| 1 | /* |
| 2 | * Copyright (c) 2015-2018, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Bounded repeat analysis. |
| 31 | */ |
| 32 | #include "ng_repeat.h" |
| 33 | |
| 34 | #include "grey.h" |
| 35 | #include "ng_depth.h" |
| 36 | #include "ng_holder.h" |
| 37 | #include "ng_limex_accel.h" |
| 38 | #include "ng_prune.h" |
| 39 | #include "ng_reports.h" |
| 40 | #include "ng_som_util.h" |
| 41 | #include "ng_util.h" |
| 42 | #include "nfa/accel.h" |
| 43 | #include "nfa/limex_limits.h" |
| 44 | #include "nfa/repeat_internal.h" |
| 45 | #include "nfa/repeatcompile.h" |
| 46 | #include "util/container.h" |
| 47 | #include "util/dump_charclass.h" |
| 48 | #include "util/graph_range.h" |
| 49 | #include "util/graph_small_color_map.h" |
| 50 | #include "util/graph_undirected.h" |
| 51 | #include "util/report_manager.h" |
| 52 | #include "util/unordered.h" |
| 53 | |
| 54 | #include <algorithm> |
| 55 | #include <map> |
| 56 | #include <queue> |
| 57 | #include <unordered_map> |
| 58 | #include <unordered_set> |
| 59 | |
| 60 | #include <boost/graph/connected_components.hpp> |
| 61 | #include <boost/graph/depth_first_search.hpp> |
| 62 | #include <boost/graph/filtered_graph.hpp> |
| 63 | #include <boost/graph/reverse_graph.hpp> |
| 64 | #include <boost/graph/topological_sort.hpp> |
| 65 | #include <boost/icl/interval_set.hpp> |
| 66 | |
| 67 | using namespace std; |
| 68 | using boost::depth_first_search; |
| 69 | using boost::depth_first_visit; |
| 70 | using boost::make_assoc_property_map; |
| 71 | |
| 72 | namespace ue2 { |
| 73 | |
| 74 | namespace { |
| 75 | |
| 76 | /** |
| 77 | * \brief Filter that retains only edges between vertices with the same |
| 78 | * reachability. Special vertices are dropped. |
| 79 | */ |
| 80 | template<class Graph> |
| 81 | struct ReachFilter { |
| 82 | ReachFilter() = default; |
| 83 | explicit ReachFilter(const Graph *g_in) : g(g_in) {} |
| 84 | |
| 85 | // Convenience typedefs. |
| 86 | using Traits = typename boost::graph_traits<Graph>; |
| 87 | using VertexDescriptor = typename Traits::vertex_descriptor; |
| 88 | using EdgeDescriptor = typename Traits::edge_descriptor; |
| 89 | |
| 90 | bool operator()(const VertexDescriptor &v) const { |
| 91 | assert(g); |
| 92 | // Disallow special vertices, as otherwise we will try to remove them |
| 93 | // later. |
| 94 | return !is_special(v, *g); |
| 95 | } |
| 96 | |
| 97 | bool operator()(const EdgeDescriptor &e) const { |
| 98 | assert(g); |
| 99 | // Vertices must have the same reach. |
| 100 | auto u = source(e, *g), v = target(e, *g); |
| 101 | const CharReach &cr_u = (*g)[u].char_reach; |
| 102 | const CharReach &cr_v = (*g)[v].char_reach; |
| 103 | return cr_u == cr_v; |
| 104 | } |
| 105 | |
| 106 | const Graph *g = nullptr; |
| 107 | }; |
| 108 | |
| 109 | using RepeatGraph = boost::filtered_graph<NGHolder, ReachFilter<NGHolder>, |
| 110 | ReachFilter<NGHolder>>; |
| 111 | |
| 112 | struct ReachSubgraph { |
| 113 | vector<NFAVertex> vertices; |
| 114 | depth repeatMin{0}; |
| 115 | depth repeatMax{0}; |
| 116 | u32 minPeriod = 1; |
| 117 | bool is_reset = false; |
| 118 | enum RepeatType historyType = REPEAT_RING; |
| 119 | bool bad = false; // if true, ignore this case |
| 120 | }; |
| 121 | |
| 122 | } // namespace |
| 123 | |
| 124 | static |
| 125 | void findInitDepths(const NGHolder &g, |
| 126 | unordered_map<NFAVertex, NFAVertexDepth> &depths) { |
| 127 | auto d = calcDepths(g); |
| 128 | |
| 129 | for (auto v : vertices_range(g)) { |
| 130 | size_t idx = g[v].index; |
| 131 | assert(idx < d.size()); |
| 132 | depths.emplace(v, d[idx]); |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | static |
| 137 | vector<NFAVertex> buildTopoOrder(const RepeatGraph &g) { |
| 138 | /* Note: RepeatGraph is a filtered version of NGHolder and still has |
| 139 | * NFAVertex as its vertex descriptor */ |
| 140 | |
| 141 | typedef unordered_set<NFAEdge> EdgeSet; |
| 142 | EdgeSet deadEdges; |
| 143 | |
| 144 | // We don't have indices spanning [0,N] on our filtered graph, so we |
| 145 | // provide a colour map. |
| 146 | unordered_map<NFAVertex, boost::default_color_type> colours; |
| 147 | |
| 148 | depth_first_search(g, visitor(BackEdges<EdgeSet>(deadEdges)). |
| 149 | color_map(make_assoc_property_map(colours))); |
| 150 | auto acyclic_g = make_filtered_graph(g, make_bad_edge_filter(&deadEdges)); |
| 151 | |
| 152 | vector<NFAVertex> topoOrder; |
| 153 | topological_sort(acyclic_g, back_inserter(topoOrder), |
| 154 | color_map(make_assoc_property_map(colours))); |
| 155 | |
| 156 | reverse(topoOrder.begin(), topoOrder.end()); |
| 157 | |
| 158 | return topoOrder; |
| 159 | } |
| 160 | |
| 161 | static |
| 162 | void proper_pred(const NGHolder &g, NFAVertex v, |
| 163 | unordered_set<NFAVertex> &p) { |
| 164 | pred(g, v, &p); |
| 165 | p.erase(v); // self-loops |
| 166 | } |
| 167 | |
| 168 | static |
| 169 | void proper_succ(const NGHolder &g, NFAVertex v, |
| 170 | unordered_set<NFAVertex> &s) { |
| 171 | succ(g, v, &s); |
| 172 | s.erase(v); // self-loops |
| 173 | } |
| 174 | |
| 175 | static |
| 176 | bool roguePredecessor(const NGHolder &g, NFAVertex v, |
| 177 | const unordered_set<NFAVertex> &involved, |
| 178 | const unordered_set<NFAVertex> &pred) { |
| 179 | u32 seen = 0; |
| 180 | |
| 181 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 182 | if (contains(involved, u)) { |
| 183 | continue; |
| 184 | } |
| 185 | if (!contains(pred, u)) { |
| 186 | DEBUG_PRINTF("%zu is a rogue pred\n" , g[u].index); |
| 187 | return true; |
| 188 | } |
| 189 | |
| 190 | seen++; |
| 191 | } |
| 192 | |
| 193 | // We must have edges from either (a) none of our external predecessors, or |
| 194 | // (b) all of our external predecessors. |
| 195 | if (!seen) { |
| 196 | return false; |
| 197 | } |
| 198 | return pred.size() != seen; |
| 199 | } |
| 200 | |
| 201 | static |
| 202 | bool rogueSuccessor(const NGHolder &g, NFAVertex v, |
| 203 | const unordered_set<NFAVertex> &involved, |
| 204 | const unordered_set<NFAVertex> &succ) { |
| 205 | u32 seen = 0; |
| 206 | for (auto w : adjacent_vertices_range(v, g)) { |
| 207 | if (contains(involved, w)) { |
| 208 | continue; |
| 209 | } |
| 210 | |
| 211 | if (!contains(succ, w)) { |
| 212 | DEBUG_PRINTF("%zu is a rogue succ\n" , g[w].index); |
| 213 | return true; |
| 214 | } |
| 215 | |
| 216 | seen++; |
| 217 | } |
| 218 | |
| 219 | // We must have edges to either (a) none of our external successors, or |
| 220 | // (b) all of our external successors. |
| 221 | if (!seen) { |
| 222 | return false; |
| 223 | } |
| 224 | return succ.size() != seen; |
| 225 | } |
| 226 | |
| 227 | static |
| 228 | bool hasDifferentTops(const NGHolder &g, const vector<NFAVertex> &verts) { |
| 229 | /* TODO: check that we need this now that we allow multiple tops */ |
| 230 | const flat_set<u32> *tops = nullptr; |
| 231 | |
| 232 | for (auto v : verts) { |
| 233 | for (const auto &e : in_edges_range(v, g)) { |
| 234 | NFAVertex u = source(e, g); |
| 235 | if (u != g.start && u != g.startDs) { |
| 236 | continue; // Only edges from starts have valid top properties. |
| 237 | } |
| 238 | DEBUG_PRINTF("edge (%zu,%zu) with %zu tops\n" , g[u].index, |
| 239 | g[v].index, g[e].tops.size()); |
| 240 | if (!tops) { |
| 241 | tops = &g[e].tops; |
| 242 | } else if (g[e].tops != *tops) { |
| 243 | return true; // More than one set of tops. |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | return false; |
| 249 | } |
| 250 | |
| 251 | static |
| 252 | bool vertexIsBad(const NGHolder &g, NFAVertex v, |
| 253 | const unordered_set<NFAVertex> &involved, |
| 254 | const unordered_set<NFAVertex> &tail, |
| 255 | const unordered_set<NFAVertex> &pred, |
| 256 | const unordered_set<NFAVertex> &succ, |
| 257 | const flat_set<ReportID> &reports) { |
| 258 | DEBUG_PRINTF("check vertex %zu\n" , g[v].index); |
| 259 | |
| 260 | // We must drop any vertex that is the target of a back-edge within |
| 261 | // our subgraph. The tail set contains all vertices that are after v in a |
| 262 | // topo ordering. |
| 263 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 264 | if (contains(tail, u)) { |
| 265 | DEBUG_PRINTF("back-edge (%zu,%zu) in subgraph found\n" , |
| 266 | g[u].index, g[v].index); |
| 267 | return true; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | // If this vertex has an entry from outside our subgraph, it must have |
| 272 | // edges from *all* the vertices in pred and no other external entries. |
| 273 | // Similarly for exits. |
| 274 | if (roguePredecessor(g, v, involved, pred)) { |
| 275 | DEBUG_PRINTF("preds for %zu not well-formed\n" , g[v].index); |
| 276 | return true; |
| 277 | } |
| 278 | |
| 279 | if (rogueSuccessor(g, v, involved, succ)) { |
| 280 | DEBUG_PRINTF("succs for %zu not well-formed\n" , g[v].index); |
| 281 | return true; |
| 282 | } |
| 283 | |
| 284 | // All reporting vertices should have the same reports. |
| 285 | if (is_match_vertex(v, g) && reports != g[v].reports) { |
| 286 | DEBUG_PRINTF("report mismatch to %zu\n" , g[v].index); |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | return false; |
| 291 | } |
| 292 | |
| 293 | static |
| 294 | void splitSubgraph(const NGHolder &g, const deque<NFAVertex> &verts, |
| 295 | const u32 minNumVertices, queue<ReachSubgraph> &q) { |
| 296 | DEBUG_PRINTF("entry\n" ); |
| 297 | |
| 298 | // We construct a copy of the graph using just the vertices we want, rather |
| 299 | // than using a filtered_graph -- this way is faster. |
| 300 | NGHolder verts_g; |
| 301 | unordered_map<NFAVertex, NFAVertex> verts_map; // in g -> in verts_g |
| 302 | fillHolder(&verts_g, g, verts, &verts_map); |
| 303 | |
| 304 | const auto ug = make_undirected_graph(verts_g); |
| 305 | |
| 306 | unordered_map<NFAVertex, u32> repeatMap; |
| 307 | |
| 308 | size_t num = connected_components(ug, make_assoc_property_map(repeatMap)); |
| 309 | DEBUG_PRINTF("found %zu connected repeat components\n" , num); |
| 310 | assert(num > 0); |
| 311 | |
| 312 | vector<ReachSubgraph> rs(num); |
| 313 | |
| 314 | for (auto v : verts) { |
| 315 | assert(!is_special(v, g)); |
| 316 | auto vu = verts_map.at(v); |
| 317 | auto rit = repeatMap.find(vu); |
| 318 | if (rit == repeatMap.end()) { |
| 319 | continue; /* not part of a repeat */ |
| 320 | } |
| 321 | u32 comp_id = rit->second; |
| 322 | assert(comp_id < num); |
| 323 | rs[comp_id].vertices.push_back(v); |
| 324 | } |
| 325 | |
| 326 | for (const auto &rsi : rs) { |
| 327 | if (rsi.vertices.empty()) { |
| 328 | // Empty elements can happen when connected_components finds a |
| 329 | // subgraph consisting entirely of specials (which aren't added to |
| 330 | // ReachSubgraph in the loop above). There's nothing we can do with |
| 331 | // these, so we skip them. |
| 332 | continue; |
| 333 | } |
| 334 | DEBUG_PRINTF("repeat with %zu vertices\n" , rsi.vertices.size()); |
| 335 | if (rsi.vertices.size() >= minNumVertices) { |
| 336 | DEBUG_PRINTF("enqueuing\n" ); |
| 337 | q.push(rsi); |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | static |
| 343 | void findFirstReports(const NGHolder &g, const ReachSubgraph &rsi, |
| 344 | flat_set<ReportID> &reports) { |
| 345 | for (auto v : rsi.vertices) { |
| 346 | if (is_match_vertex(v, g)) { |
| 347 | reports = g[v].reports; |
| 348 | return; |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | static |
| 354 | void checkReachSubgraphs(const NGHolder &g, vector<ReachSubgraph> &rs, |
| 355 | const u32 minNumVertices) { |
| 356 | if (rs.empty()) { |
| 357 | return; |
| 358 | } |
| 359 | |
| 360 | DEBUG_PRINTF("%zu subgraphs\n" , rs.size()); |
| 361 | |
| 362 | vector<ReachSubgraph> rs_out; |
| 363 | |
| 364 | queue<ReachSubgraph> q; |
| 365 | for (const auto &rsi : rs) { |
