1 | // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors |
2 | // Licensed under the MIT License: |
3 | // |
4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
5 | // of this software and associated documentation files (the "Software"), to deal |
6 | // in the Software without restriction, including without limitation the rights |
7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
8 | // copies of the Software, and to permit persons to whom the Software is |
9 | // furnished to do so, subject to the following conditions: |
10 | // |
11 | // The above copyright notice and this permission notice shall be included in |
12 | // all copies or substantial portions of the Software. |
13 | // |
14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
20 | // THE SOFTWARE. |
21 | |
22 | #define CAPNP_PRIVATE |
23 | #include "layout.h" |
24 | #include <kj/debug.h> |
25 | #include "arena.h" |
26 | #include <string.h> |
27 | #include <stdlib.h> |
28 | |
29 | #if !CAPNP_LITE |
30 | #include "capability.h" |
31 | #endif // !CAPNP_LITE |
32 | |
33 | namespace capnp { |
34 | namespace _ { // private |
35 | |
36 | #if !CAPNP_LITE |
37 | static BrokenCapFactory* brokenCapFactory = nullptr; |
38 | // Horrible hack: We need to be able to construct broken caps without any capability context, |
39 | // but we can't have a link-time dependency on libcapnp-rpc. |
40 | |
41 | void setGlobalBrokenCapFactoryForLayoutCpp(BrokenCapFactory& factory) { |
42 | // Called from capability.c++ when the capability API is used, to make sure that layout.c++ |
43 | // is ready for it. May be called multiple times but always with the same value. |
44 | #if __GNUC__ |
45 | __atomic_store_n(&brokenCapFactory, &factory, __ATOMIC_RELAXED); |
46 | #elif _MSC_VER |
47 | *static_cast<BrokenCapFactory* volatile*>(&brokenCapFactory) = &factory; |
48 | #else |
49 | #error "Platform not supported" |
50 | #endif |
51 | } |
52 | |
53 | } // namespace _ (private) |
54 | |
55 | const uint ClientHook::NULL_CAPABILITY_BRAND = 0; |
56 | // Defined here rather than capability.c++ so that we can safely call isNull() in this file. |
57 | |
58 | void* ClientHook::getLocalServer(_::CapabilityServerSetBase& capServerSet) { |
59 | // Defined here rather than capability.c++ because otherwise building with -fsanitize=vptr fails. |
60 | return nullptr; |
61 | } |
62 | |
63 | namespace _ { // private |
64 | |
65 | #endif // !CAPNP_LITE |
66 | |
67 | #if CAPNP_DEBUG_TYPES |
68 | #define G(n) bounded<n>() |
69 | #else |
70 | #define G(n) n |
71 | #endif |
72 | |
73 | // ======================================================================================= |
74 | |
75 | #if __GNUC__ >= 8 && !__clang__ |
76 | // GCC 8 introduced a warning which complains whenever we try to memset() or memcpy() a |
77 | // WirePointer, becaues we deleted the regular copy constructor / assignment operator. Weirdly, if |
78 | // I remove those deletions, GCC *still* complains that WirePointer is non-trivial. I don't |
79 | // understand why -- maybe because WireValue has private members? We don't want to make WireValue's |
80 | // member public, but memset() and memcpy() on it are certainly valid and desirable, so we'll just |
81 | // have to disable the warning I guess. |
82 | #pragma GCC diagnostic ignored "-Wclass-memaccess" |
83 | #endif |
84 | |
85 | struct WirePointer { |
86 | // A pointer, in exactly the format in which it appears on the wire. |
87 | |
88 | // Copying and moving is not allowed because the offset would become wrong. |
89 | WirePointer(const WirePointer& other) = delete; |
90 | WirePointer(WirePointer&& other) = delete; |
91 | WirePointer& operator=(const WirePointer& other) = delete; |
92 | WirePointer& operator=(WirePointer&& other) = delete; |
93 | |
94 | // ----------------------------------------------------------------- |
95 | // Common part of all pointers: kind + offset |
96 | // |
97 | // Actually this is not terribly common. The "offset" could actually be different things |
98 | // depending on the context: |
99 | // - For a regular (e.g. struct/list) pointer, a signed word offset from the word immediately |
100 | // following the pointer pointer. (The off-by-one means the offset is more often zero, saving |
101 | // bytes on the wire when packed.) |
102 | // - For an inline composite list tag (not really a pointer, but structured similarly), an |
103 | // element count. |
104 | // - For a FAR pointer, an unsigned offset into the target segment. |
105 | // - For a FAR landing pad, zero indicates that the target value immediately follows the pad while |
106 | // 1 indicates that the pad is followed by another FAR pointer that actually points at the |
107 | // value. |
108 | |
109 | enum Kind { |
110 | STRUCT = 0, |
111 | // Reference points at / describes a struct. |
112 | |
113 | LIST = 1, |
114 | // Reference points at / describes a list. |
115 | |
116 | FAR = 2, |
117 | // Reference is a "far pointer", which points at data located in a different segment. The |
118 | // eventual target is one of the other kinds. |
119 | |
120 | OTHER = 3 |
121 | // Reference has type "other". If the next 30 bits are all zero (i.e. the lower 32 bits contain |
122 | // only the kind OTHER) then the pointer is a capability. All other values are reserved. |
123 | }; |
124 | |
125 | WireValue<uint32_t> offsetAndKind; |
126 | |
127 | KJ_ALWAYS_INLINE(Kind kind() const) { |
128 | return static_cast<Kind>(offsetAndKind.get() & 3); |
129 | } |
130 | KJ_ALWAYS_INLINE(bool isPositional() const) { |
131 | return (offsetAndKind.get() & 2) == 0; // match STRUCT and LIST but not FAR or OTHER |
132 | } |
133 | KJ_ALWAYS_INLINE(bool isCapability() const) { |
134 | return offsetAndKind.get() == OTHER; |
135 | } |
136 | |
137 | KJ_ALWAYS_INLINE(word* target()) { |
138 | return reinterpret_cast<word*>(this) + 1 + (static_cast<int32_t>(offsetAndKind.get()) >> 2); |
139 | } |
140 | KJ_ALWAYS_INLINE(const word* target(SegmentReader* segment) const) { |
141 | if (segment == nullptr) { |
142 | return reinterpret_cast<const word*>(this + 1) + |
143 | (static_cast<int32_t>(offsetAndKind.get()) >> 2); |
144 | } else { |
145 | return segment->checkOffset(reinterpret_cast<const word*>(this + 1), |
146 | static_cast<int32_t>(offsetAndKind.get()) >> 2); |
147 | } |
148 | } |
149 | KJ_ALWAYS_INLINE(void setKindAndTarget(Kind kind, word* target, SegmentBuilder* segment)) { |
150 | // Check that the target is really in the same segment, otherwise subtracting pointers is |
151 | // undefined behavior. As it turns out, it's undefined behavior that actually produces |
152 | // unexpected results in a real-world situation that actually happened: At one time, |
153 | // OrphanBuilder's "tag" (a WirePointer) was allowed to be initialized as if it lived in |
154 | // a particular segment when in fact it does not. On 32-bit systems, where words might |
155 | // only be 32-bit aligned, it's possible that the difference between `this` and `target` is |
156 | // not a whole number of words. But clang optimizes: |
157 | // (target - (word*)this - 1) << 2 |
158 | // to: |
159 | // (((ptrdiff_t)target - (ptrdiff_t)this - 8) >> 1) |
160 | // So now when the pointers are not aligned the same, we can end up corrupting the bottom |
161 | // two bits, where `kind` is stored. For example, this turns a struct into a far pointer. |
162 | // Ouch! |
163 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(this) >= |
164 | reinterpret_cast<uintptr_t>(segment->getStartPtr())); |
165 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(this) < |
166 | reinterpret_cast<uintptr_t>(segment->getStartPtr() + segment->getSize())); |
167 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(target) >= |
168 | reinterpret_cast<uintptr_t>(segment->getStartPtr())); |
169 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(target) <= |
170 | reinterpret_cast<uintptr_t>(segment->getStartPtr() + segment->getSize())); |
171 | offsetAndKind.set((static_cast<uint32_t>(target - reinterpret_cast<word*>(this) - 1) << 2) | kind); |
172 | } |
173 | KJ_ALWAYS_INLINE(void setKindWithZeroOffset(Kind kind)) { |
174 | offsetAndKind.set(kind); |
175 | } |
176 | KJ_ALWAYS_INLINE(void setKindAndTargetForEmptyStruct()) { |
177 | // This pointer points at an empty struct. Assuming the WirePointer itself is in-bounds, we |
178 | // can set the target to point either at the WirePointer itself or immediately after it. The |
179 | // latter would cause the WirePointer to be "null" (since for an empty struct the upper 32 |
180 | // bits are going to be zero). So we set an offset of -1, as if the struct were allocated |
181 | // immediately before this pointer, to distinguish it from null. |
182 | offsetAndKind.set(0xfffffffc); |
183 | } |
184 | KJ_ALWAYS_INLINE(void setKindForOrphan(Kind kind)) { |
185 | // OrphanBuilder contains a WirePointer, but since it isn't located in a segment, it should |
186 | // not have a valid offset (unless it is a FAR or OTHER pointer). We set its offset to -1 |
187 | // because setting it to zero would mean a pointer to an empty struct would appear to be a null |
188 | // pointer. |
189 | KJ_DREQUIRE(isPositional()); |
190 | offsetAndKind.set(kind | 0xfffffffc); |
191 | } |
192 | |
193 | KJ_ALWAYS_INLINE(ListElementCount inlineCompositeListElementCount() const) { |
194 | return ((bounded(offsetAndKind.get()) >> G(2)) |
195 | & G(kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>())) * ELEMENTS; |
196 | } |
197 | KJ_ALWAYS_INLINE(void setKindAndInlineCompositeListElementCount( |
198 | Kind kind, ListElementCount elementCount)) { |
199 | offsetAndKind.set(unboundAs<uint32_t>((elementCount / ELEMENTS) << G(2)) | kind); |
200 | } |
201 | |
202 | KJ_ALWAYS_INLINE(const word* farTarget(SegmentReader* segment) const) { |
203 | KJ_DREQUIRE(kind() == FAR, |
204 | "farTarget() should only be called on FAR pointers." ); |
205 | return segment->checkOffset(segment->getStartPtr(), offsetAndKind.get() >> 3); |
206 | } |
207 | KJ_ALWAYS_INLINE(word* farTarget(SegmentBuilder* segment) const) { |
208 | KJ_DREQUIRE(kind() == FAR, |
209 | "farTarget() should only be called on FAR pointers." ); |
210 | return segment->getPtrUnchecked((bounded(offsetAndKind.get()) >> G(3)) * WORDS); |
211 | } |
212 | KJ_ALWAYS_INLINE(bool isDoubleFar() const) { |
213 | KJ_DREQUIRE(kind() == FAR, |
214 | "isDoubleFar() should only be called on FAR pointers." ); |
215 | return (offsetAndKind.get() >> 2) & 1; |
216 | } |
217 | KJ_ALWAYS_INLINE(void setFar(bool isDoubleFar, WordCountN<29> pos)) { |
218 | offsetAndKind.set(unboundAs<uint32_t>((pos / WORDS) << G(3)) | |
219 | (static_cast<uint32_t>(isDoubleFar) << 2) | |
220 | static_cast<uint32_t>(Kind::FAR)); |
221 | } |
222 | KJ_ALWAYS_INLINE(void setCap(uint index)) { |
223 | offsetAndKind.set(static_cast<uint32_t>(Kind::OTHER)); |
224 | capRef.index.set(index); |
225 | } |
226 | |
227 | // ----------------------------------------------------------------- |
228 | // Part of pointer that depends on the kind. |
229 | |
230 | // Note: Originally StructRef, ListRef, and FarRef were unnamed types, but this somehow |
231 | // tickled a bug in GCC: |
232 | // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58192 |
233 | struct StructRef { |
234 | WireValue<WordCount16> dataSize; |
235 | WireValue<WirePointerCount16> ptrCount; |
236 | |
237 | inline WordCountN<17> wordSize() const { |
238 | return upgradeBound<uint32_t>(dataSize.get()) + ptrCount.get() * WORDS_PER_POINTER; |
239 | } |
240 | |
241 | KJ_ALWAYS_INLINE(void set(WordCount16 ds, WirePointerCount16 rc)) { |
242 | dataSize.set(ds); |
243 | ptrCount.set(rc); |
244 | } |
245 | KJ_ALWAYS_INLINE(void set(StructSize size)) { |
246 | dataSize.set(size.data); |
247 | ptrCount.set(size.pointers); |
248 | } |
249 | }; |
250 | |
251 | struct ListRef { |
252 | WireValue<uint32_t> elementSizeAndCount; |
253 | |
254 | KJ_ALWAYS_INLINE(ElementSize elementSize() const) { |
255 | return static_cast<ElementSize>(elementSizeAndCount.get() & 7); |
256 | } |
257 | KJ_ALWAYS_INLINE(ElementCountN<29> elementCount() const) { |
258 | return (bounded(elementSizeAndCount.get()) >> G(3)) * ELEMENTS; |
259 | } |
260 | KJ_ALWAYS_INLINE(WordCountN<29> inlineCompositeWordCount() const) { |
261 | return elementCount() * (ONE * WORDS / ELEMENTS); |
262 | } |
263 | |
264 | KJ_ALWAYS_INLINE(void set(ElementSize es, ElementCountN<29> ec)) { |
265 | elementSizeAndCount.set(unboundAs<uint32_t>((ec / ELEMENTS) << G(3)) | |
266 | static_cast<int>(es)); |
267 | } |
268 | |
269 | KJ_ALWAYS_INLINE(void setInlineComposite(WordCountN<29> wc)) { |
270 | elementSizeAndCount.set(unboundAs<uint32_t>((wc / WORDS) << G(3)) | |
271 | static_cast<int>(ElementSize::INLINE_COMPOSITE)); |
272 | } |
273 | }; |
274 | |
275 | struct FarRef { |
276 | WireValue<SegmentId> segmentId; |
277 | |
278 | KJ_ALWAYS_INLINE(void set(SegmentId si)) { |
279 | segmentId.set(si); |
280 | } |
281 | }; |
282 | |
283 | struct CapRef { |
284 | WireValue<uint32_t> index; |
285 | // Index into the message's capability table. |
286 | }; |
287 | |
288 | union { |
289 | uint32_t upper32Bits; |
290 | |
291 | StructRef structRef; |
292 | |
293 | ListRef listRef; |
294 | |
295 | FarRef farRef; |
296 | |
297 | CapRef capRef; |
298 | }; |
299 | |
300 | KJ_ALWAYS_INLINE(bool isNull() const) { |
301 | // If the upper 32 bits are zero, this is a pointer to an empty struct. We consider that to be |
302 | // our "null" value. |
303 | return (offsetAndKind.get() == 0) & (upper32Bits == 0); |
304 | } |
305 | |
306 | }; |
307 | static_assert(sizeof(WirePointer) == sizeof(word), |
308 | "capnp::WirePointer is not exactly one word. This will probably break everything." ); |
309 | static_assert(unboundAs<size_t>(POINTERS * WORDS_PER_POINTER * BYTES_PER_WORD / BYTES) == |
310 | sizeof(WirePointer), |
311 | "WORDS_PER_POINTER is wrong." ); |
312 | static_assert(unboundAs<size_t>(POINTERS * BYTES_PER_POINTER / BYTES) == sizeof(WirePointer), |
313 | "BYTES_PER_POINTER is wrong." ); |
314 | static_assert(unboundAs<size_t>(POINTERS * BITS_PER_POINTER / BITS_PER_BYTE / BYTES) == |
315 | sizeof(WirePointer), |
316 | "BITS_PER_POINTER is wrong." ); |
317 | |
318 | namespace { |
319 | |
320 | static const union { |
321 | AlignedData<unbound(POINTER_SIZE_IN_WORDS / WORDS)> word; |
322 | WirePointer pointer; |
323 | } zero = {{{0}}}; |
324 | |
325 | } // namespace |
326 | |
327 | // ======================================================================================= |
328 | |
329 | namespace { |
330 | |
331 | template <typename T> |
332 | struct SegmentAnd { |
333 | SegmentBuilder* segment; |
334 | T value; |
335 | }; |
336 | |
337 | } // namespace |
338 | |
339 | struct WireHelpers { |
340 | #if CAPNP_DEBUG_TYPES |
341 | template <uint64_t maxN, typename T> |
342 | static KJ_ALWAYS_INLINE( |
343 | kj::Quantity<kj::Bounded<(maxN + 7) / 8, T>, word> roundBytesUpToWords( |
344 | kj::Quantity<kj::Bounded<maxN, T>, byte> bytes)) { |
345 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
346 | return (bytes + G(7) * BYTES) / BYTES_PER_WORD; |
347 | } |
348 | |
349 | template <uint64_t maxN, typename T> |
350 | static KJ_ALWAYS_INLINE( |
351 | kj::Quantity<kj::Bounded<(maxN + 7) / 8, T>, byte> roundBitsUpToBytes( |
352 | kj::Quantity<kj::Bounded<maxN, T>, BitLabel> bits)) { |
353 | return (bits + G(7) * BITS) / BITS_PER_BYTE; |
354 | } |
355 | |
356 | template <uint64_t maxN, typename T> |
357 | static KJ_ALWAYS_INLINE( |
358 | kj::Quantity<kj::Bounded<(maxN + 63) / 64, T>, word> roundBitsUpToWords( |
359 | kj::Quantity<kj::Bounded<maxN, T>, BitLabel> bits)) { |
360 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
361 | return (bits + G(63) * BITS) / BITS_PER_WORD; |
362 | } |
363 | #else |
364 | static KJ_ALWAYS_INLINE(WordCount roundBytesUpToWords(ByteCount bytes)) { |
365 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
366 | return (bytes + G(7) * BYTES) / BYTES_PER_WORD; |
367 | } |
368 | |
369 | static KJ_ALWAYS_INLINE(ByteCount roundBitsUpToBytes(BitCount bits)) { |
370 | return (bits + G(7) * BITS) / BITS_PER_BYTE; |
371 | } |
372 | |
373 | static KJ_ALWAYS_INLINE(WordCount64 roundBitsUpToWords(BitCount64 bits)) { |
374 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
375 | return (bits + G(63) * BITS) / BITS_PER_WORD; |
376 | } |
377 | |
378 | static KJ_ALWAYS_INLINE(ByteCount64 roundBitsUpToBytes(BitCount64 bits)) { |
379 | return (bits + G(7) * BITS) / BITS_PER_BYTE; |
380 | } |
381 | #endif |
382 | |
383 | static KJ_ALWAYS_INLINE(void zeroMemory(byte* ptr, ByteCount32 count)) { |
384 | if (count != ZERO * BYTES) memset(ptr, 0, unbound(count / BYTES)); |
385 | } |
386 | |
387 | static KJ_ALWAYS_INLINE(void zeroMemory(word* ptr, WordCountN<29> count)) { |
388 | if (count != ZERO * WORDS) memset(ptr, 0, unbound(count * BYTES_PER_WORD / BYTES)); |
389 | } |
390 | |
391 | static KJ_ALWAYS_INLINE(void zeroMemory(WirePointer* ptr, WirePointerCountN<29> count)) { |
392 | if (count != ZERO * POINTERS) memset(ptr, 0, unbound(count * BYTES_PER_POINTER / BYTES)); |
393 | } |
394 | |
395 | static KJ_ALWAYS_INLINE(void zeroMemory(WirePointer* ptr)) { |
396 | memset(ptr, 0, sizeof(*ptr)); |
397 | } |
398 | |
399 | template <typename T> |
400 | static inline void zeroMemory(kj::ArrayPtr<T> array) { |
401 | if (array.size() != 0u) memset(array.begin(), 0, array.size() * sizeof(array[0])); |
402 | } |
403 | |
404 | static KJ_ALWAYS_INLINE(void copyMemory(byte* to, const byte* from, ByteCount32 count)) { |
405 | if (count != ZERO * BYTES) memcpy(to, from, unbound(count / BYTES)); |
406 | } |
407 | |
408 | static KJ_ALWAYS_INLINE(void copyMemory(word* to, const word* from, WordCountN<29> count)) { |
409 | if (count != ZERO * WORDS) memcpy(to, from, unbound(count * BYTES_PER_WORD / BYTES)); |
410 | } |
411 | |
412 | static KJ_ALWAYS_INLINE(void copyMemory(WirePointer* to, const WirePointer* from, |
413 | WirePointerCountN<29> count)) { |
414 | if (count != ZERO * POINTERS) memcpy(to, from, unbound(count * BYTES_PER_POINTER / BYTES)); |
415 | } |
416 | |
417 | template <typename T> |
418 | static inline void copyMemory(T* to, const T* from) { |
419 | memcpy(to, from, sizeof(*from)); |
420 | } |
421 | |
422 | // TODO(cleanup): Turn these into a .copyTo() method of ArrayPtr? |
423 | template <typename T> |
424 | static inline void copyMemory(T* to, kj::ArrayPtr<T> from) { |
425 | if (from.size() != 0u) memcpy(to, from.begin(), from.size() * sizeof(from[0])); |
426 | } |
427 | template <typename T> |
428 | static inline void copyMemory(T* to, kj::ArrayPtr<const T> from) { |
429 | if (from.size() != 0u) memcpy(to, from.begin(), from.size() * sizeof(from[0])); |
430 | } |
431 | static KJ_ALWAYS_INLINE(void copyMemory(char* to, kj::StringPtr from)) { |
432 | if (from.size() != 0u) memcpy(to, from.begin(), from.size() * sizeof(from[0])); |
433 | } |
434 | |
435 | static KJ_ALWAYS_INLINE(bool boundsCheck( |
436 | SegmentReader* segment, const word* start, WordCountN<31> size)) { |
437 | // If segment is null, this is an unchecked message, so we don't do bounds checks. |
438 | return segment == nullptr || segment->checkObject(start, size); |
439 | } |
440 | |
441 | static KJ_ALWAYS_INLINE(bool amplifiedRead(SegmentReader* segment, WordCount virtualAmount)) { |
442 | // If segment is null, this is an unchecked message, so we don't do read limiter checks. |
443 | return segment == nullptr || segment->amplifiedRead(virtualAmount); |
444 | } |
445 | |
446 | static KJ_ALWAYS_INLINE(word* allocate( |
447 | WirePointer*& ref, SegmentBuilder*& segment, CapTableBuilder* capTable, |
448 | SegmentWordCount amount, WirePointer::Kind kind, BuilderArena* orphanArena)) { |
449 | // Allocate space in the message for a new object, creating far pointers if necessary. |
450 | // |
451 | // * `ref` starts out being a reference to the pointer which shall be assigned to point at the |
452 | // new object. On return, `ref` points to a pointer which needs to be initialized with |
453 | // the object's type information. Normally this is the same pointer, but it can change if |
454 | // a far pointer was allocated -- in this case, `ref` will end up pointing to the far |
455 | // pointer's tag. Either way, `allocate()` takes care of making sure that the original |
456 | // pointer ends up leading to the new object. On return, only the upper 32 bit of `*ref` |
457 | // need to be filled in by the caller. |
