| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX emitArm64.cpp XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | |
| 14 | #include "jitpch.h" |
| 15 | #ifdef _MSC_VER |
| 16 | #pragma hdrstop |
| 17 | #endif |
| 18 | |
| 19 | #if defined(_TARGET_ARM64_) |
| 20 | |
| 21 | /*****************************************************************************/ |
| 22 | /*****************************************************************************/ |
| 23 | |
| 24 | #include "instr.h" |
| 25 | #include "emit.h" |
| 26 | #include "codegen.h" |
| 27 | |
| 28 | /* static */ bool emitter::strictArmAsm = true; |
| 29 | |
| 30 | /*****************************************************************************/ |
| 31 | |
| 32 | const instruction emitJumpKindInstructions[] = { |
| 33 | INS_nop, |
| 34 | |
| 35 | #define JMP_SMALL(en, rev, ins) INS_##ins, |
| 36 | #include "emitjmps.h" |
| 37 | }; |
| 38 | |
| 39 | const emitJumpKind emitReverseJumpKinds[] = { |
| 40 | EJ_NONE, |
| 41 | |
| 42 | #define JMP_SMALL(en, rev, ins) EJ_##rev, |
| 43 | #include "emitjmps.h" |
| 44 | }; |
| 45 | |
| 46 | /***************************************************************************** |
| 47 | * Look up the instruction for a jump kind |
| 48 | */ |
| 49 | |
| 50 | /*static*/ instruction emitter::emitJumpKindToIns(emitJumpKind jumpKind) |
| 51 | { |
| 52 | assert((unsigned)jumpKind < ArrLen(emitJumpKindInstructions)); |
| 53 | return emitJumpKindInstructions[jumpKind]; |
| 54 | } |
| 55 | |
| 56 | /***************************************************************************** |
| 57 | * Look up the jump kind for an instruction. It better be a conditional |
| 58 | * branch instruction with a jump kind! |
| 59 | */ |
| 60 | |
| 61 | /*static*/ emitJumpKind emitter::emitInsToJumpKind(instruction ins) |
| 62 | { |
| 63 | for (unsigned i = 0; i < ArrLen(emitJumpKindInstructions); i++) |
| 64 | { |
| 65 | if (ins == emitJumpKindInstructions[i]) |
| 66 | { |
| 67 | emitJumpKind ret = (emitJumpKind)i; |
| 68 | assert(EJ_NONE < ret && ret < EJ_COUNT); |
| 69 | return ret; |
| 70 | } |
| 71 | } |
| 72 | unreached(); |
| 73 | } |
| 74 | |
| 75 | /***************************************************************************** |
| 76 | * Reverse the conditional jump |
| 77 | */ |
| 78 | |
| 79 | /*static*/ emitJumpKind emitter::emitReverseJumpKind(emitJumpKind jumpKind) |
| 80 | { |
| 81 | assert(jumpKind < EJ_COUNT); |
| 82 | return emitReverseJumpKinds[jumpKind]; |
| 83 | } |
| 84 | |
| 85 | /***************************************************************************** |
| 86 | * |
| 87 | * Return the allocated size (in bytes) of the given instruction descriptor. |
| 88 | */ |
| 89 | |
| 90 | size_t emitter::emitSizeOfInsDsc(instrDesc* id) |
| 91 | { |
| 92 | if (emitIsScnsInsDsc(id)) |
| 93 | return SMALL_IDSC_SIZE; |
| 94 | |
| 95 | assert((unsigned)id->idInsFmt() < emitFmtCount); |
| 96 | |
| 97 | ID_OPS idOp = (ID_OPS)emitFmtToOps[id->idInsFmt()]; |
| 98 | bool isCallIns = (id->idIns() == INS_bl) || (id->idIns() == INS_blr) || (id->idIns() == INS_b_tail) || |
| 99 | (id->idIns() == INS_br_tail); |
| 100 | bool maybeCallIns = (id->idIns() == INS_b) || (id->idIns() == INS_br); |
| 101 | |
| 102 | switch (idOp) |
| 103 | { |
| 104 | case ID_OP_NONE: |
| 105 | break; |
| 106 | |
| 107 | case ID_OP_JMP: |
| 108 | return sizeof(instrDescJmp); |
| 109 | |
| 110 | case ID_OP_CALL: |
| 111 | assert(isCallIns || maybeCallIns); |
| 112 | if (id->idIsLargeCall()) |
| 113 | { |
| 114 | /* Must be a "fat" call descriptor */ |
| 115 | return sizeof(instrDescCGCA); |
| 116 | } |
| 117 | else |
| 118 | { |
| 119 | assert(!id->idIsLargeDsp()); |
| 120 | assert(!id->idIsLargeCns()); |
| 121 | return sizeof(instrDesc); |
| 122 | } |
| 123 | break; |
| 124 | |
