| 1 | /* |
| 2 | * Copyright (c) 2016-2018, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "config.h" |
| 30 | |
| 31 | #include "ng_violet.h" |
| 32 | |
| 33 | #include "grey.h" |
| 34 | #include "ng_depth.h" |
| 35 | #include "ng_dominators.h" |
| 36 | #include "ng_dump.h" |
| 37 | #include "ng_equivalence.h" |
| 38 | #include "ng_holder.h" |
| 39 | #include "ng_is_equal.h" |
| 40 | #include "ng_literal_analysis.h" |
| 41 | #include "ng_limex.h" |
| 42 | #include "ng_mcclellan.h" |
| 43 | #include "ng_netflow.h" |
| 44 | #include "ng_prune.h" |
| 45 | #include "ng_redundancy.h" |
| 46 | #include "ng_region.h" |
| 47 | #include "ng_reports.h" |
| 48 | #include "ng_split.h" |
| 49 | #include "ng_util.h" |
| 50 | #include "ng_width.h" |
| 51 | #include "nfa/rdfa.h" |
| 52 | #include "rose/rose_build.h" |
| 53 | #include "rose/rose_build_util.h" |
| 54 | #include "rose/rose_in_dump.h" |
| 55 | #include "rose/rose_in_graph.h" |
| 56 | #include "rose/rose_in_util.h" |
| 57 | #include "util/compare.h" |
| 58 | #include "util/compile_context.h" |
| 59 | #include "util/container.h" |
| 60 | #include "util/flat_containers.h" |
| 61 | #include "util/graph.h" |
| 62 | #include "util/graph_range.h" |
| 63 | #include "util/graph_small_color_map.h" |
| 64 | #include "util/insertion_ordered.h" |
| 65 | #include "util/make_unique.h" |
| 66 | #include "util/order_check.h" |
| 67 | #include "util/target_info.h" |
| 68 | #include "util/ue2string.h" |
| 69 | |
| 70 | #include <set> |
| 71 | #include <utility> |
| 72 | #include <vector> |
| 73 | #include <boost/dynamic_bitset.hpp> |
| 74 | #include <boost/range/adaptor/map.hpp> |
| 75 | |
| 76 | #define STAGE_DEBUG_PRINTF DEBUG_PRINTF |
| 77 | |
| 78 | using namespace std; |
| 79 | using boost::adaptors::map_values; |
| 80 | |
| 81 | namespace ue2 { |
| 82 | |
| 83 | /* createsAnchoredLHS() is conservative as the depths take into account |
| 84 | * back edges that come from beyond the split point and would be missing after |
| 85 | * the graph is split. */ |
| 86 | static |
| 87 | bool createsAnchoredLHS(const NGHolder &g, const vector<NFAVertex> &vv, |
| 88 | const vector<NFAVertexDepth> &depths, |
| 89 | const Grey &grey, depth max_depth = depth::infinity()) { |
| 90 | max_depth = min(max_depth, depth(grey.maxAnchoredRegion)); |
| 91 | |
| 92 | for (auto v : vv) { |
| 93 | /* avoid issues of self loops blowing out depths: |
| 94 | * look at preds, add 1 */ |
| 95 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 96 | if (u == v) { |
| 97 | continue; |
| 98 | } |
| 99 | |
| 100 | u32 idx = g[u].index; |
| 101 | assert(idx < depths.size()); |
| 102 | if (maxDistFromStartOfData(depths.at(idx)) >= max_depth) { |
| 103 | return false; |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | return true; |
| 108 | } |
| 109 | |
| 110 | /* createsTransientLHS() is conservative as the depths take into account |
| 111 | * back edges that come from beyond the split point and would be missing after |
| 112 | * the graph is split. */ |
| 113 | static |
| 114 | bool createsTransientLHS(const NGHolder &g, const vector<NFAVertex> &vv, |
| 115 | const vector<NFAVertexDepth> &depths, |
| 116 | const Grey &grey) { |
| 117 | const depth max_depth(grey.maxHistoryAvailable); |
| 118 | |
| 119 | for (auto v : vv) { |
| 120 | /* avoid issues of self loops blowing out depths: |
| 121 | * look at preds, add 1 */ |
| 122 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 123 | if (u == v) { |
| 124 | continue; |
| 125 | } |
| 126 | |
| 127 | u32 idx = g[u].index; |
| 128 | assert(idx < depths.size()); |
| 129 | if (maxDistFromInit(depths.at(idx)) >= max_depth) { |
| 130 | return false; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | return true; |
| 135 | } |
| 136 | |
| 137 | /** |
| 138 | * Counts the number of vertices that are reachable from the set of sources |
| 139 | * given. |
| 140 | */ |
| 141 | static |
| 142 | size_t count_reachable(const NGHolder &g, const vector<NFAVertex> &sources, |
| 143 | small_color_map<decltype(get(vertex_index, g))> &color_map) { |
| 144 | auto null_visitor = boost::make_dfs_visitor(boost::null_visitor()); |
| 145 | color_map.fill(small_color::white); |
| 146 | |
| 147 | for (auto v : sources) { |
| 148 | boost::depth_first_visit(g, v, null_visitor, color_map); |
| 149 | } |
| 150 | |
| 151 | return color_map.count(small_color::black); |
| 152 | } |
| 153 | |
| 154 | static |
| 155 | size_t shorter_than(const set<ue2_literal> &s, size_t limit) { |
| 156 | return count_if(s.begin(), s.end(), |
| 157 | [&](const ue2_literal &a) { return a.length() < limit; }); |
| 158 | } |
| 159 | |
| 160 | static |
| 161 | u32 min_len(const set<ue2_literal> &s) { |
| 162 | u32 rv = ~0U; |
| 163 | |
| 164 | for (const auto &lit : s) { |
| 165 | rv = min(rv, (u32)lit.length()); |
| 166 | } |
| 167 | |
| 168 | return rv; |
| 169 | } |
| 170 | |
| 171 | static |
| 172 | u32 min_period(const set<ue2_literal> &s) { |
| 173 | u32 rv = ~0U; |
| 174 | |
| 175 | for (const auto &lit : s) { |
| 176 | rv = min(rv, (u32)minStringPeriod(lit)); |
| 177 | } |
| 178 | DEBUG_PRINTF("min period %u\n" , rv); |
| 179 | return rv; |
| 180 | } |
| 181 | |
| 182 | namespace { |
| 183 | /** |
| 184 | * Information on a cut: vertices and literals. |
| 185 | */ |
| 186 | struct VertLitInfo { |
| 187 | VertLitInfo() {} |
| 188 | VertLitInfo(NFAVertex v, const set<ue2_literal> &litlit, bool c_anch, |
| 189 | bool c_tran = false) |
| 190 | : vv(vector<NFAVertex>(1, v)), lit(litlit), creates_anchored(c_anch), |
| 191 | creates_transient(c_tran) {} |
| 192 | VertLitInfo(const vector<NFAVertex> &vv_in, const set<ue2_literal> &lit_in, |
| 193 | bool c_anch) |
| 194 | : vv(vv_in), lit(lit_in), creates_anchored(c_anch) {} |
| 195 | vector<NFAVertex> vv; |
| 196 | set<ue2_literal> lit; |
| 197 | |
| 198 | bool creates_anchored = false; |
| 199 | bool creates_transient = false; |
| 200 | double split_ratio = 0; |
| 201 | }; |
| 202 | |
| 203 | #define LAST_CHANCE_STRONG_LEN 1 |
| 204 | |
| 205 | /** |
| 206 | * \brief Comparator class for comparing different literal cuts. |
| 207 | */ |
| 208 | class LitComparator { |
| 209 | public: |
| 210 | LitComparator(const NGHolder &g_in, bool sa, bool st, bool lc) |
| 211 | : g(g_in), seeking_anchored(sa), seeking_transient(st), |
| 212 | last_chance(lc) {} |
| 213 | bool operator()(const unique_ptr<VertLitInfo> &a, |
| 214 | const unique_ptr<VertLitInfo> &b) const { |
| 215 | assert(a && b); |
| 216 | |
| 217 | if (seeking_anchored) { |
| 218 | if (a->creates_anchored != b->creates_anchored) { |
| 219 | return a->creates_anchored < b->creates_anchored; |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | if (seeking_transient) { |
| 224 | if (a->creates_transient != b->creates_transient) { |
| 225 | return a->creates_transient < b->creates_transient; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | if (last_chance |
| 230 | && min_len(a->lit) > LAST_CHANCE_STRONG_LEN |
| 231 | && min_len(b->lit) > LAST_CHANCE_STRONG_LEN) { |
| 232 | DEBUG_PRINTF("using split ratio %g , %g\n" , a->split_ratio, |
| 233 | b->split_ratio); |
| 234 | return a->split_ratio < b->split_ratio; |
| 235 | } |
| 236 | |
| 237 | u64a score_a = scoreSet(a->lit); |
| 238 | u64a score_b = scoreSet(b->lit); |
| 239 | |
| 240 | if (score_a != score_b) { |
| 241 | return score_a > score_b; |
| 242 | } |
| 243 | |
| 244 | /* vertices should only be in one candidate cut */ |
| 245 | assert(a->vv == b->vv || a->vv.front() != b->vv.front()); |
| 246 | return g[a->vv.front()].index > g[b->vv.front()].index; |
| 247 | } |
| 248 | |
| 249 | private: |
| 250 | const NGHolder &g; /**< graph on which cuts are found */ |
| 251 | |
| 252 | bool seeking_anchored; |
| 253 | bool seeking_transient; |
| 254 | bool last_chance; |
| 255 | }; |
| 256 | } |
| 257 | |
| 258 | #define MIN_ANCHORED_LEN 2 |
| 259 | #define MIN_ANCHORED_DESPERATE_LEN 1 |
| 260 | |
| 261 | /* anchored here means that the cut creates a 'usefully' anchored LHS */ |
| 262 | static |
| 263 | bool validateRoseLiteralSetQuality(const set<ue2_literal> &s, u64a score, |
| 264 | bool anchored, u32 min_allowed_floating_len, |
| 265 | bool desperation, bool last_chance) { |
| 266 | u32 min_allowed_len = anchored ? MIN_ANCHORED_LEN |
| 267 | : min_allowed_floating_len; |
| 268 | if (anchored && last_chance) { |
| 269 | min_allowed_len = MIN_ANCHORED_DESPERATE_LEN; |
| 270 | } |
| 271 | if (last_chance) { |
| 272 | desperation = true; |
| 273 | } |
| 274 | |
| 275 | DEBUG_PRINTF("validating%s set, min allowed len %u\n" , |
| 276 | anchored ? " anchored" : "" , min_allowed_len); |
| 277 | |
| 278 | assert(none_of(begin(s), end(s), bad_mixed_sensitivity)); |
| 279 | |
| 280 | if (score >= NO_LITERAL_AT_EDGE_SCORE) { |
| 281 | DEBUG_PRINTF("candidate is too bad %llu/%zu\n" , score, s.size()); |
| 282 | return false; |
| 283 | } |
| 284 | |
| 285 | assert(!s.empty()); |
| 286 | if (s.empty()) { |
| 287 | DEBUG_PRINTF("candidate is too bad/something went wrong\n" ); |
| 288 | return false; |
| 289 | } |
| 290 | |
| 291 | u32 s_min_len = min_len(s); |
| 292 | u32 s_min_period = min_period(s); |
| 293 | size_t short_count = shorter_than(s, 5); |
| 294 | |
| 295 | DEBUG_PRINTF("cand '%s': score %llu count=%zu min_len=%u min_period=%u" |
| 296 | " short_count=%zu desp=%d\n" , |
| 297 | dumpString(*s.begin()).c_str(), score, s.size(), s_min_len, |
| 298 | s_min_period, short_count, (int)desperation); |
| 299 | |
| 300 | bool ok = true; |
| 301 | |
| 302 | if (s.size() > 10 /* magic number is magic */ |
| 303 | || s_min_len < min_allowed_len |
| 304 | || (s_min_period <= 1 && min_allowed_len != 1)) { |
| 305 | DEBUG_PRINTF("candidate may be bad\n" ); |
| 306 | ok = false; |
| 307 | } |
| 308 | |
| 309 | if (!ok && desperation |
| 310 | && s.size() <= 20 /* more magic numbers are magical */ |
| 311 | && (s_min_len > 5 || (s_min_len > 2 && short_count <= 10)) |
| 312 | && s_min_period > 1) { |
| 313 | DEBUG_PRINTF("candidate is ok\n" ); |
| 314 | ok = true; |
| 315 | } |
| 316 | |
| 317 | if (!ok && desperation |
| 318 | && s.size() <= 50 /* more magic numbers are magical */ |
| 319 | && s_min_len > 10 |
| 320 | && s_min_period > 1) { |
| 321 | DEBUG_PRINTF("candidate is ok\n" ); |
| 322 | ok = true; |
| 323 | } |
| 324 | |
| 325 | if (!ok) { |
| 326 | DEBUG_PRINTF("candidate is too shitty\n" ); |
| 327 | return false; |
| 328 | } |
| 329 | |
| 330 | return true; |
| 331 | } |
| 332 | |
| 333 | static UNUSED |
| 334 | void dumpRoseLiteralSet(const set<ue2_literal> &s) { |
| 335 | for (UNUSED const auto &lit : s) { |
| 336 | DEBUG_PRINTF(" lit: %s\n" , dumpString(lit).c_str()); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | static |
| 341 | void getSimpleRoseLiterals(const NGHolder &g, bool seeking_anchored, |
| 342 | const vector<NFAVertexDepth> *depths, |
| 343 | const set<NFAVertex> &a_dom, |
| 344 | vector<unique_ptr<VertLitInfo>> *lits, |
| 345 | u32 min_allowed_len, bool desperation, |
| 346 | bool last_chance, const CompileContext &cc) { |
| 347 | assert(depths || !seeking_anchored); |
| 348 | |
| 349 | map<NFAVertex, u64a> scores; |
| 350 | map<NFAVertex, unique_ptr<VertLitInfo>> lit_info; |
| 351 | set<ue2_literal> s; |
| 352 | |
| 353 | for (auto v : a_dom) { |
| 354 | s = getLiteralSet(g, v, true); /* RHS will take responsibility for any |
| 355 | revisits to the target vertex */ |
| 356 | |
| 357 | if (s.empty()) { |
| 358 | DEBUG_PRINTF("candidate is too shitty\n" ); |
| 359 | continue; |
| 360 | } |
| 361 | |
| 362 | DEBUG_PRINTF("|candidate raw literal set| = %zu\n" , s.size()); |
| 363 | dumpRoseLiteralSet(s); |
| 364 | u64a score = sanitizeAndCompressAndScore(s); |
| 365 | |
| 366 | bool anchored = false; |
| 367 | if (seeking_anchored) { |
| 368 | anchored = createsAnchoredLHS(g, {v}, *depths, cc.grey); |
| 369 | } |
| 370 | |
| 371 | if (!validateRoseLiteralSetQuality(s, score, anchored, min_allowed_len, |
| 372 | desperation, last_chance)) { |
| 373 | continue; |
| 374 | } |
| 375 | |
| 376 | DEBUG_PRINTF("candidate is a candidate\n" ); |
| 377 | scores[v] = score; |
| 378 | lit_info[v] = ue2::make_unique<VertLitInfo>(v, s, anchored); |
| 379 | } |
| 380 | |
| 381 | /* try to filter out cases where appending some characters produces worse |
| 382 | * literals. Only bother to look back one byte, TODO make better */ |
| 383 | for (auto u : a_dom) { |
| 384 | if (out_degree(u, g) != 1 || !scores[u]) { |
| 385 | continue; |
| 386 | } |
| 387 | NFAVertex v = *adjacent_vertices(u, g).first; |
| 388 | if (contains(scores, v) && scores[v] >= scores[u]) { |
| 389 | DEBUG_PRINTF("killing off v as score %llu >= %llu\n" , |
| 390 | scores[v], scores[u]); |
| 391 | lit_info.erase(v); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | lits->reserve(lit_info.size()); |
| 396 | for (auto &m : lit_info) { |
| 397 | lits->push_back(move(m.second)); |
| 398 | } |
| 399 | DEBUG_PRINTF("%zu candidate literal sets\n" , lits->size()); |
| 400 | } |
| 401 | |
| 402 | static |
| 403 | void getRegionRoseLiterals(const NGHolder &g, bool seeking_anchored, |
| 404 | const vector<NFAVertexDepth> *depths, |
| 405 | const set<NFAVertex> &bad, |
| 406 | const set<NFAVertex> *allowed, |
| 407 | vector<unique_ptr<VertLitInfo>> *lits, |
| 408 | u32 min_allowed_len, bool desperation, |