458 | // * `segment` starts out pointing to the segment containing `ref`. On return, it points to |
459 | // the segment containing the allocated object, which is usually the same segment but could |
460 | // be a different one if the original segment was out of space. |
461 | // * `amount` is the number of words to allocate. |
462 | // * `kind` is the kind of object to allocate. It is used to initialize the pointer. It |
463 | // cannot be `FAR` -- far pointers are allocated automatically as needed. |
464 | // * `orphanArena` is usually null. If it is non-null, then we're allocating an orphan object. |
465 | // In this case, `segment` starts out null; the allocation takes place in an arbitrary |
466 | // segment belonging to the arena. `ref` will be initialized as a non-far pointer, but its |
467 | // target offset will be set to zero. |
468 | |
469 | if (orphanArena == nullptr) { |
470 | if (!ref->isNull()) zeroObject(segment, capTable, ref); |
471 | |
472 | if (amount == ZERO * WORDS && kind == WirePointer::STRUCT) { |
473 | // Note that the check for kind == WirePointer::STRUCT will hopefully cause this whole |
474 | // branch to be optimized away from all the call sites that are allocating non-structs. |
475 | ref->setKindAndTargetForEmptyStruct(); |
476 | return reinterpret_cast<word*>(ref); |
477 | } |
478 | |
479 | word* ptr = segment->allocate(amount); |
480 | |
481 | if (ptr == nullptr) { |
482 | |
483 | // Need to allocate in a new segment. We'll need to allocate an extra pointer worth of |
484 | // space to act as the landing pad for a far pointer. |
485 | |
486 | WordCount amountPlusRef = amount + POINTER_SIZE_IN_WORDS; |
487 | auto allocation = segment->getArena()->allocate( |
488 | assertMaxBits<SEGMENT_WORD_COUNT_BITS>(amountPlusRef, []() { |
489 | KJ_FAIL_REQUIRE("requested object size exceeds maximum segment size" ); |
490 | })); |
491 | segment = allocation.segment; |
492 | ptr = allocation.words; |
493 | |
494 | // Set up the original pointer to be a far pointer to the new segment. |
495 | ref->setFar(false, segment->getOffsetTo(ptr)); |
496 | ref->farRef.set(segment->getSegmentId()); |
497 | |
498 | // Initialize the landing pad to indicate that the data immediately follows the pad. |
499 | ref = reinterpret_cast<WirePointer*>(ptr); |
500 | ref->setKindAndTarget(kind, ptr + POINTER_SIZE_IN_WORDS, segment); |
501 | |
502 | // Allocated space follows new pointer. |
503 | return ptr + POINTER_SIZE_IN_WORDS; |
504 | } else { |
505 | ref->setKindAndTarget(kind, ptr, segment); |
506 | return ptr; |
507 | } |
508 | } else { |
509 | // orphanArena is non-null. Allocate an orphan. |
510 | KJ_DASSERT(ref->isNull()); |
511 | auto allocation = orphanArena->allocate(amount); |
512 | segment = allocation.segment; |
513 | ref->setKindForOrphan(kind); |
514 | return allocation.words; |
515 | } |
516 | } |
517 | |
518 | static KJ_ALWAYS_INLINE(word* followFarsNoWritableCheck( |
519 | WirePointer*& ref, word* refTarget, SegmentBuilder*& segment)) { |
520 | // If `ref` is a far pointer, follow it. On return, `ref` will have been updated to point at |
521 | // a WirePointer that contains the type information about the target object, and a pointer to |
522 | // the object contents is returned. The caller must NOT use `ref->target()` as this may or may |
523 | // not actually return a valid pointer. `segment` is also updated to point at the segment which |
524 | // actually contains the object. |
525 | // |
526 | // If `ref` is not a far pointer, this simply returns `refTarget`. Usually, `refTarget` should |
527 | // be the same as `ref->target()`, but may not be in cases where `ref` is only a tag. |
528 | |
529 | if (ref->kind() == WirePointer::FAR) { |
530 | segment = segment->getArena()->getSegment(ref->farRef.segmentId.get()); |
531 | WirePointer* pad = reinterpret_cast<WirePointer*>(ref->farTarget(segment)); |
532 | if (!ref->isDoubleFar()) { |
533 | ref = pad; |
534 | return pad->target(); |
535 | } |
536 | |
537 | // Landing pad is another far pointer. It is followed by a tag describing the pointed-to |
538 | // object. |
539 | ref = pad + 1; |
540 | |
541 | segment = segment->getArena()->getSegment(pad->farRef.segmentId.get()); |
542 | return pad->farTarget(segment); |
543 | } else { |
544 | return refTarget; |
545 | } |
546 | } |
547 | |
548 | static KJ_ALWAYS_INLINE(word* followFars( |
549 | WirePointer*& ref, word* refTarget, SegmentBuilder*& segment)) { |
550 | auto result = followFarsNoWritableCheck(ref, refTarget, segment); |
551 | segment->checkWritable(); |
552 | return result; |
553 | } |
554 | |
555 | static KJ_ALWAYS_INLINE(kj::Maybe<const word&> followFars( |
556 | const WirePointer*& ref, const word* refTarget, SegmentReader*& segment)) |
557 | KJ_WARN_UNUSED_RESULT { |
558 | // Like the other followFars() but operates on readers. |
559 | |
560 | // If the segment is null, this is an unchecked message, so there are no FAR pointers. |
561 | if (segment != nullptr && ref->kind() == WirePointer::FAR) { |
562 | // Look up the segment containing the landing pad. |
563 | segment = segment->getArena()->tryGetSegment(ref->farRef.segmentId.get()); |
564 | KJ_REQUIRE(segment != nullptr, "Message contains far pointer to unknown segment." ) { |
565 | return nullptr; |
566 | } |
567 | |
568 | // Find the landing pad and check that it is within bounds. |
569 | const word* ptr = ref->farTarget(segment); |
570 | auto padWords = (ONE + bounded(ref->isDoubleFar())) * POINTER_SIZE_IN_WORDS; |
571 | KJ_REQUIRE(boundsCheck(segment, ptr, padWords), |
572 | "Message contains out-of-bounds far pointer." ) { |
573 | return nullptr; |
574 | } |
575 | |
576 | const WirePointer* pad = reinterpret_cast<const WirePointer*>(ptr); |
577 | |
578 | // If this is not a double-far then the landing pad is our final pointer. |
579 | if (!ref->isDoubleFar()) { |
580 | ref = pad; |
581 | return pad->target(segment); |
582 | } |
583 | |
584 | // Landing pad is another far pointer. It is followed by a tag describing the pointed-to |
585 | // object. |
586 | ref = pad + 1; |
587 | |
588 | SegmentReader* newSegment = segment->getArena()->tryGetSegment(pad->farRef.segmentId.get()); |
589 | KJ_REQUIRE(newSegment != nullptr, |
590 | "Message contains double-far pointer to unknown segment." ) { |
591 | return nullptr; |
592 | } |
593 | KJ_REQUIRE(pad->kind() == WirePointer::FAR, |
594 | "Second word of double-far pad must be far pointer." ) { |
595 | return nullptr; |
596 | } |
597 | |
598 | segment = newSegment; |
599 | return pad->farTarget(segment); |
600 | } else { |
601 | KJ_DASSERT(refTarget != nullptr); |
602 | return refTarget; |
603 | } |
604 | } |
605 | |
606 | // ----------------------------------------------------------------- |
607 | |
608 | static void zeroObject(SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref) { |
609 | // Zero out the pointed-to object. Use when the pointer is about to be overwritten making the |
610 | // target object no longer reachable. |
611 | |
612 | // We shouldn't zero out external data linked into the message. |
613 | if (!segment->isWritable()) return; |
614 | |
615 | switch (ref->kind()) { |
616 | case WirePointer::STRUCT: |
617 | case WirePointer::LIST: |
618 | zeroObject(segment, capTable, ref, ref->target()); |
619 | break; |
620 | case WirePointer::FAR: { |
621 | segment = segment->getArena()->getSegment(ref->farRef.segmentId.get()); |
622 | if (segment->isWritable()) { // Don't zero external data. |
623 | WirePointer* pad = reinterpret_cast<WirePointer*>(ref->farTarget(segment)); |
624 | |
625 | if (ref->isDoubleFar()) { |
626 | segment = segment->getArena()->getSegment(pad->farRef.segmentId.get()); |
627 | if (segment->isWritable()) { |
628 | zeroObject(segment, capTable, pad + 1, pad->farTarget(segment)); |
629 | } |
630 | zeroMemory(pad, G(2) * POINTERS); |
631 | } else { |
632 | zeroObject(segment, capTable, pad); |
633 | zeroMemory(pad); |
634 | } |
635 | } |
636 | break; |
637 | } |
638 | case WirePointer::OTHER: |
639 | if (ref->isCapability()) { |
640 | #if CAPNP_LITE |
641 | KJ_FAIL_ASSERT("Capability encountered in builder in lite mode?" ) { break; } |
642 | #else // CAPNP_LINE |
643 | capTable->dropCap(ref->capRef.index.get()); |
644 | #endif // CAPNP_LITE, else |
645 | } else { |
646 | KJ_FAIL_REQUIRE("Unknown pointer type." ) { break; } |
647 | } |
648 | break; |
649 | } |
650 | } |
651 | |
652 | static void zeroObject(SegmentBuilder* segment, CapTableBuilder* capTable, |
653 | WirePointer* tag, word* ptr) { |
654 | // We shouldn't zero out external data linked into the message. |
655 | if (!segment->isWritable()) return; |
656 | |
657 | switch (tag->kind()) { |
658 | case WirePointer::STRUCT: { |
659 | WirePointer* pointerSection = |
660 | reinterpret_cast<WirePointer*>(ptr + tag->structRef.dataSize.get()); |
661 | for (auto i: kj::zeroTo(tag->structRef.ptrCount.get())) { |
662 | zeroObject(segment, capTable, pointerSection + i); |
663 | } |
664 | zeroMemory(ptr, tag->structRef.wordSize()); |
665 | break; |
666 | } |
667 | case WirePointer::LIST: { |
668 | switch (tag->listRef.elementSize()) { |
669 | case ElementSize::VOID: |
670 | // Nothing. |
671 | break; |
672 | case ElementSize::BIT: |
673 | case ElementSize::BYTE: |
674 | case ElementSize::TWO_BYTES: |
675 | case ElementSize::FOUR_BYTES: |
676 | case ElementSize::EIGHT_BYTES: { |
677 | zeroMemory(ptr, roundBitsUpToWords( |
678 | upgradeBound<uint64_t>(tag->listRef.elementCount()) * |
679 | dataBitsPerElement(tag->listRef.elementSize()))); |
680 | break; |
681 | } |
682 | case ElementSize::POINTER: { |
683 | WirePointer* typedPtr = reinterpret_cast<WirePointer*>(ptr); |
684 | auto count = tag->listRef.elementCount() * (ONE * POINTERS / ELEMENTS); |
685 | for (auto i: kj::zeroTo(count)) { |
686 | zeroObject(segment, capTable, typedPtr + i); |
687 | } |
688 | zeroMemory(typedPtr, count); |
689 | break; |
690 | } |
691 | case ElementSize::INLINE_COMPOSITE: { |
692 | WirePointer* elementTag = reinterpret_cast<WirePointer*>(ptr); |
693 | |
694 | KJ_ASSERT(elementTag->kind() == WirePointer::STRUCT, |
695 | "Don't know how to handle non-STRUCT inline composite." ); |
696 | WordCount dataSize = elementTag->structRef.dataSize.get(); |
697 | WirePointerCount pointerCount = elementTag->structRef.ptrCount.get(); |
698 | |
699 | auto count = elementTag->inlineCompositeListElementCount(); |
700 | if (pointerCount > ZERO * POINTERS) { |
701 | word* pos = ptr + POINTER_SIZE_IN_WORDS; |
702 | for (auto i KJ_UNUSED: kj::zeroTo(count)) { |
703 | pos += dataSize; |
704 | |
705 | for (auto j KJ_UNUSED: kj::zeroTo(pointerCount)) { |
706 | zeroObject(segment, capTable, reinterpret_cast<WirePointer*>(pos)); |
707 | pos += POINTER_SIZE_IN_WORDS; |
708 | } |
709 | } |
710 | } |
711 | |
712 | auto wordsPerElement = elementTag->structRef.wordSize() / ELEMENTS; |
713 | zeroMemory(ptr, assertMaxBits<SEGMENT_WORD_COUNT_BITS>(POINTER_SIZE_IN_WORDS + |
714 | upgradeBound<uint64_t>(count) * wordsPerElement, []() { |
715 | KJ_FAIL_ASSERT("encountered list pointer in builder which is too large to " |
716 | "possibly fit in a segment. Bug in builder code?" ); |
717 | })); |
718 | break; |
719 | } |
720 | } |
721 | break; |
722 | } |
723 | case WirePointer::FAR: |
724 | KJ_FAIL_ASSERT("Unexpected FAR pointer." ) { |
725 | break; |
726 | } |
727 | break; |
728 | case WirePointer::OTHER: |
729 | KJ_FAIL_ASSERT("Unexpected OTHER pointer." ) { |
730 | break; |
731 | } |
732 | break; |
733 | } |
734 | } |
735 | |
736 | static KJ_ALWAYS_INLINE( |
737 | void zeroPointerAndFars(SegmentBuilder* segment, WirePointer* ref)) { |
738 | // Zero out the pointer itself and, if it is a far pointer, zero the landing pad as well, but |
739 | // do not zero the object body. Used when upgrading. |
740 | |
741 | if (ref->kind() == WirePointer::FAR) { |
742 | SegmentBuilder* padSegment = segment->getArena()->getSegment(ref->farRef.segmentId.get()); |
743 | if (padSegment->isWritable()) { // Don't zero external data. |
744 | WirePointer* pad = reinterpret_cast<WirePointer*>(ref->farTarget(padSegment)); |
745 | if (ref->isDoubleFar()) { |
746 | zeroMemory(pad, G(2) * POINTERS); |
747 | } else { |
748 | zeroMemory(pad); |
749 | } |
750 | } |
751 | } |
752 | |
753 | zeroMemory(ref); |
754 | } |
755 | |
756 | |
757 | // ----------------------------------------------------------------- |
758 | |
759 | static MessageSizeCounts totalSize( |
760 | SegmentReader* segment, const WirePointer* ref, int nestingLimit) { |
761 | // Compute the total size of the object pointed to, not counting far pointer overhead. |
762 | |
763 | MessageSizeCounts result = { ZERO * WORDS, 0 }; |
764 | |
765 | if (ref->isNull()) { |
766 | return result; |
767 | } |
768 | |
769 | KJ_REQUIRE(nestingLimit > 0, "Message is too deeply-nested." ) { |
770 | return result; |
771 | } |
772 | --nestingLimit; |
773 | |
774 | const word* ptr; |
775 | KJ_IF_MAYBE(p, followFars(ref, ref->target(segment), segment)) { |
776 | ptr = p; |
777 | } else { |
778 | return result; |
779 | } |
780 | |
781 | switch (ref->kind()) { |
782 | case WirePointer::STRUCT: { |
783 | KJ_REQUIRE(boundsCheck(segment, ptr, ref->structRef.wordSize()), |
784 | "Message contained out-of-bounds struct pointer." ) { |
785 | return result; |
786 | } |
787 | result.addWords(ref->structRef.wordSize()); |
788 | |
789 | const WirePointer* pointerSection = |
790 | reinterpret_cast<const WirePointer*>(ptr + ref->structRef.dataSize.get()); |
791 | for (auto i: kj::zeroTo(ref->structRef.ptrCount.get())) { |
792 | result += totalSize(segment, pointerSection + i, nestingLimit); |
793 | } |
794 | break; |
795 | } |
796 | case WirePointer::LIST: { |
797 | switch (ref->listRef.elementSize()) { |
798 | case ElementSize::VOID: |
799 | // Nothing. |
800 | break; |
801 | case ElementSize::BIT: |
802 | case ElementSize::BYTE: |
803 | case ElementSize::TWO_BYTES: |
804 | case ElementSize::FOUR_BYTES: |
805 | case ElementSize::EIGHT_BYTES: { |
806 | auto totalWords = roundBitsUpToWords( |
807 | upgradeBound<uint64_t>(ref->listRef.elementCount()) * |
808 | dataBitsPerElement(ref->listRef.elementSize())); |
809 | KJ_REQUIRE(boundsCheck(segment, ptr, totalWords), |
810 | "Message contained out-of-bounds list pointer." ) { |
811 | return result; |
812 | } |
813 | result.addWords(totalWords); |
814 | break; |
815 | } |
816 | case ElementSize::POINTER: { |
817 | auto count = ref->listRef.elementCount() * (POINTERS / ELEMENTS); |
818 | |
819 | KJ_REQUIRE(boundsCheck(segment, ptr, count * WORDS_PER_POINTER), |
820 | "Message contained out-of-bounds list pointer." ) { |
821 | return result; |
822 | } |
823 | |
824 | result.addWords(count * WORDS_PER_POINTER); |
825 | |
826 | for (auto i: kj::zeroTo(count)) { |
827 | result += totalSize(segment, reinterpret_cast<const WirePointer*>(ptr) + i, |
828 | nestingLimit); |
829 | } |
830 | break; |
831 | } |
832 | case ElementSize::INLINE_COMPOSITE: { |
833 | auto wordCount = ref->listRef.inlineCompositeWordCount(); |
834 | KJ_REQUIRE(boundsCheck(segment, ptr, wordCount + POINTER_SIZE_IN_WORDS), |
835 | "Message contained out-of-bounds list pointer." ) { |
836 | return result; |
837 | } |
838 | |
839 | const WirePointer* elementTag = reinterpret_cast<const WirePointer*>(ptr); |
840 | auto count = elementTag->inlineCompositeListElementCount(); |
841 | |
842 | KJ_REQUIRE(elementTag->kind() == WirePointer::STRUCT, |
843 | "Don't know how to handle non-STRUCT inline composite." ) { |
844 | return result; |
845 | } |
846 | |
847 | auto actualSize = elementTag->structRef.wordSize() / ELEMENTS * |
848 | upgradeBound<uint64_t>(count); |
849 | KJ_REQUIRE(actualSize <= wordCount, |
850 | "Struct list pointer's elements overran size." ) { |
851 | return result; |
852 | } |
853 | |
854 | // We count the actual size rather than the claimed word count because that's what |
855 | // we'll end up with if we make a copy. |
856 | result.addWords(actualSize + POINTER_SIZE_IN_WORDS); |
857 | |
858 | WordCount dataSize = elementTag->structRef.dataSize.get(); |
859 | WirePointerCount pointerCount = elementTag->structRef.ptrCount.get(); |
860 | |
861 | if (pointerCount > ZERO * POINTERS) { |
862 | const word* pos = ptr + POINTER_SIZE_IN_WORDS; |
863 | for (auto i KJ_UNUSED: kj::zeroTo(count)) { |
864 | pos += dataSize; |
865 | |
866 | for (auto j KJ_UNUSED: kj::zeroTo(pointerCount)) { |
867 | result += totalSize(segment, reinterpret_cast<const WirePointer*>(pos), |
868 | nestingLimit); |
869 | pos += POINTER_SIZE_IN_WORDS; |
870 | } |
871 | } |
872 | } |
873 | break; |
874 | } |
875 | } |
876 | break; |
877 | } |
878 | case WirePointer::FAR: |
879 | KJ_FAIL_REQUIRE("Unexpected FAR pointer." ) { |
880 | break; |
881 | } |
882 | break; |
883 | case WirePointer::OTHER: |
884 | if (ref->isCapability()) { |
885 | result.capCount++; |
886 | } else { |
887 | KJ_FAIL_REQUIRE("Unknown pointer type." ) { break; } |
888 | } |
889 | break; |
890 | } |
891 | |
892 | return result; |
893 | } |
894 | |
895 | // ----------------------------------------------------------------- |
896 | // Copy from an unchecked message. |
897 | |
898 | static KJ_ALWAYS_INLINE( |
899 | void copyStruct(SegmentBuilder* segment, CapTableBuilder* capTable, |
900 | word* dst, const word* src, |
901 | StructDataWordCount dataSize, StructPointerCount pointerCount)) { |
902 | copyMemory(dst, src, dataSize); |
903 | |
904 | const WirePointer* srcRefs = reinterpret_cast<const WirePointer*>(src + dataSize); |
905 | WirePointer* dstRefs = reinterpret_cast<WirePointer*>(dst + dataSize); |
906 | |
907 | for (auto i: kj::zeroTo(pointerCount)) { |
908 | SegmentBuilder* subSegment = segment; |
909 | WirePointer* dstRef = dstRefs + i; |
910 | copyMessage(subSegment, capTable, dstRef, srcRefs + i); |
911 | } |
912 | } |
913 | |
914 | static word* copyMessage( |
915 | SegmentBuilder*& segment, CapTableBuilder* capTable, |
916 | WirePointer*& dst, const WirePointer* src) { |
917 | // Not always-inline because it's recursive. |
918 | |
919 | switch (src->kind()) { |
920 | case WirePointer::STRUCT: { |
921 | if (src->isNull()) { |
922 | zeroMemory(dst); |
923 | return nullptr; |
924 | } else { |
925 | const word* srcPtr = src->target(nullptr); |
926 | word* dstPtr = allocate( |
927 | dst, segment, capTable, src->structRef.wordSize(), WirePointer::STRUCT, nullptr); |
928 | |
929 | copyStruct(segment, capTable, dstPtr, srcPtr, src->structRef.dataSize.get(), |
930 | src->structRef.ptrCount.get()); |
931 | |
932 | dst->structRef.set(src->structRef.dataSize.get(), src->structRef.ptrCount.get()); |
933 | return dstPtr; |
934 | } |
935 | } |
936 | case WirePointer::LIST: { |
937 | switch (src->listRef.elementSize()) { |
938 | case ElementSize::VOID: |
939 | case ElementSize::BIT: |
940 | case ElementSize::BYTE: |
941 | case ElementSize::TWO_BYTES: |
942 | case ElementSize::FOUR_BYTES: |
943 | case ElementSize::EIGHT_BYTES: { |
944 | auto wordCount = roundBitsUpToWords( |
945 | upgradeBound<uint64_t>(src->listRef.elementCount()) * |
946 | dataBitsPerElement(src->listRef.elementSize())); |
947 | const word* srcPtr = src->target(nullptr); |
948 | word* dstPtr = allocate(dst, segment, capTable, wordCount, WirePointer::LIST, nullptr); |
949 | copyMemory(dstPtr, srcPtr, wordCount); |
950 | |
951 | dst->listRef.set(src->listRef.elementSize(), src->listRef.elementCount()); |
952 | return dstPtr; |
953 | } |
954 | |
955 | case ElementSize::POINTER: { |
956 | const WirePointer* srcRefs = reinterpret_cast<const WirePointer*>(src->target(nullptr)); |
957 | WirePointer* dstRefs = reinterpret_cast<WirePointer*>( |
958 | allocate(dst, segment, capTable, src->listRef.elementCount() * |
959 | (ONE * POINTERS / ELEMENTS) * WORDS_PER_POINTER, |
960 | WirePointer::LIST, nullptr)); |
961 | |
962 | for (auto i: kj::zeroTo(src->listRef.elementCount() * (ONE * POINTERS / ELEMENTS))) { |
963 | SegmentBuilder* subSegment = segment; |
964 | WirePointer* dstRef = dstRefs + i; |
965 | copyMessage(subSegment, capTable, dstRef, srcRefs + i); |
966 | } |
967 | |
968 | dst->listRef.set(ElementSize::POINTER, src->listRef.elementCount()); |
969 | return reinterpret_cast<word*>(dstRefs); |
970 | } |
971 | |
972 | case ElementSize::INLINE_COMPOSITE: { |
973 | const word* srcPtr = src->target(nullptr); |
974 | word* dstPtr = allocate(dst, segment, capTable, |
975 | assertMaxBits<SEGMENT_WORD_COUNT_BITS>( |
976 | src->listRef.inlineCompositeWordCount() + POINTER_SIZE_IN_WORDS, |