| 125 | default: |
| 126 | NO_WAY("unexpected instruction descriptor format" ); |
| 127 | break; |
| 128 | } |
| 129 | |
| 130 | if (id->idIsLargeCns()) |
| 131 | { |
| 132 | if (id->idIsLargeDsp()) |
| 133 | return sizeof(instrDescCnsDsp); |
| 134 | else |
| 135 | return sizeof(instrDescCns); |
| 136 | } |
| 137 | else |
| 138 | { |
| 139 | if (id->idIsLargeDsp()) |
| 140 | return sizeof(instrDescDsp); |
| 141 | else |
| 142 | return sizeof(instrDesc); |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | #ifdef DEBUG |
| 147 | /***************************************************************************** |
| 148 | * |
| 149 | * The following called for each recorded instruction -- use for debugging. |
| 150 | */ |
| 151 | void emitter::emitInsSanityCheck(instrDesc* id) |
| 152 | { |
| 153 | /* What instruction format have we got? */ |
| 154 | |
| 155 | switch (id->idInsFmt()) |
| 156 | { |
| 157 | instruction ins; |
| 158 | emitAttr elemsize; |
| 159 | emitAttr datasize; |
| 160 | emitAttr dstsize; |
| 161 | emitAttr srcsize; |
| 162 | ssize_t imm; |
| 163 | unsigned immShift; |
| 164 | ssize_t index; |
| 165 | ssize_t index2; |
| 166 | |
| 167 | case IF_BI_0A: // BI_0A ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
| 168 | break; |
| 169 | |
| 170 | case IF_BI_0B: // BI_0B ......iiiiiiiiii iiiiiiiiiiii.... simm19:00 |
| 171 | break; |
| 172 | |
| 173 | case IF_LARGEJMP: |
| 174 | case IF_LARGEADR: |
| 175 | case IF_LARGELDC: |
| 176 | break; |
| 177 | |
| 178 | case IF_BI_0C: // BI_0C ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
| 179 | break; |
| 180 | |
| 181 | case IF_BI_1A: // BI_1A ......iiiiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
| 182 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 183 | assert(isGeneralRegister(id->idReg1())); |
| 184 | break; |
| 185 | |
| 186 | case IF_BI_1B: // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
| 187 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 188 | assert(isGeneralRegister(id->idReg1())); |
| 189 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
| 190 | break; |
| 191 | |
| 192 | case IF_BR_1A: // BR_1A ................ ......nnnnn..... Rn |
| 193 | assert(isGeneralRegister(id->idReg1())); |
| 194 | break; |
| 195 | |
| 196 | case IF_BR_1B: // BR_1B ................ ......nnnnn..... Rn |
| 197 | assert(isGeneralRegister(id->idReg3())); |
| 198 | break; |
| 199 | |
| 200 | case IF_LS_1A: // LS_1A .X......iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
| 201 | assert(isGeneralRegister(id->idReg1()) || isVectorRegister(id->idReg1())); |
| 202 | assert(insOptsNone(id->idInsOpt())); |
| 203 | break; |
| 204 | |
| 205 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
| 206 | assert(isIntegerRegister(id->idReg1()) || // ZR |
| 207 | isVectorRegister(id->idReg1())); |
| 208 | assert(isIntegerRegister(id->idReg2())); // SP |
| 209 | assert(emitGetInsSC(id) == 0); |
| 210 | assert(insOptsNone(id->idInsOpt())); |
| 211 | break; |
| 212 | |
| 213 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
| 214 | assert(isIntegerRegister(id->idReg1()) || // ZR |
| 215 | isVectorRegister(id->idReg1())); |
| 216 | assert(isIntegerRegister(id->idReg2())); // SP |
| 217 | assert(isValidUimm12(emitGetInsSC(id))); |
| 218 | assert(insOptsNone(id->idInsOpt())); |
| 219 | break; |
| 220 | |
| 221 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiPPnnnnnttttt Rt Rn imm(-256..+255) no/pre/post inc |
| 222 | assert(isIntegerRegister(id->idReg1()) || // ZR |
| 223 | isVectorRegister(id->idReg1())); |
| 224 | assert(isIntegerRegister(id->idReg2())); // SP |
| 225 | assert(emitGetInsSC(id) >= -0x100); |
| 226 | assert(emitGetInsSC(id) < 0x100); |
| 227 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
| 228 | break; |
| 229 | |