| 409 | bool last_chance, const CompileContext &cc) { |
| 410 | /* This allows us to get more places to split the graph as we are not |
| 411 | limited to points where there is a single vertex to split at. */ |
| 412 | |
| 413 | assert(depths || !seeking_anchored); |
| 414 | |
| 415 | /* TODO: operate over 'proto-regions' which ignore back edges */ |
| 416 | auto regions = assignRegions(g); |
| 417 | |
| 418 | set<u32> mand, optional; |
| 419 | map<u32, vector<NFAVertex> > exits; |
| 420 | |
| 421 | for (auto v : vertices_range(g)) { |
| 422 | u32 region = regions[v]; |
| 423 | if (is_any_start(v, g) || region == 0) { |
| 424 | continue; |
| 425 | } |
| 426 | |
| 427 | if (is_any_accept(v, g)) { |
| 428 | continue; |
| 429 | } |
| 430 | |
| 431 | if (!generates_callbacks(g) && is_match_vertex(v, g)) { |
| 432 | /* we cannot leave a completely vacuous infix */ |
| 433 | continue; |
| 434 | } |
| 435 | |
| 436 | if (isRegionExit(g, v, regions)) { |
| 437 | exits[region].push_back(v); |
| 438 | } |
| 439 | |
| 440 | if (isRegionEntry(g, v, regions)) { |
| 441 | // Determine whether this region is mandatory or optional. We only |
| 442 | // need to do this check for the first entry vertex we encounter |
| 443 | // for this region. |
| 444 | if (!contains(mand, region) && !contains(optional, region)) { |
| 445 | if (isOptionalRegion(g, v, regions)) { |
| 446 | optional.insert(region); |
| 447 | } else { |
| 448 | mand.insert(region); |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | for (const auto &m : exits) { |
| 455 | if (false) { |
| 456 | next_cand: |
| 457 | continue; |
| 458 | } |
| 459 | |
| 460 | const u32 region = m.first; |
| 461 | const vector<NFAVertex> &vv = m.second; |
| 462 | assert(!vv.empty()); |
| 463 | |
| 464 | if (!contains(mand, region)) { |
| 465 | continue; |
| 466 | } |
| 467 | |
| 468 | for (auto v : vv) { |
| 469 | /* if an exit is in bad, the region is already handled well |
| 470 | * by getSimpleRoseLiterals or is otherwise bad */ |
| 471 | if (contains(bad, v)) { |
| 472 | goto next_cand; |
| 473 | } |
| 474 | /* if we are only allowed to consider some vertices, v must be in |
| 475 | the list; */ |
| 476 | if (allowed && !contains(*allowed, v)) { |
| 477 | goto next_cand; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | /* the final region may not have a neat exit. validate that all exits |
| 482 | * have an edge to each accept or none do */ |
| 483 | bool edge_to_a = edge(vv[0], g.accept, g).second; |
| 484 | bool edge_to_aeod = edge(vv[0], g.acceptEod, g).second; |
| 485 | const auto &reports = g[vv[0]].reports; |
| 486 | for (auto v : vv) { |
| 487 | if (edge_to_a != edge(v, g.accept, g).second) { |
| 488 | goto next_cand; |
| 489 | } |
| 490 | |
| 491 | if (edge_to_aeod != edge(v, g.acceptEod, g).second) { |
| 492 | goto next_cand; |
| 493 | } |
| 494 | |
| 495 | if (g[v].reports != reports) { |
| 496 | goto next_cand; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | DEBUG_PRINTF("inspecting region %u\n" , region); |
| 501 | set<ue2_literal> s; |
| 502 | for (auto v : vv) { |
| 503 | DEBUG_PRINTF(" exit vertex: %zu\n" , g[v].index); |
| 504 | /* Note: RHS can not be depended on to take all subsequent revisits |
| 505 | * to this vertex */ |
| 506 | set<ue2_literal> ss = getLiteralSet(g, v, false); |
| 507 | if (ss.empty()) { |
| 508 | DEBUG_PRINTF("candidate is too shitty\n" ); |
| 509 | goto next_cand; |
| 510 | } |
| 511 | insert(&s, ss); |
| 512 | } |
| 513 | |
| 514 | assert(!s.empty()); |
| 515 | |
| 516 | DEBUG_PRINTF("|candidate raw literal set| = %zu\n" , s.size()); |
| 517 | dumpRoseLiteralSet(s); |
| 518 | u64a score = sanitizeAndCompressAndScore(s); |
| 519 | |
| 520 | DEBUG_PRINTF("|candidate literal set| = %zu\n" , s.size()); |
| 521 | dumpRoseLiteralSet(s); |
| 522 | |
| 523 | bool anchored = false; |
| 524 | if (seeking_anchored) { |
| 525 | anchored = createsAnchoredLHS(g, vv, *depths, cc.grey); |
| 526 | } |
| 527 | |
| 528 | if (!validateRoseLiteralSetQuality(s, score, anchored, min_allowed_len, |
| 529 | desperation, last_chance)) { |
| 530 | goto next_cand; |
| 531 | } |
| 532 | |
| 533 | DEBUG_PRINTF("candidate is a candidate\n" ); |
| 534 | lits->push_back(ue2::make_unique<VertLitInfo>(vv, s, anchored)); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | static |
| 539 | void filterCandPivots(const NGHolder &g, const set<NFAVertex> &cand_raw, |
| 540 | set<NFAVertex> *out) { |
| 541 | for (auto u : cand_raw) { |
| 542 | const CharReach &u_cr = g[u].char_reach; |
| 543 | if (u_cr.count() > 40) { |
| 544 | continue; /* too wide to be plausible */ |
| 545 | } |
| 546 | |
| 547 | if (u_cr.count() > 2) { |
| 548 | /* include u as a candidate as successor may have backed away from |
| 549 | * expanding through it */ |
| 550 | out->insert(u); |
| 551 | continue; |
| 552 | } |
| 553 | |
| 554 | NFAVertex v = getSoleDestVertex(g, u); |
| 555 | if (v && in_degree(v, g) == 1 && out_degree(u, g) == 1) { |
| 556 | const CharReach &v_cr = g[v].char_reach; |
| 557 | if (v_cr.count() == 1 || v_cr.isCaselessChar()) { |
| 558 | continue; /* v will always generate better literals */ |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | out->insert(u); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /* cand_raw is the candidate set before filtering points which are clearly |
| 567 | * a bad idea. */ |
| 568 | static |
| 569 | void getCandidatePivots(const NGHolder &g, set<NFAVertex> *cand, |
| 570 | set<NFAVertex> *cand_raw) { |
| 571 | auto dominators = findDominators(g); |
| 572 | |
| 573 | set<NFAVertex> accepts; |
| 574 | |
| 575 | for (auto v : inv_adjacent_vertices_range(g.accept, g)) { |
| 576 | if (is_special(v, g)) { |
| 577 | continue; |
| 578 | } |
| 579 | accepts.insert(v); |
| 580 | } |
| 581 | for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) { |
| 582 | if (is_special(v, g)) { |
| 583 | continue; |
| 584 | } |
| 585 | accepts.insert(v); |
| 586 | } |
| 587 | |
| 588 | assert(!accepts.empty()); |
| 589 | |
| 590 | vector<NFAVertex> dom_trace; |
| 591 | auto ait = accepts.begin(); |
| 592 | assert(ait != accepts.end()); |
| 593 | NFAVertex curr = *ait; |
| 594 | while (curr && !is_special(curr, g)) { |
| 595 | dom_trace.push_back(curr); |
| 596 | curr = dominators[curr]; |
| 597 | } |
| 598 | reverse(dom_trace.begin(), dom_trace.end()); |
| 599 | for (++ait; ait != accepts.end(); ++ait) { |
| 600 | curr = *ait; |
| 601 | vector<NFAVertex> dom_trace2; |
| 602 | while (curr && !is_special(curr, g)) { |
| 603 | dom_trace2.push_back(curr); |
| 604 | curr = dominators[curr]; |
| 605 | } |
| 606 | reverse(dom_trace2.begin(), dom_trace2.end()); |
| 607 | auto dti = dom_trace.begin(), dtie = dom_trace.end(); |
| 608 | auto dtj = dom_trace2.begin(), dtje = dom_trace2.end(); |
| 609 | while (dti != dtie && dtj != dtje && *dti == *dtj) { |
| 610 | ++dti; |
| 611 | ++dtj; |
| 612 | } |
| 613 | dom_trace.erase(dti, dtie); |
| 614 | } |
| 615 | |
| 616 | cand_raw->insert(dom_trace.begin(), dom_trace.end()); |
| 617 | |
| 618 | filterCandPivots(g, *cand_raw, cand); |
| 619 | } |
| 620 | |
| 621 | static |
| 622 | unique_ptr<VertLitInfo> findBestSplit(const NGHolder &g, |
| 623 | const vector<NFAVertexDepth> *depths, |
| 624 | bool for_prefix, u32 min_len, |
| 625 | const set<NFAVertex> *allowed_cand, |
| 626 | const set<NFAVertex> *disallowed_cand, |
| 627 | bool last_chance, |
| 628 | const CompileContext &cc) { |
| 629 | assert(!for_prefix || depths); |
| 630 | |
| 631 | /* look for a single simple split point */ |
| 632 | set<NFAVertex> cand; |
| 633 | set<NFAVertex> cand_raw; |
| 634 | |
| 635 | getCandidatePivots(g, &cand, &cand_raw); |
| 636 | |
| 637 | if (allowed_cand) { |
| 638 | set<NFAVertex> cand2; |
| 639 | set<NFAVertex> cand2_raw; |
| 640 | set_intersection(allowed_cand->begin(), allowed_cand->end(), |
| 641 | cand.begin(), cand.end(), |
| 642 | inserter(cand2, cand2.begin())); |
| 643 | |
| 644 | set_intersection(allowed_cand->begin(), allowed_cand->end(), |
| 645 | cand_raw.begin(), cand_raw.end(), |
| 646 | inserter(cand2_raw, cand2_raw.begin())); |
| 647 | |
| 648 | cand = std::move(cand2); |
| 649 | cand_raw = std::move(cand2_raw); |
| 650 | } |
| 651 | if (disallowed_cand) { |
| 652 | DEBUG_PRINTF("%zu disallowed candidates\n" , disallowed_cand->size()); |
| 653 | DEBUG_PRINTF("|old cand| = %zu\n" , cand.size()); |
| 654 | erase_all(&cand, *disallowed_cand); |
| 655 | insert(&cand_raw, *disallowed_cand); |
| 656 | } |
| 657 | |
| 658 | if (!generates_callbacks(g)) { |
| 659 | /* not output exposed so must leave some RHS */ |
| 660 | for (NFAVertex v : inv_adjacent_vertices_range(g.accept, g)) { |
| 661 | cand.erase(v); |
| 662 | cand_raw.erase(v); |
| 663 | } |
| 664 | |
| 665 | for (NFAVertex v : inv_adjacent_vertices_range(g.acceptEod, g)) { |
| 666 | cand.erase(v); |
| 667 | cand_raw.erase(v); |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | DEBUG_PRINTF("|cand| = %zu\n" , cand.size()); |
| 672 | |
| 673 | bool seeking_anchored = for_prefix; |
| 674 | bool seeking_transient = for_prefix; |
| 675 | |
| 676 | bool desperation = for_prefix && cc.streaming; |
| 677 | |
| 678 | vector<unique_ptr<VertLitInfo>> lits; /**< sorted list of potential cuts */ |
| 679 | |
| 680 | getSimpleRoseLiterals(g, seeking_anchored, depths, cand, &lits, min_len, |
| 681 | desperation, last_chance, cc); |
| 682 | getRegionRoseLiterals(g, seeking_anchored, depths, cand_raw, allowed_cand, |
| 683 | &lits, min_len, desperation, last_chance, cc); |
| 684 | |
| 685 | if (lits.empty()) { |
| 686 | DEBUG_PRINTF("no literals found\n" ); |
| 687 | return nullptr; |
| 688 | } |
| 689 | |
| 690 | if (seeking_transient) { |
| 691 | for (auto &a : lits) { |
| 692 | a->creates_transient |
| 693 | = createsTransientLHS(g, a->vv, *depths, cc.grey); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | if (last_chance) { |
| 698 | const size_t num_verts = num_vertices(g); |
| 699 | auto color_map = make_small_color_map(g); |
| 700 | for (auto &a : lits) { |
| 701 | size_t num_reachable = count_reachable(g, a->vv, color_map); |
| 702 | double ratio = (double)num_reachable / (double)num_verts; |
| 703 | a->split_ratio = ratio > 0.5 ? 1 - ratio : ratio; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | auto cmp = LitComparator(g, seeking_anchored, seeking_transient, |
| 708 | last_chance); |
| 709 | |
| 710 | unique_ptr<VertLitInfo> best = move(lits.back()); |
| 711 | lits.pop_back(); |
| 712 | while (!lits.empty()) { |
| 713 | if (cmp(best, lits.back())) { |
| 714 | best = move(lits.back()); |
| 715 | } |
| 716 | lits.pop_back(); |
| 717 | } |
| 718 | |
| 719 | DEBUG_PRINTF("best is '%s' %zu a%d t%d\n" , |
| 720 | dumpString(*best->lit.begin()).c_str(), |
| 721 | g[best->vv.front()].index, |
| 722 | depths ? (int)createsAnchoredLHS(g, best->vv, *depths, cc.grey) : 0, |
| 723 | depths ? (int)createsTransientLHS(g, best->vv, *depths, cc.grey) : 0); |
| 724 | |
| 725 | return best; |
| 726 | } |
| 727 | |
| 728 | static |
| 729 | void poisonFromSuccessor(const NGHolder &h, const ue2_literal &succ, |
| 730 | bool overhang_ok, flat_set<NFAEdge> &bad) { |
| 731 | DEBUG_PRINTF("poisoning holder of size %zu, succ len %zu\n" , |
| 732 | num_vertices(h), succ.length()); |
| 733 | |
| 734 | using EdgeSet = boost::dynamic_bitset<>; |
| 735 | |
| 736 | const size_t edge_count = num_edges(h); |
| 737 | EdgeSet bad_edges(edge_count); |
| 738 | |
| 739 | unordered_map<NFAVertex, EdgeSet> curr; |
| 740 | for (const auto &e : in_edges_range(h.accept, h)) { |
| 741 | auto &path_set = curr[source(e, h)]; |
| 742 | if (path_set.empty()) { |
| 743 | path_set.resize(edge_count); |
| 744 | } |
| 745 | path_set.set(h[e].index); |
| 746 | } |
| 747 | |
| 748 | unordered_map<NFAVertex, EdgeSet> next; |
| 749 | for (auto it = succ.rbegin(); it != succ.rend(); ++it) { |
| 750 | for (const auto &path : curr) { |
| 751 | NFAVertex u = path.first; |
| 752 | const auto &path_set = path.second; |
| 753 | if (u == h.start && overhang_ok) { |
| 754 | DEBUG_PRINTF("poisoning early %zu [overhang]\n" , |
| 755 | path_set.count()); |
| 756 | bad_edges |= path_set; |
| 757 | continue; |
| 758 | } |
| 759 | if (overlaps(h[u].char_reach, *it)) { |
| 760 | for (const auto &e : in_edges_range(u, h)) { |
| 761 | auto &new_path_set = next[source(e, h)]; |
| 762 | if (new_path_set.empty()) { |
| 763 | new_path_set.resize(edge_count); |
| 764 | } |
| 765 | new_path_set |= path_set; |
| 766 | new_path_set.set(h[e].index); |
| 767 | } |
| 768 | } |
| 769 | } |
| 770 | DEBUG_PRINTF("succ char matches at %zu paths\n" , next.size()); |
| 771 | assert(overhang_ok || !curr.empty()); |
| 772 | swap(curr, next); |
| 773 | next.clear(); |
| 774 | } |
| 775 | |
| 776 | assert(overhang_ok || !curr.empty()); |
| 777 | for (const auto &path : curr) { |
| 778 | bad_edges |= path.second; |
| 779 | DEBUG_PRINTF("poisoning %zu vertices\n" , path.second.count()); |
| 780 | } |
| 781 | |
| 782 | for (const auto &e : edges_range(h)) { |
| 783 | if (bad_edges.test(h[e].index)) { |
| 784 | bad.insert(e); |
| 785 | } |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | static |
| 790 | void poisonForGoodPrefix(const NGHolder &h, |
| 791 | const vector<NFAVertexDepth> &depths, |
| 792 | flat_set<NFAEdge> &bad, const Grey &grey) { |