977 | []() { KJ_FAIL_ASSERT("list too big to fit in a segment" ); }), |
978 | WirePointer::LIST, nullptr); |
979 | |
980 | dst->listRef.setInlineComposite(src->listRef.inlineCompositeWordCount()); |
981 | |
982 | const WirePointer* srcTag = reinterpret_cast<const WirePointer*>(srcPtr); |
983 | copyMemory(reinterpret_cast<WirePointer*>(dstPtr), srcTag); |
984 | |
985 | const word* srcElement = srcPtr + POINTER_SIZE_IN_WORDS; |
986 | word* dstElement = dstPtr + POINTER_SIZE_IN_WORDS; |
987 | |
988 | KJ_ASSERT(srcTag->kind() == WirePointer::STRUCT, |
989 | "INLINE_COMPOSITE of lists is not yet supported." ); |
990 | |
991 | for (auto i KJ_UNUSED: kj::zeroTo(srcTag->inlineCompositeListElementCount())) { |
992 | copyStruct(segment, capTable, dstElement, srcElement, |
993 | srcTag->structRef.dataSize.get(), srcTag->structRef.ptrCount.get()); |
994 | srcElement += srcTag->structRef.wordSize(); |
995 | dstElement += srcTag->structRef.wordSize(); |
996 | } |
997 | return dstPtr; |
998 | } |
999 | } |
1000 | break; |
1001 | } |
1002 | case WirePointer::OTHER: |
1003 | KJ_FAIL_REQUIRE("Unchecked messages cannot contain OTHER pointers (e.g. capabilities)." ); |
1004 | break; |
1005 | case WirePointer::FAR: |
1006 | KJ_FAIL_REQUIRE("Unchecked messages cannot contain far pointers." ); |
1007 | break; |
1008 | } |
1009 | |
1010 | return nullptr; |
1011 | } |
1012 | |
1013 | static void transferPointer(SegmentBuilder* dstSegment, WirePointer* dst, |
1014 | SegmentBuilder* srcSegment, WirePointer* src) { |
1015 | // Make *dst point to the same object as *src. Both must reside in the same message, but can |
1016 | // be in different segments. Not always-inline because this is rarely used. |
1017 | // |
1018 | // Caller MUST zero out the source pointer after calling this, to make sure no later code |
1019 | // mistakenly thinks the source location still owns the object. transferPointer() doesn't do |
1020 | // this zeroing itself because many callers transfer several pointers in a loop then zero out |
1021 | // the whole section. |
1022 | |
1023 | KJ_DASSERT(dst->isNull()); |
1024 | // We expect the caller to ensure the target is already null so won't leak. |
1025 | |
1026 | if (src->isNull()) { |
1027 | zeroMemory(dst); |
1028 | } else if (src->isPositional()) { |
1029 | transferPointer(dstSegment, dst, srcSegment, src, src->target()); |
1030 | } else { |
1031 | // Far and other pointers are position-independent, so we can just copy. |
1032 | copyMemory(dst, src); |
1033 | } |
1034 | } |
1035 | |
1036 | static void transferPointer(SegmentBuilder* dstSegment, WirePointer* dst, |
1037 | SegmentBuilder* srcSegment, const WirePointer* srcTag, |
1038 | word* srcPtr) { |
1039 | // Like the other overload, but splits src into a tag and a target. Particularly useful for |
1040 | // OrphanBuilder. |
1041 | |
1042 | if (dstSegment == srcSegment) { |
1043 | // Same segment, so create a direct pointer. |
1044 | |
1045 | if (srcTag->kind() == WirePointer::STRUCT && srcTag->structRef.wordSize() == ZERO * WORDS) { |
1046 | dst->setKindAndTargetForEmptyStruct(); |
1047 | } else { |
1048 | dst->setKindAndTarget(srcTag->kind(), srcPtr, dstSegment); |
1049 | } |
1050 | |
1051 | // We can just copy the upper 32 bits. (Use memcpy() to comply with aliasing rules.) |
1052 | copyMemory(&dst->upper32Bits, &srcTag->upper32Bits); |
1053 | } else { |
1054 | // Need to create a far pointer. Try to allocate it in the same segment as the source, so |
1055 | // that it doesn't need to be a double-far. |
1056 | |
1057 | WirePointer* landingPad = |
1058 | reinterpret_cast<WirePointer*>(srcSegment->allocate(G(1) * WORDS)); |
1059 | if (landingPad == nullptr) { |
1060 | // Darn, need a double-far. |
1061 | auto allocation = srcSegment->getArena()->allocate(G(2) * WORDS); |
1062 | SegmentBuilder* farSegment = allocation.segment; |
1063 | landingPad = reinterpret_cast<WirePointer*>(allocation.words); |
1064 | |
1065 | landingPad[0].setFar(false, srcSegment->getOffsetTo(srcPtr)); |
1066 | landingPad[0].farRef.segmentId.set(srcSegment->getSegmentId()); |
1067 | |
1068 | landingPad[1].setKindWithZeroOffset(srcTag->kind()); |
1069 | copyMemory(&landingPad[1].upper32Bits, &srcTag->upper32Bits); |
1070 | |
1071 | dst->setFar(true, farSegment->getOffsetTo(reinterpret_cast<word*>(landingPad))); |
1072 | dst->farRef.set(farSegment->getSegmentId()); |
1073 | } else { |
1074 | // Simple landing pad is just a pointer. |
1075 | landingPad->setKindAndTarget(srcTag->kind(), srcPtr, srcSegment); |
1076 | copyMemory(&landingPad->upper32Bits, &srcTag->upper32Bits); |
1077 | |
1078 | dst->setFar(false, srcSegment->getOffsetTo(reinterpret_cast<word*>(landingPad))); |
1079 | dst->farRef.set(srcSegment->getSegmentId()); |
1080 | } |
1081 | } |
1082 | } |
1083 | |
1084 | // ----------------------------------------------------------------- |
1085 | |
1086 | static KJ_ALWAYS_INLINE(StructBuilder initStructPointer( |
1087 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, StructSize size, |
1088 | BuilderArena* orphanArena = nullptr)) { |
1089 | // Allocate space for the new struct. Newly-allocated space is automatically zeroed. |
1090 | word* ptr = allocate(ref, segment, capTable, size.total(), WirePointer::STRUCT, orphanArena); |
1091 | |
1092 | // Initialize the pointer. |
1093 | ref->structRef.set(size); |
1094 | |
1095 | // Build the StructBuilder. |
1096 | return StructBuilder(segment, capTable, ptr, reinterpret_cast<WirePointer*>(ptr + size.data), |
1097 | size.data * BITS_PER_WORD, size.pointers); |
1098 | } |
1099 | |
1100 | static KJ_ALWAYS_INLINE(StructBuilder getWritableStructPointer( |
1101 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, StructSize size, |
1102 | const word* defaultValue)) { |
1103 | return getWritableStructPointer(ref, ref->target(), segment, capTable, size, defaultValue); |
1104 | } |
1105 | |
1106 | static KJ_ALWAYS_INLINE(StructBuilder getWritableStructPointer( |
1107 | WirePointer* ref, word* refTarget, SegmentBuilder* segment, CapTableBuilder* capTable, |
1108 | StructSize size, const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
1109 | if (ref->isNull()) { |
1110 | useDefault: |
1111 | if (defaultValue == nullptr || |
1112 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
1113 | return initStructPointer(ref, segment, capTable, size, orphanArena); |
1114 | } |
1115 | refTarget = copyMessage(segment, capTable, ref, |
1116 | reinterpret_cast<const WirePointer*>(defaultValue)); |
1117 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
1118 | } |
1119 | |
1120 | WirePointer* oldRef = ref; |
1121 | SegmentBuilder* oldSegment = segment; |
1122 | word* oldPtr = followFars(oldRef, refTarget, oldSegment); |
1123 | |
1124 | KJ_REQUIRE(oldRef->kind() == WirePointer::STRUCT, |
1125 | "Message contains non-struct pointer where struct pointer was expected." ) { |
1126 | goto useDefault; |
1127 | } |
1128 | |
1129 | auto oldDataSize = oldRef->structRef.dataSize.get(); |
1130 | auto oldPointerCount = oldRef->structRef.ptrCount.get(); |
1131 | WirePointer* oldPointerSection = |
1132 | reinterpret_cast<WirePointer*>(oldPtr + oldDataSize); |
1133 | |
1134 | if (oldDataSize < size.data || oldPointerCount < size.pointers) { |
1135 | // The space allocated for this struct is too small. Unlike with readers, we can't just |
1136 | // run with it and do bounds checks at access time, because how would we handle writes? |
1137 | // Instead, we have to copy the struct to a new space now. |
1138 | |
1139 | auto newDataSize = kj::max(oldDataSize, size.data); |
1140 | auto newPointerCount = kj::max(oldPointerCount, size.pointers); |
1141 | auto totalSize = newDataSize + newPointerCount * WORDS_PER_POINTER; |
1142 | |
1143 | // Don't let allocate() zero out the object just yet. |
1144 | zeroPointerAndFars(segment, ref); |
1145 | |
1146 | word* ptr = allocate(ref, segment, capTable, totalSize, WirePointer::STRUCT, orphanArena); |
1147 | ref->structRef.set(newDataSize, newPointerCount); |
1148 | |
1149 | // Copy data section. |
1150 | copyMemory(ptr, oldPtr, oldDataSize); |
1151 | |
1152 | // Copy pointer section. |
1153 | WirePointer* newPointerSection = reinterpret_cast<WirePointer*>(ptr + newDataSize); |
1154 | for (auto i: kj::zeroTo(oldPointerCount)) { |
1155 | transferPointer(segment, newPointerSection + i, oldSegment, oldPointerSection + i); |
1156 | } |
1157 | |
1158 | // Zero out old location. This has two purposes: |
1159 | // 1) We don't want to leak the original contents of the struct when the message is written |
1160 | // out as it may contain secrets that the caller intends to remove from the new copy. |
1161 | // 2) Zeros will be deflated by packing, making this dead memory almost-free if it ever |
1162 | // hits the wire. |
1163 | zeroMemory(oldPtr, oldDataSize + oldPointerCount * WORDS_PER_POINTER); |
1164 | |
1165 | return StructBuilder(segment, capTable, ptr, newPointerSection, newDataSize * BITS_PER_WORD, |
1166 | newPointerCount); |
1167 | } else { |
1168 | return StructBuilder(oldSegment, capTable, oldPtr, oldPointerSection, |
1169 | oldDataSize * BITS_PER_WORD, oldPointerCount); |
1170 | } |
1171 | } |
1172 | |
1173 | static KJ_ALWAYS_INLINE(ListBuilder initListPointer( |
1174 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
1175 | ElementCount elementCount, ElementSize elementSize, BuilderArena* orphanArena = nullptr)) { |
1176 | KJ_DREQUIRE(elementSize != ElementSize::INLINE_COMPOSITE, |
1177 | "Should have called initStructListPointer() instead." ); |
1178 | |
1179 | auto checkedElementCount = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(elementCount, |
1180 | []() { KJ_FAIL_REQUIRE("tried to allocate list with too many elements" ); }); |
1181 | |
1182 | auto dataSize = dataBitsPerElement(elementSize) * ELEMENTS; |
1183 | auto pointerCount = pointersPerElement(elementSize) * ELEMENTS; |
1184 | auto step = bitsPerElementIncludingPointers(elementSize); |
1185 | KJ_DASSERT(step * ELEMENTS == (dataSize + pointerCount * BITS_PER_POINTER)); |
1186 | |
1187 | // Calculate size of the list. |
1188 | auto wordCount = roundBitsUpToWords(upgradeBound<uint64_t>(checkedElementCount) * step); |
1189 | |
1190 | // Allocate the list. |
1191 | word* ptr = allocate(ref, segment, capTable, wordCount, WirePointer::LIST, orphanArena); |
1192 | |
1193 | // Initialize the pointer. |
1194 | ref->listRef.set(elementSize, checkedElementCount); |
1195 | |
1196 | // Build the ListBuilder. |
1197 | return ListBuilder(segment, capTable, ptr, step, checkedElementCount, |
1198 | dataSize, pointerCount, elementSize); |
1199 | } |
1200 | |
1201 | static KJ_ALWAYS_INLINE(ListBuilder initStructListPointer( |
1202 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
1203 | ElementCount elementCount, StructSize elementSize, BuilderArena* orphanArena = nullptr)) { |
1204 | auto checkedElementCount = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(elementCount, |
1205 | []() { KJ_FAIL_REQUIRE("tried to allocate list with too many elements" ); }); |
1206 | |
1207 | WordsPerElementN<17> wordsPerElement = elementSize.total() / ELEMENTS; |
1208 | |
1209 | // Allocate the list, prefixed by a single WirePointer. |
1210 | auto wordCount = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
1211 | upgradeBound<uint64_t>(checkedElementCount) * wordsPerElement, |
1212 | []() { KJ_FAIL_REQUIRE("total size of struct list is larger than max segment size" ); }); |
1213 | word* ptr = allocate(ref, segment, capTable, POINTER_SIZE_IN_WORDS + wordCount, |
1214 | WirePointer::LIST, orphanArena); |
1215 | |
1216 | // Initialize the pointer. |
1217 | // INLINE_COMPOSITE lists replace the element count with the word count. |
1218 | ref->listRef.setInlineComposite(wordCount); |
1219 | |
1220 | // Initialize the list tag. |
1221 | reinterpret_cast<WirePointer*>(ptr)->setKindAndInlineCompositeListElementCount( |
1222 | WirePointer::STRUCT, checkedElementCount); |
1223 | reinterpret_cast<WirePointer*>(ptr)->structRef.set(elementSize); |
1224 | ptr += POINTER_SIZE_IN_WORDS; |
1225 | |
1226 | // Build the ListBuilder. |
1227 | return ListBuilder(segment, capTable, ptr, wordsPerElement * BITS_PER_WORD, checkedElementCount, |
1228 | elementSize.data * BITS_PER_WORD, elementSize.pointers, |
1229 | ElementSize::INLINE_COMPOSITE); |
1230 | } |
1231 | |
1232 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointer( |
1233 | WirePointer* origRef, SegmentBuilder* origSegment, CapTableBuilder* capTable, |
1234 | ElementSize elementSize, const word* defaultValue)) { |
1235 | return getWritableListPointer(origRef, origRef->target(), origSegment, capTable, elementSize, |
1236 | defaultValue); |
1237 | } |
1238 | |
1239 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointer( |
1240 | WirePointer* origRef, word* origRefTarget, |
1241 | SegmentBuilder* origSegment, CapTableBuilder* capTable, ElementSize elementSize, |
1242 | const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
1243 | KJ_DREQUIRE(elementSize != ElementSize::INLINE_COMPOSITE, |
1244 | "Use getWritableStructListPointer() for struct lists." ); |
1245 | |
1246 | if (origRef->isNull()) { |
1247 | useDefault: |
1248 | if (defaultValue == nullptr || |
1249 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
1250 | return ListBuilder(elementSize); |
1251 | } |
1252 | origRefTarget = copyMessage( |
1253 | origSegment, capTable, origRef, reinterpret_cast<const WirePointer*>(defaultValue)); |
1254 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
1255 | } |
1256 | |
1257 | // We must verify that the pointer has the right size. Unlike in |
1258 | // getWritableStructListPointer(), we never need to "upgrade" the data, because this |
1259 | // method is called only for non-struct lists, and there is no allowed upgrade path *to* |
1260 | // a non-struct list, only *from* them. |
1261 | |
1262 | WirePointer* ref = origRef; |
1263 | SegmentBuilder* segment = origSegment; |
1264 | word* ptr = followFars(ref, origRefTarget, segment); |
1265 | |
1266 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
1267 | "Called getWritableListPointer() but existing pointer is not a list." ) { |
1268 | goto useDefault; |
1269 | } |
1270 | |
1271 | ElementSize oldSize = ref->listRef.elementSize(); |
1272 | |
1273 | if (oldSize == ElementSize::INLINE_COMPOSITE) { |
1274 | // The existing element size is INLINE_COMPOSITE, though we expected a list of primitives. |
1275 | // The existing data must have been written with a newer version of the protocol. We |
1276 | // therefore never need to upgrade the data in this case, but we do need to validate that it |
1277 | // is a valid upgrade from what we expected. |
1278 | |
1279 | // Read the tag to get the actual element count. |
1280 | WirePointer* tag = reinterpret_cast<WirePointer*>(ptr); |
1281 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
1282 | "INLINE_COMPOSITE list with non-STRUCT elements not supported." ); |
1283 | ptr += POINTER_SIZE_IN_WORDS; |
1284 | |
1285 | auto dataSize = tag->structRef.dataSize.get(); |
1286 | auto pointerCount = tag->structRef.ptrCount.get(); |
1287 | |
1288 | switch (elementSize) { |
1289 | case ElementSize::VOID: |
1290 | // Anything is a valid upgrade from Void. |
1291 | break; |
1292 | |
1293 | case ElementSize::BIT: |
1294 | KJ_FAIL_REQUIRE( |
1295 | "Found struct list where bit list was expected; upgrading boolean lists to structs " |
1296 | "is no longer supported." ) { |
1297 | goto useDefault; |
1298 | } |
1299 | break; |
1300 | |
1301 | case ElementSize::BYTE: |
1302 | case ElementSize::TWO_BYTES: |
1303 | case ElementSize::FOUR_BYTES: |
1304 | case ElementSize::EIGHT_BYTES: |
1305 | KJ_REQUIRE(dataSize >= ONE * WORDS, |
1306 | "Existing list value is incompatible with expected type." ) { |
1307 | goto useDefault; |
1308 | } |
1309 | break; |
1310 | |
1311 | case ElementSize::POINTER: |
1312 | KJ_REQUIRE(pointerCount >= ONE * POINTERS, |
1313 | "Existing list value is incompatible with expected type." ) { |
1314 | goto useDefault; |
1315 | } |
1316 | // Adjust the pointer to point at the reference segment. |
1317 | ptr += dataSize; |
1318 | break; |
1319 | |
1320 | case ElementSize::INLINE_COMPOSITE: |
1321 | KJ_UNREACHABLE; |
1322 | } |
1323 | |
1324 | // OK, looks valid. |
1325 | |
1326 | return ListBuilder(segment, capTable, ptr, |
1327 | tag->structRef.wordSize() * BITS_PER_WORD / ELEMENTS, |
1328 | tag->inlineCompositeListElementCount(), |
1329 | dataSize * BITS_PER_WORD, pointerCount, ElementSize::INLINE_COMPOSITE); |
1330 | } else { |
1331 | auto dataSize = dataBitsPerElement(oldSize) * ELEMENTS; |
1332 | auto pointerCount = pointersPerElement(oldSize) * ELEMENTS; |
1333 | |
1334 | if (elementSize == ElementSize::BIT) { |
1335 | KJ_REQUIRE(oldSize == ElementSize::BIT, |
1336 | "Found non-bit list where bit list was expected." ) { |
1337 | goto useDefault; |
1338 | } |
1339 | } else { |
1340 | KJ_REQUIRE(oldSize != ElementSize::BIT, |
1341 | "Found bit list where non-bit list was expected." ) { |
1342 | goto useDefault; |
1343 | } |
1344 | KJ_REQUIRE(dataSize >= dataBitsPerElement(elementSize) * ELEMENTS, |
1345 | "Existing list value is incompatible with expected type." ) { |
1346 | goto useDefault; |
1347 | } |
1348 | KJ_REQUIRE(pointerCount >= pointersPerElement(elementSize) * ELEMENTS, |
1349 | "Existing list value is incompatible with expected type." ) { |
1350 | goto useDefault; |
1351 | } |
1352 | } |
1353 | |
1354 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
1355 | return ListBuilder(segment, capTable, ptr, step, ref->listRef.elementCount(), |
1356 | dataSize, pointerCount, oldSize); |
1357 | } |
1358 | } |
1359 | |
1360 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointerAnySize( |
1361 | WirePointer* origRef, SegmentBuilder* origSegment, CapTableBuilder* capTable, |
1362 | const word* defaultValue)) { |
1363 | return getWritableListPointerAnySize(origRef, origRef->target(), origSegment, |
1364 | capTable, defaultValue); |
1365 | } |
1366 | |
1367 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointerAnySize( |
1368 | WirePointer* origRef, word* origRefTarget, |
1369 | SegmentBuilder* origSegment, CapTableBuilder* capTable, |
1370 | const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
1371 | if (origRef->isNull()) { |
1372 | useDefault: |
1373 | if (defaultValue == nullptr || |
1374 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
1375 | return ListBuilder(ElementSize::VOID); |
1376 | } |
1377 | origRefTarget = copyMessage( |
1378 | origSegment, capTable, origRef, reinterpret_cast<const WirePointer*>(defaultValue)); |
1379 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
1380 | } |
1381 | |
1382 | WirePointer* ref = origRef; |
1383 | SegmentBuilder* segment = origSegment; |
1384 | word* ptr = followFars(ref, origRefTarget, segment); |
1385 | |
1386 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
1387 | "Called getWritableListPointerAnySize() but existing pointer is not a list." ) { |
1388 | goto useDefault; |
1389 | } |
1390 | |
1391 | ElementSize elementSize = ref->listRef.elementSize(); |
1392 | |
1393 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
1394 | // Read the tag to get the actual element count. |
1395 | WirePointer* tag = reinterpret_cast<WirePointer*>(ptr); |
1396 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
1397 | "INLINE_COMPOSITE list with non-STRUCT elements not supported." ); |
1398 | ptr += POINTER_SIZE_IN_WORDS; |
1399 | |
1400 | return ListBuilder(segment, capTable, ptr, |
1401 | tag->structRef.wordSize() * BITS_PER_WORD / ELEMENTS, |
1402 | tag->inlineCompositeListElementCount(), |
1403 | tag->structRef.dataSize.get() * BITS_PER_WORD, |
1404 | tag->structRef.ptrCount.get(), ElementSize::INLINE_COMPOSITE); |
1405 | } else { |
1406 | auto dataSize = dataBitsPerElement(elementSize) * ELEMENTS; |
1407 | auto pointerCount = pointersPerElement(elementSize) * ELEMENTS; |
1408 | |
1409 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
1410 | return ListBuilder(segment, capTable, ptr, step, ref->listRef.elementCount(), |
1411 | dataSize, pointerCount, elementSize); |
1412 | } |
1413 | } |
1414 | |
1415 | static KJ_ALWAYS_INLINE(ListBuilder getWritableStructListPointer( |
1416 | WirePointer* origRef, SegmentBuilder* origSegment, CapTableBuilder* capTable, |
1417 | StructSize elementSize, const word* defaultValue)) { |
1418 | return getWritableStructListPointer(origRef, origRef->target(), origSegment, capTable, |