| 366 | if (rsi.vertices.size() < minNumVertices) { |
| 367 | continue; |
| 368 | } |
| 369 | q.push(rsi); |
| 370 | } |
| 371 | |
| 372 | while (!q.empty()) { |
| 373 | const ReachSubgraph &rsi = q.front(); |
| 374 | |
| 375 | if (rsi.vertices.size() < minNumVertices) { |
| 376 | q.pop(); // Too small for consideration as a repeat. |
| 377 | continue; |
| 378 | } |
| 379 | |
| 380 | DEBUG_PRINTF("subgraph with %zu vertices\n" , rsi.vertices.size()); |
| 381 | |
| 382 | // Check that all the edges from outside have the same tops. TODO: we |
| 383 | // don't have to throw the whole subgraph out, we could do this check |
| 384 | // on a per vertex basis. |
| 385 | if (hasDifferentTops(g, rsi.vertices)) { |
| 386 | DEBUG_PRINTF("different tops!\n" ); |
| 387 | q.pop(); |
| 388 | continue; |
| 389 | } |
| 390 | |
| 391 | unordered_set<NFAVertex> involved(rsi.vertices.begin(), |
| 392 | rsi.vertices.end()); |
| 393 | unordered_set<NFAVertex> tail(involved); // to look for back-edges. |
| 394 | unordered_set<NFAVertex> pred, succ; |
| 395 | proper_pred(g, rsi.vertices.front(), pred); |
| 396 | proper_succ(g, rsi.vertices.back(), succ); |
| 397 | |
| 398 | flat_set<ReportID> reports; |
| 399 | findFirstReports(g, rsi, reports); |
| 400 | |
| 401 | bool recalc = false; |
| 402 | deque<NFAVertex> verts; |
| 403 | |
| 404 | for (auto v : rsi.vertices) { |
| 405 | tail.erase(v); // now contains all vertices _after_ this one. |
| 406 | |
| 407 | if (vertexIsBad(g, v, involved, tail, pred, succ, reports)) { |
| 408 | recalc = true; |
| 409 | continue; |
| 410 | } |
| 411 | |
| 412 | verts.push_back(v); |
| 413 | } |
| 414 | |
| 415 | if (recalc) { |
| 416 | if (verts.size() < minNumVertices) { |
| 417 | DEBUG_PRINTF("subgraph got too small\n" ); |
| 418 | q.pop(); |
| 419 | continue; |
| 420 | } |
| 421 | splitSubgraph(g, verts, minNumVertices, q); |
| 422 | } else { |
| 423 | DEBUG_PRINTF("subgraph is ok\n" ); |
| 424 | rs_out.push_back(rsi); |
| 425 | } |
| 426 | q.pop(); |
| 427 | } |
| 428 | |
| 429 | rs.swap(rs_out); |
| 430 | } |
| 431 | |
| 432 | namespace { |
| 433 | class DistanceSet { |
| 434 | private: |
| 435 | // We use boost::icl to do the heavy lifting. |
| 436 | typedef boost::icl::closed_interval<u32> ClosedInterval; |
| 437 | typedef boost::icl::interval_set<u32, std::less, ClosedInterval> |
| 438 | IntervalSet; |
| 439 | IntervalSet distances; |
| 440 | public: |
| 441 | // Add a distance. |
| 442 | void insert(u32 d) { |
| 443 | distances.insert(d); |
| 444 | } |
| 445 | |
| 446 | void add(const DistanceSet &a) { |
| 447 | distances += a.distances; // union operation |
| 448 | } |
| 449 | |
| 450 | // Increment all the distances by one and add. |
| 451 | void add_incremented(const DistanceSet &a) { |
| 452 | for (const auto &d : a.distances) { |
| 453 | u32 lo = lower(d) + 1; |
| 454 | u32 hi = upper(d) + 1; |
| 455 | distances.insert(boost::icl::construct<ClosedInterval>(lo, hi)); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | #ifdef DEBUG |
| 460 | void dump() const { |
| 461 | if (distances.empty()) { |
| 462 | printf("<empty>" ); |
| 463 | return; |
| 464 | } |
| 465 | |
| 466 | for (const auto &d : distances) { |
| 467 | printf("[%u,%u] " , lower(d), upper(d)); |
| 468 | } |
| 469 | } |
| 470 | #endif |
| 471 | |
| 472 | // True if this distance set is a single contiguous interval. |
| 473 | bool is_contiguous() const { |
| 474 | IntervalSet::const_iterator it = distances.begin(); |
| 475 | if (it == distances.end()) { |
| 476 | return false; |
| 477 | } |
| 478 | ++it; |
| 479 | return (it == distances.end()); |
| 480 | } |
| 481 | |
| 482 | pair<u32, u32> get_range() const { |
| 483 | assert(is_contiguous()); |
| 484 | return make_pair(lower(distances), upper(distances)); |
| 485 | } |
| 486 | }; |
| 487 | } |
| 488 | |
| 489 | /** |
| 490 | * Returns false if the given bounds are too large to be implemented with our |
| 491 | * runtime engines that handle bounded repeats. |
| 492 | */ |
| 493 | static |
| 494 | bool tooLargeToImplement(const depth &repeatMin, const depth &repeatMax) { |
| 495 | if (!repeatMin.is_finite()) { |
| 496 | DEBUG_PRINTF("non-finite min bound %s\n" , repeatMin.str().c_str()); |
| 497 | assert(0); // this is a surprise! |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | if ((u32)repeatMin >= REPEAT_INF) { |
| 502 | DEBUG_PRINTF("min bound %s too large\n" , repeatMin.str().c_str()); |
| 503 | return true; |
| 504 | } |
| 505 | |
| 506 | if (repeatMax.is_finite() && (u32)repeatMax >= REPEAT_INF) { |
| 507 | DEBUG_PRINTF("finite max bound %s too large\n" , repeatMax.str().c_str()); |
| 508 | return true; |
| 509 | } |
| 510 | |
| 511 | return false; |
| 512 | } |
| 513 | |
| 514 | /** Returns false if the graph is not a supported bounded repeat. */ |
| 515 | static |
| 516 | bool processSubgraph(const NGHolder &g, ReachSubgraph &rsi, |
| 517 | u32 minNumVertices) { |
| 518 | DEBUG_PRINTF("reach subgraph has %zu vertices\n" , rsi.vertices.size()); |
| 519 | |
| 520 | if (rsi.vertices.size() < minNumVertices) { |
| 521 | DEBUG_PRINTF("too small, min is %u\n" , minNumVertices); |
| 522 | return false; |
| 523 | } |
| 524 | |
| 525 | NFAVertex first = rsi.vertices.front(); |
| 526 | NFAVertex last = rsi.vertices.back(); |
| 527 | |
| 528 | typedef unordered_map<NFAVertex, DistanceSet> DistanceMap; |
| 529 | DistanceMap dist; |
| 530 | |
| 531 | // Initial distance sets. |
| 532 | for (auto u : inv_adjacent_vertices_range(first, g)) { |
| 533 | if (u == first) { |
| 534 | continue; // no self-loops |
| 535 | } |
| 536 | DEBUG_PRINTF("pred vertex %zu\n" , g[u].index); |
| 537 | dist[u].insert(0); |
| 538 | } |
| 539 | |
| 540 | for (auto v : rsi.vertices) { |
| 541 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 542 | if (u == v) { |
| 543 | continue; // no self-loops |
| 544 | } |
| 545 | |
| 546 | auto di = dist.find(u); |
| 547 | if (di == dist.end()) { |
| 548 | assert(0); |
| 549 | return false; |
| 550 | } |
| 551 | |
| 552 | dist[v].add_incremented(di->second); |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | // Remove pred distances from our map. |
| 557 | for (auto u : inv_adjacent_vertices_range(first, g)) { |
| 558 | if (u == first) { |
| 559 | continue; // no self-loops |
| 560 | } |
| 561 | dist.erase(u); |
| 562 | } |
| 563 | |
| 564 | // Calculate final union of distances. |
| 565 | DistanceSet final_d; |
| 566 | for (auto v : adjacent_vertices_range(last, g)) { |
| 567 | if (v == last) { |
| 568 | continue; // no self-loops |
| 569 | } |
| 570 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 571 | if (u == v) { |
| 572 | continue; // no self-loops |
| 573 | } |
| 574 | auto di = dist.find(u); |
| 575 | if (di == dist.end()) { |
| 576 | continue; |
| 577 | } |
| 578 | final_d.add(di->second); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | #ifdef DEBUG |
| 583 | DEBUG_PRINTF("final_d dists: " ); |
| 584 | final_d.dump(); |
| 585 | printf("\n" ); |
| 586 | #endif |
| 587 | |
| 588 | if (!final_d.is_contiguous()) { |
| 589 | // not handled right now |
| 590 | DEBUG_PRINTF("not contiguous!\n" ); |
| 591 | return false; |
| 592 | } |
| 593 | |
| 594 | pair<u32, u32> range = final_d.get_range(); |
| 595 | if (range.first > depth::max_value() || range.second > depth::max_value()) { |
| 596 | DEBUG_PRINTF("repeat (%u,%u) not representable with depths\n" , |
| 597 | range.first, range.second); |
| 598 | return false; |
| 599 | } |
| 600 | rsi.repeatMin = depth(range.first); |
| 601 | rsi.repeatMax = depth(range.second); |
| 602 | |
| 603 | // If we've got a self-loop anywhere, we've got inf max. |
| 604 | if (anySelfLoop(g, rsi.vertices.begin(), rsi.vertices.end())) { |
| 605 | DEBUG_PRINTF("repeat contains self-loop, setting max to INF\n" ); |
| 606 | rsi.repeatMax = depth::infinity(); |
| 607 | } |
| 608 | |
| 609 | // If our pattern contains a bounded repeat that we wouldn't be able to |
| 610 | // implement as runtime, then we have no strategy that leads to |
| 611 | // implementation -- it's not like falling back to a DFA or other |
| 612 | // non-repeat engine is going to succeed. |
| 613 | if (tooLargeToImplement(rsi.repeatMin, rsi.repeatMax)) { |
| 614 | throw CompileError("Pattern too large." ); |
| 615 | } |
| 616 | |
| 617 | return true; |
| 618 | } |
| 619 | |
| 620 | static |
| 621 | bool allPredsInSubgraph(NFAVertex v, const NGHolder &g, |
| 622 | const unordered_set<NFAVertex> &involved) { |
| 623 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 624 | if (!contains(involved, u)) { |
| 625 | return false; |
| 626 | } |
| 627 | } |
| 628 | return true; |
| 629 | } |
| 630 | |
| 631 | static |
| 632 | void buildTugTrigger(NGHolder &g, NFAVertex cyclic, NFAVertex v, |
| 633 | const unordered_set<NFAVertex> &involved, |
| 634 | unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 635 | vector<NFAVertex> &tugs) { |
| 636 | if (allPredsInSubgraph(v, g, involved)) { |
| 637 | // We can transform this vertex into a tug trigger in-place. |
| 638 | DEBUG_PRINTF("all preds in subgraph, vertex %zu becomes tug\n" , |
| 639 | g[v].index); |
| 640 | add_edge(cyclic, v, g); |
| 641 | tugs.push_back(v); |
| 642 | return; |
| 643 | } |
| 644 | |
| 645 | // Some predecessors of v are not in the subgraph, so we need to clone v |
| 646 | // and split up its in-edges. |
| 647 | NFAVertex t = clone_vertex(g, v); |
| 648 | depths[t] = depths[v]; |
| 649 | |
| 650 | DEBUG_PRINTF("there are other paths, cloned tug %zu from vertex %zu\n" , |
| 651 | g[t].index, g[v].index); |
| 652 | |
| 653 | tugs.push_back(t); |
| 654 | add_edge(cyclic, t, g); |
| 655 | |
| 656 | // New vertex gets all of v's successors, including v itself if it's |
| 657 | // cyclic. |
| 658 | clone_out_edges(g, v, t); |
| 659 | } |
| 660 | |
| 661 | static |
| 662 | NFAVertex createCyclic(NGHolder &g, ReachSubgraph &rsi) { |
| 663 | NFAVertex last = rsi.vertices.back(); |
| 664 | NFAVertex cyclic = clone_vertex(g, last); |
| 665 | add_edge(cyclic, cyclic, g); |
| 666 | |
| 667 | DEBUG_PRINTF("created cyclic vertex %zu\n" , g[cyclic].index); |
| 668 | return cyclic; |
| 669 | } |
| 670 | |
| 671 | static |
| 672 | NFAVertex createPos(NGHolder &g, ReachSubgraph &rsi) { |
| 673 | NFAVertex pos = add_vertex(g); |
| 674 | NFAVertex first = rsi.vertices.front(); |
| 675 | |
| 676 | g[pos].char_reach = g[first].char_reach; |
| 677 | |
| 678 | DEBUG_PRINTF("created pos vertex %zu\n" , g[pos].index); |
| 679 | return pos; |
| 680 | } |
| 681 | |
| 682 | // 2 if v is directly connected to an accept, or 1 if one hop away, |
| 683 | // or 0 otherwise. |
| 684 | static |
| 685 | u32 isCloseToAccept(const NGHolder &g, NFAVertex v) { |
| 686 | if (is_any_accept(v, g)) { |
| 687 | return 2; |
| 688 | } |
| 689 | |
| 690 | for (auto w : adjacent_vertices_range(v, g)) { |
| 691 | if (is_any_accept(w, g)) { |
| 692 | return 1; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | static |
| 700 | u32 unpeelAmount(const NGHolder &g, const ReachSubgraph &rsi) { |
| 701 | const NFAVertex last = rsi.vertices.back(); |
| 702 | u32 rv = 0; |
| 703 | |
| 704 | for (auto v : adjacent_vertices_range(last, g)) { |
| 705 | rv = max(rv, isCloseToAccept(g, v)); |
| 706 | } |
| 707 | |
| 708 | return rv; |
| 709 | } |
| 710 | |
| 711 | static |
| 712 | void unpeelNearEnd(NGHolder &g, ReachSubgraph &rsi, |
| 713 | unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 714 | vector<NFAVertex> *succs) { |
| 715 | u32 unpeel = unpeelAmount(g, rsi); |
| 716 | DEBUG_PRINTF("unpeeling %u vertices\n" , unpeel); |
| 717 | |
| 718 | while (unpeel) { |
| 719 | NFAVertex last = rsi.vertices.back(); |
| 720 | NFAVertex first = rsi.vertices.front(); |
| 721 | |
| 722 | NFAVertex d = clone_vertex(g, last); |
| 723 | depths[d] = depths[last]; |
| 724 | DEBUG_PRINTF("created vertex %zu\n" , g[d].index); |
