1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XX XX |
8 | XX AssertionProp XX |
9 | XX XX |
10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
12 | */ |
13 | |
14 | #include "jitpch.h" |
15 | #ifdef _MSC_VER |
16 | #pragma hdrstop |
17 | #endif |
18 | |
19 | /***************************************************************************** |
20 | * |
21 | * Helper passed to Compiler::fgWalkTreePre() to find the Asgn node for optAddCopies() |
22 | */ |
23 | |
24 | /* static */ |
25 | Compiler::fgWalkResult Compiler::optAddCopiesCallback(GenTree** pTree, fgWalkData* data) |
26 | { |
27 | GenTree* tree = *pTree; |
28 | |
29 | if (tree->OperIs(GT_ASG)) |
30 | { |
31 | GenTree* op1 = tree->gtOp.gtOp1; |
32 | Compiler* comp = data->compiler; |
33 | |
34 | if ((op1->gtOper == GT_LCL_VAR) && (op1->gtLclVarCommon.gtLclNum == comp->optAddCopyLclNum)) |
35 | { |
36 | comp->optAddCopyAsgnNode = tree; |
37 | return WALK_ABORT; |
38 | } |
39 | } |
40 | return WALK_CONTINUE; |
41 | } |
42 | |
43 | /***************************************************************************** |
44 | * |
45 | * Add new copies before Assertion Prop. |
46 | */ |
47 | |
48 | void Compiler::optAddCopies() |
49 | { |
50 | unsigned lclNum; |
51 | LclVarDsc* varDsc; |
52 | |
53 | #ifdef DEBUG |
54 | if (verbose) |
55 | { |
56 | printf("\n*************** In optAddCopies()\n\n" ); |
57 | } |
58 | if (verboseTrees) |
59 | { |
60 | printf("Blocks/Trees at start of phase\n" ); |
61 | fgDispBasicBlocks(true); |
62 | } |
63 | #endif |
64 | |
65 | // Don't add any copies if we have reached the tracking limit. |
66 | if (lvaHaveManyLocals()) |
67 | { |
68 | return; |
69 | } |
70 | |
71 | for (lclNum = 0, varDsc = lvaTable; lclNum < lvaCount; lclNum++, varDsc++) |
72 | { |
73 | var_types typ = varDsc->TypeGet(); |
74 | |
75 | // We only add copies for non temp local variables |
76 | // that have a single def and that can possibly be enregistered |
77 | |
78 | if (varDsc->lvIsTemp || !varDsc->lvSingleDef || !varTypeCanReg(typ)) |
79 | { |
80 | continue; |
81 | } |
82 | |
83 | /* For lvNormalizeOnLoad(), we need to add a cast to the copy-assignment |
84 | like "copyLclNum = int(varDsc)" and optAssertionGen() only |
85 | tracks simple assignments. The same goes for lvNormalizedOnStore as |
86 | the cast is generated in fgMorphSmpOpAsg. This boils down to not having |
87 | a copy until optAssertionGen handles this*/ |
88 | if (varDsc->lvNormalizeOnLoad() || varDsc->lvNormalizeOnStore() || typ == TYP_BOOL) |
89 | { |
90 | continue; |
91 | } |
92 | |
93 | if (varTypeIsSmall(varDsc->TypeGet()) || typ == TYP_BOOL) |
94 | { |
95 | continue; |
96 | } |
97 | |
98 | // If locals must be initialized to zero, that initialization counts as a second definition. |
99 | // VB in particular allows usage of variables not explicitly initialized. |
100 | // Note that this effectively disables this optimization for all local variables |
101 | // as C# sets InitLocals all the time starting in Whidbey. |
102 | |
103 | if (!varDsc->lvIsParam && info.compInitMem) |
104 | { |
105 | continue; |
106 | } |
107 | |
108 | // On x86 we may want to add a copy for an incoming double parameter |
109 | // because we can ensure that the copy we make is double aligned |
110 | // where as we can never ensure the alignment of an incoming double parameter |
111 | // |
112 | // On all other platforms we will never need to make a copy |
113 | // for an incoming double parameter |
114 | |
115 | bool isFloatParam = false; |
116 | |
117 | #ifdef _TARGET_X86_ |
118 | isFloatParam = varDsc->lvIsParam && varTypeIsFloating(typ); |
119 | #endif |
120 | |
121 | if (!isFloatParam && !varDsc->lvVolatileHint) |
122 | { |
123 | continue; |
124 | } |
125 | |
126 | // We don't want to add a copy for a variable that is part of a struct |
127 | if (varDsc->lvIsStructField) |
128 | { |
129 | continue; |
130 | } |
131 | |
132 | // We require that the weighted ref count be significant. |
133 | if (varDsc->lvRefCntWtd() <= (BB_LOOP_WEIGHT * BB_UNITY_WEIGHT / 2)) |
134 | { |
135 | continue; |
136 | } |
137 | |
138 | // For parameters, we only want to add a copy for the heavier-than-average |
139 | // uses instead of adding a copy to cover every single use. |
140 | // 'paramImportantUseDom' is the set of blocks that dominate the |
141 | // heavier-than-average uses of a parameter. |
142 | // Initial value is all blocks. |
143 | |
144 | BlockSet paramImportantUseDom(BlockSetOps::MakeFull(this)); |
145 | |
146 | // This will be threshold for determining heavier-than-average uses |
147 | unsigned paramAvgWtdRefDiv2 = (varDsc->lvRefCntWtd() + varDsc->lvRefCnt() / 2) / (varDsc->lvRefCnt() * 2); |
148 | |
149 | bool paramFoundImportantUse = false; |
150 | |
151 | #ifdef DEBUG |
152 | if (verbose) |
153 | { |
154 | printf("Trying to add a copy for V%02u %s, avg_wtd = %s\n" , lclNum, |
155 | varDsc->lvIsParam ? "an arg" : "a local" , refCntWtd2str(paramAvgWtdRefDiv2)); |
156 | } |
157 | #endif |
158 | |
159 | // |
160 | // We must have a ref in a block that is dominated only by the entry block |
161 | // |
162 | |
163 | if (BlockSetOps::MayBeUninit(varDsc->lvRefBlks)) |
164 | { |
165 | // No references |
166 | continue; |
167 | } |
168 | |
169 | bool isDominatedByFirstBB = false; |
170 | |
171 | BlockSetOps::Iter iter(this, varDsc->lvRefBlks); |
172 | unsigned bbNum = 0; |
173 | while (iter.NextElem(&bbNum)) |
174 | { |
175 | /* Find the block 'bbNum' */ |
176 | BasicBlock* block = fgFirstBB; |
177 | while (block && (block->bbNum != bbNum)) |
178 | { |
179 | block = block->bbNext; |
180 | } |
181 | noway_assert(block && (block->bbNum == bbNum)); |
182 | |
183 | bool importantUseInBlock = (varDsc->lvIsParam) && (block->getBBWeight(this) > paramAvgWtdRefDiv2); |
184 | bool = ((block->bbFlags & BBF_LOOP_PREHEADER) != 0); |
185 | BlockSet blockDom(BlockSetOps::UninitVal()); |
186 | BlockSet blockDomSub0(BlockSetOps::UninitVal()); |
187 | |
188 | if (block->bbIDom == nullptr && isPreHeaderBlock) |
189 | { |
190 | // Loop Preheader blocks that we insert will have a bbDom set that is nullptr |
191 | // but we can instead use the bNext successor block's dominator information |
192 | noway_assert(block->bbNext != nullptr); |
193 | BlockSetOps::AssignNoCopy(this, blockDom, fgGetDominatorSet(block->bbNext)); |
194 | } |
195 | else |
196 | { |
197 | BlockSetOps::AssignNoCopy(this, blockDom, fgGetDominatorSet(block)); |
198 | } |
199 | |
200 | if (!BlockSetOps::IsEmpty(this, blockDom)) |
201 | { |
202 | BlockSetOps::Assign(this, blockDomSub0, blockDom); |
203 | if (isPreHeaderBlock) |
204 | { |
205 | // We must clear bbNext block number from the dominator set |
206 | BlockSetOps::RemoveElemD(this, blockDomSub0, block->bbNext->bbNum); |
207 | } |
208 | /* Is this block dominated by fgFirstBB? */ |
209 | if (BlockSetOps::IsMember(this, blockDomSub0, fgFirstBB->bbNum)) |
210 | { |
211 | isDominatedByFirstBB = true; |
212 | } |
213 | } |
214 | |
215 | #ifdef DEBUG |
216 | if (verbose) |
217 | { |
218 | printf(" Referenced in " FMT_BB ", bbWeight is %s" , bbNum, |
219 | refCntWtd2str(block->getBBWeight(this))); |
220 | |
221 | if (isDominatedByFirstBB) |
222 | { |
223 | printf(", which is dominated by BB01" ); |
224 | } |
225 | |
226 | if (importantUseInBlock) |
227 | { |
228 | printf(", ImportantUse" ); |
229 | } |
230 | |
231 | printf("\n" ); |
232 | } |
233 | #endif |
234 | |
235 | /* If this is a heavier-than-average block, then track which |
236 | blocks dominate this use of the parameter. */ |
237 | if (importantUseInBlock) |
238 | { |
239 | paramFoundImportantUse = true; |
240 | BlockSetOps::IntersectionD(this, paramImportantUseDom, |
241 | blockDomSub0); // Clear blocks that do not dominate |
242 | } |
243 | } |
244 | |
245 | // We should have found at least one heavier-than-averageDiv2 block. |
246 | if (varDsc->lvIsParam) |
247 | { |
248 | if (!paramFoundImportantUse) |
249 | { |
250 | continue; |
251 | } |
252 | } |
253 | |
254 | // For us to add a new copy: |
255 | // we require that we have a floating point parameter |
256 | // or a lvVolatile variable that is always reached from the first BB |
257 | // and we have at least one block available in paramImportantUseDom |
258 | // |
259 | bool doCopy = (isFloatParam || (isDominatedByFirstBB && varDsc->lvVolatileHint)) && |
260 | !BlockSetOps::IsEmpty(this, paramImportantUseDom); |
261 | |
262 | // Under stress mode we expand the number of candidates |
263 | // to include parameters of any type |
264 | // or any variable that is always reached from the first BB |
265 | // |
266 | if (compStressCompile(STRESS_GENERIC_VARN, 30)) |
267 | { |
268 | // Ensure that we preserve the invariants required by the subsequent code. |
269 | if (varDsc->lvIsParam || isDominatedByFirstBB) |
270 | { |
271 | doCopy = true; |
272 | } |
273 | } |
274 | |
275 | if (!doCopy) |
276 | { |
277 | continue; |
278 | } |
279 | |
280 | GenTree* stmt; |
281 | unsigned copyLclNum = lvaGrabTemp(false DEBUGARG("optAddCopies" )); |
282 | |
283 | // Because lvaGrabTemp may have reallocated the lvaTable, ensure varDsc |
284 | // is still in sync with lvaTable[lclNum]; |
285 | varDsc = &lvaTable[lclNum]; |
286 | |
287 | // Set lvType on the new Temp Lcl Var |
288 | lvaTable[copyLclNum].lvType = typ; |
289 | |
290 | #ifdef DEBUG |
291 | if (verbose) |
292 | { |
293 | printf("\n Finding the best place to insert the assignment V%02i=V%02i\n" , copyLclNum, lclNum); |
294 | } |
295 | #endif |
296 | |
297 | if (varDsc->lvIsParam) |
298 | { |
299 | noway_assert(varDsc->lvDefStmt == nullptr || varDsc->lvIsStructField); |
300 | |
301 | // Create a new copy assignment tree |
302 | GenTree* copyAsgn = gtNewTempAssign(copyLclNum, gtNewLclvNode(lclNum, typ)); |
303 | |
304 | /* Find the best block to insert the new assignment */ |
305 | /* We will choose the lowest weighted block, and within */ |
306 | /* those block, the highest numbered block which */ |
307 | /* dominates all the uses of the local variable */ |
308 | |
309 | /* Our default is to use the first block */ |
310 | BasicBlock* bestBlock = fgFirstBB; |
311 | unsigned bestWeight = bestBlock->getBBWeight(this); |
312 | BasicBlock* block = bestBlock; |
313 | |
314 | #ifdef DEBUG |
315 | if (verbose) |
316 | { |
317 | printf(" Starting at " FMT_BB ", bbWeight is %s" , block->bbNum, |
318 | refCntWtd2str(block->getBBWeight(this))); |
319 | |
320 | printf(", bestWeight is %s\n" , refCntWtd2str(bestWeight)); |
321 | } |
322 | #endif |
323 | |
324 | /* We have already calculated paramImportantUseDom above. */ |
325 | BlockSetOps::Iter iter(this, paramImportantUseDom); |
326 | unsigned bbNum = 0; |
327 | while (iter.NextElem(&bbNum)) |
328 | { |
329 | /* Advance block to point to 'bbNum' */ |
330 | /* This assumes that the iterator returns block number is increasing lexical order. */ |
331 | while (block && (block->bbNum != bbNum)) |
332 | { |
333 | block = block->bbNext; |
334 | } |
335 | noway_assert(block && (block->bbNum == bbNum)); |
336 | |
337 | #ifdef DEBUG |
338 | if (verbose) |
339 | { |
340 | printf(" Considering " FMT_BB ", bbWeight is %s" , block->bbNum, |
341 | refCntWtd2str(block->getBBWeight(this))); |
342 | |
343 | printf(", bestWeight is %s\n" , refCntWtd2str(bestWeight)); |
344 | } |
345 | #endif |
346 | |
347 | // Does this block have a smaller bbWeight value? |
348 | if (block->getBBWeight(this) > bestWeight) |
349 | { |
350 | #ifdef DEBUG |
351 | if (verbose) |
352 | { |
353 | printf("bbWeight too high\n" ); |
354 | } |
355 | #endif |
356 | continue; |
357 | } |
358 | |
359 | // Don't use blocks that are exception handlers because |
360 | // inserting a new first statement will interface with |
361 | // the CATCHARG |
362 | |
363 | if (handlerGetsXcptnObj(block->bbCatchTyp)) |
364 | { |
365 | #ifdef DEBUG |
366 | if (verbose) |
367 | { |
368 | printf("Catch block\n" ); |
369 | } |
370 | #endif |
371 | continue; |
372 | } |
373 | |
374 | // Don't use the BBJ_ALWAYS block marked with BBF_KEEP_BBJ_ALWAYS. These |
375 | // are used by EH code. The JIT can not generate code for such a block. |
376 | |
377 | if (block->bbFlags & BBF_KEEP_BBJ_ALWAYS) |
378 | { |
379 | #if FEATURE_EH_FUNCLETS |
380 | // With funclets, this is only used for BBJ_CALLFINALLY/BBJ_ALWAYS pairs. For x86, it is also used |
381 | // as the "final step" block for leaving finallys. |
382 | assert((block->bbPrev != nullptr) && block->bbPrev->isBBCallAlwaysPair()); |
383 | #endif // FEATURE_EH_FUNCLETS |
384 | #ifdef DEBUG |
385 | if (verbose) |
386 | { |
387 | printf("Internal EH BBJ_ALWAYS block\n" ); |
388 | } |
389 | #endif |
390 | continue; |
391 | } |
392 | |
393 | // This block will be the new candidate for the insert point |
394 | // for the new assignment |
395 | CLANG_FORMAT_COMMENT_ANCHOR; |
396 | |
397 | #ifdef DEBUG |
398 | if (verbose) |
399 | { |
400 | printf("new bestBlock\n" ); |
401 | } |
402 | #endif |
403 | |
404 | bestBlock = block; |
405 | bestWeight = block->getBBWeight(this); |
406 | } |
407 | |
408 | // If there is a use of the variable in this block |
409 | // then we insert the assignment at the beginning |
410 | // otherwise we insert the statement at the end |
411 | CLANG_FORMAT_COMMENT_ANCHOR; |
412 | |
413 | #ifdef DEBUG |
414 | if (verbose) |
415 | { |
416 | printf(" Insert copy at the %s of " FMT_BB "\n" , |
417 | (BlockSetOps::IsEmpty(this, paramImportantUseDom) || |
418 | BlockSetOps::IsMember(this, varDsc->lvRefBlks, bestBlock->bbNum)) |
419 | ? "start" |
420 | : "end" , |
421 | bestBlock->bbNum); |
422 | } |
423 | #endif |
424 | |
425 | if (BlockSetOps::IsEmpty(this, paramImportantUseDom) || |
426 | BlockSetOps::IsMember(this, varDsc->lvRefBlks, bestBlock->bbNum)) |
427 | { |
428 | stmt = fgInsertStmtAtBeg(bestBlock, copyAsgn); |
429 | } |
430 | else |
431 | { |
432 | stmt = fgInsertStmtNearEnd(bestBlock, copyAsgn); |
433 | } |
434 | } |
435 | else |
436 | { |
437 | noway_assert(varDsc->lvDefStmt != nullptr); |
438 | |
439 | /* Locate the assignment to varDsc in the lvDefStmt */ |
440 | stmt = varDsc->lvDefStmt; |
441 | noway_assert(stmt->gtOper == GT_STMT); |
442 | |
443 | optAddCopyLclNum = lclNum; // in |
444 | optAddCopyAsgnNode = nullptr; // out |
445 | |
446 | fgWalkTreePre(&stmt->gtStmt.gtStmtExpr, Compiler::optAddCopiesCallback, (void*)this, false); |
447 | |
448 | noway_assert(optAddCopyAsgnNode); |
449 | |
450 | GenTree* tree = optAddCopyAsgnNode; |
451 | GenTree* op1 = tree->gtOp.gtOp1; |
452 | |
453 | noway_assert(tree && op1 && tree->OperIs(GT_ASG) && (op1->gtOper == GT_LCL_VAR) && |
454 | (op1->gtLclVarCommon.gtLclNum == lclNum)); |
455 | |
456 | /* TODO-Review: BB_UNITY_WEIGHT is not the correct block weight */ |
457 | unsigned blockWeight = BB_UNITY_WEIGHT; |
458 | |
459 | /* Assign the old expression into the new temp */ |
460 | |
461 | GenTree* newAsgn = gtNewTempAssign(copyLclNum, tree->gtOp.gtOp2); |
462 | |
463 | /* Copy the new temp to op1 */ |
464 | |
465 | GenTree* copyAsgn = gtNewAssignNode(op1, gtNewLclvNode(copyLclNum, typ)); |
466 | |
467 | /* Change the tree to a GT_COMMA with the two assignments as child nodes */ |
468 | |
469 | tree->gtBashToNOP(); |
470 | tree->ChangeOper(GT_COMMA); |
471 | |
472 | tree->gtOp.gtOp1 = newAsgn; |
473 | tree->gtOp.gtOp2 = copyAsgn; |
474 | |
475 | tree->gtFlags |= (newAsgn->gtFlags & GTF_ALL_EFFECT); |
476 | tree->gtFlags |= (copyAsgn->gtFlags & GTF_ALL_EFFECT); |
477 | } |
478 | |
479 | #ifdef DEBUG |
480 | if (verbose) |
481 | { |
482 | printf("\nIntroducing a new copy for V%02u\n" , lclNum); |
483 | gtDispTree(stmt->gtStmt.gtStmtExpr); |
484 | printf("\n" ); |
485 | } |
486 | #endif |
487 | } |
488 | } |
489 | |
490 | //------------------------------------------------------------------------------ |
491 | // GetAssertionDep: Retrieve the assertions on this local variable |
492 | // |
493 | // Arguments: |
494 | // lclNum - The local var id. |
495 | // |
496 | // Return Value: |
497 | // The dependent assertions (assertions using the value of the local var) |
498 | // of the local var. |
499 | // |
500 | |
501 | ASSERT_TP& Compiler::GetAssertionDep(unsigned lclNum) |
502 | { |
503 | JitExpandArray<ASSERT_TP>& dep = *optAssertionDep; |
504 | if (dep[lclNum] == nullptr) |
505 | { |
506 | dep[lclNum] = BitVecOps::MakeEmpty(apTraits); |
507 | } |
508 | return dep[lclNum]; |
509 | } |
510 | |
511 | /***************************************************************************** |
512 | * |
513 | * Initialize the assertion prop bitset traits and the default bitsets. |
514 | */ |
515 | |
516 | void Compiler::optAssertionTraitsInit(AssertionIndex assertionCount) |
517 | { |
518 | apTraits = new (this, CMK_AssertionProp) BitVecTraits(assertionCount, this); |
519 | apFull = BitVecOps::MakeFull(apTraits); |
520 | } |
521 | |
522 | /***************************************************************************** |
523 | * |
524 | * Initialize the assertion prop tracking logic. |
525 | */ |
526 | |
527 | void Compiler::optAssertionInit(bool isLocalProp) |
528 | { |
529 | // Use a function countFunc to determine a proper maximum assertion count for the |
530 | // method being compiled. The function is linear to the IL size for small and |
531 | // moderate methods. For large methods, considering throughput impact, we track no |
532 | // more than 64 assertions. |
533 | // Note this tracks at most only 256 assertions. |
534 | static const AssertionIndex countFunc[] = {64, 128, 256, 64}; |
535 | static const unsigned lowerBound = 0; |
536 | static const unsigned upperBound = _countof(countFunc) - 1; |
537 | const unsigned codeSize = info.compILCodeSize / 512; |
538 | optMaxAssertionCount = countFunc[isLocalProp ? lowerBound : min(upperBound, codeSize)]; |
539 | |
540 | optLocalAssertionProp = isLocalProp; |
541 | optAssertionTabPrivate = new (this, CMK_AssertionProp) AssertionDsc[optMaxAssertionCount]; |
542 | optComplementaryAssertionMap = |
543 | new (this, CMK_AssertionProp) AssertionIndex[optMaxAssertionCount + 1](); // zero-inited (NO_ASSERTION_INDEX) |
544 | assert(NO_ASSERTION_INDEX == 0); |
545 | |
546 | if (!isLocalProp) |
547 | { |
548 | optValueNumToAsserts = new (getAllocator()) ValueNumToAssertsMap(getAllocator()); |
549 | } |
550 | |
551 | if (optAssertionDep == nullptr) |
552 | { |
553 | optAssertionDep = new (this, CMK_AssertionProp) JitExpandArray<ASSERT_TP>(getAllocator(), max(1, lvaCount)); |
554 | } |
555 | |
556 | optAssertionTraitsInit(optMaxAssertionCount); |
557 | optAssertionCount = 0; |
558 | optAssertionPropagated = false; |
559 | bbJtrueAssertionOut = nullptr; |
560 | } |
561 | |
562 | #ifdef DEBUG |
563 | void Compiler::optPrintAssertion(AssertionDsc* curAssertion, AssertionIndex assertionIndex /* =0 */) |
564 | { |
565 | if (curAssertion->op1.kind == O1K_EXACT_TYPE) |
566 | { |
567 | printf("Type " ); |
568 | } |
569 | else if (curAssertion->op1.kind == O1K_ARR_BND) |
570 | { |
571 | printf("ArrBnds " ); |
572 | } |
573 | else if (curAssertion->op1.kind == O1K_SUBTYPE) |
574 | { |
575 | printf("Subtype " ); |
576 | } |
577 | else if (curAssertion->op2.kind == O2K_LCLVAR_COPY) |
578 | { |
579 | printf("Copy " ); |
580 | } |
581 | else if ((curAssertion->op2.kind == O2K_CONST_INT) || (curAssertion->op2.kind == O2K_CONST_LONG) || |
582 | (curAssertion->op2.kind == O2K_CONST_DOUBLE)) |
583 | { |
584 | printf("Constant " ); |
585 | } |
586 | else if (curAssertion->op2.kind == O2K_SUBRANGE) |
587 | { |
588 | printf("Subrange " ); |
589 | } |
590 | else |
591 | { |
592 | printf("?assertion classification? " ); |
593 | } |
594 | printf("Assertion: " ); |
595 | if (!optLocalAssertionProp) |
596 | { |
597 | printf("(%d, %d) " , curAssertion->op1.vn, curAssertion->op2.vn); |
598 | } |
599 | |
600 | if (!optLocalAssertionProp) |
601 | { |
602 | printf("(" FMT_VN "," FMT_VN ") " , curAssertion->op1.vn, curAssertion->op2.vn); |
603 | } |
604 | |
605 | if ((curAssertion->op1.kind == O1K_LCLVAR) || (curAssertion->op1.kind == O1K_EXACT_TYPE) || |
606 | (curAssertion->op1.kind == O1K_SUBTYPE)) |
607 | { |
608 | printf("V%02u" , curAssertion->op1.lcl.lclNum); |
609 | if (curAssertion->op1.lcl.ssaNum != SsaConfig::RESERVED_SSA_NUM) |
610 | { |
611 | printf(".%02u" , curAssertion->op1.lcl.ssaNum); |
612 | } |
613 | } |
614 | else if (curAssertion->op1.kind == O1K_ARR_BND) |
615 | { |
616 | printf("[idx:" ); |
617 | vnStore->vnDump(this, curAssertion->op1.bnd.vnIdx); |
618 | printf(";len:" ); |
619 | vnStore->vnDump(this, curAssertion->op1.bnd.vnLen); |
620 | printf("]" ); |
621 | } |
622 | else if (curAssertion->op1.kind == O1K_BOUND_OPER_BND) |
623 | { |
624 | printf("Oper_Bnd" ); |
625 | vnStore->vnDump(this, curAssertion->op1.vn); |
626 | } |
627 | else if (curAssertion->op1.kind == O1K_BOUND_LOOP_BND) |
628 | { |
629 | printf("Loop_Bnd" ); |
630 | vnStore->vnDump(this, curAssertion->op1.vn); |
631 | } |
632 | else if (curAssertion->op1.kind == O1K_CONSTANT_LOOP_BND) |
633 | { |
634 | printf("Const_Loop_Bnd" ); |
635 | vnStore->vnDump(this, curAssertion->op1.vn); |
636 | } |
637 | else if (curAssertion->op1.kind == O1K_VALUE_NUMBER) |
638 | { |
639 | printf("Value_Number" ); |
640 | vnStore->vnDump(this, curAssertion->op1.vn); |
641 | } |
642 | else |
643 | { |
644 | printf("?op1.kind?" ); |
645 | } |
646 | |
647 | if (curAssertion->assertionKind == OAK_SUBRANGE) |
648 | { |
649 | printf(" in " ); |
650 | } |
651 | else if (curAssertion->assertionKind == OAK_EQUAL) |
652 | { |
653 | if (curAssertion->op1.kind == O1K_LCLVAR) |
654 | { |
655 | printf(" == " ); |
656 | } |
657 | else |
658 | { |
659 | printf(" is " ); |
660 | } |
661 | } |
662 | else if (curAssertion->assertionKind == OAK_NO_THROW) |
663 | { |
664 | printf(" in range " ); |
665 | } |
666 | else if (curAssertion->assertionKind == OAK_NOT_EQUAL) |
667 | { |
668 | if (curAssertion->op1.kind == O1K_LCLVAR) |
669 | { |
670 | printf(" != " ); |
671 | } |
672 | else |
673 | { |
674 | printf(" is not " ); |
675 | } |
676 | } |
677 | else |
678 | { |
679 | printf(" ?assertionKind? " ); |
680 | } |
681 | |
682 | if (curAssertion->op1.kind != O1K_ARR_BND) |
683 | { |
684 | switch (curAssertion->op2.kind) |
685 | { |
686 | case O2K_LCLVAR_COPY: |
687 | printf("V%02u" , curAssertion->op2.lcl.lclNum); |
688 | if (curAssertion->op1.lcl.ssaNum != SsaConfig::RESERVED_SSA_NUM) |
689 | { |
690 | printf(".%02u" , curAssertion->op1.lcl.ssaNum); |
691 | } |
692 | break; |
693 | |
694 | case O2K_CONST_INT: |
695 | case O2K_IND_CNS_INT: |
696 | if (curAssertion->op1.kind == O1K_EXACT_TYPE) |
697 | { |
698 | printf("Exact Type MT(%08X)" , dspPtr(curAssertion->op2.u1.iconVal)); |
699 | assert(curAssertion->op2.u1.iconFlags != 0); |
700 | } |
701 | else if (curAssertion->op1.kind == O1K_SUBTYPE) |
702 | { |
703 | printf("MT(%08X)" , dspPtr(curAssertion->op2.u1.iconVal)); |
704 | assert(curAssertion->op2.u1.iconFlags != 0); |
705 | } |
706 | else if (curAssertion->op1.kind == O1K_BOUND_OPER_BND) |
707 | { |
708 | assert(!optLocalAssertionProp); |
709 | vnStore->vnDump(this, curAssertion->op2.vn); |
710 | } |
711 | else if (curAssertion->op1.kind == O1K_BOUND_LOOP_BND) |
712 | { |
713 | assert(!optLocalAssertionProp); |
714 | vnStore->vnDump(this, curAssertion->op2.vn); |
715 | } |
716 | else if (curAssertion->op1.kind == O1K_CONSTANT_LOOP_BND) |
717 | { |
718 | assert(!optLocalAssertionProp); |
719 | vnStore->vnDump(this, curAssertion->op2.vn); |
720 | } |
721 | else |
722 | { |
723 | var_types op1Type; |
724 | |
725 | if (curAssertion->op1.kind == O1K_VALUE_NUMBER) |
726 | { |
727 | op1Type = vnStore->TypeOfVN(curAssertion->op1.vn); |
728 | } |
729 | else |
730 | { |
731 | unsigned lclNum = curAssertion->op1.lcl.lclNum; |
732 | assert(lclNum < lvaCount); |
733 | LclVarDsc* varDsc = lvaTable + lclNum; |
734 | op1Type = varDsc->lvType; |
735 | } |
736 | |
737 | if (op1Type == TYP_REF) |
738 | { |
739 | assert(curAssertion->op2.u1.iconVal == 0); |
740 | printf("null" ); |
741 | } |
742 | else |
743 | { |
744 | if ((curAssertion->op2.u1.iconFlags & GTF_ICON_HDL_MASK) != 0) |
745 | { |
746 | printf("[%08p]" , dspPtr(curAssertion->op2.u1.iconVal)); |
747 | } |
748 | else |
749 | { |
750 | printf("%d" , curAssertion->op2.u1.iconVal); |
751 | } |
752 | } |
753 | } |
754 | break; |
