
| 186 | return mMinGradient.evaluate(t); |
| 187 | case PDT_RandomCurveRange: |
| 188 | { |
| 189 | const RGBA minColor = mMinGradient.evaluate(t); |
| 190 | const RGBA maxColor = mMaxGradient.evaluate(t); |
| 191 | |
| 192 | const UINT32 byteFactor = Bitwise::unormToUint<8>(factor.getUNorm()); |
| 193 | return Color::lerp(byteFactor, minColor, maxColor); |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | /** |
| 199 | * Converts the distribution into a lookup table that's faster to access. The distribution will be resampled |
| 200 | * using a fixed sample rate with equidistant samples. |
| 201 | * |
| 202 | * @param[in] numSamples Determines how many samples to output in the lookup table. This value is ignored |
| 203 | * for non-curve distributions in which case there is always just one sample. |
| 204 | * @param[in] ignoreRange If the curve represents a range (either between constants or curves), this |
| 205 | * determines should the other value of the range be included in the lookup table. |
| 206 | * If true, only the minimum constant/curve will be included, and if false then |
| 207 | * the maximum curve values will follow the minimum curve values of each sample. |
| 208 | * @return Resampled lookup table. |
| 209 | */ |
| 210 | LookupTable toLookupTable(UINT32 numSamples = 128, bool ignoreRange = false) const; |
| 211 | |
| 212 | bool operator== (const ColorDistribution& rhs) const |
| 213 | { |
| 214 | if(mType != rhs.mType) |
| 215 | return false; |
| 216 | |
| 217 | if(mType == PDT_Constant || mType == PDT_Curve) |
| 218 | return mMinGradient == rhs.mMinGradient; |
| 219 | else |
| 220 | return mMinGradient == rhs.mMinGradient && mMaxGradient == rhs.mMaxGradient; |
| 221 | } |
| 222 | |
| 223 | bool operator!= (const ColorDistribution& rhs) const { return !operator==(rhs); } |
| 224 | private: |
| 225 | friend struct RTTIPlainType<ColorDistribution>; |
| 226 | |
| 227 | PropertyDistributionType mType; |
| 228 | ColorGradient mMinGradient; |
| 229 | ColorGradient mMaxGradient; |
| 230 | }; |
| 231 | |
| 232 | /** Specifies a value as a distribution, which can include a constant value, random range or a curve. */ |
| 233 | template<class T> |
| 234 | struct TDistribution |
| 235 | { |
| 236 | /** Creates a new empty distribution. */ |
| 237 | BS_SCRIPT_EXPORT() |
| 238 | TDistribution() |
| 239 | : mType(PDT_Constant) |
| 240 | , mMinCurve({ TKeyframe<T>{ T(), TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }) |
| 241 | , mMaxCurve({ TKeyframe<T>{ T(), TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }) |
| 242 | { } |
| 243 | /** Creates a new distribution that returns a constant value. */ |
| 244 | BS_SCRIPT_EXPORT() |
| 245 | TDistribution(T value) |
| 246 | : mType(PDT_Constant) |
| 247 | , mMinCurve({ TKeyframe<T>{ value, TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }) |
| 248 | , mMaxCurve({ TKeyframe<T>{ value, TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }) |
| 249 | { } |
| 250 | |
| 251 | /** Creates a new distribution that returns a random value in the specified range. */ |
| 252 | BS_SCRIPT_EXPORT() |
| 253 | TDistribution(T minValue, T maxValue) |
| 254 | : mType(PDT_RandomRange) |
| 255 | , mMinCurve({ TKeyframe<T>{ minValue, TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }) |
| 256 | , mMaxCurve({ TKeyframe<T>{ maxValue, TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }) |
| 257 | { } |
| 258 | |
| 259 | /** Creates a new distribution that evaluates a curve. */ |
| 260 | BS_SCRIPT_EXPORT() |
| 261 | TDistribution(const TAnimationCurve<T>& curve) |