| 725 | |
| 726 | for (auto v : *succs) { |
| 727 | add_edge(d, v, g); |
| 728 | } |
| 729 | |
| 730 | if (rsi.repeatMin > depth(1)) { |
| 731 | rsi.repeatMin -= 1; |
| 732 | } else { |
| 733 | /* Skip edge for the cyclic state; note that we must clone their |
| 734 | * edge properties as they may include tops. */ |
| 735 | for (const auto &e : in_edges_range(first, g)) { |
| 736 | add_edge(source(e, g), d, g[e], g); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | succs->clear(); |
| 741 | succs->push_back(d); |
| 742 | |
| 743 | rsi.repeatMax -= 1; |
| 744 | |
| 745 | assert(rsi.repeatMin > depth(0)); |
| 746 | assert(rsi.repeatMax > depth(0)); |
| 747 | |
| 748 | unpeel--; |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | /** Fetch the set of successor vertices of this subgraph. */ |
| 753 | static |
| 754 | void getSuccessors(const NGHolder &g, const ReachSubgraph &rsi, |
| 755 | vector<NFAVertex> *succs) { |
| 756 | assert(!rsi.vertices.empty()); |
| 757 | // Successors come from successors of last vertex. |
| 758 | NFAVertex last = rsi.vertices.back(); |
| 759 | |
| 760 | for (auto v : adjacent_vertices_range(last, g)) { |
| 761 | if (v == last) { /* ignore self loop */ |
| 762 | continue; |
| 763 | } |
| 764 | succs->push_back(v); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /** Disconnect the given subgraph from its predecessors and successors in the |
| 769 | * NFA graph and replace it with a cyclic state. */ |
| 770 | static |
| 771 | void replaceSubgraphWithSpecial(NGHolder &g, ReachSubgraph &rsi, |
| 772 | vector<BoundedRepeatData> *repeats, |
| 773 | unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 774 | unordered_set<NFAVertex> &created) { |
| 775 | assert(!rsi.bad); |
| 776 | /* As we may need to unpeel 2 vertices, we need the width to be more than 2. |
| 777 | * This should only happen if the graph did not have redundancy pass |
| 778 | * performed on as vertex count checks would be prevent us reaching here. |
| 779 | */ |
| 780 | if (rsi.repeatMax <= depth(2)) { |
| 781 | return; |
| 782 | } |
| 783 | assert(rsi.repeatMin > depth(0)); |
| 784 | assert(rsi.repeatMax >= rsi.repeatMin); |
| 785 | assert(rsi.repeatMax > depth(2)); |
| 786 | |
| 787 | DEBUG_PRINTF("entry\n" ); |
| 788 | |
| 789 | const unordered_set<NFAVertex> involved(rsi.vertices.begin(), |
| 790 | rsi.vertices.end()); |
| 791 | vector<NFAVertex> succs; |
| 792 | getSuccessors(g, rsi, &succs); |
| 793 | |
| 794 | unpeelNearEnd(g, rsi, depths, &succs); |
| 795 | |
| 796 | // Create our replacement cyclic state with the same reachability and |
| 797 | // report info as the last vertex in our topo-ordered list. |
| 798 | NFAVertex cyclic = createCyclic(g, rsi); |
| 799 | created.insert(cyclic); |
| 800 | |
| 801 | // One more special vertex is necessary: the positive trigger (same |
| 802 | // reach as cyclic). |
| 803 | NFAVertex pos_trigger = createPos(g, rsi); |
| 804 | created.insert(pos_trigger); |
| 805 | add_edge(pos_trigger, cyclic, g); |
| 806 | |
| 807 | // Update depths for our new vertices. |
| 808 | NFAVertex first = rsi.vertices.front(), last = rsi.vertices.back(); |
| 809 | depths[pos_trigger] = depths[first]; |
| 810 | depths[cyclic].fromStart = |
| 811 | unionDepthMinMax(depths[first].fromStart, depths[last].fromStart); |
| 812 | depths[cyclic].fromStartDotStar = unionDepthMinMax( |
| 813 | depths[first].fromStartDotStar, depths[last].fromStartDotStar); |
| 814 | |
| 815 | // Wire predecessors to positive trigger. |
| 816 | for (const auto &e : in_edges_range(first, g)) { |
| 817 | add_edge(source(e, g), pos_trigger, g[e], g); |
| 818 | } |
| 819 | |
| 820 | // Wire cyclic state to tug trigger states built from successors. |
| 821 | vector<NFAVertex> tugs; |
| 822 | for (auto v : succs) { |
| 823 | buildTugTrigger(g, cyclic, v, involved, depths, tugs); |
| 824 | } |
| 825 | created.insert(tugs.begin(), tugs.end()); |
| 826 | assert(!tugs.empty()); |
| 827 | |
| 828 | // Wire pos trigger to tugs if min repeat is one -- this deals with cases |
| 829 | // where we can get a pos and tug trigger on the same byte. |
| 830 | if (rsi.repeatMin == depth(1)) { |
| 831 | for (auto v : tugs) { |
| 832 | add_edge(pos_trigger, v, g); |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | // Remove the vertices/edges in the subgraph. |
| 837 | remove_vertices(rsi.vertices, g, false); |
| 838 | erase_all(&depths, rsi.vertices); |
| 839 | |
| 840 | repeats->push_back(BoundedRepeatData(rsi.historyType, rsi.repeatMin, |
| 841 | rsi.repeatMax, rsi.minPeriod, cyclic, |
| 842 | pos_trigger, tugs)); |
| 843 | } |
| 844 | |
| 845 | /** Variant for Rose-specific graphs that terminate in a sole accept, so we can |
| 846 | * use a "lazy tug". See UE-1636. */ |
| 847 | static |
| 848 | void replaceSubgraphWithLazySpecial(NGHolder &g, ReachSubgraph &rsi, |
| 849 | vector<BoundedRepeatData> *repeats, |
| 850 | unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 851 | unordered_set<NFAVertex> &created) { |
| 852 | assert(!rsi.bad); |
| 853 | assert(rsi.repeatMin); |
| 854 | assert(rsi.repeatMax >= rsi.repeatMin); |
| 855 | |
| 856 | DEBUG_PRINTF("entry\n" ); |
| 857 | |
| 858 | const unordered_set<NFAVertex> involved(rsi.vertices.begin(), |
| 859 | rsi.vertices.end()); |
| 860 | vector<NFAVertex> succs; |
| 861 | getSuccessors(g, rsi, &succs); |
| 862 | |
| 863 | // Create our replacement cyclic state with the same reachability and |
| 864 | // report info as the last vertex in our topo-ordered list. |
| 865 | NFAVertex cyclic = createCyclic(g, rsi); |
| 866 | created.insert(cyclic); |
| 867 | |
| 868 | // One more special vertex is necessary: the positive trigger (same |
| 869 | // reach as cyclic). |
| 870 | NFAVertex pos_trigger = createPos(g, rsi); |
| 871 | created.insert(pos_trigger); |
| 872 | add_edge(pos_trigger, cyclic, g); |
| 873 | |
| 874 | // Update depths for our new vertices. |
| 875 | NFAVertex first = rsi.vertices.front(), last = rsi.vertices.back(); |
| 876 | depths[pos_trigger] = depths[first]; |
| 877 | depths[cyclic].fromStart = |
| 878 | unionDepthMinMax(depths[first].fromStart, depths[last].fromStart); |
| 879 | depths[cyclic].fromStartDotStar = unionDepthMinMax( |
| 880 | depths[first].fromStartDotStar, depths[last].fromStartDotStar); |
| 881 | |
| 882 | // Wire predecessors to positive trigger. |
| 883 | for (const auto &e : in_edges_range(first, g)) { |
| 884 | add_edge(source(e, g), pos_trigger, g[e], g); |
| 885 | } |
| 886 | |
| 887 | // In the rose case, our tug is our cyclic, and it's wired to our |
| 888 | // successors (which should be just the accept). |
| 889 | vector<NFAVertex> tugs; |
| 890 | assert(succs.size() == 1); |
| 891 | for (auto v : succs) { |
| 892 | add_edge(cyclic, v, g); |
| 893 | } |
| 894 | |
| 895 | // Wire pos trigger to accept if min repeat is one -- this deals with cases |
| 896 | // where we can get a pos and tug trigger on the same byte. |
| 897 | if (rsi.repeatMin == depth(1)) { |
| 898 | for (auto v : succs) { |
| 899 | add_edge(pos_trigger, v, g); |
| 900 | g[pos_trigger].reports = g[cyclic].reports; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | // Remove the vertices/edges in the subgraph. |
| 905 | remove_vertices(rsi.vertices, g, false); |
| 906 | erase_all(&depths, rsi.vertices); |
| 907 | |
| 908 | repeats->push_back(BoundedRepeatData(rsi.historyType, rsi.repeatMin, |
| 909 | rsi.repeatMax, rsi.minPeriod, cyclic, |
| 910 | pos_trigger, tugs)); |
| 911 | } |
| 912 | |
| 913 | static |
| 914 | bool isCompBigEnough(const RepeatGraph &rg, const u32 minRepeat) { |
| 915 | // filtered_graph doesn't filter the num_vertices call. |
| 916 | size_t n = 0; |
| 917 | RepeatGraph::vertex_iterator vi, ve; |
| 918 | for (tie(vi, ve) = vertices(rg); vi != ve; ++vi) { |
| 919 | if (++n >= minRepeat) { |
| 920 | return true; |
| 921 | } |
| 922 | } |
| 923 | return false; |
| 924 | } |
| 925 | |
| 926 | // Marks the subgraph as bad if it can't be handled. |
| 927 | static |
| 928 | void reprocessSubgraph(const NGHolder &h, const Grey &grey, |
| 929 | ReachSubgraph &rsi) { |
| 930 | vector<ReachSubgraph> rs(1, rsi); |
| 931 | checkReachSubgraphs(h, rs, grey.minExtBoundedRepeatSize); |
| 932 | if (rs.size() != 1) { |
| 933 | DEBUG_PRINTF("subgraph split into %zu\n" , rs.size()); |
| 934 | rsi.bad = true; |
| 935 | return; |
| 936 | } |
| 937 | |
| 938 | rsi = rs.back(); // Potentially modified. |
| 939 | |
| 940 | if (processSubgraph(h, rsi, grey.minExtBoundedRepeatSize)) { |
| 941 | DEBUG_PRINTF("reprocessed subgraph is {%s,%s} repeat\n" , |
| 942 | rsi.repeatMin.str().c_str(), rsi.repeatMax.str().c_str()); |
| 943 | } else { |
| 944 | DEBUG_PRINTF("reprocessed subgraph is bad\n" ); |
| 945 | rsi.bad = true; |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | /** Remove vertices from the beginning and end of the vertex set that are |
| 950 | * involved in other repeats as a result of earlier repeat transformations. */ |
| 951 | static |
| 952 | bool peelSubgraph(const NGHolder &g, const Grey &grey, ReachSubgraph &rsi, |
| 953 | const unordered_set<NFAVertex> &created) { |
| 954 | assert(!rsi.bad); |
| 955 | |
| 956 | if (created.empty()) { |
| 957 | return true; |
| 958 | } |
| 959 | |
| 960 | if (rsi.vertices.empty()) { |
| 961 | return false; |
| 962 | } |
| 963 | |
| 964 | // Peel involved vertices from the front. |
| 965 | vector<NFAVertex>::iterator zap = rsi.vertices.end(); |
| 966 | for (auto it = rsi.vertices.begin(), ite = rsi.vertices.end(); it != ite; |
| 967 | ++it) { |
| 968 | if (!contains(created, *it)) { |
| 969 | zap = it; |
| 970 | break; |
| 971 | } else { |
| 972 | DEBUG_PRINTF("%zu is involved in another repeat\n" , g[*it].index); |
| 973 | } |
| 974 | } |
| 975 | DEBUG_PRINTF("peeling %zu vertices from front\n" , |
| 976 | distance(rsi.vertices.begin(), zap)); |
| 977 | rsi.vertices.erase(rsi.vertices.begin(), zap); |
| 978 | |
| 979 | // Peel involved vertices and vertices with edges to involved vertices from |
| 980 | // the back; otherwise we may try to transform a POS into a TUG. |
| 981 | zap = rsi.vertices.begin(); |
| 982 | for (auto it = rsi.vertices.rbegin(), ite = rsi.vertices.rend(); it != ite; |
| 983 | ++it) { |
| 984 | if (!contains(created, *it) && |
| 985 | !contains_any_of(created, adjacent_vertices(*it, g))) { |
| 986 | zap = it.base(); // Note: erases everything after it. |
| 987 | break; |
| 988 | } else { |
| 989 | DEBUG_PRINTF("%zu is involved in another repeat\n" , g[*it].index); |
| 990 | } |
| 991 | } |
| 992 | DEBUG_PRINTF("peeling %zu vertices from back\n" , |
| 993 | distance(zap, rsi.vertices.end())); |
| 994 | rsi.vertices.erase(zap, rsi.vertices.end()); |
| 995 | |
| 996 | // If vertices in the middle are involved in other repeats, it's a definite |
| 997 | // no-no. |
| 998 | for (auto v : rsi.vertices) { |
| 999 | if (contains(created, v)) { |
| 1000 | DEBUG_PRINTF("vertex %zu is in another repeat\n" , g[v].index); |
| 1001 | return false; |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | reprocessSubgraph(g, grey, rsi); |
| 1006 | return !rsi.bad; |
| 1007 | } |
| 1008 | |
| 1009 | /** For performance reasons, it's nice not to have an exceptional state right |
| 1010 | * next to a startDs state: that way we can do double-byte accel, whereas |
| 1011 | * otherwise the NEG trigger would limit us to single. This might be a good |
| 1012 | * idea to extend to cyclic states, too. */ |
| 1013 | static |
| 1014 | void peelStartDotStar(const NGHolder &g, |
| 1015 | const unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 1016 | const Grey &grey, ReachSubgraph &rsi) { |
| 1017 | if (rsi.vertices.size() < 1) { |
| 1018 | return; |
| 1019 | } |
| 1020 | |
| 1021 | NFAVertex first = rsi.vertices.front(); |