755 | |
756 | case O2K_CONST_LONG: |
757 | printf("0x%016llx" , curAssertion->op2.lconVal); |
758 | break; |
759 | |
760 | case O2K_CONST_DOUBLE: |
761 | if (*((__int64*)&curAssertion->op2.dconVal) == (__int64)I64(0x8000000000000000)) |
762 | { |
763 | printf("-0.00000" ); |
764 | } |
765 | else |
766 | { |
767 | printf("%#lg" , curAssertion->op2.dconVal); |
768 | } |
769 | break; |
770 | |
771 | case O2K_SUBRANGE: |
772 | printf("[%d..%d]" , curAssertion->op2.u2.loBound, curAssertion->op2.u2.hiBound); |
773 | break; |
774 | |
775 | default: |
776 | printf("?op2.kind?" ); |
777 | break; |
778 | } |
779 | } |
780 | |
781 | if (assertionIndex > 0) |
782 | { |
783 | printf(" index=#%02u, mask=" , assertionIndex); |
784 | printf("%s" , BitVecOps::ToString(apTraits, BitVecOps::MakeSingleton(apTraits, assertionIndex - 1))); |
785 | } |
786 | printf("\n" ); |
787 | } |
788 | #endif // DEBUG |
789 | |
790 | /****************************************************************************** |
791 | * |
792 | * Helper to retrieve the "assertIndex" assertion. Note that assertIndex 0 |
793 | * is NO_ASSERTION_INDEX and "optAssertionCount" is the last valid index. |
794 | * |
795 | */ |
796 | Compiler::AssertionDsc* Compiler::optGetAssertion(AssertionIndex assertIndex) |
797 | { |
798 | assert(NO_ASSERTION_INDEX == 0); |
799 | assert(assertIndex != NO_ASSERTION_INDEX); |
800 | assert(assertIndex <= optAssertionCount); |
801 | AssertionDsc* assertion = &optAssertionTabPrivate[assertIndex - 1]; |
802 | #ifdef DEBUG |
803 | optDebugCheckAssertion(assertion); |
804 | #endif |
805 | |
806 | return assertion; |
807 | } |
808 | |
809 | /***************************************************************************** |
810 | * |
811 | * A simple helper routine so not all callers need to supply a AssertionDsc* |
812 | * if they don't care about it. Refer overloaded method optCreateAssertion. |
813 | * |
814 | */ |
815 | AssertionIndex Compiler::optCreateAssertion(GenTree* op1, GenTree* op2, optAssertionKind assertionKind) |
816 | { |
817 | AssertionDsc assertionDsc; |
818 | return optCreateAssertion(op1, op2, assertionKind, &assertionDsc); |
819 | } |
820 | |
821 | /***************************************************************************** |
822 | * |
823 | * We attempt to create the following assertion: |
824 | * |
825 | * op1 assertionKind op2 |
826 | * |
827 | * If we can create the assertion then update 'assertion' if we are |
828 | * unsuccessful assertion->assertionKind will be OAK_INVALID. If we are |
829 | * successful in creating the assertion we call optAddAssertion which adds |
830 | * the assertion to our assertion table. |
831 | * |
832 | * If we are able to create the assertion the return value is the |
833 | * assertionIndex for this assertion otherwise the return value is |
834 | * NO_ASSERTION_INDEX and we could not create the assertion. |
835 | * |
836 | */ |
837 | AssertionIndex Compiler::optCreateAssertion(GenTree* op1, |
838 | GenTree* op2, |
839 | optAssertionKind assertionKind, |
840 | AssertionDsc* assertion) |
841 | { |
842 | memset(assertion, 0, sizeof(AssertionDsc)); |
843 | // |
844 | // If we cannot create an assertion using op1 and op2 then the assertionKind |
845 | // must be OAK_INVALID, so we initialize it to OAK_INVALID and only change it |
846 | // to a valid assertion when everything is good. |
847 | // |
848 | assertion->assertionKind = OAK_INVALID; |
849 | bool haveArgs = false; |
850 | var_types toType; |
851 | |
852 | if (op1->gtOper == GT_ARR_BOUNDS_CHECK) |
853 | { |
854 | if (assertionKind == OAK_NO_THROW) |
855 | { |
856 | GenTreeBoundsChk* arrBndsChk = op1->AsBoundsChk(); |
857 | assertion->assertionKind = assertionKind; |
858 | assertion->op1.kind = O1K_ARR_BND; |
859 | assertion->op1.bnd.vnIdx = vnStore->VNConservativeNormalValue(arrBndsChk->gtIndex->gtVNPair); |
860 | assertion->op1.bnd.vnLen = vnStore->VNConservativeNormalValue(arrBndsChk->gtArrLen->gtVNPair); |
861 | goto DONE_ASSERTION; |
862 | } |
863 | } |
864 | |
865 | // |
866 | // Did we receive Helper call args? |
867 | // |
868 | if (op1->gtOper == GT_LIST) |
869 | { |
870 | if (op2->gtOper != GT_LIST) |
871 | { |
872 | goto DONE_ASSERTION; // Don't make an assertion |
873 | } |
874 | op1 = op1->gtOp.gtOp1; |
875 | op2 = op2->gtOp.gtOp1; |
876 | haveArgs = true; |
877 | } |
878 | |
879 | // |
880 | // Are we trying to make a non-null assertion? |
881 | // |
882 | if (op2 == nullptr) |
883 | { |
884 | assert(haveArgs == false); |
885 | // |
886 | // Must an OAK_NOT_EQUAL assertion |
887 | // |
888 | noway_assert(assertionKind == OAK_NOT_EQUAL); |
889 | |
890 | // |
891 | // Set op1 to the instance pointer of the indirection |
892 | // |
893 | |
894 | ssize_t offset = 0; |
895 | while ((op1->gtOper == GT_ADD) && (op1->gtType == TYP_BYREF)) |
896 | { |
897 | if (op1->gtGetOp2()->IsCnsIntOrI()) |
898 | { |
899 | offset += op1->gtGetOp2()->gtIntCon.gtIconVal; |
900 | op1 = op1->gtGetOp1(); |
901 | } |
902 | else if (op1->gtGetOp1()->IsCnsIntOrI()) |
903 | { |
904 | offset += op1->gtGetOp1()->gtIntCon.gtIconVal; |
905 | op1 = op1->gtGetOp2(); |
906 | } |
907 | else |
908 | { |
909 | break; |
910 | } |
911 | } |
912 | |
913 | if (fgIsBigOffset(offset) || op1->gtOper != GT_LCL_VAR) |
914 | { |
915 | goto DONE_ASSERTION; // Don't make an assertion |
916 | } |
917 | |
918 | unsigned lclNum = op1->gtLclVarCommon.gtLclNum; |
919 | noway_assert(lclNum < lvaCount); |
920 | LclVarDsc* lclVar = &lvaTable[lclNum]; |
921 | |
922 | ValueNum vn; |
923 | |
924 | // |
925 | // We only perform null-checks on GC refs |
926 | // so only make non-null assertions about GC refs |
927 | // |
928 | if (lclVar->TypeGet() != TYP_REF) |
929 | { |
930 | if (optLocalAssertionProp || (lclVar->TypeGet() != TYP_BYREF)) |
931 | { |
932 | goto DONE_ASSERTION; // Don't make an assertion |
933 | } |
934 | |
935 | vn = vnStore->VNConservativeNormalValue(op1->gtVNPair); |
936 | VNFuncApp funcAttr; |
937 | |
938 | // Try to get value number corresponding to the GC ref of the indirection |
939 | while (vnStore->GetVNFunc(vn, &funcAttr) && (funcAttr.m_func == (VNFunc)GT_ADD) && |
940 | (vnStore->TypeOfVN(vn) == TYP_BYREF)) |
941 | { |
942 | if (vnStore->IsVNConstant(funcAttr.m_args[1]) && |
943 | varTypeIsIntegral(vnStore->TypeOfVN(funcAttr.m_args[1]))) |
944 | { |
945 | offset += vnStore->CoercedConstantValue<ssize_t>(funcAttr.m_args[1]); |
946 | vn = funcAttr.m_args[0]; |
947 | } |
948 | else if (vnStore->IsVNConstant(funcAttr.m_args[0]) && |
949 | varTypeIsIntegral(vnStore->TypeOfVN(funcAttr.m_args[0]))) |
950 | { |
951 | offset += vnStore->CoercedConstantValue<ssize_t>(funcAttr.m_args[0]); |
952 | vn = funcAttr.m_args[1]; |
953 | } |
954 | else |
955 | { |
956 | break; |
957 | } |
958 | } |
959 | |
960 | if (fgIsBigOffset(offset) || (vnStore->TypeOfVN(vn) != TYP_REF)) |
961 | { |
962 | goto DONE_ASSERTION; // Don't make an assertion |
963 | } |
964 | |
965 | assertion->op1.kind = O1K_VALUE_NUMBER; |
966 | } |
967 | else |
968 | { |
969 | // If the local variable has its address exposed then bail |
970 | if (lclVar->lvAddrExposed) |
971 | { |
972 | goto DONE_ASSERTION; // Don't make an assertion |
973 | } |
974 | |
975 | assertion->op1.kind = O1K_LCLVAR; |
976 | assertion->op1.lcl.lclNum = lclNum; |
977 | assertion->op1.lcl.ssaNum = op1->AsLclVarCommon()->GetSsaNum(); |
978 | vn = vnStore->VNConservativeNormalValue(op1->gtVNPair); |
979 | } |
980 | |
981 | assertion->op1.vn = vn; |
982 | assertion->assertionKind = assertionKind; |
983 | assertion->op2.kind = O2K_CONST_INT; |
984 | assertion->op2.vn = ValueNumStore::VNForNull(); |
985 | assertion->op2.u1.iconVal = 0; |
986 | assertion->op2.u1.iconFlags = 0; |
987 | #ifdef _TARGET_64BIT_ |
988 | assertion->op2.u1.iconFlags |= 1; // Signify that this is really TYP_LONG |
989 | #endif // _TARGET_64BIT_ |
990 | } |
991 | // |
992 | // Are we making an assertion about a local variable? |
993 | // |
994 | else if (op1->gtOper == GT_LCL_VAR) |
995 | { |
996 | unsigned lclNum = op1->gtLclVarCommon.gtLclNum; |
997 | noway_assert(lclNum < lvaCount); |
998 | LclVarDsc* lclVar = &lvaTable[lclNum]; |
999 | |
1000 | // If the local variable has its address exposed then bail |
1001 | if (lclVar->lvAddrExposed) |
1002 | { |
1003 | goto DONE_ASSERTION; // Don't make an assertion |
1004 | } |
1005 | |
1006 | if (haveArgs) |
1007 | { |
1008 | // |
1009 | // Must either be an OAK_EQUAL or an OAK_NOT_EQUAL assertion |
1010 | // |
1011 | if ((assertionKind != OAK_EQUAL) && (assertionKind != OAK_NOT_EQUAL)) |
1012 | { |
1013 | goto DONE_ASSERTION; // Don't make an assertion |
1014 | } |
1015 | |
1016 | if (op2->gtOper == GT_IND) |
1017 | { |
1018 | op2 = op2->gtOp.gtOp1; |
1019 | assertion->op2.kind = O2K_IND_CNS_INT; |
1020 | } |
1021 | else |
1022 | { |
1023 | assertion->op2.kind = O2K_CONST_INT; |
1024 | } |
1025 | |
1026 | if (op2->gtOper != GT_CNS_INT) |
1027 | { |
1028 | goto DONE_ASSERTION; // Don't make an assertion |
1029 | } |
1030 | |
1031 | // |
1032 | // TODO-CQ: Check for Sealed class and change kind to O1K_EXACT_TYPE |
1033 | // And consider the special cases, like CORINFO_FLG_SHAREDINST or CORINFO_FLG_VARIANCE |
1034 | // where a class can be sealed, but they don't behave as exact types because casts to |
1035 | // non-base types sometimes still succeed. |
1036 | // |
1037 | assertion->op1.kind = O1K_SUBTYPE; |
1038 | assertion->op1.lcl.lclNum = lclNum; |
1039 | assertion->op1.vn = vnStore->VNConservativeNormalValue(op1->gtVNPair); |
1040 | assertion->op1.lcl.ssaNum = op1->AsLclVarCommon()->GetSsaNum(); |
1041 | assertion->op2.u1.iconVal = op2->gtIntCon.gtIconVal; |
1042 | assertion->op2.vn = vnStore->VNConservativeNormalValue(op2->gtVNPair); |
1043 | assertion->op2.u1.iconFlags = op2->GetIconHandleFlag(); |
1044 | |
1045 | // |
1046 | // Ok everything has been set and the assertion looks good |
1047 | // |
1048 | assertion->assertionKind = assertionKind; |
1049 | } |
1050 | else // !haveArgs |
1051 | { |
1052 | /* Skip over a GT_COMMA node(s), if necessary */ |
1053 | while (op2->gtOper == GT_COMMA) |
1054 | { |
1055 | op2 = op2->gtOp.gtOp2; |
1056 | } |
1057 | |
1058 | assertion->op1.kind = O1K_LCLVAR; |
1059 | assertion->op1.lcl.lclNum = lclNum; |
1060 | assertion->op1.vn = vnStore->VNConservativeNormalValue(op1->gtVNPair); |
1061 | assertion->op1.lcl.ssaNum = op1->AsLclVarCommon()->GetSsaNum(); |
1062 | |
1063 | switch (op2->gtOper) |
1064 | { |
1065 | optOp2Kind op2Kind; |
1066 | // |
1067 | // No Assertion |
1068 | // |
1069 | default: |
1070 | goto DONE_ASSERTION; // Don't make an assertion |
1071 | |
1072 | // |
1073 | // Constant Assertions |
1074 | // |
1075 | case GT_CNS_INT: |
1076 | op2Kind = O2K_CONST_INT; |
1077 | goto CNS_COMMON; |
1078 | |
1079 | case GT_CNS_LNG: |
1080 | op2Kind = O2K_CONST_LONG; |
1081 | goto CNS_COMMON; |
1082 | |
1083 | case GT_CNS_DBL: |
1084 | op2Kind = O2K_CONST_DOUBLE; |
1085 | goto CNS_COMMON; |
1086 | |
1087 | CNS_COMMON: |
1088 | { |
1089 | // |
1090 | // Must either be an OAK_EQUAL or an OAK_NOT_EQUAL assertion |
1091 | // |
1092 | if ((assertionKind != OAK_EQUAL) && (assertionKind != OAK_NOT_EQUAL)) |
1093 | { |
1094 | goto DONE_ASSERTION; // Don't make an assertion |
1095 | } |
1096 | |
1097 | // If the LclVar is a TYP_LONG then we only make |
1098 | // assertions where op2 is also TYP_LONG |
1099 | // |
1100 | if ((lclVar->TypeGet() == TYP_LONG) && (op2->TypeGet() != TYP_LONG)) |
1101 | { |
1102 | goto DONE_ASSERTION; // Don't make an assertion |
1103 | } |
1104 | |
1105 | assertion->op2.kind = op2Kind; |
1106 | assertion->op2.lconVal = 0; |
1107 | assertion->op2.vn = vnStore->VNConservativeNormalValue(op2->gtVNPair); |
1108 | |
1109 | if (op2->gtOper == GT_CNS_INT) |
1110 | { |
1111 | #ifdef _TARGET_ARM_ |
1112 | // Do not Constant-Prop immediate values that require relocation |
1113 | if (op2->gtIntCon.ImmedValNeedsReloc(this)) |
1114 | { |
1115 | goto DONE_ASSERTION; |
1116 | } |
1117 | // Do not Constant-Prop large constants for ARM |
1118 | // TODO-CrossBitness: we wouldn't need the cast below if GenTreeIntCon::gtIconVal had |
1119 | // target_ssize_t type. |
1120 | if (!codeGen->validImmForMov((target_ssize_t)op2->gtIntCon.gtIconVal)) |
1121 | { |
1122 | goto DONE_ASSERTION; // Don't make an assertion |
1123 | } |
1124 | #endif // _TARGET_ARM_ |
1125 | assertion->op2.u1.iconVal = op2->gtIntCon.gtIconVal; |
1126 | assertion->op2.u1.iconFlags = op2->GetIconHandleFlag(); |
1127 | #ifdef _TARGET_64BIT_ |
1128 | if (op2->TypeGet() == TYP_LONG || op2->TypeGet() == TYP_BYREF) |
1129 | { |
1130 | assertion->op2.u1.iconFlags |= 1; // Signify that this is really TYP_LONG |
1131 | } |
1132 | #endif // _TARGET_64BIT_ |
1133 | } |
1134 | else if (op2->gtOper == GT_CNS_LNG) |
1135 | { |
1136 | assertion->op2.lconVal = op2->gtLngCon.gtLconVal; |
1137 | } |
1138 | else |
1139 | { |
1140 | noway_assert(op2->gtOper == GT_CNS_DBL); |
1141 | /* If we have an NaN value then don't record it */ |
1142 | if (_isnan(op2->gtDblCon.gtDconVal)) |
1143 | { |
1144 | goto DONE_ASSERTION; // Don't make an assertion |
1145 | } |
1146 | assertion->op2.dconVal = op2->gtDblCon.gtDconVal; |
1147 | } |
1148 | |
1149 | // |
1150 | // Ok everything has been set and the assertion looks good |
1151 | // |
1152 | assertion->assertionKind = assertionKind; |
1153 | } |
1154 | break; |
1155 | |
1156 | // |
1157 | // Copy Assertions |
1158 | // |
1159 | case GT_LCL_VAR: |
1160 | { |
1161 | // |
1162 | // Must either be an OAK_EQUAL or an OAK_NOT_EQUAL assertion |
1163 | // |
1164 | if ((assertionKind != OAK_EQUAL) && (assertionKind != OAK_NOT_EQUAL)) |
1165 | { |
1166 | goto DONE_ASSERTION; // Don't make an assertion |
1167 | } |
1168 | |
1169 | unsigned lclNum2 = op2->gtLclVarCommon.gtLclNum; |
1170 | noway_assert(lclNum2 < lvaCount); |
1171 | LclVarDsc* lclVar2 = &lvaTable[lclNum2]; |
1172 | |
1173 | // If the two locals are the same then bail |
1174 | if (lclNum == lclNum2) |
1175 | { |
1176 | goto DONE_ASSERTION; // Don't make an assertion |
1177 | } |
1178 | |
1179 | // If the types are different then bail */ |
1180 | if (lclVar->lvType != lclVar2->lvType) |
1181 | { |
1182 | goto DONE_ASSERTION; // Don't make an assertion |
1183 | } |
1184 | |
1185 | // If we're making a copy of a "normalize on load" lclvar then the destination |
1186 | // has to be "normalize on load" as well, otherwise we risk skipping normalization. |
1187 | if (lclVar2->lvNormalizeOnLoad() && !lclVar->lvNormalizeOnLoad()) |
1188 | { |
1189 | goto DONE_ASSERTION; // Don't make an assertion |
1190 | } |
1191 | |
1192 | // If the local variable has its address exposed then bail |
1193 | if (lclVar2->lvAddrExposed) |
1194 | { |
1195 | goto DONE_ASSERTION; // Don't make an assertion |
1196 | } |
1197 | |
1198 | assertion->op2.kind = O2K_LCLVAR_COPY; |
1199 | assertion->op2.lcl.lclNum = lclNum2; |
1200 | assertion->op2.vn = vnStore->VNConservativeNormalValue(op2->gtVNPair); |
1201 | assertion->op2.lcl.ssaNum = op2->AsLclVarCommon()->GetSsaNum(); |
1202 | |
1203 | // |
1204 | // Ok everything has been set and the assertion looks good |
1205 | // |
1206 | assertion->assertionKind = assertionKind; |
1207 | } |
1208 | break; |
1209 | |
1210 | // Subrange Assertions |
1211 | case GT_EQ: |
1212 | case GT_NE: |
1213 | case GT_LT: |
1214 | case GT_LE: |
1215 | case GT_GT: |
1216 | case GT_GE: |
1217 | |
1218 | /* Assigning the result of a RELOP, we can add a boolean subrange assertion */ |
1219 | |
1220 | toType = TYP_BOOL; |
1221 | goto SUBRANGE_COMMON; |
1222 | |
1223 | case GT_CLS_VAR: |
1224 | |
1225 | /* Assigning the result of an indirection into a LCL_VAR, see if we can add a subrange assertion */ |
1226 | |
1227 | toType = op2->gtType; |
1228 | goto SUBRANGE_COMMON; |
1229 | |
1230 | case GT_ARR_ELEM: |
1231 | |
1232 | /* Assigning the result of an indirection into a LCL_VAR, see if we can add a subrange assertion */ |
1233 | |
1234 | toType = op2->gtType; |
1235 | goto SUBRANGE_COMMON; |
1236 | |
1237 | case GT_LCL_FLD: |
1238 | |
1239 | /* Assigning the result of an indirection into a LCL_VAR, see if we can add a subrange assertion */ |
1240 | |
1241 | toType = op2->gtType; |
1242 | goto SUBRANGE_COMMON; |
1243 | |
1244 | case GT_IND: |
1245 | |
1246 | /* Assigning the result of an indirection into a LCL_VAR, see if we can add a subrange assertion */ |
1247 | |
1248 | toType = op2->gtType; |
1249 | goto SUBRANGE_COMMON; |
1250 | |
1251 | case GT_CAST: |
1252 | { |
1253 | if (lvaTable[lclNum].lvIsStructField && lvaTable[lclNum].lvNormalizeOnLoad()) |
1254 | { |
1255 | // Keep the cast on small struct fields. |
1256 | goto DONE_ASSERTION; // Don't make an assertion |
1257 | } |
1258 | |
1259 | toType = op2->CastToType(); |
1260 | SUBRANGE_COMMON: |
1261 | if ((assertionKind != OAK_SUBRANGE) && (assertionKind != OAK_EQUAL)) |
1262 | { |
1263 | goto DONE_ASSERTION; // Don't make an assertion |
1264 | } |
1265 | |
1266 | if (varTypeIsFloating(op1->TypeGet())) |
1267 | { |
1268 | // We don't make assertions on a cast from floating point |
1269 | goto DONE_ASSERTION; |
1270 | } |
1271 | |
1272 | switch (toType) |
1273 | { |
1274 | case TYP_BOOL: |
1275 | case TYP_BYTE: |
1276 | case TYP_UBYTE: |
1277 | case TYP_SHORT: |
1278 | case TYP_USHORT: |
1279 | #ifdef _TARGET_64BIT_ |
1280 | case TYP_UINT: |
1281 | case TYP_INT: |
1282 | #endif // _TARGET_64BIT_ |
1283 | assertion->op2.u2.loBound = AssertionDsc::GetLowerBoundForIntegralType(toType); |
1284 | assertion->op2.u2.hiBound = AssertionDsc::GetUpperBoundForIntegralType(toType); |
1285 | break; |
1286 | |
1287 | default: |
1288 | goto DONE_ASSERTION; // Don't make an assertion |
1289 | } |
1290 | assertion->op2.kind = O2K_SUBRANGE; |
1291 | assertion->assertionKind = OAK_SUBRANGE; |
1292 | } |
1293 | break; |
1294 | } |
1295 | } // else // !haveArgs |
1296 | } // if (op1->gtOper == GT_LCL_VAR) |
1297 | |
1298 | // |
1299 | // Are we making an IsType assertion? |
1300 | // |
1301 | else if (op1->gtOper == GT_IND) |
1302 | { |
1303 | op1 = op1->gtOp.gtOp1; |
1304 | // |
1305 | // Is this an indirection of a local variable? |
1306 | // |
1307 | if (op1->gtOper == GT_LCL_VAR) |
1308 | { |
1309 | unsigned lclNum = op1->gtLclVarCommon.gtLclNum; |
1310 | noway_assert(lclNum < lvaCount); |
1311 | LclVarDsc* lclVar = &lvaTable[lclNum]; |
1312 | |
1313 | // If the local variable is not in SSA then bail |
1314 | if (!lvaInSsa(lclNum)) |
1315 | { |
1316 | goto DONE_ASSERTION; |
1317 | } |
1318 | |
1319 | // If we have an typeHnd indirection then op1 must be a TYP_REF |
1320 | // and the indirection must produce a TYP_I |
1321 | // |
1322 | if (op1->gtType != TYP_REF) |
1323 | { |
1324 | goto DONE_ASSERTION; // Don't make an assertion |
1325 | } |
1326 | |
1327 | assertion->op1.kind = O1K_EXACT_TYPE; |
1328 | assertion->op1.lcl.lclNum = lclNum; |
1329 | assertion->op1.vn = vnStore->VNConservativeNormalValue(op1->gtVNPair); |
1330 | assertion->op1.lcl.ssaNum = op1->AsLclVarCommon()->GetSsaNum(); |
1331 | |
1332 | assert(assertion->op1.lcl.ssaNum == SsaConfig::RESERVED_SSA_NUM || |
1333 | assertion->op1.vn == |
1334 | vnStore->VNConservativeNormalValue( |
1335 | lvaTable[lclNum].GetPerSsaData(assertion->op1.lcl.ssaNum)->m_vnPair)); |
1336 | |
1337 | ssize_t cnsValue = 0; |
1338 | unsigned iconFlags = 0; |
1339 | // Ngen case |
1340 | if (op2->gtOper == GT_IND) |
1341 | { |
1342 | if (!optIsTreeKnownIntValue(!optLocalAssertionProp, op2->gtOp.gtOp1, &cnsValue, &iconFlags)) |
1343 | { |
1344 | goto DONE_ASSERTION; // Don't make an assertion |
1345 | } |
1346 | |
1347 | assertion->assertionKind = assertionKind; |
1348 | assertion->op2.kind = O2K_IND_CNS_INT; |
1349 | assertion->op2.u1.iconVal = cnsValue; |
1350 | assertion->op2.vn = vnStore->VNConservativeNormalValue(op2->gtOp.gtOp1->gtVNPair); |
1351 | |
1352 | /* iconFlags should only contain bits in GTF_ICON_HDL_MASK */ |
1353 | assert((iconFlags & ~GTF_ICON_HDL_MASK) == 0); |
1354 | assertion->op2.u1.iconFlags = iconFlags; |
1355 | #ifdef _TARGET_64BIT_ |
1356 | if (op2->gtOp.gtOp1->TypeGet() == TYP_LONG) |
1357 | { |
1358 | assertion->op2.u1.iconFlags |= 1; // Signify that this is really TYP_LONG |
1359 | } |
1360 | #endif // _TARGET_64BIT_ |
1361 | } |
1362 | // JIT case |
1363 | else if (optIsTreeKnownIntValue(!optLocalAssertionProp, op2, &cnsValue, &iconFlags)) |
1364 | { |
1365 | assertion->assertionKind = assertionKind; |
1366 | assertion->op2.kind = O2K_IND_CNS_INT; |
1367 | assertion->op2.u1.iconVal = cnsValue; |
1368 | assertion->op2.vn = vnStore->VNConservativeNormalValue(op2->gtVNPair); |
1369 | |
1370 | /* iconFlags should only contain bits in GTF_ICON_HDL_MASK */ |
1371 | assert((iconFlags & ~GTF_ICON_HDL_MASK) == 0); |
1372 | assertion->op2.u1.iconFlags = iconFlags; |
1373 | #ifdef _TARGET_64BIT_ |
1374 | if (op2->TypeGet() == TYP_LONG) |
1375 | { |
1376 | assertion->op2.u1.iconFlags |= 1; // Signify that this is really TYP_LONG |
1377 | } |
1378 | #endif // _TARGET_64BIT_ |
1379 | } |
1380 | else |
1381 | { |
1382 | goto DONE_ASSERTION; // Don't make an assertion |
1383 | } |
1384 | } |
1385 | } |
1386 | |
1387 | DONE_ASSERTION: |
1388 | if (assertion->assertionKind == OAK_INVALID) |
1389 | { |
1390 | return NO_ASSERTION_INDEX; |
1391 | } |
1392 | |
1393 | if (!optLocalAssertionProp) |
1394 | { |
1395 | if ((assertion->op1.vn == ValueNumStore::NoVN) || (assertion->op2.vn == ValueNumStore::NoVN) || |
1396 | (assertion->op1.vn == ValueNumStore::VNForVoid()) || (assertion->op2.vn == ValueNumStore::VNForVoid())) |
1397 | { |
1398 | return NO_ASSERTION_INDEX; |
1399 | } |
1400 | |
1401 | // TODO: only copy assertions rely on valid SSA number so we could generate more assertions here |
1402 | if ((assertion->op1.kind != O1K_VALUE_NUMBER) && (assertion->op1.lcl.ssaNum == SsaConfig::RESERVED_SSA_NUM)) |
1403 | { |
1404 | return NO_ASSERTION_INDEX; |
1405 | } |
1406 | } |
1407 | |
1408 | // Now add the assertion to our assertion table |
1409 | noway_assert(assertion->op1.kind != O1K_INVALID); |
1410 | noway_assert(assertion->op1.kind == O1K_ARR_BND || assertion->op2.kind != O2K_INVALID); |
1411 | return optAddAssertion(assertion); |
1412 | } |
1413 | |
1414 | /***************************************************************************** |
1415 | * |
1416 | * If tree is a constant node holding an integral value, retrieve the value in |
1417 | * pConstant. If the method returns true, pConstant holds the appropriate |
1418 | * constant. Set "vnBased" to true to indicate local or global assertion prop. |
1419 | * "pFlags" indicates if the constant is a handle marked by GTF_ICON_HDL_MASK. |
1420 | */ |
1421 | bool Compiler::optIsTreeKnownIntValue(bool vnBased, GenTree* tree, ssize_t* pConstant, unsigned* pFlags) |
1422 | { |
1423 | // Is Local assertion prop? |
1424 | if (!vnBased) |
1425 | { |
1426 | if (tree->OperGet() == GT_CNS_INT) |
1427 | { |
1428 | *pConstant = tree->gtIntCon.IconValue(); |
1429 | *pFlags = tree->GetIconHandleFlag(); |
1430 | return true; |
1431 | } |
1432 | #ifdef _TARGET_64BIT_ |
1433 | // Just to be clear, get it from gtLconVal rather than |
1434 | // overlapping gtIconVal. |
1435 | else if (tree->OperGet() == GT_CNS_LNG) |
1436 | { |
1437 | *pConstant = tree->gtLngCon.gtLconVal; |
1438 | *pFlags = tree->GetIconHandleFlag(); |
1439 | return true; |
1440 | } |
1441 | #endif |
1442 | return false; |
1443 | } |
1444 | |
1445 | // Global assertion prop |
1446 | ValueNum vn = vnStore->VNConservativeNormalValue(tree->gtVNPair); |
1447 | if (!vnStore->IsVNConstant(vn)) |
1448 | { |
1449 | return false; |
1450 | } |
1451 | |
1452 | // ValueNumber 'vn' indicates that this node evaluates to a constant |
1453 | |
1454 | var_types vnType = vnStore->TypeOfVN(vn); |
1455 | if (vnType == TYP_INT) |
1456 | { |
1457 | *pConstant = vnStore->ConstantValue<int>(vn); |
1458 | *pFlags = vnStore->IsVNHandle(vn) ? vnStore->GetHandleFlags(vn) : 0; |
1459 | return true; |
1460 | } |
1461 | #ifdef _TARGET_64BIT_ |
1462 | else if (vnType == TYP_LONG) |
1463 | { |
1464 | *pConstant = vnStore->ConstantValue<INT64>(vn); |
1465 | *pFlags = vnStore->IsVNHandle(vn) ? vnStore->GetHandleFlags(vn) : 0; |
1466 | return true; |
1467 | } |
1468 | #endif |
1469 | return false; |