| 793 | for (const auto &v : vertices_range(h)) { |
| 794 | if (!createsAnchoredLHS(h, {v}, depths, grey) |
| 795 | && !createsTransientLHS(h, {v}, depths, grey)) { |
| 796 | insert(&bad, in_edges_range(v, h)); |
| 797 | } |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | static UNUSED |
| 802 | bool is_any_accept_type(RoseInVertexType t) { |
| 803 | return t == RIV_ACCEPT || t == RIV_ACCEPT_EOD; |
| 804 | } |
| 805 | |
| 806 | static |
| 807 | flat_set<NFAEdge> poisonEdges(const NGHolder &h, |
| 808 | const vector<NFAVertexDepth> *depths, |
| 809 | const RoseInGraph &vg, const vector<RoseInEdge> &ee, |
| 810 | bool for_prefix, const Grey &grey) { |
| 811 | DEBUG_PRINTF("poisoning edges %zu successor edges\n" , ee.size()); |
| 812 | |
| 813 | /* poison edges covered by successor literal */ |
| 814 | |
| 815 | set<pair<ue2_literal, bool> > succs; |
| 816 | for (const RoseInEdge &ve : ee) { |
| 817 | if (vg[target(ve, vg)].type != RIV_LITERAL) { |
| 818 | /* nothing to poison in suffixes/outfixes */ |
| 819 | assert(generates_callbacks(h)); |
| 820 | assert(is_any_accept_type(vg[target(ve, vg)].type)); |
| 821 | continue; |
| 822 | } |
| 823 | succs.insert({vg[target(ve, vg)].s, |
| 824 | vg[source(ve, vg)].type == RIV_LITERAL}); |
| 825 | |
| 826 | } |
| 827 | |
| 828 | DEBUG_PRINTF("poisoning edges %zu successor literals\n" , succs.size()); |
| 829 | |
| 830 | flat_set<NFAEdge> bad; |
| 831 | for (const auto &p : succs) { |
| 832 | poisonFromSuccessor(h, p.first, p.second, bad); |
| 833 | } |
| 834 | |
| 835 | /* poison edges which don't significantly improve a prefix */ |
| 836 | |
| 837 | if (for_prefix) { |
| 838 | poisonForGoodPrefix(h, *depths, bad, grey); |
| 839 | } |
| 840 | |
| 841 | return bad; |
| 842 | } |
| 843 | |
| 844 | static |
| 845 | set<NFAVertex> poisonVertices(const NGHolder &h, const RoseInGraph &vg, |
| 846 | const vector<RoseInEdge> &ee, const Grey &grey) { |
| 847 | flat_set<NFAEdge> bad_edges = poisonEdges(h, nullptr, vg, ee, false, grey); |
| 848 | set<NFAVertex> bad_vertices; |
| 849 | for (const NFAEdge &e : bad_edges) { |
| 850 | bad_vertices.insert(target(e, h)); |
| 851 | DEBUG_PRINTF("bad: %zu->%zu\n" , h[source(e, h)].index, |
| 852 | h[target(e, h)].index); |
| 853 | } |
| 854 | |
| 855 | return bad_vertices; |
| 856 | } |
| 857 | |
| 858 | static |
| 859 | unique_ptr<VertLitInfo> findBestNormalSplit(const NGHolder &g, |
| 860 | const RoseInGraph &vg, |
| 861 | const vector<RoseInEdge> &ee, |
| 862 | const CompileContext &cc) { |
| 863 | assert(g.kind == NFA_OUTFIX || g.kind == NFA_INFIX || g.kind == NFA_SUFFIX); |
| 864 | set<NFAVertex> bad_vertices = poisonVertices(g, vg, ee, cc.grey); |
| 865 | |
| 866 | return findBestSplit(g, nullptr, false, cc.grey.minRoseLiteralLength, |
| 867 | nullptr, &bad_vertices, false, cc); |
| 868 | } |
| 869 | |
| 870 | static |
| 871 | unique_ptr<VertLitInfo> findBestLastChanceSplit(const NGHolder &g, |
| 872 | const RoseInGraph &vg, |
| 873 | const vector<RoseInEdge> &ee, |
| 874 | const CompileContext &cc) { |
| 875 | assert(g.kind == NFA_OUTFIX || g.kind == NFA_INFIX || g.kind == NFA_SUFFIX); |
| 876 | set<NFAVertex> bad_vertices = poisonVertices(g, vg, ee, cc.grey); |
| 877 | |
| 878 | return findBestSplit(g, nullptr, false, cc.grey.minRoseLiteralLength, |
| 879 | nullptr, &bad_vertices, true, cc); |
| 880 | } |
| 881 | |
| 882 | static |
| 883 | unique_ptr<VertLitInfo> findSimplePrefixSplit(const NGHolder &g, |
| 884 | const CompileContext &cc) { |
| 885 | DEBUG_PRINTF("looking for simple prefix split\n" ); |
| 886 | bool anchored = !proper_out_degree(g.startDs, g); |
| 887 | NFAVertex u = anchored ? g.start : g.startDs; |
| 888 | |
| 889 | if (out_degree(u, g) != 2) { /* startDs + succ */ |
| 890 | return nullptr; |
| 891 | } |
| 892 | |
| 893 | NFAVertex v = NGHolder::null_vertex(); |
| 894 | for (NFAVertex t : adjacent_vertices_range(u, g)) { |
| 895 | if (t != g.startDs) { |
| 896 | assert(!v); |
| 897 | v = t; |
| 898 | } |
| 899 | } |
| 900 | assert(v); |
| 901 | |
| 902 | if (!anchored) { |
| 903 | if (out_degree(g.start, g) > 2) { |
| 904 | return nullptr; |
| 905 | } |
| 906 | if (out_degree(g.start, g) == 2 && !edge(g.start, v, g).second) { |
| 907 | return nullptr; |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | NFAVertex best_v = NGHolder::null_vertex(); |
| 912 | ue2_literal best_lit; |
| 913 | |
| 914 | u32 limit = cc.grey.maxHistoryAvailable; |
| 915 | if (anchored) { |
| 916 | LIMIT_TO_AT_MOST(&limit, cc.grey.maxAnchoredRegion); |
| 917 | } |
| 918 | |
| 919 | ue2_literal curr_lit; |
| 920 | for (u32 i = 0; i < limit; i++) { |
| 921 | const auto &v_cr = g[v].char_reach; |
| 922 | if (v_cr.count() == 1 || v_cr.isCaselessChar()) { |
| 923 | curr_lit.push_back(v_cr.find_first(), v_cr.isCaselessChar()); |
| 924 | } else { |
| 925 | curr_lit.clear(); |
| 926 | } |
| 927 | |
| 928 | if (curr_lit.length() > best_lit.length()) { |
| 929 | best_lit = curr_lit; |
| 930 | best_v = v; |
| 931 | } |
| 932 | |
| 933 | if (out_degree(v, g) != 1) { |
| 934 | break; |
| 935 | } |
| 936 | v = *adjacent_vertices(v, g).first; |
| 937 | } |
| 938 | |
| 939 | if (best_lit.length() < cc.grey.minRoseLiteralLength) { |
| 940 | return nullptr; |
| 941 | } |
| 942 | |
| 943 | set<ue2_literal> best_lit_set({best_lit}); |
| 944 | if (bad_mixed_sensitivity(best_lit)) { |
| 945 | sanitizeAndCompressAndScore(best_lit_set); |
| 946 | } |
| 947 | |
| 948 | return ue2::make_unique<VertLitInfo>(best_v, best_lit_set, anchored, true); |
| 949 | } |
| 950 | |
| 951 | static |
| 952 | unique_ptr<VertLitInfo> findBestPrefixSplit(const NGHolder &g, |
| 953 | const vector<NFAVertexDepth> &depths, |
| 954 | const RoseInGraph &vg, |
| 955 | const vector<RoseInEdge> &ee, |
| 956 | bool last_chance, |
| 957 | const CompileContext &cc) { |
| 958 | assert(g.kind == NFA_PREFIX || g.kind == NFA_OUTFIX); |
| 959 | set<NFAVertex> bad_vertices = poisonVertices(g, vg, ee, cc.grey); |
| 960 | auto rv = findBestSplit(g, &depths, true, cc.grey.minRoseLiteralLength, |
| 961 | nullptr, &bad_vertices, last_chance, cc); |
| 962 | |
| 963 | /* large back edges may prevent us identifying anchored or transient cases |
| 964 | * properly - use a simple walk instead */ |
| 965 | if (!rv || !(rv->creates_transient || rv->creates_anchored)) { |
| 966 | auto rv2 = findSimplePrefixSplit(g, cc); |
| 967 | if (rv2) { |
| 968 | return rv2; |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | return rv; |
| 973 | } |
| 974 | |
| 975 | static |
| 976 | unique_ptr<VertLitInfo> findBestCleanSplit(const NGHolder &g, |
| 977 | const CompileContext &cc) { |
| 978 | assert(g.kind != NFA_PREFIX); |
| 979 | set<NFAVertex> cleanSplits; |
| 980 | for (NFAVertex v : vertices_range(g)) { |
| 981 | if (!g[v].char_reach.all() || !edge(v, v, g).second) { |
| 982 | continue; |
| 983 | } |
| 984 | insert(&cleanSplits, inv_adjacent_vertices(v, g)); |
| 985 | cleanSplits.erase(v); |
| 986 | } |
| 987 | cleanSplits.erase(g.start); |
| 988 | if (cleanSplits.empty()) { |
| 989 | return nullptr; |
| 990 | } |
| 991 | return findBestSplit(g, nullptr, false, cc.grey.violetEarlyCleanLiteralLen, |
| 992 | &cleanSplits, nullptr, false, cc); |
| 993 | } |
| 994 | |
| 995 | static |
| 996 | bool can_match(const NGHolder &g, const ue2_literal &lit, bool overhang_ok) { |
| 997 | set<NFAVertex> curr, next; |
| 998 | curr.insert(g.accept); |
| 999 | |
| 1000 | for (auto it = lit.rbegin(); it != lit.rend(); ++it) { |
| 1001 | next.clear(); |
| 1002 | |
| 1003 | for (auto v : curr) { |
| 1004 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 1005 | if (u == g.start) { |
| 1006 | if (overhang_ok) { |
| 1007 | DEBUG_PRINTF("bail\n" ); |
| 1008 | return true; |
| 1009 | } else { |
| 1010 | continue; /* it is not possible for a lhs literal to |
| 1011 | * overhang the start */ |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | const CharReach &cr = g[u].char_reach; |
| 1016 | if (!overlaps(*it, cr)) { |
| 1017 | continue; |
| 1018 | } |
| 1019 | |
| 1020 | next.insert(u); |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | curr.swap(next); |
| 1025 | } |
| 1026 | |
| 1027 | return !curr.empty(); |
| 1028 | } |
| 1029 | |
| 1030 | static |
| 1031 | bool splitRoseEdge(const NGHolder &base_graph, RoseInGraph &vg, |
| 1032 | const vector<RoseInEdge> &ee, const VertLitInfo &split) { |
| 1033 | const vector<NFAVertex> &splitters = split.vv; |
| 1034 | assert(!splitters.empty()); |
| 1035 | |
| 1036 | shared_ptr<NGHolder> lhs = make_shared<NGHolder>(); |
| 1037 | shared_ptr<NGHolder> rhs = make_shared<NGHolder>(); |
| 1038 | |
| 1039 | unordered_map<NFAVertex, NFAVertex> lhs_map; |
| 1040 | unordered_map<NFAVertex, NFAVertex> rhs_map; |
| 1041 | |
| 1042 | splitGraph(base_graph, splitters, lhs.get(), &lhs_map, rhs.get(), &rhs_map); |
| 1043 | DEBUG_PRINTF("split %s:%zu into %s:%zu + %s:%zu\n" , |
| 1044 | to_string(base_graph.kind).c_str(), num_vertices(base_graph), |
| 1045 | to_string(lhs->kind).c_str(), num_vertices(*lhs), |
| 1046 | to_string(rhs->kind).c_str(), num_vertices(*rhs)); |
| 1047 | |
| 1048 | bool suffix = generates_callbacks(base_graph); |
| 1049 | |
| 1050 | if (is_triggered(base_graph)) { |
| 1051 | /* if we are already guarded, check if the split reduces the size of |
| 1052 | * the problem before continuing with the split */ |
| 1053 | if (num_vertices(*lhs) >= num_vertices(base_graph) |
| 1054 | && !(suffix && isVacuous(*rhs))) { |
| 1055 | DEBUG_PRINTF("split's lhs is no smaller\n" ); |
| 1056 | return false; |
| 1057 | } |
| 1058 | |
| 1059 | if (num_vertices(*rhs) >= num_vertices(base_graph)) { |
| 1060 | DEBUG_PRINTF("split's rhs is no smaller\n" ); |
| 1061 | return false; |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | bool do_accept = false; |
| 1066 | bool do_accept_eod = false; |
| 1067 | assert(rhs); |
| 1068 | if (isVacuous(*rhs) && suffix) { |
| 1069 | if (edge(rhs->start, rhs->accept, *rhs).second) { |
| 1070 | DEBUG_PRINTF("rhs has a cliche\n" ); |
| 1071 | do_accept = true; |
| 1072 | remove_edge(rhs->start, rhs->accept, *rhs); |
| 1073 | } |
| 1074 | |
| 1075 | if (edge(rhs->start, rhs->acceptEod, *rhs).second) { |
| 1076 | DEBUG_PRINTF("rhs has an eod cliche\n" ); |
| 1077 | do_accept_eod = true; |
| 1078 | remove_edge(rhs->start, rhs->acceptEod, *rhs); |
| 1079 | } |
| 1080 | |
| 1081 | renumber_edges(*rhs); |
| 1082 | } |
| 1083 | |
| 1084 | /* check if we still have a useful graph left over */ |
| 1085 | bool do_norm = out_degree(rhs->start, *rhs) != 1; |
| 1086 | |
| 1087 | set<ReportID> splitter_reports; |
| 1088 | for (auto v : splitters) { |
| 1089 | insert(&splitter_reports, base_graph[v].reports); |
| 1090 | } |
| 1091 | |
| 1092 | /* find the targets of each source vertex; insertion_ordered_map used to |
| 1093 | * preserve deterministic ordering */ |
| 1094 | insertion_ordered_map<RoseInVertex, vector<RoseInVertex>> images; |
| 1095 | for (const RoseInEdge &e : ee) { |
| 1096 | RoseInVertex src = source(e, vg); |
| 1097 | RoseInVertex dest = target(e, vg); |
| 1098 | images[src].push_back(dest); |
| 1099 | remove_edge(e, vg); |
| 1100 | } |
| 1101 | |
| 1102 | map<vector<RoseInVertex>, vector<RoseInVertex>> verts_by_image; |
| 1103 | |
| 1104 | for (const auto &m : images) { |
| 1105 | const auto &u = m.first; |
| 1106 | const auto &image = m.second; |
| 1107 | |
| 1108 | if (contains(verts_by_image, image)) { |
| 1109 | for (RoseInVertex v : verts_by_image[image]) { |
| 1110 | add_edge(u, v, RoseInEdgeProps(lhs, 0U), vg); |
| 1111 | } |
| 1112 | continue; |
| 1113 | } |
| 1114 | |
| 1115 | for (const auto &lit : split.lit) { |
| 1116 | assert(!bad_mixed_sensitivity(lit)); |
| 1117 | |
| 1118 | /* don't allow overhang in can_match() as literals should |
| 1119 | * correspond to the edge graph being split; overhanging the graph |
| 1120 | * would indicate a false path.*/ |
| 1121 | if (!can_match(*lhs, lit, false)) { |
| 1122 | DEBUG_PRINTF("'%s' did not match lhs\n" , |
| 1123 | escapeString(lit).c_str()); |
| 1124 | continue; |
| 1125 | } |
| 1126 | |
| 1127 | DEBUG_PRINTF("best is '%s'\n" , escapeString(lit).c_str()); |
| 1128 | auto v = add_vertex(RoseInVertexProps::makeLiteral(lit), vg); |
| 1129 | add_edge(u, v, RoseInEdgeProps(lhs, 0U), vg); |
| 1130 | |
| 1131 | /* work out delay later */ |
| 1132 | if (do_accept) { |
| 1133 | DEBUG_PRINTF("rhs has a cliche\n" ); |
| 1134 | auto tt = add_vertex(RoseInVertexProps::makeAccept( |
| 1135 | splitter_reports), vg); |
| 1136 | add_edge(v, tt, RoseInEdgeProps(0U, 0U), vg); |
| 1137 | } |
| 1138 | |
| 1139 | if (do_accept_eod) { |
| 1140 | DEBUG_PRINTF("rhs has an eod cliche\n" ); |
| 1141 | auto tt = add_vertex(RoseInVertexProps::makeAcceptEod( |
| 1142 | splitter_reports), vg); |
| 1143 | add_edge(v, tt, RoseInEdgeProps(0U, 0U), vg); |
| 1144 | } |
| 1145 | |
| 1146 | if (do_norm) { |
| 1147 | assert(out_degree(rhs->start, *rhs) > 1); |
| 1148 | for (RoseInVertex dest : image) { |
| 1149 | add_edge(v, dest, RoseInEdgeProps(rhs, 0U), vg); |
| 1150 | } |
| 1151 | } |
| 1152 | verts_by_image[image].push_back(v); |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | assert(hasCorrectlyNumberedVertices(*rhs)); |
| 1157 | assert(hasCorrectlyNumberedEdges(*rhs)); |
| 1158 | assert(isCorrectlyTopped(*rhs)); |