| 230 | case IF_LS_3A: // LS_3A .X.......X.mmmmm oooS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
| 231 | assert(isIntegerRegister(id->idReg1()) || // ZR |
| 232 | isVectorRegister(id->idReg1())); |
| 233 | assert(isIntegerRegister(id->idReg2())); // SP |
| 234 | if (id->idIsLclVar()) |
| 235 | { |
| 236 | assert(isGeneralRegister(codeGen->rsGetRsvdReg())); |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | assert(isGeneralRegister(id->idReg3())); |
| 241 | } |
| 242 | assert(insOptsLSExtend(id->idInsOpt())); |
| 243 | break; |
| 244 | |
| 245 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnttttt Rt Ra Rn |
| 246 | assert((isValidGeneralDatasize(id->idOpSize()) && isIntegerRegister(id->idReg1())) || |
| 247 | (isValidVectorLSPDatasize(id->idOpSize()) && isVectorRegister(id->idReg1()))); |
| 248 | assert(isIntegerRegister(id->idReg1()) || // ZR |
| 249 | isVectorRegister(id->idReg1())); |
| 250 | assert(isIntegerRegister(id->idReg2()) || // ZR |
| 251 | isVectorRegister(id->idReg2())); |
| 252 | assert(isIntegerRegister(id->idReg3())); // SP |
| 253 | assert(emitGetInsSC(id) == 0); |
| 254 | assert(insOptsNone(id->idInsOpt())); |
| 255 | break; |
| 256 | |
| 257 | case IF_LS_3C: // LS_3C X.........iiiiii iaaaaannnnnttttt Rt Ra Rn imm(im7,sh) |
| 258 | assert((isValidGeneralDatasize(id->idOpSize()) && isIntegerRegister(id->idReg1())) || |
| 259 | (isValidVectorLSPDatasize(id->idOpSize()) && isVectorRegister(id->idReg1()))); |
| 260 | assert(isIntegerRegister(id->idReg1()) || // ZR |
| 261 | isVectorRegister(id->idReg1())); |
| 262 | assert(isIntegerRegister(id->idReg2()) || // ZR |
| 263 | isVectorRegister(id->idReg2())); |
| 264 | assert(isIntegerRegister(id->idReg3())); // SP |
| 265 | assert(emitGetInsSC(id) >= -0x40); |
| 266 | assert(emitGetInsSC(id) < 0x40); |
| 267 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
| 268 | break; |
| 269 | |
| 270 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
| 271 | assert(isIntegerRegister(id->idReg1())); |
| 272 | assert(isIntegerRegister(id->idReg2())); |
| 273 | assert(isIntegerRegister(id->idReg3())); |
| 274 | assert(emitGetInsSC(id) == 0); |
| 275 | assert(!id->idIsLclVar()); |
| 276 | assert(insOptsNone(id->idInsOpt())); |
| 277 | break; |
| 278 | |
| 279 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
| 280 | assert(isIntegerRegister(id->idReg1())); |
| 281 | assert(isIntegerRegister(id->idReg2())); |
| 282 | assert(isIntegerRegister(id->idReg3())); |
| 283 | assert(emitGetInsSC(id) == 0); |
| 284 | assert(!id->idIsLclVar()); |
| 285 | assert(insOptsNone(id->idInsOpt())); |
| 286 | break; |
| 287 | |
| 288 | case IF_DI_1A: // DI_1A X.......shiiiiii iiiiiinnnnn..... Rn imm(i12,sh) |
| 289 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 290 | assert(isGeneralRegister(id->idReg1())); |
| 291 | assert(isValidUimm12(emitGetInsSC(id))); |
| 292 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
| 293 | break; |
| 294 | |
| 295 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
| 296 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 297 | assert(isGeneralRegister(id->idReg1())); |
| 298 | assert(isValidImmHWVal(emitGetInsSC(id), id->idOpSize())); |
| 299 | break; |
| 300 | |
| 301 | case IF_DI_1C: // DI_1C X........Nrrrrrr ssssssnnnnn..... Rn imm(N,r,s) |
| 302 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 303 | assert(isGeneralRegister(id->idReg1())); |
| 304 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
| 305 | break; |
| 306 | |
| 307 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
| 308 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 309 | assert(isIntegerRegister(id->idReg1())); // SP |
| 310 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
| 311 | break; |
| 312 | |
