| 1 | // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #define CAPNP_PRIVATE |
| 23 | #include "layout.h" |
| 24 | #include <kj/debug.h> |
| 25 | #include "arena.h" |
| 26 | #include <string.h> |
| 27 | #include <stdlib.h> |
| 28 | |
| 29 | #if !CAPNP_LITE |
| 30 | #include "capability.h" |
| 31 | #endif // !CAPNP_LITE |
| 32 | |
| 33 | namespace capnp { |
| 34 | namespace _ { // private |
| 35 | |
| 36 | #if !CAPNP_LITE |
| 37 | static BrokenCapFactory* brokenCapFactory = nullptr; |
| 38 | // Horrible hack: We need to be able to construct broken caps without any capability context, |
| 39 | // but we can't have a link-time dependency on libcapnp-rpc. |
| 40 | |
| 41 | void setGlobalBrokenCapFactoryForLayoutCpp(BrokenCapFactory& factory) { |
| 42 | // Called from capability.c++ when the capability API is used, to make sure that layout.c++ |
| 43 | // is ready for it. May be called multiple times but always with the same value. |
| 44 | #if __GNUC__ |
| 45 | __atomic_store_n(&brokenCapFactory, &factory, __ATOMIC_RELAXED); |
| 46 | #elif _MSC_VER |
| 47 | *static_cast<BrokenCapFactory* volatile*>(&brokenCapFactory) = &factory; |
| 48 | #else |
| 49 | #error "Platform not supported" |
| 50 | #endif |
| 51 | } |
| 52 | |
| 53 | } // namespace _ (private) |
| 54 | |
| 55 | const uint ClientHook::NULL_CAPABILITY_BRAND = 0; |
| 56 | // Defined here rather than capability.c++ so that we can safely call isNull() in this file. |
| 57 | |
| 58 | void* ClientHook::getLocalServer(_::CapabilityServerSetBase& capServerSet) { |
| 59 | // Defined here rather than capability.c++ because otherwise building with -fsanitize=vptr fails. |
| 60 | return nullptr; |
| 61 | } |
| 62 | |
| 63 | namespace _ { // private |
| 64 | |
| 65 | #endif // !CAPNP_LITE |
| 66 | |
| 67 | #if CAPNP_DEBUG_TYPES |
| 68 | #define G(n) bounded<n>() |
| 69 | #else |
| 70 | #define G(n) n |
| 71 | #endif |
| 72 | |
| 73 | // ======================================================================================= |
| 74 | |
| 75 | #if __GNUC__ >= 8 && !__clang__ |
| 76 | // GCC 8 introduced a warning which complains whenever we try to memset() or memcpy() a |
| 77 | // WirePointer, becaues we deleted the regular copy constructor / assignment operator. Weirdly, if |
| 78 | // I remove those deletions, GCC *still* complains that WirePointer is non-trivial. I don't |
| 79 | // understand why -- maybe because WireValue has private members? We don't want to make WireValue's |
| 80 | // member public, but memset() and memcpy() on it are certainly valid and desirable, so we'll just |
| 81 | // have to disable the warning I guess. |
| 82 | #pragma GCC diagnostic ignored "-Wclass-memaccess" |
| 83 | #endif |
| 84 | |
| 85 | struct WirePointer { |
| 86 | // A pointer, in exactly the format in which it appears on the wire. |
| 87 | |
| 88 | // Copying and moving is not allowed because the offset would become wrong. |
| 89 | WirePointer(const WirePointer& other) = delete; |
| 90 | WirePointer(WirePointer&& other) = delete; |
| 91 | WirePointer& operator=(const WirePointer& other) = delete; |
| 92 | WirePointer& operator=(WirePointer&& other) = delete; |
| 93 | |
| 94 | // ----------------------------------------------------------------- |
| 95 | // Common part of all pointers: kind + offset |
| 96 | // |
| 97 | // Actually this is not terribly common. The "offset" could actually be different things |
| 98 | // depending on the context: |
| 99 | // - For a regular (e.g. struct/list) pointer, a signed word offset from the word immediately |
| 100 | // following the pointer pointer. (The off-by-one means the offset is more often zero, saving |
| 101 | // bytes on the wire when packed.) |
| 102 | // - For an inline composite list tag (not really a pointer, but structured similarly), an |
| 103 | // element count. |
| 104 | // - For a FAR pointer, an unsigned offset into the target segment. |
| 105 | // - For a FAR landing pad, zero indicates that the target value immediately follows the pad while |
| 106 | // 1 indicates that the pad is followed by another FAR pointer that actually points at the |
| 107 | // value. |
| 108 | |
| 109 | enum Kind { |
| 110 | STRUCT = 0, |
| 111 | // Reference points at / describes a struct. |
| 112 | |
| 113 | LIST = 1, |
| 114 | // Reference points at / describes a list. |
| 115 | |
| 116 | FAR = 2, |
| 117 | // Reference is a "far pointer", which points at data located in a different segment. The |
| 118 | // eventual target is one of the other kinds. |
| 119 | |
| 120 | OTHER = 3 |
| 121 | // Reference has type "other". If the next 30 bits are all zero (i.e. the lower 32 bits contain |
| 122 | // only the kind OTHER) then the pointer is a capability. All other values are reserved. |
| 123 | }; |
| 124 | |
| 125 | WireValue<uint32_t> offsetAndKind; |
| 126 | |
| 127 | KJ_ALWAYS_INLINE(Kind kind() const) { |
| 128 | return static_cast<Kind>(offsetAndKind.get() & 3); |
| 129 | } |
| 130 | KJ_ALWAYS_INLINE(bool isPositional() const) { |
| 131 | return (offsetAndKind.get() & 2) == 0; // match STRUCT and LIST but not FAR or OTHER |
| 132 | } |
| 133 | KJ_ALWAYS_INLINE(bool isCapability() const) { |
| 134 | return offsetAndKind.get() == OTHER; |
| 135 | } |
| 136 | |
| 137 | KJ_ALWAYS_INLINE(word* target()) { |
| 138 | return reinterpret_cast<word*>(this) + 1 + (static_cast<int32_t>(offsetAndKind.get()) >> 2); |
| 139 | } |
| 140 | KJ_ALWAYS_INLINE(const word* target(SegmentReader* segment) const) { |
| 141 | if (segment == nullptr) { |
| 142 | return reinterpret_cast<const word*>(this + 1) + |
| 143 | (static_cast<int32_t>(offsetAndKind.get()) >> 2); |
| 144 | } else { |
| 145 | return segment->checkOffset(reinterpret_cast<const word*>(this + 1), |
| 146 | static_cast<int32_t>(offsetAndKind.get()) >> 2); |
| 147 | } |
| 148 | } |
| 149 | KJ_ALWAYS_INLINE(void setKindAndTarget(Kind kind, word* target, SegmentBuilder* segment)) { |
| 150 | // Check that the target is really in the same segment, otherwise subtracting pointers is |
| 151 | // undefined behavior. As it turns out, it's undefined behavior that actually produces |
| 152 | // unexpected results in a real-world situation that actually happened: At one time, |
| 153 | // OrphanBuilder's "tag" (a WirePointer) was allowed to be initialized as if it lived in |
| 154 | // a particular segment when in fact it does not. On 32-bit systems, where words might |
| 155 | // only be 32-bit aligned, it's possible that the difference between `this` and `target` is |
| 156 | // not a whole number of words. But clang optimizes: |
| 157 | // (target - (word*)this - 1) << 2 |
| 158 | // to: |
| 159 | // (((ptrdiff_t)target - (ptrdiff_t)this - 8) >> 1) |
| 160 | // So now when the pointers are not aligned the same, we can end up corrupting the bottom |
| 161 | // two bits, where `kind` is stored. For example, this turns a struct into a far pointer. |
| 162 | // Ouch! |
| 163 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(this) >= |
| 164 | reinterpret_cast<uintptr_t>(segment->getStartPtr())); |
| 165 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(this) < |
| 166 | reinterpret_cast<uintptr_t>(segment->getStartPtr() + segment->getSize())); |
| 167 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(target) >= |
| 168 | reinterpret_cast<uintptr_t>(segment->getStartPtr())); |
| 169 | KJ_DREQUIRE(reinterpret_cast<uintptr_t>(target) <= |
| 170 | reinterpret_cast<uintptr_t>(segment->getStartPtr() + segment->getSize())); |
| 171 | offsetAndKind.set((static_cast<uint32_t>(target - reinterpret_cast<word*>(this) - 1) << 2) | kind); |
| 172 | } |
| 173 | KJ_ALWAYS_INLINE(void setKindWithZeroOffset(Kind kind)) { |
| 174 | offsetAndKind.set(kind); |
| 175 | } |
| 176 | KJ_ALWAYS_INLINE(void setKindAndTargetForEmptyStruct()) { |
| 177 | // This pointer points at an empty struct. Assuming the WirePointer itself is in-bounds, we |
| 178 | // can set the target to point either at the WirePointer itself or immediately after it. The |
| 179 | // latter would cause the WirePointer to be "null" (since for an empty struct the upper 32 |
| 180 | // bits are going to be zero). So we set an offset of -1, as if the struct were allocated |
| 181 | // immediately before this pointer, to distinguish it from null. |
| 182 | offsetAndKind.set(0xfffffffc); |
| 183 | } |
| 184 | KJ_ALWAYS_INLINE(void setKindForOrphan(Kind kind)) { |
| 185 | // OrphanBuilder contains a WirePointer, but since it isn't located in a segment, it should |
| 186 | // not have a valid offset (unless it is a FAR or OTHER pointer). We set its offset to -1 |
| 187 | // because setting it to zero would mean a pointer to an empty struct would appear to be a null |
| 188 | // pointer. |
| 189 | KJ_DREQUIRE(isPositional()); |
| 190 | offsetAndKind.set(kind | 0xfffffffc); |
| 191 | } |
| 192 | |
| 193 | KJ_ALWAYS_INLINE(ListElementCount inlineCompositeListElementCount() const) { |
| 194 | return ((bounded(offsetAndKind.get()) >> G(2)) |
| 195 | & G(kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>())) * ELEMENTS; |
| 196 | } |
| 197 | KJ_ALWAYS_INLINE(void setKindAndInlineCompositeListElementCount( |
| 198 | Kind kind, ListElementCount elementCount)) { |
| 199 | offsetAndKind.set(unboundAs<uint32_t>((elementCount / ELEMENTS) << G(2)) | kind); |
| 200 | } |
| 201 | |
| 202 | KJ_ALWAYS_INLINE(const word* farTarget(SegmentReader* segment) const) { |
| 203 | KJ_DREQUIRE(kind() == FAR, |
| 204 | "farTarget() should only be called on FAR pointers." ); |
| 205 | return segment->checkOffset(segment->getStartPtr(), offsetAndKind.get() >> 3); |
| 206 | } |
| 207 | KJ_ALWAYS_INLINE(word* farTarget(SegmentBuilder* segment) const) { |
| 208 | KJ_DREQUIRE(kind() == FAR, |
| 209 | "farTarget() should only be called on FAR pointers." ); |
| 210 | return segment->getPtrUnchecked((bounded(offsetAndKind.get()) >> G(3)) * WORDS); |
| 211 | } |
| 212 | KJ_ALWAYS_INLINE(bool isDoubleFar() const) { |
| 213 | KJ_DREQUIRE(kind() == FAR, |
| 214 | "isDoubleFar() should only be called on FAR pointers." ); |
| 215 | return (offsetAndKind.get() >> 2) & 1; |
| 216 | } |
| 217 | KJ_ALWAYS_INLINE(void setFar(bool isDoubleFar, WordCountN<29> pos)) { |
| 218 | offsetAndKind.set(unboundAs<uint32_t>((pos / WORDS) << G(3)) | |
| 219 | (static_cast<uint32_t>(isDoubleFar) << 2) | |
| 220 | static_cast<uint32_t>(Kind::FAR)); |
| 221 | } |
| 222 | KJ_ALWAYS_INLINE(void setCap(uint index)) { |
| 223 | offsetAndKind.set(static_cast<uint32_t>(Kind::OTHER)); |
| 224 | capRef.index.set(index); |
| 225 | } |
| 226 | |
| 227 | // ----------------------------------------------------------------- |
| 228 | // Part of pointer that depends on the kind. |
| 229 | |
| 230 | // Note: Originally StructRef, ListRef, and FarRef were unnamed types, but this somehow |
| 231 | // tickled a bug in GCC: |
| 232 | // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58192 |
| 233 | struct StructRef { |
| 234 | WireValue<WordCount16> dataSize; |
| 235 | WireValue<WirePointerCount16> ptrCount; |
| 236 | |
| 237 | inline WordCountN<17> wordSize() const { |
| 238 | return upgradeBound<uint32_t>(dataSize.get()) + ptrCount.get() * WORDS_PER_POINTER; |
| 239 | } |
| 240 | |
| 241 | KJ_ALWAYS_INLINE(void set(WordCount16 ds, WirePointerCount16 rc)) { |
| 242 | dataSize.set(ds); |
| 243 | ptrCount.set(rc); |
| 244 | } |
| 245 | KJ_ALWAYS_INLINE(void set(StructSize size)) { |
| 246 | dataSize.set(size.data); |
| 247 | ptrCount.set(size.pointers); |
| 248 | } |
| 249 | }; |
| 250 | |
| 251 | struct ListRef { |
| 252 | WireValue<uint32_t> elementSizeAndCount; |
| 253 | |
| 254 | KJ_ALWAYS_INLINE(ElementSize elementSize() const) { |
| 255 | return static_cast<ElementSize>(elementSizeAndCount.get() & 7); |
| 256 | } |
| 257 | KJ_ALWAYS_INLINE(ElementCountN<29> elementCount() const) { |
| 258 | return (bounded(elementSizeAndCount.get()) >> G(3)) * ELEMENTS; |
| 259 | } |
| 260 | KJ_ALWAYS_INLINE(WordCountN<29> inlineCompositeWordCount() const) { |
| 261 | return elementCount() * (ONE * WORDS / ELEMENTS); |
| 262 | } |
| 263 | |
| 264 | KJ_ALWAYS_INLINE(void set(ElementSize es, ElementCountN<29> ec)) { |
| 265 | elementSizeAndCount.set(unboundAs<uint32_t>((ec / ELEMENTS) << G(3)) | |
| 266 | static_cast<int>(es)); |
| 267 | } |
| 268 | |
| 269 | KJ_ALWAYS_INLINE(void setInlineComposite(WordCountN<29> wc)) { |
| 270 | elementSizeAndCount.set(unboundAs<uint32_t>((wc / WORDS) << G(3)) | |
| 271 | static_cast<int>(ElementSize::INLINE_COMPOSITE)); |
| 272 | } |
| 273 | }; |
| 274 | |
| 275 | struct FarRef { |
| 276 | WireValue<SegmentId> segmentId; |
| 277 | |
| 278 | KJ_ALWAYS_INLINE(void set(SegmentId si)) { |
| 279 | segmentId.set(si); |
| 280 | } |
| 281 | }; |
| 282 | |
| 283 | struct CapRef { |
| 284 | WireValue<uint32_t> index; |
| 285 | // Index into the message's capability table. |
| 286 | }; |
| 287 | |
| 288 | union { |
| 289 | uint32_t upper32Bits; |
| 290 | |
| 291 | StructRef structRef; |
| 292 | |
| 293 | ListRef listRef; |
| 294 | |
| 295 | FarRef farRef; |
| 296 | |
| 297 | CapRef capRef; |
| 298 | }; |
| 299 | |
| 300 | KJ_ALWAYS_INLINE(bool isNull() const) { |
| 301 | // If the upper 32 bits are zero, this is a pointer to an empty struct. We consider that to be |
| 302 | // our "null" value. |
| 303 | return (offsetAndKind.get() == 0) & (upper32Bits == 0); |
| 304 | } |
| 305 | |
| 306 | }; |
| 307 | static_assert(sizeof(WirePointer) == sizeof(word), |
| 308 | "capnp::WirePointer is not exactly one word. This will probably break everything." ); |
| 309 | static_assert(unboundAs<size_t>(POINTERS * WORDS_PER_POINTER * BYTES_PER_WORD / BYTES) == |
| 310 | sizeof(WirePointer), |
| 311 | "WORDS_PER_POINTER is wrong." ); |
| 312 | static_assert(unboundAs<size_t>(POINTERS * BYTES_PER_POINTER / BYTES) == sizeof(WirePointer), |
| 313 | "BYTES_PER_POINTER is wrong." ); |
| 314 | static_assert(unboundAs<size_t>(POINTERS * BITS_PER_POINTER / BITS_PER_BYTE / BYTES) == |
| 315 | sizeof(WirePointer), |
| 316 | "BITS_PER_POINTER is wrong." ); |
| 317 | |
| 318 | namespace { |
| 319 | |
| 320 | static const union { |
| 321 | AlignedData<unbound(POINTER_SIZE_IN_WORDS / WORDS)> word; |
| 322 | WirePointer pointer; |
| 323 | } zero = {{{0}}}; |
| 324 | |
| 325 | } // namespace |
| 326 | |
| 327 | // ======================================================================================= |
| 328 | |
| 329 | namespace { |
| 330 | |
| 331 | template <typename T> |
| 332 | struct SegmentAnd { |
| 333 | SegmentBuilder* segment; |
| 334 | T value; |
| 335 | }; |
| 336 | |
| 337 | } // namespace |
| 338 | |
| 339 | struct WireHelpers { |
| 340 | #if CAPNP_DEBUG_TYPES |
| 341 | template <uint64_t maxN, typename T> |
| 342 | static KJ_ALWAYS_INLINE( |
| 343 | kj::Quantity<kj::Bounded<(maxN + 7) / 8, T>, word> roundBytesUpToWords( |
| 344 | kj::Quantity<kj::Bounded<maxN, T>, byte> bytes)) { |
| 345 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
| 346 | return (bytes + G(7) * BYTES) / BYTES_PER_WORD; |
| 347 | } |
| 348 | |
| 349 | template <uint64_t maxN, typename T> |
| 350 | static KJ_ALWAYS_INLINE( |
| 351 | kj::Quantity<kj::Bounded<(maxN + 7) / 8, T>, byte> roundBitsUpToBytes( |
| 352 | kj::Quantity<kj::Bounded<maxN, T>, BitLabel> bits)) { |
| 353 | return (bits + G(7) * BITS) / BITS_PER_BYTE; |
| 354 | } |
| 355 | |
| 356 | template <uint64_t maxN, typename T> |
| 357 | static KJ_ALWAYS_INLINE( |
| 358 | kj::Quantity<kj::Bounded<(maxN + 63) / 64, T>, word> roundBitsUpToWords( |
| 359 | kj::Quantity<kj::Bounded<maxN, T>, BitLabel> bits)) { |
| 360 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
| 361 | return (bits + G(63) * BITS) / BITS_PER_WORD; |
| 362 | } |
| 363 | #else |
| 364 | static KJ_ALWAYS_INLINE(WordCount roundBytesUpToWords(ByteCount bytes)) { |
| 365 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
| 366 | return (bytes + G(7) * BYTES) / BYTES_PER_WORD; |
| 367 | } |
| 368 | |
| 369 | static KJ_ALWAYS_INLINE(ByteCount roundBitsUpToBytes(BitCount bits)) { |
| 370 | return (bits + G(7) * BITS) / BITS_PER_BYTE; |
| 371 | } |
| 372 | |
| 373 | static KJ_ALWAYS_INLINE(WordCount64 roundBitsUpToWords(BitCount64 bits)) { |
| 374 | static_assert(sizeof(word) == 8, "This code assumes 64-bit words." ); |
| 375 | return (bits + G(63) * BITS) / BITS_PER_WORD; |
| 376 | } |
| 377 | |
| 378 | static KJ_ALWAYS_INLINE(ByteCount64 roundBitsUpToBytes(BitCount64 bits)) { |
| 379 | return (bits + G(7) * BITS) / BITS_PER_BYTE; |
| 380 | } |
| 381 | #endif |
| 382 | |
| 383 | static KJ_ALWAYS_INLINE(void zeroMemory(byte* ptr, ByteCount32 count)) { |
| 384 | if (count != ZERO * BYTES) memset(ptr, 0, unbound(count / BYTES)); |
| 385 | } |
| 386 | |
| 387 | static KJ_ALWAYS_INLINE(void zeroMemory(word* ptr, WordCountN<29> count)) { |
| 388 | if (count != ZERO * WORDS) memset(ptr, 0, unbound(count * BYTES_PER_WORD / BYTES)); |
| 389 | } |
| 390 | |
| 391 | static KJ_ALWAYS_INLINE(void zeroMemory(WirePointer* ptr, WirePointerCountN<29> count)) { |
| 392 | if (count != ZERO * POINTERS) memset(ptr, 0, unbound(count * BYTES_PER_POINTER / BYTES)); |
| 393 | } |
| 394 | |
| 395 | static KJ_ALWAYS_INLINE(void zeroMemory(WirePointer* ptr)) { |
| 396 | memset(ptr, 0, sizeof(*ptr)); |
| 397 | } |
| 398 | |
| 399 | template <typename T> |
| 400 | static inline void zeroMemory(kj::ArrayPtr<T> array) { |
| 401 | if (array.size() != 0u) memset(array.begin(), 0, array.size() * sizeof(array[0])); |
| 402 | } |
| 403 | |
| 404 | static KJ_ALWAYS_INLINE(void copyMemory(byte* to, const byte* from, ByteCount32 count)) { |
| 405 | if (count != ZERO * BYTES) memcpy(to, from, unbound(count / BYTES)); |
| 406 | } |
| 407 | |
| 408 | static KJ_ALWAYS_INLINE(void copyMemory(word* to, const word* from, WordCountN<29> count)) { |
| 409 | if (count != ZERO * WORDS) memcpy(to, from, unbound(count * BYTES_PER_WORD / BYTES)); |
| 410 | } |
| 411 | |
| 412 | static KJ_ALWAYS_INLINE(void copyMemory(WirePointer* to, const WirePointer* from, |
| 413 | WirePointerCountN<29> count)) { |
| 414 | if (count != ZERO * POINTERS) memcpy(to, from, unbound(count * BYTES_PER_POINTER / BYTES)); |
| 415 | } |
| 416 | |
| 417 | template <typename T> |
| 418 | static inline void copyMemory(T* to, const T* from) { |
| 419 | memcpy(to, from, sizeof(*from)); |
| 420 | } |
| 421 | |
| 422 | // TODO(cleanup): Turn these into a .copyTo() method of ArrayPtr? |
| 423 | template <typename T> |
| 424 | static inline void copyMemory(T* to, kj::ArrayPtr<T> from) { |
| 425 | if (from.size() != 0u) memcpy(to, from.begin(), from.size() * sizeof(from[0])); |
| 426 | } |
| 427 | template <typename T> |
| 428 | static inline void copyMemory(T* to, kj::ArrayPtr<const T> from) { |
| 429 | if (from.size() != 0u) memcpy(to, from.begin(), from.size() * sizeof(from[0])); |
| 430 | } |
| 431 | static KJ_ALWAYS_INLINE(void copyMemory(char* to, kj::StringPtr from)) { |
| 432 | if (from.size() != 0u) memcpy(to, from.begin(), from.size() * sizeof(from[0])); |
| 433 | } |
| 434 | |
| 435 | static KJ_ALWAYS_INLINE(bool boundsCheck( |
| 436 | SegmentReader* segment, const word* start, WordCountN<31> size)) { |
| 437 | // If segment is null, this is an unchecked message, so we don't do bounds checks. |
| 438 | return segment == nullptr || segment->checkObject(start, size); |
| 439 | } |
| 440 | |
| 441 | static KJ_ALWAYS_INLINE(bool amplifiedRead(SegmentReader* segment, WordCount virtualAmount)) { |
| 442 | // If segment is null, this is an unchecked message, so we don't do read limiter checks. |
| 443 | return segment == nullptr || segment->amplifiedRead(virtualAmount); |
| 444 | } |
| 445 | |
| 446 | static KJ_ALWAYS_INLINE(word* allocate( |
| 447 | WirePointer*& ref, SegmentBuilder*& segment, CapTableBuilder* capTable, |
| 448 | SegmentWordCount amount, WirePointer::Kind kind, BuilderArena* orphanArena)) { |
| 449 | // Allocate space in the message for a new object, creating far pointers if necessary. |
| 450 | // |
| 451 | // * `ref` starts out being a reference to the pointer which shall be assigned to point at the |
| 452 | // new object. On return, `ref` points to a pointer which needs to be initialized with |
| 453 | // the object's type information. Normally this is the same pointer, but it can change if |
| 454 | // a far pointer was allocated -- in this case, `ref` will end up pointing to the far |
| 455 | // pointer's tag. Either way, `allocate()` takes care of making sure that the original |
| 456 | // pointer ends up leading to the new object. On return, only the upper 32 bit of `*ref` |
| 457 | // need to be filled in by the caller. |
| 458 | // * `segment` starts out pointing to the segment containing `ref`. On return, it points to |
| 459 | // the segment containing the allocated object, which is usually the same segment but could |
| 460 | // be a different one if the original segment was out of space. |
| 461 | // * `amount` is the number of words to allocate. |
| 462 | // * `kind` is the kind of object to allocate. It is used to initialize the pointer. It |
| 463 | // cannot be `FAR` -- far pointers are allocated automatically as needed. |
| 464 | // * `orphanArena` is usually null. If it is non-null, then we're allocating an orphan object. |
| 465 | // In this case, `segment` starts out null; the allocation takes place in an arbitrary |
| 466 | // segment belonging to the arena. `ref` will be initialized as a non-far pointer, but its |