1470 | } |
1471 | |
1472 | #ifdef DEBUG |
1473 | /***************************************************************************** |
1474 | * |
1475 | * Print the assertions related to a VN for all VNs. |
1476 | * |
1477 | */ |
1478 | void Compiler::optPrintVnAssertionMapping() |
1479 | { |
1480 | printf("\nVN Assertion Mapping\n" ); |
1481 | printf("---------------------\n" ); |
1482 | for (ValueNumToAssertsMap::KeyIterator ki = optValueNumToAsserts->Begin(); !ki.Equal(optValueNumToAsserts->End()); |
1483 | ++ki) |
1484 | { |
1485 | printf("(%d => " , ki.Get()); |
1486 | printf("%s)\n" , BitVecOps::ToString(apTraits, ki.GetValue())); |
1487 | } |
1488 | } |
1489 | #endif |
1490 | |
1491 | /***************************************************************************** |
1492 | * |
1493 | * Maintain a map "optValueNumToAsserts" i.e., vn -> to set of assertions |
1494 | * about that VN. Given "assertions" about a "vn" add it to the previously |
1495 | * mapped assertions about that "vn." |
1496 | */ |
1497 | void Compiler::optAddVnAssertionMapping(ValueNum vn, AssertionIndex index) |
1498 | { |
1499 | ASSERT_TP* cur = optValueNumToAsserts->LookupPointer(vn); |
1500 | if (cur == nullptr) |
1501 | { |
1502 | optValueNumToAsserts->Set(vn, BitVecOps::MakeSingleton(apTraits, index - 1)); |
1503 | } |
1504 | else |
1505 | { |
1506 | BitVecOps::AddElemD(apTraits, *cur, index - 1); |
1507 | } |
1508 | } |
1509 | |
1510 | /***************************************************************************** |
1511 | * Statically if we know that this assertion's VN involves a NaN don't bother |
1512 | * wasting an assertion table slot. |
1513 | */ |
1514 | bool Compiler::optAssertionVnInvolvesNan(AssertionDsc* assertion) |
1515 | { |
1516 | if (optLocalAssertionProp) |
1517 | { |
1518 | return false; |
1519 | } |
1520 | |
1521 | static const int SZ = 2; |
1522 | ValueNum vns[SZ] = {assertion->op1.vn, assertion->op2.vn}; |
1523 | for (int i = 0; i < SZ; ++i) |
1524 | { |
1525 | if (vnStore->IsVNConstant(vns[i])) |
1526 | { |
1527 | var_types type = vnStore->TypeOfVN(vns[i]); |
1528 | if ((type == TYP_FLOAT && _isnan(vnStore->ConstantValue<float>(vns[i])) != 0) || |
1529 | (type == TYP_DOUBLE && _isnan(vnStore->ConstantValue<double>(vns[i])) != 0)) |
1530 | { |
1531 | return true; |
1532 | } |
1533 | } |
1534 | } |
1535 | return false; |
1536 | } |
1537 | |
1538 | /***************************************************************************** |
1539 | * |
1540 | * Given an assertion add it to the assertion table |
1541 | * |
1542 | * If it is already in the assertion table return the assertionIndex that |
1543 | * we use to refer to this element. |
1544 | * Otherwise add it to the assertion table ad return the assertionIndex that |
1545 | * we use to refer to this element. |
1546 | * If we need to add to the table and the table is full return the value zero |
1547 | */ |
1548 | AssertionIndex Compiler::optAddAssertion(AssertionDsc* newAssertion) |
1549 | { |
1550 | noway_assert(newAssertion->assertionKind != OAK_INVALID); |
1551 | |
1552 | // Even though the propagation step takes care of NaN, just a check |
1553 | // to make sure there is no slot involving a NaN. |
1554 | if (optAssertionVnInvolvesNan(newAssertion)) |
1555 | { |
1556 | JITDUMP("Assertion involved Nan not adding\n" ); |
1557 | return NO_ASSERTION_INDEX; |
1558 | } |
1559 | |
1560 | // Check if exists already, so we can skip adding new one. Search backwards. |
1561 | for (AssertionIndex index = optAssertionCount; index >= 1; index--) |
1562 | { |
1563 | AssertionDsc* curAssertion = optGetAssertion(index); |
1564 | if (curAssertion->Equals(newAssertion, !optLocalAssertionProp)) |
1565 | { |
1566 | return index; |
1567 | } |
1568 | } |
1569 | |
1570 | // Check if we are within max count. |
1571 | if (optAssertionCount >= optMaxAssertionCount) |
1572 | { |
1573 | return NO_ASSERTION_INDEX; |
1574 | } |
1575 | |
1576 | optAssertionTabPrivate[optAssertionCount] = *newAssertion; |
1577 | optAssertionCount++; |
1578 | |
1579 | #ifdef DEBUG |
1580 | if (verbose) |
1581 | { |
1582 | printf("GenTreeNode creates assertion:\n" ); |
1583 | gtDispTree(optAssertionPropCurrentTree, nullptr, nullptr, true); |
1584 | printf(optLocalAssertionProp ? "In " FMT_BB " New Local " : "In " FMT_BB " New Global " , compCurBB->bbNum); |
1585 | optPrintAssertion(newAssertion, optAssertionCount); |
1586 | } |
1587 | #endif // DEBUG |
1588 | |
1589 | // Assertion mask bits are [index + 1]. |
1590 | if (optLocalAssertionProp) |
1591 | { |
1592 | assert(newAssertion->op1.kind == O1K_LCLVAR); |
1593 | |
1594 | // Mark the variables this index depends on |
1595 | unsigned lclNum = newAssertion->op1.lcl.lclNum; |
1596 | BitVecOps::AddElemD(apTraits, GetAssertionDep(lclNum), optAssertionCount - 1); |
1597 | if (newAssertion->op2.kind == O2K_LCLVAR_COPY) |
1598 | { |
1599 | lclNum = newAssertion->op2.lcl.lclNum; |
1600 | BitVecOps::AddElemD(apTraits, GetAssertionDep(lclNum), optAssertionCount - 1); |
1601 | } |
1602 | } |
1603 | else |
1604 | // If global assertion prop, then add it to the dependents map. |
1605 | { |
1606 | optAddVnAssertionMapping(newAssertion->op1.vn, optAssertionCount); |
1607 | if (newAssertion->op2.kind == O2K_LCLVAR_COPY) |
1608 | { |
1609 | optAddVnAssertionMapping(newAssertion->op2.vn, optAssertionCount); |
1610 | } |
1611 | } |
1612 | |
1613 | #ifdef DEBUG |
1614 | optDebugCheckAssertions(optAssertionCount); |
1615 | #endif |
1616 | return optAssertionCount; |
1617 | } |
1618 | |
1619 | #ifdef DEBUG |
1620 | void Compiler::optDebugCheckAssertion(AssertionDsc* assertion) |
1621 | { |
1622 | assert(assertion->assertionKind < OAK_COUNT); |
1623 | assert(assertion->op1.kind < O1K_COUNT); |
1624 | assert(assertion->op2.kind < O2K_COUNT); |
1625 | // It would be good to check that op1.vn and op2.vn are valid value numbers. |
1626 | |
1627 | switch (assertion->op1.kind) |
1628 | { |
1629 | case O1K_LCLVAR: |
1630 | case O1K_EXACT_TYPE: |
1631 | case O1K_SUBTYPE: |
1632 | assert(assertion->op1.lcl.lclNum < lvaCount); |
1633 | assert(optLocalAssertionProp || |
1634 | lvaTable[assertion->op1.lcl.lclNum].lvPerSsaData.IsValidSsaNum(assertion->op1.lcl.ssaNum)); |
1635 | break; |
1636 | case O1K_ARR_BND: |
1637 | // It would be good to check that bnd.vnIdx and bnd.vnLen are valid value numbers. |
1638 | break; |
1639 | case O1K_BOUND_OPER_BND: |
1640 | case O1K_BOUND_LOOP_BND: |
1641 | case O1K_CONSTANT_LOOP_BND: |
1642 | case O1K_VALUE_NUMBER: |
1643 | assert(!optLocalAssertionProp); |
1644 | break; |
1645 | default: |
1646 | break; |
1647 | } |
1648 | switch (assertion->op2.kind) |
1649 | { |
1650 | case O2K_IND_CNS_INT: |
1651 | case O2K_CONST_INT: |
1652 | { |
1653 | // The only flags that can be set are those in the GTF_ICON_HDL_MASK, or bit 0, which is |
1654 | // used to indicate a long constant. |
1655 | assert((assertion->op2.u1.iconFlags & ~(GTF_ICON_HDL_MASK | 1)) == 0); |
1656 | switch (assertion->op1.kind) |
1657 | { |
1658 | case O1K_EXACT_TYPE: |
1659 | case O1K_SUBTYPE: |
1660 | assert(assertion->op2.u1.iconFlags != 0); |
1661 | break; |
1662 | case O1K_LCLVAR: |
1663 | case O1K_ARR_BND: |
1664 | assert((lvaTable[assertion->op1.lcl.lclNum].lvType != TYP_REF) || (assertion->op2.u1.iconVal == 0)); |
1665 | break; |
1666 | case O1K_VALUE_NUMBER: |
1667 | assert((vnStore->TypeOfVN(assertion->op1.vn) != TYP_REF) || (assertion->op2.u1.iconVal == 0)); |
1668 | break; |
1669 | default: |
1670 | break; |
1671 | } |
1672 | } |
1673 | break; |
1674 | |
1675 | default: |
1676 | // for all other 'assertion->op2.kind' values we don't check anything |
1677 | break; |
1678 | } |
1679 | } |
1680 | |
1681 | /***************************************************************************** |
1682 | * |
1683 | * Verify that assertion prop related assumptions are valid. If "index" |
1684 | * is 0 (i.e., NO_ASSERTION_INDEX) then verify all assertions in the table. |
1685 | * If "index" is between 1 and optAssertionCount, then verify the assertion |
1686 | * desc corresponding to "index." |
1687 | */ |
1688 | void Compiler::optDebugCheckAssertions(AssertionIndex index) |
1689 | { |
1690 | AssertionIndex start = (index == NO_ASSERTION_INDEX) ? 1 : index; |
1691 | AssertionIndex end = (index == NO_ASSERTION_INDEX) ? optAssertionCount : index; |
1692 | for (AssertionIndex ind = start; ind <= end; ++ind) |
1693 | { |
1694 | AssertionDsc* assertion = optGetAssertion(ind); |
1695 | optDebugCheckAssertion(assertion); |
1696 | } |
1697 | } |
1698 | #endif |
1699 | |
1700 | /***************************************************************************** |
1701 | * |
1702 | * Given a "candidateAssertion", and the assertion operands op1 and op2, |
1703 | * create a complementary assertion and add it to the assertion table, |
1704 | * which can be retrieved using optFindComplementary(index) |
1705 | * |
1706 | */ |
1707 | |
1708 | void Compiler::optCreateComplementaryAssertion(AssertionIndex assertionIndex, GenTree* op1, GenTree* op2) |
1709 | { |
1710 | if (assertionIndex == NO_ASSERTION_INDEX) |
1711 | { |
1712 | return; |
1713 | } |
1714 | |
1715 | AssertionDsc& candidateAssertion = *optGetAssertion(assertionIndex); |
1716 | if (candidateAssertion.op1.kind == O1K_BOUND_OPER_BND || candidateAssertion.op1.kind == O1K_BOUND_LOOP_BND || |
1717 | candidateAssertion.op1.kind == O1K_CONSTANT_LOOP_BND) |
1718 | { |
1719 | AssertionDsc dsc = candidateAssertion; |
1720 | dsc.assertionKind = dsc.assertionKind == OAK_EQUAL ? OAK_NOT_EQUAL : OAK_EQUAL; |
1721 | optAddAssertion(&dsc); |
1722 | return; |
1723 | } |
1724 | |
1725 | if (candidateAssertion.assertionKind == OAK_EQUAL) |
1726 | { |
1727 | AssertionIndex index = optCreateAssertion(op1, op2, OAK_NOT_EQUAL); |
1728 | optMapComplementary(index, assertionIndex); |
1729 | } |
1730 | else if (candidateAssertion.assertionKind == OAK_NOT_EQUAL) |
1731 | { |
1732 | AssertionIndex index = optCreateAssertion(op1, op2, OAK_EQUAL); |
1733 | optMapComplementary(index, assertionIndex); |
1734 | } |
1735 | |
1736 | // Are we making a subtype or exact type assertion? |
1737 | if ((candidateAssertion.op1.kind == O1K_SUBTYPE) || (candidateAssertion.op1.kind == O1K_EXACT_TYPE)) |
1738 | { |
1739 | // Did we recieve helper call args? |
1740 | if (op1->gtOper == GT_LIST) |
1741 | { |
1742 | op1 = op1->gtOp.gtOp1; |
1743 | } |
1744 | optCreateAssertion(op1, nullptr, OAK_NOT_EQUAL); |
1745 | } |
1746 | } |
1747 | |
1748 | /***************************************************************************** |
1749 | * |
1750 | * Create assertions for jtrue operands. Given operands "op1" and "op2" that |
1751 | * are used in a conditional evaluation of a jtrue stmt, create assertions |
1752 | * for the operands. |
1753 | */ |
1754 | |
1755 | AssertionIndex Compiler::optCreateJtrueAssertions(GenTree* op1, GenTree* op2, Compiler::optAssertionKind assertionKind) |
1756 | { |
1757 | AssertionDsc candidateAssertion; |
1758 | AssertionIndex assertionIndex = optCreateAssertion(op1, op2, assertionKind, &candidateAssertion); |
1759 | // Don't bother if we don't have an assertion on the JTrue False path. Current implementation |
1760 | // allows for a complementary only if there is an assertion on the False path (tree->HasAssertion()). |
1761 | if (assertionIndex != NO_ASSERTION_INDEX) |
1762 | { |
1763 | optCreateComplementaryAssertion(assertionIndex, op1, op2); |
1764 | } |
1765 | return assertionIndex; |
1766 | } |
1767 | |
1768 | AssertionInfo Compiler::optCreateJTrueBoundsAssertion(GenTree* tree) |
1769 | { |
1770 | GenTree* relop = tree->gtGetOp1(); |
1771 | if ((relop->OperKind() & GTK_RELOP) == 0) |
1772 | { |
1773 | return NO_ASSERTION_INDEX; |
1774 | } |
1775 | GenTree* op1 = relop->gtGetOp1(); |
1776 | GenTree* op2 = relop->gtGetOp2(); |
1777 | |
1778 | ValueNum op1VN = vnStore->VNConservativeNormalValue(op1->gtVNPair); |
1779 | ValueNum op2VN = vnStore->VNConservativeNormalValue(op2->gtVNPair); |
1780 | ValueNum relopVN = vnStore->VNConservativeNormalValue(relop->gtVNPair); |
1781 | |
1782 | bool hasTestAgainstZero = |
1783 | (relop->gtOper == GT_EQ || relop->gtOper == GT_NE) && (op2VN == vnStore->VNZeroForType(op2->TypeGet())); |
1784 | |
1785 | ValueNumStore::UnsignedCompareCheckedBoundInfo unsignedCompareBnd; |
1786 | // Cases where op1 holds the upper bound arithmetic and op2 is 0. |
1787 | // Loop condition like: "i < bnd +/-k == 0" |
1788 | // Assertion: "i < bnd +/- k == 0" |
1789 | if (hasTestAgainstZero && vnStore->IsVNCompareCheckedBoundArith(op1VN)) |
1790 | { |
1791 | AssertionDsc dsc; |
1792 | dsc.assertionKind = relop->gtOper == GT_EQ ? OAK_EQUAL : OAK_NOT_EQUAL; |
1793 | dsc.op1.kind = O1K_BOUND_OPER_BND; |
1794 | dsc.op1.vn = op1VN; |
1795 | dsc.op2.kind = O2K_CONST_INT; |
1796 | dsc.op2.vn = vnStore->VNZeroForType(op2->TypeGet()); |
1797 | dsc.op2.u1.iconVal = 0; |
1798 | dsc.op2.u1.iconFlags = 0; |
1799 | AssertionIndex index = optAddAssertion(&dsc); |
1800 | optCreateComplementaryAssertion(index, nullptr, nullptr); |
1801 | return index; |
1802 | } |
1803 | // Cases where op1 holds the upper bound and op2 is 0. |
1804 | // Loop condition like: "i < bnd == 0" |
1805 | // Assertion: "i < bnd == false" |
1806 | else if (hasTestAgainstZero && vnStore->IsVNCompareCheckedBound(op1VN)) |
1807 | { |
1808 | AssertionDsc dsc; |
1809 | dsc.assertionKind = relop->gtOper == GT_EQ ? OAK_EQUAL : OAK_NOT_EQUAL; |
1810 | dsc.op1.kind = O1K_BOUND_LOOP_BND; |
1811 | dsc.op1.vn = op1VN; |
1812 | dsc.op2.kind = O2K_CONST_INT; |
1813 | dsc.op2.vn = vnStore->VNZeroForType(op2->TypeGet()); |
1814 | dsc.op2.u1.iconVal = 0; |
1815 | dsc.op2.u1.iconFlags = 0; |
1816 | AssertionIndex index = optAddAssertion(&dsc); |
1817 | optCreateComplementaryAssertion(index, nullptr, nullptr); |
1818 | return index; |
1819 | } |
1820 | // Cases where op1 holds the lhs of the condition op2 holds the bound. |
1821 | // Loop condition like "i < bnd" |
1822 | // Assertion: "i < bnd != 0" |
1823 | else if (vnStore->IsVNCompareCheckedBound(relopVN)) |
1824 | { |
1825 | AssertionDsc dsc; |
1826 | dsc.assertionKind = OAK_NOT_EQUAL; |
1827 | dsc.op1.kind = O1K_BOUND_LOOP_BND; |
1828 | dsc.op1.vn = relopVN; |
1829 | dsc.op2.kind = O2K_CONST_INT; |
1830 | dsc.op2.vn = vnStore->VNZeroForType(TYP_INT); |
1831 | dsc.op2.u1.iconVal = 0; |
1832 | dsc.op2.u1.iconFlags = 0; |
1833 | AssertionIndex index = optAddAssertion(&dsc); |
1834 | optCreateComplementaryAssertion(index, nullptr, nullptr); |
1835 | return index; |
1836 | } |
1837 | // Loop condition like "(uint)i < (uint)bnd" or equivalent |
1838 | // Assertion: "no throw" since this condition guarantees that i is both >= 0 and < bnd (on the appropiate edge) |
1839 | else if (vnStore->IsVNUnsignedCompareCheckedBound(relopVN, &unsignedCompareBnd)) |
1840 | { |
1841 | assert(unsignedCompareBnd.vnIdx != ValueNumStore::NoVN); |
1842 | assert((unsignedCompareBnd.cmpOper == VNF_LT_UN) || (unsignedCompareBnd.cmpOper == VNF_GE_UN)); |
1843 | assert(vnStore->IsVNCheckedBound(unsignedCompareBnd.vnBound)); |
1844 | |
1845 | AssertionDsc dsc; |
1846 | dsc.assertionKind = OAK_NO_THROW; |
1847 | dsc.op1.kind = O1K_ARR_BND; |
1848 | dsc.op1.vn = relopVN; |
1849 | dsc.op1.bnd.vnIdx = unsignedCompareBnd.vnIdx; |
1850 | dsc.op1.bnd.vnLen = vnStore->VNNormalValue(unsignedCompareBnd.vnBound); |
1851 | dsc.op2.kind = O2K_INVALID; |
1852 | dsc.op2.vn = ValueNumStore::NoVN; |
1853 | |
1854 | AssertionIndex index = optAddAssertion(&dsc); |
1855 | if (unsignedCompareBnd.cmpOper == VNF_GE_UN) |
1856 | { |
1857 | // By default JTRUE generated assertions hold on the "jump" edge. We have i >= bnd but we're really |
1858 | // after i < bnd so we need to change the assertion edge to "next". |
1859 | return AssertionInfo::ForNextEdge(index); |
1860 | } |
1861 | return index; |
1862 | } |
1863 | // Cases where op1 holds the condition bound check and op2 is 0. |
1864 | // Loop condition like: "i < 100 == 0" |
1865 | // Assertion: "i < 100 == false" |
1866 | else if (hasTestAgainstZero && vnStore->IsVNConstantBound(op1VN)) |
1867 | { |
1868 | AssertionDsc dsc; |
1869 | dsc.assertionKind = relop->gtOper == GT_EQ ? OAK_EQUAL : OAK_NOT_EQUAL; |
1870 | dsc.op1.kind = O1K_CONSTANT_LOOP_BND; |
1871 | dsc.op1.vn = op1VN; |
1872 | dsc.op2.kind = O2K_CONST_INT; |
1873 | dsc.op2.vn = vnStore->VNZeroForType(op2->TypeGet()); |
1874 | dsc.op2.u1.iconVal = 0; |
1875 | dsc.op2.u1.iconFlags = 0; |
1876 | AssertionIndex index = optAddAssertion(&dsc); |
1877 | optCreateComplementaryAssertion(index, nullptr, nullptr); |
1878 | return index; |
1879 | } |
1880 | // Cases where op1 holds the lhs of the condition op2 holds rhs. |
1881 | // Loop condition like "i < 100" |
1882 | // Assertion: "i < 100 != 0" |
1883 | else if (vnStore->IsVNConstantBound(relopVN)) |
1884 | { |
1885 | AssertionDsc dsc; |
1886 | dsc.assertionKind = OAK_NOT_EQUAL; |
1887 | dsc.op1.kind = O1K_CONSTANT_LOOP_BND; |
1888 | dsc.op1.vn = relopVN; |
1889 | dsc.op2.kind = O2K_CONST_INT; |
1890 | dsc.op2.vn = vnStore->VNZeroForType(TYP_INT); |
1891 | dsc.op2.u1.iconVal = 0; |
1892 | dsc.op2.u1.iconFlags = 0; |
1893 | AssertionIndex index = optAddAssertion(&dsc); |
1894 | optCreateComplementaryAssertion(index, nullptr, nullptr); |
1895 | return index; |
1896 | } |
1897 | |
1898 | return NO_ASSERTION_INDEX; |
1899 | } |
1900 | |
1901 | /***************************************************************************** |
1902 | * |
1903 | * Compute assertions for the JTrue node. |
1904 | */ |
1905 | AssertionInfo Compiler::optAssertionGenJtrue(GenTree* tree) |
1906 | { |
1907 | // Only create assertions for JTRUE when we are in the global phase |
1908 | if (optLocalAssertionProp) |
1909 | { |
1910 | return NO_ASSERTION_INDEX; |
1911 | } |
1912 | |
1913 | GenTree* relop = tree->gtOp.gtOp1; |
1914 | if ((relop->OperKind() & GTK_RELOP) == 0) |
1915 | { |
1916 | return NO_ASSERTION_INDEX; |
1917 | } |
1918 | |
1919 | Compiler::optAssertionKind assertionKind = OAK_INVALID; |
1920 | |
1921 | GenTree* op1 = relop->gtOp.gtOp1; |
1922 | GenTree* op2 = relop->gtOp.gtOp2; |
1923 | |
1924 | AssertionInfo info = optCreateJTrueBoundsAssertion(tree); |
1925 | if (info.HasAssertion()) |
1926 | { |
1927 | return info; |
1928 | } |
1929 | |
1930 | // Find assertion kind. |
1931 | switch (relop->gtOper) |
1932 | { |
1933 | case GT_EQ: |
1934 | assertionKind = OAK_EQUAL; |
1935 | break; |
1936 | case GT_NE: |
1937 | assertionKind = OAK_NOT_EQUAL; |
1938 | break; |
1939 | default: |
1940 | // TODO-CQ: add other relop operands. Disabled for now to measure perf |
1941 | // and not occupy assertion table slots. We'll add them when used. |
1942 | return NO_ASSERTION_INDEX; |
1943 | } |
1944 | |
1945 | // Check for op1 or op2 to be lcl var and if so, keep it in op1. |
1946 | if ((op1->gtOper != GT_LCL_VAR) && (op2->gtOper == GT_LCL_VAR)) |
1947 | { |
1948 | jitstd::swap(op1, op2); |
1949 | } |
1950 | // If op1 is lcl and op2 is const or lcl, create assertion. |
1951 | if ((op1->gtOper == GT_LCL_VAR) && |
1952 | ((op2->OperKind() & GTK_CONST) || (op2->gtOper == GT_LCL_VAR))) // Fix for Dev10 851483 |
1953 | { |
1954 | return optCreateJtrueAssertions(op1, op2, assertionKind); |
1955 | } |
1956 | |
1957 | // Check op1 and op2 for an indirection of a GT_LCL_VAR and keep it in op1. |
1958 | if (((op1->gtOper != GT_IND) || (op1->gtOp.gtOp1->gtOper != GT_LCL_VAR)) && |
1959 | ((op2->gtOper == GT_IND) && (op2->gtOp.gtOp1->gtOper == GT_LCL_VAR))) |
1960 | { |
1961 | jitstd::swap(op1, op2); |
1962 | } |
1963 | // If op1 is ind, then extract op1's oper. |
1964 | if ((op1->gtOper == GT_IND) && (op1->gtOp.gtOp1->gtOper == GT_LCL_VAR)) |
1965 | { |
1966 | return optCreateJtrueAssertions(op1, op2, assertionKind); |
1967 | } |
1968 | |
1969 | // Look for a call to an IsInstanceOf helper compared to a nullptr |
1970 | if ((op2->gtOper != GT_CNS_INT) && (op1->gtOper == GT_CNS_INT)) |
1971 | { |
1972 | jitstd::swap(op1, op2); |
1973 | } |
1974 | // Validate op1 and op2 |
1975 | if ((op1->gtOper != GT_CALL) || (op1->gtCall.gtCallType != CT_HELPER) || (op1->TypeGet() != TYP_REF) || // op1 |
1976 | (op2->gtOper != GT_CNS_INT) || (op2->gtIntCon.gtIconVal != 0)) // op2 |
1977 | { |
1978 | return NO_ASSERTION_INDEX; |
1979 | } |
1980 | if (op1->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_ISINSTANCEOFINTERFACE) && |
1981 | op1->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_ISINSTANCEOFARRAY) && |
1982 | op1->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_ISINSTANCEOFCLASS) && |
1983 | op1->gtCall.gtCallMethHnd != eeFindHelper(CORINFO_HELP_ISINSTANCEOFANY)) |
1984 | { |
1985 | return NO_ASSERTION_INDEX; |
1986 | } |
1987 | |
1988 | op2 = op1->gtCall.gtCallLateArgs->gtOp.gtOp2; |
1989 | op1 = op1->gtCall.gtCallLateArgs; |
1990 | |
1991 | // Reverse the assertion |
1992 | assert(assertionKind == OAK_EQUAL || assertionKind == OAK_NOT_EQUAL); |
1993 | assertionKind = (assertionKind == OAK_EQUAL) ? OAK_NOT_EQUAL : OAK_EQUAL; |
1994 | |
1995 | if (op1->gtOp.gtOp1->gtOper == GT_LCL_VAR) |
1996 | { |
1997 | return optCreateJtrueAssertions(op1, op2, assertionKind); |
1998 | } |
1999 | |
2000 | return NO_ASSERTION_INDEX; |
2001 | } |
2002 | |
2003 | /***************************************************************************** |
2004 | * |
2005 | * Create an assertion on the phi node if some information can be gleaned |
2006 | * from all of the constituent phi operands. |
2007 | * |
2008 | */ |
2009 | AssertionIndex Compiler::optAssertionGenPhiDefn(GenTree* tree) |
2010 | { |
2011 | if (!tree->IsPhiDefn()) |
2012 | { |
2013 | return NO_ASSERTION_INDEX; |
2014 | } |
2015 | |
2016 | GenTree* phi = tree->gtOp.gtOp2; |
2017 | |
2018 | // Try to find if all phi arguments are known to be non-null. |
2019 | bool isNonNull = true; |
2020 | for (GenTreeArgList* args = phi->gtOp.gtOp1->AsArgList(); args != nullptr; args = args->Rest()) |
2021 | { |
2022 | if (!vnStore->IsKnownNonNull(args->Current()->gtVNPair.GetConservative())) |
2023 | { |
2024 | isNonNull = false; |
2025 | break; |
2026 | } |
2027 | } |
2028 | |
2029 | // All phi arguments are non-null implies phi rhs is non-null. |
2030 | if (isNonNull) |
2031 | { |
2032 | return optCreateAssertion(tree->gtOp.gtOp1, nullptr, OAK_NOT_EQUAL); |
2033 | } |
2034 | return NO_ASSERTION_INDEX; |
2035 | } |
2036 | |
2037 | /***************************************************************************** |
2038 | * |
2039 | * If this statement creates a value assignment or assertion |
2040 | * then assign an index to the given value assignment by adding |
2041 | * it to the lookup table, if necessary. |
2042 | */ |
2043 | void Compiler::optAssertionGen(GenTree* tree) |
2044 | { |
2045 | tree->ClearAssertion(); |
2046 | |
2047 | if (tree->gtFlags & GTF_COLON_COND) |
2048 | { |
2049 | return; |
2050 | } |
2051 | |
2052 | #ifdef DEBUG |
2053 | optAssertionPropCurrentTree = tree; |
2054 | #endif |
2055 | |
2056 | // For most of the assertions that we create below |
2057 | // the assertion is true after the tree is processed |
2058 | bool assertionProven = true; |
2059 | AssertionInfo assertionInfo; |
2060 | switch (tree->gtOper) |
2061 | { |
2062 | case GT_ASG: |
2063 | // VN takes care of non local assertions for assignments and data flow. |
2064 | if (optLocalAssertionProp) |
2065 | { |
2066 | assertionInfo = optCreateAssertion(tree->gtOp.gtOp1, tree->gtOp.gtOp2, OAK_EQUAL); |
2067 | } |
2068 | else |
2069 | { |
2070 | assertionInfo = optAssertionGenPhiDefn(tree); |
2071 | } |
2072 | break; |
2073 | |
2074 | case GT_OBJ: |
2075 | case GT_BLK: |
2076 | case GT_DYN_BLK: |
2077 | case GT_IND: |
2078 | case GT_NULLCHECK: |
2079 | // All indirections create non-null assertions |
2080 | assertionInfo = optCreateAssertion(tree->AsIndir()->Addr(), nullptr, OAK_NOT_EQUAL); |
2081 | break; |
2082 | |
2083 | case GT_ARR_LENGTH: |
2084 | // An array length is an indirection (but doesn't derive from GenTreeIndir). |
2085 | assertionInfo = optCreateAssertion(tree->AsArrLen()->ArrRef(), nullptr, OAK_NOT_EQUAL); |
2086 | break; |
2087 | |
2088 | case GT_ARR_BOUNDS_CHECK: |
2089 | if (!optLocalAssertionProp) |
2090 | { |
2091 | assertionInfo = optCreateAssertion(tree, nullptr, OAK_NO_THROW); |
2092 | } |