| 262 | : mType(PDT_Curve), mMinCurve(curve), mMaxCurve(curve) |
| 263 | { |
| 264 | if(mMinCurve.getKeyFrames().empty()) |
| 265 | mMinCurve = TAnimationCurve<T>({ TKeyframe<T>{ T(), TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }); |
| 266 | |
| 267 | if(mMaxCurve.getKeyFrames().empty()) |
| 268 | mMaxCurve = TAnimationCurve<T>({ TKeyframe<T>{ T(), TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }); |
| 269 | } |
| 270 | |
| 271 | /** Creates a new distribution that returns a random value in a range determined by two curves. */ |
| 272 | BS_SCRIPT_EXPORT() |
| 273 | TDistribution(const TAnimationCurve<T>& minCurve, const TAnimationCurve<T>& maxCurve) |
| 274 | : mType(PDT_RandomCurveRange), mMinCurve(minCurve), mMaxCurve(maxCurve) |
| 275 | { |
| 276 | if(mMinCurve.getKeyFrames().empty()) |
| 277 | mMinCurve = TAnimationCurve<T>({ TKeyframe<T>{ T(), TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }); |
| 278 | |
| 279 | if(mMaxCurve.getKeyFrames().empty()) |
| 280 | mMaxCurve = TAnimationCurve<T>({ TKeyframe<T>{ T(), TCurveProperties<T>::getZero(), TCurveProperties<T>::getZero(), 0.0f} }); |
| 281 | } |
| 282 | |
| 283 | /** Returns the type of the represented distribution. */ |
| 284 | BS_SCRIPT_EXPORT(pr:getter,n:DistributionType) |
| 285 | PropertyDistributionType getType() const { return mType; } |
| 286 | |
| 287 | /** |
| 288 | * Returns the constant value of the distribution, or the minimal value of a constant range. Undefined if |
| 289 | * the distribution is represented by a curve. |
| 290 | */ |
| 291 | BS_SCRIPT_EXPORT() |
| 292 | const T& getMinConstant() const { return mMinCurve.getKeyFrames()[0].value; } |
| 293 | |
| 294 | /** |
| 295 | * Returns the maximum value of a constant range. Only defined if the distribution represents a non-curve range. |
| 296 | */ |
| 297 | BS_SCRIPT_EXPORT() |
| 298 | const T& getMaxConstant() const { return mMaxCurve.getKeyFrames()[0].value; } |
| 299 | |
| 300 | /** |
| 301 | * Returns the curve representing the distribution, or the first curve representing a curve range. Undefined if |
| 302 | * the distribution is represented by a constant or a non-curve range. |
| 303 | */ |
| 304 | BS_SCRIPT_EXPORT() |
| 305 | const TAnimationCurve<T>& getMinCurve() const { return mMinCurve; } |
| 306 | |
| 307 | /** |
| 308 | * Returns the curve representing the second curve of a curve range. Only defined if the distribution represents |
| 309 | * a curve range. |
| 310 | */ |
| 311 | BS_SCRIPT_EXPORT() |
| 312 | const TAnimationCurve<T>& getMaxCurve() const { return mMaxCurve; } |
| 313 | |
| 314 | /** |
| 315 | * Evaluates the value of the distribution. |
| 316 | * |
| 317 | * @param[in] t Time at which to evaluate the distribution. This is only relevant if the distribution |
| 318 | * contains curves. |
| 319 | * @param[in] factor Value in range [0, 1] that determines how to interpolate between min/max value, if the |
| 320 | * distribution represents a range. Value of 0 will return the minimum value, while value of 1 |
| 321 | * will return the maximum value, and interpolate the values in-between. |
| 322 | * @return Evaluated value. |
| 323 | * |
| 324 | */ |
| 325 | BS_SCRIPT_EXPORT() |
| 326 | T evaluate(float t, float factor) const |
| 327 | { |
| 328 | switch(mType) |
| 329 | { |
| 330 | default: |
| 331 | case PDT_Constant: |
| 332 | return getMinConstant(); |
| 333 | case PDT_RandomRange: |
| 334 | return Math::lerp(factor, getMinConstant(), getMaxConstant()); |
| 335 | case PDT_Curve: |
| 336 | return mMinCurve.evaluate(t); |