| 467 | // target offset will be set to zero. |
| 468 | |
| 469 | if (orphanArena == nullptr) { |
| 470 | if (!ref->isNull()) zeroObject(segment, capTable, ref); |
| 471 | |
| 472 | if (amount == ZERO * WORDS && kind == WirePointer::STRUCT) { |
| 473 | // Note that the check for kind == WirePointer::STRUCT will hopefully cause this whole |
| 474 | // branch to be optimized away from all the call sites that are allocating non-structs. |
| 475 | ref->setKindAndTargetForEmptyStruct(); |
| 476 | return reinterpret_cast<word*>(ref); |
| 477 | } |
| 478 | |
| 479 | word* ptr = segment->allocate(amount); |
| 480 | |
| 481 | if (ptr == nullptr) { |
| 482 | |
| 483 | // Need to allocate in a new segment. We'll need to allocate an extra pointer worth of |
| 484 | // space to act as the landing pad for a far pointer. |
| 485 | |
| 486 | WordCount amountPlusRef = amount + POINTER_SIZE_IN_WORDS; |
| 487 | auto allocation = segment->getArena()->allocate( |
| 488 | assertMaxBits<SEGMENT_WORD_COUNT_BITS>(amountPlusRef, []() { |
| 489 | KJ_FAIL_REQUIRE("requested object size exceeds maximum segment size" ); |
| 490 | })); |
| 491 | segment = allocation.segment; |
| 492 | ptr = allocation.words; |
| 493 | |
| 494 | // Set up the original pointer to be a far pointer to the new segment. |
| 495 | ref->setFar(false, segment->getOffsetTo(ptr)); |
| 496 | ref->farRef.set(segment->getSegmentId()); |
| 497 | |
| 498 | // Initialize the landing pad to indicate that the data immediately follows the pad. |
| 499 | ref = reinterpret_cast<WirePointer*>(ptr); |
| 500 | ref->setKindAndTarget(kind, ptr + POINTER_SIZE_IN_WORDS, segment); |
| 501 | |
| 502 | // Allocated space follows new pointer. |
| 503 | return ptr + POINTER_SIZE_IN_WORDS; |
| 504 | } else { |
| 505 | ref->setKindAndTarget(kind, ptr, segment); |
| 506 | return ptr; |
| 507 | } |
| 508 | } else { |
| 509 | // orphanArena is non-null. Allocate an orphan. |
| 510 | KJ_DASSERT(ref->isNull()); |
| 511 | auto allocation = orphanArena->allocate(amount); |
| 512 | segment = allocation.segment; |
| 513 | ref->setKindForOrphan(kind); |
| 514 | return allocation.words; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | static KJ_ALWAYS_INLINE(word* followFarsNoWritableCheck( |
| 519 | WirePointer*& ref, word* refTarget, SegmentBuilder*& segment)) { |
| 520 | // If `ref` is a far pointer, follow it. On return, `ref` will have been updated to point at |
| 521 | // a WirePointer that contains the type information about the target object, and a pointer to |
| 522 | // the object contents is returned. The caller must NOT use `ref->target()` as this may or may |
| 523 | // not actually return a valid pointer. `segment` is also updated to point at the segment which |
| 524 | // actually contains the object. |
| 525 | // |
| 526 | // If `ref` is not a far pointer, this simply returns `refTarget`. Usually, `refTarget` should |
| 527 | // be the same as `ref->target()`, but may not be in cases where `ref` is only a tag. |
| 528 | |
| 529 | if (ref->kind() == WirePointer::FAR) { |
| 530 | segment = segment->getArena()->getSegment(ref->farRef.segmentId.get()); |
| 531 | WirePointer* pad = reinterpret_cast<WirePointer*>(ref->farTarget(segment)); |
| 532 | if (!ref->isDoubleFar()) { |
| 533 | ref = pad; |
| 534 | return pad->target(); |
| 535 | } |
| 536 | |
| 537 | // Landing pad is another far pointer. It is followed by a tag describing the pointed-to |
| 538 | // object. |
| 539 | ref = pad + 1; |
| 540 | |
| 541 | segment = segment->getArena()->getSegment(pad->farRef.segmentId.get()); |
| 542 | return pad->farTarget(segment); |
| 543 | } else { |
| 544 | return refTarget; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | static KJ_ALWAYS_INLINE(word* followFars( |
| 549 | WirePointer*& ref, word* refTarget, SegmentBuilder*& segment)) { |
| 550 | auto result = followFarsNoWritableCheck(ref, refTarget, segment); |
| 551 | segment->checkWritable(); |
| 552 | return result; |
| 553 | } |
| 554 | |
| 555 | static KJ_ALWAYS_INLINE(kj::Maybe<const word&> followFars( |
| 556 | const WirePointer*& ref, const word* refTarget, SegmentReader*& segment)) |
| 557 | KJ_WARN_UNUSED_RESULT { |
| 558 | // Like the other followFars() but operates on readers. |
| 559 | |
| 560 | // If the segment is null, this is an unchecked message, so there are no FAR pointers. |
| 561 | if (segment != nullptr && ref->kind() == WirePointer::FAR) { |
| 562 | // Look up the segment containing the landing pad. |
| 563 | segment = segment->getArena()->tryGetSegment(ref->farRef.segmentId.get()); |
| 564 | KJ_REQUIRE(segment != nullptr, "Message contains far pointer to unknown segment." ) { |
| 565 | return nullptr; |
| 566 | } |
| 567 | |
| 568 | // Find the landing pad and check that it is within bounds. |
| 569 | const word* ptr = ref->farTarget(segment); |
| 570 | auto padWords = (ONE + bounded(ref->isDoubleFar())) * POINTER_SIZE_IN_WORDS; |
| 571 | KJ_REQUIRE(boundsCheck(segment, ptr, padWords), |
| 572 | "Message contains out-of-bounds far pointer." ) { |
| 573 | return nullptr; |
| 574 | } |
| 575 | |
| 576 | const WirePointer* pad = reinterpret_cast<const WirePointer*>(ptr); |
| 577 | |
| 578 | // If this is not a double-far then the landing pad is our final pointer. |
| 579 | if (!ref->isDoubleFar()) { |
| 580 | ref = pad; |
| 581 | return pad->target(segment); |
| 582 | } |
| 583 | |
| 584 | // Landing pad is another far pointer. It is followed by a tag describing the pointed-to |
| 585 | // object. |
| 586 | ref = pad + 1; |
| 587 | |
| 588 | SegmentReader* newSegment = segment->getArena()->tryGetSegment(pad->farRef.segmentId.get()); |
| 589 | KJ_REQUIRE(newSegment != nullptr, |
| 590 | "Message contains double-far pointer to unknown segment." ) { |
| 591 | return nullptr; |
| 592 | } |
| 593 | KJ_REQUIRE(pad->kind() == WirePointer::FAR, |
| 594 | "Second word of double-far pad must be far pointer." ) { |
| 595 | return nullptr; |
| 596 | } |
| 597 | |
| 598 | segment = newSegment; |
| 599 | return pad->farTarget(segment); |
| 600 | } else { |
| 601 | KJ_DASSERT(refTarget != nullptr); |
| 602 | return refTarget; |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | // ----------------------------------------------------------------- |
| 607 | |
| 608 | static void zeroObject(SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref) { |
| 609 | // Zero out the pointed-to object. Use when the pointer is about to be overwritten making the |
| 610 | // target object no longer reachable. |
| 611 | |
| 612 | // We shouldn't zero out external data linked into the message. |
| 613 | if (!segment->isWritable()) return; |
| 614 | |
| 615 | switch (ref->kind()) { |
| 616 | case WirePointer::STRUCT: |
| 617 | case WirePointer::LIST: |
| 618 | zeroObject(segment, capTable, ref, ref->target()); |
| 619 | break; |
| 620 | case WirePointer::FAR: { |
| 621 | segment = segment->getArena()->getSegment(ref->farRef.segmentId.get()); |
| 622 | if (segment->isWritable()) { // Don't zero external data. |
| 623 | WirePointer* pad = reinterpret_cast<WirePointer*>(ref->farTarget(segment)); |
| 624 | |
| 625 | if (ref->isDoubleFar()) { |
| 626 | segment = segment->getArena()->getSegment(pad->farRef.segmentId.get()); |
| 627 | if (segment->isWritable()) { |
| 628 | zeroObject(segment, capTable, pad + 1, pad->farTarget(segment)); |
| 629 | } |
| 630 | zeroMemory(pad, G(2) * POINTERS); |
| 631 | } else { |
| 632 | zeroObject(segment, capTable, pad); |
| 633 | zeroMemory(pad); |
| 634 | } |
| 635 | } |
| 636 | break; |
| 637 | } |
| 638 | case WirePointer::OTHER: |
| 639 | if (ref->isCapability()) { |
| 640 | #if CAPNP_LITE |
| 641 | KJ_FAIL_ASSERT("Capability encountered in builder in lite mode?" ) { break; } |
| 642 | #else // CAPNP_LINE |
| 643 | capTable->dropCap(ref->capRef.index.get()); |
| 644 | #endif // CAPNP_LITE, else |
| 645 | } else { |
| 646 | KJ_FAIL_REQUIRE("Unknown pointer type." ) { break; } |
| 647 | } |
| 648 | break; |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | static void zeroObject(SegmentBuilder* segment, CapTableBuilder* capTable, |
| 653 | WirePointer* tag, word* ptr) { |
| 654 | // We shouldn't zero out external data linked into the message. |
| 655 | if (!segment->isWritable()) return; |
| 656 | |
| 657 | switch (tag->kind()) { |
| 658 | case WirePointer::STRUCT: { |
| 659 | WirePointer* pointerSection = |
| 660 | reinterpret_cast<WirePointer*>(ptr + tag->structRef.dataSize.get()); |
| 661 | for (auto i: kj::zeroTo(tag->structRef.ptrCount.get())) { |
| 662 | zeroObject(segment, capTable, pointerSection + i); |
| 663 | } |
| 664 | zeroMemory(ptr, tag->structRef.wordSize()); |
| 665 | break; |
| 666 | } |
| 667 | case WirePointer::LIST: { |
| 668 | switch (tag->listRef.elementSize()) { |
| 669 | case ElementSize::VOID: |
| 670 | // Nothing. |
| 671 | break; |
| 672 | case ElementSize::BIT: |
| 673 | case ElementSize::BYTE: |
| 674 | case ElementSize::TWO_BYTES: |
| 675 | case ElementSize::FOUR_BYTES: |
| 676 | case ElementSize::EIGHT_BYTES: { |
| 677 | zeroMemory(ptr, roundBitsUpToWords( |
| 678 | upgradeBound<uint64_t>(tag->listRef.elementCount()) * |
| 679 | dataBitsPerElement(tag->listRef.elementSize()))); |
| 680 | break; |
| 681 | } |
| 682 | case ElementSize::POINTER: { |
| 683 | WirePointer* typedPtr = reinterpret_cast<WirePointer*>(ptr); |
| 684 | auto count = tag->listRef.elementCount() * (ONE * POINTERS / ELEMENTS); |
| 685 | for (auto i: kj::zeroTo(count)) { |
| 686 | zeroObject(segment, capTable, typedPtr + i); |
| 687 | } |
| 688 | zeroMemory(typedPtr, count); |
| 689 | break; |
| 690 | } |
| 691 | case ElementSize::INLINE_COMPOSITE: { |
| 692 | WirePointer* elementTag = reinterpret_cast<WirePointer*>(ptr); |
| 693 | |
| 694 | KJ_ASSERT(elementTag->kind() == WirePointer::STRUCT, |
| 695 | "Don't know how to handle non-STRUCT inline composite." ); |
| 696 | WordCount dataSize = elementTag->structRef.dataSize.get(); |
| 697 | WirePointerCount pointerCount = elementTag->structRef.ptrCount.get(); |
| 698 | |
| 699 | auto count = elementTag->inlineCompositeListElementCount(); |
| 700 | if (pointerCount > ZERO * POINTERS) { |
| 701 | word* pos = ptr + POINTER_SIZE_IN_WORDS; |
| 702 | for (auto i KJ_UNUSED: kj::zeroTo(count)) { |
| 703 | pos += dataSize; |
| 704 | |
| 705 | for (auto j KJ_UNUSED: kj::zeroTo(pointerCount)) { |
| 706 | zeroObject(segment, capTable, reinterpret_cast<WirePointer*>(pos)); |
| 707 | pos += POINTER_SIZE_IN_WORDS; |
| 708 | } |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | auto wordsPerElement = elementTag->structRef.wordSize() / ELEMENTS; |
| 713 | zeroMemory(ptr, assertMaxBits<SEGMENT_WORD_COUNT_BITS>(POINTER_SIZE_IN_WORDS + |
| 714 | upgradeBound<uint64_t>(count) * wordsPerElement, []() { |
| 715 | KJ_FAIL_ASSERT("encountered list pointer in builder which is too large to " |
| 716 | "possibly fit in a segment. Bug in builder code?" ); |
| 717 | })); |
| 718 | break; |
| 719 | } |
| 720 | } |
| 721 | break; |
| 722 | } |
| 723 | case WirePointer::FAR: |
| 724 | KJ_FAIL_ASSERT("Unexpected FAR pointer." ) { |
| 725 | break; |
| 726 | } |
| 727 | break; |
| 728 | case WirePointer::OTHER: |
| 729 | KJ_FAIL_ASSERT("Unexpected OTHER pointer." ) { |
| 730 | break; |
| 731 | } |
| 732 | break; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | static KJ_ALWAYS_INLINE( |
| 737 | void zeroPointerAndFars(SegmentBuilder* segment, WirePointer* ref)) { |
| 738 | // Zero out the pointer itself and, if it is a far pointer, zero the landing pad as well, but |
| 739 | // do not zero the object body. Used when upgrading. |
| 740 | |
| 741 | if (ref->kind() == WirePointer::FAR) { |
| 742 | SegmentBuilder* padSegment = segment->getArena()->getSegment(ref->farRef.segmentId.get()); |
| 743 | if (padSegment->isWritable()) { // Don't zero external data. |
| 744 | WirePointer* pad = reinterpret_cast<WirePointer*>(ref->farTarget(padSegment)); |
| 745 | if (ref->isDoubleFar()) { |
| 746 | zeroMemory(pad, G(2) * POINTERS); |
| 747 | } else { |
| 748 | zeroMemory(pad); |
| 749 | } |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | zeroMemory(ref); |
| 754 | } |
| 755 | |
| 756 | |
| 757 | // ----------------------------------------------------------------- |
| 758 | |
| 759 | static MessageSizeCounts totalSize( |
| 760 | SegmentReader* segment, const WirePointer* ref, int nestingLimit) { |
| 761 | // Compute the total size of the object pointed to, not counting far pointer overhead. |
| 762 | |
| 763 | MessageSizeCounts result = { ZERO * WORDS, 0 }; |
| 764 | |
| 765 | if (ref->isNull()) { |
| 766 | return result; |
| 767 | } |
| 768 | |
| 769 | KJ_REQUIRE(nestingLimit > 0, "Message is too deeply-nested." ) { |
| 770 | return result; |
| 771 | } |
| 772 | --nestingLimit; |
| 773 | |
| 774 | const word* ptr; |
| 775 | KJ_IF_MAYBE(p, followFars(ref, ref->target(segment), segment)) { |
| 776 | ptr = p; |
| 777 | } else { |
| 778 | return result; |
| 779 | } |
| 780 | |
| 781 | switch (ref->kind()) { |
| 782 | case WirePointer::STRUCT: { |
| 783 | KJ_REQUIRE(boundsCheck(segment, ptr, ref->structRef.wordSize()), |
| 784 | "Message contained out-of-bounds struct pointer." ) { |
| 785 | return result; |
| 786 | } |
| 787 | result.addWords(ref->structRef.wordSize()); |
| 788 | |
| 789 | const WirePointer* pointerSection = |
| 790 | reinterpret_cast<const WirePointer*>(ptr + ref->structRef.dataSize.get()); |
| 791 | for (auto i: kj::zeroTo(ref->structRef.ptrCount.get())) { |
| 792 | result += totalSize(segment, pointerSection + i, nestingLimit); |
| 793 | } |
| 794 | break; |
| 795 | } |
| 796 | case WirePointer::LIST: { |
| 797 | switch (ref->listRef.elementSize()) { |
| 798 | case ElementSize::VOID: |
| 799 | // Nothing. |
| 800 | break; |
| 801 | case ElementSize::BIT: |
| 802 | case ElementSize::BYTE: |
| 803 | case ElementSize::TWO_BYTES: |
| 804 | case ElementSize::FOUR_BYTES: |
| 805 | case ElementSize::EIGHT_BYTES: { |
| 806 | auto totalWords = roundBitsUpToWords( |
| 807 | upgradeBound<uint64_t>(ref->listRef.elementCount()) * |
| 808 | dataBitsPerElement(ref->listRef.elementSize())); |
| 809 | KJ_REQUIRE(boundsCheck(segment, ptr, totalWords), |
| 810 | "Message contained out-of-bounds list pointer." ) { |
| 811 | return result; |
| 812 | } |
| 813 | result.addWords(totalWords); |
| 814 | break; |
| 815 | } |
| 816 | case ElementSize::POINTER: { |
| 817 | auto count = ref->listRef.elementCount() * (POINTERS / ELEMENTS); |
| 818 | |
| 819 | KJ_REQUIRE(boundsCheck(segment, ptr, count * WORDS_PER_POINTER), |
| 820 | "Message contained out-of-bounds list pointer." ) { |
| 821 | return result; |
| 822 | } |
| 823 | |
| 824 | result.addWords(count * WORDS_PER_POINTER); |
| 825 | |
| 826 | for (auto i: kj::zeroTo(count)) { |
| 827 | result += totalSize(segment, reinterpret_cast<const WirePointer*>(ptr) + i, |
| 828 | nestingLimit); |
| 829 | } |
| 830 | break; |
| 831 | } |
| 832 | case ElementSize::INLINE_COMPOSITE: { |
| 833 | auto wordCount = ref->listRef.inlineCompositeWordCount(); |
| 834 | KJ_REQUIRE(boundsCheck(segment, ptr, wordCount + POINTER_SIZE_IN_WORDS), |
| 835 | "Message contained out-of-bounds list pointer." ) { |
| 836 | return result; |
| 837 | } |
| 838 | |
| 839 | const WirePointer* elementTag = reinterpret_cast<const WirePointer*>(ptr); |
| 840 | auto count = elementTag->inlineCompositeListElementCount(); |
| 841 | |
| 842 | KJ_REQUIRE(elementTag->kind() == WirePointer::STRUCT, |
| 843 | "Don't know how to handle non-STRUCT inline composite." ) { |
| 844 | return result; |
| 845 | } |
| 846 | |
| 847 | auto actualSize = elementTag->structRef.wordSize() / ELEMENTS * |
| 848 | upgradeBound<uint64_t>(count); |
| 849 | KJ_REQUIRE(actualSize <= wordCount, |
| 850 | "Struct list pointer's elements overran size." ) { |
| 851 | return result; |
| 852 | } |
| 853 | |
| 854 | // We count the actual size rather than the claimed word count because that's what |
| 855 | // we'll end up with if we make a copy. |
| 856 | result.addWords(actualSize + POINTER_SIZE_IN_WORDS); |
| 857 | |
| 858 | WordCount dataSize = elementTag->structRef.dataSize.get(); |
| 859 | WirePointerCount pointerCount = elementTag->structRef.ptrCount.get(); |
| 860 | |
| 861 | if (pointerCount > ZERO * POINTERS) { |
| 862 | const word* pos = ptr + POINTER_SIZE_IN_WORDS; |
| 863 | for (auto i KJ_UNUSED: kj::zeroTo(count)) { |
| 864 | pos += dataSize; |
| 865 | |
| 866 | for (auto j KJ_UNUSED: kj::zeroTo(pointerCount)) { |
| 867 | result += totalSize(segment, reinterpret_cast<const WirePointer*>(pos), |
| 868 | nestingLimit); |
| 869 | pos += POINTER_SIZE_IN_WORDS; |
| 870 | } |
| 871 | } |
| 872 | } |
| 873 | break; |
| 874 | } |
| 875 | } |
| 876 | break; |
| 877 | } |
| 878 | case WirePointer::FAR: |
| 879 | KJ_FAIL_REQUIRE("Unexpected FAR pointer." ) { |
| 880 | break; |
| 881 | } |
| 882 | break; |
| 883 | case WirePointer::OTHER: |
| 884 | if (ref->isCapability()) { |
| 885 | result.capCount++; |
| 886 | } else { |
| 887 | KJ_FAIL_REQUIRE("Unknown pointer type." ) { break; } |
| 888 | } |
| 889 | break; |
| 890 | } |
| 891 | |
| 892 | return result; |
| 893 | } |
| 894 | |
| 895 | // ----------------------------------------------------------------- |
| 896 | // Copy from an unchecked message. |
| 897 | |
| 898 | static KJ_ALWAYS_INLINE( |
| 899 | void copyStruct(SegmentBuilder* segment, CapTableBuilder* capTable, |
| 900 | word* dst, const word* src, |
| 901 | StructDataWordCount dataSize, StructPointerCount pointerCount)) { |
| 902 | copyMemory(dst, src, dataSize); |
| 903 | |
| 904 | const WirePointer* srcRefs = reinterpret_cast<const WirePointer*>(src + dataSize); |
| 905 | WirePointer* dstRefs = reinterpret_cast<WirePointer*>(dst + dataSize); |
| 906 | |
| 907 | for (auto i: kj::zeroTo(pointerCount)) { |
| 908 | SegmentBuilder* subSegment = segment; |
| 909 | WirePointer* dstRef = dstRefs + i; |
| 910 | copyMessage(subSegment, capTable, dstRef, srcRefs + i); |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | static word* copyMessage( |
| 915 | SegmentBuilder*& segment, CapTableBuilder* capTable, |
| 916 | WirePointer*& dst, const WirePointer* src) { |
| 917 | // Not always-inline because it's recursive. |
| 918 | |
| 919 | switch (src->kind()) { |
| 920 | case WirePointer::STRUCT: { |
| 921 | if (src->isNull()) { |
| 922 | zeroMemory(dst); |
| 923 | return nullptr; |
| 924 | } else { |
| 925 | const word* srcPtr = src->target(nullptr); |
| 926 | word* dstPtr = allocate( |
| 927 | dst, segment, capTable, src->structRef.wordSize(), WirePointer::STRUCT, nullptr); |
| 928 | |
| 929 | copyStruct(segment, capTable, dstPtr, srcPtr, src->structRef.dataSize.get(), |
| 930 | src->structRef.ptrCount.get()); |
| 931 | |
| 932 | dst->structRef.set(src->structRef.dataSize.get(), src->structRef.ptrCount.get()); |
| 933 | return dstPtr; |
| 934 | } |
| 935 | } |
| 936 | case WirePointer::LIST: { |
| 937 | switch (src->listRef.elementSize()) { |
| 938 | case ElementSize::VOID: |
| 939 | case ElementSize::BIT: |
| 940 | case ElementSize::BYTE: |
| 941 | case ElementSize::TWO_BYTES: |
| 942 | case ElementSize::FOUR_BYTES: |
| 943 | case ElementSize::EIGHT_BYTES: { |
| 944 | auto wordCount = roundBitsUpToWords( |
| 945 | upgradeBound<uint64_t>(src->listRef.elementCount()) * |
| 946 | dataBitsPerElement(src->listRef.elementSize())); |
| 947 | const word* srcPtr = src->target(nullptr); |
| 948 | word* dstPtr = allocate(dst, segment, capTable, wordCount, WirePointer::LIST, nullptr); |
| 949 | copyMemory(dstPtr, srcPtr, wordCount); |
| 950 | |
| 951 | dst->listRef.set(src->listRef.elementSize(), src->listRef.elementCount()); |
| 952 | return dstPtr; |
| 953 | } |
| 954 | |
| 955 | case ElementSize::POINTER: { |
| 956 | const WirePointer* srcRefs = reinterpret_cast<const WirePointer*>(src->target(nullptr)); |
| 957 | WirePointer* dstRefs = reinterpret_cast<WirePointer*>( |
| 958 | allocate(dst, segment, capTable, src->listRef.elementCount() * |
| 959 | (ONE * POINTERS / ELEMENTS) * WORDS_PER_POINTER, |
| 960 | WirePointer::LIST, nullptr)); |
| 961 | |
| 962 | for (auto i: kj::zeroTo(src->listRef.elementCount() * (ONE * POINTERS / ELEMENTS))) { |
| 963 | SegmentBuilder* subSegment = segment; |
| 964 | WirePointer* dstRef = dstRefs + i; |
| 965 | copyMessage(subSegment, capTable, dstRef, srcRefs + i); |
| 966 | } |
| 967 | |
| 968 | dst->listRef.set(ElementSize::POINTER, src->listRef.elementCount()); |
| 969 | return reinterpret_cast<word*>(dstRefs); |
| 970 | } |
| 971 | |
| 972 | case ElementSize::INLINE_COMPOSITE: { |
| 973 | const word* srcPtr = src->target(nullptr); |
| 974 | word* dstPtr = allocate(dst, segment, capTable, |
| 975 | assertMaxBits<SEGMENT_WORD_COUNT_BITS>( |
| 976 | src->listRef.inlineCompositeWordCount() + POINTER_SIZE_IN_WORDS, |
| 977 | []() { KJ_FAIL_ASSERT("list too big to fit in a segment" ); }), |
| 978 | WirePointer::LIST, nullptr); |
| 979 | |
| 980 | dst->listRef.setInlineComposite(src->listRef.inlineCompositeWordCount()); |
| 981 | |
| 982 | const WirePointer* srcTag = reinterpret_cast<const WirePointer*>(srcPtr); |
| 983 | copyMemory(reinterpret_cast<WirePointer*>(dstPtr), srcTag); |
| 984 | |
| 985 | const word* srcElement = srcPtr + POINTER_SIZE_IN_WORDS; |
| 986 | word* dstElement = dstPtr + POINTER_SIZE_IN_WORDS; |
| 987 | |
| 988 | KJ_ASSERT(srcTag->kind() == WirePointer::STRUCT, |