2093 | break; |
2094 | |
2095 | case GT_ARR_ELEM: |
2096 | // An array element reference can create a non-null assertion |
2097 | assertionInfo = optCreateAssertion(tree->gtArrElem.gtArrObj, nullptr, OAK_NOT_EQUAL); |
2098 | break; |
2099 | |
2100 | case GT_CALL: |
2101 | // A virtual call can create a non-null assertion. We transform some virtual calls into non-virtual calls |
2102 | // with a GTF_CALL_NULLCHECK flag set. |
2103 | if ((tree->gtFlags & GTF_CALL_NULLCHECK) || tree->AsCall()->IsVirtual()) |
2104 | { |
2105 | // Retrieve the 'this' arg |
2106 | GenTree* thisArg = gtGetThisArg(tree->AsCall()); |
2107 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) |
2108 | if (thisArg == nullptr) |
2109 | { |
2110 | // For tail calls we lose the this pointer in the argument list but that's OK because a null check |
2111 | // was made explicit, so we get the assertion when we walk the GT_IND in the argument list. |
2112 | noway_assert(tree->gtCall.IsTailCall()); |
2113 | break; |
2114 | } |
2115 | #endif // _TARGET_X86_ || _TARGET_AMD64_ || _TARGET_ARM_ |
2116 | noway_assert(thisArg != nullptr); |
2117 | assertionInfo = optCreateAssertion(thisArg, nullptr, OAK_NOT_EQUAL); |
2118 | } |
2119 | break; |
2120 | |
2121 | case GT_CAST: |
2122 | // We only create this assertion for global assertion prop |
2123 | if (!optLocalAssertionProp) |
2124 | { |
2125 | // This represets an assertion that we would like to prove to be true. It is not actually a true |
2126 | // assertion. |
2127 | // If we can prove this assertion true then we can eliminate this cast. |
2128 | assertionInfo = optCreateAssertion(tree->gtOp.gtOp1, tree, OAK_SUBRANGE); |
2129 | assertionProven = false; |
2130 | } |
2131 | break; |
2132 | |
2133 | case GT_JTRUE: |
2134 | assertionInfo = optAssertionGenJtrue(tree); |
2135 | break; |
2136 | |
2137 | default: |
2138 | // All other gtOper node kinds, leave 'assertionIndex' = NO_ASSERTION_INDEX |
2139 | break; |
2140 | } |
2141 | |
2142 | // For global assertion prop we must store the assertion number in the tree node |
2143 | if (assertionInfo.HasAssertion() && assertionProven && !optLocalAssertionProp) |
2144 | { |
2145 | tree->SetAssertionInfo(assertionInfo); |
2146 | } |
2147 | } |
2148 | |
2149 | /***************************************************************************** |
2150 | * |
2151 | * Maps a complementary assertion to its original assertion so it can be |
2152 | * retrieved faster. |
2153 | */ |
2154 | void Compiler::optMapComplementary(AssertionIndex assertionIndex, AssertionIndex index) |
2155 | { |
2156 | if (assertionIndex == NO_ASSERTION_INDEX || index == NO_ASSERTION_INDEX) |
2157 | { |
2158 | return; |
2159 | } |
2160 | |
2161 | assert(assertionIndex <= optMaxAssertionCount); |
2162 | assert(index <= optMaxAssertionCount); |
2163 | |
2164 | optComplementaryAssertionMap[assertionIndex] = index; |
2165 | optComplementaryAssertionMap[index] = assertionIndex; |
2166 | } |
2167 | |
2168 | /***************************************************************************** |
2169 | * |
2170 | * Given an assertion index, return the assertion index of the complementary |
2171 | * assertion or 0 if one does not exist. |
2172 | */ |
2173 | AssertionIndex Compiler::optFindComplementary(AssertionIndex assertIndex) |
2174 | { |
2175 | if (assertIndex == NO_ASSERTION_INDEX) |
2176 | { |
2177 | return NO_ASSERTION_INDEX; |
2178 | } |
2179 | AssertionDsc* inputAssertion = optGetAssertion(assertIndex); |
2180 | |
2181 | // Must be an equal or not equal assertion. |
2182 | if (inputAssertion->assertionKind != OAK_EQUAL && inputAssertion->assertionKind != OAK_NOT_EQUAL) |
2183 | { |
2184 | return NO_ASSERTION_INDEX; |
2185 | } |
2186 | |
2187 | AssertionIndex index = optComplementaryAssertionMap[assertIndex]; |
2188 | if (index != NO_ASSERTION_INDEX && index <= optAssertionCount) |
2189 | { |
2190 | return index; |
2191 | } |
2192 | |
2193 | optAssertionKind complementaryAssertionKind = |
2194 | (inputAssertion->assertionKind == OAK_EQUAL) ? OAK_NOT_EQUAL : OAK_EQUAL; |
2195 | for (AssertionIndex index = 1; index <= optAssertionCount; ++index) |
2196 | { |
2197 | // Make sure assertion kinds are complementary and op1, op2 kinds match. |
2198 | AssertionDsc* curAssertion = optGetAssertion(index); |
2199 | if (curAssertion->Complementary(inputAssertion, !optLocalAssertionProp)) |
2200 | { |
2201 | optMapComplementary(assertIndex, index); |
2202 | return index; |
2203 | } |
2204 | } |
2205 | return NO_ASSERTION_INDEX; |
2206 | } |
2207 | |
2208 | /***************************************************************************** |
2209 | * |
2210 | * Given a lclNum and a toType, return assertion index of the assertion that |
2211 | * claims that a variable's value is always a valid subrange of toType. |
2212 | * Thus we can discard or omit a cast to toType. Returns NO_ASSERTION_INDEX |
2213 | * if one such assertion could not be found in "assertions." |
2214 | */ |
2215 | |
2216 | AssertionIndex Compiler::optAssertionIsSubrange(GenTree* tree, var_types toType, ASSERT_VALARG_TP assertions) |
2217 | { |
2218 | if (!optLocalAssertionProp && BitVecOps::IsEmpty(apTraits, assertions)) |
2219 | { |
2220 | return NO_ASSERTION_INDEX; |
2221 | } |
2222 | |
2223 | for (AssertionIndex index = 1; index <= optAssertionCount; index++) |
2224 | { |
2225 | AssertionDsc* curAssertion = optGetAssertion(index); |
2226 | if ((optLocalAssertionProp || |
2227 | BitVecOps::IsMember(apTraits, assertions, index - 1)) && // either local prop or use propagated assertions |
2228 | (curAssertion->assertionKind == OAK_SUBRANGE) && |
2229 | (curAssertion->op1.kind == O1K_LCLVAR)) |
2230 | { |
2231 | // For local assertion prop use comparison on locals, and use comparison on vns for global prop. |
2232 | bool isEqual = optLocalAssertionProp |
2233 | ? (curAssertion->op1.lcl.lclNum == tree->AsLclVarCommon()->GetLclNum()) |
2234 | : (curAssertion->op1.vn == vnStore->VNConservativeNormalValue(tree->gtVNPair)); |
2235 | if (!isEqual) |
2236 | { |
2237 | continue; |
2238 | } |
2239 | |
2240 | // Make sure the toType is within current assertion's bounds. |
2241 | switch (toType) |
2242 | { |
2243 | case TYP_BYTE: |
2244 | case TYP_UBYTE: |
2245 | case TYP_SHORT: |
2246 | case TYP_USHORT: |
2247 | if ((curAssertion->op2.u2.loBound < AssertionDsc::GetLowerBoundForIntegralType(toType)) || |
2248 | (curAssertion->op2.u2.hiBound > AssertionDsc::GetUpperBoundForIntegralType(toType))) |
2249 | { |
2250 | continue; |
2251 | } |
2252 | break; |
2253 | |
2254 | case TYP_UINT: |
2255 | if (curAssertion->op2.u2.loBound < AssertionDsc::GetLowerBoundForIntegralType(toType)) |
2256 | { |
2257 | continue; |
2258 | } |
2259 | break; |
2260 | |
2261 | case TYP_INT: |
2262 | break; |
2263 | |
2264 | default: |
2265 | continue; |
2266 | } |
2267 | return index; |
2268 | } |
2269 | } |
2270 | return NO_ASSERTION_INDEX; |
2271 | } |
2272 | |
2273 | /********************************************************************************** |
2274 | * |
2275 | * Given a "tree" that is usually arg1 of a isinst/cast kind of GT_CALL (a class |
2276 | * handle), and "methodTableArg" which is a const int (a class handle), then search |
2277 | * if there is an assertion in "assertions", that asserts the equality of the two |
2278 | * class handles and then returns the index of the assertion. If one such assertion |
2279 | * could not be found, then it returns NO_ASSERTION_INDEX. |
2280 | * |
2281 | */ |
2282 | AssertionIndex Compiler::optAssertionIsSubtype(GenTree* tree, GenTree* methodTableArg, ASSERT_VALARG_TP assertions) |
2283 | { |
2284 | if (!optLocalAssertionProp && BitVecOps::IsEmpty(apTraits, assertions)) |
2285 | { |
2286 | return NO_ASSERTION_INDEX; |
2287 | } |
2288 | for (AssertionIndex index = 1; index <= optAssertionCount; index++) |
2289 | { |
2290 | if (!optLocalAssertionProp && !BitVecOps::IsMember(apTraits, assertions, index - 1)) |
2291 | { |
2292 | continue; |
2293 | } |
2294 | |
2295 | AssertionDsc* curAssertion = optGetAssertion(index); |
2296 | if (curAssertion->assertionKind != OAK_EQUAL || |
2297 | (curAssertion->op1.kind != O1K_SUBTYPE && curAssertion->op1.kind != O1K_EXACT_TYPE)) |
2298 | { |
2299 | continue; |
2300 | } |
2301 | |
2302 | // If local assertion prop use "lcl" based comparison, if global assertion prop use vn based comparison. |
2303 | if ((optLocalAssertionProp) ? (curAssertion->op1.lcl.lclNum != tree->AsLclVarCommon()->GetLclNum()) |
2304 | : (curAssertion->op1.vn != vnStore->VNConservativeNormalValue(tree->gtVNPair))) |
2305 | { |
2306 | continue; |
2307 | } |
2308 | |
2309 | if (curAssertion->op2.kind == O2K_IND_CNS_INT) |
2310 | { |
2311 | if (methodTableArg->gtOper != GT_IND) |
2312 | { |
2313 | continue; |
2314 | } |
2315 | methodTableArg = methodTableArg->gtOp.gtOp1; |
2316 | } |
2317 | else if (curAssertion->op2.kind != O2K_CONST_INT) |
2318 | { |
2319 | continue; |
2320 | } |
2321 | |
2322 | ssize_t methodTableVal = 0; |
2323 | unsigned iconFlags = 0; |
2324 | if (!optIsTreeKnownIntValue(!optLocalAssertionProp, methodTableArg, &methodTableVal, &iconFlags)) |
2325 | { |
2326 | continue; |
2327 | } |
2328 | |
2329 | if (curAssertion->op2.u1.iconVal == methodTableVal) |
2330 | { |
2331 | return index; |
2332 | } |
2333 | } |
2334 | return NO_ASSERTION_INDEX; |
2335 | } |
2336 | |
2337 | //------------------------------------------------------------------------------ |
2338 | // optVNConstantPropOnTree: Substitutes tree with an evaluated constant while |
2339 | // managing ref-counts and side-effects. |
2340 | // |
2341 | // Arguments: |
2342 | // block - The block containing the tree. |
2343 | // stmt - The statement in the block containing the tree. |
2344 | // tree - The tree node whose value is known at compile time. |
2345 | // The tree should have a constant value number. |
2346 | // |
2347 | // Return Value: |
2348 | // Returns a potentially new or a transformed tree node. |
2349 | // Returns nullptr when no transformation is possible. |
2350 | // |
2351 | // Description: |
2352 | // Transforms a tree node if its result evaluates to a constant. The |
2353 | // transformation can be a "ChangeOper" to a constant or a new constant node |
2354 | // with extracted side-effects. |
2355 | // |
2356 | // Before replacing or substituting the "tree" with a constant, extracts any |
2357 | // side effects from the "tree" and creates a comma separated side effect list |
2358 | // and then appends the transformed node at the end of the list. |
2359 | // This comma separated list is then returned. |
2360 | // |
2361 | // For JTrue nodes, side effects are not put into a comma separated list. If |
2362 | // the relop will evaluate to "true" or "false" statically, then the side-effects |
2363 | // will be put into new statements, presuming the JTrue will be folded away. |
2364 | // |
2365 | // The ref-counts of any variables in the tree being replaced, will be |
2366 | // appropriately decremented. The ref-counts of variables in the side-effect |
2367 | // nodes will be retained. |
2368 | // |
2369 | GenTree* Compiler::optVNConstantPropOnTree(BasicBlock* block, GenTree* stmt, GenTree* tree) |
2370 | { |
2371 | if (tree->OperGet() == GT_JTRUE) |
2372 | { |
2373 | // Treat JTRUE separately to extract side effects into respective statements rather |
2374 | // than using a COMMA separated op1. |
2375 | return optVNConstantPropOnJTrue(block, stmt, tree); |
2376 | } |
2377 | // If relop is part of JTRUE, this should be optimized as part of the parent JTRUE. |
2378 | // Or if relop is part of QMARK or anything else, we simply bail here. |
2379 | else if (tree->OperIsCompare() && (tree->gtFlags & GTF_RELOP_JMP_USED)) |
2380 | { |
2381 | return nullptr; |
2382 | } |
2383 | |
2384 | // We want to use the Normal ValueNumber when checking for constants. |
2385 | ValueNum vnCns = vnStore->VNConservativeNormalValue(tree->gtVNPair); |
2386 | ValueNum vnLib = vnStore->VNLiberalNormalValue(tree->gtVNPair); |
2387 | |
2388 | // Check if node evaluates to a constant. |
2389 | if (!vnStore->IsVNConstant(vnCns)) |
2390 | { |
2391 | return nullptr; |
2392 | } |
2393 | |
2394 | GenTree* newTree = tree; |
2395 | GenTree* sideEffList = nullptr; |
2396 | switch (vnStore->TypeOfVN(vnCns)) |
2397 | { |
2398 | case TYP_FLOAT: |
2399 | { |
2400 | float value = vnStore->ConstantValue<float>(vnCns); |
2401 | |
2402 | if (tree->TypeGet() == TYP_INT) |
2403 | { |
2404 | // Same sized reinterpretation of bits to integer |
2405 | newTree = optPrepareTreeForReplacement(tree, tree); |
2406 | tree->ChangeOperConst(GT_CNS_INT); |
2407 | tree->gtIntCon.gtIconVal = *(reinterpret_cast<int*>(&value)); |
2408 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2409 | } |
2410 | else |
2411 | { |
2412 | // Implicit assignment conversion to float or double |
2413 | assert(varTypeIsFloating(tree->TypeGet())); |
2414 | |
2415 | newTree = optPrepareTreeForReplacement(tree, tree); |
2416 | tree->ChangeOperConst(GT_CNS_DBL); |
2417 | tree->gtDblCon.gtDconVal = value; |
2418 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2419 | } |
2420 | break; |
2421 | } |
2422 | |
2423 | case TYP_DOUBLE: |
2424 | { |
2425 | double value = vnStore->ConstantValue<double>(vnCns); |
2426 | |
2427 | if (tree->TypeGet() == TYP_LONG) |
2428 | { |
2429 | // Same sized reinterpretation of bits to long |
2430 | newTree = optPrepareTreeForReplacement(tree, tree); |
2431 | tree->ChangeOperConst(GT_CNS_NATIVELONG); |
2432 | tree->gtIntConCommon.SetLngValue(*(reinterpret_cast<INT64*>(&value))); |
2433 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2434 | } |
2435 | else |
2436 | { |
2437 | // Implicit assignment conversion to float or double |
2438 | assert(varTypeIsFloating(tree->TypeGet())); |
2439 | |
2440 | newTree = optPrepareTreeForReplacement(tree, tree); |
2441 | tree->ChangeOperConst(GT_CNS_DBL); |
2442 | tree->gtDblCon.gtDconVal = value; |
2443 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2444 | } |
2445 | break; |
2446 | } |
2447 | |
2448 | case TYP_LONG: |
2449 | { |
2450 | INT64 value = vnStore->ConstantValue<INT64>(vnCns); |
2451 | #ifdef _TARGET_64BIT_ |
2452 | if (vnStore->IsVNHandle(vnCns)) |
2453 | { |
2454 | // Don't perform constant folding that involves a handle that needs |
2455 | // to be recorded as a relocation with the VM. |
2456 | if (!opts.compReloc) |
2457 | { |
2458 | newTree = gtNewIconHandleNode(value, vnStore->GetHandleFlags(vnCns)); |
2459 | newTree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2460 | newTree = optPrepareTreeForReplacement(tree, newTree); |
2461 | } |
2462 | } |
2463 | else |
2464 | #endif |
2465 | { |
2466 | switch (tree->TypeGet()) |
2467 | { |
2468 | case TYP_INT: |
2469 | // Implicit assignment conversion to smaller integer |
2470 | newTree = optPrepareTreeForReplacement(tree, tree); |
2471 | tree->ChangeOperConst(GT_CNS_INT); |
2472 | tree->gtIntCon.gtIconVal = (int)value; |
2473 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2474 | break; |
2475 | |
2476 | case TYP_LONG: |
2477 | // Same type no conversion required |
2478 | newTree = optPrepareTreeForReplacement(tree, tree); |
2479 | tree->ChangeOperConst(GT_CNS_NATIVELONG); |
2480 | tree->gtIntConCommon.SetLngValue(value); |
2481 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2482 | break; |
2483 | |
2484 | case TYP_FLOAT: |
2485 | // No implicit conversions from long to float and value numbering will |
2486 | // not propagate through memory reinterpretations of different size. |
2487 | unreached(); |
2488 | break; |
2489 | |
2490 | case TYP_DOUBLE: |
2491 | // Same sized reinterpretation of bits to double |
2492 | newTree = optPrepareTreeForReplacement(tree, tree); |
2493 | tree->ChangeOperConst(GT_CNS_DBL); |
2494 | tree->gtDblCon.gtDconVal = *(reinterpret_cast<double*>(&value)); |
2495 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2496 | break; |
2497 | |
2498 | default: |
2499 | return nullptr; |
2500 | } |
2501 | } |
2502 | } |
2503 | break; |
2504 | |
2505 | case TYP_REF: |
2506 | if (tree->TypeGet() != TYP_REF) |
2507 | { |
2508 | return nullptr; |
2509 | } |
2510 | |
2511 | assert(vnStore->ConstantValue<size_t>(vnCns) == 0); |
2512 | newTree = optPrepareTreeForReplacement(tree, tree); |
2513 | tree->ChangeOperConst(GT_CNS_INT); |
2514 | tree->gtIntCon.gtIconVal = 0; |
2515 | tree->ClearIconHandleMask(); |
2516 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2517 | break; |
2518 | |
2519 | case TYP_INT: |
2520 | { |
2521 | int value = vnStore->ConstantValue<int>(vnCns); |
2522 | #ifndef _TARGET_64BIT_ |
2523 | if (vnStore->IsVNHandle(vnCns)) |
2524 | { |
2525 | // Don't perform constant folding that involves a handle that needs |
2526 | // to be recorded as a relocation with the VM. |
2527 | if (!opts.compReloc) |
2528 | { |
2529 | newTree = gtNewIconHandleNode(value, vnStore->GetHandleFlags(vnCns)); |
2530 | newTree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2531 | newTree = optPrepareTreeForReplacement(tree, newTree); |
2532 | } |
2533 | } |
2534 | else |
2535 | #endif |
2536 | { |
2537 | switch (tree->TypeGet()) |
2538 | { |
2539 | case TYP_REF: |
2540 | case TYP_INT: |
2541 | // Same type no conversion required |
2542 | newTree = optPrepareTreeForReplacement(tree, tree); |
2543 | tree->ChangeOperConst(GT_CNS_INT); |
2544 | tree->gtIntCon.gtIconVal = value; |
2545 | tree->ClearIconHandleMask(); |
2546 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2547 | break; |
2548 | |
2549 | case TYP_LONG: |
2550 | // Implicit assignment conversion to larger integer |
2551 | newTree = optPrepareTreeForReplacement(tree, tree); |
2552 | tree->ChangeOperConst(GT_CNS_NATIVELONG); |
2553 | tree->gtIntConCommon.SetLngValue(value); |
2554 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2555 | break; |
2556 | |
2557 | case TYP_FLOAT: |
2558 | // Same sized reinterpretation of bits to float |
2559 | newTree = optPrepareTreeForReplacement(tree, tree); |
2560 | tree->ChangeOperConst(GT_CNS_DBL); |
2561 | tree->gtDblCon.gtDconVal = *(reinterpret_cast<float*>(&value)); |
2562 | tree->gtVNPair = ValueNumPair(vnLib, vnCns); |
2563 | break; |
2564 | |
2565 | case TYP_DOUBLE: |
2566 | // No implicit conversions from int to double and value numbering will |
2567 | // not propagate through memory reinterpretations of different size. |
2568 | unreached(); |
2569 | break; |
2570 | |
2571 | default: |
2572 | return nullptr; |
2573 | } |
2574 | } |
2575 | } |
2576 | break; |
2577 | |
2578 | default: |
2579 | return nullptr; |
2580 | } |
2581 | return newTree; |
2582 | } |
2583 | |
2584 | /******************************************************************************************************* |
2585 | * |
2586 | * Perform constant propagation on a tree given the "curAssertion" is true at the point of the "tree." |
2587 | * |
2588 | */ |
2589 | GenTree* Compiler::optConstantAssertionProp(AssertionDsc* curAssertion, |
2590 | GenTree* tree, |
2591 | GenTree* stmt DEBUGARG(AssertionIndex index)) |
2592 | { |
2593 | unsigned lclNum = tree->gtLclVarCommon.gtLclNum; |
2594 | |
2595 | if (lclNumIsCSE(lclNum)) |
2596 | { |
2597 | return nullptr; |
2598 | } |
2599 | |
2600 | GenTree* newTree = tree; |
2601 | |
2602 | // Update 'newTree' with the new value from our table |
2603 | // Typically newTree == tree and we are updating the node in place |
2604 | switch (curAssertion->op2.kind) |
2605 | { |
2606 | case O2K_CONST_DOUBLE: |
2607 | // There could be a positive zero and a negative zero, so don't propagate zeroes. |
2608 | if (curAssertion->op2.dconVal == 0.0) |
2609 | { |
2610 | return nullptr; |
2611 | } |
2612 | newTree->ChangeOperConst(GT_CNS_DBL); |
2613 | newTree->gtDblCon.gtDconVal = curAssertion->op2.dconVal; |
2614 | break; |
2615 | |
2616 | case O2K_CONST_LONG: |
2617 | if (newTree->gtType == TYP_LONG) |
2618 | { |
2619 | newTree->ChangeOperConst(GT_CNS_NATIVELONG); |
2620 | newTree->gtIntConCommon.SetLngValue(curAssertion->op2.lconVal); |
2621 | } |
2622 | else |
2623 | { |
2624 | newTree->ChangeOperConst(GT_CNS_INT); |
2625 | newTree->gtIntCon.gtIconVal = (int)curAssertion->op2.lconVal; |
2626 | newTree->gtType = TYP_INT; |
2627 | } |
2628 | break; |
2629 | |
2630 | case O2K_CONST_INT: |
2631 | if (curAssertion->op2.u1.iconFlags & GTF_ICON_HDL_MASK) |
2632 | { |
2633 | // Here we have to allocate a new 'large' node to replace the old one |
2634 | newTree = gtNewIconHandleNode(curAssertion->op2.u1.iconVal, |
2635 | curAssertion->op2.u1.iconFlags & GTF_ICON_HDL_MASK); |
2636 | } |
2637 | else |
2638 | { |
2639 | bool isArrIndex = ((tree->gtFlags & GTF_VAR_ARR_INDEX) != 0); |
2640 | // If we have done constant propagation of a struct type, it is only valid for zero-init, |
2641 | // and we have to ensure that we have the right zero for the type. |
2642 | if (varTypeIsStruct(tree)) |
2643 | { |
2644 | assert(curAssertion->op2.u1.iconVal == 0); |
2645 | } |
2646 | #ifdef FEATURE_SIMD |
2647 | if (varTypeIsSIMD(tree)) |
2648 | { |
2649 | LclVarDsc* varDsc = lvaGetDesc(lclNum); |
2650 | var_types simdType = tree->TypeGet(); |
2651 | assert(varDsc->TypeGet() == simdType); |
2652 | var_types baseType = varDsc->lvBaseType; |
2653 | newTree = gtGetSIMDZero(simdType, baseType, varDsc->lvVerTypeInfo.GetClassHandle()); |
2654 | if (newTree == nullptr) |
2655 | { |
2656 | return nullptr; |
2657 | } |
2658 | } |
2659 | else |
2660 | #endif // FEATURE_SIMD |
2661 | { |
2662 | newTree->ChangeOperConst(GT_CNS_INT); |
2663 | newTree->gtIntCon.gtIconVal = curAssertion->op2.u1.iconVal; |
2664 | newTree->ClearIconHandleMask(); |
2665 | } |
2666 | // If we're doing an array index address, assume any constant propagated contributes to the index. |
2667 | if (isArrIndex) |
2668 | { |
2669 | newTree->gtIntCon.gtFieldSeq = |
2670 | GetFieldSeqStore()->CreateSingleton(FieldSeqStore::ConstantIndexPseudoField); |
2671 | } |
2672 | newTree->gtFlags &= ~GTF_VAR_ARR_INDEX; |
2673 | } |
2674 | |
2675 | // Constant ints are of type TYP_INT, not any of the short forms. |
2676 | if (varTypeIsIntegral(newTree->TypeGet())) |
2677 | { |
2678 | #ifdef _TARGET_64BIT_ |
2679 | var_types newType = (var_types)((curAssertion->op2.u1.iconFlags & 1) ? TYP_LONG : TYP_INT); |
2680 | if (newTree->TypeGet() != newType) |
2681 | { |
2682 | noway_assert(newTree->gtType != TYP_REF); |
2683 | newTree->gtType = newType; |
2684 | } |
2685 | #else |
2686 | if (newTree->TypeGet() != TYP_INT) |
2687 | { |
2688 | noway_assert(newTree->gtType != TYP_REF && newTree->gtType != TYP_LONG); |
2689 | newTree->gtType = TYP_INT; |
2690 | } |
2691 | #endif |
2692 | } |
2693 | break; |
2694 | |
2695 | default: |
2696 | return nullptr; |
2697 | } |
2698 | |
2699 | if (!optLocalAssertionProp) |
2700 | { |
2701 | assert(newTree->OperIsConst()); // We should have a simple Constant node for newTree |
2702 | assert(vnStore->IsVNConstant(curAssertion->op2.vn)); // The value number stored for op2 should be a valid |
2703 | // VN representing the constant |
2704 | newTree->gtVNPair.SetBoth(curAssertion->op2.vn); // Set the ValueNumPair to the constant VN from op2 |
2705 | // of the assertion |
2706 | } |
2707 | |
2708 | #ifdef DEBUG |
2709 | if (verbose) |
2710 | { |
2711 | printf("\nAssertion prop in " FMT_BB ":\n" , compCurBB->bbNum); |
2712 | optPrintAssertion(curAssertion, index); |
2713 | gtDispTree(newTree, nullptr, nullptr, true); |
2714 | } |
2715 | #endif |
2716 | |
2717 | return optAssertionProp_Update(newTree, tree, stmt); |
2718 | } |
2719 | |
2720 | /******************************************************************************************************* |
2721 | * |
2722 | * Called in the context of an existing copy assertion which makes an "==" assertion on "lclVar" and |
2723 | * "copyVar." Before substituting "copyVar" for "lclVar", we make sure using "copy" doesn't widen access. |
2724 | * |
2725 | */ |
2726 | bool Compiler::optAssertionProp_LclVarTypeCheck(GenTree* tree, LclVarDsc* lclVarDsc, LclVarDsc* copyVarDsc) |
2727 | { |
2728 | /* |
2729 | Small struct field locals are stored using the exact width and loaded widened |
2730 | (i.e. lvNormalizeOnStore==false lvNormalizeOnLoad==true), |
2731 | because the field locals might end up embedded in the parent struct local with the exact width. |