| 1159 | assert(hasCorrectlyNumberedVertices(*lhs)); |
| 1160 | assert(hasCorrectlyNumberedEdges(*lhs)); |
| 1161 | assert(isCorrectlyTopped(*lhs)); |
| 1162 | |
| 1163 | return true; |
| 1164 | } |
| 1165 | |
| 1166 | #define MAX_NETFLOW_CUT_WIDTH 40 /* magic number is magic */ |
| 1167 | #define MAX_LEN_2_LITERALS_PER_CUT 3 |
| 1168 | |
| 1169 | static |
| 1170 | bool checkValidNetflowLits(NGHolder &h, const vector<u64a> &scores, |
| 1171 | const map<NFAEdge, set<ue2_literal>> &cut_lits, |
| 1172 | u32 min_allowed_length) { |
| 1173 | DEBUG_PRINTF("cut width %zu; min allowed %u\n" , cut_lits.size(), |
| 1174 | min_allowed_length); |
| 1175 | if (cut_lits.size() > MAX_NETFLOW_CUT_WIDTH) { |
| 1176 | return false; |
| 1177 | } |
| 1178 | |
| 1179 | u32 len_2_count = 0; |
| 1180 | |
| 1181 | for (const auto &cut : cut_lits) { |
| 1182 | if (scores[h[cut.first].index] >= NO_LITERAL_AT_EDGE_SCORE) { |
| 1183 | DEBUG_PRINTF("cut uses a forbidden edge\n" ); |
| 1184 | return false; |
| 1185 | } |
| 1186 | |
| 1187 | if (min_len(cut.second) < min_allowed_length) { |
| 1188 | DEBUG_PRINTF("cut uses a bad literal\n" ); |
| 1189 | return false; |
| 1190 | } |
| 1191 | |
| 1192 | for (const auto &lit : cut.second) { |
| 1193 | if (lit.length() == 2) { |
| 1194 | len_2_count++; |
| 1195 | } |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | if (len_2_count > MAX_LEN_2_LITERALS_PER_CUT) { |
| 1200 | return false; |
| 1201 | } |
| 1202 | |
| 1203 | return true; |
| 1204 | } |
| 1205 | |
| 1206 | static |
| 1207 | void splitEdgesByCut(NGHolder &h, RoseInGraph &vg, |
| 1208 | const vector<RoseInEdge> &to_cut, |
| 1209 | const vector<NFAEdge> &cut, |
| 1210 | const map<NFAEdge, set<ue2_literal>> &cut_lits) { |
| 1211 | DEBUG_PRINTF("splitting %s (%zu vertices)\n" , to_string(h.kind).c_str(), |
| 1212 | num_vertices(h)); |
| 1213 | |
| 1214 | /* create literal vertices and connect preds */ |
| 1215 | unordered_set<RoseInVertex> done_sources; |
| 1216 | map<RoseInVertex, vector<pair<RoseInVertex, NFAVertex>>> verts_by_source; |
| 1217 | for (const RoseInEdge &ve : to_cut) { |
| 1218 | assert(&h == &*vg[ve].graph); |
| 1219 | RoseInVertex src = source(ve, vg); |
| 1220 | if (!done_sources.insert(src).second) { |
| 1221 | continue; /* already processed */ |
| 1222 | } |
| 1223 | |
| 1224 | /* iterate over cut for determinism */ |
| 1225 | for (const auto &e : cut) { |
| 1226 | NFAVertex prev_v = source(e, h); |
| 1227 | NFAVertex pivot = target(e, h); |
| 1228 | |
| 1229 | DEBUG_PRINTF("splitting on pivot %zu\n" , h[pivot].index); |
| 1230 | unordered_map<NFAVertex, NFAVertex> temp_map; |
| 1231 | shared_ptr<NGHolder> new_lhs = make_shared<NGHolder>(); |
| 1232 | splitLHS(h, pivot, new_lhs.get(), &temp_map); |
| 1233 | |
| 1234 | /* want to cut off paths to pivot from things other than the pivot - |
| 1235 | * makes a more svelte graphy */ |
| 1236 | clear_in_edges(temp_map[pivot], *new_lhs); |
| 1237 | NFAEdge pivot_edge = add_edge(temp_map[prev_v], temp_map[pivot], |
| 1238 | *new_lhs); |
| 1239 | if (is_triggered(h) && prev_v == h.start) { |
| 1240 | (*new_lhs)[pivot_edge].tops.insert(DEFAULT_TOP); |
| 1241 | } |
| 1242 | |
| 1243 | pruneUseless(*new_lhs, false); |
| 1244 | renumber_vertices(*new_lhs); |
| 1245 | renumber_edges(*new_lhs); |
| 1246 | |
| 1247 | DEBUG_PRINTF(" into lhs %s (%zu vertices)\n" , |
| 1248 | to_string(new_lhs->kind).c_str(), |
| 1249 | num_vertices(*new_lhs)); |
| 1250 | |
| 1251 | assert(hasCorrectlyNumberedVertices(*new_lhs)); |
| 1252 | assert(hasCorrectlyNumberedEdges(*new_lhs)); |
| 1253 | assert(isCorrectlyTopped(*new_lhs)); |
| 1254 | |
| 1255 | const set<ue2_literal> &lits = cut_lits.at(e); |
| 1256 | for (const auto &lit : lits) { |
| 1257 | if (!can_match(*new_lhs, lit, is_triggered(h))) { |
| 1258 | continue; |
| 1259 | } |
| 1260 | |
| 1261 | RoseInVertex v |
| 1262 | = add_vertex(RoseInVertexProps::makeLiteral(lit), vg); |
| 1263 | |
| 1264 | /* if this is a prefix/infix an edge directly to accept should |
| 1265 | * represent a false path as we have poisoned vertices covered |
| 1266 | * by the literals. */ |
| 1267 | if (generates_callbacks(h)) { |
| 1268 | if (edge(pivot, h.accept, h).second) { |
| 1269 | DEBUG_PRINTF("adding acceptEod\n" ); |
| 1270 | /* literal has a direct connection to accept */ |
| 1271 | const flat_set<ReportID> &reports = h[pivot].reports; |
| 1272 | auto tt = add_vertex( |
| 1273 | RoseInVertexProps::makeAccept(reports), vg); |
| 1274 | add_edge(v, tt, RoseInEdgeProps(0U, 0U), vg); |
| 1275 | } |
| 1276 | |
| 1277 | if (edge(pivot, h.acceptEod, h).second) { |
| 1278 | assert(generates_callbacks(h)); |
| 1279 | DEBUG_PRINTF("adding acceptEod\n" ); |
| 1280 | /* literal has a direct connection to accept */ |
| 1281 | const flat_set<ReportID> &reports = h[pivot].reports; |
| 1282 | auto tt = add_vertex( |
| 1283 | RoseInVertexProps::makeAcceptEod(reports), vg); |
| 1284 | add_edge(v, tt, RoseInEdgeProps(0U, 0U), vg); |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | add_edge(src, v, RoseInEdgeProps(new_lhs, 0), vg); |
| 1289 | verts_by_source[src].push_back({v, pivot}); |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | /* wire the literal vertices up to successors */ |
| 1295 | map<vector<NFAVertex>, shared_ptr<NGHolder> > done_rhs; |
| 1296 | for (const RoseInEdge &ve : to_cut) { |
| 1297 | RoseInVertex src = source(ve, vg); |
| 1298 | RoseInVertex dest = target(ve, vg); |
| 1299 | |
| 1300 | /* iterate over cut for determinism */ |
| 1301 | for (const auto &elem : verts_by_source[src]) { |
| 1302 | NFAVertex pivot = elem.second; |
| 1303 | RoseInVertex v = elem.first; |
| 1304 | |
| 1305 | vector<NFAVertex> adj; |
| 1306 | insert(&adj, adj.end(), adjacent_vertices(pivot, h)); |
| 1307 | /* we can ignore presence of accept, accepteod in adj as it is best |
| 1308 | effort */ |
| 1309 | |
| 1310 | if (!contains(done_rhs, adj)) { |
| 1311 | unordered_map<NFAVertex, NFAVertex> temp_map; |
| 1312 | shared_ptr<NGHolder> new_rhs = make_shared<NGHolder>(); |
| 1313 | splitRHS(h, adj, new_rhs.get(), &temp_map); |
| 1314 | remove_edge(new_rhs->start, new_rhs->accept, *new_rhs); |
| 1315 | remove_edge(new_rhs->start, new_rhs->acceptEod, *new_rhs); |
| 1316 | renumber_edges(*new_rhs); |
| 1317 | DEBUG_PRINTF(" into rhs %s (%zu vertices)\n" , |
| 1318 | to_string(new_rhs->kind).c_str(), |
| 1319 | num_vertices(*new_rhs)); |
| 1320 | done_rhs.emplace(adj, new_rhs); |
| 1321 | assert(isCorrectlyTopped(*new_rhs)); |
| 1322 | } |
| 1323 | |
| 1324 | assert(done_rhs[adj].get()); |
| 1325 | shared_ptr<NGHolder> new_rhs = done_rhs[adj]; |
| 1326 | |
| 1327 | assert(hasCorrectlyNumberedVertices(*new_rhs)); |
| 1328 | assert(hasCorrectlyNumberedEdges(*new_rhs)); |
| 1329 | assert(isCorrectlyTopped(*new_rhs)); |
| 1330 | |
| 1331 | if (vg[dest].type == RIV_LITERAL |
| 1332 | && !can_match(*new_rhs, vg[dest].s, true)) { |
| 1333 | continue; |
| 1334 | } |
| 1335 | |
| 1336 | if (out_degree(new_rhs->start, *new_rhs) != 1) { |
| 1337 | add_edge(v, dest, RoseInEdgeProps(new_rhs, 0), vg); |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | remove_edge(ve, vg); |
| 1342 | } |
| 1343 | } |
| 1344 | |
| 1345 | static |
| 1346 | bool doNetflowCut(NGHolder &h, |
| 1347 | const vector<NFAVertexDepth> *depths, |
| 1348 | RoseInGraph &vg, |
| 1349 | const vector<RoseInEdge> &ee, bool for_prefix, |
| 1350 | const Grey &grey, u32 min_allowed_length = 0U) { |
| 1351 | ENSURE_AT_LEAST(&min_allowed_length, grey.minRoseNetflowLiteralLength); |
| 1352 | |
| 1353 | DEBUG_PRINTF("doing netflow cut\n" ); |
| 1354 | /* TODO: we should really get literals/scores from the full graph as this |
| 1355 | * allows us to overlap with previous cuts. */ |
| 1356 | assert(!ee.empty()); |
| 1357 | assert(&h == &*vg[ee.front()].graph); |
| 1358 | assert(!for_prefix || depths); |
| 1359 | |
| 1360 | if (num_edges(h) > grey.maxRoseNetflowEdges) { |
| 1361 | /* We have a limit on this because scoring edges and running netflow |
| 1362 | * gets very slow for big graphs. */ |
| 1363 | DEBUG_PRINTF("too many edges, skipping netflow cut\n" ); |
| 1364 | return false; |
| 1365 | } |
| 1366 | |
| 1367 | assert(hasCorrectlyNumberedVertices(h)); |
| 1368 | assert(hasCorrectlyNumberedEdges(h)); |
| 1369 | |
| 1370 | auto known_bad = poisonEdges(h, depths, vg, ee, for_prefix, grey); |
| 1371 | |
| 1372 | /* Step 1: Get scores for all edges */ |
| 1373 | vector<u64a> scores = scoreEdges(h, known_bad); /* scores by edge_index */ |
| 1374 | |
| 1375 | /* Step 2: Find cutset based on scores */ |
| 1376 | vector<NFAEdge> cut = findMinCut(h, scores); |
| 1377 | |
| 1378 | /* Step 3: Get literals corresponding to cut edges */ |
| 1379 | map<NFAEdge, set<ue2_literal>> cut_lits; |
| 1380 | for (const auto &e : cut) { |
| 1381 | set<ue2_literal> lits = getLiteralSet(h, e); |
| 1382 | sanitizeAndCompressAndScore(lits); |
| 1383 | |
| 1384 | cut_lits[e] = lits; |
| 1385 | } |
| 1386 | |
| 1387 | /* if literals are underlength bail or if it involves a forbidden edge*/ |
| 1388 | if (!checkValidNetflowLits(h, scores, cut_lits, min_allowed_length)) { |
| 1389 | return false; |
| 1390 | } |
| 1391 | DEBUG_PRINTF("splitting\n" ); |
| 1392 | |
| 1393 | /* Step 4: Split graph based on cuts */ |
| 1394 | splitEdgesByCut(h, vg, ee, cut, cut_lits); |
| 1395 | |
| 1396 | return true; |
| 1397 | } |
| 1398 | |
| 1399 | static |
| 1400 | bool deanchorIfNeeded(NGHolder &g) { |
| 1401 | DEBUG_PRINTF("hi\n" ); |
| 1402 | if (proper_out_degree(g.startDs, g)) { |
| 1403 | return false; |
| 1404 | } |
| 1405 | |
| 1406 | /* look for a non-special dot with a loop following start */ |
| 1407 | set<NFAVertex> succ_g; |
| 1408 | insert(&succ_g, adjacent_vertices(g.start, g)); |
| 1409 | succ_g.erase(g.startDs); |
| 1410 | |
| 1411 | for (auto v : adjacent_vertices_range(g.start, g)) { |
| 1412 | DEBUG_PRINTF("inspecting cand %zu || = %zu\n" , g[v].index, |
| 1413 | g[v].char_reach.count()); |
| 1414 | |
| 1415 | if (v == g.startDs || !g[v].char_reach.all()) { |
| 1416 | continue; |
| 1417 | } |
| 1418 | |
| 1419 | set<NFAVertex> succ_v; |
| 1420 | insert(&succ_v, adjacent_vertices(v, g)); |
| 1421 | |
| 1422 | if (succ_v == succ_g) { |
| 1423 | DEBUG_PRINTF("found ^.*\n" ); |
| 1424 | for (auto succ : adjacent_vertices_range(g.start, g)) { |
| 1425 | if (succ == g.startDs) { |
| 1426 | continue; |
| 1427 | } |
| 1428 | add_edge(g.startDs, succ, g); |
| 1429 | } |
| 1430 | clear_vertex(v, g); |
| 1431 | remove_vertex(v, g); |
| 1432 | renumber_vertices(g); |
| 1433 | return true; |
| 1434 | } |
| 1435 | |
| 1436 | if (succ_g.size() == 1 && hasSelfLoop(v, g)) { |
| 1437 | DEBUG_PRINTF("found ^.+\n" ); |
| 1438 | add_edge(g.startDs, v, g); |
| 1439 | remove_edge(v, v, g); |
| 1440 | return true; |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | return false; |
| 1445 | } |
| 1446 | |
| 1447 | static |
| 1448 | RoseInGraph populateTrivialGraph(const NGHolder &h) { |
| 1449 | RoseInGraph g; |
| 1450 | shared_ptr<NGHolder> root_g = cloneHolder(h); |
| 1451 | bool orig_anch = isAnchored(*root_g); |
| 1452 | orig_anch |= deanchorIfNeeded(*root_g); |
| 1453 | |
| 1454 | DEBUG_PRINTF("orig_anch %d\n" , (int)orig_anch); |
| 1455 | |
| 1456 | auto start = add_vertex(RoseInVertexProps::makeStart(orig_anch), g); |
| 1457 | auto accept = add_vertex(RoseInVertexProps::makeAccept(set<ReportID>()), g); |
| 1458 | |
| 1459 | add_edge(start, accept, RoseInEdgeProps(root_g, 0), g); |
| 1460 | |
| 1461 | return g; |
| 1462 | } |
| 1463 | |
| 1464 | static |
| 1465 | void avoidOutfixes(RoseInGraph &vg, bool last_chance, |
| 1466 | const CompileContext &cc) { |
| 1467 | STAGE_DEBUG_PRINTF("AVOIDING OUTFIX\n" ); |
| 1468 | assert(num_vertices(vg) == 2); |
| 1469 | assert(num_edges(vg) == 1); |
| 1470 | |
| 1471 | RoseInEdge e = *edges(vg).first; |
| 1472 | |
| 1473 | NGHolder &h = *vg[e].graph; |
| 1474 | assert(isCorrectlyTopped(h)); |
| 1475 | |
| 1476 | renumber_vertices(h); |
| 1477 | renumber_edges(h); |
| 1478 | |
| 1479 | unique_ptr<VertLitInfo> split = findBestNormalSplit(h, vg, {e}, cc); |
| 1480 | |
| 1481 | if (split && splitRoseEdge(h, vg, {e}, *split)) { |
| 1482 | DEBUG_PRINTF("split on simple literal\n" ); |
| 1483 | return; |
| 1484 | } |
| 1485 | |
| 1486 | if (last_chance) { |
| 1487 | /* look for a prefix split as it allows us to accept very weak anchored |
| 1488 | * literals. */ |
| 1489 | auto depths = calcDepths(h); |
| 1490 | |
| 1491 | split = findBestPrefixSplit(h, depths, vg, {e}, last_chance, cc); |
| 1492 | |
| 1493 | if (split && splitRoseEdge(h, vg, {e}, *split)) { |
| 1494 | DEBUG_PRINTF("split on simple literal\n" ); |
| 1495 | return; |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | doNetflowCut(h, nullptr, vg, {e}, false, cc.grey); |
| 1500 | } |
| 1501 | |
| 1502 | static |
| 1503 | void removeRedundantPrefixes(RoseInGraph &g) { |
| 1504 | STAGE_DEBUG_PRINTF("REMOVING REDUNDANT PREFIXES\n" ); |
| 1505 | |
| 1506 | for (const RoseInEdge &e : edges_range(g)) { |
| 1507 | RoseInVertex s = source(e, g); |
| 1508 | RoseInVertex t = target(e, g); |
| 1509 | |
| 1510 | if (g[s].type != RIV_START || g[t].type != RIV_LITERAL) { |
| 1511 | continue; |
| 1512 | } |
| 1513 | |
| 1514 | if (!g[e].graph) { |
| 1515 | continue; |
| 1516 | } |
| 1517 | |