| 313 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
| 314 | assert(isGeneralRegister(id->idReg1())); |
| 315 | break; |
| 316 | |
| 317 | case IF_DI_1F: // DI_1F X..........iiiii cccc..nnnnn.nzcv Rn imm5 nzcv cond |
| 318 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 319 | assert(isGeneralRegister(id->idReg1())); |
| 320 | assert(isValidImmCondFlagsImm5(emitGetInsSC(id))); |
| 321 | break; |
| 322 | |
| 323 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
| 324 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 325 | assert(isIntegerRegister(id->idReg1())); // SP |
| 326 | assert(isIntegerRegister(id->idReg2())); // SP |
| 327 | assert(isValidUimm12(emitGetInsSC(id))); |
| 328 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
| 329 | break; |
| 330 | |
| 331 | case IF_DI_2B: // DI_2B X.........Xnnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
| 332 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 333 | assert(isGeneralRegister(id->idReg1())); |
| 334 | assert(isGeneralRegister(id->idReg2())); |
| 335 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
| 336 | break; |
| 337 | |
| 338 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
| 339 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 340 | assert(isIntegerRegister(id->idReg1())); // SP |
| 341 | assert(isGeneralRegister(id->idReg2())); |
| 342 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
| 343 | break; |
| 344 | |
| 345 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, imms (N,r,s) |
| 346 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 347 | assert(isGeneralRegister(id->idReg1())); |
| 348 | assert(isGeneralRegister(id->idReg2())); |
| 349 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
| 350 | break; |
| 351 | |
| 352 | case IF_DR_1D: // DR_1D X............... cccc.......ddddd Rd cond |
| 353 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 354 | assert(isGeneralRegister(id->idReg1())); |
| 355 | assert(isValidImmCond(emitGetInsSC(id))); |
| 356 | break; |
| 357 | |
| 358 | case IF_DR_2A: // DR_2A X..........mmmmm ......nnnnn..... Rn Rm |
| 359 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 360 | assert(isGeneralRegister(id->idReg1())); |
| 361 | assert(isGeneralRegister(id->idReg2())); |
| 362 | break; |
| 363 | |
| 364 | case IF_DR_2B: // DR_2B X.......sh.mmmmm ssssssnnnnn..... Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
| 365 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 366 | assert(isIntegerRegister(id->idReg1())); // ZR |
| 367 | assert(isGeneralRegister(id->idReg2())); |
| 368 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
| 369 | if (!insOptsNone(id->idInsOpt())) |
| 370 | { |
| 371 | if (id->idIns() == INS_tst) // tst allows ROR, cmp/cmn don't |
| 372 | { |
| 373 | assert(insOptsAnyShift(id->idInsOpt())); |
| 374 | } |
| 375 | else |
| 376 | { |
| 377 | assert(insOptsAluShift(id->idInsOpt())); |
| 378 | } |
| 379 | } |
| 380 | assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0)); |
| 381 | break; |
| 382 | |
| 383 | case IF_DR_2C: // DR_2C X..........mmmmm ooosssnnnnn..... Rn Rm ext(Rm) LSL imm(0-4) |
| 384 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 385 | assert(isIntegerRegister(id->idReg1())); // SP |
| 386 | assert(isGeneralRegister(id->idReg2())); |
| 387 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL(id->idInsOpt()) || insOptsAnyExtend(id->idInsOpt())); |
| 388 | assert(emitGetInsSC(id) >= 0); |
| 389 | assert(emitGetInsSC(id) <= 4); |
| 390 | if (insOptsLSL(id->idInsOpt())) |
| 391 | { |
| 392 | assert(emitGetInsSC(id) > 0); |
| 393 | } |
| 394 | break; |
| 395 | |
| 396 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnmmmmm Rd Rn cond |
| 397 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 398 | assert(isGeneralRegister(id->idReg1())); |