| 1022 | if (depths.at(first).fromStartDotStar.min == depth(1)) { |
| 1023 | DEBUG_PRINTF("peeling start front vertex %zu\n" , g[first].index); |
| 1024 | rsi.vertices.erase(rsi.vertices.begin()); |
| 1025 | reprocessSubgraph(g, grey, rsi); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | static |
| 1030 | void buildReachSubgraphs(const NGHolder &g, vector<ReachSubgraph> &rs, |
| 1031 | const u32 minNumVertices) { |
| 1032 | const ReachFilter<NGHolder> fil(&g); |
| 1033 | const RepeatGraph rg(g, fil, fil); |
| 1034 | |
| 1035 | if (!isCompBigEnough(rg, minNumVertices)) { |
| 1036 | DEBUG_PRINTF("component not big enough, bailing\n" ); |
| 1037 | return; |
| 1038 | } |
| 1039 | |
| 1040 | const auto ug = make_undirected_graph(rg); |
| 1041 | |
| 1042 | unordered_map<NFAVertex, u32> repeatMap; |
| 1043 | |
| 1044 | unsigned int num; |
| 1045 | num = connected_components(ug, make_assoc_property_map(repeatMap)); |
| 1046 | DEBUG_PRINTF("found %u connected repeat components\n" , num); |
| 1047 | |
| 1048 | // Now, we build a set of topo-ordered ReachSubgraphs. |
| 1049 | vector<NFAVertex> topoOrder = buildTopoOrder(rg); |
| 1050 | |
| 1051 | rs.resize(num); |
| 1052 | |
| 1053 | for (auto v : topoOrder) { |
| 1054 | auto rit = repeatMap.find(v); |
| 1055 | if (rit == repeatMap.end()) { |
| 1056 | continue; /* not part of a repeat */ |
| 1057 | } |
| 1058 | u32 comp_id = rit->second; |
| 1059 | assert(comp_id < num); |
| 1060 | rs[comp_id].vertices.push_back(v); |
| 1061 | } |
| 1062 | |
| 1063 | #ifdef DEBUG |
| 1064 | for (size_t i = 0; i < rs.size(); i++) { |
| 1065 | DEBUG_PRINTF("rs %zu has %zu vertices.\n" , i, rs[i].vertices.size()); |
| 1066 | } |
| 1067 | #endif |
| 1068 | } |
| 1069 | |
| 1070 | static |
| 1071 | bool hasSkipEdges(const NGHolder &g, const ReachSubgraph &rsi) { |
| 1072 | assert(!rsi.vertices.empty()); |
| 1073 | |
| 1074 | const NFAVertex first = rsi.vertices.front(); |
| 1075 | const NFAVertex last = rsi.vertices.back(); |
| 1076 | |
| 1077 | // All of the preds of first must have edges to all the successors of last. |
| 1078 | for (auto u : inv_adjacent_vertices_range(first, g)) { |
| 1079 | for (auto v : adjacent_vertices_range(last, g)) { |
| 1080 | if (!edge(u, v, g).second) { |
| 1081 | return false; |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | return true; |
| 1087 | } |
| 1088 | |
| 1089 | /* depth info is valid as calculated at entry */ |
| 1090 | static |
| 1091 | bool entered_at_fixed_offset(NFAVertex v, const NGHolder &g, |
| 1092 | const unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 1093 | const unordered_set<NFAVertex> &reached_by_fixed_tops) { |
| 1094 | DEBUG_PRINTF("|reached_by_fixed_tops| %zu\n" , |
| 1095 | reached_by_fixed_tops.size()); |
| 1096 | if (is_triggered(g) && !contains(reached_by_fixed_tops, v)) { |
| 1097 | /* can't do this for infix/suffixes unless we know trigger literals |
| 1098 | * can only occur at one offset */ |
| 1099 | DEBUG_PRINTF("bad top(s) for %zu\n" , g[v].index); |
| 1100 | return false; |
| 1101 | } |
| 1102 | |
| 1103 | if (depths.at(v).fromStartDotStar.min.is_reachable()) { |
| 1104 | DEBUG_PRINTF("reachable from startDs\n" ); |
| 1105 | return false; |
| 1106 | } |
| 1107 | |
| 1108 | /* look at preds as v may be cyclic */ |
| 1109 | const depth &first = depths.at(v).fromStart.min; |
| 1110 | assert(first.is_reachable()); |
| 1111 | if (!first.is_finite()) { |
| 1112 | DEBUG_PRINTF("first not finite\n" ); |
| 1113 | return false; |
| 1114 | } |
| 1115 | DEBUG_PRINTF("first is at least %s from start\n" , first.str().c_str()); |
| 1116 | |
| 1117 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 1118 | const depth &u_max_depth = depths.at(u).fromStart.max; |
| 1119 | DEBUG_PRINTF("pred %zu max depth %s from start\n" , g[u].index, |
| 1120 | u_max_depth.str().c_str()); |
| 1121 | if (u_max_depth != first - depth(1)) { |
| 1122 | return false; |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | return true; |
| 1127 | } |
| 1128 | |
| 1129 | static |
| 1130 | NFAVertex buildTriggerStates(NGHolder &g, const vector<CharReach> &trigger, |
| 1131 | u32 top) { |
| 1132 | NFAVertex u = g.start; |
| 1133 | for (const auto &cr : trigger) { |
| 1134 | NFAVertex v = add_vertex(g); |
| 1135 | g[v].char_reach = cr; |
| 1136 | add_edge(u, v, g); |
| 1137 | if (u == g.start) { |
| 1138 | g[edge(u, v, g)].tops.insert(top); |
| 1139 | } |
| 1140 | u = v; |
| 1141 | } |
| 1142 | |
| 1143 | DEBUG_PRINTF("trigger len=%zu has sink %zu\n" , trigger.size(), g[u].index); |
| 1144 | return u; |
| 1145 | } |
| 1146 | |
| 1147 | /** |
| 1148 | * For triggered graphs, replace the "top" edges from start with the triggers |
| 1149 | * they represent, for the purposes of determining sole entry. |
| 1150 | */ |
| 1151 | static |
| 1152 | void addTriggers(NGHolder &g, |
| 1153 | const map<u32, vector<vector<CharReach>>> &triggers) { |
| 1154 | if (!is_triggered(g)) { |
| 1155 | assert(triggers.empty()); |
| 1156 | return; |
| 1157 | } |
| 1158 | |
| 1159 | vector<NFAEdge> dead; |
| 1160 | map<u32, vector<NFAVertex>> starts_by_top; |
| 1161 | |
| 1162 | for (const auto &e : out_edges_range(g.start, g)) { |
| 1163 | const NFAVertex &v = target(e, g); |
| 1164 | if (v == g.startDs) { |
| 1165 | continue; |
| 1166 | } |
| 1167 | |
| 1168 | const auto &tops = g[e].tops; |
| 1169 | |
| 1170 | // The caller may not have given us complete trigger information. If we |
| 1171 | // don't have any triggers for a particular top, we should just leave |
| 1172 | // it alone. |
| 1173 | for (u32 top : tops) { |
| 1174 | if (!contains(triggers, top)) { |
| 1175 | DEBUG_PRINTF("no triggers for top %u\n" , top); |
| 1176 | goto next_edge; |
| 1177 | } |
| 1178 | |
| 1179 | starts_by_top[top].push_back(v); |
| 1180 | } |
| 1181 | dead.push_back(e); |
| 1182 | next_edge:; |
| 1183 | } |
| 1184 | |
| 1185 | remove_edges(dead, g); |
| 1186 | |
| 1187 | for (const auto &m : starts_by_top) { |
| 1188 | const auto &top = m.first; |
| 1189 | const auto &starts = m.second; |
| 1190 | |
| 1191 | assert(contains(triggers, top)); |
| 1192 | const auto &top_triggers = triggers.at(top); |
| 1193 | |
| 1194 | for (const auto &trigger : top_triggers) { |
| 1195 | NFAVertex u = buildTriggerStates(g, trigger, top); |
| 1196 | for (const auto &v : starts) { |
| 1197 | add_edge_if_not_present(u, v, g); |
| 1198 | } |
| 1199 | } |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | static |
| 1204 | CharReach predReach(const NGHolder &g, NFAVertex v) { |
| 1205 | CharReach cr; |
| 1206 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 1207 | cr |= g[u].char_reach; |
| 1208 | } |
| 1209 | return cr; |
| 1210 | } |
| 1211 | |
| 1212 | /** |
| 1213 | * Filter the given vertex map (which maps from vertices in another graph to |
| 1214 | * vertices in subg) so that it only contains vertices that actually exist in |
| 1215 | * subg. |
| 1216 | */ |
| 1217 | static |
| 1218 | void filterMap(const NGHolder &subg, |
| 1219 | unordered_map<NFAVertex, NFAVertex> &vmap) { |
| 1220 | NGHolder::vertex_iterator vi, ve; |
| 1221 | tie(vi, ve) = vertices(subg); |
| 1222 | const unordered_set<NFAVertex> remaining_verts(vi, ve); |
| 1223 | |
| 1224 | unordered_map<NFAVertex, NFAVertex> fmap; // filtered map |
| 1225 | |
| 1226 | for (const auto &m : vmap) { |
| 1227 | if (contains(remaining_verts, m.second)) { |
| 1228 | fmap.insert(m); |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | vmap.swap(fmap); |
| 1233 | } |
| 1234 | |
| 1235 | /** Construct a graph for sole entry analysis that only considers paths through |
| 1236 | * the bounded repeat. */ |
| 1237 | static |
| 1238 | void buildRepeatGraph(NGHolder &rg, |
| 1239 | unordered_map<NFAVertex, NFAVertex> &rg_map, |
| 1240 | const NGHolder &g, const ReachSubgraph &rsi, |
| 1241 | const map<u32, vector<vector<CharReach>>> &triggers) { |
| 1242 | cloneHolder(rg, g, &rg_map); |
| 1243 | assert(rg.kind == g.kind); |
| 1244 | |
| 1245 | clear_in_edges(rg.accept, rg); |
| 1246 | clear_in_edges(rg.acceptEod, rg); |
| 1247 | add_edge(rg.accept, rg.acceptEod, rg); |
| 1248 | |
| 1249 | // Find the set of vertices in rg involved in the repeat. |
| 1250 | unordered_set<NFAVertex> rg_involved; |
| 1251 | for (const auto &v : rsi.vertices) { |
| 1252 | assert(contains(rg_map, v)); |
| 1253 | rg_involved.insert(rg_map.at(v)); |
| 1254 | } |
| 1255 | |
| 1256 | // Remove all out-edges from repeat vertices that aren't to other repeat |
| 1257 | // vertices, then connect terminal repeat vertices to accept. |
| 1258 | for (const auto &v : rsi.vertices) { |
| 1259 | NFAVertex rv = rg_map.at(v); |
| 1260 | remove_out_edge_if(rv, [&](const NFAEdge &e) { |
| 1261 | return !contains(rg_involved, target(e, rg)); |
| 1262 | }, rg); |
| 1263 | if (!has_successor(rv, rg)) { // no interior out-edges |
| 1264 | add_edge(rv, rg.accept, rg); |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | pruneUseless(rg); |
| 1269 | |
| 1270 | if (is_triggered(rg)) { |
| 1271 | // Add vertices for all our triggers |
| 1272 | addTriggers(rg, triggers); |
| 1273 | renumber_vertices(rg); |
| 1274 | |
| 1275 | // We don't know anything about how often this graph is triggered, so we |
| 1276 | // make the start vertex cyclic for the purposes of this analysis ONLY. |
| 1277 | add_edge(rg.start, rg.start, rg); |
| 1278 | } |
| 1279 | |
| 1280 | filterMap(rg, rg_map); |
| 1281 | |
| 1282 | // All of our repeat vertices should have vertices in rg. |
| 1283 | assert(all_of(begin(rsi.vertices), end(rsi.vertices), |
| 1284 | [&](const NFAVertex &v) { return contains(rg_map, v); })); |
| 1285 | } |
| 1286 | |
| 1287 | /** |
| 1288 | * Construct an input DAG which accepts on all entries to the repeat. |
| 1289 | */ |
| 1290 | static |
| 1291 | void buildInputGraph(NGHolder &lhs, |
| 1292 | unordered_map<NFAVertex, NFAVertex> &lhs_map, |
| 1293 | const NGHolder &g, const NFAVertex first, |
| 1294 | const map<u32, vector<vector<CharReach>>> &triggers) { |
| 1295 | DEBUG_PRINTF("building lhs with first=%zu\n" , g[first].index); |
| 1296 | cloneHolder(lhs, g, &lhs_map); |
| 1297 | assert(g.kind == lhs.kind); |
| 1298 | addTriggers(lhs, triggers); |
| 1299 | renumber_vertices(lhs); |
| 1300 | |
| 1301 | // Replace each back-edge (u,v) with an edge (startDs,v), which will |
| 1302 | // generate entries at at least the rate of the loop created by that |
| 1303 | // back-edge. |
| 1304 | set<NFAEdge> dead; |
| 1305 | BackEdges<set<NFAEdge> > backEdgeVisitor(dead); |
| 1306 | depth_first_search(lhs, visitor(backEdgeVisitor).root_vertex(lhs.start)); |
| 1307 | for (const auto &e : dead) { |
| 1308 | const NFAVertex u = source(e, lhs), v = target(e, lhs); |
| 1309 | if (u == v) { |
| 1310 | continue; // Self-loops are OK. |
| 1311 | } |
| 1312 | |
| 1313 | DEBUG_PRINTF("replacing back-edge (%zu,%zu) with edge (startDs,%zu)\n" , |
| 1314 | lhs[u].index, lhs[v].index, lhs[v].index); |
| 1315 | |
| 1316 | add_edge_if_not_present(lhs.startDs, v, lhs); |
| 1317 | remove_edge(e, lhs); |
| 1318 | } |
| 1319 | |
| 1320 | clear_in_edges(lhs.accept, lhs); |
| 1321 | clear_in_edges(lhs.acceptEod, lhs); |
| 1322 | add_edge(lhs.accept, lhs.acceptEod, lhs); |
| 1323 | |
| 1324 | // Wire the predecessors of the first repeat vertex to accept, then prune. |
| 1325 | NFAVertex lhs_first = lhs_map.at(first); |
| 1326 | for (auto u : inv_adjacent_vertices_range(lhs_first, lhs)) { |
| 1327 | add_edge_if_not_present(u, lhs.accept, lhs); |
| 1328 | } |
| 1329 | |
| 1330 | pruneUseless(lhs); |
| 1331 | filterMap(lhs, lhs_map); |
| 1332 | } |
| 1333 | |
| 1334 | /** |
| 1335 | * Maximum number of vertices in the input DAG to actually allow sole entry |
| 1336 | * calculation (as very large cases make sentClearsTail take a long, long time |
| 1337 | * to complete.) |