1419 | elementSize, defaultValue); |
1420 | } |
1421 | static KJ_ALWAYS_INLINE(ListBuilder getWritableStructListPointer( |
1422 | WirePointer* origRef, word* origRefTarget, |
1423 | SegmentBuilder* origSegment, CapTableBuilder* capTable, |
1424 | StructSize elementSize, const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
1425 | if (origRef->isNull()) { |
1426 | useDefault: |
1427 | if (defaultValue == nullptr || |
1428 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
1429 | return ListBuilder(ElementSize::INLINE_COMPOSITE); |
1430 | } |
1431 | origRefTarget = copyMessage( |
1432 | origSegment, capTable, origRef, reinterpret_cast<const WirePointer*>(defaultValue)); |
1433 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
1434 | } |
1435 | |
1436 | // We must verify that the pointer has the right size and potentially upgrade it if not. |
1437 | |
1438 | WirePointer* oldRef = origRef; |
1439 | SegmentBuilder* oldSegment = origSegment; |
1440 | word* oldPtr = followFars(oldRef, origRefTarget, oldSegment); |
1441 | |
1442 | KJ_REQUIRE(oldRef->kind() == WirePointer::LIST, |
1443 | "Called getList{Field,Element}() but existing pointer is not a list." ) { |
1444 | goto useDefault; |
1445 | } |
1446 | |
1447 | ElementSize oldSize = oldRef->listRef.elementSize(); |
1448 | |
1449 | if (oldSize == ElementSize::INLINE_COMPOSITE) { |
1450 | // Existing list is INLINE_COMPOSITE, but we need to verify that the sizes match. |
1451 | |
1452 | WirePointer* oldTag = reinterpret_cast<WirePointer*>(oldPtr); |
1453 | oldPtr += POINTER_SIZE_IN_WORDS; |
1454 | KJ_REQUIRE(oldTag->kind() == WirePointer::STRUCT, |
1455 | "INLINE_COMPOSITE list with non-STRUCT elements not supported." ) { |
1456 | goto useDefault; |
1457 | } |
1458 | |
1459 | auto oldDataSize = oldTag->structRef.dataSize.get(); |
1460 | auto oldPointerCount = oldTag->structRef.ptrCount.get(); |
1461 | auto oldStep = (oldDataSize + oldPointerCount * WORDS_PER_POINTER) / ELEMENTS; |
1462 | |
1463 | auto elementCount = oldTag->inlineCompositeListElementCount(); |
1464 | |
1465 | if (oldDataSize >= elementSize.data && oldPointerCount >= elementSize.pointers) { |
1466 | // Old size is at least as large as we need. Ship it. |
1467 | return ListBuilder(oldSegment, capTable, oldPtr, oldStep * BITS_PER_WORD, elementCount, |
1468 | oldDataSize * BITS_PER_WORD, oldPointerCount, |
1469 | ElementSize::INLINE_COMPOSITE); |
1470 | } |
1471 | |
1472 | // The structs in this list are smaller than expected, probably written using an older |
1473 | // version of the protocol. We need to make a copy and expand them. |
1474 | |
1475 | auto newDataSize = kj::max(oldDataSize, elementSize.data); |
1476 | auto newPointerCount = kj::max(oldPointerCount, elementSize.pointers); |
1477 | auto newStep = (newDataSize + newPointerCount * WORDS_PER_POINTER) / ELEMENTS; |
1478 | |
1479 | auto totalSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
1480 | newStep * upgradeBound<uint64_t>(elementCount), |
1481 | []() { KJ_FAIL_REQUIRE("total size of struct list is larger than max segment size" ); }); |
1482 | |
1483 | // Don't let allocate() zero out the object just yet. |
1484 | zeroPointerAndFars(origSegment, origRef); |
1485 | |
1486 | word* newPtr = allocate(origRef, origSegment, capTable, totalSize + POINTER_SIZE_IN_WORDS, |
1487 | WirePointer::LIST, orphanArena); |
1488 | origRef->listRef.setInlineComposite(totalSize); |
1489 | |
1490 | WirePointer* newTag = reinterpret_cast<WirePointer*>(newPtr); |
1491 | newTag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, elementCount); |
1492 | newTag->structRef.set(newDataSize, newPointerCount); |
1493 | newPtr += POINTER_SIZE_IN_WORDS; |
1494 | |
1495 | word* src = oldPtr; |
1496 | word* dst = newPtr; |
1497 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
1498 | // Copy data section. |
1499 | copyMemory(dst, src, oldDataSize); |
1500 | |
1501 | // Copy pointer section. |
1502 | WirePointer* newPointerSection = reinterpret_cast<WirePointer*>(dst + newDataSize); |
1503 | WirePointer* oldPointerSection = reinterpret_cast<WirePointer*>(src + oldDataSize); |
1504 | for (auto j: kj::zeroTo(oldPointerCount)) { |
1505 | transferPointer(origSegment, newPointerSection + j, oldSegment, oldPointerSection + j); |
1506 | } |
1507 | |
1508 | dst += newStep * (ONE * ELEMENTS); |
1509 | src += oldStep * (ONE * ELEMENTS); |
1510 | } |
1511 | |
1512 | auto oldSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
1513 | oldStep * upgradeBound<uint64_t>(elementCount), |
1514 | []() { KJ_FAIL_ASSERT("old size overflows but new size doesn't?" ); }); |
1515 | |
1516 | // Zero out old location. See explanation in getWritableStructPointer(). |
1517 | // Make sure to include the tag word. |
1518 | zeroMemory(oldPtr - POINTER_SIZE_IN_WORDS, oldSize + POINTER_SIZE_IN_WORDS); |
1519 | |
1520 | return ListBuilder(origSegment, capTable, newPtr, newStep * BITS_PER_WORD, elementCount, |
1521 | newDataSize * BITS_PER_WORD, newPointerCount, |
1522 | ElementSize::INLINE_COMPOSITE); |
1523 | } else { |
1524 | // We're upgrading from a non-struct list. |
1525 | |
1526 | auto oldDataSize = dataBitsPerElement(oldSize) * ELEMENTS; |
1527 | auto oldPointerCount = pointersPerElement(oldSize) * ELEMENTS; |
1528 | auto oldStep = (oldDataSize + oldPointerCount * BITS_PER_POINTER) / ELEMENTS; |
1529 | auto elementCount = oldRef->listRef.elementCount(); |
1530 | |
1531 | if (oldSize == ElementSize::VOID) { |
1532 | // Nothing to copy, just allocate a new list. |
1533 | return initStructListPointer(origRef, origSegment, capTable, elementCount, elementSize); |
1534 | } else { |
1535 | // Upgrading to an inline composite list. |
1536 | |
1537 | KJ_REQUIRE(oldSize != ElementSize::BIT, |
1538 | "Found bit list where struct list was expected; upgrading boolean lists to structs " |
1539 | "is no longer supported." ) { |
1540 | goto useDefault; |
1541 | } |
1542 | |
1543 | auto newDataSize = elementSize.data; |
1544 | auto newPointerCount = elementSize.pointers; |
1545 | |
1546 | if (oldSize == ElementSize::POINTER) { |
1547 | newPointerCount = kj::max(newPointerCount, ONE * POINTERS); |
1548 | } else { |
1549 | // Old list contains data elements, so we need at least 1 word of data. |
1550 | newDataSize = kj::max(newDataSize, ONE * WORDS); |
1551 | } |
1552 | |
1553 | auto newStep = (newDataSize + newPointerCount * WORDS_PER_POINTER) / ELEMENTS; |
1554 | auto totalWords = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
1555 | newStep * upgradeBound<uint64_t>(elementCount), |
1556 | []() {KJ_FAIL_REQUIRE("total size of struct list is larger than max segment size" );}); |
1557 | |
1558 | // Don't let allocate() zero out the object just yet. |
1559 | zeroPointerAndFars(origSegment, origRef); |
1560 | |
1561 | word* newPtr = allocate(origRef, origSegment, capTable, totalWords + POINTER_SIZE_IN_WORDS, |
1562 | WirePointer::LIST, orphanArena); |
1563 | origRef->listRef.setInlineComposite(totalWords); |
1564 | |
1565 | WirePointer* tag = reinterpret_cast<WirePointer*>(newPtr); |
1566 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, elementCount); |
1567 | tag->structRef.set(newDataSize, newPointerCount); |
1568 | newPtr += POINTER_SIZE_IN_WORDS; |
1569 | |
1570 | if (oldSize == ElementSize::POINTER) { |
1571 | WirePointer* dst = reinterpret_cast<WirePointer*>(newPtr + newDataSize); |
1572 | WirePointer* src = reinterpret_cast<WirePointer*>(oldPtr); |
1573 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
1574 | transferPointer(origSegment, dst, oldSegment, src); |
1575 | dst += newStep / WORDS_PER_POINTER * (ONE * ELEMENTS); |
1576 | ++src; |
1577 | } |
1578 | } else { |
1579 | byte* dst = reinterpret_cast<byte*>(newPtr); |
1580 | byte* src = reinterpret_cast<byte*>(oldPtr); |
1581 | auto newByteStep = newStep * (ONE * ELEMENTS) * BYTES_PER_WORD; |
1582 | auto oldByteStep = oldDataSize / BITS_PER_BYTE; |
1583 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
1584 | copyMemory(dst, src, oldByteStep); |
1585 | src += oldByteStep; |
1586 | dst += newByteStep; |
1587 | } |
1588 | } |
1589 | |
1590 | auto oldSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
1591 | roundBitsUpToWords(oldStep * upgradeBound<uint64_t>(elementCount)), |
1592 | []() { KJ_FAIL_ASSERT("old size overflows but new size doesn't?" ); }); |
1593 | |
1594 | // Zero out old location. See explanation in getWritableStructPointer(). |
1595 | zeroMemory(oldPtr, oldSize); |
1596 | |
1597 | return ListBuilder(origSegment, capTable, newPtr, newStep * BITS_PER_WORD, elementCount, |
1598 | newDataSize * BITS_PER_WORD, newPointerCount, |
1599 | ElementSize::INLINE_COMPOSITE); |
1600 | } |
1601 | } |
1602 | } |
1603 | |
1604 | static KJ_ALWAYS_INLINE(SegmentAnd<Text::Builder> initTextPointer( |
1605 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, TextSize size, |
1606 | BuilderArena* orphanArena = nullptr)) { |
1607 | // The byte list must include a NUL terminator. |
1608 | auto byteSize = size + ONE * BYTES; |
1609 | |
1610 | // Allocate the space. |
1611 | word* ptr = allocate( |
1612 | ref, segment, capTable, roundBytesUpToWords(byteSize), WirePointer::LIST, orphanArena); |
1613 | |
1614 | // Initialize the pointer. |
1615 | ref->listRef.set(ElementSize::BYTE, byteSize * (ONE * ELEMENTS / BYTES)); |
1616 | |
1617 | // Build the Text::Builder. This will initialize the NUL terminator. |
1618 | return { segment, Text::Builder(reinterpret_cast<char*>(ptr), unbound(size / BYTES)) }; |
1619 | } |
1620 | |
1621 | static KJ_ALWAYS_INLINE(SegmentAnd<Text::Builder> setTextPointer( |
1622 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, Text::Reader value, |
1623 | BuilderArena* orphanArena = nullptr)) { |
1624 | TextSize size = assertMax<MAX_TEXT_SIZE>(bounded(value.size()), |
1625 | []() { KJ_FAIL_REQUIRE("text blob too big" ); }) * BYTES; |
1626 | |
1627 | auto allocation = initTextPointer(ref, segment, capTable, size, orphanArena); |
1628 | copyMemory(allocation.value.begin(), value); |
1629 | return allocation; |
1630 | } |
1631 | |
1632 | static KJ_ALWAYS_INLINE(Text::Builder getWritableTextPointer( |
1633 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
1634 | const void* defaultValue, TextSize defaultSize)) { |
1635 | return getWritableTextPointer(ref, ref->target(), segment,capTable, defaultValue, defaultSize); |
1636 | } |
1637 | |
1638 | static KJ_ALWAYS_INLINE(Text::Builder getWritableTextPointer( |
1639 | WirePointer* ref, word* refTarget, SegmentBuilder* segment, CapTableBuilder* capTable, |
1640 | const void* defaultValue, TextSize defaultSize)) { |
1641 | if (ref->isNull()) { |
1642 | useDefault: |
1643 | if (defaultSize == ZERO * BYTES) { |
1644 | return nullptr; |
1645 | } else { |
1646 | Text::Builder builder = initTextPointer(ref, segment, capTable, defaultSize).value; |
1647 | copyMemory(builder.asBytes().begin(), reinterpret_cast<const byte*>(defaultValue), |
1648 | defaultSize); |
1649 | return builder; |
1650 | } |
1651 | } else { |
1652 | word* ptr = followFars(ref, refTarget, segment); |
1653 | byte* bptr = reinterpret_cast<byte*>(ptr); |
1654 | |
1655 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
1656 | "Called getText{Field,Element}() but existing pointer is not a list." ) { |
1657 | goto useDefault; |
1658 | } |
1659 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
1660 | "Called getText{Field,Element}() but existing list pointer is not byte-sized." ) { |
1661 | goto useDefault; |
1662 | } |
1663 | |
1664 | auto maybeSize = trySubtract(ref->listRef.elementCount() * (ONE * BYTES / ELEMENTS), |
1665 | ONE * BYTES); |
1666 | KJ_IF_MAYBE(size, maybeSize) { |
1667 | KJ_REQUIRE(*(bptr + *size) == '\0', "Text blob missing NUL terminator." ) { |
1668 | goto useDefault; |
1669 | } |
1670 | |
1671 | return Text::Builder(reinterpret_cast<char*>(bptr), unbound(*size / BYTES)); |
1672 | } else { |
1673 | KJ_FAIL_REQUIRE("zero-size blob can't be text (need NUL terminator)" ) { |
1674 | goto useDefault; |
1675 | }; |
1676 | } |
1677 | } |
1678 | } |
1679 | |
1680 | static KJ_ALWAYS_INLINE(SegmentAnd<Data::Builder> initDataPointer( |
1681 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, BlobSize size, |
1682 | BuilderArena* orphanArena = nullptr)) { |
1683 | // Allocate the space. |
1684 | word* ptr = allocate(ref, segment, capTable, roundBytesUpToWords(size), |
1685 | WirePointer::LIST, orphanArena); |
1686 | |
1687 | // Initialize the pointer. |
1688 | ref->listRef.set(ElementSize::BYTE, size * (ONE * ELEMENTS / BYTES)); |
1689 | |
1690 | // Build the Data::Builder. |
1691 | return { segment, Data::Builder(reinterpret_cast<byte*>(ptr), unbound(size / BYTES)) }; |
1692 | } |
1693 | |
1694 | static KJ_ALWAYS_INLINE(SegmentAnd<Data::Builder> setDataPointer( |
1695 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, Data::Reader value, |
1696 | BuilderArena* orphanArena = nullptr)) { |
1697 | BlobSize size = assertMaxBits<BLOB_SIZE_BITS>(bounded(value.size()), |
1698 | []() { KJ_FAIL_REQUIRE("text blob too big" ); }) * BYTES; |
1699 | |
1700 | auto allocation = initDataPointer(ref, segment, capTable, size, orphanArena); |
1701 | copyMemory(allocation.value.begin(), value); |
1702 | return allocation; |
1703 | } |
1704 | |
1705 | static KJ_ALWAYS_INLINE(Data::Builder getWritableDataPointer( |
1706 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
1707 | const void* defaultValue, BlobSize defaultSize)) { |
1708 | return getWritableDataPointer(ref, ref->target(), segment, capTable, defaultValue, defaultSize); |
1709 | } |
1710 | |
1711 | static KJ_ALWAYS_INLINE(Data::Builder getWritableDataPointer( |
1712 | WirePointer* ref, word* refTarget, SegmentBuilder* segment, CapTableBuilder* capTable, |
1713 | const void* defaultValue, BlobSize defaultSize)) { |
1714 | if (ref->isNull()) { |
1715 | useDefault: |
1716 | if (defaultSize == ZERO * BYTES) { |
1717 | return nullptr; |
1718 | } else { |
1719 | Data::Builder builder = initDataPointer(ref, segment, capTable, defaultSize).value; |
1720 | copyMemory(builder.begin(), reinterpret_cast<const byte*>(defaultValue), defaultSize); |
1721 | return builder; |
1722 | } |
1723 | } else { |
1724 | word* ptr = followFars(ref, refTarget, segment); |
1725 | |
1726 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
1727 | "Called getData{Field,Element}() but existing pointer is not a list." ) { |
1728 | goto useDefault; |
1729 | } |
1730 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
1731 | "Called getData{Field,Element}() but existing list pointer is not byte-sized." ) { |
1732 | goto useDefault; |
1733 | } |
1734 | |
1735 | return Data::Builder(reinterpret_cast<byte*>(ptr), |
1736 | unbound(ref->listRef.elementCount() / ELEMENTS)); |
1737 | } |
1738 | } |
1739 | |
1740 | static SegmentAnd<word*> setStructPointer( |
1741 | SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref, StructReader value, |
1742 | BuilderArena* orphanArena = nullptr, bool canonical = false) { |
1743 | auto dataSize = roundBitsUpToBytes(value.dataSize); |
1744 | auto ptrCount = value.pointerCount; |
1745 | |
1746 | if (canonical) { |
1747 | // StructReaders should not have bitwidths other than 1, but let's be safe |
1748 | KJ_REQUIRE((value.dataSize == ONE * BITS) |
1749 | || (value.dataSize % BITS_PER_BYTE == ZERO * BITS)); |
1750 | |
1751 | if (value.dataSize == ONE * BITS) { |
1752 | // Handle the truncation case where it's a false in a 1-bit struct |
1753 | if (!value.getDataField<bool>(ZERO * ELEMENTS)) { |
1754 | dataSize = ZERO * BYTES; |
1755 | } |
1756 | } else { |
1757 | // Truncate the data section |
1758 | auto data = value.getDataSectionAsBlob(); |
1759 | auto end = data.end(); |
1760 | while (end > data.begin() && end[-1] == 0) --end; |
1761 | dataSize = intervalLength(data.begin(), end, MAX_STUCT_DATA_WORDS * BYTES_PER_WORD); |
1762 | } |
1763 | |
1764 | // Truncate pointer section |
1765 | const WirePointer* ptr = value.pointers + ptrCount; |
1766 | while (ptr > value.pointers && ptr[-1].isNull()) --ptr; |
1767 | ptrCount = intervalLength(value.pointers, ptr, MAX_STRUCT_POINTER_COUNT); |
1768 | } |
1769 | |
1770 | auto dataWords = roundBytesUpToWords(dataSize); |
1771 | |
1772 | auto totalSize = dataWords + ptrCount * WORDS_PER_POINTER; |
1773 | |
1774 | word* ptr = allocate(ref, segment, capTable, totalSize, WirePointer::STRUCT, orphanArena); |
1775 | ref->structRef.set(dataWords, ptrCount); |
1776 | |
1777 | if (value.dataSize == ONE * BITS) { |
1778 | // Data size could be made 0 by truncation |
1779 | if (dataSize != ZERO * BYTES) { |
1780 | *reinterpret_cast<char*>(ptr) = value.getDataField<bool>(ZERO * ELEMENTS); |
1781 | } |
1782 | } else { |
1783 | copyMemory(reinterpret_cast<byte*>(ptr), |
1784 | reinterpret_cast<const byte*>(value.data), |
1785 | dataSize); |
1786 | } |
1787 | |
1788 | WirePointer* pointerSection = reinterpret_cast<WirePointer*>(ptr + dataWords); |
1789 | for (auto i: kj::zeroTo(ptrCount)) { |
1790 | copyPointer(segment, capTable, pointerSection + i, |
1791 | value.segment, value.capTable, value.pointers + i, |
1792 | value.nestingLimit, nullptr, canonical); |
1793 | } |
1794 | |
1795 | return { segment, ptr }; |
1796 | } |
1797 | |
1798 | #if !CAPNP_LITE |
1799 | static void setCapabilityPointer( |
1800 | SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref, |
1801 | kj::Own<ClientHook>&& cap) { |
1802 | if (!ref->isNull()) { |
1803 | zeroObject(segment, capTable, ref); |
1804 | } |
1805 | if (cap->isNull()) { |
1806 | zeroMemory(ref); |
1807 | } else { |
1808 | ref->setCap(capTable->injectCap(kj::mv(cap))); |
1809 | } |
1810 | } |
1811 | #endif // !CAPNP_LITE |
1812 | |
1813 | static SegmentAnd<word*> setListPointer( |
1814 | SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref, ListReader value, |
1815 | BuilderArena* orphanArena = nullptr, bool canonical = false) { |
1816 | auto totalSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
1817 | roundBitsUpToWords(upgradeBound<uint64_t>(value.elementCount) * value.step), |
1818 | []() { KJ_FAIL_ASSERT("encountered impossibly long struct list ListReader" ); }); |
1819 | |
1820 | if (value.elementSize != ElementSize::INLINE_COMPOSITE) { |
1821 | // List of non-structs. |
1822 | word* ptr = allocate(ref, segment, capTable, totalSize, WirePointer::LIST, orphanArena); |
1823 | |
1824 | if (value.elementSize == ElementSize::POINTER) { |
1825 | // List of pointers. |
1826 | ref->listRef.set(ElementSize::POINTER, value.elementCount); |
1827 | for (auto i: kj::zeroTo(value.elementCount * (ONE * POINTERS / ELEMENTS))) { |
1828 | copyPointer(segment, capTable, reinterpret_cast<WirePointer*>(ptr) + i, |
1829 | value.segment, value.capTable, |
1830 | reinterpret_cast<const WirePointer*>(value.ptr) + i, |
1831 | value.nestingLimit, nullptr, canonical); |
1832 | } |
1833 | } else { |
1834 | // List of data. |
1835 | ref->listRef.set(value.elementSize, value.elementCount); |
1836 | |
1837 | auto wholeByteSize = |
1838 | assertMax(MAX_SEGMENT_WORDS * BYTES_PER_WORD, |
1839 | upgradeBound<uint64_t>(value.elementCount) * value.step / BITS_PER_BYTE, |
1840 | []() { KJ_FAIL_ASSERT("encountered impossibly long data ListReader" ); }); |
1841 | copyMemory(reinterpret_cast<byte*>(ptr), value.ptr, wholeByteSize); |
1842 | auto leftoverBits = |
1843 | (upgradeBound<uint64_t>(value.elementCount) * value.step) % BITS_PER_BYTE; |
1844 | if (leftoverBits > ZERO * BITS) { |
1845 | // We need to copy a partial byte. |
1846 | uint8_t mask = (1 << unbound(leftoverBits / BITS)) - 1; |
1847 | *((reinterpret_cast<byte*>(ptr)) + wholeByteSize) = mask & *(value.ptr + wholeByteSize); |
1848 | } |
1849 | } |
1850 | |
1851 | return { segment, ptr }; |
1852 | } else { |
1853 | // List of structs. |
1854 | StructDataWordCount declDataSize = value.structDataSize / BITS_PER_WORD; |
1855 | StructPointerCount declPointerCount = value.structPointerCount; |
1856 | |
1857 | StructDataWordCount dataSize = ZERO * WORDS; |
1858 | StructPointerCount ptrCount = ZERO * POINTERS; |
1859 | |
1860 | if (canonical) { |
1861 | for (auto i: kj::zeroTo(value.elementCount)) { |
1862 | auto element = value.getStructElement(i); |
1863 | |
1864 | // Truncate the data section |
1865 | auto data = element.getDataSectionAsBlob(); |
1866 | auto end = data.end(); |
1867 | while (end > data.begin() && end[-1] == 0) --end; |
1868 | dataSize = kj::max(dataSize, roundBytesUpToWords( |
1869 | intervalLength(data.begin(), end, MAX_STUCT_DATA_WORDS * BYTES_PER_WORD))); |