| 1518 | assert(!g[t].delay); |
| 1519 | const ue2_literal &lit = g[t].s; |
| 1520 | |
| 1521 | if (!literalIsWholeGraph(*g[e].graph, lit)) { |
| 1522 | DEBUG_PRINTF("not whole graph\n" ); |
| 1523 | continue; |
| 1524 | } |
| 1525 | |
| 1526 | if (!isFloating(*g[e].graph)) { |
| 1527 | DEBUG_PRINTF("not floating\n" ); |
| 1528 | continue; |
| 1529 | } |
| 1530 | g[e].graph.reset(); |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | static |
| 1535 | u32 maxDelay(const CompileContext &cc) { |
| 1536 | if (!cc.streaming) { |
| 1537 | return MO_INVALID_IDX; |
| 1538 | } |
| 1539 | return cc.grey.maxHistoryAvailable; |
| 1540 | } |
| 1541 | |
| 1542 | static |
| 1543 | void removeRedundantLiteralsFromPrefixes(RoseInGraph &g, |
| 1544 | const CompileContext &cc) { |
| 1545 | STAGE_DEBUG_PRINTF("REMOVING LITERALS FROM PREFIXES\n" ); |
| 1546 | |
| 1547 | vector<RoseInEdge> to_anchor; |
| 1548 | for (const RoseInEdge &e : edges_range(g)) { |
| 1549 | RoseInVertex s = source(e, g); |
| 1550 | RoseInVertex t = target(e, g); |
| 1551 | |
| 1552 | if (g[s].type != RIV_START && g[s].type != RIV_ANCHORED_START) { |
| 1553 | continue; |
| 1554 | } |
| 1555 | |
| 1556 | if (g[t].type != RIV_LITERAL) { |
| 1557 | continue; |
| 1558 | } |
| 1559 | |
| 1560 | if (!g[e].graph) { |
| 1561 | continue; |
| 1562 | } |
| 1563 | |
| 1564 | if (g[e].graph_lag) { |
| 1565 | /* already removed redundant parts of literals */ |
| 1566 | continue; |
| 1567 | } |
| 1568 | |
| 1569 | if (g[e].dfa) { |
| 1570 | /* if we removed any more states, we would need to rebuild the |
| 1571 | * the dfa which can be time consuming. */ |
| 1572 | continue; |
| 1573 | } |
| 1574 | |
| 1575 | assert(!g[t].delay); |
| 1576 | const ue2_literal &lit = g[t].s; |
| 1577 | |
| 1578 | DEBUG_PRINTF("removing states for literal: %s\n" , |
| 1579 | dumpString(lit).c_str()); |
| 1580 | |
| 1581 | unique_ptr<NGHolder> h = cloneHolder(*g[e].graph); |
| 1582 | const u32 max_delay = maxDelay(cc); |
| 1583 | |
| 1584 | u32 delay = removeTrailingLiteralStates(*h, lit, max_delay, |
| 1585 | false /* can't overhang start */); |
| 1586 | |
| 1587 | DEBUG_PRINTF("got delay %u (max allowed %u)\n" , delay, max_delay); |
| 1588 | |
| 1589 | if (edge(h->startDs, h->accept, *h).second) { |
| 1590 | /* we should have delay == lit.length(), but in really complex |
| 1591 | * cases we may fail to identify that we can remove the whole |
| 1592 | * graph. Regardless, the fact that sds is wired to accept means the |
| 1593 | * graph serves no purpose. */ |
| 1594 | DEBUG_PRINTF("whole graph\n" ); |
| 1595 | g[e].graph.reset(); |
| 1596 | continue; |
| 1597 | } |
| 1598 | |
| 1599 | if (delay == lit.length() && edge(h->start, h->accept, *h).second |
| 1600 | && num_vertices(*h) == N_SPECIALS) { |
| 1601 | to_anchor.push_back(e); |
| 1602 | continue; |
| 1603 | } |
| 1604 | |
| 1605 | /* if we got here we should still have an interesting graph */ |
| 1606 | assert(delay == max_delay || num_vertices(*h) > N_SPECIALS); |
| 1607 | |
| 1608 | if (delay && delay != MO_INVALID_IDX) { |
| 1609 | DEBUG_PRINTF("setting delay %u on lhs %p\n" , delay, h.get()); |
| 1610 | |
| 1611 | g[e].graph = move(h); |
| 1612 | g[e].graph_lag = delay; |
| 1613 | } |
| 1614 | } |
| 1615 | |
| 1616 | if (!to_anchor.empty()) { |
| 1617 | RoseInVertex anch = add_vertex(RoseInVertexProps::makeStart(true), g); |
| 1618 | |
| 1619 | for (RoseInEdge e : to_anchor) { |
| 1620 | DEBUG_PRINTF("rehoming to anchor\n" ); |
| 1621 | RoseInVertex v = target(e, g); |
| 1622 | add_edge(anch, v, g); |
| 1623 | remove_edge(e, g); |
| 1624 | } |
| 1625 | } |
| 1626 | } |
| 1627 | |
| 1628 | static |
| 1629 | bool isStarCliche(const NGHolder &g) { |
| 1630 | DEBUG_PRINTF("checking graph with %zu vertices\n" , num_vertices(g)); |
| 1631 | |
| 1632 | bool nonspecials_seen = false; |
| 1633 | |
| 1634 | for (auto v : vertices_range(g)) { |
| 1635 | if (is_special(v, g)) { |
| 1636 | continue; |
| 1637 | } |
| 1638 | |
| 1639 | if (nonspecials_seen) { |
| 1640 | return false; |
| 1641 | } |
| 1642 | nonspecials_seen = true; |
| 1643 | |
| 1644 | if (!g[v].char_reach.all()) { |
| 1645 | return false; |
| 1646 | } |
| 1647 | |
| 1648 | if (!hasSelfLoop(v, g)) { |
| 1649 | return false; |
| 1650 | } |
| 1651 | if (!edge(v, g.accept, g).second) { |
| 1652 | return false; |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | if (!nonspecials_seen) { |
| 1657 | return false; |
| 1658 | } |
| 1659 | |
| 1660 | if (!edge(g.start, g.accept, g).second) { |
| 1661 | return false; |
| 1662 | } |
| 1663 | |
| 1664 | return true; |
| 1665 | } |
| 1666 | |
| 1667 | static |
| 1668 | void removeRedundantLiteralsFromInfix(const NGHolder &h, RoseInGraph &ig, |
| 1669 | const vector<RoseInEdge> &ee, |
| 1670 | const CompileContext &cc) { |
| 1671 | /* TODO: This could be better by not creating a separate graph for each |
| 1672 | * successor literal. This would require using distinct report ids and also |
| 1673 | * taking into account overlap of successor literals. */ |
| 1674 | |
| 1675 | set<ue2_literal> preds; |
| 1676 | set<ue2_literal> succs; |
| 1677 | for (const RoseInEdge &e : ee) { |
| 1678 | RoseInVertex u = source(e, ig); |
| 1679 | assert(ig[u].type == RIV_LITERAL); |
| 1680 | assert(!ig[u].delay); |
| 1681 | preds.insert(ig[u].s); |
| 1682 | |
| 1683 | RoseInVertex v = target(e, ig); |
| 1684 | assert(ig[v].type == RIV_LITERAL); |
| 1685 | assert(!ig[v].delay); |
| 1686 | succs.insert(ig[v].s); |
| 1687 | |
| 1688 | if (ig[e].graph_lag) { |
| 1689 | /* already removed redundant parts of literals */ |
| 1690 | return; |
| 1691 | } |
| 1692 | |
| 1693 | assert(!ig[e].dfa); |
| 1694 | } |
| 1695 | |
| 1696 | map<ue2_literal, pair<shared_ptr<NGHolder>, u32> > graphs; /* + delay */ |
| 1697 | |
| 1698 | for (const ue2_literal &right : succs) { |
| 1699 | size_t max_overlap = 0; |
| 1700 | for (const ue2_literal &left : preds) { |
| 1701 | size_t overlap = maxOverlap(left, right, 0); |
| 1702 | ENSURE_AT_LEAST(&max_overlap, overlap); |
| 1703 | } |
| 1704 | |
| 1705 | u32 max_allowed_delay = right.length() - max_overlap; |
| 1706 | |
| 1707 | if (cc.streaming) { |
| 1708 | LIMIT_TO_AT_MOST(&max_allowed_delay, cc.grey.maxHistoryAvailable); |
| 1709 | } |
| 1710 | |
| 1711 | if (!max_allowed_delay) { |
| 1712 | continue; |
| 1713 | } |
| 1714 | |
| 1715 | shared_ptr<NGHolder> h_new = cloneHolder(h); |
| 1716 | |
| 1717 | u32 delay = removeTrailingLiteralStates(*h_new, right, |
| 1718 | max_allowed_delay); |
| 1719 | |
| 1720 | if (delay == MO_INVALID_IDX) { |
| 1721 | /* successor literal could not match infix -> ignore false path */ |
| 1722 | assert(0); |
| 1723 | continue; |
| 1724 | } |
| 1725 | |
| 1726 | if (!delay) { |
| 1727 | /* unable to trim graph --> no point swapping to new holder */ |
| 1728 | continue; |
| 1729 | } |
| 1730 | |
| 1731 | assert(isCorrectlyTopped(*h_new)); |
| 1732 | graphs[right] = make_pair(h_new, delay); |
| 1733 | } |
| 1734 | |
| 1735 | for (const RoseInEdge &e : ee) { |
| 1736 | RoseInVertex v = target(e, ig); |
| 1737 | const ue2_literal &succ = ig[v].s; |
| 1738 | if (!contains(graphs, succ)) { |
| 1739 | continue; |
| 1740 | } |
| 1741 | |
| 1742 | ig[e].graph = graphs[succ].first; |
| 1743 | ig[e].graph_lag = graphs[succ].second; |
| 1744 | |
| 1745 | if (isStarCliche(*ig[e].graph)) { |
| 1746 | DEBUG_PRINTF("is a X star!\n" ); |
| 1747 | ig[e].graph.reset(); |
| 1748 | ig[e].graph_lag = 0; |
| 1749 | } |
| 1750 | } |
| 1751 | } |
| 1752 | |
| 1753 | static |
| 1754 | void removeRedundantLiteralsFromInfixes(RoseInGraph &g, |
| 1755 | const CompileContext &cc) { |
| 1756 | insertion_ordered_map<NGHolder *, vector<RoseInEdge>> infixes; |
| 1757 | |
| 1758 | for (const RoseInEdge &e : edges_range(g)) { |
| 1759 | RoseInVertex s = source(e, g); |
| 1760 | RoseInVertex t = target(e, g); |
| 1761 | |
| 1762 | if (g[s].type != RIV_LITERAL || g[t].type != RIV_LITERAL) { |
| 1763 | continue; |
| 1764 | } |
| 1765 | |
| 1766 | if (!g[e].graph) { |
| 1767 | continue; |
| 1768 | } |
| 1769 | |
| 1770 | assert(!g[t].delay); |
| 1771 | if (g[e].dfa) { |
| 1772 | /* if we removed any more states, we would need to rebuild the |
| 1773 | * the dfa which can be time consuming. */ |
| 1774 | continue; |
| 1775 | } |
| 1776 | |
| 1777 | NGHolder *h = g[e].graph.get(); |
| 1778 | infixes[h].push_back(e); |
| 1779 | } |
| 1780 | |
| 1781 | for (const auto &m : infixes) { |
| 1782 | NGHolder *h = m.first; |
| 1783 | const auto &edges = m.second; |
| 1784 | removeRedundantLiteralsFromInfix(*h, g, edges, cc); |
| 1785 | } |
| 1786 | } |
| 1787 | |
| 1788 | static |
| 1789 | void removeRedundantLiterals(RoseInGraph &g, const CompileContext &cc) { |
| 1790 | removeRedundantLiteralsFromPrefixes(g, cc); |
| 1791 | removeRedundantLiteralsFromInfixes(g, cc); |
| 1792 | } |
| 1793 | |
| 1794 | static |
| 1795 | RoseInVertex getStart(RoseInGraph &vg) { |
| 1796 | for (RoseInVertex v : vertices_range(vg)) { |
| 1797 | if (vg[v].type == RIV_START || vg[v].type == RIV_ANCHORED_START) { |
| 1798 | return v; |
| 1799 | } |
| 1800 | } |
| 1801 | assert(0); |
| 1802 | return RoseInGraph::null_vertex(); |
| 1803 | } |
| 1804 | |
| 1805 | /** |
| 1806 | * Finds the initial accept vertex created to which suffix/outfixes are |
| 1807 | * attached. |
| 1808 | */ |
| 1809 | static |
| 1810 | RoseInVertex getPrimaryAccept(RoseInGraph &vg) { |
| 1811 | for (RoseInVertex v : vertices_range(vg)) { |
| 1812 | if (vg[v].type == RIV_ACCEPT && vg[v].reports.empty()) { |
| 1813 | return v; |
| 1814 | } |
| 1815 | } |
| 1816 | assert(0); |
| 1817 | return RoseInGraph::null_vertex(); |
| 1818 | } |
| 1819 | |
| 1820 | static |
| 1821 | bool willBeTransient(const depth &max_depth, const CompileContext &cc) { |
| 1822 | if (!cc.streaming) { |
| 1823 | return max_depth <= depth(ROSE_BLOCK_TRANSIENT_MAX_WIDTH); |
| 1824 | } else { |
| 1825 | return max_depth <= depth(cc.grey.maxHistoryAvailable + 1); |
| 1826 | } |
| 1827 | } |
| 1828 | |
| 1829 | static |
| 1830 | bool willBeAnchoredTable(const depth &max_depth, const Grey &grey) { |
| 1831 | return max_depth <= depth(grey.maxAnchoredRegion); |
| 1832 | } |
| 1833 | |
| 1834 | static |
| 1835 | unique_ptr<NGHolder> make_chain(u32 count) { |
| 1836 | assert(count); |
| 1837 | |
| 1838 | auto rv = ue2::make_unique<NGHolder>(NFA_INFIX); |
| 1839 | |
| 1840 | NGHolder &h = *rv; |
| 1841 | |
| 1842 | NFAVertex u = h.start; |
| 1843 | for (u32 i = 0; i < count; i++) { |
| 1844 | NFAVertex v = add_vertex(h); |
| 1845 | h[v].char_reach = CharReach::dot(); |
| 1846 | add_edge(u, v, h); |
| 1847 | u = v; |
| 1848 | } |
| 1849 | h[u].reports.insert(0); |
| 1850 | add_edge(u, h.accept, h); |
| 1851 | |
| 1852 | setTops(h); |
| 1853 | |
| 1854 | return rv; |
| 1855 | } |
| 1856 | |
| 1857 | #define SHORT_TRIGGER_LEN 16 |
| 1858 | |
| 1859 | static |
| 1860 | bool makeTransientFromLongLiteral(NGHolder &h, RoseInGraph &vg, |
| 1861 | const vector<RoseInEdge> &ee, |
| 1862 | const CompileContext &cc) { |
| 1863 | /* check max width and literal lengths to see if possible */ |
| 1864 | size_t min_lit = (size_t)~0ULL; |
| 1865 | for (const RoseInEdge &e : ee) { |
| 1866 | RoseInVertex v = target(e, vg); |
| 1867 | LIMIT_TO_AT_MOST(&min_lit, vg[v].s.length()); |
| 1868 | } |
| 1869 | |
| 1870 | if (min_lit <= SHORT_TRIGGER_LEN || min_lit >= UINT_MAX) { |
| 1871 | return false; |
| 1872 | } |
| 1873 | |
| 1874 | depth max_width = findMaxWidth(h); |
| 1875 | |
| 1876 | u32 delta = min_lit - SHORT_TRIGGER_LEN; |
| 1877 | |
| 1878 | if (!willBeTransient(max_width - depth(delta), cc) |
| 1879 | && !willBeAnchoredTable(max_width - depth(delta), cc.grey)) { |
| 1880 | return false; |
| 1881 | } |
| 1882 | |
| 1883 | DEBUG_PRINTF("candidate for splitting long literal (len %zu)\n" , min_lit); |
| 1884 | DEBUG_PRINTF("delta = %u\n" , delta); |
| 1885 | |
| 1886 | /* try split */ |
| 1887 | map<RoseInVertex, shared_ptr<NGHolder> > graphs; |
| 1888 | for (const RoseInEdge &e : ee) { |
| 1889 | RoseInVertex v = target(e, vg); |
| 1890 | |
| 1891 | shared_ptr<NGHolder> h_new = cloneHolder(h); |
| 1892 | |
| 1893 | u32 delay = removeTrailingLiteralStates(*h_new, vg[v].s, delta); |
| 1894 | |
| 1895 | DEBUG_PRINTF("delay %u\n" , delay); |
| 1896 | |
| 1897 | if (delay != delta) { |
| 1898 | DEBUG_PRINTF("unable to trim literal\n" ); |
| 1899 | return false; |
| 1900 | } |
| 1901 | |
| 1902 | if (in_degree(v, vg) != 1) { |
| 1903 | DEBUG_PRINTF("complicated\n" ); |
| 1904 | return false; |
| 1905 | } |
| 1906 | |
| 1907 | DEBUG_PRINTF("new mw = %u\n" , (u32)findMaxWidth(*h_new)); |
| 1908 | assert(willBeTransient(findMaxWidth(*h_new), cc) |
| 1909 | || willBeAnchoredTable(findMaxWidth(*h_new), cc.grey)); |
| 1910 | |
| 1911 | assert(isCorrectlyTopped(*h_new)); |
| 1912 | graphs[v] = h_new; |
| 1913 | } |
| 1914 | |
| 1915 | /* add .{repeats} from prefixes to long literals */ |
| 1916 | for (const RoseInEdge &e : ee) { |
| 1917 | RoseInVertex s = source(e, vg); |
| 1918 | RoseInVertex t = target(e, vg); |
| 1919 | |
| 1920 | remove_edge(e, vg); |
| 1921 | const ue2_literal &orig_lit = vg[t].s; |
| 1922 | |
| 1923 | ue2_literal lit(orig_lit.begin(), orig_lit.end() - delta); |
| 1924 | |
| 1925 | ue2_literal lit2(orig_lit.end() - delta, orig_lit.end()); |
| 1926 | |