| 1338 | */ |
| 1339 | static const size_t MAX_SOLE_ENTRY_VERTICES = 10000; |
| 1340 | |
| 1341 | /** True if (1) fixed offset or (2) reentries to this subgraph must involve a |
| 1342 | * character which escapes the repeat, meaning that we only need to store a |
| 1343 | * single offset at runtime. See UE-1361. */ |
| 1344 | static |
| 1345 | bool hasSoleEntry(const NGHolder &g, const ReachSubgraph &rsi, |
| 1346 | const unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 1347 | const unordered_set<NFAVertex> &reached_by_fixed_tops, |
| 1348 | const map<u32, vector<vector<CharReach>>> &triggers) { |
| 1349 | DEBUG_PRINTF("checking repeat {%s,%s}\n" , rsi.repeatMin.str().c_str(), |
| 1350 | rsi.repeatMax.str().c_str()); |
| 1351 | NFAVertex first = rsi.vertices.front(); |
| 1352 | const CharReach &repeatReach = g[first].char_reach; |
| 1353 | |
| 1354 | /* trivial case first is at a fixed depth */ |
| 1355 | if (entered_at_fixed_offset(first, g, depths, reached_by_fixed_tops)) { |
| 1356 | DEBUG_PRINTF("fixed depth\n" ); |
| 1357 | return true; |
| 1358 | } |
| 1359 | |
| 1360 | DEBUG_PRINTF("repeat reach is %s\n" , describeClass(repeatReach).c_str()); |
| 1361 | |
| 1362 | // Nothing can escape a dot repeat. |
| 1363 | if (repeatReach.all()) { |
| 1364 | DEBUG_PRINTF("dot repeat cannot be escaped\n" ); |
| 1365 | return false; |
| 1366 | } |
| 1367 | |
| 1368 | // Another easy case: if the union of the reach of all entries to the |
| 1369 | // repeat will always escape the repeat, we have sole entry. |
| 1370 | if (predReach(g, first).isSubsetOf(~repeatReach)) { |
| 1371 | DEBUG_PRINTF("pred reach %s, which is subset of repeat escape\n" , |
| 1372 | describeClass(predReach(g, first)).c_str()); |
| 1373 | return true; |
| 1374 | } |
| 1375 | |
| 1376 | NGHolder rg; |
| 1377 | unordered_map<NFAVertex, NFAVertex> rg_map; |
| 1378 | buildRepeatGraph(rg, rg_map, g, rsi, triggers); |
| 1379 | assert(rg.kind == g.kind); |
| 1380 | |
| 1381 | NGHolder lhs; |
| 1382 | unordered_map<NFAVertex, NFAVertex> lhs_map; |
| 1383 | buildInputGraph(lhs, lhs_map, g, first, triggers); |
| 1384 | assert(lhs.kind == g.kind); |
| 1385 | |
| 1386 | if (num_vertices(lhs) > MAX_SOLE_ENTRY_VERTICES) { |
| 1387 | DEBUG_PRINTF("too many vertices (%zu) for sole entry test.\n" , |
| 1388 | num_vertices(lhs)); |
| 1389 | return false; |
| 1390 | } |
| 1391 | |
| 1392 | // Split the repeat graph into two regions: vertices in the LHS input DAG |
| 1393 | // are in one region, vertices in the bounded repeat are in another. |
| 1394 | const u32 lhs_region = 1; |
| 1395 | const u32 repeat_region = 2; |
| 1396 | unordered_map<NFAVertex, u32> region_map; |
| 1397 | |
| 1398 | for (const auto &v : rsi.vertices) { |
| 1399 | assert(!is_special(v, g)); // no specials in repeats |
| 1400 | assert(contains(rg_map, v)); |
| 1401 | DEBUG_PRINTF("rg vertex %zu in repeat\n" , rg[rg_map.at(v)].index); |
| 1402 | region_map.emplace(rg_map.at(v), repeat_region); |
| 1403 | } |
| 1404 | |
| 1405 | for (const auto &v : vertices_range(rg)) { |
| 1406 | if (!contains(region_map, v)) { |
| 1407 | DEBUG_PRINTF("rg vertex %zu in lhs (trigger)\n" , rg[v].index); |
| 1408 | region_map.emplace(v, lhs_region); |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | u32 bad_region = 0; |
| 1413 | if (sentClearsTail(rg, region_map, lhs, lhs_region, &bad_region)) { |
| 1414 | DEBUG_PRINTF("input dag clears repeat: sole entry\n" ); |
| 1415 | return true; |
| 1416 | } |
| 1417 | |
| 1418 | DEBUG_PRINTF("not sole entry\n" ); |
| 1419 | return false; |
| 1420 | } |
| 1421 | |
| 1422 | namespace { |
| 1423 | |
| 1424 | template<class Graph> |
| 1425 | struct StrawWalker { |
| 1426 | StrawWalker(const NGHolder &h_in, const Graph &g_in, |
| 1427 | const vector<BoundedRepeatData> &all_repeats) |
| 1428 | : h(h_in), g(g_in), repeats(all_repeats) {} |
| 1429 | |
| 1430 | /** True if v is a cyclic that belongs to a bounded repeat (one without an |
| 1431 | * inf max bound). */ |
| 1432 | bool isBoundedRepeatCyclic(NFAVertex v) const { |
| 1433 | for (const auto &r : repeats) { |
| 1434 | if (r.repeatMax.is_finite() && r.cyclic == v) { |
| 1435 | return true; |
| 1436 | } |
| 1437 | } |
| 1438 | return false; |
| 1439 | } |
| 1440 | |
| 1441 | NFAVertex step(NFAVertex v) const { |
| 1442 | typename Graph::adjacency_iterator ai, ae; |
| 1443 | tie(ai, ae) = adjacent_vertices(v, g); |
| 1444 | assert(ai != ae); |
| 1445 | NFAVertex next = *ai; |
| 1446 | if (next == v) { // Ignore self loop. |
| 1447 | ++ai; |
| 1448 | if (ai == ae) { |
| 1449 | return NGHolder::null_vertex(); |
| 1450 | } |
| 1451 | next = *ai; |
| 1452 | } |
| 1453 | ++ai; |
| 1454 | if (ai != ae && *ai == v) { // Ignore self loop |
| 1455 | ++ai; |
| 1456 | } |
| 1457 | if (ai != ae) { |
| 1458 | DEBUG_PRINTF("more than one succ\n" ); |
| 1459 | set<NFAVertex> succs; |
| 1460 | insert(&succs, adjacent_vertices(v, g)); |
| 1461 | succs.erase(v); |
| 1462 | for (tie(ai, ae) = adjacent_vertices(v, g); ai != ae; ++ai) { |
| 1463 | next = *ai; |
| 1464 | DEBUG_PRINTF("checking %zu\n" , g[next].index); |
| 1465 | if (next == v) { |
| 1466 | continue; |
| 1467 | } |
| 1468 | set<NFAVertex> lsuccs; |
| 1469 | insert(&lsuccs, adjacent_vertices(next, g)); |
| 1470 | |
| 1471 | if (lsuccs != succs) { |
| 1472 | continue; |
| 1473 | } |
| 1474 | |
| 1475 | // Ensure that if v is in connected to accept, the reports |
| 1476 | // on `next` much match. |
| 1477 | if (is_match_vertex(v, h) && g[v].reports != g[next].reports) { |
| 1478 | DEBUG_PRINTF("report mismatch\n" ); |
| 1479 | continue; |
| 1480 | } |
| 1481 | |
| 1482 | return next; |
| 1483 | } |
| 1484 | DEBUG_PRINTF("bailing\n" ); |
| 1485 | return NGHolder::null_vertex(); |
| 1486 | } |
| 1487 | return next; |
| 1488 | } |
| 1489 | |
| 1490 | NFAVertex walk(NFAVertex v, vector<NFAVertex> &straw) const { |
| 1491 | DEBUG_PRINTF("walk from %zu\n" , g[v].index); |
| 1492 | unordered_set<NFAVertex> visited; |
| 1493 | straw.clear(); |
| 1494 | |
| 1495 | while (!is_special(v, g)) { |
| 1496 | DEBUG_PRINTF("checking %zu\n" , g[v].index); |
| 1497 | NFAVertex next = step(v); |
| 1498 | if (next == NGHolder::null_vertex()) { |
| 1499 | break; |
| 1500 | } |
| 1501 | if (!visited.insert(next).second) { |
| 1502 | DEBUG_PRINTF("already visited %zu, bailing\n" , g[next].index); |
| 1503 | break; /* don't want to get stuck in any complicated loops */ |
| 1504 | } |
| 1505 | |
| 1506 | const CharReach &reach_v = g[v].char_reach; |
| 1507 | const CharReach &reach_next = g[next].char_reach; |
| 1508 | if (!reach_v.isSubsetOf(reach_next)) { |
| 1509 | DEBUG_PRINTF("%zu's reach is not a superset of %zu's\n" , |
| 1510 | g[next].index, g[v].index); |
| 1511 | break; |
| 1512 | } |
| 1513 | |
| 1514 | // If this is cyclic with the right reach, we're done. Note that |
| 1515 | // startDs fulfils this requirement. |
| 1516 | if (hasSelfLoop(next, g) && !isBoundedRepeatCyclic(next)) { |
| 1517 | DEBUG_PRINTF("found cyclic %zu\n" , g[next].index); |
| 1518 | return next; |
| 1519 | } |
| 1520 | |
| 1521 | v = next; |
| 1522 | straw.push_back(v); |
| 1523 | } |
| 1524 | |
| 1525 | straw.clear(); |
| 1526 | return NGHolder::null_vertex(); |
| 1527 | } |
| 1528 | |
| 1529 | private: |
| 1530 | const NGHolder &h; // underlying graph |
| 1531 | const Graph &g; |
| 1532 | const vector<BoundedRepeatData> &repeats; |
| 1533 | }; |
| 1534 | |
| 1535 | } // namespace |
| 1536 | |
| 1537 | static |
| 1538 | NFAVertex walkStrawToCyclicRev(const NGHolder &g, NFAVertex v, |
| 1539 | const vector<BoundedRepeatData> &all_repeats, |
| 1540 | vector<NFAVertex> &straw) { |
| 1541 | typedef boost::reverse_graph<NGHolder, const NGHolder &> RevGraph; |
| 1542 | const RevGraph revg(g); |
| 1543 | |
| 1544 | auto cyclic = StrawWalker<RevGraph>(g, revg, all_repeats).walk(v, straw); |
| 1545 | reverse(begin(straw), end(straw)); // path comes from cyclic |
| 1546 | return cyclic; |
| 1547 | } |
| 1548 | |
| 1549 | static |
| 1550 | NFAVertex walkStrawToCyclicFwd(const NGHolder &g, NFAVertex v, |
| 1551 | const vector<BoundedRepeatData> &all_repeats, |
| 1552 | vector<NFAVertex> &straw) { |
| 1553 | return StrawWalker<NGHolder>(g, g, all_repeats).walk(v, straw); |
| 1554 | } |
| 1555 | |
| 1556 | /** True if entries to this subgraph must pass through a cyclic state with |
| 1557 | * reachability that is a superset of the reach of the repeat, and |
| 1558 | * reachabilities along this path "nest" into the reaches of their |
| 1559 | * predecessors. |
| 1560 | * |
| 1561 | * This is what is called a 'straw' in the region code. */ |
| 1562 | static |
| 1563 | bool hasCyclicSupersetEntryPath(const NGHolder &g, const ReachSubgraph &rsi, |
| 1564 | const vector<BoundedRepeatData> &all_repeats) { |
| 1565 | // Cope with peeling by following a chain of single vertices backwards |
| 1566 | // until we encounter our cyclic, all of which must have superset reach. |
| 1567 | vector<NFAVertex> straw; |
| 1568 | return walkStrawToCyclicRev(g, rsi.vertices.front(), all_repeats, straw) != |
| 1569 | NGHolder::null_vertex(); |
| 1570 | } |
| 1571 | |
| 1572 | static |
| 1573 | bool hasCyclicSupersetExitPath(const NGHolder &g, const ReachSubgraph &rsi, |
| 1574 | const vector<BoundedRepeatData> &all_repeats) { |
| 1575 | vector<NFAVertex> straw; |
| 1576 | return walkStrawToCyclicFwd(g, rsi.vertices.back(), all_repeats, straw) != |
| 1577 | NGHolder::null_vertex(); |
| 1578 | } |
| 1579 | |
| 1580 | static |
| 1581 | bool leadsOnlyToAccept(const NGHolder &g, const ReachSubgraph &rsi) { |
| 1582 | const NFAVertex u = rsi.vertices.back(); |
| 1583 | for (auto v : adjacent_vertices_range(u, g)) { |
| 1584 | if (v != g.accept) { |
| 1585 | return false; |
| 1586 | } |
| 1587 | } |
| 1588 | assert(out_degree(u, g)); |
| 1589 | return true; |
| 1590 | } |
| 1591 | |
| 1592 | static |
| 1593 | bool allSimpleHighlander(const ReportManager &rm, |
| 1594 | const flat_set<ReportID> &reports) { |
| 1595 | assert(!reports.empty()); |
| 1596 | for (auto report : reports) { |
| 1597 | if (!isSimpleExhaustible(rm.getReport(report))) { |
| 1598 | return false; |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | return true; |
| 1603 | } |
| 1604 | |
| 1605 | // Finds a single, fairly unrefined trigger for the repeat by walking backwards |
| 1606 | // and collecting the unioned reach at each step. |
| 1607 | static |
| 1608 | vector<CharReach> getUnionedTrigger(const NGHolder &g, const NFAVertex v) { |
| 1609 | const size_t MAX_TRIGGER_STEPS = 32; |
| 1610 | |
| 1611 | vector<CharReach> trigger; |
| 1612 | |
| 1613 | flat_set<NFAVertex> curr, next; |
| 1614 | insert(&curr, inv_adjacent_vertices(v, g)); |
| 1615 | |
| 1616 | if (contains(curr, g.start)) { |
| 1617 | DEBUG_PRINTF("start in repeat's immediate preds\n" ); |
| 1618 | trigger.push_back(CharReach::dot()); // Trigger could be anything! |
| 1619 | return trigger; |
| 1620 | } |
| 1621 | |
| 1622 | for (size_t num_steps = 0; num_steps < MAX_TRIGGER_STEPS; num_steps++) { |
| 1623 | next.clear(); |
| 1624 | trigger.push_back(CharReach()); |
| 1625 | CharReach &cr = trigger.back(); |
| 1626 | |
| 1627 | for (auto v_c : curr) { |
| 1628 | cr |= g[v_c].char_reach; |
| 1629 | insert(&next, inv_adjacent_vertices(v_c, g)); |
| 1630 | } |
| 1631 | |
| 1632 | DEBUG_PRINTF("cr[%zu]=%s\n" , num_steps, describeClass(cr).c_str()); |
| 1633 | |
| 1634 | if (next.empty() || contains(next, g.start)) { |
| 1635 | break; |
| 1636 | } |
| 1637 | |
| 1638 | curr.swap(next); |
| 1639 | } |
| 1640 | |
| 1641 | reverse(trigger.begin(), trigger.end()); |
| 1642 | return trigger; |
| 1643 | } |
| 1644 | |
| 1645 | static |
| 1646 | vector<vector<CharReach>> getRepeatTriggers(const NGHolder &g, |
| 1647 | const NFAVertex sink) { |
| 1648 | const size_t MAX_TRIGGER_STEPS = 32; |