| 989 | "INLINE_COMPOSITE of lists is not yet supported." ); |
| 990 | |
| 991 | for (auto i KJ_UNUSED: kj::zeroTo(srcTag->inlineCompositeListElementCount())) { |
| 992 | copyStruct(segment, capTable, dstElement, srcElement, |
| 993 | srcTag->structRef.dataSize.get(), srcTag->structRef.ptrCount.get()); |
| 994 | srcElement += srcTag->structRef.wordSize(); |
| 995 | dstElement += srcTag->structRef.wordSize(); |
| 996 | } |
| 997 | return dstPtr; |
| 998 | } |
| 999 | } |
| 1000 | break; |
| 1001 | } |
| 1002 | case WirePointer::OTHER: |
| 1003 | KJ_FAIL_REQUIRE("Unchecked messages cannot contain OTHER pointers (e.g. capabilities)." ); |
| 1004 | break; |
| 1005 | case WirePointer::FAR: |
| 1006 | KJ_FAIL_REQUIRE("Unchecked messages cannot contain far pointers." ); |
| 1007 | break; |
| 1008 | } |
| 1009 | |
| 1010 | return nullptr; |
| 1011 | } |
| 1012 | |
| 1013 | static void transferPointer(SegmentBuilder* dstSegment, WirePointer* dst, |
| 1014 | SegmentBuilder* srcSegment, WirePointer* src) { |
| 1015 | // Make *dst point to the same object as *src. Both must reside in the same message, but can |
| 1016 | // be in different segments. Not always-inline because this is rarely used. |
| 1017 | // |
| 1018 | // Caller MUST zero out the source pointer after calling this, to make sure no later code |
| 1019 | // mistakenly thinks the source location still owns the object. transferPointer() doesn't do |
| 1020 | // this zeroing itself because many callers transfer several pointers in a loop then zero out |
| 1021 | // the whole section. |
| 1022 | |
| 1023 | KJ_DASSERT(dst->isNull()); |
| 1024 | // We expect the caller to ensure the target is already null so won't leak. |
| 1025 | |
| 1026 | if (src->isNull()) { |
| 1027 | zeroMemory(dst); |
| 1028 | } else if (src->isPositional()) { |
| 1029 | transferPointer(dstSegment, dst, srcSegment, src, src->target()); |
| 1030 | } else { |
| 1031 | // Far and other pointers are position-independent, so we can just copy. |
| 1032 | copyMemory(dst, src); |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | static void transferPointer(SegmentBuilder* dstSegment, WirePointer* dst, |
| 1037 | SegmentBuilder* srcSegment, const WirePointer* srcTag, |
| 1038 | word* srcPtr) { |
| 1039 | // Like the other overload, but splits src into a tag and a target. Particularly useful for |
| 1040 | // OrphanBuilder. |
| 1041 | |
| 1042 | if (dstSegment == srcSegment) { |
| 1043 | // Same segment, so create a direct pointer. |
| 1044 | |
| 1045 | if (srcTag->kind() == WirePointer::STRUCT && srcTag->structRef.wordSize() == ZERO * WORDS) { |
| 1046 | dst->setKindAndTargetForEmptyStruct(); |
| 1047 | } else { |
| 1048 | dst->setKindAndTarget(srcTag->kind(), srcPtr, dstSegment); |
| 1049 | } |
| 1050 | |
| 1051 | // We can just copy the upper 32 bits. (Use memcpy() to comply with aliasing rules.) |
| 1052 | copyMemory(&dst->upper32Bits, &srcTag->upper32Bits); |
| 1053 | } else { |
| 1054 | // Need to create a far pointer. Try to allocate it in the same segment as the source, so |
| 1055 | // that it doesn't need to be a double-far. |
| 1056 | |
| 1057 | WirePointer* landingPad = |
| 1058 | reinterpret_cast<WirePointer*>(srcSegment->allocate(G(1) * WORDS)); |
| 1059 | if (landingPad == nullptr) { |
| 1060 | // Darn, need a double-far. |
| 1061 | auto allocation = srcSegment->getArena()->allocate(G(2) * WORDS); |
| 1062 | SegmentBuilder* farSegment = allocation.segment; |
| 1063 | landingPad = reinterpret_cast<WirePointer*>(allocation.words); |
| 1064 | |
| 1065 | landingPad[0].setFar(false, srcSegment->getOffsetTo(srcPtr)); |
| 1066 | landingPad[0].farRef.segmentId.set(srcSegment->getSegmentId()); |
| 1067 | |
| 1068 | landingPad[1].setKindWithZeroOffset(srcTag->kind()); |
| 1069 | copyMemory(&landingPad[1].upper32Bits, &srcTag->upper32Bits); |
| 1070 | |
| 1071 | dst->setFar(true, farSegment->getOffsetTo(reinterpret_cast<word*>(landingPad))); |
| 1072 | dst->farRef.set(farSegment->getSegmentId()); |
| 1073 | } else { |
| 1074 | // Simple landing pad is just a pointer. |
| 1075 | landingPad->setKindAndTarget(srcTag->kind(), srcPtr, srcSegment); |
| 1076 | copyMemory(&landingPad->upper32Bits, &srcTag->upper32Bits); |
| 1077 | |
| 1078 | dst->setFar(false, srcSegment->getOffsetTo(reinterpret_cast<word*>(landingPad))); |
| 1079 | dst->farRef.set(srcSegment->getSegmentId()); |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | // ----------------------------------------------------------------- |
| 1085 | |
| 1086 | static KJ_ALWAYS_INLINE(StructBuilder initStructPointer( |
| 1087 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, StructSize size, |
| 1088 | BuilderArena* orphanArena = nullptr)) { |
| 1089 | // Allocate space for the new struct. Newly-allocated space is automatically zeroed. |
| 1090 | word* ptr = allocate(ref, segment, capTable, size.total(), WirePointer::STRUCT, orphanArena); |
| 1091 | |
| 1092 | // Initialize the pointer. |
| 1093 | ref->structRef.set(size); |
| 1094 | |
| 1095 | // Build the StructBuilder. |
| 1096 | return StructBuilder(segment, capTable, ptr, reinterpret_cast<WirePointer*>(ptr + size.data), |
| 1097 | size.data * BITS_PER_WORD, size.pointers); |
| 1098 | } |
| 1099 | |
| 1100 | static KJ_ALWAYS_INLINE(StructBuilder getWritableStructPointer( |
| 1101 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, StructSize size, |
| 1102 | const word* defaultValue)) { |
| 1103 | return getWritableStructPointer(ref, ref->target(), segment, capTable, size, defaultValue); |
| 1104 | } |
| 1105 | |
| 1106 | static KJ_ALWAYS_INLINE(StructBuilder getWritableStructPointer( |
| 1107 | WirePointer* ref, word* refTarget, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1108 | StructSize size, const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
| 1109 | if (ref->isNull()) { |
| 1110 | useDefault: |
| 1111 | if (defaultValue == nullptr || |
| 1112 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
| 1113 | return initStructPointer(ref, segment, capTable, size, orphanArena); |
| 1114 | } |
| 1115 | refTarget = copyMessage(segment, capTable, ref, |
| 1116 | reinterpret_cast<const WirePointer*>(defaultValue)); |
| 1117 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
| 1118 | } |
| 1119 | |
| 1120 | WirePointer* oldRef = ref; |
| 1121 | SegmentBuilder* oldSegment = segment; |
| 1122 | word* oldPtr = followFars(oldRef, refTarget, oldSegment); |
| 1123 | |
| 1124 | KJ_REQUIRE(oldRef->kind() == WirePointer::STRUCT, |
| 1125 | "Message contains non-struct pointer where struct pointer was expected." ) { |
| 1126 | goto useDefault; |
| 1127 | } |
| 1128 | |
| 1129 | auto oldDataSize = oldRef->structRef.dataSize.get(); |
| 1130 | auto oldPointerCount = oldRef->structRef.ptrCount.get(); |
| 1131 | WirePointer* oldPointerSection = |
| 1132 | reinterpret_cast<WirePointer*>(oldPtr + oldDataSize); |
| 1133 | |
| 1134 | if (oldDataSize < size.data || oldPointerCount < size.pointers) { |
| 1135 | // The space allocated for this struct is too small. Unlike with readers, we can't just |
| 1136 | // run with it and do bounds checks at access time, because how would we handle writes? |
| 1137 | // Instead, we have to copy the struct to a new space now. |
| 1138 | |
| 1139 | auto newDataSize = kj::max(oldDataSize, size.data); |
| 1140 | auto newPointerCount = kj::max(oldPointerCount, size.pointers); |
| 1141 | auto totalSize = newDataSize + newPointerCount * WORDS_PER_POINTER; |
| 1142 | |
| 1143 | // Don't let allocate() zero out the object just yet. |
| 1144 | zeroPointerAndFars(segment, ref); |
| 1145 | |
| 1146 | word* ptr = allocate(ref, segment, capTable, totalSize, WirePointer::STRUCT, orphanArena); |
| 1147 | ref->structRef.set(newDataSize, newPointerCount); |
| 1148 | |
| 1149 | // Copy data section. |
| 1150 | copyMemory(ptr, oldPtr, oldDataSize); |
| 1151 | |
| 1152 | // Copy pointer section. |
| 1153 | WirePointer* newPointerSection = reinterpret_cast<WirePointer*>(ptr + newDataSize); |
| 1154 | for (auto i: kj::zeroTo(oldPointerCount)) { |
| 1155 | transferPointer(segment, newPointerSection + i, oldSegment, oldPointerSection + i); |
| 1156 | } |
| 1157 | |
| 1158 | // Zero out old location. This has two purposes: |
| 1159 | // 1) We don't want to leak the original contents of the struct when the message is written |
| 1160 | // out as it may contain secrets that the caller intends to remove from the new copy. |
| 1161 | // 2) Zeros will be deflated by packing, making this dead memory almost-free if it ever |
| 1162 | // hits the wire. |
| 1163 | zeroMemory(oldPtr, oldDataSize + oldPointerCount * WORDS_PER_POINTER); |
| 1164 | |
| 1165 | return StructBuilder(segment, capTable, ptr, newPointerSection, newDataSize * BITS_PER_WORD, |
| 1166 | newPointerCount); |
| 1167 | } else { |
| 1168 | return StructBuilder(oldSegment, capTable, oldPtr, oldPointerSection, |
| 1169 | oldDataSize * BITS_PER_WORD, oldPointerCount); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | static KJ_ALWAYS_INLINE(ListBuilder initListPointer( |
| 1174 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1175 | ElementCount elementCount, ElementSize elementSize, BuilderArena* orphanArena = nullptr)) { |
| 1176 | KJ_DREQUIRE(elementSize != ElementSize::INLINE_COMPOSITE, |
| 1177 | "Should have called initStructListPointer() instead." ); |
| 1178 | |
| 1179 | auto checkedElementCount = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(elementCount, |
| 1180 | []() { KJ_FAIL_REQUIRE("tried to allocate list with too many elements" ); }); |
| 1181 | |
| 1182 | auto dataSize = dataBitsPerElement(elementSize) * ELEMENTS; |
| 1183 | auto pointerCount = pointersPerElement(elementSize) * ELEMENTS; |
| 1184 | auto step = bitsPerElementIncludingPointers(elementSize); |
| 1185 | KJ_DASSERT(step * ELEMENTS == (dataSize + pointerCount * BITS_PER_POINTER)); |
| 1186 | |
| 1187 | // Calculate size of the list. |
| 1188 | auto wordCount = roundBitsUpToWords(upgradeBound<uint64_t>(checkedElementCount) * step); |
| 1189 | |
| 1190 | // Allocate the list. |
| 1191 | word* ptr = allocate(ref, segment, capTable, wordCount, WirePointer::LIST, orphanArena); |
| 1192 | |
| 1193 | // Initialize the pointer. |
| 1194 | ref->listRef.set(elementSize, checkedElementCount); |
| 1195 | |
| 1196 | // Build the ListBuilder. |
| 1197 | return ListBuilder(segment, capTable, ptr, step, checkedElementCount, |
| 1198 | dataSize, pointerCount, elementSize); |
| 1199 | } |
| 1200 | |
| 1201 | static KJ_ALWAYS_INLINE(ListBuilder initStructListPointer( |
| 1202 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1203 | ElementCount elementCount, StructSize elementSize, BuilderArena* orphanArena = nullptr)) { |
| 1204 | auto checkedElementCount = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(elementCount, |
| 1205 | []() { KJ_FAIL_REQUIRE("tried to allocate list with too many elements" ); }); |
| 1206 | |
| 1207 | WordsPerElementN<17> wordsPerElement = elementSize.total() / ELEMENTS; |
| 1208 | |
| 1209 | // Allocate the list, prefixed by a single WirePointer. |
| 1210 | auto wordCount = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
| 1211 | upgradeBound<uint64_t>(checkedElementCount) * wordsPerElement, |
| 1212 | []() { KJ_FAIL_REQUIRE("total size of struct list is larger than max segment size" ); }); |
| 1213 | word* ptr = allocate(ref, segment, capTable, POINTER_SIZE_IN_WORDS + wordCount, |
| 1214 | WirePointer::LIST, orphanArena); |
| 1215 | |
| 1216 | // Initialize the pointer. |
| 1217 | // INLINE_COMPOSITE lists replace the element count with the word count. |
| 1218 | ref->listRef.setInlineComposite(wordCount); |
| 1219 | |
| 1220 | // Initialize the list tag. |
| 1221 | reinterpret_cast<WirePointer*>(ptr)->setKindAndInlineCompositeListElementCount( |
| 1222 | WirePointer::STRUCT, checkedElementCount); |
| 1223 | reinterpret_cast<WirePointer*>(ptr)->structRef.set(elementSize); |
| 1224 | ptr += POINTER_SIZE_IN_WORDS; |
| 1225 | |
| 1226 | // Build the ListBuilder. |
| 1227 | return ListBuilder(segment, capTable, ptr, wordsPerElement * BITS_PER_WORD, checkedElementCount, |
| 1228 | elementSize.data * BITS_PER_WORD, elementSize.pointers, |
| 1229 | ElementSize::INLINE_COMPOSITE); |
| 1230 | } |
| 1231 | |
| 1232 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointer( |
| 1233 | WirePointer* origRef, SegmentBuilder* origSegment, CapTableBuilder* capTable, |
| 1234 | ElementSize elementSize, const word* defaultValue)) { |
| 1235 | return getWritableListPointer(origRef, origRef->target(), origSegment, capTable, elementSize, |
| 1236 | defaultValue); |
| 1237 | } |
| 1238 | |
| 1239 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointer( |
| 1240 | WirePointer* origRef, word* origRefTarget, |
| 1241 | SegmentBuilder* origSegment, CapTableBuilder* capTable, ElementSize elementSize, |
| 1242 | const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
| 1243 | KJ_DREQUIRE(elementSize != ElementSize::INLINE_COMPOSITE, |
| 1244 | "Use getWritableStructListPointer() for struct lists." ); |
| 1245 | |
| 1246 | if (origRef->isNull()) { |
| 1247 | useDefault: |
| 1248 | if (defaultValue == nullptr || |
| 1249 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
| 1250 | return ListBuilder(elementSize); |
| 1251 | } |
| 1252 | origRefTarget = copyMessage( |
| 1253 | origSegment, capTable, origRef, reinterpret_cast<const WirePointer*>(defaultValue)); |
| 1254 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
| 1255 | } |
| 1256 | |
| 1257 | // We must verify that the pointer has the right size. Unlike in |
| 1258 | // getWritableStructListPointer(), we never need to "upgrade" the data, because this |
| 1259 | // method is called only for non-struct lists, and there is no allowed upgrade path *to* |
| 1260 | // a non-struct list, only *from* them. |
| 1261 | |
| 1262 | WirePointer* ref = origRef; |
| 1263 | SegmentBuilder* segment = origSegment; |
| 1264 | word* ptr = followFars(ref, origRefTarget, segment); |
| 1265 | |
| 1266 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 1267 | "Called getWritableListPointer() but existing pointer is not a list." ) { |
| 1268 | goto useDefault; |
| 1269 | } |
| 1270 | |
| 1271 | ElementSize oldSize = ref->listRef.elementSize(); |
| 1272 | |
| 1273 | if (oldSize == ElementSize::INLINE_COMPOSITE) { |
| 1274 | // The existing element size is INLINE_COMPOSITE, though we expected a list of primitives. |
| 1275 | // The existing data must have been written with a newer version of the protocol. We |
| 1276 | // therefore never need to upgrade the data in this case, but we do need to validate that it |
| 1277 | // is a valid upgrade from what we expected. |
| 1278 | |
| 1279 | // Read the tag to get the actual element count. |
| 1280 | WirePointer* tag = reinterpret_cast<WirePointer*>(ptr); |
| 1281 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
| 1282 | "INLINE_COMPOSITE list with non-STRUCT elements not supported." ); |
| 1283 | ptr += POINTER_SIZE_IN_WORDS; |
| 1284 | |
| 1285 | auto dataSize = tag->structRef.dataSize.get(); |
| 1286 | auto pointerCount = tag->structRef.ptrCount.get(); |
| 1287 | |
| 1288 | switch (elementSize) { |
| 1289 | case ElementSize::VOID: |
| 1290 | // Anything is a valid upgrade from Void. |
| 1291 | break; |
| 1292 | |
| 1293 | case ElementSize::BIT: |
| 1294 | KJ_FAIL_REQUIRE( |
| 1295 | "Found struct list where bit list was expected; upgrading boolean lists to structs " |
| 1296 | "is no longer supported." ) { |
| 1297 | goto useDefault; |
| 1298 | } |
| 1299 | break; |
| 1300 | |
| 1301 | case ElementSize::BYTE: |
| 1302 | case ElementSize::TWO_BYTES: |
| 1303 | case ElementSize::FOUR_BYTES: |
| 1304 | case ElementSize::EIGHT_BYTES: |
| 1305 | KJ_REQUIRE(dataSize >= ONE * WORDS, |
| 1306 | "Existing list value is incompatible with expected type." ) { |
| 1307 | goto useDefault; |
| 1308 | } |
| 1309 | break; |
| 1310 | |
| 1311 | case ElementSize::POINTER: |
| 1312 | KJ_REQUIRE(pointerCount >= ONE * POINTERS, |
| 1313 | "Existing list value is incompatible with expected type." ) { |
| 1314 | goto useDefault; |
| 1315 | } |
| 1316 | // Adjust the pointer to point at the reference segment. |
| 1317 | ptr += dataSize; |
| 1318 | break; |
| 1319 | |
| 1320 | case ElementSize::INLINE_COMPOSITE: |
| 1321 | KJ_UNREACHABLE; |
| 1322 | } |
| 1323 | |
| 1324 | // OK, looks valid. |
| 1325 | |
| 1326 | return ListBuilder(segment, capTable, ptr, |
| 1327 | tag->structRef.wordSize() * BITS_PER_WORD / ELEMENTS, |
| 1328 | tag->inlineCompositeListElementCount(), |
| 1329 | dataSize * BITS_PER_WORD, pointerCount, ElementSize::INLINE_COMPOSITE); |
| 1330 | } else { |
| 1331 | auto dataSize = dataBitsPerElement(oldSize) * ELEMENTS; |
| 1332 | auto pointerCount = pointersPerElement(oldSize) * ELEMENTS; |
| 1333 | |
| 1334 | if (elementSize == ElementSize::BIT) { |
| 1335 | KJ_REQUIRE(oldSize == ElementSize::BIT, |
| 1336 | "Found non-bit list where bit list was expected." ) { |
| 1337 | goto useDefault; |
| 1338 | } |
| 1339 | } else { |
| 1340 | KJ_REQUIRE(oldSize != ElementSize::BIT, |
| 1341 | "Found bit list where non-bit list was expected." ) { |
| 1342 | goto useDefault; |
| 1343 | } |
| 1344 | KJ_REQUIRE(dataSize >= dataBitsPerElement(elementSize) * ELEMENTS, |
| 1345 | "Existing list value is incompatible with expected type." ) { |
| 1346 | goto useDefault; |
| 1347 | } |
| 1348 | KJ_REQUIRE(pointerCount >= pointersPerElement(elementSize) * ELEMENTS, |
| 1349 | "Existing list value is incompatible with expected type." ) { |
| 1350 | goto useDefault; |
| 1351 | } |
| 1352 | } |
| 1353 | |
| 1354 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
| 1355 | return ListBuilder(segment, capTable, ptr, step, ref->listRef.elementCount(), |
| 1356 | dataSize, pointerCount, oldSize); |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointerAnySize( |
| 1361 | WirePointer* origRef, SegmentBuilder* origSegment, CapTableBuilder* capTable, |
| 1362 | const word* defaultValue)) { |
| 1363 | return getWritableListPointerAnySize(origRef, origRef->target(), origSegment, |
| 1364 | capTable, defaultValue); |
| 1365 | } |
| 1366 | |
| 1367 | static KJ_ALWAYS_INLINE(ListBuilder getWritableListPointerAnySize( |
| 1368 | WirePointer* origRef, word* origRefTarget, |
| 1369 | SegmentBuilder* origSegment, CapTableBuilder* capTable, |
| 1370 | const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
| 1371 | if (origRef->isNull()) { |
| 1372 | useDefault: |
| 1373 | if (defaultValue == nullptr || |
| 1374 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
| 1375 | return ListBuilder(ElementSize::VOID); |
| 1376 | } |
| 1377 | origRefTarget = copyMessage( |
| 1378 | origSegment, capTable, origRef, reinterpret_cast<const WirePointer*>(defaultValue)); |
| 1379 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
| 1380 | } |
| 1381 | |
| 1382 | WirePointer* ref = origRef; |
| 1383 | SegmentBuilder* segment = origSegment; |
| 1384 | word* ptr = followFars(ref, origRefTarget, segment); |
| 1385 | |
| 1386 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 1387 | "Called getWritableListPointerAnySize() but existing pointer is not a list." ) { |
| 1388 | goto useDefault; |
| 1389 | } |
| 1390 | |
| 1391 | ElementSize elementSize = ref->listRef.elementSize(); |
| 1392 | |
| 1393 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
| 1394 | // Read the tag to get the actual element count. |
| 1395 | WirePointer* tag = reinterpret_cast<WirePointer*>(ptr); |
| 1396 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
| 1397 | "INLINE_COMPOSITE list with non-STRUCT elements not supported." ); |
| 1398 | ptr += POINTER_SIZE_IN_WORDS; |
| 1399 | |
| 1400 | return ListBuilder(segment, capTable, ptr, |
| 1401 | tag->structRef.wordSize() * BITS_PER_WORD / ELEMENTS, |
| 1402 | tag->inlineCompositeListElementCount(), |
| 1403 | tag->structRef.dataSize.get() * BITS_PER_WORD, |
| 1404 | tag->structRef.ptrCount.get(), ElementSize::INLINE_COMPOSITE); |
| 1405 | } else { |
| 1406 | auto dataSize = dataBitsPerElement(elementSize) * ELEMENTS; |
| 1407 | auto pointerCount = pointersPerElement(elementSize) * ELEMENTS; |
| 1408 | |
| 1409 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
| 1410 | return ListBuilder(segment, capTable, ptr, step, ref->listRef.elementCount(), |
| 1411 | dataSize, pointerCount, elementSize); |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | static KJ_ALWAYS_INLINE(ListBuilder getWritableStructListPointer( |
| 1416 | WirePointer* origRef, SegmentBuilder* origSegment, CapTableBuilder* capTable, |
| 1417 | StructSize elementSize, const word* defaultValue)) { |
| 1418 | return getWritableStructListPointer(origRef, origRef->target(), origSegment, capTable, |
| 1419 | elementSize, defaultValue); |
| 1420 | } |
| 1421 | static KJ_ALWAYS_INLINE(ListBuilder getWritableStructListPointer( |
| 1422 | WirePointer* origRef, word* origRefTarget, |
| 1423 | SegmentBuilder* origSegment, CapTableBuilder* capTable, |
| 1424 | StructSize elementSize, const word* defaultValue, BuilderArena* orphanArena = nullptr)) { |
| 1425 | if (origRef->isNull()) { |
| 1426 | useDefault: |
| 1427 | if (defaultValue == nullptr || |
| 1428 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
| 1429 | return ListBuilder(ElementSize::INLINE_COMPOSITE); |
| 1430 | } |
| 1431 | origRefTarget = copyMessage( |