| 399 | assert(isGeneralRegister(id->idReg2())); |
| 400 | assert(isValidImmCond(emitGetInsSC(id))); |
| 401 | break; |
| 402 | |
| 403 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
| 404 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 405 | assert(isGeneralRegister(id->idReg1())); |
| 406 | assert(isIntegerRegister(id->idReg2())); // ZR |
| 407 | break; |
| 408 | |
| 409 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
| 410 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 411 | assert(isGeneralRegister(id->idReg1())); |
| 412 | assert(isGeneralRegister(id->idReg2())); |
| 413 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
| 414 | assert(insOptsNone(id->idInsOpt()) || insOptsAluShift(id->idInsOpt())); |
| 415 | assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0)); |
| 416 | break; |
| 417 | |
| 418 | case IF_DR_2G: // DR_2G X............... ......nnnnnddddd Rd Rm |
| 419 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 420 | assert(isIntegerRegister(id->idReg1())); // SP |
| 421 | assert(isIntegerRegister(id->idReg2())); // SP |
| 422 | break; |
| 423 | |
| 424 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
| 425 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 426 | assert(isGeneralRegister(id->idReg1())); |
| 427 | assert(isGeneralRegister(id->idReg2())); |
| 428 | break; |
| 429 | |
| 430 | case IF_DR_2I: // DR_2I X..........mmmmm cccc..nnnnn.nzcv Rn Rm nzcv cond |
| 431 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 432 | assert(isGeneralRegister(id->idReg1())); |
| 433 | assert(isGeneralRegister(id->idReg2())); |
| 434 | assert(isValidImmCondFlags(emitGetInsSC(id))); |
| 435 | break; |
| 436 | |
| 437 | case IF_DR_2J: // DR_2J ................ ......nnnnnddddd Sd Sn (sha1h) |
| 438 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 439 | assert(isVectorRegister(id->idReg1())); |
| 440 | assert(isVectorRegister(id->idReg2())); |
| 441 | break; |
| 442 | |
| 443 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnmmmmm Rd Rn Rm |
| 444 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 445 | assert(isIntegerRegister(id->idReg1())); // SP |
| 446 | assert(isIntegerRegister(id->idReg2())); // SP |
| 447 | if (id->idIsLclVar()) |
| 448 | { |
| 449 | assert(isGeneralRegister(codeGen->rsGetRsvdReg())); |
| 450 | } |
| 451 | else |
| 452 | { |
| 453 | assert(isGeneralRegister(id->idReg3())); |
| 454 | } |
| 455 | assert(insOptsNone(id->idInsOpt())); |
| 456 | break; |
| 457 | |
| 458 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
| 459 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 460 | assert(isGeneralRegister(id->idReg1())); |
| 461 | assert(isGeneralRegister(id->idReg2())); |
| 462 | assert(isGeneralRegister(id->idReg3())); |
| 463 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
| 464 | assert(insOptsNone(id->idInsOpt()) || insOptsAnyShift(id->idInsOpt())); |
| 465 | assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0)); |
| 466 | break; |
| 467 | |
| 468 | case IF_DR_3C: // DR_3C X..........mmmmm ooosssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
| 469 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 470 | assert(isIntegerRegister(id->idReg1())); // SP |
| 471 | assert(isIntegerRegister(id->idReg2())); // SP |
| 472 | assert(isGeneralRegister(id->idReg3())); |
| 473 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL(id->idInsOpt()) || insOptsAnyExtend(id->idInsOpt())); |
| 474 | assert(emitGetInsSC(id) >= 0); |
| 475 | assert(emitGetInsSC(id) <= 4); |
| 476 | if (insOptsLSL(id->idInsOpt())) |
| 477 | { |
| 478 | assert((emitGetInsSC(id) > 0) || |
| 479 | (id->idReg2() == REG_ZR)); // REG_ZR encodes SP and we allow a shift of zero |
| 480 | } |
| 481 | break; |
| 482 | |