1870 | |
1871 | // Truncate pointer section |
1872 | const WirePointer* ptr = element.pointers + element.pointerCount; |
1873 | while (ptr > element.pointers && ptr[-1].isNull()) --ptr; |
1874 | ptrCount = kj::max(ptrCount, |
1875 | intervalLength(element.pointers, ptr, MAX_STRUCT_POINTER_COUNT)); |
1876 | } |
1877 | auto newTotalSize = (dataSize + upgradeBound<uint64_t>(ptrCount) * WORDS_PER_POINTER) |
1878 | / ELEMENTS * value.elementCount; |
1879 | KJ_ASSERT(newTotalSize <= totalSize); // we've only removed data! |
1880 | totalSize = assumeMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>(newTotalSize); |
1881 | } else { |
1882 | dataSize = declDataSize; |
1883 | ptrCount = declPointerCount; |
1884 | } |
1885 | |
1886 | KJ_DASSERT(value.structDataSize % BITS_PER_WORD == ZERO * BITS); |
1887 | word* ptr = allocate(ref, segment, capTable, totalSize + POINTER_SIZE_IN_WORDS, |
1888 | WirePointer::LIST, orphanArena); |
1889 | ref->listRef.setInlineComposite(totalSize); |
1890 | |
1891 | WirePointer* tag = reinterpret_cast<WirePointer*>(ptr); |
1892 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, value.elementCount); |
1893 | tag->structRef.set(dataSize, ptrCount); |
1894 | word* dst = ptr + POINTER_SIZE_IN_WORDS; |
1895 | |
1896 | const word* src = reinterpret_cast<const word*>(value.ptr); |
1897 | for (auto i KJ_UNUSED: kj::zeroTo(value.elementCount)) { |
1898 | copyMemory(dst, src, dataSize); |
1899 | dst += dataSize; |
1900 | src += declDataSize; |
1901 | |
1902 | for (auto j: kj::zeroTo(ptrCount)) { |
1903 | copyPointer(segment, capTable, reinterpret_cast<WirePointer*>(dst) + j, |
1904 | value.segment, value.capTable, reinterpret_cast<const WirePointer*>(src) + j, |
1905 | value.nestingLimit, nullptr, canonical); |
1906 | } |
1907 | dst += ptrCount * WORDS_PER_POINTER; |
1908 | src += declPointerCount * WORDS_PER_POINTER; |
1909 | } |
1910 | |
1911 | return { segment, ptr }; |
1912 | } |
1913 | } |
1914 | |
1915 | static KJ_ALWAYS_INLINE(SegmentAnd<word*> copyPointer( |
1916 | SegmentBuilder* dstSegment, CapTableBuilder* dstCapTable, WirePointer* dst, |
1917 | SegmentReader* srcSegment, CapTableReader* srcCapTable, const WirePointer* src, |
1918 | int nestingLimit, BuilderArena* orphanArena = nullptr, |
1919 | bool canonical = false)) { |
1920 | return copyPointer(dstSegment, dstCapTable, dst, |
1921 | srcSegment, srcCapTable, src, src->target(srcSegment), |
1922 | nestingLimit, orphanArena, canonical); |
1923 | } |
1924 | |
1925 | static SegmentAnd<word*> copyPointer( |
1926 | SegmentBuilder* dstSegment, CapTableBuilder* dstCapTable, WirePointer* dst, |
1927 | SegmentReader* srcSegment, CapTableReader* srcCapTable, const WirePointer* src, |
1928 | const word* srcTarget, int nestingLimit, |
1929 | BuilderArena* orphanArena = nullptr, bool canonical = false) { |
1930 | // Deep-copy the object pointed to by src into dst. It turns out we can't reuse |
1931 | // readStructPointer(), etc. because they do type checking whereas here we want to accept any |
1932 | // valid pointer. |
1933 | |
1934 | if (src->isNull()) { |
1935 | useDefault: |
1936 | if (!dst->isNull()) { |
1937 | zeroObject(dstSegment, dstCapTable, dst); |
1938 | zeroMemory(dst); |
1939 | } |
1940 | return { dstSegment, nullptr }; |
1941 | } |
1942 | |
1943 | const word* ptr; |
1944 | KJ_IF_MAYBE(p, WireHelpers::followFars(src, srcTarget, srcSegment)) { |
1945 | ptr = p; |
1946 | } else { |
1947 | goto useDefault; |
1948 | } |
1949 | |
1950 | switch (src->kind()) { |
1951 | case WirePointer::STRUCT: |
1952 | KJ_REQUIRE(nestingLimit > 0, |
1953 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
1954 | goto useDefault; |
1955 | } |
1956 | |
1957 | KJ_REQUIRE(boundsCheck(srcSegment, ptr, src->structRef.wordSize()), |
1958 | "Message contained out-of-bounds struct pointer." ) { |
1959 | goto useDefault; |
1960 | } |
1961 | return setStructPointer(dstSegment, dstCapTable, dst, |
1962 | StructReader(srcSegment, srcCapTable, ptr, |
1963 | reinterpret_cast<const WirePointer*>(ptr + src->structRef.dataSize.get()), |
1964 | src->structRef.dataSize.get() * BITS_PER_WORD, |
1965 | src->structRef.ptrCount.get(), |
1966 | nestingLimit - 1), |
1967 | orphanArena, canonical); |
1968 | |
1969 | case WirePointer::LIST: { |
1970 | ElementSize elementSize = src->listRef.elementSize(); |
1971 | |
1972 | KJ_REQUIRE(nestingLimit > 0, |
1973 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
1974 | goto useDefault; |
1975 | } |
1976 | |
1977 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
1978 | auto wordCount = src->listRef.inlineCompositeWordCount(); |
1979 | const WirePointer* tag = reinterpret_cast<const WirePointer*>(ptr); |
1980 | |
1981 | KJ_REQUIRE(boundsCheck(srcSegment, ptr, wordCount + POINTER_SIZE_IN_WORDS), |
1982 | "Message contains out-of-bounds list pointer." ) { |
1983 | goto useDefault; |
1984 | } |
1985 | |
1986 | ptr += POINTER_SIZE_IN_WORDS; |
1987 | |
1988 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
1989 | "INLINE_COMPOSITE lists of non-STRUCT type are not supported." ) { |
1990 | goto useDefault; |
1991 | } |
1992 | |
1993 | auto elementCount = tag->inlineCompositeListElementCount(); |
1994 | auto wordsPerElement = tag->structRef.wordSize() / ELEMENTS; |
1995 | |
1996 | KJ_REQUIRE(wordsPerElement * upgradeBound<uint64_t>(elementCount) <= wordCount, |
1997 | "INLINE_COMPOSITE list's elements overrun its word count." ) { |
1998 | goto useDefault; |
1999 | } |
2000 | |
2001 | if (wordsPerElement * (ONE * ELEMENTS) == ZERO * WORDS) { |
2002 | // Watch out for lists of zero-sized structs, which can claim to be arbitrarily large |
2003 | // without having sent actual data. |
2004 | KJ_REQUIRE(amplifiedRead(srcSegment, elementCount * (ONE * WORDS / ELEMENTS)), |
2005 | "Message contains amplified list pointer." ) { |
2006 | goto useDefault; |
2007 | } |
2008 | } |
2009 | |
2010 | return setListPointer(dstSegment, dstCapTable, dst, |
2011 | ListReader(srcSegment, srcCapTable, ptr, |
2012 | elementCount, wordsPerElement * BITS_PER_WORD, |
2013 | tag->structRef.dataSize.get() * BITS_PER_WORD, |
2014 | tag->structRef.ptrCount.get(), ElementSize::INLINE_COMPOSITE, |
2015 | nestingLimit - 1), |
2016 | orphanArena, canonical); |
2017 | } else { |
2018 | auto dataSize = dataBitsPerElement(elementSize) * ELEMENTS; |
2019 | auto pointerCount = pointersPerElement(elementSize) * ELEMENTS; |
2020 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
2021 | auto elementCount = src->listRef.elementCount(); |
2022 | auto wordCount = roundBitsUpToWords(upgradeBound<uint64_t>(elementCount) * step); |
2023 | |
2024 | KJ_REQUIRE(boundsCheck(srcSegment, ptr, wordCount), |
2025 | "Message contains out-of-bounds list pointer." ) { |
2026 | goto useDefault; |
2027 | } |
2028 | |
2029 | if (elementSize == ElementSize::VOID) { |
2030 | // Watch out for lists of void, which can claim to be arbitrarily large without having |
2031 | // sent actual data. |
2032 | KJ_REQUIRE(amplifiedRead(srcSegment, elementCount * (ONE * WORDS / ELEMENTS)), |
2033 | "Message contains amplified list pointer." ) { |
2034 | goto useDefault; |
2035 | } |
2036 | } |
2037 | |
2038 | return setListPointer(dstSegment, dstCapTable, dst, |
2039 | ListReader(srcSegment, srcCapTable, ptr, elementCount, step, dataSize, pointerCount, |
2040 | elementSize, nestingLimit - 1), |
2041 | orphanArena, canonical); |
2042 | } |
2043 | } |
2044 | |
2045 | case WirePointer::FAR: |
2046 | KJ_FAIL_REQUIRE("Unexpected FAR pointer." ) { |
2047 | goto useDefault; |
2048 | } |
2049 | |
2050 | case WirePointer::OTHER: { |
2051 | KJ_REQUIRE(src->isCapability(), "Unknown pointer type." ) { |
2052 | goto useDefault; |
2053 | } |
2054 | |
2055 | if (canonical) { |
2056 | KJ_FAIL_REQUIRE("Cannot create a canonical message with a capability" ) { |
2057 | break; |
2058 | } |
2059 | } |
2060 | #if !CAPNP_LITE |
2061 | KJ_IF_MAYBE(cap, srcCapTable->extractCap(src->capRef.index.get())) { |
2062 | setCapabilityPointer(dstSegment, dstCapTable, dst, kj::mv(*cap)); |
2063 | // Return dummy non-null pointer so OrphanBuilder doesn't end up null. |
2064 | return { dstSegment, reinterpret_cast<word*>(1) }; |
2065 | } else { |
2066 | #endif // !CAPNP_LITE |
2067 | KJ_FAIL_REQUIRE("Message contained invalid capability pointer." ) { |
2068 | goto useDefault; |
2069 | } |
2070 | #if !CAPNP_LITE |
2071 | } |
2072 | #endif // !CAPNP_LITE |
2073 | } |
2074 | } |
2075 | |
2076 | KJ_UNREACHABLE; |
2077 | } |
2078 | |
2079 | static void adopt(SegmentBuilder* segment, CapTableBuilder* capTable, |
2080 | WirePointer* ref, OrphanBuilder&& value) { |
2081 | KJ_REQUIRE(value.segment == nullptr || value.segment->getArena() == segment->getArena(), |
2082 | "Adopted object must live in the same message." ); |
2083 | |
2084 | if (!ref->isNull()) { |
2085 | zeroObject(segment, capTable, ref); |
2086 | } |
2087 | |
2088 | if (value == nullptr) { |
2089 | // Set null. |
2090 | zeroMemory(ref); |
2091 | } else if (value.tagAsPtr()->isPositional()) { |
2092 | WireHelpers::transferPointer(segment, ref, value.segment, value.tagAsPtr(), value.location); |
2093 | } else { |
2094 | // FAR and OTHER pointers are position-independent, so we can just copy. |
2095 | copyMemory(ref, value.tagAsPtr()); |
2096 | } |
2097 | |
2098 | // Take ownership away from the OrphanBuilder. |
2099 | zeroMemory(value.tagAsPtr()); |
2100 | value.location = nullptr; |
2101 | value.segment = nullptr; |
2102 | } |
2103 | |
2104 | static OrphanBuilder disown(SegmentBuilder* segment, CapTableBuilder* capTable, |
2105 | WirePointer* ref) { |
2106 | word* location; |
2107 | |
2108 | if (ref->isNull()) { |
2109 | location = nullptr; |
2110 | } else if (ref->kind() == WirePointer::OTHER) { |
2111 | KJ_REQUIRE(ref->isCapability(), "Unknown pointer type." ) { break; } |
2112 | location = reinterpret_cast<word*>(1); // dummy so that it is non-null |
2113 | } else { |
2114 | WirePointer* refCopy = ref; |
2115 | location = followFarsNoWritableCheck(refCopy, ref->target(), segment); |
2116 | } |
2117 | |
2118 | OrphanBuilder result(ref, segment, capTable, location); |
2119 | |
2120 | if (!ref->isNull() && ref->isPositional()) { |
2121 | result.tagAsPtr()->setKindForOrphan(ref->kind()); |
2122 | } |
2123 | |
2124 | // Zero out the pointer that was disowned. |
2125 | zeroMemory(ref); |
2126 | |
2127 | return result; |
2128 | } |
2129 | |
2130 | // ----------------------------------------------------------------- |
2131 | |
2132 | static KJ_ALWAYS_INLINE(StructReader readStructPointer( |
2133 | SegmentReader* segment, CapTableReader* capTable, |
2134 | const WirePointer* ref, const word* defaultValue, |
2135 | int nestingLimit)) { |
2136 | return readStructPointer(segment, capTable, ref, ref->target(segment), |
2137 | defaultValue, nestingLimit); |
2138 | } |
2139 | |
2140 | static KJ_ALWAYS_INLINE(StructReader readStructPointer( |
2141 | SegmentReader* segment, CapTableReader* capTable, |
2142 | const WirePointer* ref, const word* refTarget, |
2143 | const word* defaultValue, int nestingLimit)) { |
2144 | if (ref->isNull()) { |
2145 | useDefault: |
2146 | if (defaultValue == nullptr || |
2147 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
2148 | return StructReader(); |
2149 | } |
2150 | segment = nullptr; |
2151 | ref = reinterpret_cast<const WirePointer*>(defaultValue); |
2152 | refTarget = ref->target(segment); |
2153 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
2154 | } |
2155 | |
2156 | KJ_REQUIRE(nestingLimit > 0, |
2157 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
2158 | goto useDefault; |
2159 | } |
2160 | |
2161 | const word* ptr; |
2162 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
2163 | ptr = p; |
2164 | } else { |
2165 | goto useDefault; |
2166 | } |
2167 | |
2168 | KJ_REQUIRE(ref->kind() == WirePointer::STRUCT, |
2169 | "Message contains non-struct pointer where struct pointer was expected." ) { |
2170 | goto useDefault; |
2171 | } |
2172 | |
2173 | KJ_REQUIRE(boundsCheck(segment, ptr, ref->structRef.wordSize()), |
2174 | "Message contained out-of-bounds struct pointer." ) { |
2175 | goto useDefault; |
2176 | } |
2177 | |
2178 | return StructReader( |
2179 | segment, capTable, |
2180 | ptr, reinterpret_cast<const WirePointer*>(ptr + ref->structRef.dataSize.get()), |
2181 | ref->structRef.dataSize.get() * BITS_PER_WORD, |
2182 | ref->structRef.ptrCount.get(), |
2183 | nestingLimit - 1); |
2184 | } |
2185 | |
2186 | #if !CAPNP_LITE |
2187 | static KJ_ALWAYS_INLINE(kj::Own<ClientHook> readCapabilityPointer( |
2188 | SegmentReader* segment, CapTableReader* capTable, |
2189 | const WirePointer* ref, int nestingLimit)) { |
2190 | kj::Maybe<kj::Own<ClientHook>> maybeCap; |
2191 | |
2192 | KJ_REQUIRE(brokenCapFactory != nullptr, |
2193 | "Trying to read capabilities without ever having created a capability context. " |
2194 | "To read capabilities from a message, you must imbue it with CapReaderContext, or " |
2195 | "use the Cap'n Proto RPC system." ); |
2196 | |
2197 | if (ref->isNull()) { |
2198 | return brokenCapFactory->newNullCap(); |
2199 | } else if (!ref->isCapability()) { |
2200 | KJ_FAIL_REQUIRE( |
2201 | "Message contains non-capability pointer where capability pointer was expected." ) { |
2202 | break; |
2203 | } |
2204 | return brokenCapFactory->newBrokenCap( |
2205 | "Calling capability extracted from a non-capability pointer." ); |
2206 | } else KJ_IF_MAYBE(cap, capTable->extractCap(ref->capRef.index.get())) { |
2207 | return kj::mv(*cap); |
2208 | } else { |
2209 | KJ_FAIL_REQUIRE("Message contains invalid capability pointer." ) { |
2210 | break; |
2211 | } |
2212 | return brokenCapFactory->newBrokenCap("Calling invalid capability pointer." ); |
2213 | } |
2214 | } |
2215 | #endif // !CAPNP_LITE |
2216 | |
2217 | static KJ_ALWAYS_INLINE(ListReader readListPointer( |
2218 | SegmentReader* segment, CapTableReader* capTable, |
2219 | const WirePointer* ref, const word* defaultValue, |
2220 | ElementSize expectedElementSize, int nestingLimit, bool checkElementSize = true)) { |
2221 | return readListPointer(segment, capTable, ref, ref->target(segment), defaultValue, |
2222 | expectedElementSize, nestingLimit, checkElementSize); |
2223 | } |
2224 | |
2225 | static KJ_ALWAYS_INLINE(ListReader readListPointer( |
2226 | SegmentReader* segment, CapTableReader* capTable, |
2227 | const WirePointer* ref, const word* refTarget, |
2228 | const word* defaultValue, ElementSize expectedElementSize, int nestingLimit, |
2229 | bool checkElementSize = true)) { |
2230 | if (ref->isNull()) { |
2231 | useDefault: |
2232 | if (defaultValue == nullptr || |
2233 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
2234 | return ListReader(expectedElementSize); |
2235 | } |
2236 | segment = nullptr; |
2237 | ref = reinterpret_cast<const WirePointer*>(defaultValue); |
2238 | refTarget = ref->target(segment); |
2239 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
2240 | } |
2241 | |
2242 | KJ_REQUIRE(nestingLimit > 0, |
2243 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
2244 | goto useDefault; |
2245 | } |
2246 | |
2247 | const word* ptr; |
2248 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
2249 | ptr = p; |
2250 | } else { |
2251 | goto useDefault; |
2252 | } |
2253 | |
2254 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
2255 | "Message contains non-list pointer where list pointer was expected." ) { |
2256 | goto useDefault; |
2257 | } |
2258 | |
2259 | ElementSize elementSize = ref->listRef.elementSize(); |
2260 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
2261 | auto wordCount = ref->listRef.inlineCompositeWordCount(); |
2262 | |
2263 | // An INLINE_COMPOSITE list points to a tag, which is formatted like a pointer. |
2264 | const WirePointer* tag = reinterpret_cast<const WirePointer*>(ptr); |
2265 | |
2266 | KJ_REQUIRE(boundsCheck(segment, ptr, wordCount + POINTER_SIZE_IN_WORDS), |
2267 | "Message contains out-of-bounds list pointer." ) { |
2268 | goto useDefault; |
2269 | } |
2270 | |
2271 | ptr += POINTER_SIZE_IN_WORDS; |
2272 | |
2273 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
2274 | "INLINE_COMPOSITE lists of non-STRUCT type are not supported." ) { |
2275 | goto useDefault; |
2276 | } |
2277 | |
2278 | auto size = tag->inlineCompositeListElementCount(); |
2279 | auto wordsPerElement = tag->structRef.wordSize() / ELEMENTS; |
2280 | |
2281 | KJ_REQUIRE(upgradeBound<uint64_t>(size) * wordsPerElement <= wordCount, |
2282 | "INLINE_COMPOSITE list's elements overrun its word count." ) { |
2283 | goto useDefault; |
2284 | } |
2285 | |
2286 | if (wordsPerElement * (ONE * ELEMENTS) == ZERO * WORDS) { |
2287 | // Watch out for lists of zero-sized structs, which can claim to be arbitrarily large |
2288 | // without having sent actual data. |
2289 | KJ_REQUIRE(amplifiedRead(segment, size * (ONE * WORDS / ELEMENTS)), |
2290 | "Message contains amplified list pointer." ) { |
2291 | goto useDefault; |
2292 | } |
2293 | } |
2294 | |
2295 | if (checkElementSize) { |
2296 | // If a struct list was not expected, then presumably a non-struct list was upgraded to a |
2297 | // struct list. We need to manipulate the pointer to point at the first field of the |
2298 | // struct. Together with the `step` field, this will allow the struct list to be accessed |
2299 | // as if it were a primitive list without branching. |
2300 | |
2301 | // Check whether the size is compatible. |
2302 | switch (expectedElementSize) { |
2303 | case ElementSize::VOID: |
2304 | break; |
2305 | |
2306 | case ElementSize::BIT: |
2307 | KJ_FAIL_REQUIRE( |
2308 | "Found struct list where bit list was expected; upgrading boolean lists to structs " |
2309 | "is no longer supported." ) { |
2310 | goto useDefault; |
2311 | } |
2312 | break; |
2313 | |
2314 | case ElementSize::BYTE: |
2315 | case ElementSize::TWO_BYTES: |
2316 | case ElementSize::FOUR_BYTES: |
2317 | case ElementSize::EIGHT_BYTES: |
2318 | KJ_REQUIRE(tag->structRef.dataSize.get() > ZERO * WORDS, |
2319 | "Expected a primitive list, but got a list of pointer-only structs." ) { |
2320 | goto useDefault; |
2321 | } |
2322 | break; |
2323 | |
2324 | case ElementSize::POINTER: |
2325 | // We expected a list of pointers but got a list of structs. Assuming the first field |
2326 | // in the struct is the pointer we were looking for, we want to munge the pointer to |
2327 | // point at the first element's pointer section. |
2328 | ptr += tag->structRef.dataSize.get(); |
2329 | KJ_REQUIRE(tag->structRef.ptrCount.get() > ZERO * POINTERS, |
2330 | "Expected a pointer list, but got a list of data-only structs." ) { |
2331 | goto useDefault; |
2332 | } |
2333 | break; |
2334 | |
2335 | case ElementSize::INLINE_COMPOSITE: |
2336 | break; |
2337 | } |
2338 | } |
2339 | |
2340 | return ListReader( |
2341 | segment, capTable, ptr, size, wordsPerElement * BITS_PER_WORD, |
2342 | tag->structRef.dataSize.get() * BITS_PER_WORD, |
2343 | tag->structRef.ptrCount.get(), ElementSize::INLINE_COMPOSITE, |
2344 | nestingLimit - 1); |
2345 | |
2346 | } else { |
2347 | // This is a primitive or pointer list, but all such lists can also be interpreted as struct |
2348 | // lists. We need to compute the data size and pointer count for such structs. |
2349 | auto dataSize = dataBitsPerElement(ref->listRef.elementSize()) * ELEMENTS; |
2350 | auto pointerCount = pointersPerElement(ref->listRef.elementSize()) * ELEMENTS; |
2351 | auto elementCount = ref->listRef.elementCount(); |
2352 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
2353 | |
2354 | auto wordCount = roundBitsUpToWords(upgradeBound<uint64_t>(elementCount) * step); |
2355 | KJ_REQUIRE(boundsCheck(segment, ptr, wordCount), |
2356 | "Message contains out-of-bounds list pointer." ) { |
2357 | goto useDefault; |
2358 | } |
2359 | |
2360 | if (elementSize == ElementSize::VOID) { |
2361 | // Watch out for lists of void, which can claim to be arbitrarily large without having sent |
2362 | // actual data. |
2363 | KJ_REQUIRE(amplifiedRead(segment, elementCount * (ONE * WORDS / ELEMENTS)), |
2364 | "Message contains amplified list pointer." ) { |
2365 | goto useDefault; |
2366 | } |
2367 | } |
2368 | |
2369 | if (checkElementSize) { |
2370 | if (elementSize == ElementSize::BIT && expectedElementSize != ElementSize::BIT) { |
2371 | KJ_FAIL_REQUIRE( |
2372 | "Found bit list where struct list was expected; upgrading boolean lists to structs " |