| 1432 | origSegment, capTable, origRef, reinterpret_cast<const WirePointer*>(defaultValue)); |
| 1433 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
| 1434 | } |
| 1435 | |
| 1436 | // We must verify that the pointer has the right size and potentially upgrade it if not. |
| 1437 | |
| 1438 | WirePointer* oldRef = origRef; |
| 1439 | SegmentBuilder* oldSegment = origSegment; |
| 1440 | word* oldPtr = followFars(oldRef, origRefTarget, oldSegment); |
| 1441 | |
| 1442 | KJ_REQUIRE(oldRef->kind() == WirePointer::LIST, |
| 1443 | "Called getList{Field,Element}() but existing pointer is not a list." ) { |
| 1444 | goto useDefault; |
| 1445 | } |
| 1446 | |
| 1447 | ElementSize oldSize = oldRef->listRef.elementSize(); |
| 1448 | |
| 1449 | if (oldSize == ElementSize::INLINE_COMPOSITE) { |
| 1450 | // Existing list is INLINE_COMPOSITE, but we need to verify that the sizes match. |
| 1451 | |
| 1452 | WirePointer* oldTag = reinterpret_cast<WirePointer*>(oldPtr); |
| 1453 | oldPtr += POINTER_SIZE_IN_WORDS; |
| 1454 | KJ_REQUIRE(oldTag->kind() == WirePointer::STRUCT, |
| 1455 | "INLINE_COMPOSITE list with non-STRUCT elements not supported." ) { |
| 1456 | goto useDefault; |
| 1457 | } |
| 1458 | |
| 1459 | auto oldDataSize = oldTag->structRef.dataSize.get(); |
| 1460 | auto oldPointerCount = oldTag->structRef.ptrCount.get(); |
| 1461 | auto oldStep = (oldDataSize + oldPointerCount * WORDS_PER_POINTER) / ELEMENTS; |
| 1462 | |
| 1463 | auto elementCount = oldTag->inlineCompositeListElementCount(); |
| 1464 | |
| 1465 | if (oldDataSize >= elementSize.data && oldPointerCount >= elementSize.pointers) { |
| 1466 | // Old size is at least as large as we need. Ship it. |
| 1467 | return ListBuilder(oldSegment, capTable, oldPtr, oldStep * BITS_PER_WORD, elementCount, |
| 1468 | oldDataSize * BITS_PER_WORD, oldPointerCount, |
| 1469 | ElementSize::INLINE_COMPOSITE); |
| 1470 | } |
| 1471 | |
| 1472 | // The structs in this list are smaller than expected, probably written using an older |
| 1473 | // version of the protocol. We need to make a copy and expand them. |
| 1474 | |
| 1475 | auto newDataSize = kj::max(oldDataSize, elementSize.data); |
| 1476 | auto newPointerCount = kj::max(oldPointerCount, elementSize.pointers); |
| 1477 | auto newStep = (newDataSize + newPointerCount * WORDS_PER_POINTER) / ELEMENTS; |
| 1478 | |
| 1479 | auto totalSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
| 1480 | newStep * upgradeBound<uint64_t>(elementCount), |
| 1481 | []() { KJ_FAIL_REQUIRE("total size of struct list is larger than max segment size" ); }); |
| 1482 | |
| 1483 | // Don't let allocate() zero out the object just yet. |
| 1484 | zeroPointerAndFars(origSegment, origRef); |
| 1485 | |
| 1486 | word* newPtr = allocate(origRef, origSegment, capTable, totalSize + POINTER_SIZE_IN_WORDS, |
| 1487 | WirePointer::LIST, orphanArena); |
| 1488 | origRef->listRef.setInlineComposite(totalSize); |
| 1489 | |
| 1490 | WirePointer* newTag = reinterpret_cast<WirePointer*>(newPtr); |
| 1491 | newTag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, elementCount); |
| 1492 | newTag->structRef.set(newDataSize, newPointerCount); |
| 1493 | newPtr += POINTER_SIZE_IN_WORDS; |
| 1494 | |
| 1495 | word* src = oldPtr; |
| 1496 | word* dst = newPtr; |
| 1497 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
| 1498 | // Copy data section. |
| 1499 | copyMemory(dst, src, oldDataSize); |
| 1500 | |
| 1501 | // Copy pointer section. |
| 1502 | WirePointer* newPointerSection = reinterpret_cast<WirePointer*>(dst + newDataSize); |
| 1503 | WirePointer* oldPointerSection = reinterpret_cast<WirePointer*>(src + oldDataSize); |
| 1504 | for (auto j: kj::zeroTo(oldPointerCount)) { |
| 1505 | transferPointer(origSegment, newPointerSection + j, oldSegment, oldPointerSection + j); |
| 1506 | } |
| 1507 | |
| 1508 | dst += newStep * (ONE * ELEMENTS); |
| 1509 | src += oldStep * (ONE * ELEMENTS); |
| 1510 | } |
| 1511 | |
| 1512 | auto oldSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
| 1513 | oldStep * upgradeBound<uint64_t>(elementCount), |
| 1514 | []() { KJ_FAIL_ASSERT("old size overflows but new size doesn't?" ); }); |
| 1515 | |
| 1516 | // Zero out old location. See explanation in getWritableStructPointer(). |
| 1517 | // Make sure to include the tag word. |
| 1518 | zeroMemory(oldPtr - POINTER_SIZE_IN_WORDS, oldSize + POINTER_SIZE_IN_WORDS); |
| 1519 | |
| 1520 | return ListBuilder(origSegment, capTable, newPtr, newStep * BITS_PER_WORD, elementCount, |
| 1521 | newDataSize * BITS_PER_WORD, newPointerCount, |
| 1522 | ElementSize::INLINE_COMPOSITE); |
| 1523 | } else { |
| 1524 | // We're upgrading from a non-struct list. |
| 1525 | |
| 1526 | auto oldDataSize = dataBitsPerElement(oldSize) * ELEMENTS; |
| 1527 | auto oldPointerCount = pointersPerElement(oldSize) * ELEMENTS; |
| 1528 | auto oldStep = (oldDataSize + oldPointerCount * BITS_PER_POINTER) / ELEMENTS; |
| 1529 | auto elementCount = oldRef->listRef.elementCount(); |
| 1530 | |
| 1531 | if (oldSize == ElementSize::VOID) { |
| 1532 | // Nothing to copy, just allocate a new list. |
| 1533 | return initStructListPointer(origRef, origSegment, capTable, elementCount, elementSize); |
| 1534 | } else { |
| 1535 | // Upgrading to an inline composite list. |
| 1536 | |
| 1537 | KJ_REQUIRE(oldSize != ElementSize::BIT, |
| 1538 | "Found bit list where struct list was expected; upgrading boolean lists to structs " |
| 1539 | "is no longer supported." ) { |
| 1540 | goto useDefault; |
| 1541 | } |
| 1542 | |
| 1543 | auto newDataSize = elementSize.data; |
| 1544 | auto newPointerCount = elementSize.pointers; |
| 1545 | |
| 1546 | if (oldSize == ElementSize::POINTER) { |
| 1547 | newPointerCount = kj::max(newPointerCount, ONE * POINTERS); |
| 1548 | } else { |
| 1549 | // Old list contains data elements, so we need at least 1 word of data. |
| 1550 | newDataSize = kj::max(newDataSize, ONE * WORDS); |
| 1551 | } |
| 1552 | |
| 1553 | auto newStep = (newDataSize + newPointerCount * WORDS_PER_POINTER) / ELEMENTS; |
| 1554 | auto totalWords = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
| 1555 | newStep * upgradeBound<uint64_t>(elementCount), |
| 1556 | []() {KJ_FAIL_REQUIRE("total size of struct list is larger than max segment size" );}); |
| 1557 | |
| 1558 | // Don't let allocate() zero out the object just yet. |
| 1559 | zeroPointerAndFars(origSegment, origRef); |
| 1560 | |
| 1561 | word* newPtr = allocate(origRef, origSegment, capTable, totalWords + POINTER_SIZE_IN_WORDS, |
| 1562 | WirePointer::LIST, orphanArena); |
| 1563 | origRef->listRef.setInlineComposite(totalWords); |
| 1564 | |
| 1565 | WirePointer* tag = reinterpret_cast<WirePointer*>(newPtr); |
| 1566 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, elementCount); |
| 1567 | tag->structRef.set(newDataSize, newPointerCount); |
| 1568 | newPtr += POINTER_SIZE_IN_WORDS; |
| 1569 | |
| 1570 | if (oldSize == ElementSize::POINTER) { |
| 1571 | WirePointer* dst = reinterpret_cast<WirePointer*>(newPtr + newDataSize); |
| 1572 | WirePointer* src = reinterpret_cast<WirePointer*>(oldPtr); |
| 1573 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
| 1574 | transferPointer(origSegment, dst, oldSegment, src); |
| 1575 | dst += newStep / WORDS_PER_POINTER * (ONE * ELEMENTS); |
| 1576 | ++src; |
| 1577 | } |
| 1578 | } else { |
| 1579 | byte* dst = reinterpret_cast<byte*>(newPtr); |
| 1580 | byte* src = reinterpret_cast<byte*>(oldPtr); |
| 1581 | auto newByteStep = newStep * (ONE * ELEMENTS) * BYTES_PER_WORD; |
| 1582 | auto oldByteStep = oldDataSize / BITS_PER_BYTE; |
| 1583 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
| 1584 | copyMemory(dst, src, oldByteStep); |
| 1585 | src += oldByteStep; |
| 1586 | dst += newByteStep; |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | auto oldSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
| 1591 | roundBitsUpToWords(oldStep * upgradeBound<uint64_t>(elementCount)), |
| 1592 | []() { KJ_FAIL_ASSERT("old size overflows but new size doesn't?" ); }); |
| 1593 | |
| 1594 | // Zero out old location. See explanation in getWritableStructPointer(). |
| 1595 | zeroMemory(oldPtr, oldSize); |
| 1596 | |
| 1597 | return ListBuilder(origSegment, capTable, newPtr, newStep * BITS_PER_WORD, elementCount, |
| 1598 | newDataSize * BITS_PER_WORD, newPointerCount, |
| 1599 | ElementSize::INLINE_COMPOSITE); |
| 1600 | } |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | static KJ_ALWAYS_INLINE(SegmentAnd<Text::Builder> initTextPointer( |
| 1605 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, TextSize size, |
| 1606 | BuilderArena* orphanArena = nullptr)) { |
| 1607 | // The byte list must include a NUL terminator. |
| 1608 | auto byteSize = size + ONE * BYTES; |
| 1609 | |
| 1610 | // Allocate the space. |
| 1611 | word* ptr = allocate( |
| 1612 | ref, segment, capTable, roundBytesUpToWords(byteSize), WirePointer::LIST, orphanArena); |
| 1613 | |
| 1614 | // Initialize the pointer. |
| 1615 | ref->listRef.set(ElementSize::BYTE, byteSize * (ONE * ELEMENTS / BYTES)); |
| 1616 | |
| 1617 | // Build the Text::Builder. This will initialize the NUL terminator. |
| 1618 | return { segment, Text::Builder(reinterpret_cast<char*>(ptr), unbound(size / BYTES)) }; |
| 1619 | } |
| 1620 | |
| 1621 | static KJ_ALWAYS_INLINE(SegmentAnd<Text::Builder> setTextPointer( |
| 1622 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, Text::Reader value, |
| 1623 | BuilderArena* orphanArena = nullptr)) { |
| 1624 | TextSize size = assertMax<MAX_TEXT_SIZE>(bounded(value.size()), |
| 1625 | []() { KJ_FAIL_REQUIRE("text blob too big" ); }) * BYTES; |
| 1626 | |
| 1627 | auto allocation = initTextPointer(ref, segment, capTable, size, orphanArena); |
| 1628 | copyMemory(allocation.value.begin(), value); |
| 1629 | return allocation; |
| 1630 | } |
| 1631 | |
| 1632 | static KJ_ALWAYS_INLINE(Text::Builder getWritableTextPointer( |
| 1633 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1634 | const void* defaultValue, TextSize defaultSize)) { |
| 1635 | return getWritableTextPointer(ref, ref->target(), segment,capTable, defaultValue, defaultSize); |
| 1636 | } |
| 1637 | |
| 1638 | static KJ_ALWAYS_INLINE(Text::Builder getWritableTextPointer( |
| 1639 | WirePointer* ref, word* refTarget, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1640 | const void* defaultValue, TextSize defaultSize)) { |
| 1641 | if (ref->isNull()) { |
| 1642 | useDefault: |
| 1643 | if (defaultSize == ZERO * BYTES) { |
| 1644 | return nullptr; |
| 1645 | } else { |
| 1646 | Text::Builder builder = initTextPointer(ref, segment, capTable, defaultSize).value; |
| 1647 | copyMemory(builder.asBytes().begin(), reinterpret_cast<const byte*>(defaultValue), |
| 1648 | defaultSize); |
| 1649 | return builder; |
| 1650 | } |
| 1651 | } else { |
| 1652 | word* ptr = followFars(ref, refTarget, segment); |
| 1653 | byte* bptr = reinterpret_cast<byte*>(ptr); |
| 1654 | |
| 1655 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 1656 | "Called getText{Field,Element}() but existing pointer is not a list." ) { |
| 1657 | goto useDefault; |
| 1658 | } |
| 1659 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
| 1660 | "Called getText{Field,Element}() but existing list pointer is not byte-sized." ) { |
| 1661 | goto useDefault; |
| 1662 | } |
| 1663 | |
| 1664 | auto maybeSize = trySubtract(ref->listRef.elementCount() * (ONE * BYTES / ELEMENTS), |
| 1665 | ONE * BYTES); |
| 1666 | KJ_IF_MAYBE(size, maybeSize) { |
| 1667 | KJ_REQUIRE(*(bptr + *size) == '\0', "Text blob missing NUL terminator." ) { |
| 1668 | goto useDefault; |
| 1669 | } |
| 1670 | |
| 1671 | return Text::Builder(reinterpret_cast<char*>(bptr), unbound(*size / BYTES)); |
| 1672 | } else { |
| 1673 | KJ_FAIL_REQUIRE("zero-size blob can't be text (need NUL terminator)" ) { |
| 1674 | goto useDefault; |
| 1675 | }; |
| 1676 | } |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | static KJ_ALWAYS_INLINE(SegmentAnd<Data::Builder> initDataPointer( |
| 1681 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, BlobSize size, |
| 1682 | BuilderArena* orphanArena = nullptr)) { |
| 1683 | // Allocate the space. |
| 1684 | word* ptr = allocate(ref, segment, capTable, roundBytesUpToWords(size), |
| 1685 | WirePointer::LIST, orphanArena); |
| 1686 | |
| 1687 | // Initialize the pointer. |
| 1688 | ref->listRef.set(ElementSize::BYTE, size * (ONE * ELEMENTS / BYTES)); |
| 1689 | |
| 1690 | // Build the Data::Builder. |
| 1691 | return { segment, Data::Builder(reinterpret_cast<byte*>(ptr), unbound(size / BYTES)) }; |
| 1692 | } |
| 1693 | |
| 1694 | static KJ_ALWAYS_INLINE(SegmentAnd<Data::Builder> setDataPointer( |
| 1695 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, Data::Reader value, |
| 1696 | BuilderArena* orphanArena = nullptr)) { |
| 1697 | BlobSize size = assertMaxBits<BLOB_SIZE_BITS>(bounded(value.size()), |
| 1698 | []() { KJ_FAIL_REQUIRE("text blob too big" ); }) * BYTES; |
| 1699 | |
| 1700 | auto allocation = initDataPointer(ref, segment, capTable, size, orphanArena); |
| 1701 | copyMemory(allocation.value.begin(), value); |
| 1702 | return allocation; |
| 1703 | } |
| 1704 | |
| 1705 | static KJ_ALWAYS_INLINE(Data::Builder getWritableDataPointer( |
| 1706 | WirePointer* ref, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1707 | const void* defaultValue, BlobSize defaultSize)) { |
| 1708 | return getWritableDataPointer(ref, ref->target(), segment, capTable, defaultValue, defaultSize); |
| 1709 | } |
| 1710 | |
| 1711 | static KJ_ALWAYS_INLINE(Data::Builder getWritableDataPointer( |
| 1712 | WirePointer* ref, word* refTarget, SegmentBuilder* segment, CapTableBuilder* capTable, |
| 1713 | const void* defaultValue, BlobSize defaultSize)) { |
| 1714 | if (ref->isNull()) { |
| 1715 | useDefault: |
| 1716 | if (defaultSize == ZERO * BYTES) { |
| 1717 | return nullptr; |
| 1718 | } else { |
| 1719 | Data::Builder builder = initDataPointer(ref, segment, capTable, defaultSize).value; |
| 1720 | copyMemory(builder.begin(), reinterpret_cast<const byte*>(defaultValue), defaultSize); |
| 1721 | return builder; |
| 1722 | } |
| 1723 | } else { |
| 1724 | word* ptr = followFars(ref, refTarget, segment); |
| 1725 | |
| 1726 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 1727 | "Called getData{Field,Element}() but existing pointer is not a list." ) { |
| 1728 | goto useDefault; |
| 1729 | } |
| 1730 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
| 1731 | "Called getData{Field,Element}() but existing list pointer is not byte-sized." ) { |
| 1732 | goto useDefault; |
| 1733 | } |
| 1734 | |
| 1735 | return Data::Builder(reinterpret_cast<byte*>(ptr), |
| 1736 | unbound(ref->listRef.elementCount() / ELEMENTS)); |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | static SegmentAnd<word*> setStructPointer( |
| 1741 | SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref, StructReader value, |
| 1742 | BuilderArena* orphanArena = nullptr, bool canonical = false) { |
| 1743 | auto dataSize = roundBitsUpToBytes(value.dataSize); |
| 1744 | auto ptrCount = value.pointerCount; |
| 1745 | |
| 1746 | if (canonical) { |
| 1747 | // StructReaders should not have bitwidths other than 1, but let's be safe |
| 1748 | KJ_REQUIRE((value.dataSize == ONE * BITS) |
| 1749 | || (value.dataSize % BITS_PER_BYTE == ZERO * BITS)); |
| 1750 | |
| 1751 | if (value.dataSize == ONE * BITS) { |
| 1752 | // Handle the truncation case where it's a false in a 1-bit struct |
| 1753 | if (!value.getDataField<bool>(ZERO * ELEMENTS)) { |
| 1754 | dataSize = ZERO * BYTES; |
| 1755 | } |
| 1756 | } else { |
| 1757 | // Truncate the data section |
| 1758 | auto data = value.getDataSectionAsBlob(); |
| 1759 | auto end = data.end(); |
| 1760 | while (end > data.begin() && end[-1] == 0) --end; |
| 1761 | dataSize = intervalLength(data.begin(), end, MAX_STUCT_DATA_WORDS * BYTES_PER_WORD); |
| 1762 | } |
| 1763 | |
| 1764 | // Truncate pointer section |
| 1765 | const WirePointer* ptr = value.pointers + ptrCount; |
| 1766 | while (ptr > value.pointers && ptr[-1].isNull()) --ptr; |
| 1767 | ptrCount = intervalLength(value.pointers, ptr, MAX_STRUCT_POINTER_COUNT); |
| 1768 | } |
| 1769 | |
| 1770 | auto dataWords = roundBytesUpToWords(dataSize); |
| 1771 | |
| 1772 | auto totalSize = dataWords + ptrCount * WORDS_PER_POINTER; |
| 1773 | |
| 1774 | word* ptr = allocate(ref, segment, capTable, totalSize, WirePointer::STRUCT, orphanArena); |
| 1775 | ref->structRef.set(dataWords, ptrCount); |
| 1776 | |
| 1777 | if (value.dataSize == ONE * BITS) { |
| 1778 | // Data size could be made 0 by truncation |
| 1779 | if (dataSize != ZERO * BYTES) { |
| 1780 | *reinterpret_cast<char*>(ptr) = value.getDataField<bool>(ZERO * ELEMENTS); |
| 1781 | } |
| 1782 | } else { |
| 1783 | copyMemory(reinterpret_cast<byte*>(ptr), |
| 1784 | reinterpret_cast<const byte*>(value.data), |
| 1785 | dataSize); |
| 1786 | } |
| 1787 | |
| 1788 | WirePointer* pointerSection = reinterpret_cast<WirePointer*>(ptr + dataWords); |
| 1789 | for (auto i: kj::zeroTo(ptrCount)) { |
| 1790 | copyPointer(segment, capTable, pointerSection + i, |
| 1791 | value.segment, value.capTable, value.pointers + i, |
| 1792 | value.nestingLimit, nullptr, canonical); |
| 1793 | } |
| 1794 | |
| 1795 | return { segment, ptr }; |
| 1796 | } |
| 1797 | |
| 1798 | #if !CAPNP_LITE |
| 1799 | static void setCapabilityPointer( |
| 1800 | SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref, |
| 1801 | kj::Own<ClientHook>&& cap) { |
| 1802 | if (!ref->isNull()) { |
| 1803 | zeroObject(segment, capTable, ref); |
| 1804 | } |
| 1805 | if (cap->isNull()) { |
| 1806 | zeroMemory(ref); |
| 1807 | } else { |
| 1808 | ref->setCap(capTable->injectCap(kj::mv(cap))); |
| 1809 | } |
| 1810 | } |
| 1811 | #endif // !CAPNP_LITE |
| 1812 | |
| 1813 | static SegmentAnd<word*> setListPointer( |
| 1814 | SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* ref, ListReader value, |
| 1815 | BuilderArena* orphanArena = nullptr, bool canonical = false) { |
| 1816 | auto totalSize = assertMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>( |
| 1817 | roundBitsUpToWords(upgradeBound<uint64_t>(value.elementCount) * value.step), |
| 1818 | []() { KJ_FAIL_ASSERT("encountered impossibly long struct list ListReader" ); }); |
| 1819 | |
| 1820 | if (value.elementSize != ElementSize::INLINE_COMPOSITE) { |
| 1821 | // List of non-structs. |
| 1822 | word* ptr = allocate(ref, segment, capTable, totalSize, WirePointer::LIST, orphanArena); |
| 1823 | |
| 1824 | if (value.elementSize == ElementSize::POINTER) { |
| 1825 | // List of pointers. |
| 1826 | ref->listRef.set(ElementSize::POINTER, value.elementCount); |
| 1827 | for (auto i: kj::zeroTo(value.elementCount * (ONE * POINTERS / ELEMENTS))) { |
| 1828 | copyPointer(segment, capTable, reinterpret_cast<WirePointer*>(ptr) + i, |
| 1829 | value.segment, value.capTable, |
| 1830 | reinterpret_cast<const WirePointer*>(value.ptr) + i, |
| 1831 | value.nestingLimit, nullptr, canonical); |
| 1832 | } |
| 1833 | } else { |
| 1834 | // List of data. |
| 1835 | ref->listRef.set(value.elementSize, value.elementCount); |
| 1836 | |
| 1837 | auto wholeByteSize = |
| 1838 | assertMax(MAX_SEGMENT_WORDS * BYTES_PER_WORD, |
| 1839 | upgradeBound<uint64_t>(value.elementCount) * value.step / BITS_PER_BYTE, |
| 1840 | []() { KJ_FAIL_ASSERT("encountered impossibly long data ListReader" ); }); |
| 1841 | copyMemory(reinterpret_cast<byte*>(ptr), value.ptr, wholeByteSize); |
| 1842 | auto leftoverBits = |
| 1843 | (upgradeBound<uint64_t>(value.elementCount) * value.step) % BITS_PER_BYTE; |
| 1844 | if (leftoverBits > ZERO * BITS) { |
| 1845 | // We need to copy a partial byte. |
| 1846 | uint8_t mask = (1 << unbound(leftoverBits / BITS)) - 1; |
| 1847 | *((reinterpret_cast<byte*>(ptr)) + wholeByteSize) = mask & *(value.ptr + wholeByteSize); |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | return { segment, ptr }; |
| 1852 | } else { |
| 1853 | // List of structs. |
| 1854 | StructDataWordCount declDataSize = value.structDataSize / BITS_PER_WORD; |
| 1855 | StructPointerCount declPointerCount = value.structPointerCount; |
| 1856 | |
| 1857 | StructDataWordCount dataSize = ZERO * WORDS; |
| 1858 | StructPointerCount ptrCount = ZERO * POINTERS; |
| 1859 | |
| 1860 | if (canonical) { |
| 1861 | for (auto i: kj::zeroTo(value.elementCount)) { |
| 1862 | auto element = value.getStructElement(i); |
| 1863 | |
| 1864 | // Truncate the data section |
| 1865 | auto data = element.getDataSectionAsBlob(); |
| 1866 | auto end = data.end(); |
| 1867 | while (end > data.begin() && end[-1] == 0) --end; |
| 1868 | dataSize = kj::max(dataSize, roundBytesUpToWords( |
| 1869 | intervalLength(data.begin(), end, MAX_STUCT_DATA_WORDS * BYTES_PER_WORD))); |
| 1870 | |
| 1871 | // Truncate pointer section |
| 1872 | const WirePointer* ptr = element.pointers + element.pointerCount; |
| 1873 | while (ptr > element.pointers && ptr[-1].isNull()) --ptr; |
| 1874 | ptrCount = kj::max(ptrCount, |
| 1875 | intervalLength(element.pointers, ptr, MAX_STRUCT_POINTER_COUNT)); |
| 1876 | } |
| 1877 | auto newTotalSize = (dataSize + upgradeBound<uint64_t>(ptrCount) * WORDS_PER_POINTER) |
| 1878 | / ELEMENTS * value.elementCount; |
| 1879 | KJ_ASSERT(newTotalSize <= totalSize); // we've only removed data! |