2732 | |
2733 | In other words, a store to a short field local should always done using an exact width store |
2734 | |
2735 | [00254538] 0x0009 ------------ const int 0x1234 |
2736 | [002545B8] 0x000B -A--G--NR--- = short |
2737 | [00254570] 0x000A D------N---- lclVar short V43 tmp40 |
2738 | |
2739 | mov word ptr [L_043], 0x1234 |
2740 | |
2741 | Now, if we copy prop, say a short field local V43, to another short local V34 |
2742 | for the following tree: |
2743 | |
2744 | [04E18650] 0x0001 ------------ lclVar int V34 tmp31 |
2745 | [04E19714] 0x0002 -A---------- = int |
2746 | [04E196DC] 0x0001 D------N---- lclVar int V36 tmp33 |
2747 | |
2748 | We will end with this tree: |
2749 | |
2750 | [04E18650] 0x0001 ------------ lclVar int V43 tmp40 |
2751 | [04E19714] 0x0002 -A-----NR--- = int |
2752 | [04E196DC] 0x0001 D------N---- lclVar int V36 tmp33 EAX |
2753 | |
2754 | And eventually causing a fetch of 4-byte out from [L_043] :( |
2755 | mov EAX, dword ptr [L_043] |
2756 | |
2757 | The following check is to make sure we only perform the copy prop |
2758 | when we don't retrieve the wider value. |
2759 | */ |
2760 | |
2761 | if (copyVarDsc->lvIsStructField) |
2762 | { |
2763 | var_types varType = (var_types)copyVarDsc->lvType; |
2764 | // Make sure we don't retrieve the wider value. |
2765 | return !varTypeIsSmall(varType) || (varType == tree->TypeGet()); |
2766 | } |
2767 | // Called in the context of a single copy assertion, so the types should have been |
2768 | // taken care by the assertion gen logic for other cases. Just return true. |
2769 | return true; |
2770 | } |
2771 | |
2772 | /********************************************************************************** |
2773 | * |
2774 | * Perform copy assertion propagation when the lclNum and ssaNum of the "tree" match |
2775 | * the "curAssertion." |
2776 | * |
2777 | */ |
2778 | GenTree* Compiler::optCopyAssertionProp(AssertionDsc* curAssertion, |
2779 | GenTree* tree, |
2780 | GenTree* stmt DEBUGARG(AssertionIndex index)) |
2781 | { |
2782 | const AssertionDsc::AssertionDscOp1& op1 = curAssertion->op1; |
2783 | const AssertionDsc::AssertionDscOp2& op2 = curAssertion->op2; |
2784 | |
2785 | noway_assert(op1.lcl.lclNum != op2.lcl.lclNum); |
2786 | |
2787 | unsigned lclNum = tree->gtLclVarCommon.GetLclNum(); |
2788 | |
2789 | // Make sure one of the lclNum of the assertion matches with that of the tree. |
2790 | if (op1.lcl.lclNum != lclNum && op2.lcl.lclNum != lclNum) |
2791 | { |
2792 | return nullptr; |
2793 | } |
2794 | |
2795 | // Extract the matching lclNum and ssaNum. |
2796 | unsigned copyLclNum = (op1.lcl.lclNum == lclNum) ? op2.lcl.lclNum : op1.lcl.lclNum; |
2797 | unsigned copySsaNum = BAD_VAR_NUM; |
2798 | if (!optLocalAssertionProp) |
2799 | { |
2800 | // Extract the ssaNum of the matching lclNum. |
2801 | unsigned ssaNum = (op1.lcl.lclNum == lclNum) ? op1.lcl.ssaNum : op2.lcl.ssaNum; |
2802 | copySsaNum = (op1.lcl.lclNum == lclNum) ? op2.lcl.ssaNum : op1.lcl.ssaNum; |
2803 | |
2804 | if (ssaNum != tree->AsLclVarCommon()->GetSsaNum()) |
2805 | { |
2806 | return nullptr; |
2807 | } |
2808 | } |
2809 | |
2810 | LclVarDsc* copyVarDsc = &lvaTable[copyLclNum]; |
2811 | LclVarDsc* lclVarDsc = &lvaTable[lclNum]; |
2812 | |
2813 | // Make sure the types are compatible. |
2814 | if (!optAssertionProp_LclVarTypeCheck(tree, lclVarDsc, copyVarDsc)) |
2815 | { |
2816 | return nullptr; |
2817 | } |
2818 | |
2819 | // Make sure we can perform this copy prop. |
2820 | if (optCopyProp_LclVarScore(lclVarDsc, copyVarDsc, curAssertion->op1.lcl.lclNum == lclNum) <= 0) |
2821 | { |
2822 | return nullptr; |
2823 | } |
2824 | |
2825 | tree->gtLclVarCommon.SetSsaNum(copySsaNum); |
2826 | tree->gtLclVarCommon.SetLclNum(copyLclNum); |
2827 | |
2828 | #ifdef DEBUG |
2829 | if (verbose) |
2830 | { |
2831 | printf("\nAssertion prop in " FMT_BB ":\n" , compCurBB->bbNum); |
2832 | optPrintAssertion(curAssertion, index); |
2833 | gtDispTree(tree, nullptr, nullptr, true); |
2834 | } |
2835 | #endif |
2836 | |
2837 | // Update and morph the tree. |
2838 | return optAssertionProp_Update(tree, tree, stmt); |
2839 | } |
2840 | |
2841 | /***************************************************************************** |
2842 | * |
2843 | * Given a tree consisting of a just a LclVar and a set of available assertions |
2844 | * we try to propagate an assertion and modify the LclVar tree if we can. |
2845 | * We pass in the root of the tree via 'stmt', for local copy prop 'stmt' will |
2846 | * be nullptr. Returns the modified tree, or nullptr if no assertion prop took place. |
2847 | */ |
2848 | |
2849 | GenTree* Compiler::optAssertionProp_LclVar(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
2850 | { |
2851 | assert(tree->gtOper == GT_LCL_VAR); |
2852 | // If we have a var definition then bail or |
2853 | // If this is the address of the var then it will have the GTF_DONT_CSE |
2854 | // flag set and we don't want to to assertion prop on it. |
2855 | if (tree->gtFlags & (GTF_VAR_DEF | GTF_DONT_CSE)) |
2856 | { |
2857 | return nullptr; |
2858 | } |
2859 | |
2860 | BitVecOps::Iter iter(apTraits, assertions); |
2861 | unsigned index = 0; |
2862 | while (iter.NextElem(&index)) |
2863 | { |
2864 | AssertionIndex assertionIndex = GetAssertionIndex(index); |
2865 | if (assertionIndex > optAssertionCount) |
2866 | { |
2867 | break; |
2868 | } |
2869 | // See if the variable is equal to a constant or another variable. |
2870 | AssertionDsc* curAssertion = optGetAssertion(assertionIndex); |
2871 | if (curAssertion->assertionKind != OAK_EQUAL || curAssertion->op1.kind != O1K_LCLVAR) |
2872 | { |
2873 | continue; |
2874 | } |
2875 | |
2876 | // Copy prop. |
2877 | if (curAssertion->op2.kind == O2K_LCLVAR_COPY) |
2878 | { |
2879 | // Cannot do copy prop during global assertion prop because of no knowledge |
2880 | // of kill sets. We will still make a == b copy assertions during the global phase to allow |
2881 | // for any implied assertions that can be retrieved. Because implied assertions look for |
2882 | // matching SSA numbers (i.e., if a0 == b1 and b1 == c0 then a0 == c0) they don't need kill sets. |
2883 | if (optLocalAssertionProp) |
2884 | { |
2885 | // Perform copy assertion prop. |
2886 | GenTree* newTree = optCopyAssertionProp(curAssertion, tree, stmt DEBUGARG(assertionIndex)); |
2887 | if (newTree == nullptr) |
2888 | { |
2889 | // Skip and try next assertion. |
2890 | continue; |
2891 | } |
2892 | return newTree; |
2893 | } |
2894 | } |
2895 | // Constant prop (for local assertion prop.) |
2896 | // The case where the tree type could be different than the LclVar type is caused by |
2897 | // gtFoldExpr, specifically the case of a cast, where the fold operation changes the type of the LclVar |
2898 | // node. In such a case is not safe to perform the substitution since later on the JIT will assert mismatching |
2899 | // types between trees. |
2900 | else if (curAssertion->op1.lcl.lclNum == tree->gtLclVarCommon.GetLclNum() && |
2901 | tree->gtType == lvaTable[tree->gtLclVarCommon.GetLclNum()].lvType) |
2902 | { |
2903 | // If local assertion prop just, perform constant prop. |
2904 | if (optLocalAssertionProp) |
2905 | { |
2906 | return optConstantAssertionProp(curAssertion, tree, stmt DEBUGARG(assertionIndex)); |
2907 | } |
2908 | // If global assertion, perform constant propagation only if the VN's match and the lcl is non-CSE. |
2909 | else if (curAssertion->op1.vn == vnStore->VNConservativeNormalValue(tree->gtVNPair)) |
2910 | { |
2911 | #if FEATURE_ANYCSE |
2912 | // Don't perform constant prop for CSE LclVars |
2913 | if (!lclNumIsCSE(tree->AsLclVarCommon()->GetLclNum())) |
2914 | #endif |
2915 | { |
2916 | return optConstantAssertionProp(curAssertion, tree, stmt DEBUGARG(assertionIndex)); |
2917 | } |
2918 | } |
2919 | } |
2920 | } |
2921 | return nullptr; |
2922 | } |
2923 | |
2924 | /***************************************************************************** |
2925 | * |
2926 | * Given a set of "assertions" to search, find an assertion that matches |
2927 | * op1Kind and lclNum, op2Kind and the constant value and is either equal or |
2928 | * not equal assertion. |
2929 | */ |
2930 | AssertionIndex Compiler::optLocalAssertionIsEqualOrNotEqual( |
2931 | optOp1Kind op1Kind, unsigned lclNum, optOp2Kind op2Kind, ssize_t cnsVal, ASSERT_VALARG_TP assertions) |
2932 | { |
2933 | noway_assert((op1Kind == O1K_LCLVAR) || (op1Kind == O1K_EXACT_TYPE) || (op1Kind == O1K_SUBTYPE)); |
2934 | noway_assert((op2Kind == O2K_CONST_INT) || (op2Kind == O2K_IND_CNS_INT)); |
2935 | if (!optLocalAssertionProp && BitVecOps::IsEmpty(apTraits, assertions)) |
2936 | { |
2937 | return NO_ASSERTION_INDEX; |
2938 | } |
2939 | |
2940 | for (AssertionIndex index = 1; index <= optAssertionCount; ++index) |
2941 | { |
2942 | AssertionDsc* curAssertion = optGetAssertion(index); |
2943 | if (optLocalAssertionProp || BitVecOps::IsMember(apTraits, assertions, index - 1)) |
2944 | { |
2945 | if ((curAssertion->assertionKind != OAK_EQUAL) && (curAssertion->assertionKind != OAK_NOT_EQUAL)) |
2946 | { |
2947 | continue; |
2948 | } |
2949 | |
2950 | if ((curAssertion->op1.kind == op1Kind) && (curAssertion->op1.lcl.lclNum == lclNum) && |
2951 | (curAssertion->op2.kind == op2Kind)) |
2952 | { |
2953 | bool constantIsEqual = (curAssertion->op2.u1.iconVal == cnsVal); |
2954 | bool assertionIsEqual = (curAssertion->assertionKind == OAK_EQUAL); |
2955 | |
2956 | if (constantIsEqual || assertionIsEqual) |
2957 | { |
2958 | return index; |
2959 | } |
2960 | } |
2961 | } |
2962 | } |
2963 | return NO_ASSERTION_INDEX; |
2964 | } |
2965 | |
2966 | /***************************************************************************** |
2967 | * |
2968 | * Given a set of "assertions" to search for, find an assertion that is either |
2969 | * "op1" == "op2" or "op1" != "op2." Does a value number based comparison. |
2970 | * |
2971 | */ |
2972 | AssertionIndex Compiler::optGlobalAssertionIsEqualOrNotEqual(ASSERT_VALARG_TP assertions, GenTree* op1, GenTree* op2) |
2973 | { |
2974 | if (BitVecOps::IsEmpty(apTraits, assertions)) |
2975 | { |
2976 | return NO_ASSERTION_INDEX; |
2977 | } |
2978 | BitVecOps::Iter iter(apTraits, assertions); |
2979 | unsigned index = 0; |
2980 | while (iter.NextElem(&index)) |
2981 | { |
2982 | AssertionIndex assertionIndex = GetAssertionIndex(index); |
2983 | if (assertionIndex > optAssertionCount) |
2984 | { |
2985 | break; |
2986 | } |
2987 | AssertionDsc* curAssertion = optGetAssertion(assertionIndex); |
2988 | if ((curAssertion->assertionKind != OAK_EQUAL && curAssertion->assertionKind != OAK_NOT_EQUAL)) |
2989 | { |
2990 | continue; |
2991 | } |
2992 | |
2993 | if ((curAssertion->op1.vn == vnStore->VNConservativeNormalValue(op1->gtVNPair)) && |
2994 | (curAssertion->op2.vn == vnStore->VNConservativeNormalValue(op2->gtVNPair))) |
2995 | { |
2996 | return assertionIndex; |
2997 | } |
2998 | } |
2999 | return NO_ASSERTION_INDEX; |
3000 | } |
3001 | |
3002 | /***************************************************************************** |
3003 | * |
3004 | * Given a set of "assertions" to search for, find an assertion that is either |
3005 | * op == 0 or op != 0 |
3006 | * |
3007 | */ |
3008 | AssertionIndex Compiler::optGlobalAssertionIsEqualOrNotEqualZero(ASSERT_VALARG_TP assertions, GenTree* op1) |
3009 | { |
3010 | if (BitVecOps::IsEmpty(apTraits, assertions)) |
3011 | { |
3012 | return NO_ASSERTION_INDEX; |
3013 | } |
3014 | BitVecOps::Iter iter(apTraits, assertions); |
3015 | unsigned index = 0; |
3016 | while (iter.NextElem(&index)) |
3017 | { |
3018 | AssertionIndex assertionIndex = GetAssertionIndex(index); |
3019 | if (assertionIndex > optAssertionCount) |
3020 | { |
3021 | break; |
3022 | } |
3023 | AssertionDsc* curAssertion = optGetAssertion(assertionIndex); |
3024 | if ((curAssertion->assertionKind != OAK_EQUAL && curAssertion->assertionKind != OAK_NOT_EQUAL)) |
3025 | { |
3026 | continue; |
3027 | } |
3028 | |
3029 | if ((curAssertion->op1.vn == vnStore->VNConservativeNormalValue(op1->gtVNPair)) && |
3030 | (curAssertion->op2.vn == vnStore->VNZeroForType(op1->TypeGet()))) |
3031 | { |
3032 | return assertionIndex; |
3033 | } |
3034 | } |
3035 | return NO_ASSERTION_INDEX; |
3036 | } |
3037 | |
3038 | /***************************************************************************** |
3039 | * |
3040 | * Given a tree consisting of a RelOp and a set of available assertions |
3041 | * we try to propagate an assertion and modify the RelOp tree if we can. |
3042 | * We pass in the root of the tree via 'stmt', for local copy prop 'stmt' will be nullptr |
3043 | * Returns the modified tree, or nullptr if no assertion prop took place |
3044 | */ |
3045 | |
3046 | GenTree* Compiler::optAssertionProp_RelOp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3047 | { |
3048 | assert(tree->OperKind() & GTK_RELOP); |
3049 | |
3050 | if (!optLocalAssertionProp) |
3051 | { |
3052 | // If global assertion prop then use value numbering. |
3053 | return optAssertionPropGlobal_RelOp(assertions, tree, stmt); |
3054 | } |
3055 | |
3056 | // |
3057 | // Currently only GT_EQ or GT_NE are supported Relops for local AssertionProp |
3058 | // |
3059 | |
3060 | if ((tree->gtOper != GT_EQ) && (tree->gtOper != GT_NE)) |
3061 | { |
3062 | return nullptr; |
3063 | } |
3064 | |
3065 | // If local assertion prop then use variable based prop. |
3066 | return optAssertionPropLocal_RelOp(assertions, tree, stmt); |
3067 | } |
3068 | |
3069 | /************************************************************************************* |
3070 | * |
3071 | * Given the set of "assertions" to look up a relop assertion about the relop "tree", |
3072 | * perform Value numbering based relop assertion propagation on the tree. |
3073 | * |
3074 | */ |
3075 | GenTree* Compiler::optAssertionPropGlobal_RelOp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3076 | { |
3077 | GenTree* newTree = tree; |
3078 | GenTree* op1 = tree->gtOp.gtOp1; |
3079 | GenTree* op2 = tree->gtOp.gtOp2; |
3080 | |
3081 | // Look for assertions of the form (tree EQ/NE 0) |
3082 | AssertionIndex index = optGlobalAssertionIsEqualOrNotEqualZero(assertions, tree); |
3083 | |
3084 | if (index != NO_ASSERTION_INDEX) |
3085 | { |
3086 | // We know that this relop is either 0 or != 0 (1) |
3087 | AssertionDsc* curAssertion = optGetAssertion(index); |
3088 | |
3089 | #ifdef DEBUG |
3090 | if (verbose) |
3091 | { |
3092 | printf("\nVN relop based constant assertion prop in " FMT_BB ":\n" , compCurBB->bbNum); |
3093 | printf("Assertion index=#%02u: " , index); |
3094 | printTreeID(tree); |
3095 | printf(" %s 0\n" , (curAssertion->assertionKind == OAK_EQUAL) ? "==" : "!=" ); |
3096 | } |
3097 | #endif |
3098 | |
3099 | // Bail out if tree is not side effect free. |
3100 | if ((tree->gtFlags & GTF_SIDE_EFFECT) != 0) |
3101 | { |
3102 | JITDUMP("sorry, blocked by side effects\n" ); |
3103 | return nullptr; |
3104 | } |
3105 | |
3106 | if (curAssertion->assertionKind == OAK_EQUAL) |
3107 | { |
3108 | tree->ChangeOperConst(GT_CNS_INT); |
3109 | tree->gtIntCon.gtIconVal = 0; |
3110 | } |
3111 | else |
3112 | { |
3113 | tree->ChangeOperConst(GT_CNS_INT); |
3114 | tree->gtIntCon.gtIconVal = 1; |
3115 | } |
3116 | |
3117 | newTree = fgMorphTree(tree); |
3118 | DISPTREE(newTree); |
3119 | return optAssertionProp_Update(newTree, tree, stmt); |
3120 | } |
3121 | |
3122 | // Else check if we have an equality check involving a local |
3123 | if (!tree->OperIs(GT_EQ, GT_NE)) |
3124 | { |
3125 | return nullptr; |
3126 | } |
3127 | |
3128 | if (op1->gtOper != GT_LCL_VAR) |
3129 | { |
3130 | return nullptr; |
3131 | } |
3132 | |
3133 | // Find an equal or not equal assertion involving "op1" and "op2". |
3134 | index = optGlobalAssertionIsEqualOrNotEqual(assertions, op1, op2); |
3135 | |
3136 | if (index == NO_ASSERTION_INDEX) |
3137 | { |
3138 | return nullptr; |
3139 | } |
3140 | |
3141 | AssertionDsc* curAssertion = optGetAssertion(index); |
3142 | |
3143 | // Allow or not to reverse condition for OAK_NOT_EQUAL assertions. |
3144 | bool allowReverse = true; |
3145 | |
3146 | // If the assertion involves "op2" and it is a constant, then check if "op1" also has a constant value. |
3147 | ValueNum vnCns = vnStore->VNConservativeNormalValue(op2->gtVNPair); |
3148 | if (vnStore->IsVNConstant(vnCns)) |
3149 | { |
3150 | #ifdef DEBUG |
3151 | if (verbose) |
3152 | { |
3153 | printf("\nVN relop based constant assertion prop in " FMT_BB ":\n" , compCurBB->bbNum); |
3154 | printf("Assertion index=#%02u: " , index); |
3155 | printTreeID(op1); |
3156 | printf(" %s " , (curAssertion->assertionKind == OAK_EQUAL) ? "==" : "!=" ); |
3157 | if (genActualType(op1->TypeGet()) == TYP_INT) |
3158 | { |
3159 | printf("%d\n" , vnStore->ConstantValue<int>(vnCns)); |
3160 | } |
3161 | else if (op1->TypeGet() == TYP_LONG) |
3162 | { |
3163 | printf("%I64d\n" , vnStore->ConstantValue<INT64>(vnCns)); |
3164 | } |
3165 | else if (op1->TypeGet() == TYP_DOUBLE) |
3166 | { |
3167 | printf("%f\n" , vnStore->ConstantValue<double>(vnCns)); |
3168 | } |
3169 | else if (op1->TypeGet() == TYP_FLOAT) |
3170 | { |
3171 | printf("%f\n" , vnStore->ConstantValue<float>(vnCns)); |
3172 | } |
3173 | else if (op1->TypeGet() == TYP_REF) |
3174 | { |
3175 | // The only constant of TYP_REF that ValueNumbering supports is 'null' |
3176 | assert(vnStore->ConstantValue<size_t>(vnCns) == 0); |
3177 | printf("null\n" ); |
3178 | } |
3179 | else |
3180 | { |
3181 | printf("??unknown\n" ); |
3182 | } |
3183 | gtDispTree(tree, nullptr, nullptr, true); |
3184 | } |
3185 | #endif |
3186 | // Change the oper to const. |
3187 | if (genActualType(op1->TypeGet()) == TYP_INT) |
3188 | { |
3189 | op1->ChangeOperConst(GT_CNS_INT); |
3190 | op1->gtIntCon.gtIconVal = vnStore->ConstantValue<int>(vnCns); |
3191 | } |
3192 | else if (op1->TypeGet() == TYP_LONG) |
3193 | { |
3194 | op1->ChangeOperConst(GT_CNS_NATIVELONG); |
3195 | op1->gtIntConCommon.SetLngValue(vnStore->ConstantValue<INT64>(vnCns)); |
3196 | } |
3197 | else if (op1->TypeGet() == TYP_DOUBLE) |
3198 | { |
3199 | double constant = vnStore->ConstantValue<double>(vnCns); |
3200 | op1->ChangeOperConst(GT_CNS_DBL); |
3201 | op1->gtDblCon.gtDconVal = constant; |
3202 | |
3203 | // Nothing can be equal to NaN. So if IL had "op1 == NaN", then we already made op1 NaN, |
3204 | // which will yield a false correctly. Instead if IL had "op1 != NaN", then we already |
3205 | // made op1 NaN which will yield a true correctly. Note that this is irrespective of the |
3206 | // assertion we have made. |
3207 | allowReverse = (_isnan(constant) == 0); |
3208 | } |
3209 | else if (op1->TypeGet() == TYP_FLOAT) |
3210 | { |
3211 | float constant = vnStore->ConstantValue<float>(vnCns); |
3212 | op1->ChangeOperConst(GT_CNS_DBL); |
3213 | op1->gtDblCon.gtDconVal = constant; |
3214 | // See comments for TYP_DOUBLE. |
3215 | allowReverse = (_isnan(constant) == 0); |
3216 | } |
3217 | else if (op1->TypeGet() == TYP_REF) |
3218 | { |
3219 | op1->ChangeOperConst(GT_CNS_INT); |
3220 | // The only constant of TYP_REF that ValueNumbering supports is 'null' |
3221 | noway_assert(vnStore->ConstantValue<size_t>(vnCns) == 0); |
3222 | op1->gtIntCon.gtIconVal = 0; |
3223 | } |
3224 | else |
3225 | { |
3226 | noway_assert(!"unknown type in Global_RelOp" ); |
3227 | } |
3228 | |
3229 | op1->gtVNPair.SetBoth(vnCns); // Preserve the ValueNumPair, as ChangeOperConst/SetOper will clear it. |
3230 | } |
3231 | // If the assertion involves "op2" and "op1" is also a local var, then just morph the tree. |
3232 | else if (op2->gtOper == GT_LCL_VAR) |
3233 | { |
3234 | #ifdef DEBUG |
3235 | if (verbose) |
3236 | { |
3237 | printf("\nVN relop based copy assertion prop in " FMT_BB ":\n" , compCurBB->bbNum); |
3238 | printf("Assertion index=#%02u: V%02d.%02d %s V%02d.%02d\n" , index, op1->gtLclVar.gtLclNum, |
3239 | op1->gtLclVar.gtSsaNum, (curAssertion->assertionKind == OAK_EQUAL) ? "==" : "!=" , |
3240 | op2->gtLclVar.gtLclNum, op2->gtLclVar.gtSsaNum); |
3241 | gtDispTree(tree, nullptr, nullptr, true); |
3242 | } |
3243 | #endif |
3244 | // If floating point, don't just substitute op1 with op2, this won't work if |
3245 | // op2 is NaN. Just turn it into a "true" or "false" yielding expression. |
3246 | if (op1->TypeGet() == TYP_DOUBLE || op1->TypeGet() == TYP_FLOAT) |
3247 | { |
3248 | // Note we can't trust the OAK_EQUAL as the value could end up being a NaN |
3249 | // violating the assertion. However, we create OAK_EQUAL assertions for floating |
3250 | // point only on JTrue nodes, so if the condition held earlier, it will hold |
3251 | // now. We don't create OAK_EQUAL assertion on floating point from GT_ASG |
3252 | // because we depend on value num which would constant prop the NaN. |
3253 | op1->ChangeOperConst(GT_CNS_DBL); |
3254 | op1->gtDblCon.gtDconVal = 0; |
3255 | op2->ChangeOperConst(GT_CNS_DBL); |
3256 | op2->gtDblCon.gtDconVal = 0; |
3257 | } |
3258 | // Change the op1 LclVar to the op2 LclVar |
3259 | else |
3260 | { |
3261 | noway_assert(varTypeIsIntegralOrI(op1->TypeGet())); |
3262 | op1->AsLclVarCommon()->SetLclNum(op2->AsLclVarCommon()->GetLclNum()); |
3263 | op1->AsLclVarCommon()->SetSsaNum(op2->AsLclVarCommon()->GetSsaNum()); |
3264 | } |
3265 | } |
3266 | else |
3267 | { |
3268 | return nullptr; |
3269 | } |
3270 | |
3271 | // Finally reverse the condition, if we have a not equal assertion. |
3272 | if (allowReverse && curAssertion->assertionKind == OAK_NOT_EQUAL) |
3273 | { |
3274 | gtReverseCond(tree); |
3275 | } |
3276 | |
3277 | newTree = fgMorphTree(tree); |
3278 | |
3279 | #ifdef DEBUG |
3280 | if (verbose) |
3281 | { |
3282 | gtDispTree(newTree, nullptr, nullptr, true); |
3283 | } |
3284 | #endif |
3285 | |
3286 | return optAssertionProp_Update(newTree, tree, stmt); |
3287 | } |
3288 | |
3289 | /************************************************************************************* |
3290 | * |
3291 | * Given the set of "assertions" to look up a relop assertion about the relop "tree", |
3292 | * perform local variable name based relop assertion propagation on the tree. |
3293 | * |
3294 | */ |
3295 | GenTree* Compiler::optAssertionPropLocal_RelOp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3296 | { |
3297 | assert(tree->OperGet() == GT_EQ || tree->OperGet() == GT_NE); |
3298 | |
3299 | GenTree* op1 = tree->gtOp.gtOp1; |
3300 | GenTree* op2 = tree->gtOp.gtOp2; |
3301 | |
3302 | // For Local AssertionProp we only can fold when op1 is a GT_LCL_VAR |
3303 | if (op1->gtOper != GT_LCL_VAR) |
3304 | { |
3305 | return nullptr; |
3306 | } |
3307 | |
3308 | // For Local AssertionProp we only can fold when op2 is a GT_CNS_INT |
3309 | if (op2->gtOper != GT_CNS_INT) |
3310 | { |
3311 | return nullptr; |
3312 | } |
3313 | |
3314 | optOp1Kind op1Kind = O1K_LCLVAR; |
3315 | optOp2Kind op2Kind = O2K_CONST_INT; |
3316 | ssize_t cnsVal = op2->gtIntCon.gtIconVal; |
3317 | var_types cmpType = op1->TypeGet(); |
3318 | |
3319 | // Don't try to fold/optimize Floating Compares; there are multiple zero values. |
3320 | if (varTypeIsFloating(cmpType)) |
3321 | { |
3322 | return nullptr; |
3323 | } |
3324 | |
3325 | // Find an equal or not equal assertion about op1 var. |
3326 | unsigned lclNum = op1->gtLclVarCommon.gtLclNum; |
3327 | noway_assert(lclNum < lvaCount); |
3328 | AssertionIndex index = optLocalAssertionIsEqualOrNotEqual(op1Kind, lclNum, op2Kind, cnsVal, assertions); |
3329 | |
3330 | if (index == NO_ASSERTION_INDEX) |
3331 | { |
3332 | return nullptr; |
3333 | } |
3334 | |
3335 | AssertionDsc* curAssertion = optGetAssertion(index); |
3336 | |
3337 | bool assertionKindIsEqual = (curAssertion->assertionKind == OAK_EQUAL); |
3338 | bool constantIsEqual = false; |
3339 | |
3340 | if (genTypeSize(cmpType) == TARGET_POINTER_SIZE) |
3341 | { |
3342 | constantIsEqual = (curAssertion->op2.u1.iconVal == cnsVal); |
3343 | } |
3344 | #ifdef _TARGET_64BIT_ |
3345 | else if (genTypeSize(cmpType) == sizeof(INT32)) |
3346 | { |
3347 | // Compare the low 32-bits only |
3348 | constantIsEqual = (((INT32)curAssertion->op2.u1.iconVal) == ((INT32)cnsVal)); |
3349 | } |
3350 | #endif |
3351 | else |