2373 | "is no longer supported." ) { |
2374 | goto useDefault; |
2375 | } |
2376 | } |
2377 | |
2378 | // Verify that the elements are at least as large as the expected type. Note that if we |
2379 | // expected INLINE_COMPOSITE, the expected sizes here will be zero, because bounds checking |
2380 | // will be performed at field access time. So this check here is for the case where we |
2381 | // expected a list of some primitive or pointer type. |
2382 | |
2383 | BitCount expectedDataBitsPerElement = |
2384 | dataBitsPerElement(expectedElementSize) * ELEMENTS; |
2385 | WirePointerCount expectedPointersPerElement = |
2386 | pointersPerElement(expectedElementSize) * ELEMENTS; |
2387 | |
2388 | KJ_REQUIRE(expectedDataBitsPerElement <= dataSize, |
2389 | "Message contained list with incompatible element type." ) { |
2390 | goto useDefault; |
2391 | } |
2392 | KJ_REQUIRE(expectedPointersPerElement <= pointerCount, |
2393 | "Message contained list with incompatible element type." ) { |
2394 | goto useDefault; |
2395 | } |
2396 | } |
2397 | |
2398 | return ListReader(segment, capTable, ptr, elementCount, step, |
2399 | dataSize, pointerCount, elementSize, nestingLimit - 1); |
2400 | } |
2401 | } |
2402 | |
2403 | static KJ_ALWAYS_INLINE(Text::Reader readTextPointer( |
2404 | SegmentReader* segment, const WirePointer* ref, |
2405 | const void* defaultValue, ByteCount defaultSize)) { |
2406 | return readTextPointer(segment, ref, ref->target(segment), defaultValue, defaultSize); |
2407 | } |
2408 | |
2409 | static KJ_ALWAYS_INLINE(Text::Reader readTextPointer( |
2410 | SegmentReader* segment, const WirePointer* ref, const word* refTarget, |
2411 | const void* defaultValue, ByteCount defaultSize)) { |
2412 | if (ref->isNull()) { |
2413 | useDefault: |
2414 | if (defaultValue == nullptr) defaultValue = "" ; |
2415 | return Text::Reader(reinterpret_cast<const char*>(defaultValue), |
2416 | unbound(defaultSize / BYTES)); |
2417 | } else { |
2418 | const word* ptr; |
2419 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
2420 | ptr = p; |
2421 | } else { |
2422 | goto useDefault; |
2423 | } |
2424 | |
2425 | auto size = ref->listRef.elementCount() * (ONE * BYTES / ELEMENTS); |
2426 | |
2427 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
2428 | "Message contains non-list pointer where text was expected." ) { |
2429 | goto useDefault; |
2430 | } |
2431 | |
2432 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
2433 | "Message contains list pointer of non-bytes where text was expected." ) { |
2434 | goto useDefault; |
2435 | } |
2436 | |
2437 | KJ_REQUIRE(boundsCheck(segment, ptr, roundBytesUpToWords(size)), |
2438 | "Message contained out-of-bounds text pointer." ) { |
2439 | goto useDefault; |
2440 | } |
2441 | |
2442 | KJ_REQUIRE(size > ZERO * BYTES, "Message contains text that is not NUL-terminated." ) { |
2443 | goto useDefault; |
2444 | } |
2445 | |
2446 | const char* cptr = reinterpret_cast<const char*>(ptr); |
2447 | uint unboundedSize = unbound(size / BYTES) - 1; |
2448 | |
2449 | KJ_REQUIRE(cptr[unboundedSize] == '\0', "Message contains text that is not NUL-terminated." ) { |
2450 | goto useDefault; |
2451 | } |
2452 | |
2453 | return Text::Reader(cptr, unboundedSize); |
2454 | } |
2455 | } |
2456 | |
2457 | static KJ_ALWAYS_INLINE(Data::Reader readDataPointer( |
2458 | SegmentReader* segment, const WirePointer* ref, |
2459 | const void* defaultValue, BlobSize defaultSize)) { |
2460 | return readDataPointer(segment, ref, ref->target(segment), defaultValue, defaultSize); |
2461 | } |
2462 | |
2463 | static KJ_ALWAYS_INLINE(Data::Reader readDataPointer( |
2464 | SegmentReader* segment, const WirePointer* ref, const word* refTarget, |
2465 | const void* defaultValue, BlobSize defaultSize)) { |
2466 | if (ref->isNull()) { |
2467 | useDefault: |
2468 | return Data::Reader(reinterpret_cast<const byte*>(defaultValue), |
2469 | unbound(defaultSize / BYTES)); |
2470 | } else { |
2471 | const word* ptr; |
2472 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
2473 | ptr = p; |
2474 | } else { |
2475 | goto useDefault; |
2476 | } |
2477 | |
2478 | if (KJ_UNLIKELY(ptr == nullptr)) { |
2479 | // Already reported error. |
2480 | goto useDefault; |
2481 | } |
2482 | |
2483 | auto size = ref->listRef.elementCount() * (ONE * BYTES / ELEMENTS); |
2484 | |
2485 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
2486 | "Message contains non-list pointer where data was expected." ) { |
2487 | goto useDefault; |
2488 | } |
2489 | |
2490 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
2491 | "Message contains list pointer of non-bytes where data was expected." ) { |
2492 | goto useDefault; |
2493 | } |
2494 | |
2495 | KJ_REQUIRE(boundsCheck(segment, ptr, roundBytesUpToWords(size)), |
2496 | "Message contained out-of-bounds data pointer." ) { |
2497 | goto useDefault; |
2498 | } |
2499 | |
2500 | return Data::Reader(reinterpret_cast<const byte*>(ptr), unbound(size / BYTES)); |
2501 | } |
2502 | } |
2503 | }; |
2504 | |
2505 | // ======================================================================================= |
2506 | // PointerBuilder |
2507 | |
2508 | StructBuilder PointerBuilder::initStruct(StructSize size) { |
2509 | return WireHelpers::initStructPointer(pointer, segment, capTable, size); |
2510 | } |
2511 | |
2512 | StructBuilder PointerBuilder::getStruct(StructSize size, const word* defaultValue) { |
2513 | return WireHelpers::getWritableStructPointer(pointer, segment, capTable, size, defaultValue); |
2514 | } |
2515 | |
2516 | ListBuilder PointerBuilder::initList(ElementSize elementSize, ElementCount elementCount) { |
2517 | return WireHelpers::initListPointer(pointer, segment, capTable, elementCount, elementSize); |
2518 | } |
2519 | |
2520 | ListBuilder PointerBuilder::initStructList(ElementCount elementCount, StructSize elementSize) { |
2521 | return WireHelpers::initStructListPointer(pointer, segment, capTable, elementCount, elementSize); |
2522 | } |
2523 | |
2524 | ListBuilder PointerBuilder::getList(ElementSize elementSize, const word* defaultValue) { |
2525 | return WireHelpers::getWritableListPointer(pointer, segment, capTable, elementSize, defaultValue); |
2526 | } |
2527 | |
2528 | ListBuilder PointerBuilder::getStructList(StructSize elementSize, const word* defaultValue) { |
2529 | return WireHelpers::getWritableStructListPointer( |
2530 | pointer, segment, capTable, elementSize, defaultValue); |
2531 | } |
2532 | |
2533 | ListBuilder PointerBuilder::getListAnySize(const word* defaultValue) { |
2534 | return WireHelpers::getWritableListPointerAnySize(pointer, segment, capTable, defaultValue); |
2535 | } |
2536 | |
2537 | template <> |
2538 | Text::Builder PointerBuilder::initBlob<Text>(ByteCount size) { |
2539 | return WireHelpers::initTextPointer(pointer, segment, capTable, |
2540 | assertMax<MAX_TEXT_SIZE>(size, ThrowOverflow())).value; |
2541 | } |
2542 | template <> |
2543 | void PointerBuilder::setBlob<Text>(Text::Reader value) { |
2544 | WireHelpers::setTextPointer(pointer, segment, capTable, value); |
2545 | } |
2546 | template <> |
2547 | Text::Builder PointerBuilder::getBlob<Text>(const void* defaultValue, ByteCount defaultSize) { |
2548 | return WireHelpers::getWritableTextPointer(pointer, segment, capTable, defaultValue, |
2549 | assertMax<MAX_TEXT_SIZE>(defaultSize, ThrowOverflow())); |
2550 | } |
2551 | |
2552 | template <> |
2553 | Data::Builder PointerBuilder::initBlob<Data>(ByteCount size) { |
2554 | return WireHelpers::initDataPointer(pointer, segment, capTable, |
2555 | assertMaxBits<BLOB_SIZE_BITS>(size, ThrowOverflow())).value; |
2556 | } |
2557 | template <> |
2558 | void PointerBuilder::setBlob<Data>(Data::Reader value) { |
2559 | WireHelpers::setDataPointer(pointer, segment, capTable, value); |
2560 | } |
2561 | template <> |
2562 | Data::Builder PointerBuilder::getBlob<Data>(const void* defaultValue, ByteCount defaultSize) { |
2563 | return WireHelpers::getWritableDataPointer(pointer, segment, capTable, defaultValue, |
2564 | assertMaxBits<BLOB_SIZE_BITS>(defaultSize, ThrowOverflow())); |
2565 | } |
2566 | |
2567 | void PointerBuilder::setStruct(const StructReader& value, bool canonical) { |
2568 | WireHelpers::setStructPointer(segment, capTable, pointer, value, nullptr, canonical); |
2569 | } |
2570 | |
2571 | void PointerBuilder::setList(const ListReader& value, bool canonical) { |
2572 | WireHelpers::setListPointer(segment, capTable, pointer, value, nullptr, canonical); |
2573 | } |
2574 | |
2575 | #if !CAPNP_LITE |
2576 | kj::Own<ClientHook> PointerBuilder::getCapability() { |
2577 | return WireHelpers::readCapabilityPointer( |
2578 | segment, capTable, pointer, kj::maxValue); |
2579 | } |
2580 | |
2581 | void PointerBuilder::setCapability(kj::Own<ClientHook>&& cap) { |
2582 | WireHelpers::setCapabilityPointer(segment, capTable, pointer, kj::mv(cap)); |
2583 | } |
2584 | #endif // !CAPNP_LITE |
2585 | |
2586 | void PointerBuilder::adopt(OrphanBuilder&& value) { |
2587 | WireHelpers::adopt(segment, capTable, pointer, kj::mv(value)); |
2588 | } |
2589 | |
2590 | OrphanBuilder PointerBuilder::disown() { |
2591 | return WireHelpers::disown(segment, capTable, pointer); |
2592 | } |
2593 | |
2594 | void PointerBuilder::clear() { |
2595 | WireHelpers::zeroObject(segment, capTable, pointer); |
2596 | WireHelpers::zeroMemory(pointer); |
2597 | } |
2598 | |
2599 | PointerType PointerBuilder::getPointerType() const { |
2600 | if(pointer->isNull()) { |
2601 | return PointerType::NULL_; |
2602 | } else { |
2603 | WirePointer* ptr = pointer; |
2604 | SegmentBuilder* sgmt = segment; |
2605 | WireHelpers::followFars(ptr, ptr->target(), sgmt); |
2606 | switch(ptr->kind()) { |
2607 | case WirePointer::FAR: |
2608 | KJ_FAIL_ASSERT("far pointer not followed?" ); |
2609 | case WirePointer::STRUCT: |
2610 | return PointerType::STRUCT; |
2611 | case WirePointer::LIST: |
2612 | return PointerType::LIST; |
2613 | case WirePointer::OTHER: |
2614 | KJ_REQUIRE(ptr->isCapability(), "unknown pointer type" ); |
2615 | return PointerType::CAPABILITY; |
2616 | } |
2617 | KJ_UNREACHABLE; |
2618 | } |
2619 | } |
2620 | |
2621 | void PointerBuilder::transferFrom(PointerBuilder other) { |
2622 | if (!pointer->isNull()) { |
2623 | WireHelpers::zeroObject(segment, capTable, pointer); |
2624 | WireHelpers::zeroMemory(pointer); |
2625 | } |
2626 | WireHelpers::transferPointer(segment, pointer, other.segment, other.pointer); |
2627 | WireHelpers::zeroMemory(other.pointer); |
2628 | } |
2629 | |
2630 | void PointerBuilder::copyFrom(PointerReader other, bool canonical) { |
2631 | if (other.pointer == nullptr) { |
2632 | if (!pointer->isNull()) { |
2633 | WireHelpers::zeroObject(segment, capTable, pointer); |
2634 | WireHelpers::zeroMemory(pointer); |
2635 | } |
2636 | } else { |
2637 | WireHelpers::copyPointer(segment, capTable, pointer, |
2638 | other.segment, other.capTable, other.pointer, other.nestingLimit, |
2639 | nullptr, |
2640 | canonical); |
2641 | } |
2642 | } |
2643 | |
2644 | PointerReader PointerBuilder::asReader() const { |
2645 | return PointerReader(segment, capTable, pointer, kj::maxValue); |
2646 | } |
2647 | |
2648 | BuilderArena* PointerBuilder::getArena() const { |
2649 | return segment->getArena(); |
2650 | } |
2651 | |
2652 | CapTableBuilder* PointerBuilder::getCapTable() { |
2653 | return capTable; |
2654 | } |
2655 | |
2656 | PointerBuilder PointerBuilder::imbue(CapTableBuilder* capTable) { |
2657 | auto result = *this; |
2658 | result.capTable = capTable; |
2659 | return result; |
2660 | } |
2661 | |
2662 | // ======================================================================================= |
2663 | // PointerReader |
2664 | |
2665 | PointerReader PointerReader::getRoot(SegmentReader* segment, CapTableReader* capTable, |
2666 | const word* location, int nestingLimit) { |
2667 | KJ_REQUIRE(WireHelpers::boundsCheck(segment, location, POINTER_SIZE_IN_WORDS), |
2668 | "Root location out-of-bounds." ) { |
2669 | location = nullptr; |
2670 | } |
2671 | |
2672 | return PointerReader(segment, capTable, |
2673 | reinterpret_cast<const WirePointer*>(location), nestingLimit); |
2674 | } |
2675 | |
2676 | StructReader PointerReader::getStruct(const word* defaultValue) const { |
2677 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
2678 | return WireHelpers::readStructPointer(segment, capTable, ref, defaultValue, nestingLimit); |
2679 | } |
2680 | |
2681 | ListReader PointerReader::getList(ElementSize expectedElementSize, const word* defaultValue) const { |
2682 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
2683 | return WireHelpers::readListPointer( |
2684 | segment, capTable, ref, defaultValue, expectedElementSize, nestingLimit); |
2685 | } |
2686 | |
2687 | ListReader PointerReader::getListAnySize(const word* defaultValue) const { |
2688 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
2689 | return WireHelpers::readListPointer( |
2690 | segment, capTable, ref, defaultValue, ElementSize::VOID /* dummy */, nestingLimit, false); |
2691 | } |
2692 | |
2693 | template <> |
2694 | Text::Reader PointerReader::getBlob<Text>(const void* defaultValue, ByteCount defaultSize) const { |
2695 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
2696 | return WireHelpers::readTextPointer(segment, ref, defaultValue, defaultSize); |
2697 | } |
2698 | |
2699 | template <> |
2700 | Data::Reader PointerReader::getBlob<Data>(const void* defaultValue, ByteCount defaultSize) const { |
2701 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
2702 | return WireHelpers::readDataPointer(segment, ref, defaultValue, |
2703 | assertMaxBits<BLOB_SIZE_BITS>(defaultSize, ThrowOverflow())); |
2704 | } |
2705 | |
2706 | #if !CAPNP_LITE |
2707 | kj::Own<ClientHook> PointerReader::getCapability() const { |
2708 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
2709 | return WireHelpers::readCapabilityPointer(segment, capTable, ref, nestingLimit); |
2710 | } |
2711 | #endif // !CAPNP_LITE |
2712 | |
2713 | const word* PointerReader::getUnchecked() const { |
2714 | KJ_REQUIRE(segment == nullptr, "getUncheckedPointer() only allowed on unchecked messages." ); |
2715 | return reinterpret_cast<const word*>(pointer); |
2716 | } |
2717 | |
2718 | MessageSizeCounts PointerReader::targetSize() const { |
2719 | return pointer == nullptr ? MessageSizeCounts { ZERO * WORDS, 0 } |
2720 | : WireHelpers::totalSize(segment, pointer, nestingLimit); |
2721 | } |
2722 | |
2723 | PointerType PointerReader::getPointerType() const { |
2724 | if(pointer == nullptr || pointer->isNull()) { |
2725 | return PointerType::NULL_; |
2726 | } else { |
2727 | const WirePointer* ptr = pointer; |
2728 | const word* refTarget = ptr->target(segment); |
2729 | SegmentReader* sgmt = segment; |
2730 | if (WireHelpers::followFars(ptr, refTarget, sgmt) == nullptr) return PointerType::NULL_; |
2731 | switch(ptr->kind()) { |
2732 | case WirePointer::FAR: |
2733 | KJ_FAIL_ASSERT("far pointer not followed?" ) { return PointerType::NULL_; } |
2734 | case WirePointer::STRUCT: |
2735 | return PointerType::STRUCT; |
2736 | case WirePointer::LIST: |
2737 | return PointerType::LIST; |
2738 | case WirePointer::OTHER: |
2739 | KJ_REQUIRE(ptr->isCapability(), "unknown pointer type" ) { return PointerType::NULL_; } |
2740 | return PointerType::CAPABILITY; |
2741 | } |
2742 | KJ_UNREACHABLE; |
2743 | } |
2744 | } |
2745 | |
2746 | kj::Maybe<Arena&> PointerReader::getArena() const { |
2747 | return segment == nullptr ? nullptr : segment->getArena(); |
2748 | } |
2749 | |
2750 | CapTableReader* PointerReader::getCapTable() { |
2751 | return capTable; |
2752 | } |
2753 | |
2754 | PointerReader PointerReader::imbue(CapTableReader* capTable) const { |
2755 | auto result = *this; |
2756 | result.capTable = capTable; |
2757 | return result; |
2758 | } |
2759 | |
2760 | bool PointerReader::isCanonical(const word **readHead) { |
2761 | if (!this->pointer) { |
2762 | // The pointer is null, so we are canonical and do not read |
2763 | return true; |
2764 | } |
2765 | |
2766 | if (!this->pointer->isPositional()) { |
2767 | // The pointer is a FAR or OTHER pointer, and is non-canonical |
2768 | return false; |
2769 | } |
2770 | |
2771 | switch (this->getPointerType()) { |
2772 | case PointerType::NULL_: |
2773 | // The pointer is null, we are canonical and do not read |
2774 | return true; |
2775 | case PointerType::STRUCT: { |
2776 | bool dataTrunc, ptrTrunc; |
2777 | auto structReader = this->getStruct(nullptr); |
2778 | if (structReader.getDataSectionSize() == ZERO * BITS && |
2779 | structReader.getPointerSectionSize() == ZERO * POINTERS) { |
2780 | return reinterpret_cast<const word*>(this->pointer) == structReader.getLocation(); |
2781 | } else { |
2782 | return structReader.isCanonical(readHead, readHead, &dataTrunc, &ptrTrunc) && dataTrunc && ptrTrunc; |
2783 | } |
2784 | } |
2785 | case PointerType::LIST: |
2786 | return this->getListAnySize(nullptr).isCanonical(readHead, pointer); |
2787 | case PointerType::CAPABILITY: |
2788 | KJ_FAIL_ASSERT("Capabilities are not positional" ); |
2789 | } |
2790 | KJ_UNREACHABLE; |
2791 | } |
2792 | |
2793 | // ======================================================================================= |
2794 | // StructBuilder |
2795 | |
2796 | void StructBuilder::clearAll() { |
2797 | if (dataSize == ONE * BITS) { |
2798 | setDataField<bool>(ONE * ELEMENTS, false); |
2799 | } else { |
2800 | WireHelpers::zeroMemory(reinterpret_cast<byte*>(data), dataSize / BITS_PER_BYTE); |
2801 | } |
2802 | |
2803 | for (auto i: kj::zeroTo(pointerCount)) { |
2804 | WireHelpers::zeroObject(segment, capTable, pointers + i); |
2805 | } |
2806 | WireHelpers::zeroMemory(pointers, pointerCount); |
2807 | } |
2808 | |
2809 | void StructBuilder::transferContentFrom(StructBuilder other) { |
2810 | // Determine the amount of data the builders have in common. |
2811 | auto sharedDataSize = kj::min(dataSize, other.dataSize); |
2812 | |
2813 | if (dataSize > sharedDataSize) { |
2814 | // Since the target is larger than the source, make sure to zero out the extra bits that the |
2815 | // source doesn't have. |
2816 | if (dataSize == ONE * BITS) { |
2817 | setDataField<bool>(ZERO * ELEMENTS, false); |
2818 | } else { |
2819 | byte* unshared = reinterpret_cast<byte*>(data) + sharedDataSize / BITS_PER_BYTE; |
2820 | // Note: this subtraction can't fail due to the if() above |
2821 | WireHelpers::zeroMemory(unshared, |
2822 | subtractChecked(dataSize, sharedDataSize, []() {}) / BITS_PER_BYTE); |
2823 | } |
2824 | } |
2825 | |
2826 | // Copy over the shared part. |
2827 | if (sharedDataSize == ONE * BITS) { |
2828 | setDataField<bool>(ZERO * ELEMENTS, other.getDataField<bool>(ZERO * ELEMENTS)); |
2829 | } else { |
2830 | WireHelpers::copyMemory(reinterpret_cast<byte*>(data), |
2831 | reinterpret_cast<byte*>(other.data), |
2832 | sharedDataSize / BITS_PER_BYTE); |
2833 | } |
2834 | |
2835 | // Zero out all pointers in the target. |
2836 | for (auto i: kj::zeroTo(pointerCount)) { |
2837 | WireHelpers::zeroObject(segment, capTable, pointers + i); |
2838 | } |
2839 | WireHelpers::zeroMemory(pointers, pointerCount); |
2840 | |
2841 | // Transfer the pointers. |
2842 | auto sharedPointerCount = kj::min(pointerCount, other.pointerCount); |
2843 | for (auto i: kj::zeroTo(sharedPointerCount)) { |
2844 | WireHelpers::transferPointer(segment, pointers + i, other.segment, other.pointers + i); |
2845 | } |
2846 | |
2847 | // Zero out the pointers that were transferred in the source because it no longer has ownership. |
2848 | // If the source had any extra pointers that the destination didn't have space for, we |
2849 | // intentionally leave them be, so that they'll be cleaned up later. |
2850 | WireHelpers::zeroMemory(other.pointers, sharedPointerCount); |
2851 | } |
2852 | |
2853 | void StructBuilder::copyContentFrom(StructReader other) { |
2854 | // Determine the amount of data the builders have in common. |
2855 | auto sharedDataSize = kj::min(dataSize, other.dataSize); |
2856 | auto sharedPointerCount = kj::min(pointerCount, other.pointerCount); |
2857 | |
2858 | if ((sharedDataSize > ZERO * BITS && other.data == data) || |
2859 | (sharedPointerCount > ZERO * POINTERS && other.pointers == pointers)) { |
2860 | // At least one of the section pointers is pointing to ourself. Verify that the other is two |
2861 | // (but ignore empty sections). |
2862 | KJ_ASSERT((sharedDataSize == ZERO * BITS || other.data == data) && |