| 1927 | assert(lit.length() + delta == orig_lit.length()); |
| 1928 | |
| 1929 | vg[t].s = lit2; |
| 1930 | |
| 1931 | RoseInVertex v = add_vertex(RoseInVertexProps::makeLiteral(lit), vg); |
| 1932 | add_edge(s, v, RoseInEdgeProps(graphs[t], 0), vg); |
| 1933 | add_edge(v, t, RoseInEdgeProps(make_chain(delta), 0), vg); |
| 1934 | } |
| 1935 | |
| 1936 | DEBUG_PRINTF("success\n" ); |
| 1937 | /* TODO: alter split point to avoid pathological splits */ |
| 1938 | return true; |
| 1939 | } |
| 1940 | |
| 1941 | static |
| 1942 | void restoreTrailingLiteralStates(NGHolder &g, const ue2_literal &lit, |
| 1943 | u32 delay, const vector<NFAVertex> &preds) { |
| 1944 | assert(delay <= lit.length()); |
| 1945 | assert(isCorrectlyTopped(g)); |
| 1946 | DEBUG_PRINTF("adding on '%s' %u\n" , dumpString(lit).c_str(), delay); |
| 1947 | |
| 1948 | NFAVertex prev = g.accept; |
| 1949 | auto it = lit.rbegin(); |
| 1950 | while (delay--) { |
| 1951 | NFAVertex curr = add_vertex(g); |
| 1952 | assert(it != lit.rend()); |
| 1953 | g[curr].char_reach = *it; |
| 1954 | add_edge(curr, prev, g); |
| 1955 | ++it; |
| 1956 | prev = curr; |
| 1957 | } |
| 1958 | |
| 1959 | for (auto v : preds) { |
| 1960 | NFAEdge e = add_edge_if_not_present(v, prev, g); |
| 1961 | if (v == g.start && is_triggered(g)) { |
| 1962 | g[e].tops.insert(DEFAULT_TOP); |
| 1963 | } |
| 1964 | } |
| 1965 | |
| 1966 | // Every predecessor of accept must have a report. |
| 1967 | set_report(g, 0); |
| 1968 | |
| 1969 | renumber_vertices(g); |
| 1970 | renumber_edges(g); |
| 1971 | assert(allMatchStatesHaveReports(g)); |
| 1972 | assert(isCorrectlyTopped(g)); |
| 1973 | } |
| 1974 | |
| 1975 | static |
| 1976 | void restoreTrailingLiteralStates(NGHolder &g, |
| 1977 | const vector<pair<ue2_literal, u32>> &lits) { |
| 1978 | vector<NFAVertex> preds; |
| 1979 | insert(&preds, preds.end(), inv_adjacent_vertices(g.accept, g)); |
| 1980 | clear_in_edges(g.accept, g); |
| 1981 | |
| 1982 | for (auto v : preds) { |
| 1983 | g[v].reports.clear(); /* clear report from old accepts */ |
| 1984 | } |
| 1985 | |
| 1986 | for (const auto &p : lits) { |
| 1987 | const ue2_literal &lit = p.first; |
| 1988 | u32 delay = p.second; |
| 1989 | |
| 1990 | restoreTrailingLiteralStates(g, lit, delay, preds); |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | static |
| 1995 | bool improvePrefix(NGHolder &h, RoseInGraph &vg, const vector<RoseInEdge> &ee, |
| 1996 | const CompileContext &cc) { |
| 1997 | DEBUG_PRINTF("trying to improve prefix %p, %zu verts\n" , &h, |
| 1998 | num_vertices(h)); |
| 1999 | assert(isCorrectlyTopped(h)); |
| 2000 | |
| 2001 | renumber_vertices(h); |
| 2002 | renumber_edges(h); |
| 2003 | |
| 2004 | auto depths = calcDepths(h); |
| 2005 | |
| 2006 | /* If the reason the prefix is not transient is due to a very long literal |
| 2007 | * following, we can make it transient by restricting ourselves to using |
| 2008 | * just the head of the literal. */ |
| 2009 | if (makeTransientFromLongLiteral(h, vg, ee, cc)) { |
| 2010 | return true; |
| 2011 | } |
| 2012 | |
| 2013 | auto split = findBestPrefixSplit(h, depths, vg, ee, false, cc); |
| 2014 | |
| 2015 | if (split && (split->creates_transient || split->creates_anchored) |
| 2016 | && splitRoseEdge(h, vg, ee, *split)) { |
| 2017 | DEBUG_PRINTF("split on simple literal\n" ); |
| 2018 | return true; |
| 2019 | } |
| 2020 | |
| 2021 | /* large back edges may prevent us identifing anchored or transient cases |
| 2022 | * properly - use a simple walk instead */ |
| 2023 | |
| 2024 | if (doNetflowCut(h, &depths, vg, ee, true, cc.grey)) { |
| 2025 | return true; |
| 2026 | } |
| 2027 | |
| 2028 | if (split && splitRoseEdge(h, vg, ee, *split)) { |
| 2029 | /* use the simple split even though it doesn't create a transient |
| 2030 | * prefix */ |
| 2031 | DEBUG_PRINTF("split on simple literal\n" ); |
| 2032 | return true; |
| 2033 | } |
| 2034 | |
| 2035 | /* look for netflow cuts which don't produce good prefixes */ |
| 2036 | if (doNetflowCut(h, &depths, vg, ee, false, cc.grey)) { |
| 2037 | return true; |
| 2038 | } |
| 2039 | |
| 2040 | if (ee.size() > 1) { |
| 2041 | DEBUG_PRINTF("split the prefix apart based on succ literals\n" ); |
| 2042 | unordered_map<shared_ptr<NGHolder>, vector<pair<RoseInEdge, u32> >, |
| 2043 | NGHolderHasher, NGHolderEqual> trimmed; |
| 2044 | |
| 2045 | for (const auto &e : ee) { |
| 2046 | shared_ptr<NGHolder> hh = cloneHolder(h); |
| 2047 | auto succ_lit = vg[target(e, vg)].s; |
| 2048 | assert(isCorrectlyTopped(*hh)); |
| 2049 | u32 delay = removeTrailingLiteralStates(*hh, succ_lit, |
| 2050 | succ_lit.length(), |
| 2051 | false /* can't overhang start */); |
| 2052 | if (!delay) { |
| 2053 | DEBUG_PRINTF("could not remove any literal, skip over\n" ); |
| 2054 | continue; |
| 2055 | } |
| 2056 | |
| 2057 | assert(isCorrectlyTopped(*hh)); |
| 2058 | trimmed[hh].emplace_back(e, delay); |
| 2059 | } |
| 2060 | |
| 2061 | if (trimmed.size() == 1) { |
| 2062 | return false; |
| 2063 | } |
| 2064 | |
| 2065 | /* shift the contents to a vector so we can modify the graphs without |
| 2066 | * violating the map's invariants. */ |
| 2067 | vector<pair<shared_ptr<NGHolder>, vector<pair<RoseInEdge, u32> > > > |
| 2068 | trimmed_vec(trimmed.begin(), trimmed.end()); |
| 2069 | trimmed.clear(); |
| 2070 | for (auto &elem : trimmed_vec) { |
| 2071 | shared_ptr<NGHolder> &hp = elem.first; |
| 2072 | vector<pair<ue2_literal, u32>> succ_lits; |
| 2073 | |
| 2074 | for (const auto &edge_delay : elem.second) { |
| 2075 | const RoseInEdge &e = edge_delay.first; |
| 2076 | u32 delay = edge_delay.second; |
| 2077 | auto lit = vg[target(e, vg)].s; |
| 2078 | |
| 2079 | vg[e].graph = hp; |
| 2080 | assert(delay <= lit.length()); |
| 2081 | succ_lits.emplace_back(lit, delay); |
| 2082 | } |
| 2083 | restoreTrailingLiteralStates(*hp, succ_lits); |
| 2084 | } |
| 2085 | return true; |
| 2086 | } |
| 2087 | |
| 2088 | return false; |
| 2089 | } |
| 2090 | |
| 2091 | #define MAX_FIND_BETTER_PREFIX_GEN 4 |
| 2092 | #define MAX_FIND_BETTER_PREFIX_COUNT 100 |
| 2093 | |
| 2094 | static |
| 2095 | void findBetterPrefixes(RoseInGraph &vg, const CompileContext &cc) { |
| 2096 | STAGE_DEBUG_PRINTF("FIND BETTER PREFIXES\n" ); |
| 2097 | RoseInVertex start = getStart(vg); |
| 2098 | |
| 2099 | insertion_ordered_map<NGHolder *, vector<RoseInEdge>> prefixes; |
| 2100 | bool changed; |
| 2101 | u32 gen = 0; |
| 2102 | do { |
| 2103 | DEBUG_PRINTF("gen %u\n" , gen); |
| 2104 | changed = false; |
| 2105 | prefixes.clear(); |
| 2106 | |
| 2107 | /* find prefixes */ |
| 2108 | for (const RoseInEdge &e : out_edges_range(start, vg)) { |
| 2109 | /* outfixes shouldn't have made it this far */ |
| 2110 | assert(vg[target(e, vg)].type == RIV_LITERAL); |
| 2111 | if (vg[e].graph) { |
| 2112 | NGHolder *h = vg[e].graph.get(); |
| 2113 | prefixes[h].push_back(e); |
| 2114 | } |
| 2115 | } |
| 2116 | |
| 2117 | if (prefixes.size() > MAX_FIND_BETTER_PREFIX_COUNT) { |
| 2118 | break; |
| 2119 | } |
| 2120 | |
| 2121 | /* look for bad prefixes and try to split */ |
| 2122 | for (const auto &m : prefixes) { |
| 2123 | NGHolder *h = m.first; |
| 2124 | const auto &edges = m.second; |
| 2125 | depth max_width = findMaxWidth(*h); |
| 2126 | if (willBeTransient(max_width, cc) |
| 2127 | || willBeAnchoredTable(max_width, cc.grey)) { |
| 2128 | continue; |
| 2129 | } |
| 2130 | |
| 2131 | changed = improvePrefix(*h, vg, edges, cc); |
| 2132 | } |
| 2133 | } while (changed && gen++ < MAX_FIND_BETTER_PREFIX_GEN); |
| 2134 | } |
| 2135 | |
| 2136 | #define STRONG_LITERAL_LENGTH 20 |
| 2137 | #define 10 |
| 2138 | |
| 2139 | static |
| 2140 | bool (NGHolder &h, RoseInGraph &vg, |
| 2141 | const vector<RoseInEdge> &ee, |
| 2142 | const CompileContext &cc) { |
| 2143 | DEBUG_PRINTF("looking for string literal\n" ); |
| 2144 | unique_ptr<VertLitInfo> split = findBestNormalSplit(h, vg, ee, cc); |
| 2145 | |
| 2146 | if (split && min_len(split->lit) >= STRONG_LITERAL_LENGTH) { |
| 2147 | DEBUG_PRINTF("splitting simple literal\n" ); |
| 2148 | return splitRoseEdge(h, vg, ee, *split); |
| 2149 | } |
| 2150 | |
| 2151 | return false; |
| 2152 | } |
| 2153 | |
| 2154 | static |
| 2155 | void (RoseInGraph &vg, const CompileContext &cc) { |
| 2156 | if (!cc.grey.violetExtractStrongLiterals) { |
| 2157 | return; |
| 2158 | } |
| 2159 | |
| 2160 | STAGE_DEBUG_PRINTF("EXTRACT STRONG LITERALS\n" ); |
| 2161 | |
| 2162 | unordered_set<NGHolder *> stuck; |
| 2163 | insertion_ordered_map<NGHolder *, vector<RoseInEdge>> edges_by_graph; |
| 2164 | bool changed; |
| 2165 | |
| 2166 | do { |
| 2167 | changed = false; |
| 2168 | |
| 2169 | edges_by_graph.clear(); |
| 2170 | for (const RoseInEdge &ve : edges_range(vg)) { |
| 2171 | if (vg[source(ve, vg)].type != RIV_LITERAL) { |
| 2172 | continue; |
| 2173 | } |
| 2174 | |
| 2175 | if (vg[ve].graph) { |
| 2176 | NGHolder *h = vg[ve].graph.get(); |
| 2177 | edges_by_graph[h].push_back(ve); |
| 2178 | } |
| 2179 | } |
| 2180 | |
| 2181 | if (edges_by_graph.size() > MAX_EXTRACT_STRONG_LITERAL_GRAPHS) { |
| 2182 | DEBUG_PRINTF("too many graphs, stopping\n" ); |
| 2183 | return; |
| 2184 | } |
| 2185 | |
| 2186 | for (const auto &m : edges_by_graph) { |
| 2187 | NGHolder *g = m.first; |
| 2188 | const auto &edges = m.second; |
| 2189 | if (contains(stuck, g)) { |
| 2190 | DEBUG_PRINTF("already known to be bad\n" ); |
| 2191 | continue; |
| 2192 | } |
| 2193 | bool rv = extractStrongLiteral(*g, vg, edges, cc); |
| 2194 | if (rv) { |
| 2195 | changed = true; |
| 2196 | } else { |
| 2197 | stuck.insert(g); |
| 2198 | } |
| 2199 | } |
| 2200 | } while (changed); |
| 2201 | } |
| 2202 | |
| 2203 | #define INFIX_STRONG_GUARD_LEN 8 |
| 2204 | #define INFIX_MIN_SPLIT_LITERAL_LEN 12 |
| 2205 | |
| 2206 | static |
| 2207 | bool improveInfix(NGHolder &h, RoseInGraph &vg, const vector<RoseInEdge> &ee, |
| 2208 | const CompileContext &cc) { |
| 2209 | unique_ptr<VertLitInfo> split = findBestNormalSplit(h, vg, ee, cc); |
| 2210 | |
| 2211 | if (split && min_len(split->lit) >= INFIX_MIN_SPLIT_LITERAL_LEN |
| 2212 | && splitRoseEdge(h, vg, ee, *split)) { |
| 2213 | DEBUG_PRINTF("splitting simple literal\n" ); |
| 2214 | return true; |
| 2215 | } |
| 2216 | |
| 2217 | DEBUG_PRINTF("trying for a netflow cut\n" ); |
| 2218 | /* look for netflow cuts which don't produce good prefixes */ |
| 2219 | bool rv = doNetflowCut(h, nullptr, vg, ee, false, cc.grey, 8); |
| 2220 | |
| 2221 | DEBUG_PRINTF("did netfow cut? = %d\n" , (int)rv); |
| 2222 | |
| 2223 | return rv; |
| 2224 | } |
| 2225 | |
| 2226 | /** |
| 2227 | * Infixes which are weakly guarded can, in effect, act like prefixes as they |
| 2228 | * will often be live. We should try to split these infixes further if they |
| 2229 | * contain strong literals so that we are at least running smaller weak infixes |
| 2230 | * which can hopeful be accelerated/miracled. |
| 2231 | */ |
| 2232 | static |
| 2233 | void improveWeakInfixes(RoseInGraph &vg, const CompileContext &cc) { |
| 2234 | if (!cc.grey.violetAvoidWeakInfixes) { |
| 2235 | return; |
| 2236 | } |
| 2237 | STAGE_DEBUG_PRINTF("IMPROVE WEAK INFIXES\n" ); |
| 2238 | |
| 2239 | RoseInVertex start = getStart(vg); |
| 2240 | |
| 2241 | unordered_set<NGHolder *> weak; |
| 2242 | |
| 2243 | for (RoseInVertex vv : adjacent_vertices_range(start, vg)) { |
| 2244 | /* outfixes shouldn't have made it this far */ |
| 2245 | assert(vg[vv].type == RIV_LITERAL); |
| 2246 | if (vg[vv].s.length() >= INFIX_STRONG_GUARD_LEN) { |
| 2247 | continue; |
| 2248 | } |
| 2249 | |
| 2250 | for (const RoseInEdge &e : out_edges_range(vv, vg)) { |
| 2251 | if (vg[target(e, vg)].type != RIV_LITERAL || !vg[e].graph) { |
| 2252 | continue; |
| 2253 | } |
| 2254 | |
| 2255 | NGHolder *h = vg[e].graph.get(); |
| 2256 | DEBUG_PRINTF("'%s' guards %p\n" , dumpString(vg[vv].s).c_str(), h); |
| 2257 | weak.insert(h); |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | insertion_ordered_map<NGHolder *, vector<RoseInEdge>> weak_edges; |
| 2262 | for (const RoseInEdge &ve : edges_range(vg)) { |
| 2263 | NGHolder *h = vg[ve].graph.get(); |
| 2264 | if (contains(weak, h)) { |
| 2265 | weak_edges[h].push_back(ve); |
| 2266 | } |
| 2267 | } |
| 2268 | |
| 2269 | for (const auto &m : weak_edges) { |
| 2270 | NGHolder *h = m.first; |
| 2271 | const auto &edges = m.second; |
| 2272 | improveInfix(*h, vg, edges, cc); |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | static |
| 2277 | void splitEdgesForSuffix(const NGHolder &base_graph, RoseInGraph &vg, |
| 2278 | const vector<RoseInEdge> &ee, const VertLitInfo &split, |
| 2279 | bool eod, const flat_set<ReportID> &reports) { |
| 2280 | const vector<NFAVertex> &splitters = split.vv; |
| 2281 | assert(!splitters.empty()); |
| 2282 | |
| 2283 | shared_ptr<NGHolder> lhs = make_shared<NGHolder>(); |
| 2284 | unordered_map<NFAVertex, NFAVertex> v_map; |
| 2285 | cloneHolder(*lhs, base_graph, &v_map); |
| 2286 | lhs->kind = NFA_INFIX; |
| 2287 | clear_in_edges(lhs->accept, *lhs); |
| 2288 | clear_in_edges(lhs->acceptEod, *lhs); |
| 2289 | add_edge(lhs->accept, lhs->acceptEod, *lhs); |
| 2290 | clearReports(*lhs); |
| 2291 | for (NFAVertex v : splitters) { |
| 2292 | NFAEdge e = add_edge(v_map[v], lhs->accept, *lhs); |
| 2293 | if (v == base_graph.start) { |