3352 | { |
3353 | // We currently don't fold/optimize when the GT_LCL_VAR has been cast to a small type |
3354 | return nullptr; |
3355 | } |
3356 | |
3357 | noway_assert(constantIsEqual || assertionKindIsEqual); |
3358 | |
3359 | #ifdef DEBUG |
3360 | if (verbose) |
3361 | { |
3362 | printf("\nAssertion prop for index #%02u in " FMT_BB ":\n" , index, compCurBB->bbNum); |
3363 | gtDispTree(tree, nullptr, nullptr, true); |
3364 | } |
3365 | #endif |
3366 | |
3367 | // Return either CNS_INT 0 or CNS_INT 1. |
3368 | bool foldResult = (constantIsEqual == assertionKindIsEqual); |
3369 | if (tree->gtOper == GT_NE) |
3370 | { |
3371 | foldResult = !foldResult; |
3372 | } |
3373 | |
3374 | op2->gtIntCon.gtIconVal = foldResult; |
3375 | op2->gtType = TYP_INT; |
3376 | |
3377 | return optAssertionProp_Update(op2, tree, stmt); |
3378 | } |
3379 | |
3380 | /***************************************************************************** |
3381 | * |
3382 | * Given a tree consisting of a Cast and a set of available assertions |
3383 | * we try to propagate an assertion and modify the Cast tree if we can. |
3384 | * We pass in the root of the tree via 'stmt', for local copy prop 'stmt' |
3385 | * will be nullptr. |
3386 | * |
3387 | * Returns the modified tree, or nullptr if no assertion prop took place. |
3388 | */ |
3389 | GenTree* Compiler::optAssertionProp_Cast(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3390 | { |
3391 | assert(tree->gtOper == GT_CAST); |
3392 | |
3393 | var_types toType = tree->gtCast.gtCastType; |
3394 | GenTree* op1 = tree->gtCast.CastOp(); |
3395 | |
3396 | // If we have a cast involving floating point types, then bail. |
3397 | if (varTypeIsFloating(toType) || varTypeIsFloating(op1->TypeGet())) |
3398 | { |
3399 | return nullptr; |
3400 | } |
3401 | |
3402 | // Skip over a GT_COMMA node(s), if necessary to get to the lcl. |
3403 | GenTree* lcl = op1; |
3404 | while (lcl->gtOper == GT_COMMA) |
3405 | { |
3406 | lcl = lcl->gtOp.gtOp2; |
3407 | } |
3408 | |
3409 | // If we don't have a cast of a LCL_VAR then bail. |
3410 | if (lcl->gtOper != GT_LCL_VAR) |
3411 | { |
3412 | return nullptr; |
3413 | } |
3414 | |
3415 | AssertionIndex index = optAssertionIsSubrange(lcl, toType, assertions); |
3416 | if (index != NO_ASSERTION_INDEX) |
3417 | { |
3418 | LclVarDsc* varDsc = &lvaTable[lcl->gtLclVarCommon.gtLclNum]; |
3419 | if (varDsc->lvNormalizeOnLoad() || varTypeIsLong(varDsc->TypeGet())) |
3420 | { |
3421 | // For normalize on load variables it must be a narrowing cast to remove |
3422 | if (genTypeSize(toType) > genTypeSize(varDsc->TypeGet())) |
3423 | { |
3424 | // Can we just remove the GTF_OVERFLOW flag? |
3425 | if ((tree->gtFlags & GTF_OVERFLOW) == 0) |
3426 | { |
3427 | return nullptr; |
3428 | } |
3429 | else |
3430 | { |
3431 | |
3432 | #ifdef DEBUG |
3433 | if (verbose) |
3434 | { |
3435 | printf("\nSubrange prop for index #%02u in " FMT_BB ":\n" , index, compCurBB->bbNum); |
3436 | gtDispTree(tree, nullptr, nullptr, true); |
3437 | } |
3438 | #endif |
3439 | tree->gtFlags &= ~GTF_OVERFLOW; // This cast cannot overflow |
3440 | return optAssertionProp_Update(tree, tree, stmt); |
3441 | } |
3442 | } |
3443 | |
3444 | // GT_CAST long -> uint -> int |
3445 | // | |
3446 | // GT_LCL_VAR long |
3447 | // |
3448 | // Where the lclvar is known to be in the range of [0..MAX_UINT] |
3449 | // |
3450 | // A load of a 32-bit unsigned int is the same as a load of a 32-bit signed int |
3451 | // |
3452 | if (toType == TYP_UINT) |
3453 | { |
3454 | toType = TYP_INT; |
3455 | } |
3456 | |
3457 | // Change the "lcl" type to match what the cast wanted, by propagating the type |
3458 | // change down the comma nodes leading to the "lcl", if we skipped them earlier. |
3459 | GenTree* tmp = op1; |
3460 | while (tmp->gtOper == GT_COMMA) |
3461 | { |
3462 | tmp->gtType = toType; |
3463 | tmp = tmp->gtOp.gtOp2; |
3464 | } |
3465 | noway_assert(tmp == lcl); |
3466 | tmp->gtType = toType; |
3467 | } |
3468 | |
3469 | #ifdef DEBUG |
3470 | if (verbose) |
3471 | { |
3472 | printf("\nSubrange prop for index #%02u in " FMT_BB ":\n" , index, compCurBB->bbNum); |
3473 | gtDispTree(tree, nullptr, nullptr, true); |
3474 | } |
3475 | #endif |
3476 | return optAssertionProp_Update(op1, tree, stmt); |
3477 | } |
3478 | return nullptr; |
3479 | } |
3480 | |
3481 | /***************************************************************************** |
3482 | * |
3483 | * Given a tree with an array bounds check node, eliminate it because it was |
3484 | * checked already in the program. |
3485 | */ |
3486 | GenTree* Compiler::optAssertionProp_Comma(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3487 | { |
3488 | // Remove the bounds check as part of the GT_COMMA node since we need parent pointer to remove nodes. |
3489 | // When processing visits the bounds check, it sets the throw kind to None if the check is redundant. |
3490 | if ((tree->gtGetOp1()->OperGet() == GT_ARR_BOUNDS_CHECK) && |
3491 | ((tree->gtGetOp1()->gtFlags & GTF_ARR_BOUND_INBND) != 0)) |
3492 | { |
3493 | optRemoveRangeCheck(tree, stmt); |
3494 | return optAssertionProp_Update(tree, tree, stmt); |
3495 | } |
3496 | return nullptr; |
3497 | } |
3498 | |
3499 | /***************************************************************************** |
3500 | * |
3501 | * Given a tree consisting of a Ind and a set of available assertions, we try |
3502 | * to propagate an assertion and modify the Ind tree if we can. We pass in the |
3503 | * root of the tree via 'stmt', for local copy prop 'stmt' will be nullptr. |
3504 | * |
3505 | * Returns the modified tree, or nullptr if no assertion prop took place. |
3506 | * |
3507 | */ |
3508 | |
3509 | GenTree* Compiler::optAssertionProp_Ind(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3510 | { |
3511 | assert(tree->OperIsIndir()); |
3512 | |
3513 | if (!(tree->gtFlags & GTF_EXCEPT)) |
3514 | { |
3515 | return nullptr; |
3516 | } |
3517 | |
3518 | // Check for add of a constant. |
3519 | GenTree* op1 = tree->AsIndir()->Addr(); |
3520 | if ((op1->gtOper == GT_ADD) && (op1->gtOp.gtOp2->gtOper == GT_CNS_INT)) |
3521 | { |
3522 | op1 = op1->gtOp.gtOp1; |
3523 | } |
3524 | |
3525 | if (op1->gtOper != GT_LCL_VAR) |
3526 | { |
3527 | return nullptr; |
3528 | } |
3529 | |
3530 | unsigned lclNum = op1->gtLclVarCommon.gtLclNum; |
3531 | |
3532 | #ifdef DEBUG |
3533 | bool vnBased = false; |
3534 | AssertionIndex index = NO_ASSERTION_INDEX; |
3535 | #endif |
3536 | if (optAssertionIsNonNull(op1, assertions DEBUGARG(&vnBased) DEBUGARG(&index))) |
3537 | { |
3538 | #ifdef DEBUG |
3539 | if (verbose) |
3540 | { |
3541 | (vnBased) ? printf("\nVN based non-null prop in " FMT_BB ":\n" , compCurBB->bbNum) |
3542 | : printf("\nNon-null prop for index #%02u in " FMT_BB ":\n" , index, compCurBB->bbNum); |
3543 | gtDispTree(tree, nullptr, nullptr, true); |
3544 | } |
3545 | #endif |
3546 | tree->gtFlags &= ~GTF_EXCEPT; |
3547 | tree->gtFlags |= GTF_IND_NONFAULTING; |
3548 | |
3549 | // Set this flag to prevent reordering |
3550 | tree->gtFlags |= GTF_ORDER_SIDEEFF; |
3551 | |
3552 | return optAssertionProp_Update(tree, tree, stmt); |
3553 | } |
3554 | |
3555 | return nullptr; |
3556 | } |
3557 | |
3558 | /***************************************************************************** |
3559 | * Check if a non-null assertion can be made about the input operand "op" |
3560 | * from the set of "assertions," or implicitly from the value number on "op." |
3561 | * |
3562 | * Sets "pVnBased" if the assertion is value number based. If no matching |
3563 | * assertions are found from the table, then returns "NO_ASSERTION_INDEX." |
3564 | * |
3565 | * Note: If both VN and assertion table yield a matching assertion, "pVnBased" |
3566 | * is only set and the return value is "NO_ASSERTION_INDEX." |
3567 | */ |
3568 | bool Compiler::optAssertionIsNonNull(GenTree* op, |
3569 | ASSERT_VALARG_TP assertions DEBUGARG(bool* pVnBased) |
3570 | DEBUGARG(AssertionIndex* pIndex)) |
3571 | { |
3572 | bool vnBased = (!optLocalAssertionProp && vnStore->IsKnownNonNull(op->gtVNPair.GetConservative())); |
3573 | #ifdef DEBUG |
3574 | *pVnBased = vnBased; |
3575 | #endif |
3576 | |
3577 | if (vnBased) |
3578 | { |
3579 | #ifdef DEBUG |
3580 | *pIndex = NO_ASSERTION_INDEX; |
3581 | #endif |
3582 | return true; |
3583 | } |
3584 | |
3585 | AssertionIndex index = optAssertionIsNonNullInternal(op, assertions); |
3586 | #ifdef DEBUG |
3587 | *pIndex = index; |
3588 | #endif |
3589 | return index != NO_ASSERTION_INDEX; |
3590 | } |
3591 | |
3592 | /***************************************************************************** |
3593 | * Check if a non-null assertion can be made about the input operand "op" |
3594 | * from the set of "assertions." |
3595 | * |
3596 | */ |
3597 | AssertionIndex Compiler::optAssertionIsNonNullInternal(GenTree* op, ASSERT_VALARG_TP assertions) |
3598 | { |
3599 | // If local assertion prop use lcl comparison, else use VN comparison. |
3600 | if (!optLocalAssertionProp) |
3601 | { |
3602 | if (BitVecOps::MayBeUninit(assertions) || BitVecOps::IsEmpty(apTraits, assertions)) |
3603 | { |
3604 | return NO_ASSERTION_INDEX; |
3605 | } |
3606 | |
3607 | ValueNum vn = op->gtVNPair.GetConservative(); |
3608 | |
3609 | // Check each assertion to find if we have a vn == or != null assertion. |
3610 | BitVecOps::Iter iter(apTraits, assertions); |
3611 | unsigned index = 0; |
3612 | while (iter.NextElem(&index)) |
3613 | { |
3614 | AssertionIndex assertionIndex = GetAssertionIndex(index); |
3615 | if (assertionIndex > optAssertionCount) |
3616 | { |
3617 | break; |
3618 | } |
3619 | AssertionDsc* curAssertion = optGetAssertion(assertionIndex); |
3620 | if (curAssertion->assertionKind != OAK_NOT_EQUAL) |
3621 | { |
3622 | continue; |
3623 | } |
3624 | if (curAssertion->op1.vn != vn || curAssertion->op2.vn != ValueNumStore::VNForNull()) |
3625 | { |
3626 | continue; |
3627 | } |
3628 | return assertionIndex; |
3629 | } |
3630 | } |
3631 | else |
3632 | { |
3633 | unsigned lclNum = op->AsLclVarCommon()->GetLclNum(); |
3634 | // Check each assertion to find if we have a variable == or != null assertion. |
3635 | for (AssertionIndex index = 1; index <= optAssertionCount; index++) |
3636 | { |
3637 | AssertionDsc* curAssertion = optGetAssertion(index); |
3638 | if ((curAssertion->assertionKind == OAK_NOT_EQUAL) && // kind |
3639 | (curAssertion->op1.kind == O1K_LCLVAR) && // op1 |
3640 | (curAssertion->op2.kind == O2K_CONST_INT) && // op2 |
3641 | (curAssertion->op1.lcl.lclNum == lclNum) && (curAssertion->op2.u1.iconVal == 0)) |
3642 | { |
3643 | return index; |
3644 | } |
3645 | } |
3646 | } |
3647 | return NO_ASSERTION_INDEX; |
3648 | } |
3649 | /***************************************************************************** |
3650 | * |
3651 | * Given a tree consisting of a call and a set of available assertions, we |
3652 | * try to propagate a non-null assertion and modify the Call tree if we can. |
3653 | * Returns the modified tree, or nullptr if no assertion prop took place. |
3654 | * |
3655 | */ |
3656 | GenTree* Compiler::optNonNullAssertionProp_Call(ASSERT_VALARG_TP assertions, GenTreeCall* call, GenTree* stmt) |
3657 | { |
3658 | if ((call->gtFlags & GTF_CALL_NULLCHECK) == 0) |
3659 | { |
3660 | return nullptr; |
3661 | } |
3662 | GenTree* op1 = gtGetThisArg(call); |
3663 | noway_assert(op1 != nullptr); |
3664 | if (op1->gtOper != GT_LCL_VAR) |
3665 | { |
3666 | return nullptr; |
3667 | } |
3668 | |
3669 | #ifdef DEBUG |
3670 | bool vnBased = false; |
3671 | AssertionIndex index = NO_ASSERTION_INDEX; |
3672 | #endif |
3673 | if (optAssertionIsNonNull(op1, assertions DEBUGARG(&vnBased) DEBUGARG(&index))) |
3674 | { |
3675 | #ifdef DEBUG |
3676 | if (verbose) |
3677 | { |
3678 | (vnBased) ? printf("\nVN based non-null prop in " FMT_BB ":\n" , compCurBB->bbNum) |
3679 | : printf("\nNon-null prop for index #%02u in " FMT_BB ":\n" , index, compCurBB->bbNum); |
3680 | gtDispTree(call, nullptr, nullptr, true); |
3681 | } |
3682 | #endif |
3683 | call->gtFlags &= ~GTF_CALL_NULLCHECK; |
3684 | call->gtFlags &= ~GTF_EXCEPT; |
3685 | noway_assert(call->gtFlags & GTF_SIDE_EFFECT); |
3686 | return call; |
3687 | } |
3688 | return nullptr; |
3689 | } |
3690 | |
3691 | /***************************************************************************** |
3692 | * |
3693 | * Given a tree consisting of a call and a set of available assertions, we |
3694 | * try to propagate an assertion and modify the Call tree if we can. Our |
3695 | * current modifications are limited to removing the nullptrCHECK flag from |
3696 | * the call. |
3697 | * We pass in the root of the tree via 'stmt', for local copy prop 'stmt' |
3698 | * will be nullptr. Returns the modified tree, or nullptr if no assertion prop |
3699 | * took place. |
3700 | * |
3701 | */ |
3702 | |
3703 | GenTree* Compiler::optAssertionProp_Call(ASSERT_VALARG_TP assertions, GenTreeCall* call, GenTree* stmt) |
3704 | { |
3705 | if (optNonNullAssertionProp_Call(assertions, call, stmt)) |
3706 | { |
3707 | return optAssertionProp_Update(call, call, stmt); |
3708 | } |
3709 | else if (!optLocalAssertionProp && (call->gtCallType == CT_HELPER)) |
3710 | { |
3711 | if (call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_ISINSTANCEOFINTERFACE) || |
3712 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_ISINSTANCEOFARRAY) || |
3713 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_ISINSTANCEOFCLASS) || |
3714 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_ISINSTANCEOFANY) || |
3715 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_CHKCASTINTERFACE) || |
3716 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_CHKCASTARRAY) || |
3717 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_CHKCASTCLASS) || |
3718 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_CHKCASTANY) || |
3719 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_CHKCASTCLASS_SPECIAL)) |
3720 | { |
3721 | GenTree* arg1 = gtArgEntryByArgNum(call, 1)->node; |
3722 | if (arg1->gtOper != GT_LCL_VAR) |
3723 | { |
3724 | return nullptr; |
3725 | } |
3726 | |
3727 | GenTree* arg2 = gtArgEntryByArgNum(call, 0)->node; |
3728 | |
3729 | unsigned index = optAssertionIsSubtype(arg1, arg2, assertions); |
3730 | if (index != NO_ASSERTION_INDEX) |
3731 | { |
3732 | #ifdef DEBUG |
3733 | if (verbose) |
3734 | { |
3735 | printf("\nDid VN based subtype prop for index #%02u in " FMT_BB ":\n" , index, compCurBB->bbNum); |
3736 | gtDispTree(call, nullptr, nullptr, true); |
3737 | } |
3738 | #endif |
3739 | GenTree* list = nullptr; |
3740 | gtExtractSideEffList(call, &list, GTF_SIDE_EFFECT, true); |
3741 | if (list != nullptr) |
3742 | { |
3743 | arg1 = gtNewOperNode(GT_COMMA, call->TypeGet(), list, arg1); |
3744 | fgSetTreeSeq(arg1); |
3745 | } |
3746 | |
3747 | return optAssertionProp_Update(arg1, call, stmt); |
3748 | } |
3749 | } |
3750 | } |
3751 | |
3752 | return nullptr; |
3753 | } |
3754 | |
3755 | /***************************************************************************** |
3756 | * |
3757 | * Given a tree consisting of a comma node with a bounds check, remove any |
3758 | * redundant bounds check that has already been checked in the program flow. |
3759 | */ |
3760 | GenTree* Compiler::optAssertionProp_BndsChk(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3761 | { |
3762 | if (optLocalAssertionProp) |
3763 | { |
3764 | return nullptr; |
3765 | } |
3766 | |
3767 | assert(tree->gtOper == GT_ARR_BOUNDS_CHECK); |
3768 | |
3769 | #ifdef FEATURE_ENABLE_NO_RANGE_CHECKS |
3770 | if (JitConfig.JitNoRangeChks()) |
3771 | { |
3772 | #ifdef DEBUG |
3773 | if (verbose) |
3774 | { |
3775 | printf("\nFlagging check redundant due to JitNoRangeChks in " FMT_BB ":\n" , compCurBB->bbNum); |
3776 | gtDispTree(tree, nullptr, nullptr, true); |
3777 | } |
3778 | #endif // DEBUG |
3779 | tree->gtFlags |= GTF_ARR_BOUND_INBND; |
3780 | return nullptr; |
3781 | } |
3782 | #endif // FEATURE_ENABLE_NO_RANGE_CHECKS |
3783 | |
3784 | BitVecOps::Iter iter(apTraits, assertions); |
3785 | unsigned index = 0; |
3786 | while (iter.NextElem(&index)) |
3787 | { |
3788 | AssertionIndex assertionIndex = GetAssertionIndex(index); |
3789 | if (assertionIndex > optAssertionCount) |
3790 | { |
3791 | break; |
3792 | } |
3793 | // If it is not a nothrow assertion, skip. |
3794 | AssertionDsc* curAssertion = optGetAssertion(assertionIndex); |
3795 | if (!curAssertion->IsBoundsCheckNoThrow()) |
3796 | { |
3797 | continue; |
3798 | } |
3799 | |
3800 | GenTreeBoundsChk* arrBndsChk = tree->AsBoundsChk(); |
3801 | |
3802 | // Set 'isRedundant' to true if we can determine that 'arrBndsChk' can be |
3803 | // classified as a redundant bounds check using 'curAssertion' |
3804 | bool isRedundant = false; |
3805 | #ifdef DEBUG |
3806 | const char* dbgMsg = "Not Set" ; |
3807 | #endif |
3808 | |
3809 | // Do we have a previous range check involving the same 'vnLen' upper bound? |
3810 | if (curAssertion->op1.bnd.vnLen == vnStore->VNConservativeNormalValue(arrBndsChk->gtArrLen->gtVNPair)) |
3811 | { |
3812 | ValueNum vnCurIdx = vnStore->VNConservativeNormalValue(arrBndsChk->gtIndex->gtVNPair); |
3813 | |
3814 | // Do we have the exact same lower bound 'vnIdx'? |
3815 | // a[i] followed by a[i] |
3816 | if (curAssertion->op1.bnd.vnIdx == vnCurIdx) |
3817 | { |
3818 | isRedundant = true; |
3819 | #ifdef DEBUG |
3820 | dbgMsg = "a[i] followed by a[i]" ; |
3821 | #endif |
3822 | } |
3823 | // Are we using zero as the index? |
3824 | // It can always be considered as redundant with any previous value |
3825 | // a[*] followed by a[0] |
3826 | else if (vnCurIdx == vnStore->VNZeroForType(arrBndsChk->gtIndex->TypeGet())) |
3827 | { |
3828 | isRedundant = true; |
3829 | #ifdef DEBUG |
3830 | dbgMsg = "a[*] followed by a[0]" ; |
3831 | #endif |
3832 | } |
3833 | // Do we have two constant indexes? |
3834 | else if (vnStore->IsVNConstant(curAssertion->op1.bnd.vnIdx) && vnStore->IsVNConstant(vnCurIdx)) |
3835 | { |
3836 | // Make sure the types match. |
3837 | var_types type1 = vnStore->TypeOfVN(curAssertion->op1.bnd.vnIdx); |
3838 | var_types type2 = vnStore->TypeOfVN(vnCurIdx); |
3839 | |
3840 | if (type1 == type2 && type1 == TYP_INT) |
3841 | { |
3842 | int index1 = vnStore->ConstantValue<int>(curAssertion->op1.bnd.vnIdx); |
3843 | int index2 = vnStore->ConstantValue<int>(vnCurIdx); |
3844 | |
3845 | // the case where index1 == index2 should have been handled above |
3846 | assert(index1 != index2); |
3847 | |
3848 | // It can always be considered as redundant with any previous higher constant value |
3849 | // a[K1] followed by a[K2], with K2 >= 0 and K1 >= K2 |
3850 | if (index2 >= 0 && index1 >= index2) |
3851 | { |
3852 | isRedundant = true; |
3853 | #ifdef DEBUG |
3854 | dbgMsg = "a[K1] followed by a[K2], with K2 >= 0 and K1 >= K2" ; |
3855 | #endif |
3856 | } |
3857 | } |
3858 | } |
3859 | // Extend this to remove additional redundant bounds checks: |
3860 | // i.e. a[i+1] followed by a[i] by using the VN(i+1) >= VN(i) |
3861 | // a[i] followed by a[j] when j is known to be >= i |
3862 | // a[i] followed by a[5] when i is known to be >= 5 |
3863 | } |
3864 | |
3865 | if (!isRedundant) |
3866 | { |
3867 | continue; |
3868 | } |
3869 | |
3870 | #ifdef DEBUG |
3871 | if (verbose) |
3872 | { |
3873 | printf("\nVN based redundant (%s) bounds check assertion prop for index #%02u in " FMT_BB ":\n" , dbgMsg, |
3874 | assertionIndex, compCurBB->bbNum); |
3875 | gtDispTree(tree, nullptr, nullptr, true); |
3876 | } |
3877 | #endif |
3878 | |
3879 | // Defer actually removing the tree until processing reaches its parent comma, since |
3880 | // optRemoveRangeCheck needs to rewrite the whole comma tree. |
3881 | arrBndsChk->gtFlags |= GTF_ARR_BOUND_INBND; |
3882 | return nullptr; |
3883 | } |
3884 | return nullptr; |
3885 | } |
3886 | |
3887 | /***************************************************************************** |
3888 | * |
3889 | * Called when we have a successfully performed an assertion prop. We have |
3890 | * the newTree in hand. This method will replace the existing tree in the |
3891 | * stmt with the newTree. |
3892 | * |
3893 | */ |
3894 | |
3895 | GenTree* Compiler::optAssertionProp_Update(GenTree* newTree, GenTree* tree, GenTree* stmt) |
3896 | { |
3897 | noway_assert(newTree != nullptr); |
3898 | |
3899 | if (stmt == nullptr) |
3900 | { |
3901 | noway_assert(optLocalAssertionProp); |
3902 | } |
3903 | else |
3904 | { |
3905 | noway_assert(!optLocalAssertionProp); |
3906 | |
3907 | // If newTree == tree then we modified the tree in-place otherwise we have to |
3908 | // locate our parent node and update it so that it points to newTree |
3909 | if (newTree != tree) |
3910 | { |
3911 | GenTree** link = gtFindLink(stmt, tree); |
3912 | #ifdef DEBUG |
3913 | if (link == nullptr) |
3914 | { |
3915 | noway_assert(!"gtFindLink failed!" ); |
3916 | printf("\nCould not find parent of:\n" ); |
3917 | gtDispTree(tree); |
3918 | printf("\nIn this stmt:\n" ); |
3919 | gtDispTree(stmt); |
3920 | } |
3921 | #endif |
3922 | noway_assert(link != nullptr); |
3923 | noway_assert(tree != nullptr); |
3924 | if (link != nullptr) |
3925 | { |
3926 | // Replace the old operand with the newTree |
3927 | *link = newTree; |
3928 | |
3929 | // We only need to ensure that the gtNext field is set as it is used to traverse |
3930 | // to the next node in the tree. We will re-morph this entire statement in |
3931 | // optAssertionPropMain(). It will reset the gtPrev and gtNext links for all nodes. |
3932 | |
3933 | newTree->gtNext = tree->gtNext; |
3934 | } |
3935 | } |
3936 | } |
3937 | |
3938 | // Record that we propagated the assertion. |
3939 | optAssertionPropagated = true; |
3940 | optAssertionPropagatedCurrentStmt = true; |
3941 | |
3942 | return newTree; |
3943 | } |
3944 | |
3945 | /***************************************************************************** |
3946 | * |
3947 | * Given a tree and a set of available assertions we try to propagate an |
3948 | * assertion and modify 'tree' if we can. We pass in the root of the tree |
3949 | * via 'stmt', for local copy prop 'stmt' will be nullptr. |
3950 | * |
3951 | * Returns the modified tree, or nullptr if no assertion prop took place. |
3952 | */ |
3953 | |
3954 | GenTree* Compiler::optAssertionProp(ASSERT_VALARG_TP assertions, GenTree* tree, GenTree* stmt) |
3955 | { |
3956 | switch (tree->gtOper) |
3957 | { |
3958 | case GT_LCL_VAR: |
3959 | return optAssertionProp_LclVar(assertions, tree, stmt); |
3960 | |
3961 | case GT_OBJ: |
3962 | case GT_BLK: |
3963 | case GT_DYN_BLK: |
3964 | case GT_IND: |
3965 | case GT_NULLCHECK: |
3966 | return optAssertionProp_Ind(assertions, tree, stmt); |
3967 | |
3968 | case GT_ARR_BOUNDS_CHECK: |
3969 | return optAssertionProp_BndsChk(assertions, tree, stmt); |
3970 | |
3971 | case GT_COMMA: |
3972 | return optAssertionProp_Comma(assertions, tree, stmt); |
3973 | |
3974 | case GT_CAST: |
3975 | return optAssertionProp_Cast(assertions, tree, stmt); |
3976 | |
3977 | case GT_CALL: |
3978 | return optAssertionProp_Call(assertions, tree->AsCall(), stmt); |
3979 | |
3980 | case GT_EQ: |
3981 | case GT_NE: |
3982 | case GT_LT: |
3983 | case GT_LE: |
3984 | case GT_GT: |
3985 | case GT_GE: |
3986 | |
3987 | return optAssertionProp_RelOp(assertions, tree, stmt); |
3988 | |
3989 | default: |
3990 | return nullptr; |
3991 | } |
3992 | } |
3993 | |
3994 | //------------------------------------------------------------------------ |
3995 | // optImpliedAssertions: Given a tree node that makes an assertion this |
3996 | // method computes the set of implied assertions |
3997 | // that are also true. The updated assertions are |
3998 | // maintained on the Compiler object. |
3999 | // |
4000 | // Arguments: |
4001 | // assertionIndex : The id of the assertion. |
4002 | // activeAssertions : The assertions that are already true at this point. |
4003 | |
4004 | void Compiler::optImpliedAssertions(AssertionIndex assertionIndex, ASSERT_TP& activeAssertions) |
4005 | { |
4006 | noway_assert(!optLocalAssertionProp); |
4007 | noway_assert(assertionIndex != 0); |
4008 | noway_assert(assertionIndex <= optAssertionCount); |
4009 | |