2863 | (sharedPointerCount == ZERO * POINTERS || other.pointers == pointers)); |
2864 | // So `other` appears to be a reader for this same struct. No coping is needed. |
2865 | return; |
2866 | } |
2867 | |
2868 | if (dataSize > sharedDataSize) { |
2869 | // Since the target is larger than the source, make sure to zero out the extra bits that the |
2870 | // source doesn't have. |
2871 | if (dataSize == ONE * BITS) { |
2872 | setDataField<bool>(ZERO * ELEMENTS, false); |
2873 | } else { |
2874 | byte* unshared = reinterpret_cast<byte*>(data) + sharedDataSize / BITS_PER_BYTE; |
2875 | WireHelpers::zeroMemory(unshared, |
2876 | subtractChecked(dataSize, sharedDataSize, []() {}) / BITS_PER_BYTE); |
2877 | } |
2878 | } |
2879 | |
2880 | // Copy over the shared part. |
2881 | if (sharedDataSize == ONE * BITS) { |
2882 | setDataField<bool>(ZERO * ELEMENTS, other.getDataField<bool>(ZERO * ELEMENTS)); |
2883 | } else { |
2884 | WireHelpers::copyMemory(reinterpret_cast<byte*>(data), |
2885 | reinterpret_cast<const byte*>(other.data), |
2886 | sharedDataSize / BITS_PER_BYTE); |
2887 | } |
2888 | |
2889 | // Zero out all pointers in the target. |
2890 | for (auto i: kj::zeroTo(pointerCount)) { |
2891 | WireHelpers::zeroObject(segment, capTable, pointers + i); |
2892 | } |
2893 | WireHelpers::zeroMemory(pointers, pointerCount); |
2894 | |
2895 | // Copy the pointers. |
2896 | for (auto i: kj::zeroTo(sharedPointerCount)) { |
2897 | WireHelpers::copyPointer(segment, capTable, pointers + i, |
2898 | other.segment, other.capTable, other.pointers + i, other.nestingLimit); |
2899 | } |
2900 | } |
2901 | |
2902 | StructReader StructBuilder::asReader() const { |
2903 | return StructReader(segment, capTable, data, pointers, |
2904 | dataSize, pointerCount, kj::maxValue); |
2905 | } |
2906 | |
2907 | BuilderArena* StructBuilder::getArena() { |
2908 | return segment->getArena(); |
2909 | } |
2910 | |
2911 | CapTableBuilder* StructBuilder::getCapTable() { |
2912 | return capTable; |
2913 | } |
2914 | |
2915 | StructBuilder StructBuilder::imbue(CapTableBuilder* capTable) { |
2916 | auto result = *this; |
2917 | result.capTable = capTable; |
2918 | return result; |
2919 | } |
2920 | |
2921 | // ======================================================================================= |
2922 | // StructReader |
2923 | |
2924 | MessageSizeCounts StructReader::totalSize() const { |
2925 | MessageSizeCounts result = { |
2926 | WireHelpers::roundBitsUpToWords(dataSize) + pointerCount * WORDS_PER_POINTER, 0 }; |
2927 | |
2928 | for (auto i: kj::zeroTo(pointerCount)) { |
2929 | result += WireHelpers::totalSize(segment, pointers + i, nestingLimit); |
2930 | } |
2931 | |
2932 | if (segment != nullptr) { |
2933 | // This traversal should not count against the read limit, because it's highly likely that |
2934 | // the caller is going to traverse the object again, e.g. to copy it. |
2935 | segment->unread(result.wordCount); |
2936 | } |
2937 | |
2938 | return result; |
2939 | } |
2940 | |
2941 | kj::Array<word> StructReader::canonicalize() { |
2942 | auto size = totalSize().wordCount + POINTER_SIZE_IN_WORDS; |
2943 | kj::Array<word> backing = kj::heapArray<word>(unbound(size / WORDS)); |
2944 | WireHelpers::zeroMemory(backing.asPtr()); |
2945 | FlatMessageBuilder builder(backing); |
2946 | _::PointerHelpers<AnyPointer>::getInternalBuilder(builder.initRoot<AnyPointer>()).setStruct(*this, true); |
2947 | KJ_ASSERT(builder.isCanonical()); |
2948 | auto output = builder.getSegmentsForOutput()[0]; |
2949 | kj::Array<word> trunc = kj::heapArray<word>(output.size()); |
2950 | WireHelpers::copyMemory(trunc.begin(), output); |
2951 | return trunc; |
2952 | } |
2953 | |
2954 | CapTableReader* StructReader::getCapTable() { |
2955 | return capTable; |
2956 | } |
2957 | |
2958 | StructReader StructReader::imbue(CapTableReader* capTable) const { |
2959 | auto result = *this; |
2960 | result.capTable = capTable; |
2961 | return result; |
2962 | } |
2963 | |
2964 | bool StructReader::isCanonical(const word **readHead, |
2965 | const word **ptrHead, |
2966 | bool *dataTrunc, |
2967 | bool *ptrTrunc) { |
2968 | if (this->getLocation() != *readHead) { |
2969 | // Our target area is not at the readHead, preorder fails |
2970 | return false; |
2971 | } |
2972 | |
2973 | if (this->getDataSectionSize() % BITS_PER_WORD != ZERO * BITS) { |
2974 | // Using legacy non-word-size structs, reject |
2975 | return false; |
2976 | } |
2977 | auto dataSize = this->getDataSectionSize() / BITS_PER_WORD; |
2978 | |
2979 | // Mark whether the struct is properly truncated |
2980 | KJ_IF_MAYBE(diff, trySubtract(dataSize, ONE * WORDS)) { |
2981 | *dataTrunc = this->getDataField<uint64_t>(*diff / WORDS * ELEMENTS) != 0; |
2982 | } else { |
2983 | // Data segment empty. |
2984 | *dataTrunc = true; |
2985 | } |
2986 | |
2987 | KJ_IF_MAYBE(diff, trySubtract(this->pointerCount, ONE * POINTERS)) { |
2988 | *ptrTrunc = !this->getPointerField(*diff).isNull(); |
2989 | } else { |
2990 | *ptrTrunc = true; |
2991 | } |
2992 | |
2993 | // Advance the read head |
2994 | *readHead += (dataSize + (this->pointerCount * WORDS_PER_POINTER)); |
2995 | |
2996 | // Check each pointer field for canonicity |
2997 | for (auto ptrIndex: kj::zeroTo(this->pointerCount)) { |
2998 | if (!this->getPointerField(ptrIndex).isCanonical(ptrHead)) { |
2999 | return false; |
3000 | } |
3001 | } |
3002 | |
3003 | return true; |
3004 | } |
3005 | |
3006 | // ======================================================================================= |
3007 | // ListBuilder |
3008 | |
3009 | Text::Builder ListBuilder::asText() { |
3010 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
3011 | "Expected Text, got list of non-bytes." ) { |
3012 | return Text::Builder(); |
3013 | } |
3014 | |
3015 | size_t size = unbound(elementCount / ELEMENTS); |
3016 | |
3017 | KJ_REQUIRE(size > 0, "Message contains text that is not NUL-terminated." ) { |
3018 | return Text::Builder(); |
3019 | } |
3020 | |
3021 | char* cptr = reinterpret_cast<char*>(ptr); |
3022 | --size; // NUL terminator |
3023 | |
3024 | KJ_REQUIRE(cptr[size] == '\0', "Message contains text that is not NUL-terminated." ) { |
3025 | return Text::Builder(); |
3026 | } |
3027 | |
3028 | return Text::Builder(cptr, size); |
3029 | } |
3030 | |
3031 | Data::Builder ListBuilder::asData() { |
3032 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
3033 | "Expected Text, got list of non-bytes." ) { |
3034 | return Data::Builder(); |
3035 | } |
3036 | |
3037 | return Data::Builder(reinterpret_cast<byte*>(ptr), unbound(elementCount / ELEMENTS)); |
3038 | } |
3039 | |
3040 | StructBuilder ListBuilder::getStructElement(ElementCount index) { |
3041 | auto indexBit = upgradeBound<uint64_t>(index) * step; |
3042 | byte* structData = ptr + indexBit / BITS_PER_BYTE; |
3043 | KJ_DASSERT(indexBit % BITS_PER_BYTE == ZERO * BITS); |
3044 | return StructBuilder(segment, capTable, structData, |
3045 | reinterpret_cast<WirePointer*>(structData + structDataSize / BITS_PER_BYTE), |
3046 | structDataSize, structPointerCount); |
3047 | } |
3048 | |
3049 | ListReader ListBuilder::asReader() const { |
3050 | return ListReader(segment, capTable, ptr, elementCount, step, structDataSize, structPointerCount, |
3051 | elementSize, kj::maxValue); |
3052 | } |
3053 | |
3054 | BuilderArena* ListBuilder::getArena() { |
3055 | return segment->getArena(); |
3056 | } |
3057 | |
3058 | CapTableBuilder* ListBuilder::getCapTable() { |
3059 | return capTable; |
3060 | } |
3061 | |
3062 | ListBuilder ListBuilder::imbue(CapTableBuilder* capTable) { |
3063 | auto result = *this; |
3064 | result.capTable = capTable; |
3065 | return result; |
3066 | } |
3067 | |
3068 | // ======================================================================================= |
3069 | // ListReader |
3070 | |
3071 | Text::Reader ListReader::asText() { |
3072 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
3073 | "Expected Text, got list of non-bytes." ) { |
3074 | return Text::Reader(); |
3075 | } |
3076 | |
3077 | size_t size = unbound(elementCount / ELEMENTS); |
3078 | |
3079 | KJ_REQUIRE(size > 0, "Message contains text that is not NUL-terminated." ) { |
3080 | return Text::Reader(); |
3081 | } |
3082 | |
3083 | const char* cptr = reinterpret_cast<const char*>(ptr); |
3084 | --size; // NUL terminator |
3085 | |
3086 | KJ_REQUIRE(cptr[size] == '\0', "Message contains text that is not NUL-terminated." ) { |
3087 | return Text::Reader(); |
3088 | } |
3089 | |
3090 | return Text::Reader(cptr, size); |
3091 | } |
3092 | |
3093 | Data::Reader ListReader::asData() { |
3094 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
3095 | "Expected Text, got list of non-bytes." ) { |
3096 | return Data::Reader(); |
3097 | } |
3098 | |
3099 | return Data::Reader(reinterpret_cast<const byte*>(ptr), unbound(elementCount / ELEMENTS)); |
3100 | } |
3101 | |
3102 | kj::ArrayPtr<const byte> ListReader::asRawBytes() const { |
3103 | KJ_REQUIRE(structPointerCount == ZERO * POINTERS, |
3104 | "Expected data only, got pointers." ) { |
3105 | return kj::ArrayPtr<const byte>(); |
3106 | } |
3107 | |
3108 | return arrayPtr(reinterpret_cast<const byte*>(ptr), |
3109 | WireHelpers::roundBitsUpToBytes( |
3110 | upgradeBound<uint64_t>(elementCount) * (structDataSize / ELEMENTS))); |
3111 | } |
3112 | |
3113 | StructReader ListReader::getStructElement(ElementCount index) const { |
3114 | KJ_REQUIRE(nestingLimit > 0, |
3115 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
3116 | return StructReader(); |
3117 | } |
3118 | |
3119 | auto indexBit = upgradeBound<uint64_t>(index) * step; |
3120 | const byte* structData = ptr + indexBit / BITS_PER_BYTE; |
3121 | const WirePointer* structPointers = |
3122 | reinterpret_cast<const WirePointer*>(structData + structDataSize / BITS_PER_BYTE); |
3123 | |
3124 | KJ_DASSERT(indexBit % BITS_PER_BYTE == ZERO * BITS); |
3125 | return StructReader( |
3126 | segment, capTable, structData, structPointers, |
3127 | structDataSize, structPointerCount, |
3128 | nestingLimit - 1); |
3129 | } |
3130 | |
3131 | MessageSizeCounts ListReader::totalSize() const { |
3132 | // TODO(cleanup): This is kind of a lot of logic duplicated from WireHelpers::totalSize(), but |
3133 | // it's unclear how to share it effectively. |
3134 | |
3135 | MessageSizeCounts result = { ZERO * WORDS, 0 }; |
3136 | |
3137 | switch (elementSize) { |
3138 | case ElementSize::VOID: |
3139 | // Nothing. |
3140 | break; |
3141 | case ElementSize::BIT: |
3142 | case ElementSize::BYTE: |
3143 | case ElementSize::TWO_BYTES: |
3144 | case ElementSize::FOUR_BYTES: |
3145 | case ElementSize::EIGHT_BYTES: |
3146 | result.addWords(WireHelpers::roundBitsUpToWords( |
3147 | upgradeBound<uint64_t>(elementCount) * dataBitsPerElement(elementSize))); |
3148 | break; |
3149 | case ElementSize::POINTER: { |
3150 | auto count = elementCount * (POINTERS / ELEMENTS); |
3151 | result.addWords(count * WORDS_PER_POINTER); |
3152 | |
3153 | for (auto i: kj::zeroTo(count)) { |
3154 | result += WireHelpers::totalSize(segment, reinterpret_cast<const WirePointer*>(ptr) + i, |
3155 | nestingLimit); |
3156 | } |
3157 | break; |
3158 | } |
3159 | case ElementSize::INLINE_COMPOSITE: { |
3160 | // Don't forget to count the tag word. |
3161 | auto wordSize = upgradeBound<uint64_t>(elementCount) * step / BITS_PER_WORD; |
3162 | result.addWords(wordSize + POINTER_SIZE_IN_WORDS); |
3163 | |
3164 | if (structPointerCount > ZERO * POINTERS) { |
3165 | const word* pos = reinterpret_cast<const word*>(ptr); |
3166 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
3167 | pos += structDataSize / BITS_PER_WORD; |
3168 | |
3169 | for (auto j KJ_UNUSED: kj::zeroTo(structPointerCount)) { |
3170 | result += WireHelpers::totalSize(segment, reinterpret_cast<const WirePointer*>(pos), |
3171 | nestingLimit); |
3172 | pos += POINTER_SIZE_IN_WORDS; |
3173 | } |
3174 | } |
3175 | } |
3176 | break; |
3177 | } |
3178 | } |
3179 | |
3180 | if (segment != nullptr) { |
3181 | // This traversal should not count against the read limit, because it's highly likely that |
3182 | // the caller is going to traverse the object again, e.g. to copy it. |
3183 | segment->unread(result.wordCount); |
3184 | } |
3185 | |
3186 | return result; |
3187 | } |
3188 | |
3189 | CapTableReader* ListReader::getCapTable() { |
3190 | return capTable; |
3191 | } |
3192 | |
3193 | ListReader ListReader::imbue(CapTableReader* capTable) const { |
3194 | auto result = *this; |
3195 | result.capTable = capTable; |
3196 | return result; |
3197 | } |
3198 | |
3199 | bool ListReader::isCanonical(const word **readHead, const WirePointer *ref) { |
3200 | switch (this->getElementSize()) { |
3201 | case ElementSize::INLINE_COMPOSITE: { |
3202 | *readHead += 1; |
3203 | if (reinterpret_cast<const word*>(this->ptr) != *readHead) { |
3204 | // The next word to read is the tag word, but the pointer is in |
3205 | // front of it, so our check is slightly different |
3206 | return false; |
3207 | } |
3208 | if (this->structDataSize % BITS_PER_WORD != ZERO * BITS) { |
3209 | return false; |
3210 | } |
3211 | auto elementSize = StructSize(this->structDataSize / BITS_PER_WORD, |
3212 | this->structPointerCount).total() / ELEMENTS; |
3213 | auto totalSize = upgradeBound<uint64_t>(this->elementCount) * elementSize; |
3214 | if (totalSize != ref->listRef.inlineCompositeWordCount()) { |
3215 | return false; |
3216 | } |
3217 | if (elementSize == ZERO * WORDS / ELEMENTS) { |
3218 | return true; |
3219 | } |
3220 | auto listEnd = *readHead + totalSize; |
3221 | auto pointerHead = listEnd; |
3222 | bool listDataTrunc = false; |
3223 | bool listPtrTrunc = false; |
3224 | for (auto ec: kj::zeroTo(this->elementCount)) { |
3225 | bool dataTrunc, ptrTrunc; |
3226 | if (!this->getStructElement(ec).isCanonical(readHead, |
3227 | &pointerHead, |
3228 | &dataTrunc, |
3229 | &ptrTrunc)) { |
3230 | return false; |
3231 | } |
3232 | listDataTrunc |= dataTrunc; |
3233 | listPtrTrunc |= ptrTrunc; |
3234 | } |
3235 | KJ_REQUIRE(*readHead == listEnd, *readHead, listEnd); |
3236 | *readHead = pointerHead; |
3237 | return listDataTrunc && listPtrTrunc; |
3238 | } |
3239 | case ElementSize::POINTER: { |
3240 | if (reinterpret_cast<const word*>(this->ptr) != *readHead) { |
3241 | return false; |
3242 | } |
3243 | *readHead += this->elementCount * (POINTERS / ELEMENTS) * WORDS_PER_POINTER; |
3244 | for (auto ec: kj::zeroTo(this->elementCount)) { |
3245 | if (!this->getPointerElement(ec).isCanonical(readHead)) { |
3246 | return false; |
3247 | } |
3248 | } |
3249 | return true; |
3250 | } |
3251 | default: { |
3252 | if (reinterpret_cast<const word*>(this->ptr) != *readHead) { |
3253 | return false; |
3254 | } |
3255 | |
3256 | auto bitSize = upgradeBound<uint64_t>(this->elementCount) * |
3257 | dataBitsPerElement(this->elementSize); |
3258 | auto truncatedByteSize = bitSize / BITS_PER_BYTE; |
3259 | auto byteReadHead = reinterpret_cast<const uint8_t*>(*readHead) + truncatedByteSize; |
3260 | auto readHeadEnd = *readHead + WireHelpers::roundBitsUpToWords(bitSize); |
3261 | |
3262 | auto leftoverBits = bitSize % BITS_PER_BYTE; |
3263 | if (leftoverBits > ZERO * BITS) { |
3264 | auto mask = ~((1 << unbound(leftoverBits / BITS)) - 1); |
3265 | |
3266 | if (mask & *byteReadHead) { |
3267 | return false; |
3268 | } |
3269 | byteReadHead += 1; |
3270 | } |
3271 | |
3272 | while (byteReadHead != reinterpret_cast<const uint8_t*>(readHeadEnd)) { |
3273 | if (*byteReadHead != 0) { |
3274 | return false; |
3275 | } |
3276 | byteReadHead += 1; |
3277 | } |
3278 | |
3279 | *readHead = readHeadEnd; |
3280 | return true; |
3281 | } |
3282 | } |
3283 | KJ_UNREACHABLE; |
3284 | } |
3285 | |
3286 | // ======================================================================================= |
3287 | // OrphanBuilder |
3288 | |
3289 | OrphanBuilder OrphanBuilder::initStruct( |
3290 | BuilderArena* arena, CapTableBuilder* capTable, StructSize size) { |
3291 | OrphanBuilder result; |
3292 | StructBuilder builder = WireHelpers::initStructPointer( |
3293 | result.tagAsPtr(), nullptr, capTable, size, arena); |
3294 | result.segment = builder.segment; |
3295 | result.capTable = capTable; |
3296 | result.location = builder.getLocation(); |
3297 | return result; |
3298 | } |
3299 | |
3300 | OrphanBuilder OrphanBuilder::initList( |
3301 | BuilderArena* arena, CapTableBuilder* capTable, |
3302 | ElementCount elementCount, ElementSize elementSize) { |
3303 | OrphanBuilder result; |
3304 | ListBuilder builder = WireHelpers::initListPointer( |
3305 | result.tagAsPtr(), nullptr, capTable, elementCount, elementSize, arena); |
3306 | result.segment = builder.segment; |
3307 | result.capTable = capTable; |
3308 | result.location = builder.getLocation(); |
3309 | return result; |
3310 | } |
3311 | |
3312 | OrphanBuilder OrphanBuilder::initStructList( |
3313 | BuilderArena* arena, CapTableBuilder* capTable, |
3314 | ElementCount elementCount, StructSize elementSize) { |
3315 | OrphanBuilder result; |
3316 | ListBuilder builder = WireHelpers::initStructListPointer( |
3317 | result.tagAsPtr(), nullptr, capTable, elementCount, elementSize, arena); |
3318 | result.segment = builder.segment; |
3319 | result.capTable = capTable; |
3320 | result.location = builder.getLocation(); |
3321 | return result; |
3322 | } |
3323 | |
3324 | OrphanBuilder OrphanBuilder::initText( |
3325 | BuilderArena* arena, CapTableBuilder* capTable, ByteCount size) { |
3326 | OrphanBuilder result; |
3327 | auto allocation = WireHelpers::initTextPointer(result.tagAsPtr(), nullptr, capTable, |
3328 | assertMax<MAX_TEXT_SIZE>(size, ThrowOverflow()), arena); |
3329 | result.segment = allocation.segment; |
3330 | result.capTable = capTable; |
3331 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
3332 | return result; |
3333 | } |
3334 | |
3335 | OrphanBuilder OrphanBuilder::initData( |
3336 | BuilderArena* arena, CapTableBuilder* capTable, ByteCount size) { |
3337 | OrphanBuilder result; |
3338 | auto allocation = WireHelpers::initDataPointer(result.tagAsPtr(), nullptr, capTable, |
3339 | assertMaxBits<BLOB_SIZE_BITS>(size), arena); |
3340 | result.segment = allocation.segment; |
3341 | result.capTable = capTable; |
3342 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
3343 | return result; |
3344 | } |
3345 | |
3346 | OrphanBuilder OrphanBuilder::copy( |
3347 | BuilderArena* arena, CapTableBuilder* capTable, StructReader copyFrom) { |
3348 | OrphanBuilder result; |
3349 | auto allocation = WireHelpers::setStructPointer( |
3350 | nullptr, capTable, result.tagAsPtr(), copyFrom, arena); |
3351 | result.segment = allocation.segment; |
3352 | result.capTable = capTable; |
3353 | result.location = reinterpret_cast<word*>(allocation.value); |
3354 | return result; |
3355 | } |
3356 | |
3357 | OrphanBuilder OrphanBuilder::copy( |
3358 | BuilderArena* arena, CapTableBuilder* capTable, ListReader copyFrom) { |
3359 | OrphanBuilder result; |
3360 | auto allocation = WireHelpers::setListPointer( |
3361 | nullptr, capTable, result.tagAsPtr(), copyFrom, arena); |
3362 | result.segment = allocation.segment; |
3363 | result.capTable = capTable; |
3364 | result.location = reinterpret_cast<word*>(allocation.value); |
3365 | return result; |
3366 | } |
3367 | |
3368 | OrphanBuilder OrphanBuilder::copy( |
3369 | BuilderArena* arena, CapTableBuilder* capTable, PointerReader copyFrom) { |
3370 | OrphanBuilder result; |
3371 | auto allocation = WireHelpers::copyPointer( |
3372 | nullptr, capTable, result.tagAsPtr(), |
3373 | copyFrom.segment, copyFrom.capTable, copyFrom.pointer, copyFrom.nestingLimit, arena); |
3374 | result.segment = allocation.segment; |
3375 | result.capTable = capTable; |
3376 | result.location = reinterpret_cast<word*>(allocation.value); |
3377 | return result; |
3378 | } |
3379 | |
3380 | OrphanBuilder OrphanBuilder::copy( |
3381 | BuilderArena* arena, CapTableBuilder* capTable, Text::Reader copyFrom) { |
3382 | OrphanBuilder result; |
3383 | auto allocation = WireHelpers::setTextPointer( |
3384 | result.tagAsPtr(), nullptr, capTable, copyFrom, arena); |
3385 | result.segment = allocation.segment; |
3386 | result.capTable = capTable; |
3387 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
3388 | return result; |
3389 | } |
3390 | |
3391 | OrphanBuilder OrphanBuilder::copy( |
3392 | BuilderArena* arena, CapTableBuilder* capTable, Data::Reader copyFrom) { |