| 1880 | totalSize = assumeMax<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>() - 1>(newTotalSize); |
| 1881 | } else { |
| 1882 | dataSize = declDataSize; |
| 1883 | ptrCount = declPointerCount; |
| 1884 | } |
| 1885 | |
| 1886 | KJ_DASSERT(value.structDataSize % BITS_PER_WORD == ZERO * BITS); |
| 1887 | word* ptr = allocate(ref, segment, capTable, totalSize + POINTER_SIZE_IN_WORDS, |
| 1888 | WirePointer::LIST, orphanArena); |
| 1889 | ref->listRef.setInlineComposite(totalSize); |
| 1890 | |
| 1891 | WirePointer* tag = reinterpret_cast<WirePointer*>(ptr); |
| 1892 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, value.elementCount); |
| 1893 | tag->structRef.set(dataSize, ptrCount); |
| 1894 | word* dst = ptr + POINTER_SIZE_IN_WORDS; |
| 1895 | |
| 1896 | const word* src = reinterpret_cast<const word*>(value.ptr); |
| 1897 | for (auto i KJ_UNUSED: kj::zeroTo(value.elementCount)) { |
| 1898 | copyMemory(dst, src, dataSize); |
| 1899 | dst += dataSize; |
| 1900 | src += declDataSize; |
| 1901 | |
| 1902 | for (auto j: kj::zeroTo(ptrCount)) { |
| 1903 | copyPointer(segment, capTable, reinterpret_cast<WirePointer*>(dst) + j, |
| 1904 | value.segment, value.capTable, reinterpret_cast<const WirePointer*>(src) + j, |
| 1905 | value.nestingLimit, nullptr, canonical); |
| 1906 | } |
| 1907 | dst += ptrCount * WORDS_PER_POINTER; |
| 1908 | src += declPointerCount * WORDS_PER_POINTER; |
| 1909 | } |
| 1910 | |
| 1911 | return { segment, ptr }; |
| 1912 | } |
| 1913 | } |
| 1914 | |
| 1915 | static KJ_ALWAYS_INLINE(SegmentAnd<word*> copyPointer( |
| 1916 | SegmentBuilder* dstSegment, CapTableBuilder* dstCapTable, WirePointer* dst, |
| 1917 | SegmentReader* srcSegment, CapTableReader* srcCapTable, const WirePointer* src, |
| 1918 | int nestingLimit, BuilderArena* orphanArena = nullptr, |
| 1919 | bool canonical = false)) { |
| 1920 | return copyPointer(dstSegment, dstCapTable, dst, |
| 1921 | srcSegment, srcCapTable, src, src->target(srcSegment), |
| 1922 | nestingLimit, orphanArena, canonical); |
| 1923 | } |
| 1924 | |
| 1925 | static SegmentAnd<word*> copyPointer( |
| 1926 | SegmentBuilder* dstSegment, CapTableBuilder* dstCapTable, WirePointer* dst, |
| 1927 | SegmentReader* srcSegment, CapTableReader* srcCapTable, const WirePointer* src, |
| 1928 | const word* srcTarget, int nestingLimit, |
| 1929 | BuilderArena* orphanArena = nullptr, bool canonical = false) { |
| 1930 | // Deep-copy the object pointed to by src into dst. It turns out we can't reuse |
| 1931 | // readStructPointer(), etc. because they do type checking whereas here we want to accept any |
| 1932 | // valid pointer. |
| 1933 | |
| 1934 | if (src->isNull()) { |
| 1935 | useDefault: |
| 1936 | if (!dst->isNull()) { |
| 1937 | zeroObject(dstSegment, dstCapTable, dst); |
| 1938 | zeroMemory(dst); |
| 1939 | } |
| 1940 | return { dstSegment, nullptr }; |
| 1941 | } |
| 1942 | |
| 1943 | const word* ptr; |
| 1944 | KJ_IF_MAYBE(p, WireHelpers::followFars(src, srcTarget, srcSegment)) { |
| 1945 | ptr = p; |
| 1946 | } else { |
| 1947 | goto useDefault; |
| 1948 | } |
| 1949 | |
| 1950 | switch (src->kind()) { |
| 1951 | case WirePointer::STRUCT: |
| 1952 | KJ_REQUIRE(nestingLimit > 0, |
| 1953 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
| 1954 | goto useDefault; |
| 1955 | } |
| 1956 | |
| 1957 | KJ_REQUIRE(boundsCheck(srcSegment, ptr, src->structRef.wordSize()), |
| 1958 | "Message contained out-of-bounds struct pointer." ) { |
| 1959 | goto useDefault; |
| 1960 | } |
| 1961 | return setStructPointer(dstSegment, dstCapTable, dst, |
| 1962 | StructReader(srcSegment, srcCapTable, ptr, |
| 1963 | reinterpret_cast<const WirePointer*>(ptr + src->structRef.dataSize.get()), |
| 1964 | src->structRef.dataSize.get() * BITS_PER_WORD, |
| 1965 | src->structRef.ptrCount.get(), |
| 1966 | nestingLimit - 1), |
| 1967 | orphanArena, canonical); |
| 1968 | |
| 1969 | case WirePointer::LIST: { |
| 1970 | ElementSize elementSize = src->listRef.elementSize(); |
| 1971 | |
| 1972 | KJ_REQUIRE(nestingLimit > 0, |
| 1973 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
| 1974 | goto useDefault; |
| 1975 | } |
| 1976 | |
| 1977 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
| 1978 | auto wordCount = src->listRef.inlineCompositeWordCount(); |
| 1979 | const WirePointer* tag = reinterpret_cast<const WirePointer*>(ptr); |
| 1980 | |
| 1981 | KJ_REQUIRE(boundsCheck(srcSegment, ptr, wordCount + POINTER_SIZE_IN_WORDS), |
| 1982 | "Message contains out-of-bounds list pointer." ) { |
| 1983 | goto useDefault; |
| 1984 | } |
| 1985 | |
| 1986 | ptr += POINTER_SIZE_IN_WORDS; |
| 1987 | |
| 1988 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
| 1989 | "INLINE_COMPOSITE lists of non-STRUCT type are not supported." ) { |
| 1990 | goto useDefault; |
| 1991 | } |
| 1992 | |
| 1993 | auto elementCount = tag->inlineCompositeListElementCount(); |
| 1994 | auto wordsPerElement = tag->structRef.wordSize() / ELEMENTS; |
| 1995 | |
| 1996 | KJ_REQUIRE(wordsPerElement * upgradeBound<uint64_t>(elementCount) <= wordCount, |
| 1997 | "INLINE_COMPOSITE list's elements overrun its word count." ) { |
| 1998 | goto useDefault; |
| 1999 | } |
| 2000 | |
| 2001 | if (wordsPerElement * (ONE * ELEMENTS) == ZERO * WORDS) { |
| 2002 | // Watch out for lists of zero-sized structs, which can claim to be arbitrarily large |
| 2003 | // without having sent actual data. |
| 2004 | KJ_REQUIRE(amplifiedRead(srcSegment, elementCount * (ONE * WORDS / ELEMENTS)), |
| 2005 | "Message contains amplified list pointer." ) { |
| 2006 | goto useDefault; |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | return setListPointer(dstSegment, dstCapTable, dst, |
| 2011 | ListReader(srcSegment, srcCapTable, ptr, |
| 2012 | elementCount, wordsPerElement * BITS_PER_WORD, |
| 2013 | tag->structRef.dataSize.get() * BITS_PER_WORD, |
| 2014 | tag->structRef.ptrCount.get(), ElementSize::INLINE_COMPOSITE, |
| 2015 | nestingLimit - 1), |
| 2016 | orphanArena, canonical); |
| 2017 | } else { |
| 2018 | auto dataSize = dataBitsPerElement(elementSize) * ELEMENTS; |
| 2019 | auto pointerCount = pointersPerElement(elementSize) * ELEMENTS; |
| 2020 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
| 2021 | auto elementCount = src->listRef.elementCount(); |
| 2022 | auto wordCount = roundBitsUpToWords(upgradeBound<uint64_t>(elementCount) * step); |
| 2023 | |
| 2024 | KJ_REQUIRE(boundsCheck(srcSegment, ptr, wordCount), |
| 2025 | "Message contains out-of-bounds list pointer." ) { |
| 2026 | goto useDefault; |
| 2027 | } |
| 2028 | |
| 2029 | if (elementSize == ElementSize::VOID) { |
| 2030 | // Watch out for lists of void, which can claim to be arbitrarily large without having |
| 2031 | // sent actual data. |
| 2032 | KJ_REQUIRE(amplifiedRead(srcSegment, elementCount * (ONE * WORDS / ELEMENTS)), |
| 2033 | "Message contains amplified list pointer." ) { |
| 2034 | goto useDefault; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | return setListPointer(dstSegment, dstCapTable, dst, |
| 2039 | ListReader(srcSegment, srcCapTable, ptr, elementCount, step, dataSize, pointerCount, |
| 2040 | elementSize, nestingLimit - 1), |
| 2041 | orphanArena, canonical); |
| 2042 | } |
| 2043 | } |
| 2044 | |
| 2045 | case WirePointer::FAR: |
| 2046 | KJ_FAIL_REQUIRE("Unexpected FAR pointer." ) { |
| 2047 | goto useDefault; |
| 2048 | } |
| 2049 | |
| 2050 | case WirePointer::OTHER: { |
| 2051 | KJ_REQUIRE(src->isCapability(), "Unknown pointer type." ) { |
| 2052 | goto useDefault; |
| 2053 | } |
| 2054 | |
| 2055 | if (canonical) { |
| 2056 | KJ_FAIL_REQUIRE("Cannot create a canonical message with a capability" ) { |
| 2057 | break; |
| 2058 | } |
| 2059 | } |
| 2060 | #if !CAPNP_LITE |
| 2061 | KJ_IF_MAYBE(cap, srcCapTable->extractCap(src->capRef.index.get())) { |
| 2062 | setCapabilityPointer(dstSegment, dstCapTable, dst, kj::mv(*cap)); |
| 2063 | // Return dummy non-null pointer so OrphanBuilder doesn't end up null. |
| 2064 | return { dstSegment, reinterpret_cast<word*>(1) }; |
| 2065 | } else { |
| 2066 | #endif // !CAPNP_LITE |
| 2067 | KJ_FAIL_REQUIRE("Message contained invalid capability pointer." ) { |
| 2068 | goto useDefault; |
| 2069 | } |
| 2070 | #if !CAPNP_LITE |
| 2071 | } |
| 2072 | #endif // !CAPNP_LITE |
| 2073 | } |
| 2074 | } |
| 2075 | |
| 2076 | KJ_UNREACHABLE; |
| 2077 | } |
| 2078 | |
| 2079 | static void adopt(SegmentBuilder* segment, CapTableBuilder* capTable, |
| 2080 | WirePointer* ref, OrphanBuilder&& value) { |
| 2081 | KJ_REQUIRE(value.segment == nullptr || value.segment->getArena() == segment->getArena(), |
| 2082 | "Adopted object must live in the same message." ); |
| 2083 | |
| 2084 | if (!ref->isNull()) { |
| 2085 | zeroObject(segment, capTable, ref); |
| 2086 | } |
| 2087 | |
| 2088 | if (value == nullptr) { |
| 2089 | // Set null. |
| 2090 | zeroMemory(ref); |
| 2091 | } else if (value.tagAsPtr()->isPositional()) { |
| 2092 | WireHelpers::transferPointer(segment, ref, value.segment, value.tagAsPtr(), value.location); |
| 2093 | } else { |
| 2094 | // FAR and OTHER pointers are position-independent, so we can just copy. |
| 2095 | copyMemory(ref, value.tagAsPtr()); |
| 2096 | } |
| 2097 | |
| 2098 | // Take ownership away from the OrphanBuilder. |
| 2099 | zeroMemory(value.tagAsPtr()); |
| 2100 | value.location = nullptr; |
| 2101 | value.segment = nullptr; |
| 2102 | } |
| 2103 | |
| 2104 | static OrphanBuilder disown(SegmentBuilder* segment, CapTableBuilder* capTable, |
| 2105 | WirePointer* ref) { |
| 2106 | word* location; |
| 2107 | |
| 2108 | if (ref->isNull()) { |
| 2109 | location = nullptr; |
| 2110 | } else if (ref->kind() == WirePointer::OTHER) { |
| 2111 | KJ_REQUIRE(ref->isCapability(), "Unknown pointer type." ) { break; } |
| 2112 | location = reinterpret_cast<word*>(1); // dummy so that it is non-null |
| 2113 | } else { |
| 2114 | WirePointer* refCopy = ref; |
| 2115 | location = followFarsNoWritableCheck(refCopy, ref->target(), segment); |
| 2116 | } |
| 2117 | |
| 2118 | OrphanBuilder result(ref, segment, capTable, location); |
| 2119 | |
| 2120 | if (!ref->isNull() && ref->isPositional()) { |
| 2121 | result.tagAsPtr()->setKindForOrphan(ref->kind()); |
| 2122 | } |
| 2123 | |
| 2124 | // Zero out the pointer that was disowned. |
| 2125 | zeroMemory(ref); |
| 2126 | |
| 2127 | return result; |
| 2128 | } |
| 2129 | |
| 2130 | // ----------------------------------------------------------------- |
| 2131 | |
| 2132 | static KJ_ALWAYS_INLINE(StructReader readStructPointer( |
| 2133 | SegmentReader* segment, CapTableReader* capTable, |
| 2134 | const WirePointer* ref, const word* defaultValue, |
| 2135 | int nestingLimit)) { |
| 2136 | return readStructPointer(segment, capTable, ref, ref->target(segment), |
| 2137 | defaultValue, nestingLimit); |
| 2138 | } |
| 2139 | |
| 2140 | static KJ_ALWAYS_INLINE(StructReader readStructPointer( |
| 2141 | SegmentReader* segment, CapTableReader* capTable, |
| 2142 | const WirePointer* ref, const word* refTarget, |
| 2143 | const word* defaultValue, int nestingLimit)) { |
| 2144 | if (ref->isNull()) { |
| 2145 | useDefault: |
| 2146 | if (defaultValue == nullptr || |
| 2147 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
| 2148 | return StructReader(); |
| 2149 | } |
| 2150 | segment = nullptr; |
| 2151 | ref = reinterpret_cast<const WirePointer*>(defaultValue); |
| 2152 | refTarget = ref->target(segment); |
| 2153 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
| 2154 | } |
| 2155 | |
| 2156 | KJ_REQUIRE(nestingLimit > 0, |
| 2157 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
| 2158 | goto useDefault; |
| 2159 | } |
| 2160 | |
| 2161 | const word* ptr; |
| 2162 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
| 2163 | ptr = p; |
| 2164 | } else { |
| 2165 | goto useDefault; |
| 2166 | } |
| 2167 | |
| 2168 | KJ_REQUIRE(ref->kind() == WirePointer::STRUCT, |
| 2169 | "Message contains non-struct pointer where struct pointer was expected." ) { |
| 2170 | goto useDefault; |
| 2171 | } |
| 2172 | |
| 2173 | KJ_REQUIRE(boundsCheck(segment, ptr, ref->structRef.wordSize()), |
| 2174 | "Message contained out-of-bounds struct pointer." ) { |
| 2175 | goto useDefault; |
| 2176 | } |
| 2177 | |
| 2178 | return StructReader( |
| 2179 | segment, capTable, |
| 2180 | ptr, reinterpret_cast<const WirePointer*>(ptr + ref->structRef.dataSize.get()), |
| 2181 | ref->structRef.dataSize.get() * BITS_PER_WORD, |
| 2182 | ref->structRef.ptrCount.get(), |
| 2183 | nestingLimit - 1); |
| 2184 | } |
| 2185 | |
| 2186 | #if !CAPNP_LITE |
| 2187 | static KJ_ALWAYS_INLINE(kj::Own<ClientHook> readCapabilityPointer( |
| 2188 | SegmentReader* segment, CapTableReader* capTable, |
| 2189 | const WirePointer* ref, int nestingLimit)) { |
| 2190 | kj::Maybe<kj::Own<ClientHook>> maybeCap; |
| 2191 | |
| 2192 | KJ_REQUIRE(brokenCapFactory != nullptr, |
| 2193 | "Trying to read capabilities without ever having created a capability context. " |
| 2194 | "To read capabilities from a message, you must imbue it with CapReaderContext, or " |
| 2195 | "use the Cap'n Proto RPC system." ); |
| 2196 | |
| 2197 | if (ref->isNull()) { |
| 2198 | return brokenCapFactory->newNullCap(); |
| 2199 | } else if (!ref->isCapability()) { |
| 2200 | KJ_FAIL_REQUIRE( |
| 2201 | "Message contains non-capability pointer where capability pointer was expected." ) { |
| 2202 | break; |
| 2203 | } |
| 2204 | return brokenCapFactory->newBrokenCap( |
| 2205 | "Calling capability extracted from a non-capability pointer." ); |
| 2206 | } else KJ_IF_MAYBE(cap, capTable->extractCap(ref->capRef.index.get())) { |
| 2207 | return kj::mv(*cap); |
| 2208 | } else { |
| 2209 | KJ_FAIL_REQUIRE("Message contains invalid capability pointer." ) { |
| 2210 | break; |
| 2211 | } |
| 2212 | return brokenCapFactory->newBrokenCap("Calling invalid capability pointer." ); |
| 2213 | } |
| 2214 | } |
| 2215 | #endif // !CAPNP_LITE |
| 2216 | |
| 2217 | static KJ_ALWAYS_INLINE(ListReader readListPointer( |
| 2218 | SegmentReader* segment, CapTableReader* capTable, |
| 2219 | const WirePointer* ref, const word* defaultValue, |
| 2220 | ElementSize expectedElementSize, int nestingLimit, bool checkElementSize = true)) { |
| 2221 | return readListPointer(segment, capTable, ref, ref->target(segment), defaultValue, |
| 2222 | expectedElementSize, nestingLimit, checkElementSize); |
| 2223 | } |
| 2224 | |
| 2225 | static KJ_ALWAYS_INLINE(ListReader readListPointer( |
| 2226 | SegmentReader* segment, CapTableReader* capTable, |
| 2227 | const WirePointer* ref, const word* refTarget, |
| 2228 | const word* defaultValue, ElementSize expectedElementSize, int nestingLimit, |
| 2229 | bool checkElementSize = true)) { |
| 2230 | if (ref->isNull()) { |
| 2231 | useDefault: |
| 2232 | if (defaultValue == nullptr || |
| 2233 | reinterpret_cast<const WirePointer*>(defaultValue)->isNull()) { |
| 2234 | return ListReader(expectedElementSize); |
| 2235 | } |
| 2236 | segment = nullptr; |
| 2237 | ref = reinterpret_cast<const WirePointer*>(defaultValue); |
| 2238 | refTarget = ref->target(segment); |
| 2239 | defaultValue = nullptr; // If the default value is itself invalid, don't use it again. |
| 2240 | } |
| 2241 | |
| 2242 | KJ_REQUIRE(nestingLimit > 0, |
| 2243 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
| 2244 | goto useDefault; |
| 2245 | } |
| 2246 | |
| 2247 | const word* ptr; |
| 2248 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
| 2249 | ptr = p; |
| 2250 | } else { |
| 2251 | goto useDefault; |
| 2252 | } |
| 2253 | |
| 2254 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 2255 | "Message contains non-list pointer where list pointer was expected." ) { |
| 2256 | goto useDefault; |
| 2257 | } |
| 2258 | |
| 2259 | ElementSize elementSize = ref->listRef.elementSize(); |
| 2260 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
| 2261 | auto wordCount = ref->listRef.inlineCompositeWordCount(); |
| 2262 | |
| 2263 | // An INLINE_COMPOSITE list points to a tag, which is formatted like a pointer. |
| 2264 | const WirePointer* tag = reinterpret_cast<const WirePointer*>(ptr); |
| 2265 | |
| 2266 | KJ_REQUIRE(boundsCheck(segment, ptr, wordCount + POINTER_SIZE_IN_WORDS), |
| 2267 | "Message contains out-of-bounds list pointer." ) { |
| 2268 | goto useDefault; |
| 2269 | } |
| 2270 | |
| 2271 | ptr += POINTER_SIZE_IN_WORDS; |
| 2272 | |
| 2273 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
| 2274 | "INLINE_COMPOSITE lists of non-STRUCT type are not supported." ) { |
| 2275 | goto useDefault; |
| 2276 | } |
| 2277 | |
| 2278 | auto size = tag->inlineCompositeListElementCount(); |
| 2279 | auto wordsPerElement = tag->structRef.wordSize() / ELEMENTS; |
| 2280 | |
| 2281 | KJ_REQUIRE(upgradeBound<uint64_t>(size) * wordsPerElement <= wordCount, |
| 2282 | "INLINE_COMPOSITE list's elements overrun its word count." ) { |
| 2283 | goto useDefault; |
| 2284 | } |
| 2285 | |
| 2286 | if (wordsPerElement * (ONE * ELEMENTS) == ZERO * WORDS) { |
| 2287 | // Watch out for lists of zero-sized structs, which can claim to be arbitrarily large |
| 2288 | // without having sent actual data. |
| 2289 | KJ_REQUIRE(amplifiedRead(segment, size * (ONE * WORDS / ELEMENTS)), |
| 2290 | "Message contains amplified list pointer." ) { |
| 2291 | goto useDefault; |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | if (checkElementSize) { |
| 2296 | // If a struct list was not expected, then presumably a non-struct list was upgraded to a |
| 2297 | // struct list. We need to manipulate the pointer to point at the first field of the |
| 2298 | // struct. Together with the `step` field, this will allow the struct list to be accessed |
| 2299 | // as if it were a primitive list without branching. |
| 2300 | |
| 2301 | // Check whether the size is compatible. |
| 2302 | switch (expectedElementSize) { |
| 2303 | case ElementSize::VOID: |
| 2304 | break; |
| 2305 | |
| 2306 | case ElementSize::BIT: |
| 2307 | KJ_FAIL_REQUIRE( |
| 2308 | "Found struct list where bit list was expected; upgrading boolean lists to structs " |
| 2309 | "is no longer supported." ) { |
| 2310 | goto useDefault; |
| 2311 | } |
| 2312 | break; |
| 2313 | |
| 2314 | case ElementSize::BYTE: |
| 2315 | case ElementSize::TWO_BYTES: |
| 2316 | case ElementSize::FOUR_BYTES: |
| 2317 | case ElementSize::EIGHT_BYTES: |
| 2318 | KJ_REQUIRE(tag->structRef.dataSize.get() > ZERO * WORDS, |
| 2319 | "Expected a primitive list, but got a list of pointer-only structs." ) { |
| 2320 | goto useDefault; |
| 2321 | } |
| 2322 | break; |
| 2323 | |
| 2324 | case ElementSize::POINTER: |
| 2325 | // We expected a list of pointers but got a list of structs. Assuming the first field |
| 2326 | // in the struct is the pointer we were looking for, we want to munge the pointer to |
| 2327 | // point at the first element's pointer section. |
| 2328 | ptr += tag->structRef.dataSize.get(); |
| 2329 | KJ_REQUIRE(tag->structRef.ptrCount.get() > ZERO * POINTERS, |
| 2330 | "Expected a pointer list, but got a list of data-only structs." ) { |
| 2331 | goto useDefault; |
| 2332 | } |
| 2333 | break; |
| 2334 | |
| 2335 | case ElementSize::INLINE_COMPOSITE: |
| 2336 | break; |
| 2337 | } |
| 2338 | } |
| 2339 | |
| 2340 | return ListReader( |
| 2341 | segment, capTable, ptr, size, wordsPerElement * BITS_PER_WORD, |
| 2342 | tag->structRef.dataSize.get() * BITS_PER_WORD, |
| 2343 | tag->structRef.ptrCount.get(), ElementSize::INLINE_COMPOSITE, |
| 2344 | nestingLimit - 1); |
| 2345 | |
| 2346 | } else { |
| 2347 | // This is a primitive or pointer list, but all such lists can also be interpreted as struct |
| 2348 | // lists. We need to compute the data size and pointer count for such structs. |
| 2349 | auto dataSize = dataBitsPerElement(ref->listRef.elementSize()) * ELEMENTS; |
| 2350 | auto pointerCount = pointersPerElement(ref->listRef.elementSize()) * ELEMENTS; |
| 2351 | auto elementCount = ref->listRef.elementCount(); |
| 2352 | auto step = (dataSize + pointerCount * BITS_PER_POINTER) / ELEMENTS; |
| 2353 | |
| 2354 | auto wordCount = roundBitsUpToWords(upgradeBound<uint64_t>(elementCount) * step); |
| 2355 | KJ_REQUIRE(boundsCheck(segment, ptr, wordCount), |
| 2356 | "Message contains out-of-bounds list pointer." ) { |
| 2357 | goto useDefault; |
| 2358 | } |
| 2359 | |
| 2360 | if (elementSize == ElementSize::VOID) { |
| 2361 | // Watch out for lists of void, which can claim to be arbitrarily large without having sent |
| 2362 | // actual data. |
| 2363 | KJ_REQUIRE(amplifiedRead(segment, elementCount * (ONE * WORDS / ELEMENTS)), |
| 2364 | "Message contains amplified list pointer." ) { |
| 2365 | goto useDefault; |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | if (checkElementSize) { |
| 2370 | if (elementSize == ElementSize::BIT && expectedElementSize != ElementSize::BIT) { |
| 2371 | KJ_FAIL_REQUIRE( |
| 2372 | "Found bit list where struct list was expected; upgrading boolean lists to structs " |
| 2373 | "is no longer supported." ) { |
| 2374 | goto useDefault; |
| 2375 | } |
| 2376 | } |
| 2377 | |
| 2378 | // Verify that the elements are at least as large as the expected type. Note that if we |
| 2379 | // expected INLINE_COMPOSITE, the expected sizes here will be zero, because bounds checking |
| 2380 | // will be performed at field access time. So this check here is for the case where we |