4010 | AssertionDsc* curAssertion = optGetAssertion(assertionIndex); |
4011 | if (!BitVecOps::IsEmpty(apTraits, activeAssertions)) |
4012 | { |
4013 | const ASSERT_TP mappedAssertions = optGetVnMappedAssertions(curAssertion->op1.vn); |
4014 | if (mappedAssertions == nullptr) |
4015 | { |
4016 | return; |
4017 | } |
4018 | |
4019 | ASSERT_TP chkAssertions = BitVecOps::MakeCopy(apTraits, mappedAssertions); |
4020 | |
4021 | if (curAssertion->op2.kind == O2K_LCLVAR_COPY) |
4022 | { |
4023 | const ASSERT_TP op2Assertions = optGetVnMappedAssertions(curAssertion->op2.vn); |
4024 | if (op2Assertions != nullptr) |
4025 | { |
4026 | BitVecOps::UnionD(apTraits, chkAssertions, op2Assertions); |
4027 | } |
4028 | } |
4029 | BitVecOps::IntersectionD(apTraits, chkAssertions, activeAssertions); |
4030 | |
4031 | if (BitVecOps::IsEmpty(apTraits, chkAssertions)) |
4032 | { |
4033 | return; |
4034 | } |
4035 | |
4036 | // Check each assertion in chkAssertions to see if it can be applied to curAssertion |
4037 | BitVecOps::Iter chkIter(apTraits, chkAssertions); |
4038 | unsigned chkIndex = 0; |
4039 | while (chkIter.NextElem(&chkIndex)) |
4040 | { |
4041 | AssertionIndex chkAssertionIndex = GetAssertionIndex(chkIndex); |
4042 | if (chkAssertionIndex > optAssertionCount) |
4043 | { |
4044 | break; |
4045 | } |
4046 | if (chkAssertionIndex == assertionIndex) |
4047 | { |
4048 | continue; |
4049 | } |
4050 | |
4051 | // Determine which one is a copy assertion and use the other to check for implied assertions. |
4052 | AssertionDsc* iterAssertion = optGetAssertion(chkAssertionIndex); |
4053 | if (curAssertion->IsCopyAssertion()) |
4054 | { |
4055 | optImpliedByCopyAssertion(curAssertion, iterAssertion, activeAssertions); |
4056 | } |
4057 | else if (iterAssertion->IsCopyAssertion()) |
4058 | { |
4059 | optImpliedByCopyAssertion(iterAssertion, curAssertion, activeAssertions); |
4060 | } |
4061 | } |
4062 | } |
4063 | // Is curAssertion a constant assignment of a 32-bit integer? |
4064 | // (i.e GT_LVL_VAR X == GT_CNS_INT) |
4065 | else if ((curAssertion->assertionKind == OAK_EQUAL) && (curAssertion->op1.kind == O1K_LCLVAR) && |
4066 | (curAssertion->op2.kind == O2K_CONST_INT)) |
4067 | { |
4068 | optImpliedByConstAssertion(curAssertion, activeAssertions); |
4069 | } |
4070 | } |
4071 | |
4072 | /***************************************************************************** |
4073 | * |
4074 | * Given a set of active assertions this method computes the set |
4075 | * of non-Null implied assertions that are also true |
4076 | */ |
4077 | |
4078 | void Compiler::optImpliedByTypeOfAssertions(ASSERT_TP& activeAssertions) |
4079 | { |
4080 | if (BitVecOps::IsEmpty(apTraits, activeAssertions)) |
4081 | { |
4082 | return; |
4083 | } |
4084 | |
4085 | // Check each assertion in activeAssertions to see if it can be applied to constAssertion |
4086 | BitVecOps::Iter chkIter(apTraits, activeAssertions); |
4087 | unsigned chkIndex = 0; |
4088 | while (chkIter.NextElem(&chkIndex)) |
4089 | { |
4090 | AssertionIndex chkAssertionIndex = GetAssertionIndex(chkIndex); |
4091 | if (chkAssertionIndex > optAssertionCount) |
4092 | { |
4093 | break; |
4094 | } |
4095 | // chkAssertion must be Type/Subtype is equal assertion |
4096 | AssertionDsc* chkAssertion = optGetAssertion(chkAssertionIndex); |
4097 | if ((chkAssertion->op1.kind != O1K_SUBTYPE && chkAssertion->op1.kind != O1K_EXACT_TYPE) || |
4098 | (chkAssertion->assertionKind != OAK_EQUAL)) |
4099 | { |
4100 | continue; |
4101 | } |
4102 | |
4103 | // Search the assertion table for a non-null assertion on op1 that matches chkAssertion |
4104 | for (AssertionIndex impIndex = 1; impIndex <= optAssertionCount; impIndex++) |
4105 | { |
4106 | AssertionDsc* impAssertion = optGetAssertion(impIndex); |
4107 | |
4108 | // The impAssertion must be different from the chkAssertion |
4109 | if (impIndex == chkAssertionIndex) |
4110 | { |
4111 | continue; |
4112 | } |
4113 | |
4114 | // impAssertion must be a Non Null assertion on lclNum |
4115 | if ((impAssertion->assertionKind != OAK_NOT_EQUAL) || |
4116 | ((impAssertion->op1.kind != O1K_LCLVAR) && (impAssertion->op1.kind != O1K_VALUE_NUMBER)) || |
4117 | (impAssertion->op2.kind != O2K_CONST_INT) || (impAssertion->op1.vn != chkAssertion->op1.vn)) |
4118 | { |
4119 | continue; |
4120 | } |
4121 | |
4122 | // The bit may already be in the result set |
4123 | if (!BitVecOps::IsMember(apTraits, activeAssertions, impIndex - 1)) |
4124 | { |
4125 | BitVecOps::AddElemD(apTraits, activeAssertions, impIndex - 1); |
4126 | #ifdef DEBUG |
4127 | if (verbose) |
4128 | { |
4129 | printf("\nCompiler::optImpliedByTypeOfAssertions: %s Assertion #%02d, implies assertion #%02d" , |
4130 | (chkAssertion->op1.kind == O1K_SUBTYPE) ? "Subtype" : "Exact-type" , chkAssertionIndex, |
4131 | impIndex); |
4132 | } |
4133 | #endif |
4134 | } |
4135 | |
4136 | // There is at most one non-null assertion that is implied by the current chkIndex assertion |
4137 | break; |
4138 | } |
4139 | } |
4140 | } |
4141 | |
4142 | //------------------------------------------------------------------------ |
4143 | // optGetVnMappedAssertions: Given a value number, get the assertions |
4144 | // we have about the value number. |
4145 | // |
4146 | // Arguments: |
4147 | // vn - The given value number. |
4148 | // |
4149 | // Return Value: |
4150 | // The assertions we have about the value number. |
4151 | // |
4152 | |
4153 | ASSERT_VALRET_TP Compiler::optGetVnMappedAssertions(ValueNum vn) |
4154 | { |
4155 | ASSERT_TP set = BitVecOps::UninitVal(); |
4156 | if (optValueNumToAsserts->Lookup(vn, &set)) |
4157 | { |
4158 | return set; |
4159 | } |
4160 | return BitVecOps::UninitVal(); |
4161 | } |
4162 | |
4163 | /***************************************************************************** |
4164 | * |
4165 | * Given a const assertion this method computes the set of implied assertions |
4166 | * that are also true |
4167 | */ |
4168 | |
4169 | void Compiler::optImpliedByConstAssertion(AssertionDsc* constAssertion, ASSERT_TP& result) |
4170 | { |
4171 | noway_assert(constAssertion->assertionKind == OAK_EQUAL); |
4172 | noway_assert(constAssertion->op1.kind == O1K_LCLVAR); |
4173 | noway_assert(constAssertion->op2.kind == O2K_CONST_INT); |
4174 | |
4175 | ssize_t iconVal = constAssertion->op2.u1.iconVal; |
4176 | |
4177 | const ASSERT_TP chkAssertions = optGetVnMappedAssertions(constAssertion->op1.vn); |
4178 | if (chkAssertions == nullptr || BitVecOps::IsEmpty(apTraits, chkAssertions)) |
4179 | { |
4180 | return; |
4181 | } |
4182 | |
4183 | // Check each assertion in chkAssertions to see if it can be applied to constAssertion |
4184 | BitVecOps::Iter chkIter(apTraits, chkAssertions); |
4185 | unsigned chkIndex = 0; |
4186 | while (chkIter.NextElem(&chkIndex)) |
4187 | { |
4188 | AssertionIndex chkAssertionIndex = GetAssertionIndex(chkIndex); |
4189 | if (chkAssertionIndex > optAssertionCount) |
4190 | { |
4191 | break; |
4192 | } |
4193 | // The impAssertion must be different from the const assertion. |
4194 | AssertionDsc* impAssertion = optGetAssertion(chkAssertionIndex); |
4195 | if (impAssertion == constAssertion) |
4196 | { |
4197 | continue; |
4198 | } |
4199 | |
4200 | // The impAssertion must be an assertion about the same local var. |
4201 | if (impAssertion->op1.vn != constAssertion->op1.vn) |
4202 | { |
4203 | continue; |
4204 | } |
4205 | |
4206 | bool usable = false; |
4207 | switch (impAssertion->op2.kind) |
4208 | { |
4209 | case O2K_SUBRANGE: |
4210 | // Is the const assertion's constant, within implied assertion's bounds? |
4211 | usable = ((iconVal >= impAssertion->op2.u2.loBound) && (iconVal <= impAssertion->op2.u2.hiBound)); |
4212 | break; |
4213 | |
4214 | case O2K_CONST_INT: |
4215 | // Is the const assertion's constant equal/not equal to the implied assertion? |
4216 | usable = ((impAssertion->assertionKind == OAK_EQUAL) && (impAssertion->op2.u1.iconVal == iconVal)) || |
4217 | ((impAssertion->assertionKind == OAK_NOT_EQUAL) && (impAssertion->op2.u1.iconVal != iconVal)); |
4218 | break; |
4219 | |
4220 | default: |
4221 | // leave 'usable' = false; |
4222 | break; |
4223 | } |
4224 | |
4225 | if (usable) |
4226 | { |
4227 | BitVecOps::AddElemD(apTraits, result, chkIndex); |
4228 | #ifdef DEBUG |
4229 | if (verbose) |
4230 | { |
4231 | AssertionDsc* firstAssertion = optGetAssertion(1); |
4232 | printf("\nCompiler::optImpliedByConstAssertion: constAssertion #%02d , implies assertion #%02d" , |
4233 | (constAssertion - firstAssertion) + 1, (impAssertion - firstAssertion) + 1); |
4234 | } |
4235 | #endif |
4236 | } |
4237 | } |
4238 | } |
4239 | |
4240 | /***************************************************************************** |
4241 | * |
4242 | * Given a copy assertion and a dependent assertion this method computes the |
4243 | * set of implied assertions that are also true. |
4244 | * For copy assertions, exact SSA num and LCL nums should match, because |
4245 | * we don't have kill sets and we depend on their value num for dataflow. |
4246 | */ |
4247 | |
4248 | void Compiler::optImpliedByCopyAssertion(AssertionDsc* copyAssertion, AssertionDsc* depAssertion, ASSERT_TP& result) |
4249 | { |
4250 | noway_assert(copyAssertion->IsCopyAssertion()); |
4251 | |
4252 | // Get the copyAssert's lcl/ssa nums. |
4253 | unsigned copyAssertLclNum = BAD_VAR_NUM; |
4254 | unsigned copyAssertSsaNum = SsaConfig::RESERVED_SSA_NUM; |
4255 | |
4256 | // Check if copyAssertion's op1 or op2 matches the depAssertion's op1. |
4257 | if (depAssertion->op1.lcl.lclNum == copyAssertion->op1.lcl.lclNum) |
4258 | { |
4259 | copyAssertLclNum = copyAssertion->op2.lcl.lclNum; |
4260 | copyAssertSsaNum = copyAssertion->op2.lcl.ssaNum; |
4261 | } |
4262 | else if (depAssertion->op1.lcl.lclNum == copyAssertion->op2.lcl.lclNum) |
4263 | { |
4264 | copyAssertLclNum = copyAssertion->op1.lcl.lclNum; |
4265 | copyAssertSsaNum = copyAssertion->op1.lcl.ssaNum; |
4266 | } |
4267 | // Check if copyAssertion's op1 or op2 matches the depAssertion's op2. |
4268 | else if (depAssertion->op2.kind == O2K_LCLVAR_COPY) |
4269 | { |
4270 | if (depAssertion->op2.lcl.lclNum == copyAssertion->op1.lcl.lclNum) |
4271 | { |
4272 | copyAssertLclNum = copyAssertion->op2.lcl.lclNum; |
4273 | copyAssertSsaNum = copyAssertion->op2.lcl.ssaNum; |
4274 | } |
4275 | else if (depAssertion->op2.lcl.lclNum == copyAssertion->op2.lcl.lclNum) |
4276 | { |
4277 | copyAssertLclNum = copyAssertion->op1.lcl.lclNum; |
4278 | copyAssertSsaNum = copyAssertion->op1.lcl.ssaNum; |
4279 | } |
4280 | } |
4281 | |
4282 | if (copyAssertLclNum == BAD_VAR_NUM || copyAssertSsaNum == SsaConfig::RESERVED_SSA_NUM) |
4283 | { |
4284 | return; |
4285 | } |
4286 | |
4287 | // Get the depAssert's lcl/ssa nums. |
4288 | unsigned depAssertLclNum = BAD_VAR_NUM; |
4289 | unsigned depAssertSsaNum = SsaConfig::RESERVED_SSA_NUM; |
4290 | if ((depAssertion->op1.kind == O1K_LCLVAR) && (depAssertion->op2.kind == O2K_LCLVAR_COPY)) |
4291 | { |
4292 | if ((depAssertion->op1.lcl.lclNum == copyAssertion->op1.lcl.lclNum) || |
4293 | (depAssertion->op1.lcl.lclNum == copyAssertion->op2.lcl.lclNum)) |
4294 | { |
4295 | depAssertLclNum = depAssertion->op2.lcl.lclNum; |
4296 | depAssertSsaNum = depAssertion->op2.lcl.ssaNum; |
4297 | } |
4298 | else if ((depAssertion->op2.lcl.lclNum == copyAssertion->op1.lcl.lclNum) || |
4299 | (depAssertion->op2.lcl.lclNum == copyAssertion->op2.lcl.lclNum)) |
4300 | { |
4301 | depAssertLclNum = depAssertion->op1.lcl.lclNum; |
4302 | depAssertSsaNum = depAssertion->op1.lcl.ssaNum; |
4303 | } |
4304 | } |
4305 | |
4306 | if (depAssertLclNum == BAD_VAR_NUM || depAssertSsaNum == SsaConfig::RESERVED_SSA_NUM) |
4307 | { |
4308 | return; |
4309 | } |
4310 | |
4311 | // Is depAssertion a constant assignment of a 32-bit integer? |
4312 | // (i.e GT_LVL_VAR X == GT_CNS_INT) |
4313 | bool depIsConstAssertion = ((depAssertion->assertionKind == OAK_EQUAL) && (depAssertion->op1.kind == O1K_LCLVAR) && |
4314 | (depAssertion->op2.kind == O2K_CONST_INT)); |
4315 | |
4316 | // Search the assertion table for an assertion on op1 that matches depAssertion |
4317 | // The matching assertion is the implied assertion. |
4318 | for (AssertionIndex impIndex = 1; impIndex <= optAssertionCount; impIndex++) |
4319 | { |
4320 | AssertionDsc* impAssertion = optGetAssertion(impIndex); |
4321 | |
4322 | // The impAssertion must be different from the copy and dependent assertions |
4323 | if (impAssertion == copyAssertion || impAssertion == depAssertion) |
4324 | { |
4325 | continue; |
4326 | } |
4327 | |
4328 | if (!AssertionDsc::SameKind(depAssertion, impAssertion)) |
4329 | { |
4330 | continue; |
4331 | } |
4332 | |
4333 | bool op1MatchesCopy = |
4334 | (copyAssertLclNum == impAssertion->op1.lcl.lclNum) && (copyAssertSsaNum == impAssertion->op1.lcl.ssaNum); |
4335 | |
4336 | bool usable = false; |
4337 | switch (impAssertion->op2.kind) |
4338 | { |
4339 | case O2K_SUBRANGE: |
4340 | usable = op1MatchesCopy && ((impAssertion->op2.u2.loBound <= depAssertion->op2.u2.loBound) && |
4341 | (impAssertion->op2.u2.hiBound >= depAssertion->op2.u2.hiBound)); |
4342 | break; |
4343 | |
4344 | case O2K_CONST_LONG: |
4345 | usable = op1MatchesCopy && (impAssertion->op2.lconVal == depAssertion->op2.lconVal); |
4346 | break; |
4347 | |
4348 | case O2K_CONST_DOUBLE: |
4349 | // Exact memory match because of positive and negative zero |
4350 | usable = op1MatchesCopy && |
4351 | (memcmp(&impAssertion->op2.dconVal, &depAssertion->op2.dconVal, sizeof(double)) == 0); |
4352 | break; |
4353 | |
4354 | case O2K_IND_CNS_INT: |
4355 | // This is the ngen case where we have an indirection of an address. |
4356 | noway_assert((impAssertion->op1.kind == O1K_EXACT_TYPE) || (impAssertion->op1.kind == O1K_SUBTYPE)); |
4357 | |
4358 | __fallthrough; |
4359 | |
4360 | case O2K_CONST_INT: |
4361 | usable = op1MatchesCopy && (impAssertion->op2.u1.iconVal == depAssertion->op2.u1.iconVal); |
4362 | break; |
4363 | |
4364 | case O2K_LCLVAR_COPY: |
4365 | // Check if op1 of impAssertion matches copyAssertion and also op2 of impAssertion matches depAssertion. |
4366 | if (op1MatchesCopy && (depAssertLclNum == impAssertion->op2.lcl.lclNum && |
4367 | depAssertSsaNum == impAssertion->op2.lcl.ssaNum)) |
4368 | { |
4369 | usable = true; |
4370 | } |
4371 | else |
4372 | { |
4373 | // Otherwise, op2 of impAssertion should match copyAssertion and also op1 of impAssertion matches |
4374 | // depAssertion. |
4375 | usable = ((copyAssertLclNum == impAssertion->op2.lcl.lclNum && |
4376 | copyAssertSsaNum == impAssertion->op2.lcl.ssaNum) && |
4377 | (depAssertLclNum == impAssertion->op1.lcl.lclNum && |
4378 | depAssertSsaNum == impAssertion->op1.lcl.ssaNum)); |
4379 | } |
4380 | break; |
4381 | |
4382 | default: |
4383 | // leave 'usable' = false; |
4384 | break; |
4385 | } |
4386 | |
4387 | if (usable) |
4388 | { |
4389 | BitVecOps::AddElemD(apTraits, result, impIndex - 1); |
4390 | |
4391 | #ifdef DEBUG |
4392 | if (verbose) |
4393 | { |
4394 | AssertionDsc* firstAssertion = optGetAssertion(1); |
4395 | printf("\nCompiler::optImpliedByCopyAssertion: copyAssertion #%02d and depAssertion #%02d, implies " |
4396 | "assertion #%02d" , |
4397 | (copyAssertion - firstAssertion) + 1, (depAssertion - firstAssertion) + 1, |
4398 | (impAssertion - firstAssertion) + 1); |
4399 | } |
4400 | #endif |
4401 | // If the depAssertion is a const assertion then any other assertions that it implies could also imply a |
4402 | // subrange assertion. |
4403 | if (depIsConstAssertion) |
4404 | { |
4405 | optImpliedByConstAssertion(impAssertion, result); |
4406 | } |
4407 | } |
4408 | } |
4409 | } |
4410 | |
4411 | #include "dataflow.h" |
4412 | |
4413 | /***************************************************************************** |
4414 | * |
4415 | * Dataflow visitor like callback so that all dataflow is in a single place |
4416 | * |
4417 | */ |
4418 | class AssertionPropFlowCallback |
4419 | { |
4420 | private: |
4421 | ASSERT_TP preMergeOut; |
4422 | ASSERT_TP preMergeJumpDestOut; |
4423 | |
4424 | ASSERT_TP* mJumpDestOut; |
4425 | ASSERT_TP* mJumpDestGen; |
4426 | |
4427 | Compiler* m_pCompiler; |
4428 | BitVecTraits* apTraits; |
4429 | |
4430 | public: |
4431 | AssertionPropFlowCallback(Compiler* pCompiler, ASSERT_TP* jumpDestOut, ASSERT_TP* jumpDestGen) |
4432 | : preMergeOut(BitVecOps::UninitVal()) |
4433 | , preMergeJumpDestOut(BitVecOps::UninitVal()) |
4434 | , mJumpDestOut(jumpDestOut) |
4435 | , mJumpDestGen(jumpDestGen) |
4436 | , m_pCompiler(pCompiler) |
4437 | , apTraits(pCompiler->apTraits) |
4438 | { |
4439 | } |
4440 | |
4441 | // At the start of the merge function of the dataflow equations, initialize premerge state (to detect change.) |
4442 | void StartMerge(BasicBlock* block) |
4443 | { |
4444 | JITDUMP("AssertionPropCallback::StartMerge: " FMT_BB " in -> %s\n" , block->bbNum, |
4445 | BitVecOps::ToString(apTraits, block->bbAssertionIn)); |
4446 | BitVecOps::Assign(apTraits, preMergeOut, block->bbAssertionOut); |
4447 | BitVecOps::Assign(apTraits, preMergeJumpDestOut, mJumpDestOut[block->bbNum]); |
4448 | } |
4449 | |
4450 | // During merge, perform the actual merging of the predecessor's (since this is a forward analysis) dataflow flags. |
4451 | void Merge(BasicBlock* block, BasicBlock* predBlock, flowList* preds) |
4452 | { |
4453 | ASSERT_TP pAssertionOut = ((predBlock->bbJumpKind == BBJ_COND) && (predBlock->bbJumpDest == block)) |
4454 | ? mJumpDestOut[predBlock->bbNum] |
4455 | : predBlock->bbAssertionOut; |
4456 | JITDUMP("AssertionPropCallback::Merge : " FMT_BB " in -> %s, predBlock " FMT_BB " out -> %s\n" , |
4457 | block->bbNum, BitVecOps::ToString(apTraits, block->bbAssertionIn), predBlock->bbNum, |
4458 | BitVecOps::ToString(apTraits, predBlock->bbAssertionOut)); |
4459 | BitVecOps::IntersectionD(apTraits, block->bbAssertionIn, pAssertionOut); |
4460 | } |
4461 | |
4462 | // At the end of the merge store results of the dataflow equations, in a postmerge state. |
4463 | bool EndMerge(BasicBlock* block) |
4464 | { |
4465 | JITDUMP("AssertionPropCallback::EndMerge : " FMT_BB " in -> %s\n\n" , block->bbNum, |
4466 | BitVecOps::ToString(apTraits, block->bbAssertionIn)); |
4467 | |
4468 | BitVecOps::DataFlowD(apTraits, block->bbAssertionOut, block->bbAssertionGen, block->bbAssertionIn); |
4469 | BitVecOps::DataFlowD(apTraits, mJumpDestOut[block->bbNum], mJumpDestGen[block->bbNum], block->bbAssertionIn); |
4470 | |
4471 | bool changed = (!BitVecOps::Equal(apTraits, preMergeOut, block->bbAssertionOut) || |
4472 | !BitVecOps::Equal(apTraits, preMergeJumpDestOut, mJumpDestOut[block->bbNum])); |
4473 | |
4474 | if (changed) |
4475 | { |
4476 | JITDUMP("AssertionPropCallback::Changed : " FMT_BB " before out -> %s; after out -> %s;\n" |
4477 | "\t\tjumpDest before out -> %s; jumpDest after out -> %s;\n\n" , |
4478 | block->bbNum, BitVecOps::ToString(apTraits, preMergeOut), |
4479 | BitVecOps::ToString(apTraits, block->bbAssertionOut), |
4480 | BitVecOps::ToString(apTraits, preMergeJumpDestOut), |
4481 | BitVecOps::ToString(apTraits, mJumpDestOut[block->bbNum])); |
4482 | } |
4483 | else |
4484 | { |
4485 | JITDUMP("AssertionPropCallback::Unchanged : " FMT_BB " out -> %s; \t\tjumpDest out -> %s\n\n" , |
4486 | block->bbNum, BitVecOps::ToString(apTraits, block->bbAssertionOut), |
4487 | BitVecOps::ToString(apTraits, mJumpDestOut[block->bbNum])); |
4488 | } |
4489 | |
4490 | return changed; |
4491 | } |
4492 | }; |
4493 | |
4494 | /***************************************************************************** |
4495 | * |
4496 | * Compute the assertions generated by each block. |
4497 | */ |
4498 | ASSERT_TP* Compiler::optComputeAssertionGen() |
4499 | { |
4500 | ASSERT_TP* jumpDestGen = fgAllocateTypeForEachBlk<ASSERT_TP>(); |
4501 | |
4502 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
4503 | { |
4504 | ASSERT_TP valueGen = BitVecOps::MakeEmpty(apTraits); |
4505 | GenTree* jtrue = nullptr; |
4506 | |
4507 | // Walk the statement trees in this basic block. |
4508 | for (GenTree* stmt = block->bbTreeList; stmt; stmt = stmt->gtNext) |
4509 | { |
4510 | noway_assert(stmt->gtOper == GT_STMT); |
4511 | |
4512 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
4513 | { |
4514 | if (tree->gtOper == GT_JTRUE) |
4515 | { |
4516 | // A GT_TRUE is always the last node in a tree, so we can break here |
4517 | assert((tree->gtNext == nullptr) && (stmt->gtNext == nullptr)); |
4518 | jtrue = tree; |
4519 | break; |
4520 | } |
4521 | |
4522 | if (tree->GeneratesAssertion()) |
4523 | { |
4524 | AssertionInfo info = tree->GetAssertionInfo(); |
4525 | optImpliedAssertions(info.GetAssertionIndex(), valueGen); |
4526 | BitVecOps::AddElemD(apTraits, valueGen, info.GetAssertionIndex() - 1); |
4527 | } |
4528 | } |
4529 | } |
4530 | |
4531 | if (jtrue != nullptr) |
4532 | { |
4533 | // Copy whatever we have accumulated into jumpDest edge's valueGen. |
4534 | ASSERT_TP jumpDestValueGen = BitVecOps::MakeCopy(apTraits, valueGen); |
4535 | |
4536 | if (jtrue->GeneratesAssertion()) |
4537 | { |
4538 | AssertionInfo info = jtrue->GetAssertionInfo(); |
4539 | AssertionIndex valueAssertionIndex; |
4540 | AssertionIndex jumpDestAssertionIndex; |
4541 | |
4542 | if (info.IsNextEdgeAssertion()) |
4543 | { |
4544 | valueAssertionIndex = info.GetAssertionIndex(); |
4545 | jumpDestAssertionIndex = optFindComplementary(info.GetAssertionIndex()); |
4546 | } |
4547 | else // is jump edge assertion |
4548 | { |
4549 | valueAssertionIndex = optFindComplementary(info.GetAssertionIndex()); |
4550 | jumpDestAssertionIndex = info.GetAssertionIndex(); |
4551 | } |
4552 | |
4553 | if (valueAssertionIndex != NO_ASSERTION_INDEX) |
4554 | { |
4555 | // Update valueGen if we have an assertion for the bbNext edge |
4556 | optImpliedAssertions(valueAssertionIndex, valueGen); |
4557 | BitVecOps::AddElemD(apTraits, valueGen, valueAssertionIndex - 1); |
4558 | } |
4559 | |
4560 | if (jumpDestAssertionIndex != NO_ASSERTION_INDEX) |
4561 | { |
4562 | // Update jumpDestValueGen if we have an assertion for the bbJumpDest edge |
4563 | optImpliedAssertions(jumpDestAssertionIndex, jumpDestValueGen); |
4564 | BitVecOps::AddElemD(apTraits, jumpDestValueGen, jumpDestAssertionIndex - 1); |
4565 | } |
4566 | } |
4567 | |
4568 | jumpDestGen[block->bbNum] = jumpDestValueGen; |
4569 | } |
4570 | else |
4571 | { |
4572 | jumpDestGen[block->bbNum] = BitVecOps::MakeEmpty(apTraits); |
4573 | } |
4574 | |
4575 | block->bbAssertionGen = valueGen; |
4576 | |
4577 | #ifdef DEBUG |
4578 | if (verbose) |
4579 | { |
4580 | printf("\n" FMT_BB " valueGen = %s" , block->bbNum, BitVecOps::ToString(apTraits, block->bbAssertionGen)); |
4581 | if (block->bbJumpKind == BBJ_COND) |
4582 | { |
4583 | printf(" => " FMT_BB " valueGen = %s," , block->bbJumpDest->bbNum, |
4584 | BitVecOps::ToString(apTraits, jumpDestGen[block->bbNum])); |
4585 | } |
4586 | } |
4587 | #endif |
4588 | } |
4589 | return jumpDestGen; |
4590 | } |
4591 | |
4592 | /***************************************************************************** |
4593 | * |
4594 | * Initialize the assertion data flow flags that will be propagated. |
4595 | */ |
4596 | |
4597 | ASSERT_TP* Compiler::optInitAssertionDataflowFlags() |
4598 | { |
4599 | ASSERT_TP* jumpDestOut = fgAllocateTypeForEachBlk<ASSERT_TP>(); |
4600 | |
4601 | // The local assertion gen phase may have created unreachable blocks. |
4602 | // They will never be visited in the dataflow propagation phase, so they need to |
4603 | // be initialized correctly. This means that instead of setting their sets to |
4604 | // apFull (i.e. all possible bits set), we need to set the bits only for valid |
4605 | // assertions (note that at this point we are not creating any new assertions). |
4606 | // Also note that assertion indices start from 1. |
4607 | ASSERT_TP apValidFull = BitVecOps::MakeEmpty(apTraits); |
4608 | for (int i = 1; i <= optAssertionCount; i++) |
4609 | { |
4610 | BitVecOps::AddElemD(apTraits, apValidFull, i - 1); |
4611 | } |
4612 | |
4613 | // Initially estimate the OUT sets to everything except killed expressions |
4614 | // Also set the IN sets to 1, so that we can perform the intersection. |