3393 | OrphanBuilder result; |
3394 | auto allocation = WireHelpers::setDataPointer( |
3395 | result.tagAsPtr(), nullptr, capTable, copyFrom, arena); |
3396 | result.segment = allocation.segment; |
3397 | result.capTable = capTable; |
3398 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
3399 | return result; |
3400 | } |
3401 | |
3402 | #if !CAPNP_LITE |
3403 | OrphanBuilder OrphanBuilder::copy( |
3404 | BuilderArena* arena, CapTableBuilder* capTable, kj::Own<ClientHook> copyFrom) { |
3405 | OrphanBuilder result; |
3406 | WireHelpers::setCapabilityPointer(nullptr, capTable, result.tagAsPtr(), kj::mv(copyFrom)); |
3407 | result.segment = arena->getSegment(SegmentId(0)); |
3408 | result.capTable = capTable; |
3409 | result.location = &result.tag; // dummy to make location non-null |
3410 | return result; |
3411 | } |
3412 | #endif // !CAPNP_LITE |
3413 | |
3414 | OrphanBuilder OrphanBuilder::concat( |
3415 | BuilderArena* arena, CapTableBuilder* capTable, |
3416 | ElementSize elementSize, StructSize structSize, |
3417 | kj::ArrayPtr<const ListReader> lists) { |
3418 | KJ_REQUIRE(lists.size() > 0, "Can't concat empty list " ); |
3419 | |
3420 | // Find the overall element count and size. |
3421 | ListElementCount elementCount = ZERO * ELEMENTS; |
3422 | for (auto& list: lists) { |
3423 | elementCount = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(elementCount + list.elementCount, |
3424 | []() { KJ_FAIL_REQUIRE("concatenated list exceeds list size limit" ); }); |
3425 | if (list.elementSize != elementSize) { |
3426 | // If element sizes don't all match, upgrade to struct list. |
3427 | KJ_REQUIRE(list.elementSize != ElementSize::BIT && elementSize != ElementSize::BIT, |
3428 | "can't upgrade bit lists to struct lists" ); |
3429 | elementSize = ElementSize::INLINE_COMPOSITE; |
3430 | } |
3431 | structSize.data = kj::max(structSize.data, |
3432 | WireHelpers::roundBitsUpToWords(list.structDataSize)); |
3433 | structSize.pointers = kj::max(structSize.pointers, list.structPointerCount); |
3434 | } |
3435 | |
3436 | // Allocate the list. |
3437 | OrphanBuilder result; |
3438 | ListBuilder builder = (elementSize == ElementSize::INLINE_COMPOSITE) |
3439 | ? WireHelpers::initStructListPointer( |
3440 | result.tagAsPtr(), nullptr, capTable, elementCount, structSize, arena) |
3441 | : WireHelpers::initListPointer( |
3442 | result.tagAsPtr(), nullptr, capTable, elementCount, elementSize, arena); |
3443 | |
3444 | // Copy elements. |
3445 | switch (elementSize) { |
3446 | case ElementSize::INLINE_COMPOSITE: { |
3447 | ListElementCount pos = ZERO * ELEMENTS; |
3448 | for (auto& list: lists) { |
3449 | for (auto i: kj::zeroTo(list.size())) { |
3450 | builder.getStructElement(pos).copyContentFrom(list.getStructElement(i)); |
3451 | // assumeBits() safe because we checked total size earlier. |
3452 | pos = assumeBits<LIST_ELEMENT_COUNT_BITS>(pos + ONE * ELEMENTS); |
3453 | } |
3454 | } |
3455 | break; |
3456 | } |
3457 | case ElementSize::POINTER: { |
3458 | ListElementCount pos = ZERO * ELEMENTS; |
3459 | for (auto& list: lists) { |
3460 | for (auto i: kj::zeroTo(list.size())) { |
3461 | builder.getPointerElement(pos).copyFrom(list.getPointerElement(i)); |
3462 | // assumeBits() safe because we checked total size earlier. |
3463 | pos = assumeBits<LIST_ELEMENT_COUNT_BITS>(pos + ONE * ELEMENTS); |
3464 | } |
3465 | } |
3466 | break; |
3467 | } |
3468 | case ElementSize::BIT: { |
3469 | // It's difficult to memcpy() bits since a list could start or end mid-byte. For now we |
3470 | // do a slow, naive loop. Probably no one will ever care. |
3471 | ListElementCount pos = ZERO * ELEMENTS; |
3472 | for (auto& list: lists) { |
3473 | for (auto i: kj::zeroTo(list.size())) { |
3474 | builder.setDataElement<bool>(pos, list.getDataElement<bool>(i)); |
3475 | // assumeBits() safe because we checked total size earlier. |
3476 | pos = assumeBits<LIST_ELEMENT_COUNT_BITS>(pos + ONE * ELEMENTS); |
3477 | } |
3478 | } |
3479 | break; |
3480 | } |
3481 | default: { |
3482 | // We know all the inputs are primitives with identical size because otherwise we would have |
3483 | // chosen INLINE_COMPOSITE. Therefore, we can safely use memcpy() here instead of copying |
3484 | // each element manually. |
3485 | byte* target = builder.ptr; |
3486 | auto step = builder.step / BITS_PER_BYTE; |
3487 | for (auto& list: lists) { |
3488 | auto count = step * upgradeBound<uint64_t>(list.size()); |
3489 | WireHelpers::copyMemory(target, list.ptr, assumeBits<SEGMENT_WORD_COUNT_BITS>(count)); |
3490 | target += count; |
3491 | } |
3492 | break; |
3493 | } |
3494 | } |
3495 | |
3496 | // Return orphan. |
3497 | result.segment = builder.segment; |
3498 | result.capTable = capTable; |
3499 | result.location = builder.getLocation(); |
3500 | return result; |
3501 | } |
3502 | |
3503 | OrphanBuilder OrphanBuilder::referenceExternalData(BuilderArena* arena, Data::Reader data) { |
3504 | // TODO(someday): We now allow unaligned segments on architectures thata support it. We could |
3505 | // consider relaxing this check as well? |
3506 | KJ_REQUIRE(reinterpret_cast<uintptr_t>(data.begin()) % sizeof(void*) == 0, |
3507 | "Cannot referenceExternalData() that is not aligned." ); |
3508 | |
3509 | auto checkedSize = assertMaxBits<BLOB_SIZE_BITS>(bounded(data.size())); |
3510 | auto wordCount = WireHelpers::roundBytesUpToWords(checkedSize * BYTES); |
3511 | kj::ArrayPtr<const word> words(reinterpret_cast<const word*>(data.begin()), |
3512 | unbound(wordCount / WORDS)); |
3513 | |
3514 | OrphanBuilder result; |
3515 | result.tagAsPtr()->setKindForOrphan(WirePointer::LIST); |
3516 | result.tagAsPtr()->listRef.set(ElementSize::BYTE, checkedSize * ELEMENTS); |
3517 | result.segment = arena->addExternalSegment(words); |
3518 | |
3519 | // External data cannot possibly contain capabilities. |
3520 | result.capTable = nullptr; |
3521 | |
3522 | // const_cast OK here because we will check whether the segment is writable when we try to get |
3523 | // a builder. |
3524 | result.location = const_cast<word*>(words.begin()); |
3525 | |
3526 | return result; |
3527 | } |
3528 | |
3529 | StructBuilder OrphanBuilder::asStruct(StructSize size) { |
3530 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3531 | |
3532 | StructBuilder result = WireHelpers::getWritableStructPointer( |
3533 | tagAsPtr(), location, segment, capTable, size, nullptr, segment->getArena()); |
3534 | |
3535 | // Watch out, the pointer could have been updated if the object had to be relocated. |
3536 | location = reinterpret_cast<word*>(result.data); |
3537 | |
3538 | return result; |
3539 | } |
3540 | |
3541 | ListBuilder OrphanBuilder::asList(ElementSize elementSize) { |
3542 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3543 | |
3544 | ListBuilder result = WireHelpers::getWritableListPointer( |
3545 | tagAsPtr(), location, segment, capTable, elementSize, nullptr, segment->getArena()); |
3546 | |
3547 | // Watch out, the pointer could have been updated if the object had to be relocated. |
3548 | // (Actually, currently this is not true for primitive lists, but let's not turn into a bug if |
3549 | // it changes!) |
3550 | location = result.getLocation(); |
3551 | |
3552 | return result; |
3553 | } |
3554 | |
3555 | ListBuilder OrphanBuilder::asStructList(StructSize elementSize) { |
3556 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3557 | |
3558 | ListBuilder result = WireHelpers::getWritableStructListPointer( |
3559 | tagAsPtr(), location, segment, capTable, elementSize, nullptr, segment->getArena()); |
3560 | |
3561 | // Watch out, the pointer could have been updated if the object had to be relocated. |
3562 | location = result.getLocation(); |
3563 | |
3564 | return result; |
3565 | } |
3566 | |
3567 | ListBuilder OrphanBuilder::asListAnySize() { |
3568 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3569 | |
3570 | ListBuilder result = WireHelpers::getWritableListPointerAnySize( |
3571 | tagAsPtr(), location, segment, capTable, nullptr, segment->getArena()); |
3572 | |
3573 | // Watch out, the pointer could have been updated if the object had to be relocated. |
3574 | location = result.getLocation(); |
3575 | |
3576 | return result; |
3577 | } |
3578 | |
3579 | Text::Builder OrphanBuilder::asText() { |
3580 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3581 | |
3582 | // Never relocates. |
3583 | return WireHelpers::getWritableTextPointer( |
3584 | tagAsPtr(), location, segment, capTable, nullptr, ZERO * BYTES); |
3585 | } |
3586 | |
3587 | Data::Builder OrphanBuilder::asData() { |
3588 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3589 | |
3590 | // Never relocates. |
3591 | return WireHelpers::getWritableDataPointer( |
3592 | tagAsPtr(), location, segment, capTable, nullptr, ZERO * BYTES); |
3593 | } |
3594 | |
3595 | StructReader OrphanBuilder::asStructReader(StructSize size) const { |
3596 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3597 | return WireHelpers::readStructPointer( |
3598 | segment, capTable, tagAsPtr(), location, nullptr, kj::maxValue); |
3599 | } |
3600 | |
3601 | ListReader OrphanBuilder::asListReader(ElementSize elementSize) const { |
3602 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3603 | return WireHelpers::readListPointer( |
3604 | segment, capTable, tagAsPtr(), location, nullptr, elementSize, kj::maxValue); |
3605 | } |
3606 | |
3607 | ListReader OrphanBuilder::asListReaderAnySize() const { |
3608 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3609 | return WireHelpers::readListPointer( |
3610 | segment, capTable, tagAsPtr(), location, nullptr, ElementSize::VOID /* dummy */, |
3611 | kj::maxValue); |
3612 | } |
3613 | |
3614 | #if !CAPNP_LITE |
3615 | kj::Own<ClientHook> OrphanBuilder::asCapability() const { |
3616 | return WireHelpers::readCapabilityPointer(segment, capTable, tagAsPtr(), kj::maxValue); |
3617 | } |
3618 | #endif // !CAPNP_LITE |
3619 | |
3620 | Text::Reader OrphanBuilder::asTextReader() const { |
3621 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3622 | return WireHelpers::readTextPointer(segment, tagAsPtr(), location, nullptr, ZERO * BYTES); |
3623 | } |
3624 | |
3625 | Data::Reader OrphanBuilder::asDataReader() const { |
3626 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
3627 | return WireHelpers::readDataPointer(segment, tagAsPtr(), location, nullptr, ZERO * BYTES); |
3628 | } |
3629 | |
3630 | bool OrphanBuilder::truncate(ElementCount uncheckedSize, bool isText) { |
3631 | ListElementCount size = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(uncheckedSize, |
3632 | []() { KJ_FAIL_REQUIRE("requested list size is too large" ); }); |
3633 | |
3634 | WirePointer* ref = tagAsPtr(); |
3635 | SegmentBuilder* segment = this->segment; |
3636 | |
3637 | word* target = WireHelpers::followFars(ref, location, segment); |
3638 | |
3639 | if (ref->isNull()) { |
3640 | // We don't know the right element size, so we can't resize this list. |
3641 | return size == ZERO * ELEMENTS; |
3642 | } |
3643 | |
3644 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, "Can't truncate non-list." ) { |
3645 | return false; |
3646 | } |
3647 | |
3648 | if (isText) { |
3649 | // Add space for the NUL terminator. |
3650 | size = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(size + ONE * ELEMENTS, |
3651 | []() { KJ_FAIL_REQUIRE("requested list size is too large" ); }); |
3652 | } |
3653 | |
3654 | auto elementSize = ref->listRef.elementSize(); |
3655 | |
3656 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
3657 | auto oldWordCount = ref->listRef.inlineCompositeWordCount(); |
3658 | |
3659 | WirePointer* tag = reinterpret_cast<WirePointer*>(target); |
3660 | ++target; |
3661 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
3662 | "INLINE_COMPOSITE lists of non-STRUCT type are not supported." ) { |
3663 | return false; |
3664 | } |
3665 | StructSize structSize(tag->structRef.dataSize.get(), tag->structRef.ptrCount.get()); |
3666 | auto elementStep = structSize.total() / ELEMENTS; |
3667 | |
3668 | auto oldSize = tag->inlineCompositeListElementCount(); |
3669 | |
3670 | SegmentWordCount sizeWords = assertMaxBits<SEGMENT_WORD_COUNT_BITS>( |
3671 | upgradeBound<uint64_t>(size) * elementStep, |
3672 | []() { KJ_FAIL_ASSERT("requested list size too large to fit in message segment" ); }); |
3673 | SegmentWordCount oldSizeWords = assertMaxBits<SEGMENT_WORD_COUNT_BITS>( |
3674 | upgradeBound<uint64_t>(oldSize) * elementStep, |
3675 | []() { KJ_FAIL_ASSERT("prior to truncate, list is larger than max segment size?" ); }); |
3676 | |
3677 | word* newEndWord = target + sizeWords; |
3678 | word* oldEndWord = target + oldWordCount; |
3679 | |
3680 | if (size <= oldSize) { |
3681 | // Zero the trailing elements. |
3682 | for (auto i: kj::range(size, oldSize)) { |
3683 | // assumeBits() safe because we checked that both sizeWords and oldSizeWords are in-range |
3684 | // above. |
3685 | WireHelpers::zeroObject(segment, capTable, tag, target + |
3686 | assumeBits<SEGMENT_WORD_COUNT_BITS>(upgradeBound<uint64_t>(i) * elementStep)); |
3687 | } |
3688 | ref->listRef.setInlineComposite(sizeWords); |
3689 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, size); |
3690 | segment->tryTruncate(oldEndWord, newEndWord); |
3691 | } else if (newEndWord <= oldEndWord) { |
3692 | // Apparently the old list was over-allocated? The word count is more than needed to store |
3693 | // the elements. This is "valid" but shouldn't happen in practice unless someone is toying |
3694 | // with us. |
3695 | word* expectedEnd = target + oldSizeWords; |
3696 | KJ_ASSERT(newEndWord >= expectedEnd); |
3697 | WireHelpers::zeroMemory(expectedEnd, |
3698 | intervalLength(expectedEnd, newEndWord, MAX_SEGMENT_WORDS)); |
3699 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, size); |
3700 | } else { |
3701 | if (segment->tryExtend(oldEndWord, newEndWord)) { |
3702 | // Done in-place. Nothing else to do now; the new memory is already zero'd. |
3703 | ref->listRef.setInlineComposite(sizeWords); |
3704 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, size); |
3705 | } else { |
3706 | // Need to re-allocate and transfer. |
3707 | OrphanBuilder replacement = initStructList(segment->getArena(), capTable, size, structSize); |
3708 | |
3709 | ListBuilder newList = replacement.asStructList(structSize); |
3710 | for (auto i: kj::zeroTo(oldSize)) { |
3711 | // assumeBits() safe because we checked that both sizeWords and oldSizeWords are in-range |
3712 | // above. |
3713 | word* element = target + |
3714 | assumeBits<SEGMENT_WORD_COUNT_BITS>(upgradeBound<uint64_t>(i) * elementStep); |
3715 | newList.getStructElement(i).transferContentFrom( |
3716 | StructBuilder(segment, capTable, element, |
3717 | reinterpret_cast<WirePointer*>(element + structSize.data), |
3718 | structSize.data * BITS_PER_WORD, structSize.pointers)); |
3719 | } |
3720 | |
3721 | *this = kj::mv(replacement); |
3722 | } |
3723 | } |
3724 | } else if (elementSize == ElementSize::POINTER) { |
3725 | // TODO(cleanup): GCC won't let me declare this constexpr, claiming POINTERS is not constexpr, |
3726 | // but it is? |
3727 | const auto POINTERS_PER_ELEMENT = ONE * POINTERS / ELEMENTS; |
3728 | |
3729 | auto oldSize = ref->listRef.elementCount(); |
3730 | word* newEndWord = target + size * POINTERS_PER_ELEMENT * WORDS_PER_POINTER; |
3731 | word* oldEndWord = target + oldSize * POINTERS_PER_ELEMENT * WORDS_PER_POINTER; |
3732 | |
3733 | if (size <= oldSize) { |
3734 | // Zero the trailing elements. |
3735 | for (WirePointer* element = reinterpret_cast<WirePointer*>(newEndWord); |
3736 | element < reinterpret_cast<WirePointer*>(oldEndWord); ++element) { |
3737 | WireHelpers::zeroPointerAndFars(segment, element); |
3738 | } |
3739 | ref->listRef.set(ElementSize::POINTER, size); |
3740 | segment->tryTruncate(oldEndWord, newEndWord); |
3741 | } else { |
3742 | if (segment->tryExtend(oldEndWord, newEndWord)) { |
3743 | // Done in-place. Nothing else to do now; the new memory is already zero'd. |
3744 | ref->listRef.set(ElementSize::POINTER, size); |
3745 | } else { |
3746 | // Need to re-allocate and transfer. |
3747 | OrphanBuilder replacement = initList( |
3748 | segment->getArena(), capTable, size, ElementSize::POINTER); |
3749 | ListBuilder newList = replacement.asList(ElementSize::POINTER); |
3750 | WirePointer* oldPointers = reinterpret_cast<WirePointer*>(target); |
3751 | for (auto i: kj::zeroTo(oldSize)) { |
3752 | newList.getPointerElement(i).transferFrom( |
3753 | PointerBuilder(segment, capTable, oldPointers + i * POINTERS_PER_ELEMENT)); |
3754 | } |
3755 | *this = kj::mv(replacement); |
3756 | } |
3757 | } |
3758 | } else { |
3759 | auto oldSize = ref->listRef.elementCount(); |
3760 | auto step = dataBitsPerElement(elementSize); |
3761 | const auto MAX_STEP_BYTES = ONE * WORDS / ELEMENTS * BYTES_PER_WORD; |
3762 | word* newEndWord = target + WireHelpers::roundBitsUpToWords( |
3763 | upgradeBound<uint64_t>(size) * step); |
3764 | word* oldEndWord = target + WireHelpers::roundBitsUpToWords( |
3765 | upgradeBound<uint64_t>(oldSize) * step); |
3766 | |
3767 | if (size <= oldSize) { |
3768 | // When truncating text, we want to set the null terminator as well, so we'll do our zeroing |
3769 | // at the byte level. |
3770 | byte* begin = reinterpret_cast<byte*>(target); |
3771 | byte* newEndByte = begin + WireHelpers::roundBitsUpToBytes( |
3772 | upgradeBound<uint64_t>(size) * step) - isText; |
3773 | byte* oldEndByte = reinterpret_cast<byte*>(oldEndWord); |
3774 | |
3775 | WireHelpers::zeroMemory(newEndByte, |
3776 | intervalLength(newEndByte, oldEndByte, MAX_LIST_ELEMENTS * MAX_STEP_BYTES)); |
3777 | ref->listRef.set(elementSize, size); |
3778 | segment->tryTruncate(oldEndWord, newEndWord); |
3779 | } else { |
3780 | // We're trying to extend, not truncate. |
3781 | if (segment->tryExtend(oldEndWord, newEndWord)) { |
3782 | // Done in-place. Nothing else to do now; the memory is already zero'd. |
3783 | ref->listRef.set(elementSize, size); |
3784 | } else { |
3785 | // Need to re-allocate and transfer. |
3786 | OrphanBuilder replacement = initList(segment->getArena(), capTable, size, elementSize); |
3787 | ListBuilder newList = replacement.asList(elementSize); |
3788 | auto words = WireHelpers::roundBitsUpToWords( |
3789 | dataBitsPerElement(elementSize) * upgradeBound<uint64_t>(oldSize)); |
3790 | WireHelpers::copyMemory(reinterpret_cast<word*>(newList.ptr), target, words); |
3791 | *this = kj::mv(replacement); |
3792 | } |
3793 | } |
3794 | } |
3795 | |
3796 | return true; |
3797 | } |
3798 | |
3799 | void OrphanBuilder::truncate(ElementCount size, ElementSize elementSize) { |
3800 | if (!truncate(size, false)) { |
3801 | // assumeBits() safe since it's checked inside truncate() |
3802 | *this = initList(segment->getArena(), capTable, |
3803 | assumeBits<LIST_ELEMENT_COUNT_BITS>(size), elementSize); |
3804 | } |
3805 | } |
3806 | |
3807 | void OrphanBuilder::truncate(ElementCount size, StructSize elementSize) { |
3808 | if (!truncate(size, false)) { |
3809 | // assumeBits() safe since it's checked inside truncate() |
3810 | *this = initStructList(segment->getArena(), capTable, |
3811 | assumeBits<LIST_ELEMENT_COUNT_BITS>(size), elementSize); |
3812 | } |
3813 | } |
3814 | |
3815 | void OrphanBuilder::truncateText(ElementCount size) { |
3816 | if (!truncate(size, true)) { |
3817 | // assumeBits() safe since it's checked inside truncate() |
3818 | *this = initText(segment->getArena(), capTable, |
3819 | assumeBits<LIST_ELEMENT_COUNT_BITS>(size) * (ONE * BYTES / ELEMENTS)); |
3820 | } |
3821 | } |
3822 | |
3823 | void OrphanBuilder::euthanize() { |
3824 | // Carefully catch any exceptions and rethrow them as recoverable exceptions since we may be in |
3825 | // a destructor. |
3826 | auto exception = kj::runCatchingExceptions([&]() { |
3827 | if (tagAsPtr()->isPositional()) { |
3828 | WireHelpers::zeroObject(segment, capTable, tagAsPtr(), location); |
3829 | } else { |
3830 | WireHelpers::zeroObject(segment, capTable, tagAsPtr()); |
3831 | } |
3832 | |
3833 | WireHelpers::zeroMemory(&tag, ONE * WORDS); |
3834 | segment = nullptr; |
3835 | location = nullptr; |
3836 | }); |
3837 | |
3838 | KJ_IF_MAYBE(e, exception) { |
3839 | kj::getExceptionCallback().onRecoverableException(kj::mv(*e)); |
3840 | } |
3841 | } |
3842 | |
3843 | } // namespace _ (private) |
3844 | } // namespace capnp |
3845 | |