| 2294 | (*lhs)[e].tops.insert(DEFAULT_TOP); |
| 2295 | } |
| 2296 | (*lhs)[v_map[v]].reports.insert(0); |
| 2297 | |
| 2298 | } |
| 2299 | pruneUseless(*lhs); |
| 2300 | assert(isCorrectlyTopped(*lhs)); |
| 2301 | |
| 2302 | /* create literal vertices and connect preds */ |
| 2303 | for (const auto &lit : split.lit) { |
| 2304 | if (!can_match(*lhs, lit, is_triggered(*lhs))) { |
| 2305 | continue; |
| 2306 | } |
| 2307 | |
| 2308 | DEBUG_PRINTF("best is '%s'\n" , escapeString(lit).c_str()); |
| 2309 | RoseInVertex v = add_vertex(RoseInVertexProps::makeLiteral(lit), vg); |
| 2310 | |
| 2311 | RoseInVertex tt; |
| 2312 | if (eod) { |
| 2313 | DEBUG_PRINTF("doing eod\n" ); |
| 2314 | tt = add_vertex(RoseInVertexProps::makeAcceptEod(reports), vg); |
| 2315 | } else { |
| 2316 | DEBUG_PRINTF("doing non-eod\n" ); |
| 2317 | tt = add_vertex(RoseInVertexProps::makeAccept(reports), vg); |
| 2318 | } |
| 2319 | add_edge(v, tt, RoseInEdgeProps(0U, 0U), vg); |
| 2320 | |
| 2321 | for (const RoseInEdge &e : ee) { |
| 2322 | RoseInVertex u = source(e, vg); |
| 2323 | assert(!edge(u, v, vg).second); |
| 2324 | add_edge(u, v, RoseInEdgeProps(lhs, 0U), vg); |
| 2325 | } |
| 2326 | } |
| 2327 | } |
| 2328 | |
| 2329 | #define MIN_SUFFIX_LEN 6 |
| 2330 | |
| 2331 | static |
| 2332 | bool replaceSuffixWithInfix(const NGHolder &h, RoseInGraph &vg, |
| 2333 | const vector<RoseInEdge> &suffix_edges, |
| 2334 | const CompileContext &cc) { |
| 2335 | DEBUG_PRINTF("inspecting suffix : %p on %zu edges\n" , &h, |
| 2336 | suffix_edges.size()); |
| 2337 | /* |
| 2338 | * We would, in general, rather not have output exposed engines because |
| 2339 | * once they are triggered, they must be run while infixes only have to run |
| 2340 | * if the successor literal is seen. Matches from output exposed engines |
| 2341 | * also have to be placed in a priority queue and interleaved with matches |
| 2342 | * from other sources. |
| 2343 | * |
| 2344 | * Note: |
| 2345 | * - if the LHS is extremely unlikely we may be better off leaving |
| 2346 | * a suffix unguarded. |
| 2347 | * |
| 2348 | * - limited width suffixes may be less bad as they won't be continuously |
| 2349 | * active, we may want to have (a) stronger controls on if we want to pick |
| 2350 | * a trailing literal in these cases and/or (b) look also for literals |
| 2351 | * near accept as well as right on accept |
| 2352 | * |
| 2353 | * TODO: improve heuristics, splitting logic. |
| 2354 | */ |
| 2355 | |
| 2356 | /* we may do multiple splits corresponding to different report behaviour */ |
| 2357 | set<NFAVertex> seen; |
| 2358 | map<pair<bool, flat_set<ReportID> >, VertLitInfo> by_reports; /* eod, rep */ |
| 2359 | |
| 2360 | for (NFAVertex v : inv_adjacent_vertices_range(h.accept, h)) { |
| 2361 | set<ue2_literal> ss = getLiteralSet(h, v, false); |
| 2362 | if (ss.empty()) { |
| 2363 | DEBUG_PRINTF("candidate is too shitty\n" ); |
| 2364 | return false; |
| 2365 | } |
| 2366 | |
| 2367 | VertLitInfo &vli = by_reports[make_pair(false, h[v].reports)]; |
| 2368 | insert(&vli.lit, ss); |
| 2369 | vli.vv.push_back(v); |
| 2370 | seen.insert(v); |
| 2371 | } |
| 2372 | |
| 2373 | seen.insert(h.accept); |
| 2374 | for (NFAVertex v : inv_adjacent_vertices_range(h.acceptEod, h)) { |
| 2375 | if (contains(seen, v)) { |
| 2376 | continue; |
| 2377 | } |
| 2378 | |
| 2379 | set<ue2_literal> ss = getLiteralSet(h, v, false); |
| 2380 | if (ss.empty()) { |
| 2381 | DEBUG_PRINTF("candidate is too shitty\n" ); |
| 2382 | return false; |
| 2383 | } |
| 2384 | |
| 2385 | VertLitInfo &vli = by_reports[make_pair(true, h[v].reports)]; |
| 2386 | insert(&vli.lit, ss); |
| 2387 | vli.vv.push_back(v); |
| 2388 | } |
| 2389 | |
| 2390 | assert(!by_reports.empty()); |
| 2391 | |
| 2392 | /* TODO: how strong a min len do we want here ? */ |
| 2393 | u32 min_len = cc.grey.minRoseLiteralLength; |
| 2394 | ENSURE_AT_LEAST(&min_len, MIN_SUFFIX_LEN); |
| 2395 | |
| 2396 | for (auto &vli : by_reports | map_values) { |
| 2397 | u64a score = sanitizeAndCompressAndScore(vli.lit); |
| 2398 | |
| 2399 | if (vli.lit.empty() |
| 2400 | || !validateRoseLiteralSetQuality(vli.lit, score, false, min_len, |
| 2401 | false, false)) { |
| 2402 | return false; |
| 2403 | } |
| 2404 | } |
| 2405 | |
| 2406 | for (const auto &info : by_reports) { |
| 2407 | DEBUG_PRINTF("splitting on simple literals\n" ); |
| 2408 | splitEdgesForSuffix(h, vg, suffix_edges, info.second, |
| 2409 | info.first.first /* eod */, |
| 2410 | info.first.second /* reports */); |
| 2411 | } |
| 2412 | |
| 2413 | for (const RoseInEdge &e : suffix_edges) { |
| 2414 | remove_edge(e, vg); |
| 2415 | } |
| 2416 | return true; |
| 2417 | } |
| 2418 | |
| 2419 | static |
| 2420 | void avoidSuffixes(RoseInGraph &vg, const CompileContext &cc) { |
| 2421 | if (!cc.grey.violetAvoidSuffixes) { |
| 2422 | return; |
| 2423 | } |
| 2424 | |
| 2425 | STAGE_DEBUG_PRINTF("AVOID SUFFIXES\n" ); |
| 2426 | |
| 2427 | RoseInVertex accept = getPrimaryAccept(vg); |
| 2428 | |
| 2429 | insertion_ordered_map<const NGHolder *, vector<RoseInEdge>> suffixes; |
| 2430 | |
| 2431 | /* find suffixes */ |
| 2432 | for (const RoseInEdge &e : in_edges_range(accept, vg)) { |
| 2433 | /* outfixes shouldn't have made it this far */ |
| 2434 | assert(vg[source(e, vg)].type == RIV_LITERAL); |
| 2435 | assert(vg[e].graph); /* non suffix paths should be wired to other |
| 2436 | accepts */ |
| 2437 | const NGHolder *h = vg[e].graph.get(); |
| 2438 | suffixes[h].push_back(e); |
| 2439 | } |
| 2440 | |
| 2441 | /* look at suffixes and try to split */ |
| 2442 | for (const auto &m : suffixes) { |
| 2443 | const NGHolder *h = m.first; |
| 2444 | const auto &edges = m.second; |
| 2445 | replaceSuffixWithInfix(*h, vg, edges, cc); |
| 2446 | } |
| 2447 | } |
| 2448 | |
| 2449 | static |
| 2450 | bool leadingDotStartLiteral(const NGHolder &h, VertLitInfo *out) { |
| 2451 | if (out_degree(h.start, h) != 3) { |
| 2452 | return false; |
| 2453 | } |
| 2454 | |
| 2455 | NFAVertex v = NGHolder::null_vertex(); |
| 2456 | NFAVertex ds = NGHolder::null_vertex(); |
| 2457 | |
| 2458 | for (NFAVertex a : adjacent_vertices_range(h.start, h)) { |
| 2459 | if (a == h.startDs) { |
| 2460 | continue; |
| 2461 | } |
| 2462 | if (h[a].char_reach.all()) { |
| 2463 | ds = a; |
| 2464 | if (out_degree(ds, h) != 2 || !edge(ds, ds, h).second) { |
| 2465 | return false; |
| 2466 | } |
| 2467 | } else { |
| 2468 | v = a; |
| 2469 | } |
| 2470 | } |
| 2471 | |
| 2472 | if (!v || !ds || !edge(ds, v, h).second) { |
| 2473 | return false; |
| 2474 | } |
| 2475 | |
| 2476 | if (h[v].char_reach.count() != 1 && !h[v].char_reach.isCaselessChar()) { |
| 2477 | return false; |
| 2478 | } |
| 2479 | |
| 2480 | ue2_literal lit; |
| 2481 | lit.push_back(h[v].char_reach.find_first(), |
| 2482 | h[v].char_reach.isCaselessChar()); |
| 2483 | while (out_degree(v, h) == 1) { |
| 2484 | NFAVertex vv = *adjacent_vertices(v, h).first; |
| 2485 | if (h[vv].char_reach.count() != 1 |
| 2486 | && !h[vv].char_reach.isCaselessChar()) { |
| 2487 | break; |
| 2488 | } |
| 2489 | |
| 2490 | v = vv; |
| 2491 | |
| 2492 | lit.push_back(h[v].char_reach.find_first(), |
| 2493 | h[v].char_reach.isCaselessChar()); |
| 2494 | } |
| 2495 | |
| 2496 | if (is_match_vertex(v, h) && h.kind != NFA_SUFFIX) { |
| 2497 | /* we have rediscovered the post-infix literal */ |
| 2498 | return false; |
| 2499 | } |
| 2500 | |
| 2501 | if (bad_mixed_sensitivity(lit)) { |
| 2502 | make_nocase(&lit); |
| 2503 | } |
| 2504 | |
| 2505 | DEBUG_PRINTF("%zu found %s\n" , h[v].index, dumpString(lit).c_str()); |
| 2506 | out->vv = {v}; |
| 2507 | out->lit = {lit}; |
| 2508 | return true; |
| 2509 | } |
| 2510 | |
| 2511 | static |
| 2512 | bool lookForDoubleCut(const NGHolder &h, const vector<RoseInEdge> &ee, |
| 2513 | RoseInGraph &vg, const Grey &grey) { |
| 2514 | VertLitInfo info; |
| 2515 | if (!leadingDotStartLiteral(h, &info) |
| 2516 | || min_len(info.lit) < grey.violetDoubleCutLiteralLen) { |
| 2517 | return false; |
| 2518 | } |
| 2519 | DEBUG_PRINTF("performing split\n" ); |
| 2520 | return splitRoseEdge(h, vg, ee, {info}); |
| 2521 | } |
| 2522 | |
| 2523 | static |
| 2524 | void lookForDoubleCut(RoseInGraph &vg, const CompileContext &cc) { |
| 2525 | if (!cc.grey.violetDoubleCut) { |
| 2526 | return; |
| 2527 | } |
| 2528 | |
| 2529 | insertion_ordered_map<const NGHolder *, vector<RoseInEdge>> right_edges; |
| 2530 | for (const RoseInEdge &ve : edges_range(vg)) { |
| 2531 | if (vg[ve].graph && vg[source(ve, vg)].type == RIV_LITERAL) { |
| 2532 | const NGHolder *h = vg[ve].graph.get(); |
| 2533 | right_edges[h].push_back(ve); |
| 2534 | } |
| 2535 | } |
| 2536 | |
| 2537 | for (const auto &m : right_edges) { |
| 2538 | const NGHolder *h = m.first; |
| 2539 | const auto &edges = m.second; |
| 2540 | lookForDoubleCut(*h, edges, vg, cc.grey); |
| 2541 | } |
| 2542 | } |
| 2543 | |
| 2544 | static |
| 2545 | pair<NFAVertex, ue2_literal> findLiteralBefore(const NGHolder &h, NFAVertex v) { |
| 2546 | ue2_literal lit; |
| 2547 | if (h[v].char_reach.count() != 1 && !h[v].char_reach.isCaselessChar()) { |
| 2548 | return {v, std::move(lit) }; |
| 2549 | } |
| 2550 | lit.push_back(h[v].char_reach.find_first(), |
| 2551 | h[v].char_reach.isCaselessChar()); |
| 2552 | |
| 2553 | while (in_degree(v, h) == 1) { |
| 2554 | NFAVertex vv = *inv_adjacent_vertices(v, h).first; |
| 2555 | if (h[vv].char_reach.count() != 1 |
| 2556 | && !h[vv].char_reach.isCaselessChar()) { |
| 2557 | break; |
| 2558 | } |
| 2559 | |
| 2560 | lit.push_back(h[vv].char_reach.find_first(), |
| 2561 | h[vv].char_reach.isCaselessChar()); |
| 2562 | v = vv; |
| 2563 | } |
| 2564 | |
| 2565 | return {v, std::move(lit) }; |
| 2566 | } |
| 2567 | |
| 2568 | static |
| 2569 | bool lookForDotStarPred(NFAVertex v, const NGHolder &h, |
| 2570 | NFAVertex *u, NFAVertex *ds) { |
| 2571 | *u = NGHolder::null_vertex(); |
| 2572 | *ds = NGHolder::null_vertex(); |
| 2573 | for (NFAVertex a : inv_adjacent_vertices_range(v, h)) { |
| 2574 | if (h[a].char_reach.all()) { |
| 2575 | if (!edge(a, a, h).second) { |
| 2576 | return false; |
| 2577 | } |
| 2578 | |
| 2579 | if (*ds) { |
| 2580 | return false; |
| 2581 | } |
| 2582 | |
| 2583 | *ds = a; |
| 2584 | } else { |
| 2585 | if (*u) { |
| 2586 | return false; |
| 2587 | } |
| 2588 | *u = a; |
| 2589 | } |
| 2590 | } |
| 2591 | |
| 2592 | if (!*u || !*ds) { |
| 2593 | return false; |
| 2594 | } |
| 2595 | |
| 2596 | return true; |
| 2597 | } |
| 2598 | |
| 2599 | static |
| 2600 | bool trailingDotStarLiteral(const NGHolder &h, VertLitInfo *out) { |
| 2601 | /* Note: there is no delay yet - so the final literal is the already |
| 2602 | * discovered successor literal - we are in fact interested in the literal |
| 2603 | * before it. */ |
| 2604 | |
| 2605 | if (in_degree(h.accept, h) != 1) { |
| 2606 | return false; |
| 2607 | } |
| 2608 | |
| 2609 | if (in_degree(h.acceptEod, h) != 1) { |
| 2610 | assert(0); |
| 2611 | return false; |
| 2612 | } |
| 2613 | |
| 2614 | NFAVertex v |
| 2615 | = findLiteralBefore(h, *inv_adjacent_vertices(h.accept, h).first).first; |
| 2616 | |
| 2617 | NFAVertex u; |
| 2618 | NFAVertex ds; |
| 2619 | |
| 2620 | if (!lookForDotStarPred(v, h, &u, &ds)) { |
| 2621 | return false; |
| 2622 | } |
| 2623 | |
| 2624 | v = u; |
| 2625 | auto rv = findLiteralBefore(h, v); |
| 2626 | |
| 2627 | if (!lookForDotStarPred(v, h, &u, &ds)) { |
| 2628 | return false; |
| 2629 | } |
| 2630 | |
| 2631 | ue2_literal lit = reverse_literal(rv.second); |
| 2632 | DEBUG_PRINTF("%zu found %s\n" , h[v].index, dumpString(lit).c_str()); |
| 2633 | |
| 2634 | if (bad_mixed_sensitivity(lit)) { |
| 2635 | make_nocase(&lit); |
| 2636 | } |
| 2637 | |
| 2638 | out->vv = {v}; |
| 2639 | out->lit = {lit}; |
| 2640 | return true; |
| 2641 | } |
| 2642 | |
| 2643 | static |
| 2644 | bool lookForTrailingLiteralDotStar(const NGHolder &h, |
| 2645 | const vector<RoseInEdge> &ee, |
| 2646 | RoseInGraph &vg, const Grey &grey) { |
| 2647 | VertLitInfo info; |
| 2648 | if (!trailingDotStarLiteral(h, &info) |
| 2649 | || min_len(info.lit) < grey.violetDoubleCutLiteralLen) { |
| 2650 | return false; |
| 2651 | } |
| 2652 | DEBUG_PRINTF("performing split\n" ); |
| 2653 | return splitRoseEdge(h, vg, ee, info); |
| 2654 | } |
| 2655 | |
| 2656 | /* In streaming mode, active engines have to be caught up at stream boundaries |
| 2657 | * and have to be stored in stream state, so we prefer to decompose patterns |
| 2658 | * in to literals with no state between them if possible. */ |
| 2659 | static |
| 2660 | void decomposeLiteralChains(RoseInGraph &vg, const CompileContext &cc) { |
| 2661 | if (!cc.grey.violetLiteralChains) { |
| 2662 | return; |
| 2663 | } |
| 2664 | |
| 2665 | insertion_ordered_map<const NGHolder *, vector<RoseInEdge>> right_edges; |
| 2666 | bool changed; |
| 2667 | do { |
| 2668 | changed = false; |
| 2669 | |
| 2670 | right_edges.clear(); |
| 2671 | for (const RoseInEdge &ve : edges_range(vg)) { |
| 2672 | if (vg[ve].graph && vg[source(ve, vg)].type == RIV_LITERAL) { |
| 2673 | const NGHolder *h = vg[ve].graph.get(); |
| 2674 | right_edges[h].push_back(ve); |
| 2675 | } |
| 2676 | } |
| 2677 | |
| 2678 | for (const auto &m : right_edges) { |
| 2679 | const NGHolder *h = m.first; |