| 1649 | const size_t UNIONED_FALLBACK_THRESHOLD = 100; |
| 1650 | |
| 1651 | using Path = deque<NFAVertex>; |
| 1652 | |
| 1653 | vector<vector<CharReach>> triggers; |
| 1654 | |
| 1655 | deque<Path> q; // work queue |
| 1656 | deque<Path> done; // finished paths |
| 1657 | |
| 1658 | size_t max_len = MAX_TRIGGER_STEPS; |
| 1659 | |
| 1660 | // Find a set of paths leading to vertex v by depth first search. |
| 1661 | |
| 1662 | for (auto u : inv_adjacent_vertices_range(sink, g)) { |
| 1663 | if (is_any_start(u, g)) { |
| 1664 | triggers.push_back({}); // empty |
| 1665 | return triggers; |
| 1666 | } |
| 1667 | q.push_back(Path(1, u)); |
| 1668 | } |
| 1669 | |
| 1670 | while (!q.empty()) { |
| 1671 | Path &path = q.front(); |
| 1672 | NFAVertex v = path.back(); |
| 1673 | |
| 1674 | if (path.size() >= max_len) { |
| 1675 | max_len = min(max_len, path.size()); |
| 1676 | done.push_back(path); |
| 1677 | goto next_path; |
| 1678 | } |
| 1679 | |
| 1680 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 1681 | if (is_any_start(u, g)) { |
| 1682 | // Found an accept. There's no point expanding this path any |
| 1683 | // further, we're done. |
| 1684 | max_len = min(max_len, path.size()); |
| 1685 | done.push_back(path); |
| 1686 | goto next_path; |
| 1687 | } |
| 1688 | |
| 1689 | if (path.size() + 1 >= max_len) { |
| 1690 | done.push_back(path); |
| 1691 | done.back().push_back(u); |
| 1692 | } else { |
| 1693 | q.push_back(path); // copy |
| 1694 | q.back().push_back(u); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | next_path: |
| 1699 | q.pop_front(); |
| 1700 | |
| 1701 | // If our queue or our finished trigger list gets too large, fall back |
| 1702 | // to generating a single trigger with union reach. |
| 1703 | if (q.size() + done.size() > UNIONED_FALLBACK_THRESHOLD) { |
| 1704 | DEBUG_PRINTF("search too large, fall back to union trigger\n" ); |
| 1705 | triggers.clear(); |
| 1706 | triggers.push_back(getUnionedTrigger(g, sink)); |
| 1707 | return triggers; |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | assert(!done.empty()); |
| 1712 | |
| 1713 | // Convert our path list into a set of unique triggers. |
| 1714 | ue2_unordered_set<vector<CharReach>> unique_triggers; |
| 1715 | for (const auto &path : done) { |
| 1716 | vector<CharReach> reach_path; |
| 1717 | for (auto jt = path.rbegin(), jte = path.rend(); jt != jte; ++jt) { |
| 1718 | reach_path.push_back(g[*jt].char_reach); |
| 1719 | } |
| 1720 | unique_triggers.insert(reach_path); |
| 1721 | } |
| 1722 | |
| 1723 | insert(&triggers, triggers.end(), unique_triggers); |
| 1724 | sort(triggers.begin(), triggers.end()); |
| 1725 | DEBUG_PRINTF("built %zu unique triggers, max_len=%zu\n" , triggers.size(), |
| 1726 | max_len); |
| 1727 | return triggers; |
| 1728 | } |
| 1729 | |
| 1730 | static |
| 1731 | void findMinPeriod(const NGHolder &g, |
| 1732 | const map<u32, vector<vector<CharReach>>> &triggers, |
| 1733 | ReachSubgraph &rsi) { |
| 1734 | const auto v = rsi.vertices.front(); |
| 1735 | const CharReach &cr = g[v].char_reach; |
| 1736 | |
| 1737 | vector<vector<CharReach>> repeat_triggers; |
| 1738 | |
| 1739 | if (is_triggered(g)) { |
| 1740 | // Construct a temporary copy of the graph that also contains its |
| 1741 | // triggers, potentially lengthening the repeat's triggers. |
| 1742 | NGHolder tg; |
| 1743 | unordered_map<NFAVertex, NFAVertex> tg_map; |
| 1744 | cloneHolder(tg, g, &tg_map); |
| 1745 | addTriggers(tg, triggers); |
| 1746 | assert(contains(tg_map, v)); |
| 1747 | repeat_triggers = getRepeatTriggers(tg, tg_map.at(v)); |
| 1748 | } else { |
| 1749 | // Not triggered, no need to mutate the graph. |
| 1750 | repeat_triggers = getRepeatTriggers(g, v); |
| 1751 | } |
| 1752 | |
| 1753 | rsi.minPeriod = minPeriod(repeat_triggers, cr, &rsi.is_reset); |
| 1754 | DEBUG_PRINTF("%zu triggers, minPeriod=%u, is_reset=%d\n" , |
| 1755 | repeat_triggers.size(), rsi.minPeriod, (int)rsi.is_reset); |
| 1756 | } |
| 1757 | |
| 1758 | static |
| 1759 | void |
| 1760 | selectHistoryScheme(const NGHolder &g, const ReportManager *rm, |
| 1761 | ReachSubgraph &rsi, |
| 1762 | const unordered_map<NFAVertex, NFAVertexDepth> &depths, |
| 1763 | const unordered_set<NFAVertex> &reached_by_fixed_tops, |
| 1764 | const map<u32, vector<vector<CharReach>>> &triggers, |
| 1765 | const vector<BoundedRepeatData> &all_repeats, |
| 1766 | const bool simple_model_selection) { |
| 1767 | // {N,} cases use the FIRST history mechanism. |
| 1768 | if (rsi.repeatMax.is_infinite()) { |
| 1769 | DEBUG_PRINTF("selected FIRST history\n" ); |
| 1770 | rsi.historyType = REPEAT_FIRST; |
| 1771 | return; |
| 1772 | } |
| 1773 | |
| 1774 | /* If we have a repeat which only raises a highlander, only the first match |
| 1775 | * matters */ |
| 1776 | if (rm && leadsOnlyToAccept(g, rsi) |
| 1777 | && allSimpleHighlander(*rm, g[rsi.vertices.back()].reports)) { |
| 1778 | DEBUG_PRINTF("selected FIRST history (as highlander)\n" ); |
| 1779 | rsi.historyType = REPEAT_FIRST; |
| 1780 | rsi.repeatMax = depth::infinity(); /* for consistency */ |
| 1781 | return; |
| 1782 | } |
| 1783 | |
| 1784 | // {N,M} cases can use the FIRST mechanism if they follow a cyclic which |
| 1785 | // includes their reachability via a "straw" path. (see UE-1589) |
| 1786 | if (hasCyclicSupersetEntryPath(g, rsi, all_repeats)) { |
| 1787 | DEBUG_PRINTF("selected FIRST history due to cyclic pred with " |
| 1788 | "superset of reach\n" ); |
| 1789 | rsi.historyType = REPEAT_FIRST; |
| 1790 | rsi.repeatMax = depth::infinity(); /* will continue to pump out matches */ |
| 1791 | return; |
| 1792 | } |
| 1793 | |
| 1794 | // Similarly, {N,M} cases can use the FIRST mechanism if they precede a |
| 1795 | // cyclic which includes their reachability via a "straw" path. |
| 1796 | if (hasCyclicSupersetExitPath(g, rsi, all_repeats)) { |
| 1797 | DEBUG_PRINTF("selected FIRST history due to cyclic succ with " |
| 1798 | "superset of reach\n" ); |
| 1799 | rsi.historyType = REPEAT_FIRST; |
| 1800 | rsi.repeatMax = depth::infinity(); /* will continue to pump out matches */ |
| 1801 | return; |
| 1802 | } |
| 1803 | |
| 1804 | // Could have skip edges and therefore be a {0,N} repeat. |
| 1805 | if (rsi.repeatMin == depth(1) && hasSkipEdges(g, rsi)) { |
| 1806 | DEBUG_PRINTF("selected LAST history\n" ); |
| 1807 | rsi.historyType = REPEAT_LAST; |
| 1808 | return; |
| 1809 | } |
| 1810 | |
| 1811 | // Fill minPeriod, is_reset flags |
| 1812 | findMinPeriod(g, triggers, rsi); |
| 1813 | |
| 1814 | // If we can't re-enter this cyclic state, we have a reset case. |
| 1815 | // This check can be very expensive, so we don't do it if we've been asked |
| 1816 | // for simple model selection. |
| 1817 | if (!simple_model_selection && !rsi.is_reset && |
| 1818 | hasSoleEntry(g, rsi, depths, reached_by_fixed_tops, triggers)) { |
| 1819 | DEBUG_PRINTF("repeat is sole entry -> reset\n" ); |
| 1820 | rsi.is_reset = true; |
| 1821 | } |
| 1822 | |
| 1823 | // We can lean on the common selection code for the remainder of our repeat |
| 1824 | // models. |
| 1825 | rsi.historyType = chooseRepeatType(rsi.repeatMin, rsi.repeatMax, |
| 1826 | rsi.minPeriod, rsi.is_reset); |
| 1827 | } |
| 1828 | |
| 1829 | static |
| 1830 | void buildFeeder(NGHolder &g, const BoundedRepeatData &rd, |
| 1831 | unordered_set<NFAVertex> &created, |
| 1832 | const vector<NFAVertex> &straw) { |
| 1833 | if (!g[rd.cyclic].char_reach.all()) { |
| 1834 | // Create another cyclic feeder state with flipped reach. It has an |
| 1835 | // edge from the repeat's cyclic state and pos_trigger, an edge to the |
| 1836 | // straw, and edges from every vertex along the straw. |
| 1837 | NFAVertex feeder = clone_vertex(g, rd.cyclic); |
| 1838 | created.insert(feeder); |
| 1839 | g[feeder].char_reach.flip(); |
| 1840 | add_edge(feeder, feeder, g); |
| 1841 | add_edge(rd.pos_trigger, feeder, g); |
| 1842 | add_edge(rd.cyclic, feeder, g); |
| 1843 | add_edge(feeder, straw.front(), g); |
| 1844 | |
| 1845 | // An edge from every vertex in the straw. |
| 1846 | for (auto v : straw) { |
| 1847 | add_edge(v, feeder, g); |
| 1848 | } |
| 1849 | |
| 1850 | // An edge to the feeder from the first vertex in the straw and all of |
| 1851 | // its predecessors (other than the feeder itself, we've already |
| 1852 | // created that edge!) |
| 1853 | for (auto u : inv_adjacent_vertices_range(straw.front(), g)) { |
| 1854 | if (u == feeder) { |
| 1855 | continue; |
| 1856 | } |
| 1857 | add_edge(u, feeder, g); |
| 1858 | } |
| 1859 | |
| 1860 | DEBUG_PRINTF("added feeder %zu\n" , g[feeder].index); |
| 1861 | } else { |
| 1862 | // No neg trigger means feeder is empty, and unnecessary. |
| 1863 | assert(g[rd.pos_trigger].char_reach.all()); |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | /** |
| 1868 | * If we have a leading first repeat, we can split startDs so that it is not |
| 1869 | * cyclic so that the repeat is only triggered once, rather than every byte. If we |
| 1870 | * perform this transform we must create another cyclic state to retrigger the |
| 1871 | * repeat after we see an escape for the repeat. |
| 1872 | * |
| 1873 | * We do not use the anchored start state to allow us to restart the NFA at a deep |
| 1874 | * offset. |
| 1875 | */ |
| 1876 | static |
| 1877 | bool improveLeadingRepeat(NGHolder &g, BoundedRepeatData &rd, |
| 1878 | unordered_set<NFAVertex> &created, |
| 1879 | const vector<BoundedRepeatData> &all_repeats) { |
| 1880 | assert(edge(g.startDs, g.startDs, g).second); |
| 1881 | |
| 1882 | // UE-1617: can rewire FIRST history cases that are preceded by |
| 1883 | // startDs. |
| 1884 | if (rd.type != REPEAT_FIRST) { |
| 1885 | return false; |
| 1886 | } |
| 1887 | |
| 1888 | const CharReach &cyc_cr = g[rd.cyclic].char_reach; |
| 1889 | |
| 1890 | // This transformation is only worth doing if this would allow us to |
| 1891 | // accelerate the cyclic state (UE-2055). |
| 1892 | if ((~cyc_cr).count() > ACCEL_MAX_STOP_CHAR) { |
| 1893 | DEBUG_PRINTF("we wouldn't be able to accel this case\n" ); |
| 1894 | return false; |
| 1895 | } |
| 1896 | |
| 1897 | vector<NFAVertex> straw; |
| 1898 | NFAVertex pred = |
| 1899 | walkStrawToCyclicRev(g, rd.pos_trigger, all_repeats, straw); |
| 1900 | if (pred != g.startDs) { |
| 1901 | DEBUG_PRINTF("straw walk doesn't lead to startDs\n" ); |
| 1902 | return false; |
| 1903 | } |
| 1904 | |
| 1905 | // This transformation is only safe if the straw path from startDs that |
| 1906 | // we've discovered can *only* lead to this repeat, since we're going to |
| 1907 | // remove the self-loop on startDs. |
| 1908 | if (proper_out_degree(g.startDs, g) > 1) { |
| 1909 | DEBUG_PRINTF("startDs has other successors\n" ); |
| 1910 | return false; |
| 1911 | } |
| 1912 | for (const auto &v : straw) { |
| 1913 | if (proper_out_degree(v, g) != 1) { |
| 1914 | DEBUG_PRINTF("branch between startDs and repeat, from vertex %zu\n" , |
| 1915 | g[v].index); |
| 1916 | return false; |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | if (g[rd.pos_trigger].char_reach.count() < ACCEL_MAX_STOP_CHAR) { |
| 1921 | DEBUG_PRINTF("entry is narrow, could be accelerable\n" ); |
| 1922 | return false; |
| 1923 | } |
| 1924 | |
| 1925 | assert(!straw.empty()); |
| 1926 | |
| 1927 | /* If there is overlap between the feeder and the first vertex in the straw |
| 1928 | * fun things happen. TODO: handle fun things happening (requires more |
| 1929 | * edges and more vertices). */ |
| 1930 | if (!g[straw.front()].char_reach.isSubsetOf(cyc_cr)) { |
| 1931 | DEBUG_PRINTF("straw has `interesting' reach\n" ); |
| 1932 | return false; |
| 1933 | } |
| 1934 | |
| 1935 | DEBUG_PRINTF("repeat can be improved by removing startDs loop!\n" ); |
| 1936 | |