| 337 | case PDT_RandomCurveRange: |
| 338 | { |
| 339 | const T minValue = mMinCurve.evaluate(t); |
| 340 | const T maxValue = mMaxCurve.evaluate(t); |
| 341 | |
| 342 | return Math::lerp(factor, minValue, maxValue); |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * Evaluates the value of the distribution. |
| 349 | * |
| 350 | * @param[in] t Time at which to evaluate the distribution. This is only relevant if the distribution |
| 351 | * contains curves. |
| 352 | * @param[in] factor Random number generator that determines the factor. Factor determines how to interpolate |
| 353 | * between min/max value, if the distribution represents a range. |
| 354 | * @return Evaluated value. |
| 355 | * |
| 356 | */ |
| 357 | BS_SCRIPT_EXPORT() |
| 358 | T evaluate(float t, const Random& factor) const |
| 359 | { |
| 360 | switch(mType) |
| 361 | { |
| 362 | default: |
| 363 | case PDT_Constant: |
| 364 | return getMinConstant(); |
| 365 | case PDT_RandomRange: |
| 366 | return Math::lerp(factor.getUNorm(), getMinConstant(), getMaxConstant()); |
| 367 | case PDT_Curve: |
| 368 | return mMinCurve.evaluate(t); |
| 369 | case PDT_RandomCurveRange: |
| 370 | { |
| 371 | const T minValue = mMinCurve.evaluate(t); |
| 372 | const T maxValue = mMaxCurve.evaluate(t); |
| 373 | |
| 374 | return Math::lerp(factor.getUNorm(), minValue, maxValue); |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * Converts the distribution into a lookup table that's faster to access. The distribution will be resampled |
| 381 | * using a fixed sample rate with equidistant samples. |
| 382 | * |
| 383 | * @param[in] numSamples Determines how many samples to output in the lookup table. This value is ignored |
| 384 | * for non-curve distributions in which case there is always just one sample. |
| 385 | * @param[in] ignoreRange If the curve represents a range (either between constants or curves), this |
| 386 | * determines should the other value of the range be included in the lookup table. |
| 387 | * If true, only the minimum constant/curve will be included, and if false then |
| 388 | * the maximum curve values will follow the minimum curve values of each sample. |
| 389 | * @return Resampled lookup table. |
| 390 | */ |
| 391 | LookupTable toLookupTable(UINT32 numSamples = 128, bool ignoreRange = false) const; |
| 392 | |
| 393 | bool operator== (const TDistribution<T>& rhs) const |
| 394 | { |
| 395 | if(mType != rhs.mType) |
| 396 | return false; |
| 397 | |
| 398 | if(mType == PDT_Constant || mType == PDT_Curve) |
| 399 | return mMinCurve == rhs.mMinCurve; |
| 400 | else |
| 401 | return mMinCurve == rhs.mMinCurve && mMaxCurve == rhs.mMaxCurve; |
| 402 | } |
| 403 | |
| 404 | bool operator!= (const TDistribution<T>& rhs) const { return !operator==(rhs); } |
| 405 | private: |
| 406 | friend struct RTTIPlainType<TDistribution<T>>; |
| 407 | |
| 408 | PropertyDistributionType mType; |
| 409 | TAnimationCurve<T> mMinCurve; |
| 410 | TAnimationCurve<T> mMaxCurve; |
| 411 | }; |
| 412 | |
| 413 | using FloatDistribution = TDistribution<float>; |
| 414 | using Vector3Distribution = TDistribution<Vector3>; |
| 415 | using Vector2Distribution = TDistribution<Vector2>; |
| 416 | |
| 417 | #ifdef BS_SBGEN |
| 418 | template struct BS_SCRIPT_EXPORT(m:Particles,n:FloatDistribution) TDistribution<float>; |
| 419 | template struct BS_SCRIPT_EXPORT(m:Particles,n:Vector3Distribution) TDistribution<Vector3>; |
| 420 | template struct BS_SCRIPT_EXPORT(m:Particles,n:Vector2Distribution) TDistribution<Vector2>; |
| 421 | #endif |
| 422 | |
| 423 | /** @} */ |
| 424 | } |