4615 | // Also, zero-out the flags for handler blocks, as we could be in the |
4616 | // handler due to an exception bypassing the regular program flow which |
4617 | // actually generates assertions along the bbAssertionOut/jumpDestOut |
4618 | // edges. |
4619 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
4620 | { |
4621 | if (bbIsHandlerBeg(block)) |
4622 | { |
4623 | block->bbAssertionIn = BitVecOps::MakeEmpty(apTraits); |
4624 | } |
4625 | else |
4626 | { |
4627 | block->bbAssertionIn = BitVecOps::MakeCopy(apTraits, apValidFull); |
4628 | } |
4629 | block->bbAssertionGen = BitVecOps::MakeEmpty(apTraits); |
4630 | block->bbAssertionOut = BitVecOps::MakeCopy(apTraits, apValidFull); |
4631 | jumpDestOut[block->bbNum] = BitVecOps::MakeCopy(apTraits, apValidFull); |
4632 | } |
4633 | // Compute the data flow values for all tracked expressions |
4634 | // IN and OUT never change for the initial basic block B1 |
4635 | BitVecOps::ClearD(apTraits, fgFirstBB->bbAssertionIn); |
4636 | return jumpDestOut; |
4637 | } |
4638 | |
4639 | // Callback data for the VN based constant prop visitor. |
4640 | struct VNAssertionPropVisitorInfo |
4641 | { |
4642 | Compiler* pThis; |
4643 | GenTree* stmt; |
4644 | BasicBlock* block; |
4645 | VNAssertionPropVisitorInfo(Compiler* pThis, BasicBlock* block, GenTree* stmt) |
4646 | : pThis(pThis), stmt(stmt), block(block) |
4647 | { |
4648 | } |
4649 | }; |
4650 | |
4651 | //------------------------------------------------------------------------------ |
4652 | // optPrepareTreeForReplacement |
4653 | // Updates ref counts and extracts side effects from a tree so it can be |
4654 | // replaced with a comma separated list of side effects + a new tree. |
4655 | // |
4656 | // Note: |
4657 | // The old and new trees may be the same. In this case, the tree will be |
4658 | // appended to the side-effect list (if present) and returned. |
4659 | // |
4660 | // Arguments: |
4661 | // oldTree - The tree node to be dropped from the stmt expr. |
4662 | // newTree - The tree node to append to the side effect list from "oldTree". |
4663 | // |
4664 | // Return Value: |
4665 | // Returns a comma separated list of side-effects present in the "oldTree". |
4666 | // When "newTree" is non-null: |
4667 | // 1. When side-effects are present in oldTree, newTree will be appended to the |
4668 | // comma separated list. |
4669 | // 2. When no side effects are present, then returns the "newTree" without |
4670 | // any list. |
4671 | // When "newTree" is null: |
4672 | // 1. Returns the extracted side-effects from "oldTree" |
4673 | // 2. When no side-effects are present, returns null. |
4674 | // |
4675 | // Description: |
4676 | // Decrements ref counts for the "oldTree" that is going to be replaced. If there |
4677 | // are side effects in the tree, then ref counts for variables in the side effects |
4678 | // are incremented because they need to be kept in the stmt expr. |
4679 | // |
4680 | // Either the "newTree" is returned when no side effects are present or a comma |
4681 | // separated side effect list with "newTree" is returned. |
4682 | // |
4683 | GenTree* Compiler::optPrepareTreeForReplacement(GenTree* oldTree, GenTree* newTree) |
4684 | { |
4685 | // If we have side effects, extract them and append newTree to the list. |
4686 | GenTree* sideEffList = nullptr; |
4687 | if ((oldTree->gtFlags & GTF_SIDE_EFFECT) != 0) |
4688 | { |
4689 | bool ignoreRoot = false; |
4690 | |
4691 | if (oldTree == newTree) |
4692 | { |
4693 | // If the caller passed the same tree as both old and new then it means |
4694 | // that it expects that the root of the tree has no side effects and it |
4695 | // won't be extracted. Otherwise the resulting comma tree would be invalid, |
4696 | // having both op1 and op2 point to the same tree. |
4697 | // |
4698 | // Do a sanity check to ensure persistent side effects aren't discarded and |
4699 | // tell gtExtractSideEffList to ignore the root of the tree. |
4700 | assert(!gtNodeHasSideEffects(oldTree, GTF_PERSISTENT_SIDE_EFFECTS)); |
4701 | // |
4702 | // Exception side effects may be ignored if the root is known to be a constant |
4703 | // (e.g. VN may evaluate a DIV/MOD node to a constant and the node may still |
4704 | // have GTF_EXCEPT set, even if it does not actually throw any exceptions). |
4705 | assert(!gtNodeHasSideEffects(oldTree, GTF_EXCEPT) || |
4706 | vnStore->IsVNConstant(vnStore->VNConservativeNormalValue(oldTree->gtVNPair))); |
4707 | |
4708 | ignoreRoot = true; |
4709 | } |
4710 | |
4711 | gtExtractSideEffList(oldTree, &sideEffList, GTF_SIDE_EFFECT, ignoreRoot); |
4712 | } |
4713 | |
4714 | if (sideEffList != nullptr) |
4715 | { |
4716 | noway_assert((sideEffList->gtFlags & GTF_SIDE_EFFECT) != 0); |
4717 | |
4718 | if (newTree != nullptr) |
4719 | { |
4720 | newTree = gtNewOperNode(GT_COMMA, newTree->TypeGet(), sideEffList, newTree); |
4721 | } |
4722 | else |
4723 | { |
4724 | newTree = sideEffList; |
4725 | } |
4726 | } |
4727 | |
4728 | return newTree; |
4729 | } |
4730 | |
4731 | //------------------------------------------------------------------------------ |
4732 | // optVNConstantPropOnJTrue |
4733 | // Constant propagate on the JTrue node by extracting side effects and moving |
4734 | // them into their own statements. The relop node is then modified to yield |
4735 | // true or false, so the branch can be folded. |
4736 | // |
4737 | // Arguments: |
4738 | // block - The block that contains the JTrue. |
4739 | // stmt - The JTrue stmt which can be evaluated to a constant. |
4740 | // tree - The JTrue node whose relop evaluates to 0 or non-zero value. |
4741 | // |
4742 | // Return Value: |
4743 | // The jmpTrue tree node that has relop of the form "0 =/!= 0". |
4744 | // If "tree" evaluates to "true" relop is "0 == 0". Else relop is "0 != 0". |
4745 | // |
4746 | // Description: |
4747 | // Special treatment for JTRUE nodes' constant propagation. This is because |
4748 | // for JTRUE(1) or JTRUE(0), if there are side effects they need to be put |
4749 | // in separate statements. This is to prevent relop's constant |
4750 | // propagation from doing a simple minded conversion from |
4751 | // (1) STMT(JTRUE(RELOP(COMMA(sideEffect, OP1), OP2)), S.T. op1 =/!= op2 to |
4752 | // (2) STMT(JTRUE(COMMA(sideEffect, 1/0)). |
4753 | // |
4754 | // fgFoldConditional doesn't fold (2), a side-effecting JTRUE's op1. So, let us, |
4755 | // here, convert (1) as two statements: STMT(sideEffect), STMT(JTRUE(1/0)), |
4756 | // so that the JTRUE will get folded by fgFoldConditional. |
4757 | // |
4758 | // Note: fgFoldConditional is called from other places as well, which may be |
4759 | // sensitive to adding new statements. Hence the change is not made directly |
4760 | // into fgFoldConditional. |
4761 | // |
4762 | GenTree* Compiler::optVNConstantPropOnJTrue(BasicBlock* block, GenTree* stmt, GenTree* test) |
4763 | { |
4764 | GenTree* relop = test->gtGetOp1(); |
4765 | |
4766 | // VN based assertion non-null on this relop has been performed. |
4767 | if (!relop->OperIsCompare()) |
4768 | { |
4769 | return nullptr; |
4770 | } |
4771 | |
4772 | // |
4773 | // Make sure GTF_RELOP_JMP_USED flag is set so that we can later skip constant |
4774 | // prop'ing a JTRUE's relop child node for a second time in the pre-order |
4775 | // tree walk. |
4776 | // |
4777 | assert((relop->gtFlags & GTF_RELOP_JMP_USED) != 0); |
4778 | |
4779 | ValueNum vnCns = relop->gtVNPair.GetConservative(); |
4780 | ValueNum vnLib = relop->gtVNPair.GetLiberal(); |
4781 | if (!vnStore->IsVNConstant(vnCns)) |
4782 | { |
4783 | return nullptr; |
4784 | } |
4785 | |
4786 | // Prepare the tree for replacement so any side effects can be extracted. |
4787 | GenTree* sideEffList = optPrepareTreeForReplacement(test, nullptr); |
4788 | |
4789 | // Transform the relop's operands to be both zeroes. |
4790 | ValueNum vnZero = vnStore->VNZeroForType(TYP_INT); |
4791 | relop->gtOp.gtOp1 = gtNewIconNode(0); |
4792 | relop->gtOp.gtOp1->gtVNPair = ValueNumPair(vnZero, vnZero); |
4793 | relop->gtOp.gtOp2 = gtNewIconNode(0); |
4794 | relop->gtOp.gtOp2->gtVNPair = ValueNumPair(vnZero, vnZero); |
4795 | |
4796 | // Update the oper and restore the value numbers. |
4797 | bool evalsToTrue = (vnStore->CoercedConstantValue<INT64>(vnCns) != 0); |
4798 | relop->SetOper(evalsToTrue ? GT_EQ : GT_NE); |
4799 | relop->gtVNPair = ValueNumPair(vnLib, vnCns); |
4800 | |
4801 | // Insert side effects back after they were removed from the JTrue stmt. |
4802 | // It is important not to allow duplicates exist in the IR, that why we delete |
4803 | // these side effects from the JTrue stmt before insert them back here. |
4804 | while (sideEffList != nullptr) |
4805 | { |
4806 | GenTree* newStmt; |
4807 | if (sideEffList->OperGet() == GT_COMMA) |
4808 | { |
4809 | newStmt = fgInsertStmtNearEnd(block, sideEffList->gtGetOp1()); |
4810 | sideEffList = sideEffList->gtGetOp2(); |
4811 | } |
4812 | else |
4813 | { |
4814 | newStmt = fgInsertStmtNearEnd(block, sideEffList); |
4815 | sideEffList = nullptr; |
4816 | } |
4817 | // fgMorphBlockStmt could potentially affect stmts after the current one, |
4818 | // for example when it decides to fgRemoveRestOfBlock. |
4819 | fgMorphBlockStmt(block, newStmt->AsStmt() DEBUGARG(__FUNCTION__)); |
4820 | } |
4821 | |
4822 | return test; |
4823 | } |
4824 | |
4825 | //------------------------------------------------------------------------------ |
4826 | // optVNConstantPropCurStmt |
4827 | // Performs constant prop on the current statement's tree nodes. |
4828 | // |
4829 | // Assumption: |
4830 | // This function is called as part of a pre-order tree walk. |
4831 | // |
4832 | // Arguments: |
4833 | // tree - The currently visited tree node. |
4834 | // stmt - The statement node in which the "tree" is present. |
4835 | // block - The block that contains the statement that contains the tree. |
4836 | // |
4837 | // Return Value: |
4838 | // Returns the standard visitor walk result. |
4839 | // |
4840 | // Description: |
4841 | // Checks if a node is an R-value and evaluates to a constant. If the node |
4842 | // evaluates to constant, then the tree is replaced by its side effects and |
4843 | // the constant node. |
4844 | // |
4845 | Compiler::fgWalkResult Compiler::optVNConstantPropCurStmt(BasicBlock* block, GenTree* stmt, GenTree* tree) |
4846 | { |
4847 | // Don't propagate floating-point constants into a TYP_STRUCT LclVar |
4848 | // This can occur for HFA return values (see hfa_sf3E_r.exe) |
4849 | if (tree->TypeGet() == TYP_STRUCT) |
4850 | { |
4851 | return WALK_CONTINUE; |
4852 | } |
4853 | |
4854 | switch (tree->OperGet()) |
4855 | { |
4856 | // Make sure we have an R-value. |
4857 | case GT_ADD: |
4858 | case GT_SUB: |
4859 | case GT_DIV: |
4860 | case GT_MOD: |
4861 | case GT_UDIV: |
4862 | case GT_UMOD: |
4863 | case GT_EQ: |
4864 | case GT_NE: |
4865 | case GT_LT: |
4866 | case GT_LE: |
4867 | case GT_GE: |
4868 | case GT_GT: |
4869 | case GT_OR: |
4870 | case GT_XOR: |
4871 | case GT_AND: |
4872 | case GT_LSH: |
4873 | case GT_RSH: |
4874 | case GT_RSZ: |
4875 | case GT_NEG: |
4876 | case GT_CAST: |
4877 | case GT_INTRINSIC: |
4878 | break; |
4879 | |
4880 | case GT_MULHI: |
4881 | assert(false && "Unexpected GT_MULHI node encountered before lowering" ); |
4882 | break; |
4883 | |
4884 | case GT_JTRUE: |
4885 | break; |
4886 | |
4887 | case GT_MUL: |
4888 | // Don't transform long multiplies. |
4889 | if (tree->gtFlags & GTF_MUL_64RSLT) |
4890 | { |
4891 | return WALK_SKIP_SUBTREES; |
4892 | } |
4893 | break; |
4894 | |
4895 | case GT_LCL_VAR: |
4896 | // Make sure the local variable is an R-value. |
4897 | if ((tree->gtFlags & (GTF_VAR_DEF | GTF_DONT_CSE))) |
4898 | { |
4899 | return WALK_CONTINUE; |
4900 | } |
4901 | #if FEATURE_ANYCSE |
4902 | // Let's not conflict with CSE (to save the movw/movt). |
4903 | if (lclNumIsCSE(tree->AsLclVarCommon()->GetLclNum())) |
4904 | { |
4905 | return WALK_CONTINUE; |
4906 | } |
4907 | #endif |
4908 | break; |
4909 | |
4910 | default: |
4911 | // Unknown node, continue to walk. |
4912 | return WALK_CONTINUE; |
4913 | } |
4914 | |
4915 | // Perform the constant propagation |
4916 | GenTree* newTree = optVNConstantPropOnTree(block, stmt, tree); |
4917 | if (newTree == nullptr) |
4918 | { |
4919 | // Not propagated, keep going. |
4920 | return WALK_CONTINUE; |
4921 | } |
4922 | |
4923 | // Successful propagation, mark as assertion propagated and skip |
4924 | // sub-tree (with side-effects) visits. |
4925 | // TODO #18291: at that moment stmt could be already removed from the stmt list. |
4926 | |
4927 | optAssertionProp_Update(newTree, tree, stmt); |
4928 | |
4929 | JITDUMP("After constant propagation on [%06u]:\n" , tree->gtTreeID); |
4930 | DBEXEC(VERBOSE, gtDispTree(stmt)); |
4931 | |
4932 | return WALK_SKIP_SUBTREES; |
4933 | } |
4934 | |
4935 | //------------------------------------------------------------------------------ |
4936 | // optVnNonNullPropCurStmt |
4937 | // Performs VN based non-null propagation on the tree node. |
4938 | // |
4939 | // Assumption: |
4940 | // This function is called as part of a pre-order tree walk. |
4941 | // |
4942 | // Arguments: |
4943 | // block - The block that contains the statement that contains the tree. |
4944 | // stmt - The statement node in which the "tree" is present. |
4945 | // tree - The currently visited tree node. |
4946 | // |
4947 | // Return Value: |
4948 | // None. |
4949 | // |
4950 | // Description: |
4951 | // Performs value number based non-null propagation on GT_CALL and |
4952 | // indirections. This is different from flow based assertions and helps |
4953 | // unify VN based constant prop and non-null prop in a single pre-order walk. |
4954 | // |
4955 | void Compiler::optVnNonNullPropCurStmt(BasicBlock* block, GenTree* stmt, GenTree* tree) |
4956 | { |
4957 | ASSERT_TP empty = BitVecOps::UninitVal(); |
4958 | GenTree* newTree = nullptr; |
4959 | if (tree->OperGet() == GT_CALL) |
4960 | { |
4961 | newTree = optNonNullAssertionProp_Call(empty, tree->AsCall(), stmt); |
4962 | } |
4963 | else if (tree->OperIsIndir()) |
4964 | { |
4965 | newTree = optAssertionProp_Ind(empty, tree, stmt); |
4966 | } |
4967 | if (newTree) |
4968 | { |
4969 | assert(newTree == tree); |
4970 | optAssertionProp_Update(newTree, tree, stmt); |
4971 | } |
4972 | } |
4973 | |
4974 | //------------------------------------------------------------------------------ |
4975 | // optVNAssertionPropCurStmtVisitor |
4976 | // Unified Value Numbering based assertion propagation visitor. |
4977 | // |
4978 | // Assumption: |
4979 | // This function is called as part of a pre-order tree walk. |
4980 | // |
4981 | // Return Value: |
4982 | // WALK_RESULTs. |
4983 | // |
4984 | // Description: |
4985 | // An unified value numbering based assertion prop visitor that |
4986 | // performs non-null and constant assertion propagation based on |
4987 | // value numbers. |
4988 | // |
4989 | /* static */ |
4990 | Compiler::fgWalkResult Compiler::optVNAssertionPropCurStmtVisitor(GenTree** ppTree, fgWalkData* data) |
4991 | { |
4992 | VNAssertionPropVisitorInfo* pData = (VNAssertionPropVisitorInfo*)data->pCallbackData; |
4993 | Compiler* pThis = pData->pThis; |
4994 | |
4995 | pThis->optVnNonNullPropCurStmt(pData->block, pData->stmt, *ppTree); |
4996 | |
4997 | return pThis->optVNConstantPropCurStmt(pData->block, pData->stmt, *ppTree); |
4998 | } |
4999 | |
5000 | /***************************************************************************** |
5001 | * |
5002 | * Perform VN based i.e., data flow based assertion prop first because |
5003 | * even if we don't gen new control flow assertions, we still propagate |
5004 | * these first. |
5005 | * |
5006 | * Returns the skipped next stmt if the current statement or next few |
5007 | * statements got removed, else just returns the incoming stmt. |
5008 | */ |
5009 | GenTree* Compiler::optVNAssertionPropCurStmt(BasicBlock* block, GenTree* stmt) |
5010 | { |
5011 | // TODO-Review: EH successor/predecessor iteration seems broken. |
5012 | // See: SELF_HOST_TESTS_ARM\jit\Directed\ExcepFilters\fault\fault.exe |
5013 | if (block->bbCatchTyp == BBCT_FAULT) |
5014 | { |
5015 | return stmt; |
5016 | } |
5017 | |
5018 | // Preserve the prev link before the propagation and morph. |
5019 | GenTree* prev = (stmt == block->firstStmt()) ? nullptr : stmt->gtPrev; |
5020 | |
5021 | // Perform VN based assertion prop first, in case we don't find |
5022 | // anything in assertion gen. |
5023 | optAssertionPropagatedCurrentStmt = false; |
5024 | |
5025 | VNAssertionPropVisitorInfo data(this, block, stmt); |
5026 | fgWalkTreePre(&stmt->gtStmt.gtStmtExpr, Compiler::optVNAssertionPropCurStmtVisitor, &data); |
5027 | |
5028 | if (optAssertionPropagatedCurrentStmt) |
5029 | { |
5030 | fgMorphBlockStmt(block, stmt->AsStmt() DEBUGARG("optVNAssertionPropCurStmt" )); |
5031 | } |
5032 | |
5033 | // Check if propagation removed statements starting from current stmt. |
5034 | // If so, advance to the next good statement. |
5035 | GenTree* nextStmt = (prev == nullptr) ? block->firstStmt() : prev->gtNext; |
5036 | return nextStmt; |
5037 | } |
5038 | |
5039 | /***************************************************************************** |
5040 | * |
5041 | * The entry point for assertion propagation |
5042 | */ |
5043 | |
5044 | void Compiler::optAssertionPropMain() |
5045 | { |
5046 | if (fgSsaPassesCompleted == 0) |
5047 | { |
5048 | return; |
5049 | } |
5050 | #ifdef DEBUG |
5051 | if (verbose) |
5052 | { |
5053 | printf("*************** In optAssertionPropMain()\n" ); |
5054 | printf("Blocks/Trees at start of phase\n" ); |
5055 | fgDispBasicBlocks(true); |
5056 | } |
5057 | #endif |
5058 | |
5059 | optAssertionInit(false); |
5060 | |
5061 | noway_assert(optAssertionCount == 0); |
5062 | |
5063 | // First discover all value assignments and record them in the table. |
5064 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
5065 | { |
5066 | compCurBB = block; |
5067 | |
5068 | fgRemoveRestOfBlock = false; |
5069 | |
5070 | GenTree* stmt = block->bbTreeList; |
5071 | while (stmt) |
5072 | { |
5073 | // We need to remove the rest of the block. |
5074 | if (fgRemoveRestOfBlock) |
5075 | { |
5076 | fgRemoveStmt(block, stmt); |
5077 | stmt = stmt->gtNext; |
5078 | continue; |
5079 | } |
5080 | else |
5081 | { |
5082 | // Perform VN based assertion prop before assertion gen. |
5083 | GenTree* nextStmt = optVNAssertionPropCurStmt(block, stmt); |
5084 | |
5085 | // Propagation resulted in removal of the remaining stmts, perform it. |
5086 | if (fgRemoveRestOfBlock) |
5087 | { |
5088 | stmt = stmt->gtNext; |
5089 | continue; |
5090 | } |
5091 | |
5092 | // Propagation removed the current stmt or next few stmts, so skip them. |
5093 | if (stmt != nextStmt) |
5094 | { |
5095 | stmt = nextStmt; |
5096 | continue; |
5097 | } |
5098 | } |
5099 | |
5100 | // Perform assertion gen for control flow based assertions. |
5101 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
5102 | { |
5103 | optAssertionGen(tree); |
5104 | } |
5105 | |
5106 | // Advance the iterator |
5107 | stmt = stmt->gtNext; |
5108 | } |
5109 | } |
5110 | |
5111 | if (!optAssertionCount) |
5112 | { |
5113 | return; |
5114 | } |
5115 | |
5116 | #ifdef DEBUG |
5117 | fgDebugCheckLinks(); |
5118 | #endif |
5119 | |
5120 | // Allocate the bits for the predicate sensitive dataflow analysis |
5121 | bbJtrueAssertionOut = optInitAssertionDataflowFlags(); |
5122 | ASSERT_TP* jumpDestGen = optComputeAssertionGen(); |
5123 | |
5124 | // Modified dataflow algorithm for available expressions. |
5125 | DataFlow flow(this); |
5126 | AssertionPropFlowCallback ap(this, bbJtrueAssertionOut, jumpDestGen); |
5127 | flow.ForwardAnalysis(ap); |
5128 | |
5129 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
5130 | { |
5131 | // Compute any implied non-Null assertions for block->bbAssertionIn |
5132 | optImpliedByTypeOfAssertions(block->bbAssertionIn); |
5133 | } |
5134 | |
5135 | #ifdef DEBUG |
5136 | if (verbose) |
5137 | { |
5138 | printf("\n" ); |
5139 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
5140 | { |
5141 | printf("\n" FMT_BB, block->bbNum); |
5142 | printf(" valueIn = %s" , BitVecOps::ToString(apTraits, block->bbAssertionIn)); |
5143 | printf(" valueOut = %s" , BitVecOps::ToString(apTraits, block->bbAssertionOut)); |
5144 | if (block->bbJumpKind == BBJ_COND) |
5145 | { |
5146 | printf(" => " FMT_BB, block->bbJumpDest->bbNum); |
5147 | printf(" valueOut= %s" , BitVecOps::ToString(apTraits, bbJtrueAssertionOut[block->bbNum])); |
5148 | } |
5149 | } |
5150 | printf("\n" ); |
5151 | } |
5152 | #endif // DEBUG |
5153 | |
5154 | ASSERT_TP assertions = BitVecOps::MakeEmpty(apTraits); |
5155 | |
5156 | // Perform assertion propagation (and constant folding) |
5157 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
5158 | { |
5159 | BitVecOps::Assign(apTraits, assertions, block->bbAssertionIn); |
5160 | |
5161 | // TODO-Review: EH successor/predecessor iteration seems broken. |
5162 | // SELF_HOST_TESTS_ARM\jit\Directed\ExcepFilters\fault\fault.exe |
5163 | if (block->bbCatchTyp == BBCT_FAULT) |
5164 | { |
5165 | continue; |
5166 | } |
5167 | |
5168 | // Make the current basic block address available globally. |
5169 | compCurBB = block; |
5170 | fgRemoveRestOfBlock = false; |
5171 | |
5172 | // Walk the statement trees in this basic block |
5173 | GenTree* stmt = block->FirstNonPhiDef(); |
5174 | while (stmt) |
5175 | { |
5176 | noway_assert(stmt->gtOper == GT_STMT); |
5177 | |
5178 | // Propagation tells us to remove the rest of the block. Remove it. |
5179 | if (fgRemoveRestOfBlock) |
5180 | { |
5181 | fgRemoveStmt(block, stmt); |
5182 | stmt = stmt->gtNext; |
5183 | continue; |
5184 | } |
5185 | |
5186 | // Preserve the prev link before the propagation and morph, to check if propagation |
5187 | // removes the current stmt. |
5188 | GenTree* prev = (stmt == block->firstStmt()) ? nullptr : stmt->gtPrev; |
5189 | |
5190 | optAssertionPropagatedCurrentStmt = false; // set to true if a assertion propagation took place |
5191 | // and thus we must morph, set order, re-link |
5192 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
5193 | { |
5194 | if (tree->OperIs(GT_JTRUE)) |
5195 | { |
5196 | // A GT_TRUE is always the last node in a tree, so we can break here |
5197 | assert((tree->gtNext == nullptr) && (stmt->gtNext == nullptr)); |
5198 | break; |
5199 | } |
5200 | |
5201 | JITDUMP("Propagating %s assertions for " FMT_BB ", stmt [%06d], tree [%06d], tree -> %d\n" , |
5202 | BitVecOps::ToString(apTraits, assertions), block->bbNum, dspTreeID(stmt), dspTreeID(tree), |
5203 | tree->GetAssertionInfo().GetAssertionIndex()); |
5204 | |
5205 | GenTree* newTree = optAssertionProp(assertions, tree, stmt); |
5206 | if (newTree) |
5207 | { |
5208 | assert(optAssertionPropagatedCurrentStmt == true); |
5209 | tree = newTree; |
5210 | } |
5211 | |
5212 | // If this tree makes an assertion - make it available. |
5213 | if (tree->GeneratesAssertion()) |
5214 | { |
5215 | AssertionInfo info = tree->GetAssertionInfo(); |
5216 | optImpliedAssertions(info.GetAssertionIndex(), assertions); |
5217 | BitVecOps::AddElemD(apTraits, assertions, info.GetAssertionIndex() - 1); |
5218 | } |
5219 | } |
5220 | |
5221 | if (optAssertionPropagatedCurrentStmt) |
5222 | { |
5223 | #ifdef DEBUG |
5224 | if (verbose) |
5225 | { |
5226 | printf("Re-morphing this stmt:\n" ); |
5227 | gtDispTree(stmt); |
5228 | printf("\n" ); |
5229 | } |
5230 | #endif |
5231 | // Re-morph the statement. |
5232 | fgMorphBlockStmt(block, stmt->AsStmt() DEBUGARG("optAssertionPropMain" )); |
5233 | } |
5234 | |
5235 | // Check if propagation removed statements starting from current stmt. |
5236 | // If so, advance to the next good statement. |
5237 | GenTree* nextStmt = (prev == nullptr) ? block->firstStmt() : prev->gtNext; |
5238 | stmt = (stmt == nextStmt) ? stmt->gtNext : nextStmt; |
5239 | } |
5240 | optAssertionPropagatedCurrentStmt = false; // clear it back as we are done with stmts. |
5241 | } |
5242 | |
5243 | #ifdef DEBUG |
5244 | fgDebugCheckBBlist(); |
5245 | fgDebugCheckLinks(); |
5246 | #endif |
5247 | } |
5248 | |