| 1937 | // Remove the self-loop on startDs! What a blast! |
| 1938 | remove_edge(g.startDs, g.startDs, g); |
| 1939 | |
| 1940 | // Wire up feeder state to straw. |
| 1941 | buildFeeder(g, rd, created, straw); |
| 1942 | |
| 1943 | return true; |
| 1944 | } |
| 1945 | |
| 1946 | static |
| 1947 | vector<NFAVertex> makeOwnStraw(NGHolder &g, BoundedRepeatData &rd, |
| 1948 | const vector<NFAVertex> &straw) { |
| 1949 | // Straw runs from startDs to our pos trigger. |
| 1950 | assert(!straw.empty()); |
| 1951 | assert(edge(g.startDs, straw.front(), g).second); |
| 1952 | assert(edge(straw.back(), rd.pos_trigger, g).second); |
| 1953 | |
| 1954 | vector<NFAVertex> own_straw; |
| 1955 | for (const auto &v : straw) { |
| 1956 | NFAVertex v2 = clone_vertex(g, v); |
| 1957 | if (hasSelfLoop(v, g)) { |
| 1958 | add_edge(v2, v2, g); |
| 1959 | } |
| 1960 | if (!own_straw.empty()) { |
| 1961 | add_edge(own_straw.back(), v2, g); |
| 1962 | } |
| 1963 | own_straw.push_back(v2); |
| 1964 | } |
| 1965 | |
| 1966 | // Wire our straw to start, not startDs. |
| 1967 | add_edge(g.start, own_straw.front(), g); |
| 1968 | |
| 1969 | // Swap over to using our own straw to get to the POS trigger. |
| 1970 | remove_edge(straw.back(), rd.pos_trigger, g); |
| 1971 | add_edge(own_straw.back(), rd.pos_trigger, g); |
| 1972 | |
| 1973 | return own_straw; |
| 1974 | } |
| 1975 | |
| 1976 | /** |
| 1977 | * Specialized version of improveLeadingRepeat for outfixes, in which we can |
| 1978 | * rewire the straw to start instead of removing the startDs self-loop. |
| 1979 | */ |
| 1980 | static |
| 1981 | bool improveLeadingRepeatOutfix(NGHolder &g, BoundedRepeatData &rd, |
| 1982 | unordered_set<NFAVertex> &created, |
| 1983 | const vector<BoundedRepeatData> &all_repeats) { |
| 1984 | assert(g.kind == NFA_OUTFIX); |
| 1985 | |
| 1986 | // UE-1617: can rewire FIRST history cases that are preceded by |
| 1987 | // startDs. |
| 1988 | if (rd.type != REPEAT_FIRST) { |
| 1989 | return false; |
| 1990 | } |
| 1991 | |
| 1992 | const CharReach &cyc_cr = g[rd.cyclic].char_reach; |
| 1993 | |
| 1994 | // This transformation is only worth doing if this would allow us to |
| 1995 | // accelerate the cyclic state (UE-2055). |
| 1996 | if ((~cyc_cr).count() > ACCEL_MAX_STOP_CHAR) { |
| 1997 | DEBUG_PRINTF("we wouldn't be able to accel this case\n" ); |
| 1998 | return false; |
| 1999 | } |
| 2000 | |
| 2001 | vector<NFAVertex> straw; |
| 2002 | NFAVertex pred = |
| 2003 | walkStrawToCyclicRev(g, rd.pos_trigger, all_repeats, straw); |
| 2004 | if (pred != g.startDs) { |
| 2005 | DEBUG_PRINTF("straw walk doesn't lead to startDs\n" ); |
| 2006 | return false; |
| 2007 | } |
| 2008 | |
| 2009 | if (g[rd.pos_trigger].char_reach.count() < ACCEL_MAX_STOP_CHAR) { |
| 2010 | DEBUG_PRINTF("entry is narrow, could be accelerable\n" ); |
| 2011 | return false; |
| 2012 | } |
| 2013 | |
| 2014 | assert(!straw.empty()); |
| 2015 | |
| 2016 | /* If there is overlap between the feeder and the first vertex in the straw |
| 2017 | * fun things happen. TODO: handle fun things happening (requires more |
| 2018 | * edges and more vertices). */ |
| 2019 | if (!g[straw.front()].char_reach.isSubsetOf(cyc_cr)) { |
| 2020 | DEBUG_PRINTF("straw has `interesting' reach\n" ); |
| 2021 | return false; |
| 2022 | } |
| 2023 | |
| 2024 | DEBUG_PRINTF("repeat can be improved by rebuilding its entry\n" ); |
| 2025 | |
| 2026 | const auto own_straw = makeOwnStraw(g, rd, straw); |
| 2027 | insert(&created, own_straw); |
| 2028 | |
| 2029 | // Wire up feeder state to our new straw. |
| 2030 | buildFeeder(g, rd, created, own_straw); |
| 2031 | |
| 2032 | // We may no longer need the original straw. |
| 2033 | pruneUseless(g); |
| 2034 | |
| 2035 | return true; |
| 2036 | } |
| 2037 | |
| 2038 | /** Returns true if doing the bounded repeat transformation on this case |
| 2039 | * results in a smaller NFA model. */ |
| 2040 | static |
| 2041 | bool givesBetterModel(const NGHolder &g, const vector<ReachSubgraph> &rs) { |
| 2042 | static const u32 MAX_FAST_STATES = 128; // bigger NFAs are fat and slow. |
| 2043 | |
| 2044 | // We use vertex count as an upper bound for the number of states. |
| 2045 | u32 curr_states = num_vertices(g) - 2; // accepts don't have states |
| 2046 | |
| 2047 | if (curr_states <= MAX_FAST_STATES) { |
| 2048 | return false; |
| 2049 | } |
| 2050 | if (curr_states > NFA_MAX_STATES) { |
| 2051 | return true; |
| 2052 | } |
| 2053 | |
| 2054 | u32 expected_states = curr_states; |
| 2055 | for (const auto &rsi : rs) { |
| 2056 | /* may be off as unpeeling not done yet */ |
| 2057 | expected_states += 2; /* cyclic and pos */ |
| 2058 | expected_states -= rsi.vertices.size(); |
| 2059 | } |
| 2060 | |
| 2061 | return ROUNDUP_N(curr_states, 128) != ROUNDUP_N(expected_states, 128); |
| 2062 | } |
| 2063 | |
| 2064 | /** True if this repeat terminates with a vertex that leads only to accept. */ |
| 2065 | static |
| 2066 | bool endsInAccept(const NGHolder &g, const ReachSubgraph &rsi) { |
| 2067 | NFAVertex last = rsi.vertices.back(); |
| 2068 | return getSoleDestVertex(g, last) == g.accept; |
| 2069 | } |
| 2070 | |
| 2071 | static |
| 2072 | bool endsInAcceptEod(const NGHolder &g, const ReachSubgraph &rsi) { |
| 2073 | NFAVertex last = rsi.vertices.back(); |
| 2074 | return getSoleDestVertex(g, last) == g.acceptEod; |
| 2075 | } |
| 2076 | |
| 2077 | namespace { |
| 2078 | class pfti_visitor : public boost::default_dfs_visitor { |
| 2079 | public: |
| 2080 | pfti_visitor(unordered_map<NFAVertex, depth> &top_depths_in, |
| 2081 | const depth &our_depth_in) |
| 2082 | : top_depths(top_depths_in), our_depth(our_depth_in) {} |
| 2083 | |
| 2084 | void discover_vertex(NFAVertex v, UNUSED const NGHolder &g) { |
| 2085 | DEBUG_PRINTF("discovered %zu (depth %s)\n" , g[v].index, |
| 2086 | our_depth.str().c_str()); |
| 2087 | |
| 2088 | auto it = top_depths.find(v); |
| 2089 | if (it != top_depths.end() && it->second != our_depth) { |
| 2090 | // already seen at a different depth, remove from consideration. |
| 2091 | it->second = depth::infinity(); |
| 2092 | } else { |
| 2093 | top_depths[v] = our_depth; |
| 2094 | } |
| 2095 | } |
| 2096 | unordered_map<NFAVertex, depth> &top_depths; |
| 2097 | const depth &our_depth; |
| 2098 | }; |
| 2099 | } // namespace |
| 2100 | |
| 2101 | static |
| 2102 | void populateFixedTopInfo(const map<u32, u32> &fixed_depth_tops, |
| 2103 | const NGHolder &g, |
| 2104 | unordered_set<NFAVertex> *reached_by_fixed_tops) { |
| 2105 | if (fixed_depth_tops.empty()) { |
| 2106 | return; /* we will never find anything */ |
| 2107 | } |
| 2108 | |
| 2109 | assert(!proper_out_degree(g.startDs, g)); |
| 2110 | unordered_map<NFAVertex, depth> top_depths; |
| 2111 | auto colours = make_small_color_map(g); |
| 2112 | |
| 2113 | for (const auto &e : out_edges_range(g.start, g)) { |
| 2114 | NFAVertex v = target(e, g); |
| 2115 | if (v == g.startDs) { |
| 2116 | continue; |
| 2117 | } |
| 2118 | |
| 2119 | depth td = depth::infinity(); |
| 2120 | for (u32 top : g[e].tops) { |
| 2121 | if (!contains(fixed_depth_tops, top)) { |
| 2122 | td = depth::infinity(); |
| 2123 | break; |
| 2124 | } |
| 2125 | depth td_t(fixed_depth_tops.at(top)); |
| 2126 | if (td == td_t) { |
| 2127 | continue; |
| 2128 | } else if (td == depth::infinity()) { |
| 2129 | td = td_t; |
| 2130 | } else { |
| 2131 | td = depth::infinity(); |
| 2132 | break; |
| 2133 | } |
| 2134 | } |
| 2135 | |
| 2136 | DEBUG_PRINTF("scanning from %zu depth=%s\n" , g[v].index, |
| 2137 | td.str().c_str()); |
| 2138 | /* for each vertex reachable from v update its map to reflect that it is |
| 2139 | * reachable from a top of depth td. */ |
| 2140 | |
| 2141 | depth_first_visit(g, v, pfti_visitor(top_depths, td), colours); |
| 2142 | } |
| 2143 | |
| 2144 | for (const auto &v_depth : top_depths) { |
| 2145 | const NFAVertex v = v_depth.first; |
| 2146 | const depth &d = v_depth.second; |
| 2147 | if (d.is_finite()) { |
| 2148 | DEBUG_PRINTF("%zu reached by fixed tops at depth %s\n" , |
| 2149 | g[v].index, d.str().c_str()); |
| 2150 | reached_by_fixed_tops->insert(v); |
| 2151 | } |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | #ifndef NDEBUG |
| 2156 | /** Assertion use only. Returns true if the given bounded repeats share any |
| 2157 | * vertices, which we don't allow. */ |
| 2158 | static |
| 2159 | bool hasOverlappingRepeats(UNUSED const NGHolder &g, |
| 2160 | const vector<BoundedRepeatData> &repeats) { |
| 2161 | unordered_set<NFAVertex> involved; |
| 2162 | |
| 2163 | for (const auto &br : repeats) { |
| 2164 | if (contains(involved, br.cyclic)) { |
| 2165 | DEBUG_PRINTF("already seen cyclic %zu\n" , g[br.cyclic].index); |
| 2166 | return true; |
| 2167 | } |
| 2168 | if (contains(involved, br.pos_trigger)) { |
| 2169 | DEBUG_PRINTF("already seen pos %zu\n" , g[br.pos_trigger].index); |
| 2170 | return true; |
| 2171 | } |
| 2172 | for (auto v : br.tug_triggers) { |
| 2173 | if (contains(involved, v)) { |
| 2174 | DEBUG_PRINTF("already seen tug %zu\n" , g[v].index); |
| 2175 | return true; |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | involved.insert(br.cyclic); |
| 2180 | involved.insert(br.pos_trigger); |
| 2181 | involved.insert(br.tug_triggers.begin(), br.tug_triggers.end()); |
| 2182 | } |
| 2183 | |
| 2184 | return false; |
| 2185 | } |
| 2186 | |
| 2187 | #endif // NDEBUG |
| 2188 | |
| 2189 | /** |
| 2190 | * Identifies so-called "nasty" repeats, in which the reachability of both the |
| 2191 | * repeat itself and its tugs are wide, which means that executing the NFA will |
| 2192 | * likely be bogged down in exception processing. |
| 2193 | */ |
| 2194 | static |
| 2195 | bool repeatIsNasty(const NGHolder &g, const ReachSubgraph &rsi, |
| 2196 | const unordered_map<NFAVertex, NFAVertexDepth> &depths) { |
| 2197 | if (num_vertices(g) > NFA_MAX_STATES) { |
| 2198 | // We may have no choice but to implement this repeat to get the graph |
| 2199 | // down to a tractable number of vertices. |
| 2200 | return false; |
| 2201 | } |
| 2202 | |
| 2203 | if (!generates_callbacks(g) && endsInAccept(g, rsi)) { |
| 2204 | DEBUG_PRINTF("would generate a lazy tug, repeat is OK\n" ); |
| 2205 | return false; |
| 2206 | } |
| 2207 | |
| 2208 | const NFAVertex first = rsi.vertices.front(); |
| 2209 | DEBUG_PRINTF("min depth from startds = %s\n" , |
| 2210 | depths.at(first).fromStartDotStar.min.str().c_str()); |
| 2211 | if (depths.at(first).fromStartDotStar.min > depth(2)) { |
| 2212 | return false; |
| 2213 | } |
| 2214 | |
| 2215 | NFAVertex last = rsi.vertices.back(); |
| 2216 | const CharReach &cyclicreach = g[last].char_reach; |
| 2217 | CharReach tugreach; |
| 2218 | for (auto v : adjacent_vertices_range(last, g)) { |
| 2219 | if (v == last || is_special(v, g)) { |
| 2220 | continue; |
| 2221 | } |
| 2222 | tugreach |= g[v].char_reach; |
| 2223 | } |
| 2224 | // Deal with unpeeled cases. |
| 2225 | if (tugreach.none()) { |
| 2226 | tugreach = cyclicreach; |
| 2227 | } |
| 2228 | DEBUG_PRINTF("tugreach.count=%zu, cyclicreach.count=%zu\n" , |
| 2229 | tugreach.count(), cyclicreach.count()); |
| 2230 | return (tugreach.count() > 200) && (cyclicreach.count() > 200); |
| 2231 | } |
| 2232 | |
| 2233 | void analyseRepeats(NGHolder &g, const ReportManager *rm, |
| 2234 | const map<u32, u32> &fixed_depth_tops, |
| 2235 | const map<u32, vector<vector<CharReach>>> &triggers, |
| 2236 | vector<BoundedRepeatData> *repeats, bool streaming, |
| 2237 | bool simple_model_selection, const Grey &grey, |
| 2238 | bool *reformed_start_ds) { |
| 2239 | if (!grey.allowExtendedNFA || !grey.allowLimExNFA) { |
| 2240 | return; |
| 2241 | } |
| 2242 | |
| 2243 | // Quick sanity test. |
| 2244 | assert(allMatchStatesHaveReports(g)); |
| 2245 | |
| 2246 | #ifndef NDEBUG |