| 483 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnmmmmm Rd Rn Rm cond |
| 484 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 485 | assert(isGeneralRegister(id->idReg1())); |
| 486 | assert(isGeneralRegister(id->idReg2())); |
| 487 | assert(isGeneralRegister(id->idReg3())); |
| 488 | assert(isValidImmCond(emitGetInsSC(id))); |
| 489 | break; |
| 490 | |
| 491 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
| 492 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 493 | assert(isGeneralRegister(id->idReg1())); |
| 494 | assert(isGeneralRegister(id->idReg2())); |
| 495 | assert(isGeneralRegister(id->idReg3())); |
| 496 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
| 497 | assert(insOptsNone(id->idInsOpt())); |
| 498 | break; |
| 499 | |
| 500 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnddddd Rd Rn Rm Ra |
| 501 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 502 | assert(isGeneralRegister(id->idReg1())); |
| 503 | assert(isGeneralRegister(id->idReg2())); |
| 504 | assert(isGeneralRegister(id->idReg3())); |
| 505 | assert(isGeneralRegister(id->idReg4())); |
| 506 | break; |
| 507 | |
| 508 | case IF_DV_1A: // DV_1A .........X.iiiii iii........ddddd Vd imm8 (fmov - immediate scalar) |
| 509 | assert(insOptsNone(id->idInsOpt())); |
| 510 | elemsize = id->idOpSize(); |
| 511 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 512 | assert(isVectorRegister(id->idReg1())); |
| 513 | assert(isValidUimm8(emitGetInsSC(id))); |
| 514 | break; |
| 515 | |
| 516 | case IF_DV_1B: // DV_1B .QX..........iii cmod..iiiiiddddd Vd imm8 (immediate vector) |
| 517 | ins = id->idIns(); |
| 518 | imm = emitGetInsSC(id) & 0x0ff; |
| 519 | immShift = (emitGetInsSC(id) & 0x700) >> 8; |
| 520 | assert(immShift >= 0); |
| 521 | datasize = id->idOpSize(); |
| 522 | assert(isValidVectorDatasize(datasize)); |
| 523 | assert(isValidArrangement(datasize, id->idInsOpt())); |
| 524 | elemsize = optGetElemsize(id->idInsOpt()); |
| 525 | if (ins == INS_fmov) |
| 526 | { |
| 527 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 528 | assert(id->idInsOpt() != INS_OPTS_1D); // Reserved encoding |
| 529 | assert(immShift == 0); |
| 530 | } |
| 531 | else |
| 532 | { |
| 533 | assert(isValidVectorElemsize(elemsize)); |
| 534 | assert((immShift != 4) && (immShift != 7)); // always invalid values |
| 535 | if (ins != INS_movi) // INS_mvni, INS_orr, INS_bic |
| 536 | { |
| 537 | assert((elemsize != EA_1BYTE) && (elemsize != EA_8BYTE)); // only H or S |
| 538 | if (elemsize == EA_2BYTE) |
| 539 | { |
| 540 | assert(immShift < 2); |
| 541 | } |
| 542 | else // (elemsize == EA_4BYTE) |
| 543 | { |
| 544 | if (ins != INS_mvni) |
| 545 | { |
| 546 | assert(immShift < 4); |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | } |
| 551 | assert(isVectorRegister(id->idReg1())); |
| 552 | assert(isValidUimm8(imm)); |
| 553 | break; |
| 554 | |
| 555 | case IF_DV_1C: // DV_1C .........X...... ......nnnnn..... Vn #0.0 (fcmp - with zero) |
| 556 | assert(insOptsNone(id->idInsOpt())); |
| 557 | elemsize = id->idOpSize(); |
| 558 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 559 | assert(isVectorRegister(id->idReg1())); |
| 560 | break; |
| 561 | |
| 562 | case IF_DV_2A: // DV_2A .Q.......X...... ......nnnnnddddd Vd Vn (fabs, fcvt - vector) |
| 563 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
| 564 | case IF_DV_2P: // DV_2P ................ ......nnnnnddddd Vd Vn (aes*, sha1su1) |
| 565 | assert(isValidVectorDatasize(id->idOpSize())); |
| 566 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 567 | assert(isVectorRegister(id->idReg1())); |
| 568 | assert(isVectorRegister(id->idReg2())); |
| 569 | break; |
| 570 | |
| 571 | case IF_DV_2N: // DV_2N .........iiiiiii ......nnnnnddddd Vd Vn imm (shift - scalar) |