| 2381 | // expected a list of some primitive or pointer type. |
| 2382 | |
| 2383 | BitCount expectedDataBitsPerElement = |
| 2384 | dataBitsPerElement(expectedElementSize) * ELEMENTS; |
| 2385 | WirePointerCount expectedPointersPerElement = |
| 2386 | pointersPerElement(expectedElementSize) * ELEMENTS; |
| 2387 | |
| 2388 | KJ_REQUIRE(expectedDataBitsPerElement <= dataSize, |
| 2389 | "Message contained list with incompatible element type." ) { |
| 2390 | goto useDefault; |
| 2391 | } |
| 2392 | KJ_REQUIRE(expectedPointersPerElement <= pointerCount, |
| 2393 | "Message contained list with incompatible element type." ) { |
| 2394 | goto useDefault; |
| 2395 | } |
| 2396 | } |
| 2397 | |
| 2398 | return ListReader(segment, capTable, ptr, elementCount, step, |
| 2399 | dataSize, pointerCount, elementSize, nestingLimit - 1); |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | static KJ_ALWAYS_INLINE(Text::Reader readTextPointer( |
| 2404 | SegmentReader* segment, const WirePointer* ref, |
| 2405 | const void* defaultValue, ByteCount defaultSize)) { |
| 2406 | return readTextPointer(segment, ref, ref->target(segment), defaultValue, defaultSize); |
| 2407 | } |
| 2408 | |
| 2409 | static KJ_ALWAYS_INLINE(Text::Reader readTextPointer( |
| 2410 | SegmentReader* segment, const WirePointer* ref, const word* refTarget, |
| 2411 | const void* defaultValue, ByteCount defaultSize)) { |
| 2412 | if (ref->isNull()) { |
| 2413 | useDefault: |
| 2414 | if (defaultValue == nullptr) defaultValue = "" ; |
| 2415 | return Text::Reader(reinterpret_cast<const char*>(defaultValue), |
| 2416 | unbound(defaultSize / BYTES)); |
| 2417 | } else { |
| 2418 | const word* ptr; |
| 2419 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
| 2420 | ptr = p; |
| 2421 | } else { |
| 2422 | goto useDefault; |
| 2423 | } |
| 2424 | |
| 2425 | auto size = ref->listRef.elementCount() * (ONE * BYTES / ELEMENTS); |
| 2426 | |
| 2427 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 2428 | "Message contains non-list pointer where text was expected." ) { |
| 2429 | goto useDefault; |
| 2430 | } |
| 2431 | |
| 2432 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
| 2433 | "Message contains list pointer of non-bytes where text was expected." ) { |
| 2434 | goto useDefault; |
| 2435 | } |
| 2436 | |
| 2437 | KJ_REQUIRE(boundsCheck(segment, ptr, roundBytesUpToWords(size)), |
| 2438 | "Message contained out-of-bounds text pointer." ) { |
| 2439 | goto useDefault; |
| 2440 | } |
| 2441 | |
| 2442 | KJ_REQUIRE(size > ZERO * BYTES, "Message contains text that is not NUL-terminated." ) { |
| 2443 | goto useDefault; |
| 2444 | } |
| 2445 | |
| 2446 | const char* cptr = reinterpret_cast<const char*>(ptr); |
| 2447 | uint unboundedSize = unbound(size / BYTES) - 1; |
| 2448 | |
| 2449 | KJ_REQUIRE(cptr[unboundedSize] == '\0', "Message contains text that is not NUL-terminated." ) { |
| 2450 | goto useDefault; |
| 2451 | } |
| 2452 | |
| 2453 | return Text::Reader(cptr, unboundedSize); |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | static KJ_ALWAYS_INLINE(Data::Reader readDataPointer( |
| 2458 | SegmentReader* segment, const WirePointer* ref, |
| 2459 | const void* defaultValue, BlobSize defaultSize)) { |
| 2460 | return readDataPointer(segment, ref, ref->target(segment), defaultValue, defaultSize); |
| 2461 | } |
| 2462 | |
| 2463 | static KJ_ALWAYS_INLINE(Data::Reader readDataPointer( |
| 2464 | SegmentReader* segment, const WirePointer* ref, const word* refTarget, |
| 2465 | const void* defaultValue, BlobSize defaultSize)) { |
| 2466 | if (ref->isNull()) { |
| 2467 | useDefault: |
| 2468 | return Data::Reader(reinterpret_cast<const byte*>(defaultValue), |
| 2469 | unbound(defaultSize / BYTES)); |
| 2470 | } else { |
| 2471 | const word* ptr; |
| 2472 | KJ_IF_MAYBE(p, followFars(ref, refTarget, segment)) { |
| 2473 | ptr = p; |
| 2474 | } else { |
| 2475 | goto useDefault; |
| 2476 | } |
| 2477 | |
| 2478 | if (KJ_UNLIKELY(ptr == nullptr)) { |
| 2479 | // Already reported error. |
| 2480 | goto useDefault; |
| 2481 | } |
| 2482 | |
| 2483 | auto size = ref->listRef.elementCount() * (ONE * BYTES / ELEMENTS); |
| 2484 | |
| 2485 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, |
| 2486 | "Message contains non-list pointer where data was expected." ) { |
| 2487 | goto useDefault; |
| 2488 | } |
| 2489 | |
| 2490 | KJ_REQUIRE(ref->listRef.elementSize() == ElementSize::BYTE, |
| 2491 | "Message contains list pointer of non-bytes where data was expected." ) { |
| 2492 | goto useDefault; |
| 2493 | } |
| 2494 | |
| 2495 | KJ_REQUIRE(boundsCheck(segment, ptr, roundBytesUpToWords(size)), |
| 2496 | "Message contained out-of-bounds data pointer." ) { |
| 2497 | goto useDefault; |
| 2498 | } |
| 2499 | |
| 2500 | return Data::Reader(reinterpret_cast<const byte*>(ptr), unbound(size / BYTES)); |
| 2501 | } |
| 2502 | } |
| 2503 | }; |
| 2504 | |
| 2505 | // ======================================================================================= |
| 2506 | // PointerBuilder |
| 2507 | |
| 2508 | StructBuilder PointerBuilder::initStruct(StructSize size) { |
| 2509 | return WireHelpers::initStructPointer(pointer, segment, capTable, size); |
| 2510 | } |
| 2511 | |
| 2512 | StructBuilder PointerBuilder::getStruct(StructSize size, const word* defaultValue) { |
| 2513 | return WireHelpers::getWritableStructPointer(pointer, segment, capTable, size, defaultValue); |
| 2514 | } |
| 2515 | |
| 2516 | ListBuilder PointerBuilder::initList(ElementSize elementSize, ElementCount elementCount) { |
| 2517 | return WireHelpers::initListPointer(pointer, segment, capTable, elementCount, elementSize); |
| 2518 | } |
| 2519 | |
| 2520 | ListBuilder PointerBuilder::initStructList(ElementCount elementCount, StructSize elementSize) { |
| 2521 | return WireHelpers::initStructListPointer(pointer, segment, capTable, elementCount, elementSize); |
| 2522 | } |
| 2523 | |
| 2524 | ListBuilder PointerBuilder::getList(ElementSize elementSize, const word* defaultValue) { |
| 2525 | return WireHelpers::getWritableListPointer(pointer, segment, capTable, elementSize, defaultValue); |
| 2526 | } |
| 2527 | |
| 2528 | ListBuilder PointerBuilder::getStructList(StructSize elementSize, const word* defaultValue) { |
| 2529 | return WireHelpers::getWritableStructListPointer( |
| 2530 | pointer, segment, capTable, elementSize, defaultValue); |
| 2531 | } |
| 2532 | |
| 2533 | ListBuilder PointerBuilder::getListAnySize(const word* defaultValue) { |
| 2534 | return WireHelpers::getWritableListPointerAnySize(pointer, segment, capTable, defaultValue); |
| 2535 | } |
| 2536 | |
| 2537 | template <> |
| 2538 | Text::Builder PointerBuilder::initBlob<Text>(ByteCount size) { |
| 2539 | return WireHelpers::initTextPointer(pointer, segment, capTable, |
| 2540 | assertMax<MAX_TEXT_SIZE>(size, ThrowOverflow())).value; |
| 2541 | } |
| 2542 | template <> |
| 2543 | void PointerBuilder::setBlob<Text>(Text::Reader value) { |
| 2544 | WireHelpers::setTextPointer(pointer, segment, capTable, value); |
| 2545 | } |
| 2546 | template <> |
| 2547 | Text::Builder PointerBuilder::getBlob<Text>(const void* defaultValue, ByteCount defaultSize) { |
| 2548 | return WireHelpers::getWritableTextPointer(pointer, segment, capTable, defaultValue, |
| 2549 | assertMax<MAX_TEXT_SIZE>(defaultSize, ThrowOverflow())); |
| 2550 | } |
| 2551 | |
| 2552 | template <> |
| 2553 | Data::Builder PointerBuilder::initBlob<Data>(ByteCount size) { |
| 2554 | return WireHelpers::initDataPointer(pointer, segment, capTable, |
| 2555 | assertMaxBits<BLOB_SIZE_BITS>(size, ThrowOverflow())).value; |
| 2556 | } |
| 2557 | template <> |
| 2558 | void PointerBuilder::setBlob<Data>(Data::Reader value) { |
| 2559 | WireHelpers::setDataPointer(pointer, segment, capTable, value); |
| 2560 | } |
| 2561 | template <> |
| 2562 | Data::Builder PointerBuilder::getBlob<Data>(const void* defaultValue, ByteCount defaultSize) { |
| 2563 | return WireHelpers::getWritableDataPointer(pointer, segment, capTable, defaultValue, |
| 2564 | assertMaxBits<BLOB_SIZE_BITS>(defaultSize, ThrowOverflow())); |
| 2565 | } |
| 2566 | |
| 2567 | void PointerBuilder::setStruct(const StructReader& value, bool canonical) { |
| 2568 | WireHelpers::setStructPointer(segment, capTable, pointer, value, nullptr, canonical); |
| 2569 | } |
| 2570 | |
| 2571 | void PointerBuilder::setList(const ListReader& value, bool canonical) { |
| 2572 | WireHelpers::setListPointer(segment, capTable, pointer, value, nullptr, canonical); |
| 2573 | } |
| 2574 | |
| 2575 | #if !CAPNP_LITE |
| 2576 | kj::Own<ClientHook> PointerBuilder::getCapability() { |
| 2577 | return WireHelpers::readCapabilityPointer( |
| 2578 | segment, capTable, pointer, kj::maxValue); |
| 2579 | } |
| 2580 | |
| 2581 | void PointerBuilder::setCapability(kj::Own<ClientHook>&& cap) { |
| 2582 | WireHelpers::setCapabilityPointer(segment, capTable, pointer, kj::mv(cap)); |
| 2583 | } |
| 2584 | #endif // !CAPNP_LITE |
| 2585 | |
| 2586 | void PointerBuilder::adopt(OrphanBuilder&& value) { |
| 2587 | WireHelpers::adopt(segment, capTable, pointer, kj::mv(value)); |
| 2588 | } |
| 2589 | |
| 2590 | OrphanBuilder PointerBuilder::disown() { |
| 2591 | return WireHelpers::disown(segment, capTable, pointer); |
| 2592 | } |
| 2593 | |
| 2594 | void PointerBuilder::clear() { |
| 2595 | WireHelpers::zeroObject(segment, capTable, pointer); |
| 2596 | WireHelpers::zeroMemory(pointer); |
| 2597 | } |
| 2598 | |
| 2599 | PointerType PointerBuilder::getPointerType() const { |
| 2600 | if(pointer->isNull()) { |
| 2601 | return PointerType::NULL_; |
| 2602 | } else { |
| 2603 | WirePointer* ptr = pointer; |
| 2604 | SegmentBuilder* sgmt = segment; |
| 2605 | WireHelpers::followFars(ptr, ptr->target(), sgmt); |
| 2606 | switch(ptr->kind()) { |
| 2607 | case WirePointer::FAR: |
| 2608 | KJ_FAIL_ASSERT("far pointer not followed?" ); |
| 2609 | case WirePointer::STRUCT: |
| 2610 | return PointerType::STRUCT; |
| 2611 | case WirePointer::LIST: |
| 2612 | return PointerType::LIST; |
| 2613 | case WirePointer::OTHER: |
| 2614 | KJ_REQUIRE(ptr->isCapability(), "unknown pointer type" ); |
| 2615 | return PointerType::CAPABILITY; |
| 2616 | } |
| 2617 | KJ_UNREACHABLE; |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | void PointerBuilder::transferFrom(PointerBuilder other) { |
| 2622 | if (!pointer->isNull()) { |
| 2623 | WireHelpers::zeroObject(segment, capTable, pointer); |
| 2624 | WireHelpers::zeroMemory(pointer); |
| 2625 | } |
| 2626 | WireHelpers::transferPointer(segment, pointer, other.segment, other.pointer); |
| 2627 | WireHelpers::zeroMemory(other.pointer); |
| 2628 | } |
| 2629 | |
| 2630 | void PointerBuilder::copyFrom(PointerReader other, bool canonical) { |
| 2631 | if (other.pointer == nullptr) { |
| 2632 | if (!pointer->isNull()) { |
| 2633 | WireHelpers::zeroObject(segment, capTable, pointer); |
| 2634 | WireHelpers::zeroMemory(pointer); |
| 2635 | } |
| 2636 | } else { |
| 2637 | WireHelpers::copyPointer(segment, capTable, pointer, |
| 2638 | other.segment, other.capTable, other.pointer, other.nestingLimit, |
| 2639 | nullptr, |
| 2640 | canonical); |
| 2641 | } |
| 2642 | } |
| 2643 | |
| 2644 | PointerReader PointerBuilder::asReader() const { |
| 2645 | return PointerReader(segment, capTable, pointer, kj::maxValue); |
| 2646 | } |
| 2647 | |
| 2648 | BuilderArena* PointerBuilder::getArena() const { |
| 2649 | return segment->getArena(); |
| 2650 | } |
| 2651 | |
| 2652 | CapTableBuilder* PointerBuilder::getCapTable() { |
| 2653 | return capTable; |
| 2654 | } |
| 2655 | |
| 2656 | PointerBuilder PointerBuilder::imbue(CapTableBuilder* capTable) { |
| 2657 | auto result = *this; |
| 2658 | result.capTable = capTable; |
| 2659 | return result; |
| 2660 | } |
| 2661 | |
| 2662 | // ======================================================================================= |
| 2663 | // PointerReader |
| 2664 | |
| 2665 | PointerReader PointerReader::getRoot(SegmentReader* segment, CapTableReader* capTable, |
| 2666 | const word* location, int nestingLimit) { |
| 2667 | KJ_REQUIRE(WireHelpers::boundsCheck(segment, location, POINTER_SIZE_IN_WORDS), |
| 2668 | "Root location out-of-bounds." ) { |
| 2669 | location = nullptr; |
| 2670 | } |
| 2671 | |
| 2672 | return PointerReader(segment, capTable, |
| 2673 | reinterpret_cast<const WirePointer*>(location), nestingLimit); |
| 2674 | } |
| 2675 | |
| 2676 | StructReader PointerReader::getStruct(const word* defaultValue) const { |
| 2677 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
| 2678 | return WireHelpers::readStructPointer(segment, capTable, ref, defaultValue, nestingLimit); |
| 2679 | } |
| 2680 | |
| 2681 | ListReader PointerReader::getList(ElementSize expectedElementSize, const word* defaultValue) const { |
| 2682 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
| 2683 | return WireHelpers::readListPointer( |
| 2684 | segment, capTable, ref, defaultValue, expectedElementSize, nestingLimit); |
| 2685 | } |
| 2686 | |
| 2687 | ListReader PointerReader::getListAnySize(const word* defaultValue) const { |
| 2688 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
| 2689 | return WireHelpers::readListPointer( |
| 2690 | segment, capTable, ref, defaultValue, ElementSize::VOID /* dummy */, nestingLimit, false); |
| 2691 | } |
| 2692 | |
| 2693 | template <> |
| 2694 | Text::Reader PointerReader::getBlob<Text>(const void* defaultValue, ByteCount defaultSize) const { |
| 2695 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
| 2696 | return WireHelpers::readTextPointer(segment, ref, defaultValue, defaultSize); |
| 2697 | } |
| 2698 | |
| 2699 | template <> |
| 2700 | Data::Reader PointerReader::getBlob<Data>(const void* defaultValue, ByteCount defaultSize) const { |
| 2701 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
| 2702 | return WireHelpers::readDataPointer(segment, ref, defaultValue, |
| 2703 | assertMaxBits<BLOB_SIZE_BITS>(defaultSize, ThrowOverflow())); |
| 2704 | } |
| 2705 | |
| 2706 | #if !CAPNP_LITE |
| 2707 | kj::Own<ClientHook> PointerReader::getCapability() const { |
| 2708 | const WirePointer* ref = pointer == nullptr ? &zero.pointer : pointer; |
| 2709 | return WireHelpers::readCapabilityPointer(segment, capTable, ref, nestingLimit); |
| 2710 | } |
| 2711 | #endif // !CAPNP_LITE |
| 2712 | |
| 2713 | const word* PointerReader::getUnchecked() const { |
| 2714 | KJ_REQUIRE(segment == nullptr, "getUncheckedPointer() only allowed on unchecked messages." ); |
| 2715 | return reinterpret_cast<const word*>(pointer); |
| 2716 | } |
| 2717 | |
| 2718 | MessageSizeCounts PointerReader::targetSize() const { |
| 2719 | return pointer == nullptr ? MessageSizeCounts { ZERO * WORDS, 0 } |
| 2720 | : WireHelpers::totalSize(segment, pointer, nestingLimit); |
| 2721 | } |
| 2722 | |
| 2723 | PointerType PointerReader::getPointerType() const { |
| 2724 | if(pointer == nullptr || pointer->isNull()) { |
| 2725 | return PointerType::NULL_; |
| 2726 | } else { |
| 2727 | const WirePointer* ptr = pointer; |
| 2728 | const word* refTarget = ptr->target(segment); |
| 2729 | SegmentReader* sgmt = segment; |
| 2730 | if (WireHelpers::followFars(ptr, refTarget, sgmt) == nullptr) return PointerType::NULL_; |
| 2731 | switch(ptr->kind()) { |
| 2732 | case WirePointer::FAR: |
| 2733 | KJ_FAIL_ASSERT("far pointer not followed?" ) { return PointerType::NULL_; } |
| 2734 | case WirePointer::STRUCT: |
| 2735 | return PointerType::STRUCT; |
| 2736 | case WirePointer::LIST: |
| 2737 | return PointerType::LIST; |
| 2738 | case WirePointer::OTHER: |
| 2739 | KJ_REQUIRE(ptr->isCapability(), "unknown pointer type" ) { return PointerType::NULL_; } |
| 2740 | return PointerType::CAPABILITY; |
| 2741 | } |
| 2742 | KJ_UNREACHABLE; |
| 2743 | } |
| 2744 | } |
| 2745 | |
| 2746 | kj::Maybe<Arena&> PointerReader::getArena() const { |
| 2747 | return segment == nullptr ? nullptr : segment->getArena(); |
| 2748 | } |
| 2749 | |
| 2750 | CapTableReader* PointerReader::getCapTable() { |
| 2751 | return capTable; |
| 2752 | } |
| 2753 | |
| 2754 | PointerReader PointerReader::imbue(CapTableReader* capTable) const { |
| 2755 | auto result = *this; |
| 2756 | result.capTable = capTable; |
| 2757 | return result; |
| 2758 | } |
| 2759 | |
| 2760 | bool PointerReader::isCanonical(const word **readHead) { |
| 2761 | if (!this->pointer) { |
| 2762 | // The pointer is null, so we are canonical and do not read |
| 2763 | return true; |
| 2764 | } |
| 2765 | |
| 2766 | if (!this->pointer->isPositional()) { |
| 2767 | // The pointer is a FAR or OTHER pointer, and is non-canonical |
| 2768 | return false; |
| 2769 | } |
| 2770 | |
| 2771 | switch (this->getPointerType()) { |
| 2772 | case PointerType::NULL_: |
| 2773 | // The pointer is null, we are canonical and do not read |
| 2774 | return true; |
| 2775 | case PointerType::STRUCT: { |
| 2776 | bool dataTrunc, ptrTrunc; |
| 2777 | auto structReader = this->getStruct(nullptr); |
| 2778 | if (structReader.getDataSectionSize() == ZERO * BITS && |
| 2779 | structReader.getPointerSectionSize() == ZERO * POINTERS) { |
| 2780 | return reinterpret_cast<const word*>(this->pointer) == structReader.getLocation(); |
| 2781 | } else { |
| 2782 | return structReader.isCanonical(readHead, readHead, &dataTrunc, &ptrTrunc) && dataTrunc && ptrTrunc; |
| 2783 | } |
| 2784 | } |
| 2785 | case PointerType::LIST: |
| 2786 | return this->getListAnySize(nullptr).isCanonical(readHead, pointer); |
| 2787 | case PointerType::CAPABILITY: |
| 2788 | KJ_FAIL_ASSERT("Capabilities are not positional" ); |
| 2789 | } |
| 2790 | KJ_UNREACHABLE; |
| 2791 | } |
| 2792 | |
| 2793 | // ======================================================================================= |
| 2794 | // StructBuilder |
| 2795 | |
| 2796 | void StructBuilder::clearAll() { |
| 2797 | if (dataSize == ONE * BITS) { |
| 2798 | setDataField<bool>(ONE * ELEMENTS, false); |
| 2799 | } else { |
| 2800 | WireHelpers::zeroMemory(reinterpret_cast<byte*>(data), dataSize / BITS_PER_BYTE); |
| 2801 | } |
| 2802 | |
| 2803 | for (auto i: kj::zeroTo(pointerCount)) { |
| 2804 | WireHelpers::zeroObject(segment, capTable, pointers + i); |
| 2805 | } |
| 2806 | WireHelpers::zeroMemory(pointers, pointerCount); |
| 2807 | } |
| 2808 | |
| 2809 | void StructBuilder::transferContentFrom(StructBuilder other) { |
| 2810 | // Determine the amount of data the builders have in common. |
| 2811 | auto sharedDataSize = kj::min(dataSize, other.dataSize); |
| 2812 | |
| 2813 | if (dataSize > sharedDataSize) { |
| 2814 | // Since the target is larger than the source, make sure to zero out the extra bits that the |
| 2815 | // source doesn't have. |
| 2816 | if (dataSize == ONE * BITS) { |
| 2817 | setDataField<bool>(ZERO * ELEMENTS, false); |
| 2818 | } else { |
| 2819 | byte* unshared = reinterpret_cast<byte*>(data) + sharedDataSize / BITS_PER_BYTE; |
| 2820 | // Note: this subtraction can't fail due to the if() above |
| 2821 | WireHelpers::zeroMemory(unshared, |
| 2822 | subtractChecked(dataSize, sharedDataSize, []() {}) / BITS_PER_BYTE); |
| 2823 | } |
| 2824 | } |
| 2825 | |
| 2826 | // Copy over the shared part. |
| 2827 | if (sharedDataSize == ONE * BITS) { |
| 2828 | setDataField<bool>(ZERO * ELEMENTS, other.getDataField<bool>(ZERO * ELEMENTS)); |
| 2829 | } else { |
| 2830 | WireHelpers::copyMemory(reinterpret_cast<byte*>(data), |
| 2831 | reinterpret_cast<byte*>(other.data), |
| 2832 | sharedDataSize / BITS_PER_BYTE); |
| 2833 | } |
| 2834 | |
| 2835 | // Zero out all pointers in the target. |
| 2836 | for (auto i: kj::zeroTo(pointerCount)) { |
| 2837 | WireHelpers::zeroObject(segment, capTable, pointers + i); |
| 2838 | } |
| 2839 | WireHelpers::zeroMemory(pointers, pointerCount); |
| 2840 | |
| 2841 | // Transfer the pointers. |
| 2842 | auto sharedPointerCount = kj::min(pointerCount, other.pointerCount); |
| 2843 | for (auto i: kj::zeroTo(sharedPointerCount)) { |
| 2844 | WireHelpers::transferPointer(segment, pointers + i, other.segment, other.pointers + i); |
| 2845 | } |
| 2846 | |
| 2847 | // Zero out the pointers that were transferred in the source because it no longer has ownership. |
| 2848 | // If the source had any extra pointers that the destination didn't have space for, we |
| 2849 | // intentionally leave them be, so that they'll be cleaned up later. |
| 2850 | WireHelpers::zeroMemory(other.pointers, sharedPointerCount); |
| 2851 | } |
| 2852 | |
| 2853 | void StructBuilder::copyContentFrom(StructReader other) { |
| 2854 | // Determine the amount of data the builders have in common. |
| 2855 | auto sharedDataSize = kj::min(dataSize, other.dataSize); |
| 2856 | auto sharedPointerCount = kj::min(pointerCount, other.pointerCount); |
| 2857 | |
| 2858 | if ((sharedDataSize > ZERO * BITS && other.data == data) || |
| 2859 | (sharedPointerCount > ZERO * POINTERS && other.pointers == pointers)) { |
| 2860 | // At least one of the section pointers is pointing to ourself. Verify that the other is two |
| 2861 | // (but ignore empty sections). |
| 2862 | KJ_ASSERT((sharedDataSize == ZERO * BITS || other.data == data) && |
| 2863 | (sharedPointerCount == ZERO * POINTERS || other.pointers == pointers)); |
| 2864 | // So `other` appears to be a reader for this same struct. No coping is needed. |
| 2865 | return; |