| 2247 | // So we can assert that the number of tops hasn't changed at the end of |
| 2248 | // this analysis. |
| 2249 | const flat_set<u32> allTops = getTops(g); |
| 2250 | #endif |
| 2251 | |
| 2252 | // Later on, we're (a little bit) dependent on depth information for |
| 2253 | // unpeeling and so forth. Note that these depths MUST be maintained when |
| 2254 | // new vertices are added. |
| 2255 | unordered_map<NFAVertex, NFAVertexDepth> depths; |
| 2256 | findInitDepths(g, depths); |
| 2257 | |
| 2258 | // Construct our list of subgraphs with the same reach using BGL magic. |
| 2259 | vector<ReachSubgraph> rs; |
| 2260 | buildReachSubgraphs(g, rs, grey.minExtBoundedRepeatSize); |
| 2261 | |
| 2262 | // Validate and split subgraphs. |
| 2263 | checkReachSubgraphs(g, rs, grey.minExtBoundedRepeatSize); |
| 2264 | |
| 2265 | // Identify which subgraphs represent bounded repeats in forms ("cliches") |
| 2266 | // that we accept, and mark the others as bad. |
| 2267 | for (auto &rsi: rs) { |
| 2268 | if (!processSubgraph(g, rsi, grey.minExtBoundedRepeatSize)) { |
| 2269 | rsi.bad = true; |
| 2270 | continue; |
| 2271 | } |
| 2272 | |
| 2273 | DEBUG_PRINTF("rsi min %s=max=%s\n" , rsi.repeatMin.str().c_str(), |
| 2274 | rsi.repeatMax.str().c_str()); |
| 2275 | |
| 2276 | // Identify repeats with wide cyclic and tug reach which will produce |
| 2277 | // low-performance implementations and avoid doing them. |
| 2278 | if (repeatIsNasty(g, rsi, depths)) { |
| 2279 | DEBUG_PRINTF("marking nasty repeat as bad\n" ); |
| 2280 | rsi.bad = true; |
| 2281 | } |
| 2282 | } |
| 2283 | |
| 2284 | // Remove bad cases, then sort remaining subgraphs in descending size |
| 2285 | // order. |
| 2286 | rs.erase(remove_if(rs.begin(), rs.end(), |
| 2287 | [](const ReachSubgraph &r) { return r.bad; }), |
| 2288 | rs.end()); |
| 2289 | stable_sort(rs.begin(), rs.end(), |
| 2290 | [](const ReachSubgraph &a, const ReachSubgraph &b) { |
| 2291 | return a.vertices.size() > b.vertices.size(); |
| 2292 | }); |
| 2293 | |
| 2294 | if (!streaming && !givesBetterModel(g, rs)) { |
| 2295 | /* in block mode, there is no state space so we are only looking for |
| 2296 | * performance wins */ |
| 2297 | DEBUG_PRINTF("repeat would not reduce NFA model size, skipping\n" ); |
| 2298 | return; |
| 2299 | } |
| 2300 | |
| 2301 | if (rs.empty()) { |
| 2302 | /* no good repeats */ |
| 2303 | return; |
| 2304 | } |
| 2305 | |
| 2306 | // Store a copy of the original, unmodified graph in case we need to revert |
| 2307 | // back: in particular, due to tug cloning it is possible to build a graph |
| 2308 | // that was bigger than the original. See UE-2370. FIXME: smarter analysis |
| 2309 | // could make this unnecessary? |
| 2310 | const unique_ptr<const NGHolder> orig_g(cloneHolder(g)); |
| 2311 | |
| 2312 | unordered_set<NFAVertex> reached_by_fixed_tops; |
| 2313 | if (is_triggered(g)) { |
| 2314 | populateFixedTopInfo(fixed_depth_tops, g, &reached_by_fixed_tops); |
| 2315 | } |
| 2316 | |
| 2317 | // Go to town on the remaining acceptable subgraphs. |
| 2318 | unordered_set<NFAVertex> created; |
| 2319 | for (auto &rsi : rs) { |
| 2320 | DEBUG_PRINTF("subgraph (beginning vertex %zu) is a {%s,%s} repeat\n" , |
| 2321 | g[rsi.vertices.front()].index, |
| 2322 | rsi.repeatMin.str().c_str(), rsi.repeatMax.str().c_str()); |
| 2323 | |
| 2324 | if (!peelSubgraph(g, grey, rsi, created)) { |
| 2325 | DEBUG_PRINTF("peel failed, skipping\n" ); |
| 2326 | continue; |
| 2327 | } |
| 2328 | |
| 2329 | // Attempt to peel a vertex if we're up against startDs, for |
| 2330 | // performance reasons. |
| 2331 | peelStartDotStar(g, depths, grey, rsi); |
| 2332 | |
| 2333 | // Our peeling passes may have killed off this repeat. |
| 2334 | if (rsi.bad) { |
| 2335 | continue; |
| 2336 | } |
| 2337 | |
| 2338 | selectHistoryScheme(g, rm, rsi, depths, reached_by_fixed_tops, triggers, |
| 2339 | *repeats, simple_model_selection); |
| 2340 | |
| 2341 | if (!generates_callbacks(g) && endsInAccept(g, rsi)) { |
| 2342 | DEBUG_PRINTF("accepty-rosy graph\n" ); |
| 2343 | replaceSubgraphWithLazySpecial(g, rsi, repeats, depths, created); |
| 2344 | } else if (endsInAcceptEod(g, rsi)) { |
| 2345 | DEBUG_PRINTF("accepty-rosy graph\n" ); |
| 2346 | replaceSubgraphWithLazySpecial(g, rsi, repeats, depths, created); |
| 2347 | } else { |
| 2348 | replaceSubgraphWithSpecial(g, rsi, repeats, depths, created); |
| 2349 | } |
| 2350 | |
| 2351 | // Some of our analyses require correctly numbered vertices, so we |
| 2352 | // renumber after changes. |
| 2353 | renumber_vertices(g); |
| 2354 | } |
| 2355 | |
| 2356 | bool modified_start_ds = false; |
| 2357 | |
| 2358 | // We may be able to make improvements to the graph for performance |
| 2359 | // reasons. Note that this may do 'orrible things like remove the startDs |
| 2360 | // cycle, this should only happen quite late in the graph lifecycle. |
| 2361 | if (repeats->size() == 1) { |
| 2362 | if (g.kind == NFA_OUTFIX) { |
| 2363 | improveLeadingRepeatOutfix(g, repeats->back(), created, *repeats); |
| 2364 | // (Does not modify startDs, so we don't need to set |
| 2365 | // reformed_start_ds for this case.) |
| 2366 | } else { |
| 2367 | modified_start_ds = |
| 2368 | improveLeadingRepeat(g, repeats->back(), created, *repeats); |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | if (reformed_start_ds) { |
| 2373 | *reformed_start_ds = modified_start_ds; |
| 2374 | } |
| 2375 | |
| 2376 | if (!repeats->empty()) { |
| 2377 | if (num_vertices(g) > NFA_MAX_STATES) { |
| 2378 | // We've managed to build an unimplementable NFA. Swap back to the |
| 2379 | // original. |
| 2380 | DEBUG_PRINTF("NFA has %zu vertices; swapping back to the " |
| 2381 | "original graph\n" , num_vertices(g)); |
| 2382 | clear_graph(g); |
| 2383 | assert(orig_g); |
| 2384 | cloneHolder(g, *orig_g); |
| 2385 | repeats->clear(); |
| 2386 | } |
| 2387 | |
| 2388 | // Sanity test: we don't want any repeats that share special vertices |
| 2389 | // as our construction code later can't cope with it. |
| 2390 | assert(!hasOverlappingRepeats(g, *repeats)); |
| 2391 | |
| 2392 | // We have modified the graph, so we need to ensure that our edges |
| 2393 | // and vertices are correctly numbered. |
| 2394 | renumber_vertices(g); |
| 2395 | renumber_edges(g); |
| 2396 | // Remove stray report IDs. |
| 2397 | clearReports(g); |
| 2398 | } |
| 2399 | |
| 2400 | // Quick sanity tests. |
| 2401 | assert(allMatchStatesHaveReports(g)); |
| 2402 | assert(!is_triggered(g) || getTops(g) == allTops); |
| 2403 | } |
| 2404 | |
| 2405 | /** |
| 2406 | * \brief True if the non-special vertices in the given graph all have the same |
| 2407 | * character reachability. |
| 2408 | */ |
| 2409 | static |
| 2410 | bool allOneReach(const NGHolder &g) { |
| 2411 | const CharReach *cr = nullptr; |
| 2412 | for (const auto &v : vertices_range(g)) { |
| 2413 | if (is_special(v, g)) { |
| 2414 | continue; |
| 2415 | } |
| 2416 | if (!cr) { |
| 2417 | cr = &g[v].char_reach; |
| 2418 | } else { |
| 2419 | if (*cr != g[v].char_reach) { |
| 2420 | return false; |
| 2421 | } |
| 2422 | } |
| 2423 | } |
| 2424 | return true; |
| 2425 | } |
| 2426 | |
| 2427 | bool isPureRepeat(const NGHolder &g, PureRepeat &repeat) { |
| 2428 | assert(allMatchStatesHaveReports(g)); |
| 2429 | |
| 2430 | DEBUG_PRINTF("entry\n" ); |
| 2431 | |
| 2432 | // Must be start anchored. |
| 2433 | assert(edge(g.startDs, g.startDs, g).second); |
| 2434 | if (out_degree(g.startDs, g) > 1) { |
| 2435 | DEBUG_PRINTF("Unanchored\n" ); |
| 2436 | return false; |
| 2437 | } |
| 2438 | |
| 2439 | // Must not be EOD-anchored. |
| 2440 | assert(edge(g.accept, g.acceptEod, g).second); |
| 2441 | if (in_degree(g.acceptEod, g) > 1) { |
| 2442 | DEBUG_PRINTF("EOD anchored\n" ); |
| 2443 | return false; |
| 2444 | } |
| 2445 | |
| 2446 | // Must have precisely one top. |
| 2447 | if (is_triggered(g) && !onlyOneTop(g)) { |
| 2448 | DEBUG_PRINTF("Too many tops\n" ); |
| 2449 | return false; |
| 2450 | } |
| 2451 | |
| 2452 | if (!allOneReach(g)) { |
| 2453 | DEBUG_PRINTF("vertices with different reach\n" ); |
| 2454 | return false; |
| 2455 | } |
| 2456 | |
| 2457 | // We allow this code to report true for any repeat, even for '.*' or '.+' |
| 2458 | // cases. |
| 2459 | const u32 minNumVertices = 1; |
| 2460 | |
| 2461 | vector<ReachSubgraph> rs; |
| 2462 | buildReachSubgraphs(g, rs, minNumVertices); |
| 2463 | checkReachSubgraphs(g, rs, minNumVertices); |
| 2464 | if (rs.size() != 1) { |
| 2465 | DEBUG_PRINTF("too many subgraphs\n" ); |
| 2466 | return false; |
| 2467 | } |
| 2468 | |
| 2469 | ReachSubgraph &rsi = *rs.begin(); |
| 2470 | if (!processSubgraph(g, rsi, minNumVertices)) { |
| 2471 | DEBUG_PRINTF("not a supported repeat\n" ); |
| 2472 | return false; |
| 2473 | } |
| 2474 | |
| 2475 | if (rsi.vertices.size() + N_SPECIALS != num_vertices(g)) { |
| 2476 | DEBUG_PRINTF("repeat doesn't span graph\n" ); |
| 2477 | return false; |
| 2478 | } |
| 2479 | |
| 2480 | assert(!rsi.bad); |
| 2481 | assert(rsi.vertices.size() >= minNumVertices); |
| 2482 | |
| 2483 | const NFAVertex v = rsi.vertices.back(); |
| 2484 | |
| 2485 | repeat.reach = g[v].char_reach; |
| 2486 | repeat.bounds.min = rsi.repeatMin; |
| 2487 | repeat.bounds.max = rsi.repeatMax; |
| 2488 | insert(&repeat.reports, g[v].reports); |
| 2489 | |
| 2490 | if (isVacuous(g)) { |
| 2491 | // This graph might be a {0,N} or {0,} repeat. For this to be true, we |
| 2492 | // must have found a {1,N} or {1,} repeat and the start vertex must |
| 2493 | // have the same report set as the vertices in the repeat. |
| 2494 | if (repeat.bounds.min == depth(1) && |
| 2495 | g[g.start].reports == g[v].reports) { |
| 2496 | repeat.bounds.min = depth(0); |
| 2497 | DEBUG_PRINTF("graph is %s repeat\n" , repeat.bounds.str().c_str()); |
| 2498 | } else { |
| 2499 | DEBUG_PRINTF("not a supported repeat\n" ); |
| 2500 | return false; |
| 2501 | } |
| 2502 | } |
| 2503 | |
| 2504 | assert(all_reports(g) == set<ReportID>(begin(g[v].reports), |
| 2505 | end(g[v].reports))); |
| 2506 | return true; |
| 2507 | } |
| 2508 | |
| 2509 | void findRepeats(const NGHolder &h, u32 minRepeatVertices, |
| 2510 | vector<GraphRepeatInfo> *repeats_out) { |
| 2511 | // Construct our list of subgraphs with the same reach using BGL magic. |
| 2512 | vector<ReachSubgraph> rs; |
| 2513 | buildReachSubgraphs(h, rs, minRepeatVertices); |
| 2514 | checkReachSubgraphs(h, rs, minRepeatVertices); |
| 2515 | |
| 2516 | for (auto &rsi : rs) { |
| 2517 | if (!processSubgraph(h, rsi, minRepeatVertices)) { |
| 2518 | continue; |
| 2519 | } |
| 2520 | |
| 2521 | DEBUG_PRINTF("rsi min=%s max=%s\n" , rsi.repeatMin.str().c_str(), |
| 2522 | rsi.repeatMax.str().c_str()); |
| 2523 | |
| 2524 | depth repeatMax = rsi.repeatMax; |
| 2525 | |
| 2526 | vector<BoundedRepeatData> all_repeats; /* we don't mutate the graph in |
| 2527 | * this path */ |
| 2528 | if (hasCyclicSupersetEntryPath(h, rsi, all_repeats)) { |
| 2529 | DEBUG_PRINTF("selected FIRST history due to cyclic pred with " |
| 2530 | "superset of reach\n" ); |
| 2531 | repeatMax = depth::infinity(); /* will continue to pump out matches */ |
| 2532 | } |
| 2533 | if (hasCyclicSupersetExitPath(h, rsi, all_repeats)) { |
| 2534 | DEBUG_PRINTF("selected FIRST history due to cyclic succ with " |
| 2535 | "superset of reach\n" ); |
| 2536 | repeatMax = depth::infinity(); /* will continue to pump out matches */ |
| 2537 | } |
| 2538 | |
| 2539 | repeats_out->push_back(GraphRepeatInfo()); |
| 2540 | GraphRepeatInfo &ri = repeats_out->back(); |
| 2541 | ri.vertices.swap(rsi.vertices); |
| 2542 | ri.repeatMin = rsi.repeatMin; |
| 2543 | ri.repeatMax = repeatMax; |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | } // namespace ue2 |
| 2548 | |