| 572 | assert(id->idOpSize() == EA_8BYTE); |
| 573 | assert(insOptsNone(id->idInsOpt())); |
| 574 | assert(isVectorRegister(id->idReg1())); |
| 575 | assert(isVectorRegister(id->idReg2())); |
| 576 | assert(isValidImmShift(emitGetInsSC(id), EA_8BYTE)); |
| 577 | break; |
| 578 | |
| 579 | case IF_DV_2O: // DV_2O .Q.......iiiiiii ......nnnnnddddd Vd Vn imm (shift - vector) |
| 580 | assert(isValidVectorDatasize(id->idOpSize())); |
| 581 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 582 | assert(isVectorRegister(id->idReg1())); |
| 583 | assert(isVectorRegister(id->idReg2())); |
| 584 | elemsize = optGetElemsize(id->idInsOpt()); |
| 585 | assert(isValidImmShift(emitGetInsSC(id), elemsize)); |
| 586 | break; |
| 587 | |
| 588 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov/smov - to general) |
| 589 | elemsize = id->idOpSize(); |
| 590 | index = emitGetInsSC(id); |
| 591 | assert(insOptsNone(id->idInsOpt())); |
| 592 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index)); |
| 593 | assert(isValidVectorElemsize(elemsize)); |
| 594 | assert(isGeneralRegister(id->idReg1())); |
| 595 | assert(isVectorRegister(id->idReg2())); |
| 596 | break; |
| 597 | |
| 598 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
| 599 | if (id->idIns() == INS_dup) |
| 600 | { |
| 601 | datasize = id->idOpSize(); |
| 602 | assert(isValidVectorDatasize(datasize)); |
| 603 | assert(isValidArrangement(datasize, id->idInsOpt())); |
| 604 | elemsize = optGetElemsize(id->idInsOpt()); |
| 605 | } |
| 606 | else // INS_ins |
| 607 | { |
| 608 | datasize = EA_16BYTE; |
| 609 | elemsize = id->idOpSize(); |
| 610 | assert(isValidVectorElemsize(elemsize)); |
| 611 | } |
| 612 | assert(isVectorRegister(id->idReg1())); |
| 613 | assert(isGeneralRegisterOrZR(id->idReg2())); |
| 614 | break; |
| 615 | |
| 616 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
| 617 | datasize = id->idOpSize(); |
| 618 | assert(isValidVectorDatasize(datasize)); |
| 619 | assert(isValidArrangement(datasize, id->idInsOpt())); |
| 620 | elemsize = optGetElemsize(id->idInsOpt()); |
| 621 | index = emitGetInsSC(id); |
| 622 | assert(isValidVectorIndex(datasize, elemsize, index)); |
| 623 | assert(isVectorRegister(id->idReg1())); |
| 624 | assert(isVectorRegister(id->idReg2())); |
| 625 | break; |
| 626 | |
| 627 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
| 628 | elemsize = id->idOpSize(); |
| 629 | index = emitGetInsSC(id); |
| 630 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index)); |
| 631 | assert(isValidVectorElemsize(elemsize)); |
| 632 | assert(isVectorRegister(id->idReg1())); |
| 633 | assert(isVectorRegister(id->idReg2())); |
| 634 | break; |
| 635 | |
| 636 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
| 637 | imm = emitGetInsSC(id); |
| 638 | index = (imm >> 4) & 0xf; |
| 639 | index2 = imm & 0xf; |
| 640 | elemsize = id->idOpSize(); |
| 641 | assert(isValidVectorElemsize(elemsize)); |
| 642 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index)); |
| 643 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index2)); |
| 644 | assert(isVectorRegister(id->idReg1())); |
| 645 | assert(isVectorRegister(id->idReg2())); |
| 646 | break; |
| 647 | |
| 648 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
| 649 | assert(id->idOpSize() == EA_8BYTE); // only type D is supported |
| 650 | __fallthrough; |
| 651 | |
| 652 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov, fcvtXX - register) |
| 653 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
| 654 | assert(insOptsNone(id->idInsOpt())); |
| 655 | assert(isValidVectorElemsizeFloat(id->idOpSize())); |
| 656 | assert(isVectorRegister(id->idReg1())); |
| 657 | assert(isVectorRegister(id->idReg2())); |
| 658 | break; |
| 659 | |