| 2866 | } |
| 2867 | |
| 2868 | if (dataSize > sharedDataSize) { |
| 2869 | // Since the target is larger than the source, make sure to zero out the extra bits that the |
| 2870 | // source doesn't have. |
| 2871 | if (dataSize == ONE * BITS) { |
| 2872 | setDataField<bool>(ZERO * ELEMENTS, false); |
| 2873 | } else { |
| 2874 | byte* unshared = reinterpret_cast<byte*>(data) + sharedDataSize / BITS_PER_BYTE; |
| 2875 | WireHelpers::zeroMemory(unshared, |
| 2876 | subtractChecked(dataSize, sharedDataSize, []() {}) / BITS_PER_BYTE); |
| 2877 | } |
| 2878 | } |
| 2879 | |
| 2880 | // Copy over the shared part. |
| 2881 | if (sharedDataSize == ONE * BITS) { |
| 2882 | setDataField<bool>(ZERO * ELEMENTS, other.getDataField<bool>(ZERO * ELEMENTS)); |
| 2883 | } else { |
| 2884 | WireHelpers::copyMemory(reinterpret_cast<byte*>(data), |
| 2885 | reinterpret_cast<const byte*>(other.data), |
| 2886 | sharedDataSize / BITS_PER_BYTE); |
| 2887 | } |
| 2888 | |
| 2889 | // Zero out all pointers in the target. |
| 2890 | for (auto i: kj::zeroTo(pointerCount)) { |
| 2891 | WireHelpers::zeroObject(segment, capTable, pointers + i); |
| 2892 | } |
| 2893 | WireHelpers::zeroMemory(pointers, pointerCount); |
| 2894 | |
| 2895 | // Copy the pointers. |
| 2896 | for (auto i: kj::zeroTo(sharedPointerCount)) { |
| 2897 | WireHelpers::copyPointer(segment, capTable, pointers + i, |
| 2898 | other.segment, other.capTable, other.pointers + i, other.nestingLimit); |
| 2899 | } |
| 2900 | } |
| 2901 | |
| 2902 | StructReader StructBuilder::asReader() const { |
| 2903 | return StructReader(segment, capTable, data, pointers, |
| 2904 | dataSize, pointerCount, kj::maxValue); |
| 2905 | } |
| 2906 | |
| 2907 | BuilderArena* StructBuilder::getArena() { |
| 2908 | return segment->getArena(); |
| 2909 | } |
| 2910 | |
| 2911 | CapTableBuilder* StructBuilder::getCapTable() { |
| 2912 | return capTable; |
| 2913 | } |
| 2914 | |
| 2915 | StructBuilder StructBuilder::imbue(CapTableBuilder* capTable) { |
| 2916 | auto result = *this; |
| 2917 | result.capTable = capTable; |
| 2918 | return result; |
| 2919 | } |
| 2920 | |
| 2921 | // ======================================================================================= |
| 2922 | // StructReader |
| 2923 | |
| 2924 | MessageSizeCounts StructReader::totalSize() const { |
| 2925 | MessageSizeCounts result = { |
| 2926 | WireHelpers::roundBitsUpToWords(dataSize) + pointerCount * WORDS_PER_POINTER, 0 }; |
| 2927 | |
| 2928 | for (auto i: kj::zeroTo(pointerCount)) { |
| 2929 | result += WireHelpers::totalSize(segment, pointers + i, nestingLimit); |
| 2930 | } |
| 2931 | |
| 2932 | if (segment != nullptr) { |
| 2933 | // This traversal should not count against the read limit, because it's highly likely that |
| 2934 | // the caller is going to traverse the object again, e.g. to copy it. |
| 2935 | segment->unread(result.wordCount); |
| 2936 | } |
| 2937 | |
| 2938 | return result; |
| 2939 | } |
| 2940 | |
| 2941 | kj::Array<word> StructReader::canonicalize() { |
| 2942 | auto size = totalSize().wordCount + POINTER_SIZE_IN_WORDS; |
| 2943 | kj::Array<word> backing = kj::heapArray<word>(unbound(size / WORDS)); |
| 2944 | WireHelpers::zeroMemory(backing.asPtr()); |
| 2945 | FlatMessageBuilder builder(backing); |
| 2946 | _::PointerHelpers<AnyPointer>::getInternalBuilder(builder.initRoot<AnyPointer>()).setStruct(*this, true); |
| 2947 | KJ_ASSERT(builder.isCanonical()); |
| 2948 | auto output = builder.getSegmentsForOutput()[0]; |
| 2949 | kj::Array<word> trunc = kj::heapArray<word>(output.size()); |
| 2950 | WireHelpers::copyMemory(trunc.begin(), output); |
| 2951 | return trunc; |
| 2952 | } |
| 2953 | |
| 2954 | CapTableReader* StructReader::getCapTable() { |
| 2955 | return capTable; |
| 2956 | } |
| 2957 | |
| 2958 | StructReader StructReader::imbue(CapTableReader* capTable) const { |
| 2959 | auto result = *this; |
| 2960 | result.capTable = capTable; |
| 2961 | return result; |
| 2962 | } |
| 2963 | |
| 2964 | bool StructReader::isCanonical(const word **readHead, |
| 2965 | const word **ptrHead, |
| 2966 | bool *dataTrunc, |
| 2967 | bool *ptrTrunc) { |
| 2968 | if (this->getLocation() != *readHead) { |
| 2969 | // Our target area is not at the readHead, preorder fails |
| 2970 | return false; |
| 2971 | } |
| 2972 | |
| 2973 | if (this->getDataSectionSize() % BITS_PER_WORD != ZERO * BITS) { |
| 2974 | // Using legacy non-word-size structs, reject |
| 2975 | return false; |
| 2976 | } |
| 2977 | auto dataSize = this->getDataSectionSize() / BITS_PER_WORD; |
| 2978 | |
| 2979 | // Mark whether the struct is properly truncated |
| 2980 | KJ_IF_MAYBE(diff, trySubtract(dataSize, ONE * WORDS)) { |
| 2981 | *dataTrunc = this->getDataField<uint64_t>(*diff / WORDS * ELEMENTS) != 0; |
| 2982 | } else { |
| 2983 | // Data segment empty. |
| 2984 | *dataTrunc = true; |
| 2985 | } |
| 2986 | |
| 2987 | KJ_IF_MAYBE(diff, trySubtract(this->pointerCount, ONE * POINTERS)) { |
| 2988 | *ptrTrunc = !this->getPointerField(*diff).isNull(); |
| 2989 | } else { |
| 2990 | *ptrTrunc = true; |
| 2991 | } |
| 2992 | |
| 2993 | // Advance the read head |
| 2994 | *readHead += (dataSize + (this->pointerCount * WORDS_PER_POINTER)); |
| 2995 | |
| 2996 | // Check each pointer field for canonicity |
| 2997 | for (auto ptrIndex: kj::zeroTo(this->pointerCount)) { |
| 2998 | if (!this->getPointerField(ptrIndex).isCanonical(ptrHead)) { |
| 2999 | return false; |
| 3000 | } |
| 3001 | } |
| 3002 | |
| 3003 | return true; |
| 3004 | } |
| 3005 | |
| 3006 | // ======================================================================================= |
| 3007 | // ListBuilder |
| 3008 | |
| 3009 | Text::Builder ListBuilder::asText() { |
| 3010 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
| 3011 | "Expected Text, got list of non-bytes." ) { |
| 3012 | return Text::Builder(); |
| 3013 | } |
| 3014 | |
| 3015 | size_t size = unbound(elementCount / ELEMENTS); |
| 3016 | |
| 3017 | KJ_REQUIRE(size > 0, "Message contains text that is not NUL-terminated." ) { |
| 3018 | return Text::Builder(); |
| 3019 | } |
| 3020 | |
| 3021 | char* cptr = reinterpret_cast<char*>(ptr); |
| 3022 | --size; // NUL terminator |
| 3023 | |
| 3024 | KJ_REQUIRE(cptr[size] == '\0', "Message contains text that is not NUL-terminated." ) { |
| 3025 | return Text::Builder(); |
| 3026 | } |
| 3027 | |
| 3028 | return Text::Builder(cptr, size); |
| 3029 | } |
| 3030 | |
| 3031 | Data::Builder ListBuilder::asData() { |
| 3032 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
| 3033 | "Expected Text, got list of non-bytes." ) { |
| 3034 | return Data::Builder(); |
| 3035 | } |
| 3036 | |
| 3037 | return Data::Builder(reinterpret_cast<byte*>(ptr), unbound(elementCount / ELEMENTS)); |
| 3038 | } |
| 3039 | |
| 3040 | StructBuilder ListBuilder::getStructElement(ElementCount index) { |
| 3041 | auto indexBit = upgradeBound<uint64_t>(index) * step; |
| 3042 | byte* structData = ptr + indexBit / BITS_PER_BYTE; |
| 3043 | KJ_DASSERT(indexBit % BITS_PER_BYTE == ZERO * BITS); |
| 3044 | return StructBuilder(segment, capTable, structData, |
| 3045 | reinterpret_cast<WirePointer*>(structData + structDataSize / BITS_PER_BYTE), |
| 3046 | structDataSize, structPointerCount); |
| 3047 | } |
| 3048 | |
| 3049 | ListReader ListBuilder::asReader() const { |
| 3050 | return ListReader(segment, capTable, ptr, elementCount, step, structDataSize, structPointerCount, |
| 3051 | elementSize, kj::maxValue); |
| 3052 | } |
| 3053 | |
| 3054 | BuilderArena* ListBuilder::getArena() { |
| 3055 | return segment->getArena(); |
| 3056 | } |
| 3057 | |
| 3058 | CapTableBuilder* ListBuilder::getCapTable() { |
| 3059 | return capTable; |
| 3060 | } |
| 3061 | |
| 3062 | ListBuilder ListBuilder::imbue(CapTableBuilder* capTable) { |
| 3063 | auto result = *this; |
| 3064 | result.capTable = capTable; |
| 3065 | return result; |
| 3066 | } |
| 3067 | |
| 3068 | // ======================================================================================= |
| 3069 | // ListReader |
| 3070 | |
| 3071 | Text::Reader ListReader::asText() { |
| 3072 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
| 3073 | "Expected Text, got list of non-bytes." ) { |
| 3074 | return Text::Reader(); |
| 3075 | } |
| 3076 | |
| 3077 | size_t size = unbound(elementCount / ELEMENTS); |
| 3078 | |
| 3079 | KJ_REQUIRE(size > 0, "Message contains text that is not NUL-terminated." ) { |
| 3080 | return Text::Reader(); |
| 3081 | } |
| 3082 | |
| 3083 | const char* cptr = reinterpret_cast<const char*>(ptr); |
| 3084 | --size; // NUL terminator |
| 3085 | |
| 3086 | KJ_REQUIRE(cptr[size] == '\0', "Message contains text that is not NUL-terminated." ) { |
| 3087 | return Text::Reader(); |
| 3088 | } |
| 3089 | |
| 3090 | return Text::Reader(cptr, size); |
| 3091 | } |
| 3092 | |
| 3093 | Data::Reader ListReader::asData() { |
| 3094 | KJ_REQUIRE(structDataSize == G(8) * BITS && structPointerCount == ZERO * POINTERS, |
| 3095 | "Expected Text, got list of non-bytes." ) { |
| 3096 | return Data::Reader(); |
| 3097 | } |
| 3098 | |
| 3099 | return Data::Reader(reinterpret_cast<const byte*>(ptr), unbound(elementCount / ELEMENTS)); |
| 3100 | } |
| 3101 | |
| 3102 | kj::ArrayPtr<const byte> ListReader::asRawBytes() const { |
| 3103 | KJ_REQUIRE(structPointerCount == ZERO * POINTERS, |
| 3104 | "Expected data only, got pointers." ) { |
| 3105 | return kj::ArrayPtr<const byte>(); |
| 3106 | } |
| 3107 | |
| 3108 | return arrayPtr(reinterpret_cast<const byte*>(ptr), |
| 3109 | WireHelpers::roundBitsUpToBytes( |
| 3110 | upgradeBound<uint64_t>(elementCount) * (structDataSize / ELEMENTS))); |
| 3111 | } |
| 3112 | |
| 3113 | StructReader ListReader::getStructElement(ElementCount index) const { |
| 3114 | KJ_REQUIRE(nestingLimit > 0, |
| 3115 | "Message is too deeply-nested or contains cycles. See capnp::ReaderOptions." ) { |
| 3116 | return StructReader(); |
| 3117 | } |
| 3118 | |
| 3119 | auto indexBit = upgradeBound<uint64_t>(index) * step; |
| 3120 | const byte* structData = ptr + indexBit / BITS_PER_BYTE; |
| 3121 | const WirePointer* structPointers = |
| 3122 | reinterpret_cast<const WirePointer*>(structData + structDataSize / BITS_PER_BYTE); |
| 3123 | |
| 3124 | KJ_DASSERT(indexBit % BITS_PER_BYTE == ZERO * BITS); |
| 3125 | return StructReader( |
| 3126 | segment, capTable, structData, structPointers, |
| 3127 | structDataSize, structPointerCount, |
| 3128 | nestingLimit - 1); |
| 3129 | } |
| 3130 | |
| 3131 | MessageSizeCounts ListReader::totalSize() const { |
| 3132 | // TODO(cleanup): This is kind of a lot of logic duplicated from WireHelpers::totalSize(), but |
| 3133 | // it's unclear how to share it effectively. |
| 3134 | |
| 3135 | MessageSizeCounts result = { ZERO * WORDS, 0 }; |
| 3136 | |
| 3137 | switch (elementSize) { |
| 3138 | case ElementSize::VOID: |
| 3139 | // Nothing. |
| 3140 | break; |
| 3141 | case ElementSize::BIT: |
| 3142 | case ElementSize::BYTE: |
| 3143 | case ElementSize::TWO_BYTES: |
| 3144 | case ElementSize::FOUR_BYTES: |
| 3145 | case ElementSize::EIGHT_BYTES: |
| 3146 | result.addWords(WireHelpers::roundBitsUpToWords( |
| 3147 | upgradeBound<uint64_t>(elementCount) * dataBitsPerElement(elementSize))); |
| 3148 | break; |
| 3149 | case ElementSize::POINTER: { |
| 3150 | auto count = elementCount * (POINTERS / ELEMENTS); |
| 3151 | result.addWords(count * WORDS_PER_POINTER); |
| 3152 | |
| 3153 | for (auto i: kj::zeroTo(count)) { |
| 3154 | result += WireHelpers::totalSize(segment, reinterpret_cast<const WirePointer*>(ptr) + i, |
| 3155 | nestingLimit); |
| 3156 | } |
| 3157 | break; |
| 3158 | } |
| 3159 | case ElementSize::INLINE_COMPOSITE: { |
| 3160 | // Don't forget to count the tag word. |
| 3161 | auto wordSize = upgradeBound<uint64_t>(elementCount) * step / BITS_PER_WORD; |
| 3162 | result.addWords(wordSize + POINTER_SIZE_IN_WORDS); |
| 3163 | |
| 3164 | if (structPointerCount > ZERO * POINTERS) { |
| 3165 | const word* pos = reinterpret_cast<const word*>(ptr); |
| 3166 | for (auto i KJ_UNUSED: kj::zeroTo(elementCount)) { |
| 3167 | pos += structDataSize / BITS_PER_WORD; |
| 3168 | |
| 3169 | for (auto j KJ_UNUSED: kj::zeroTo(structPointerCount)) { |
| 3170 | result += WireHelpers::totalSize(segment, reinterpret_cast<const WirePointer*>(pos), |
| 3171 | nestingLimit); |
| 3172 | pos += POINTER_SIZE_IN_WORDS; |
| 3173 | } |
| 3174 | } |
| 3175 | } |
| 3176 | break; |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | if (segment != nullptr) { |
| 3181 | // This traversal should not count against the read limit, because it's highly likely that |
| 3182 | // the caller is going to traverse the object again, e.g. to copy it. |
| 3183 | segment->unread(result.wordCount); |
| 3184 | } |
| 3185 | |
| 3186 | return result; |
| 3187 | } |
| 3188 | |
| 3189 | CapTableReader* ListReader::getCapTable() { |
| 3190 | return capTable; |
| 3191 | } |
| 3192 | |
| 3193 | ListReader ListReader::imbue(CapTableReader* capTable) const { |
| 3194 | auto result = *this; |
| 3195 | result.capTable = capTable; |
| 3196 | return result; |
| 3197 | } |
| 3198 | |
| 3199 | bool ListReader::isCanonical(const word **readHead, const WirePointer *ref) { |
| 3200 | switch (this->getElementSize()) { |
| 3201 | case ElementSize::INLINE_COMPOSITE: { |
| 3202 | *readHead += 1; |
| 3203 | if (reinterpret_cast<const word*>(this->ptr) != *readHead) { |
| 3204 | // The next word to read is the tag word, but the pointer is in |
| 3205 | // front of it, so our check is slightly different |
| 3206 | return false; |
| 3207 | } |
| 3208 | if (this->structDataSize % BITS_PER_WORD != ZERO * BITS) { |
| 3209 | return false; |
| 3210 | } |
| 3211 | auto elementSize = StructSize(this->structDataSize / BITS_PER_WORD, |
| 3212 | this->structPointerCount).total() / ELEMENTS; |
| 3213 | auto totalSize = upgradeBound<uint64_t>(this->elementCount) * elementSize; |
| 3214 | if (totalSize != ref->listRef.inlineCompositeWordCount()) { |
| 3215 | return false; |
| 3216 | } |
| 3217 | if (elementSize == ZERO * WORDS / ELEMENTS) { |
| 3218 | return true; |
| 3219 | } |
| 3220 | auto listEnd = *readHead + totalSize; |
| 3221 | auto pointerHead = listEnd; |
| 3222 | bool listDataTrunc = false; |
| 3223 | bool listPtrTrunc = false; |
| 3224 | for (auto ec: kj::zeroTo(this->elementCount)) { |
| 3225 | bool dataTrunc, ptrTrunc; |
| 3226 | if (!this->getStructElement(ec).isCanonical(readHead, |
| 3227 | &pointerHead, |
| 3228 | &dataTrunc, |
| 3229 | &ptrTrunc)) { |
| 3230 | return false; |
| 3231 | } |
| 3232 | listDataTrunc |= dataTrunc; |
| 3233 | listPtrTrunc |= ptrTrunc; |
| 3234 | } |
| 3235 | KJ_REQUIRE(*readHead == listEnd, *readHead, listEnd); |
| 3236 | *readHead = pointerHead; |
| 3237 | return listDataTrunc && listPtrTrunc; |
| 3238 | } |
| 3239 | case ElementSize::POINTER: { |
| 3240 | if (reinterpret_cast<const word*>(this->ptr) != *readHead) { |
| 3241 | return false; |
| 3242 | } |
| 3243 | *readHead += this->elementCount * (POINTERS / ELEMENTS) * WORDS_PER_POINTER; |
| 3244 | for (auto ec: kj::zeroTo(this->elementCount)) { |
| 3245 | if (!this->getPointerElement(ec).isCanonical(readHead)) { |
| 3246 | return false; |
| 3247 | } |
| 3248 | } |
| 3249 | return true; |
| 3250 | } |
| 3251 | default: { |
| 3252 | if (reinterpret_cast<const word*>(this->ptr) != *readHead) { |
| 3253 | return false; |
| 3254 | } |
| 3255 | |
| 3256 | auto bitSize = upgradeBound<uint64_t>(this->elementCount) * |
| 3257 | dataBitsPerElement(this->elementSize); |
| 3258 | auto truncatedByteSize = bitSize / BITS_PER_BYTE; |
| 3259 | auto byteReadHead = reinterpret_cast<const uint8_t*>(*readHead) + truncatedByteSize; |
| 3260 | auto readHeadEnd = *readHead + WireHelpers::roundBitsUpToWords(bitSize); |
| 3261 | |
| 3262 | auto leftoverBits = bitSize % BITS_PER_BYTE; |
| 3263 | if (leftoverBits > ZERO * BITS) { |
| 3264 | auto mask = ~((1 << unbound(leftoverBits / BITS)) - 1); |
| 3265 | |
| 3266 | if (mask & *byteReadHead) { |
| 3267 | return false; |
| 3268 | } |
| 3269 | byteReadHead += 1; |
| 3270 | } |
| 3271 | |
| 3272 | while (byteReadHead != reinterpret_cast<const uint8_t*>(readHeadEnd)) { |
| 3273 | if (*byteReadHead != 0) { |
| 3274 | return false; |
| 3275 | } |
| 3276 | byteReadHead += 1; |
| 3277 | } |
| 3278 | |
| 3279 | *readHead = readHeadEnd; |
| 3280 | return true; |
| 3281 | } |
| 3282 | } |
| 3283 | KJ_UNREACHABLE; |
| 3284 | } |
| 3285 | |
| 3286 | // ======================================================================================= |
| 3287 | // OrphanBuilder |
| 3288 | |
| 3289 | OrphanBuilder OrphanBuilder::initStruct( |
| 3290 | BuilderArena* arena, CapTableBuilder* capTable, StructSize size) { |
| 3291 | OrphanBuilder result; |
| 3292 | StructBuilder builder = WireHelpers::initStructPointer( |
| 3293 | result.tagAsPtr(), nullptr, capTable, size, arena); |
| 3294 | result.segment = builder.segment; |
| 3295 | result.capTable = capTable; |
| 3296 | result.location = builder.getLocation(); |
| 3297 | return result; |
| 3298 | } |
| 3299 | |
| 3300 | OrphanBuilder OrphanBuilder::initList( |
| 3301 | BuilderArena* arena, CapTableBuilder* capTable, |
| 3302 | ElementCount elementCount, ElementSize elementSize) { |
| 3303 | OrphanBuilder result; |
| 3304 | ListBuilder builder = WireHelpers::initListPointer( |
| 3305 | result.tagAsPtr(), nullptr, capTable, elementCount, elementSize, arena); |
| 3306 | result.segment = builder.segment; |
| 3307 | result.capTable = capTable; |
| 3308 | result.location = builder.getLocation(); |
| 3309 | return result; |
| 3310 | } |
| 3311 | |
| 3312 | OrphanBuilder OrphanBuilder::initStructList( |
| 3313 | BuilderArena* arena, CapTableBuilder* capTable, |
| 3314 | ElementCount elementCount, StructSize elementSize) { |
| 3315 | OrphanBuilder result; |
| 3316 | ListBuilder builder = WireHelpers::initStructListPointer( |
| 3317 | result.tagAsPtr(), nullptr, capTable, elementCount, elementSize, arena); |
| 3318 | result.segment = builder.segment; |
| 3319 | result.capTable = capTable; |
| 3320 | result.location = builder.getLocation(); |
| 3321 | return result; |
| 3322 | } |
| 3323 | |
| 3324 | OrphanBuilder OrphanBuilder::initText( |
| 3325 | BuilderArena* arena, CapTableBuilder* capTable, ByteCount size) { |
| 3326 | OrphanBuilder result; |
| 3327 | auto allocation = WireHelpers::initTextPointer(result.tagAsPtr(), nullptr, capTable, |
| 3328 | assertMax<MAX_TEXT_SIZE>(size, ThrowOverflow()), arena); |
| 3329 | result.segment = allocation.segment; |
| 3330 | result.capTable = capTable; |
| 3331 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
| 3332 | return result; |
| 3333 | } |
| 3334 | |
| 3335 | OrphanBuilder OrphanBuilder::initData( |
| 3336 | BuilderArena* arena, CapTableBuilder* capTable, ByteCount size) { |
| 3337 | OrphanBuilder result; |
| 3338 | auto allocation = WireHelpers::initDataPointer(result.tagAsPtr(), nullptr, capTable, |
| 3339 | assertMaxBits<BLOB_SIZE_BITS>(size), arena); |
| 3340 | result.segment = allocation.segment; |
| 3341 | result.capTable = capTable; |
| 3342 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
| 3343 | return result; |
| 3344 | } |
| 3345 | |
| 3346 | OrphanBuilder OrphanBuilder::copy( |
| 3347 | BuilderArena* arena, CapTableBuilder* capTable, StructReader copyFrom) { |
| 3348 | OrphanBuilder result; |
| 3349 | auto allocation = WireHelpers::setStructPointer( |
| 3350 | nullptr, capTable, result.tagAsPtr(), copyFrom, arena); |
| 3351 | result.segment = allocation.segment; |
| 3352 | result.capTable = capTable; |
| 3353 | result.location = reinterpret_cast<word*>(allocation.value); |
| 3354 | return result; |
| 3355 | } |
| 3356 | |
| 3357 | OrphanBuilder OrphanBuilder::copy( |
| 3358 | BuilderArena* arena, CapTableBuilder* capTable, ListReader copyFrom) { |
| 3359 | OrphanBuilder result; |
| 3360 | auto allocation = WireHelpers::setListPointer( |
| 3361 | nullptr, capTable, result.tagAsPtr(), copyFrom, arena); |
| 3362 | result.segment = allocation.segment; |
| 3363 | result.capTable = capTable; |
| 3364 | result.location = reinterpret_cast<word*>(allocation.value); |
| 3365 | return result; |
| 3366 | } |
| 3367 | |
| 3368 | OrphanBuilder OrphanBuilder::copy( |
| 3369 | BuilderArena* arena, CapTableBuilder* capTable, PointerReader copyFrom) { |
| 3370 | OrphanBuilder result; |
| 3371 | auto allocation = WireHelpers::copyPointer( |
| 3372 | nullptr, capTable, result.tagAsPtr(), |
| 3373 | copyFrom.segment, copyFrom.capTable, copyFrom.pointer, copyFrom.nestingLimit, arena); |
| 3374 | result.segment = allocation.segment; |
| 3375 | result.capTable = capTable; |
| 3376 | result.location = reinterpret_cast<word*>(allocation.value); |
| 3377 | return result; |
| 3378 | } |
| 3379 | |
| 3380 | OrphanBuilder OrphanBuilder::copy( |
| 3381 | BuilderArena* arena, CapTableBuilder* capTable, Text::Reader copyFrom) { |
| 3382 | OrphanBuilder result; |
| 3383 | auto allocation = WireHelpers::setTextPointer( |
| 3384 | result.tagAsPtr(), nullptr, capTable, copyFrom, arena); |
| 3385 | result.segment = allocation.segment; |
| 3386 | result.capTable = capTable; |
| 3387 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
| 3388 | return result; |
| 3389 | } |
| 3390 | |
| 3391 | OrphanBuilder OrphanBuilder::copy( |
| 3392 | BuilderArena* arena, CapTableBuilder* capTable, Data::Reader copyFrom) { |