| 2680 | const vector<RoseInEdge> &ee = m.second; |
| 2681 | bool rv = lookForDoubleCut(*h, ee, vg, cc.grey); |
| 2682 | if (!rv && h->kind != NFA_SUFFIX) { |
| 2683 | rv = lookForTrailingLiteralDotStar(*h, ee, vg, cc.grey); |
| 2684 | } |
| 2685 | changed |= rv; |
| 2686 | } |
| 2687 | } while (changed); |
| 2688 | } |
| 2689 | |
| 2690 | static |
| 2691 | bool lookForCleanSplit(const NGHolder &h, const vector<RoseInEdge> &ee, |
| 2692 | RoseInGraph &vg, const CompileContext &cc) { |
| 2693 | unique_ptr<VertLitInfo> split = findBestCleanSplit(h, cc); |
| 2694 | |
| 2695 | if (split) { |
| 2696 | return splitRoseEdge(h, vg, {ee}, *split); |
| 2697 | } |
| 2698 | |
| 2699 | return false; |
| 2700 | } |
| 2701 | |
| 2702 | #define MAX_DESIRED_CLEAN_SPLIT_DEPTH 4 |
| 2703 | |
| 2704 | static |
| 2705 | void lookForCleanEarlySplits(RoseInGraph &vg, const CompileContext &cc) { |
| 2706 | u32 gen = 0; |
| 2707 | |
| 2708 | insertion_ordered_set<RoseInVertex> prev({getStart(vg)}); |
| 2709 | insertion_ordered_set<RoseInVertex> curr; |
| 2710 | |
| 2711 | while (gen < MAX_DESIRED_CLEAN_SPLIT_DEPTH) { |
| 2712 | curr.clear(); |
| 2713 | for (RoseInVertex u : prev) { |
| 2714 | for (auto v : adjacent_vertices_range(u, vg)) { |
| 2715 | curr.insert(v); |
| 2716 | } |
| 2717 | } |
| 2718 | |
| 2719 | insertion_ordered_map<const NGHolder *, vector<RoseInEdge>> rightfixes; |
| 2720 | for (RoseInVertex v : curr) { |
| 2721 | for (const RoseInEdge &e : out_edges_range(v, vg)) { |
| 2722 | if (vg[e].graph) { |
| 2723 | NGHolder *h = vg[e].graph.get(); |
| 2724 | rightfixes[h].push_back(e); |
| 2725 | } |
| 2726 | } |
| 2727 | } |
| 2728 | |
| 2729 | for (const auto &m : rightfixes) { |
| 2730 | const NGHolder *h = m.first; |
| 2731 | const auto &edges = m.second; |
| 2732 | lookForCleanSplit(*h, edges, vg, cc); |
| 2733 | } |
| 2734 | |
| 2735 | prev = std::move(curr); |
| 2736 | gen++; |
| 2737 | } |
| 2738 | } |
| 2739 | |
| 2740 | static |
| 2741 | void rehomeEodSuffixes(RoseInGraph &vg) { |
| 2742 | // Find edges to accept with EOD-anchored graphs that we can move over to |
| 2743 | // acceptEod. |
| 2744 | vector<RoseInEdge> acc_edges; |
| 2745 | for (const auto &e : edges_range(vg)) { |
| 2746 | if (vg[target(e, vg)].type != RIV_ACCEPT) { |
| 2747 | continue; |
| 2748 | } |
| 2749 | if (vg[e].haig || !vg[e].graph) { |
| 2750 | continue; |
| 2751 | } |
| 2752 | |
| 2753 | const NGHolder &h = *vg[e].graph; |
| 2754 | |
| 2755 | if (in_degree(h.accept, h)) { |
| 2756 | DEBUG_PRINTF("graph isn't eod anchored\n" ); |
| 2757 | continue; |
| 2758 | } |
| 2759 | |
| 2760 | acc_edges.push_back(e); |
| 2761 | } |
| 2762 | |
| 2763 | for (const RoseInEdge &e : acc_edges) { |
| 2764 | // Move this edge from accept to acceptEod |
| 2765 | RoseInVertex w = add_vertex(RoseInVertexProps::makeAcceptEod(), vg); |
| 2766 | add_edge(source(e, vg), w, vg[e], vg); |
| 2767 | remove_edge(e, vg); |
| 2768 | } |
| 2769 | |
| 2770 | /* old accept vertices will be tidied up by final pruneUseless() call */ |
| 2771 | } |
| 2772 | |
| 2773 | static |
| 2774 | bool tryForEarlyDfa(const NGHolder &h, const CompileContext &cc) { |
| 2775 | switch (h.kind) { |
| 2776 | case NFA_OUTFIX: /* 'prefix' of eod */ |
| 2777 | case NFA_PREFIX: |
| 2778 | return cc.grey.earlyMcClellanPrefix; |
| 2779 | case NFA_INFIX: |
| 2780 | return cc.grey.earlyMcClellanInfix; |
| 2781 | case NFA_SUFFIX: |
| 2782 | return cc.grey.earlyMcClellanSuffix; |
| 2783 | default: |
| 2784 | DEBUG_PRINTF("kind %u\n" , (u32)h.kind); |
| 2785 | assert(0); |
| 2786 | return false; |
| 2787 | } |
| 2788 | } |
| 2789 | |
| 2790 | static |
| 2791 | vector<vector<CharReach>> getDfaTriggers(RoseInGraph &vg, |
| 2792 | const vector<RoseInEdge> &edges, |
| 2793 | bool *single_trigger) { |
| 2794 | vector<vector<CharReach>> triggers; |
| 2795 | u32 min_offset = ~0U; |
| 2796 | u32 max_offset = 0; |
| 2797 | for (const auto &e : edges) { |
| 2798 | RoseInVertex s = source(e, vg); |
| 2799 | if (vg[s].type == RIV_LITERAL) { |
| 2800 | triggers.push_back(as_cr_seq(vg[s].s)); |
| 2801 | } |
| 2802 | ENSURE_AT_LEAST(&max_offset, vg[s].max_offset); |
| 2803 | LIMIT_TO_AT_MOST(&min_offset, vg[s].min_offset); |
| 2804 | } |
| 2805 | |
| 2806 | *single_trigger = min_offset == max_offset; |
| 2807 | DEBUG_PRINTF("trigger offset (%u, %u)\n" , min_offset, max_offset); |
| 2808 | |
| 2809 | return triggers; |
| 2810 | } |
| 2811 | |
| 2812 | static |
| 2813 | bool doEarlyDfa(RoseBuild &rose, RoseInGraph &vg, NGHolder &h, |
| 2814 | const vector<RoseInEdge> &edges, bool final_chance, |
| 2815 | const ReportManager &rm, const CompileContext &cc) { |
| 2816 | DEBUG_PRINTF("trying for dfa\n" ); |
| 2817 | |
| 2818 | bool single_trigger; |
| 2819 | for (const auto &e : edges) { |
| 2820 | if (vg[target(e, vg)].type == RIV_ACCEPT_EOD) { |
| 2821 | /* TODO: support eod prefixes */ |
| 2822 | return false; |
| 2823 | } |
| 2824 | } |
| 2825 | |
| 2826 | auto triggers = getDfaTriggers(vg, edges, &single_trigger); |
| 2827 | |
| 2828 | /* TODO: literal delay things */ |
| 2829 | if (!generates_callbacks(h)) { |
| 2830 | set_report(h, rose.getNewNfaReport()); |
| 2831 | } |
| 2832 | |
| 2833 | shared_ptr<raw_dfa> dfa = buildMcClellan(h, &rm, single_trigger, triggers, |
| 2834 | cc.grey, final_chance); |
| 2835 | |
| 2836 | if (!dfa) { |
| 2837 | return false; |
| 2838 | } |
| 2839 | |
| 2840 | DEBUG_PRINTF("dfa ok\n" ); |
| 2841 | for (const auto &e : edges) { |
| 2842 | vg[e].dfa = dfa; |
| 2843 | } |
| 2844 | |
| 2845 | return true; |
| 2846 | } |
| 2847 | |
| 2848 | #define MAX_EDGES_FOR_IMPLEMENTABILITY 50 |
| 2849 | |
| 2850 | static |
| 2851 | bool splitForImplementability(RoseInGraph &vg, NGHolder &h, |
| 2852 | const vector<RoseInEdge> &edges, |
| 2853 | const CompileContext &cc) { |
| 2854 | vector<pair<ue2_literal, u32>> succ_lits; |
| 2855 | DEBUG_PRINTF("trying to split %s with %zu vertices on %zu edges\n" , |
| 2856 | to_string(h.kind).c_str(), num_vertices(h), edges.size()); |
| 2857 | |
| 2858 | if (edges.size() > MAX_EDGES_FOR_IMPLEMENTABILITY) { |
| 2859 | return false; |
| 2860 | } |
| 2861 | |
| 2862 | if (!generates_callbacks(h)) { |
| 2863 | for (const auto &e : edges) { |
| 2864 | const auto &lit = vg[target(e, vg)].s; |
| 2865 | u32 delay = vg[e].graph_lag; |
| 2866 | vg[e].graph_lag = 0; |
| 2867 | |
| 2868 | assert(delay <= lit.length()); |
| 2869 | succ_lits.emplace_back(lit, delay); |
| 2870 | } |
| 2871 | restoreTrailingLiteralStates(h, succ_lits); |
| 2872 | } |
| 2873 | |
| 2874 | unique_ptr<VertLitInfo> split; |
| 2875 | bool last_chance = true; |
| 2876 | if (h.kind == NFA_PREFIX) { |
| 2877 | auto depths = calcDepths(h); |
| 2878 | |
| 2879 | split = findBestPrefixSplit(h, depths, vg, edges, last_chance, cc); |
| 2880 | } else { |
| 2881 | split = findBestLastChanceSplit(h, vg, edges, cc); |
| 2882 | } |
| 2883 | |
| 2884 | if (split && splitRoseEdge(h, vg, edges, *split)) { |
| 2885 | DEBUG_PRINTF("split on simple literal\n" ); |
| 2886 | return true; |
| 2887 | } |
| 2888 | |
| 2889 | DEBUG_PRINTF("trying to netflow\n" ); |
| 2890 | bool rv = doNetflowCut(h, nullptr, vg, edges, false, cc.grey); |
| 2891 | DEBUG_PRINTF("done\n" ); |
| 2892 | |
| 2893 | return rv; |
| 2894 | } |
| 2895 | |
| 2896 | #define MAX_IMPLEMENTABLE_SPLITS 50 |
| 2897 | |
| 2898 | bool ensureImplementable(RoseBuild &rose, RoseInGraph &vg, bool allow_changes, |
| 2899 | bool final_chance, const ReportManager &rm, |
| 2900 | const CompileContext &cc) { |
| 2901 | DEBUG_PRINTF("checking for impl %d\n" , final_chance); |
| 2902 | bool changed = false; |
| 2903 | bool need_to_recalc = false; |
| 2904 | u32 added_count = 0; |
| 2905 | unordered_set<shared_ptr<NGHolder>> good; /* known to be implementable */ |
| 2906 | do { |
| 2907 | changed = false; |
| 2908 | DEBUG_PRINTF("added %u\n" , added_count); |
| 2909 | insertion_ordered_map<shared_ptr<NGHolder>, |
| 2910 | vector<RoseInEdge>> edges_by_graph; |
| 2911 | for (const RoseInEdge &ve : edges_range(vg)) { |
| 2912 | if (vg[ve].graph && !vg[ve].dfa) { |
| 2913 | auto &h = vg[ve].graph; |
| 2914 | edges_by_graph[h].push_back(ve); |
| 2915 | } |
| 2916 | } |
| 2917 | for (auto &m : edges_by_graph) { |
| 2918 | auto &h = m.first; |
| 2919 | if (contains(good, h)) { |
| 2920 | continue; |
| 2921 | } |
| 2922 | reduceGraphEquivalences(*h, cc); |
| 2923 | if (isImplementableNFA(*h, &rm, cc)) { |
| 2924 | good.insert(h); |
| 2925 | continue; |
| 2926 | } |
| 2927 | |
| 2928 | const auto &edges = m.second; |
| 2929 | |
| 2930 | if (tryForEarlyDfa(*h, cc) && |
| 2931 | doEarlyDfa(rose, vg, *h, edges, final_chance, rm, cc)) { |
| 2932 | continue; |
| 2933 | } |
| 2934 | |
| 2935 | DEBUG_PRINTF("eek\n" ); |
| 2936 | if (!allow_changes) { |
| 2937 | return false; |
| 2938 | } |
| 2939 | |
| 2940 | if (splitForImplementability(vg, *h, edges, cc)) { |
| 2941 | added_count++; |
| 2942 | if (added_count > MAX_IMPLEMENTABLE_SPLITS) { |
| 2943 | DEBUG_PRINTF("added_count hit limit\n" ); |
| 2944 | return false; |
| 2945 | } |
| 2946 | changed = true; |
| 2947 | continue; |
| 2948 | } |
| 2949 | |
| 2950 | return false; |
| 2951 | } |
| 2952 | |
| 2953 | assert(added_count <= MAX_IMPLEMENTABLE_SPLITS); |
| 2954 | |
| 2955 | if (changed) { |
| 2956 | removeRedundantLiterals(vg, cc); |
| 2957 | pruneUseless(vg); |
| 2958 | need_to_recalc = true; |
| 2959 | } |
| 2960 | } while (changed); |
| 2961 | |
| 2962 | if (need_to_recalc) { |
| 2963 | renumber_vertices(vg); |
| 2964 | calcVertexOffsets(vg); |
| 2965 | } |
| 2966 | |
| 2967 | DEBUG_PRINTF("ok!\n" ); |
| 2968 | return true; |
| 2969 | } |
| 2970 | |
| 2971 | static |
| 2972 | RoseInGraph doInitialVioletTransform(const NGHolder &h, bool last_chance, |
| 2973 | const CompileContext &cc) { |
| 2974 | assert(!can_never_match(h)); |
| 2975 | |
| 2976 | RoseInGraph vg = populateTrivialGraph(h); |
| 2977 | |
| 2978 | if (!cc.grey.allowViolet) { |
| 2979 | return vg; |
| 2980 | } |
| 2981 | |
| 2982 | /* Avoid running the Violet analysis at all on graphs with no vertices with |
| 2983 | * small reach, since we will not be able to extract any literals. */ |
| 2984 | if (!hasNarrowReachVertex(h)) { |
| 2985 | DEBUG_PRINTF("fail, no vertices with small reach\n" ); |
| 2986 | return vg; |
| 2987 | } |
| 2988 | |
| 2989 | DEBUG_PRINTF("hello world\n" ); |
| 2990 | |
| 2991 | /* Step 1: avoid outfixes as we always have to run them. */ |
| 2992 | avoidOutfixes(vg, last_chance, cc); |
| 2993 | |
| 2994 | if (num_vertices(vg) <= 2) { |
| 2995 | return vg; /* unable to transform pattern */ |
| 2996 | } |
| 2997 | |
| 2998 | removeRedundantPrefixes(vg); |
| 2999 | dumpPreRoseGraph(vg, cc.grey, "pre_prefix_rose.dot" ); |
| 3000 | |
| 3001 | /* Step 2: avoid non-transient prefixes (esp in streaming mode) */ |
| 3002 | findBetterPrefixes(vg, cc); |
| 3003 | |
| 3004 | dumpPreRoseGraph(vg, cc.grey, "post_prefix_rose.dot" ); |
| 3005 | |
| 3006 | extractStrongLiterals(vg, cc); |
| 3007 | dumpPreRoseGraph(vg, cc.grey, "post_extract_rose.dot" ); |
| 3008 | improveWeakInfixes(vg, cc); |
| 3009 | dumpPreRoseGraph(vg, cc.grey, "post_infix_rose.dot" ); |
| 3010 | |
| 3011 | /* Step 3: avoid output exposed engines if there is a strong trailing |
| 3012 | literal) */ |
| 3013 | avoidSuffixes(vg, cc); |
| 3014 | |
| 3015 | /* Step 4: look for infixes/suffixes with leading .*literals |
| 3016 | * This can reduce the amount of work a heavily picked literal has to do and |
| 3017 | * reduce the amount of state used as .* is handled internally to rose. */ |
| 3018 | lookForDoubleCut(vg, cc); |
| 3019 | |
| 3020 | if (cc.streaming) { |
| 3021 | lookForCleanEarlySplits(vg, cc); |
| 3022 | decomposeLiteralChains(vg, cc); |
| 3023 | } |
| 3024 | |
| 3025 | rehomeEodSuffixes(vg); |
| 3026 | removeRedundantLiterals(vg, cc); |
| 3027 | |
| 3028 | pruneUseless(vg); |
| 3029 | dumpPreRoseGraph(vg, cc.grey); |
| 3030 | renumber_vertices(vg); |
| 3031 | calcVertexOffsets(vg); |
| 3032 | |
| 3033 | return vg; |
| 3034 | } |
| 3035 | |
| 3036 | bool doViolet(RoseBuild &rose, const NGHolder &h, bool prefilter, |
| 3037 | bool last_chance, const ReportManager &rm, |
| 3038 | const CompileContext &cc) { |
| 3039 | auto vg = doInitialVioletTransform(h, last_chance, cc); |
| 3040 | if (num_vertices(vg) <= 2) { |
| 3041 | return false; |
| 3042 | } |
| 3043 | |
| 3044 | /* Step 5: avoid unimplementable, or overly large engines if possible */ |
| 3045 | if (!ensureImplementable(rose, vg, last_chance, last_chance, rm, cc)) { |
| 3046 | return false; |
| 3047 | } |
| 3048 | dumpPreRoseGraph(vg, cc.grey, "post_ensure_rose.dot" ); |
| 3049 | |
| 3050 | /* Step 6: send to rose */ |
| 3051 | bool rv = rose.addRose(vg, prefilter); |
| 3052 | DEBUG_PRINTF("violet: %s\n" , rv ? "success" : "fail" ); |
| 3053 | return rv; |
| 3054 | } |
| 3055 | |
| 3056 | bool checkViolet(const ReportManager &rm, const NGHolder &h, bool prefilter, |
| 3057 | const CompileContext &cc) { |
| 3058 | auto vg = doInitialVioletTransform(h, true, cc); |
| 3059 | if (num_vertices(vg) <= 2) { |
| 3060 | return false; |
| 3061 | } |
| 3062 | |
| 3063 | bool rv = roseCheckRose(vg, prefilter, rm, cc); |
| 3064 | DEBUG_PRINTF("violet: %s\n" , rv ? "success" : "fail" ); |
| 3065 | return rv; |
| 3066 | } |
| 3067 | |
| 3068 | } |
| 3069 | |