| 3393 | OrphanBuilder result; |
| 3394 | auto allocation = WireHelpers::setDataPointer( |
| 3395 | result.tagAsPtr(), nullptr, capTable, copyFrom, arena); |
| 3396 | result.segment = allocation.segment; |
| 3397 | result.capTable = capTable; |
| 3398 | result.location = reinterpret_cast<word*>(allocation.value.begin()); |
| 3399 | return result; |
| 3400 | } |
| 3401 | |
| 3402 | #if !CAPNP_LITE |
| 3403 | OrphanBuilder OrphanBuilder::copy( |
| 3404 | BuilderArena* arena, CapTableBuilder* capTable, kj::Own<ClientHook> copyFrom) { |
| 3405 | OrphanBuilder result; |
| 3406 | WireHelpers::setCapabilityPointer(nullptr, capTable, result.tagAsPtr(), kj::mv(copyFrom)); |
| 3407 | result.segment = arena->getSegment(SegmentId(0)); |
| 3408 | result.capTable = capTable; |
| 3409 | result.location = &result.tag; // dummy to make location non-null |
| 3410 | return result; |
| 3411 | } |
| 3412 | #endif // !CAPNP_LITE |
| 3413 | |
| 3414 | OrphanBuilder OrphanBuilder::concat( |
| 3415 | BuilderArena* arena, CapTableBuilder* capTable, |
| 3416 | ElementSize elementSize, StructSize structSize, |
| 3417 | kj::ArrayPtr<const ListReader> lists) { |
| 3418 | KJ_REQUIRE(lists.size() > 0, "Can't concat empty list " ); |
| 3419 | |
| 3420 | // Find the overall element count and size. |
| 3421 | ListElementCount elementCount = ZERO * ELEMENTS; |
| 3422 | for (auto& list: lists) { |
| 3423 | elementCount = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(elementCount + list.elementCount, |
| 3424 | []() { KJ_FAIL_REQUIRE("concatenated list exceeds list size limit" ); }); |
| 3425 | if (list.elementSize != elementSize) { |
| 3426 | // If element sizes don't all match, upgrade to struct list. |
| 3427 | KJ_REQUIRE(list.elementSize != ElementSize::BIT && elementSize != ElementSize::BIT, |
| 3428 | "can't upgrade bit lists to struct lists" ); |
| 3429 | elementSize = ElementSize::INLINE_COMPOSITE; |
| 3430 | } |
| 3431 | structSize.data = kj::max(structSize.data, |
| 3432 | WireHelpers::roundBitsUpToWords(list.structDataSize)); |
| 3433 | structSize.pointers = kj::max(structSize.pointers, list.structPointerCount); |
| 3434 | } |
| 3435 | |
| 3436 | // Allocate the list. |
| 3437 | OrphanBuilder result; |
| 3438 | ListBuilder builder = (elementSize == ElementSize::INLINE_COMPOSITE) |
| 3439 | ? WireHelpers::initStructListPointer( |
| 3440 | result.tagAsPtr(), nullptr, capTable, elementCount, structSize, arena) |
| 3441 | : WireHelpers::initListPointer( |
| 3442 | result.tagAsPtr(), nullptr, capTable, elementCount, elementSize, arena); |
| 3443 | |
| 3444 | // Copy elements. |
| 3445 | switch (elementSize) { |
| 3446 | case ElementSize::INLINE_COMPOSITE: { |
| 3447 | ListElementCount pos = ZERO * ELEMENTS; |
| 3448 | for (auto& list: lists) { |
| 3449 | for (auto i: kj::zeroTo(list.size())) { |
| 3450 | builder.getStructElement(pos).copyContentFrom(list.getStructElement(i)); |
| 3451 | // assumeBits() safe because we checked total size earlier. |
| 3452 | pos = assumeBits<LIST_ELEMENT_COUNT_BITS>(pos + ONE * ELEMENTS); |
| 3453 | } |
| 3454 | } |
| 3455 | break; |
| 3456 | } |
| 3457 | case ElementSize::POINTER: { |
| 3458 | ListElementCount pos = ZERO * ELEMENTS; |
| 3459 | for (auto& list: lists) { |
| 3460 | for (auto i: kj::zeroTo(list.size())) { |
| 3461 | builder.getPointerElement(pos).copyFrom(list.getPointerElement(i)); |
| 3462 | // assumeBits() safe because we checked total size earlier. |
| 3463 | pos = assumeBits<LIST_ELEMENT_COUNT_BITS>(pos + ONE * ELEMENTS); |
| 3464 | } |
| 3465 | } |
| 3466 | break; |
| 3467 | } |
| 3468 | case ElementSize::BIT: { |
| 3469 | // It's difficult to memcpy() bits since a list could start or end mid-byte. For now we |
| 3470 | // do a slow, naive loop. Probably no one will ever care. |
| 3471 | ListElementCount pos = ZERO * ELEMENTS; |
| 3472 | for (auto& list: lists) { |
| 3473 | for (auto i: kj::zeroTo(list.size())) { |
| 3474 | builder.setDataElement<bool>(pos, list.getDataElement<bool>(i)); |
| 3475 | // assumeBits() safe because we checked total size earlier. |
| 3476 | pos = assumeBits<LIST_ELEMENT_COUNT_BITS>(pos + ONE * ELEMENTS); |
| 3477 | } |
| 3478 | } |
| 3479 | break; |
| 3480 | } |
| 3481 | default: { |
| 3482 | // We know all the inputs are primitives with identical size because otherwise we would have |
| 3483 | // chosen INLINE_COMPOSITE. Therefore, we can safely use memcpy() here instead of copying |
| 3484 | // each element manually. |
| 3485 | byte* target = builder.ptr; |
| 3486 | auto step = builder.step / BITS_PER_BYTE; |
| 3487 | for (auto& list: lists) { |
| 3488 | auto count = step * upgradeBound<uint64_t>(list.size()); |
| 3489 | WireHelpers::copyMemory(target, list.ptr, assumeBits<SEGMENT_WORD_COUNT_BITS>(count)); |
| 3490 | target += count; |
| 3491 | } |
| 3492 | break; |
| 3493 | } |
| 3494 | } |
| 3495 | |
| 3496 | // Return orphan. |
| 3497 | result.segment = builder.segment; |
| 3498 | result.capTable = capTable; |
| 3499 | result.location = builder.getLocation(); |
| 3500 | return result; |
| 3501 | } |
| 3502 | |
| 3503 | OrphanBuilder OrphanBuilder::referenceExternalData(BuilderArena* arena, Data::Reader data) { |
| 3504 | // TODO(someday): We now allow unaligned segments on architectures thata support it. We could |
| 3505 | // consider relaxing this check as well? |
| 3506 | KJ_REQUIRE(reinterpret_cast<uintptr_t>(data.begin()) % sizeof(void*) == 0, |
| 3507 | "Cannot referenceExternalData() that is not aligned." ); |
| 3508 | |
| 3509 | auto checkedSize = assertMaxBits<BLOB_SIZE_BITS>(bounded(data.size())); |
| 3510 | auto wordCount = WireHelpers::roundBytesUpToWords(checkedSize * BYTES); |
| 3511 | kj::ArrayPtr<const word> words(reinterpret_cast<const word*>(data.begin()), |
| 3512 | unbound(wordCount / WORDS)); |
| 3513 | |
| 3514 | OrphanBuilder result; |
| 3515 | result.tagAsPtr()->setKindForOrphan(WirePointer::LIST); |
| 3516 | result.tagAsPtr()->listRef.set(ElementSize::BYTE, checkedSize * ELEMENTS); |
| 3517 | result.segment = arena->addExternalSegment(words); |
| 3518 | |
| 3519 | // External data cannot possibly contain capabilities. |
| 3520 | result.capTable = nullptr; |
| 3521 | |
| 3522 | // const_cast OK here because we will check whether the segment is writable when we try to get |
| 3523 | // a builder. |
| 3524 | result.location = const_cast<word*>(words.begin()); |
| 3525 | |
| 3526 | return result; |
| 3527 | } |
| 3528 | |
| 3529 | StructBuilder OrphanBuilder::asStruct(StructSize size) { |
| 3530 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3531 | |
| 3532 | StructBuilder result = WireHelpers::getWritableStructPointer( |
| 3533 | tagAsPtr(), location, segment, capTable, size, nullptr, segment->getArena()); |
| 3534 | |
| 3535 | // Watch out, the pointer could have been updated if the object had to be relocated. |
| 3536 | location = reinterpret_cast<word*>(result.data); |
| 3537 | |
| 3538 | return result; |
| 3539 | } |
| 3540 | |
| 3541 | ListBuilder OrphanBuilder::asList(ElementSize elementSize) { |
| 3542 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3543 | |
| 3544 | ListBuilder result = WireHelpers::getWritableListPointer( |
| 3545 | tagAsPtr(), location, segment, capTable, elementSize, nullptr, segment->getArena()); |
| 3546 | |
| 3547 | // Watch out, the pointer could have been updated if the object had to be relocated. |
| 3548 | // (Actually, currently this is not true for primitive lists, but let's not turn into a bug if |
| 3549 | // it changes!) |
| 3550 | location = result.getLocation(); |
| 3551 | |
| 3552 | return result; |
| 3553 | } |
| 3554 | |
| 3555 | ListBuilder OrphanBuilder::asStructList(StructSize elementSize) { |
| 3556 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3557 | |
| 3558 | ListBuilder result = WireHelpers::getWritableStructListPointer( |
| 3559 | tagAsPtr(), location, segment, capTable, elementSize, nullptr, segment->getArena()); |
| 3560 | |
| 3561 | // Watch out, the pointer could have been updated if the object had to be relocated. |
| 3562 | location = result.getLocation(); |
| 3563 | |
| 3564 | return result; |
| 3565 | } |
| 3566 | |
| 3567 | ListBuilder OrphanBuilder::asListAnySize() { |
| 3568 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3569 | |
| 3570 | ListBuilder result = WireHelpers::getWritableListPointerAnySize( |
| 3571 | tagAsPtr(), location, segment, capTable, nullptr, segment->getArena()); |
| 3572 | |
| 3573 | // Watch out, the pointer could have been updated if the object had to be relocated. |
| 3574 | location = result.getLocation(); |
| 3575 | |
| 3576 | return result; |
| 3577 | } |
| 3578 | |
| 3579 | Text::Builder OrphanBuilder::asText() { |
| 3580 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3581 | |
| 3582 | // Never relocates. |
| 3583 | return WireHelpers::getWritableTextPointer( |
| 3584 | tagAsPtr(), location, segment, capTable, nullptr, ZERO * BYTES); |
| 3585 | } |
| 3586 | |
| 3587 | Data::Builder OrphanBuilder::asData() { |
| 3588 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3589 | |
| 3590 | // Never relocates. |
| 3591 | return WireHelpers::getWritableDataPointer( |
| 3592 | tagAsPtr(), location, segment, capTable, nullptr, ZERO * BYTES); |
| 3593 | } |
| 3594 | |
| 3595 | StructReader OrphanBuilder::asStructReader(StructSize size) const { |
| 3596 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3597 | return WireHelpers::readStructPointer( |
| 3598 | segment, capTable, tagAsPtr(), location, nullptr, kj::maxValue); |
| 3599 | } |
| 3600 | |
| 3601 | ListReader OrphanBuilder::asListReader(ElementSize elementSize) const { |
| 3602 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3603 | return WireHelpers::readListPointer( |
| 3604 | segment, capTable, tagAsPtr(), location, nullptr, elementSize, kj::maxValue); |
| 3605 | } |
| 3606 | |
| 3607 | ListReader OrphanBuilder::asListReaderAnySize() const { |
| 3608 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3609 | return WireHelpers::readListPointer( |
| 3610 | segment, capTable, tagAsPtr(), location, nullptr, ElementSize::VOID /* dummy */, |
| 3611 | kj::maxValue); |
| 3612 | } |
| 3613 | |
| 3614 | #if !CAPNP_LITE |
| 3615 | kj::Own<ClientHook> OrphanBuilder::asCapability() const { |
| 3616 | return WireHelpers::readCapabilityPointer(segment, capTable, tagAsPtr(), kj::maxValue); |
| 3617 | } |
| 3618 | #endif // !CAPNP_LITE |
| 3619 | |
| 3620 | Text::Reader OrphanBuilder::asTextReader() const { |
| 3621 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3622 | return WireHelpers::readTextPointer(segment, tagAsPtr(), location, nullptr, ZERO * BYTES); |
| 3623 | } |
| 3624 | |
| 3625 | Data::Reader OrphanBuilder::asDataReader() const { |
| 3626 | KJ_DASSERT(tagAsPtr()->isNull() == (location == nullptr)); |
| 3627 | return WireHelpers::readDataPointer(segment, tagAsPtr(), location, nullptr, ZERO * BYTES); |
| 3628 | } |
| 3629 | |
| 3630 | bool OrphanBuilder::truncate(ElementCount uncheckedSize, bool isText) { |
| 3631 | ListElementCount size = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(uncheckedSize, |
| 3632 | []() { KJ_FAIL_REQUIRE("requested list size is too large" ); }); |
| 3633 | |
| 3634 | WirePointer* ref = tagAsPtr(); |
| 3635 | SegmentBuilder* segment = this->segment; |
| 3636 | |
| 3637 | word* target = WireHelpers::followFars(ref, location, segment); |
| 3638 | |
| 3639 | if (ref->isNull()) { |
| 3640 | // We don't know the right element size, so we can't resize this list. |
| 3641 | return size == ZERO * ELEMENTS; |
| 3642 | } |
| 3643 | |
| 3644 | KJ_REQUIRE(ref->kind() == WirePointer::LIST, "Can't truncate non-list." ) { |
| 3645 | return false; |
| 3646 | } |
| 3647 | |
| 3648 | if (isText) { |
| 3649 | // Add space for the NUL terminator. |
| 3650 | size = assertMaxBits<LIST_ELEMENT_COUNT_BITS>(size + ONE * ELEMENTS, |
| 3651 | []() { KJ_FAIL_REQUIRE("requested list size is too large" ); }); |
| 3652 | } |
| 3653 | |
| 3654 | auto elementSize = ref->listRef.elementSize(); |
| 3655 | |
| 3656 | if (elementSize == ElementSize::INLINE_COMPOSITE) { |
| 3657 | auto oldWordCount = ref->listRef.inlineCompositeWordCount(); |
| 3658 | |
| 3659 | WirePointer* tag = reinterpret_cast<WirePointer*>(target); |
| 3660 | ++target; |
| 3661 | KJ_REQUIRE(tag->kind() == WirePointer::STRUCT, |
| 3662 | "INLINE_COMPOSITE lists of non-STRUCT type are not supported." ) { |
| 3663 | return false; |
| 3664 | } |
| 3665 | StructSize structSize(tag->structRef.dataSize.get(), tag->structRef.ptrCount.get()); |
| 3666 | auto elementStep = structSize.total() / ELEMENTS; |
| 3667 | |
| 3668 | auto oldSize = tag->inlineCompositeListElementCount(); |
| 3669 | |
| 3670 | SegmentWordCount sizeWords = assertMaxBits<SEGMENT_WORD_COUNT_BITS>( |
| 3671 | upgradeBound<uint64_t>(size) * elementStep, |
| 3672 | []() { KJ_FAIL_ASSERT("requested list size too large to fit in message segment" ); }); |
| 3673 | SegmentWordCount oldSizeWords = assertMaxBits<SEGMENT_WORD_COUNT_BITS>( |
| 3674 | upgradeBound<uint64_t>(oldSize) * elementStep, |
| 3675 | []() { KJ_FAIL_ASSERT("prior to truncate, list is larger than max segment size?" ); }); |
| 3676 | |
| 3677 | word* newEndWord = target + sizeWords; |
| 3678 | word* oldEndWord = target + oldWordCount; |
| 3679 | |
| 3680 | if (size <= oldSize) { |
| 3681 | // Zero the trailing elements. |
| 3682 | for (auto i: kj::range(size, oldSize)) { |
| 3683 | // assumeBits() safe because we checked that both sizeWords and oldSizeWords are in-range |
| 3684 | // above. |
| 3685 | WireHelpers::zeroObject(segment, capTable, tag, target + |
| 3686 | assumeBits<SEGMENT_WORD_COUNT_BITS>(upgradeBound<uint64_t>(i) * elementStep)); |
| 3687 | } |
| 3688 | ref->listRef.setInlineComposite(sizeWords); |
| 3689 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, size); |
| 3690 | segment->tryTruncate(oldEndWord, newEndWord); |
| 3691 | } else if (newEndWord <= oldEndWord) { |
| 3692 | // Apparently the old list was over-allocated? The word count is more than needed to store |
| 3693 | // the elements. This is "valid" but shouldn't happen in practice unless someone is toying |
| 3694 | // with us. |
| 3695 | word* expectedEnd = target + oldSizeWords; |
| 3696 | KJ_ASSERT(newEndWord >= expectedEnd); |
| 3697 | WireHelpers::zeroMemory(expectedEnd, |
| 3698 | intervalLength(expectedEnd, newEndWord, MAX_SEGMENT_WORDS)); |
| 3699 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, size); |
| 3700 | } else { |
| 3701 | if (segment->tryExtend(oldEndWord, newEndWord)) { |
| 3702 | // Done in-place. Nothing else to do now; the new memory is already zero'd. |
| 3703 | ref->listRef.setInlineComposite(sizeWords); |
| 3704 | tag->setKindAndInlineCompositeListElementCount(WirePointer::STRUCT, size); |
| 3705 | } else { |
| 3706 | // Need to re-allocate and transfer. |
| 3707 | OrphanBuilder replacement = initStructList(segment->getArena(), capTable, size, structSize); |
| 3708 | |
| 3709 | ListBuilder newList = replacement.asStructList(structSize); |
| 3710 | for (auto i: kj::zeroTo(oldSize)) { |
| 3711 | // assumeBits() safe because we checked that both sizeWords and oldSizeWords are in-range |
| 3712 | // above. |
| 3713 | word* element = target + |
| 3714 | assumeBits<SEGMENT_WORD_COUNT_BITS>(upgradeBound<uint64_t>(i) * elementStep); |
| 3715 | newList.getStructElement(i).transferContentFrom( |
| 3716 | StructBuilder(segment, capTable, element, |
| 3717 | reinterpret_cast<WirePointer*>(element + structSize.data), |
| 3718 | structSize.data * BITS_PER_WORD, structSize.pointers)); |
| 3719 | } |
| 3720 | |
| 3721 | *this = kj::mv(replacement); |
| 3722 | } |
| 3723 | } |
| 3724 | } else if (elementSize == ElementSize::POINTER) { |
| 3725 | // TODO(cleanup): GCC won't let me declare this constexpr, claiming POINTERS is not constexpr, |
| 3726 | // but it is? |
| 3727 | const auto POINTERS_PER_ELEMENT = ONE * POINTERS / ELEMENTS; |
| 3728 | |
| 3729 | auto oldSize = ref->listRef.elementCount(); |
| 3730 | word* newEndWord = target + size * POINTERS_PER_ELEMENT * WORDS_PER_POINTER; |
| 3731 | word* oldEndWord = target + oldSize * POINTERS_PER_ELEMENT * WORDS_PER_POINTER; |
| 3732 | |
| 3733 | if (size <= oldSize) { |
| 3734 | // Zero the trailing elements. |
| 3735 | for (WirePointer* element = reinterpret_cast<WirePointer*>(newEndWord); |
| 3736 | element < reinterpret_cast<WirePointer*>(oldEndWord); ++element) { |
| 3737 | WireHelpers::zeroPointerAndFars(segment, element); |
| 3738 | } |
| 3739 | ref->listRef.set(ElementSize::POINTER, size); |
| 3740 | segment->tryTruncate(oldEndWord, newEndWord); |
| 3741 | } else { |
| 3742 | if (segment->tryExtend(oldEndWord, newEndWord)) { |
| 3743 | // Done in-place. Nothing else to do now; the new memory is already zero'd. |
| 3744 | ref->listRef.set(ElementSize::POINTER, size); |
| 3745 | } else { |
| 3746 | // Need to re-allocate and transfer. |
| 3747 | OrphanBuilder replacement = initList( |
| 3748 | segment->getArena(), capTable, size, ElementSize::POINTER); |
| 3749 | ListBuilder newList = replacement.asList(ElementSize::POINTER); |
| 3750 | WirePointer* oldPointers = reinterpret_cast<WirePointer*>(target); |
| 3751 | for (auto i: kj::zeroTo(oldSize)) { |
| 3752 | newList.getPointerElement(i).transferFrom( |
| 3753 | PointerBuilder(segment, capTable, oldPointers + i * POINTERS_PER_ELEMENT)); |
| 3754 | } |
| 3755 | *this = kj::mv(replacement); |
| 3756 | } |
| 3757 | } |
| 3758 | } else { |
| 3759 | auto oldSize = ref->listRef.elementCount(); |
| 3760 | auto step = dataBitsPerElement(elementSize); |
| 3761 | const auto MAX_STEP_BYTES = ONE * WORDS / ELEMENTS * BYTES_PER_WORD; |
| 3762 | word* newEndWord = target + WireHelpers::roundBitsUpToWords( |
| 3763 | upgradeBound<uint64_t>(size) * step); |
| 3764 | word* oldEndWord = target + WireHelpers::roundBitsUpToWords( |
| 3765 | upgradeBound<uint64_t>(oldSize) * step); |
| 3766 | |
| 3767 | if (size <= oldSize) { |
| 3768 | // When truncating text, we want to set the null terminator as well, so we'll do our zeroing |
| 3769 | // at the byte level. |
| 3770 | byte* begin = reinterpret_cast<byte*>(target); |
| 3771 | byte* newEndByte = begin + WireHelpers::roundBitsUpToBytes( |
| 3772 | upgradeBound<uint64_t>(size) * step) - isText; |
| 3773 | byte* oldEndByte = reinterpret_cast<byte*>(oldEndWord); |
| 3774 | |
| 3775 | WireHelpers::zeroMemory(newEndByte, |
| 3776 | intervalLength(newEndByte, oldEndByte, MAX_LIST_ELEMENTS * MAX_STEP_BYTES)); |
| 3777 | ref->listRef.set(elementSize, size); |
| 3778 | segment->tryTruncate(oldEndWord, newEndWord); |
| 3779 | } else { |
| 3780 | // We're trying to extend, not truncate. |
| 3781 | if (segment->tryExtend(oldEndWord, newEndWord)) { |
| 3782 | // Done in-place. Nothing else to do now; the memory is already zero'd. |
| 3783 | ref->listRef.set(elementSize, size); |
| 3784 | } else { |
| 3785 | // Need to re-allocate and transfer. |
| 3786 | OrphanBuilder replacement = initList(segment->getArena(), capTable, size, elementSize); |
| 3787 | ListBuilder newList = replacement.asList(elementSize); |
| 3788 | auto words = WireHelpers::roundBitsUpToWords( |
| 3789 | dataBitsPerElement(elementSize) * upgradeBound<uint64_t>(oldSize)); |
| 3790 | WireHelpers::copyMemory(reinterpret_cast<word*>(newList.ptr), target, words); |
| 3791 | *this = kj::mv(replacement); |
| 3792 | } |
| 3793 | } |
| 3794 | } |
| 3795 | |
| 3796 | return true; |
| 3797 | } |
| 3798 | |
| 3799 | void OrphanBuilder::truncate(ElementCount size, ElementSize elementSize) { |
| 3800 | if (!truncate(size, false)) { |
| 3801 | // assumeBits() safe since it's checked inside truncate() |
| 3802 | *this = initList(segment->getArena(), capTable, |
| 3803 | assumeBits<LIST_ELEMENT_COUNT_BITS>(size), elementSize); |
| 3804 | } |
| 3805 | } |
| 3806 | |
| 3807 | void OrphanBuilder::truncate(ElementCount size, StructSize elementSize) { |
| 3808 | if (!truncate(size, false)) { |
| 3809 | // assumeBits() safe since it's checked inside truncate() |
| 3810 | *this = initStructList(segment->getArena(), capTable, |
| 3811 | assumeBits<LIST_ELEMENT_COUNT_BITS>(size), elementSize); |
| 3812 | } |
| 3813 | } |
| 3814 | |
| 3815 | void OrphanBuilder::truncateText(ElementCount size) { |
| 3816 | if (!truncate(size, true)) { |
| 3817 | // assumeBits() safe since it's checked inside truncate() |
| 3818 | *this = initText(segment->getArena(), capTable, |
| 3819 | assumeBits<LIST_ELEMENT_COUNT_BITS>(size) * (ONE * BYTES / ELEMENTS)); |
| 3820 | } |
| 3821 | } |
| 3822 | |
| 3823 | void OrphanBuilder::euthanize() { |
| 3824 | // Carefully catch any exceptions and rethrow them as recoverable exceptions since we may be in |
| 3825 | // a destructor. |
| 3826 | auto exception = kj::runCatchingExceptions([&]() { |
| 3827 | if (tagAsPtr()->isPositional()) { |
| 3828 | WireHelpers::zeroObject(segment, capTable, tagAsPtr(), location); |
| 3829 | } else { |
| 3830 | WireHelpers::zeroObject(segment, capTable, tagAsPtr()); |
| 3831 | } |
| 3832 | |
| 3833 | WireHelpers::zeroMemory(&tag, ONE * WORDS); |
| 3834 | segment = nullptr; |
| 3835 | location = nullptr; |
| 3836 | }); |
| 3837 | |
| 3838 | KJ_IF_MAYBE(e, exception) { |
| 3839 | kj::getExceptionCallback().onRecoverableException(kj::mv(*e)); |
| 3840 | } |
| 3841 | } |
| 3842 | |
| 3843 | } // namespace _ (private) |
| 3844 | } // namespace capnp |
| 3845 | |