| 660 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov/fcvtXX - to general) |
| 661 | assert(insOptsConvertFloatToInt(id->idInsOpt())); |
| 662 | dstsize = optGetDstsize(id->idInsOpt()); |
| 663 | srcsize = optGetSrcsize(id->idInsOpt()); |
| 664 | assert(isValidGeneralDatasize(dstsize)); |
| 665 | assert(isValidVectorElemsizeFloat(srcsize)); |
| 666 | assert(dstsize == id->idOpSize()); |
| 667 | assert(isGeneralRegister(id->idReg1())); |
| 668 | assert(isVectorRegister(id->idReg2())); |
| 669 | break; |
| 670 | |
| 671 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov/Xcvtf - from general) |
| 672 | assert(insOptsConvertIntToFloat(id->idInsOpt())); |
| 673 | dstsize = optGetDstsize(id->idInsOpt()); |
| 674 | srcsize = optGetSrcsize(id->idInsOpt()); |
| 675 | assert(isValidGeneralDatasize(srcsize)); |
| 676 | assert(isValidVectorElemsizeFloat(dstsize)); |
| 677 | assert(dstsize == id->idOpSize()); |
| 678 | assert(isVectorRegister(id->idReg1())); |
| 679 | assert(isGeneralRegister(id->idReg2())); |
| 680 | break; |
| 681 | |
| 682 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
| 683 | assert(insOptsConvertFloatToFloat(id->idInsOpt())); |
| 684 | dstsize = optGetDstsize(id->idInsOpt()); |
| 685 | srcsize = optGetSrcsize(id->idInsOpt()); |
| 686 | assert(isValidVectorFcvtsize(srcsize)); |
| 687 | assert(isValidVectorFcvtsize(dstsize)); |
| 688 | assert(dstsize == id->idOpSize()); |
| 689 | assert(isVectorRegister(id->idReg1())); |
| 690 | assert(isVectorRegister(id->idReg2())); |
| 691 | break; |
| 692 | |
| 693 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 694 | assert(isValidVectorDatasize(id->idOpSize())); |
| 695 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 696 | assert(isVectorRegister(id->idReg1())); |
| 697 | assert(isVectorRegister(id->idReg2())); |
| 698 | assert(isVectorRegister(id->idReg3())); |
| 699 | elemsize = optGetElemsize(id->idInsOpt()); |
| 700 | ins = id->idIns(); |
| 701 | if (ins == INS_mul) |
| 702 | { |
| 703 | assert(elemsize != EA_8BYTE); // can't use 2D or 1D |
| 704 | } |
| 705 | else if (ins == INS_pmul) |
| 706 | { |
| 707 | assert(elemsize == EA_1BYTE); // only supports 8B or 16B |
| 708 | } |
| 709 | break; |
| 710 | |
| 711 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
| 712 | assert(isValidVectorDatasize(id->idOpSize())); |
| 713 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 714 | assert(isVectorRegister(id->idReg1())); |
| 715 | assert(isVectorRegister(id->idReg2())); |
| 716 | assert(isVectorRegister(id->idReg3())); |
| 717 | elemsize = optGetElemsize(id->idInsOpt()); |
| 718 | assert(isValidVectorIndex(EA_16BYTE, elemsize, emitGetInsSC(id))); |
| 719 | // Only has encodings for H or S elemsize |
| 720 | assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); |
| 721 | break; |
| 722 | |
| 723 | case IF_DV_3B: // DV_3B .Q.......X.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 724 | assert(isValidVectorDatasize(id->idOpSize())); |
| 725 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 726 | assert(isVectorRegister(id->idReg1())); |
| 727 | assert(isVectorRegister(id->idReg2())); |
| 728 | assert(isVectorRegister(id->idReg3())); |
| 729 | break; |
| 730 | |
| 731 | case IF_DV_3BI: // DV_3BI .Q.......XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
| 732 | assert(isValidVectorDatasize(id->idOpSize())); |
| 733 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 734 | assert(isVectorRegister(id->idReg1())); |
| 735 | assert(isVectorRegister(id->idReg2())); |
| 736 | assert(isVectorRegister(id->idReg3())); |
| 737 | elemsize = optGetElemsize(id->idInsOpt()); |
| 738 | assert(isValidVectorIndex(id->idOpSize(), elemsize, emitGetInsSC(id))); |
| 739 | break; |
| 740 | |
| 741 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 742 | assert(isValidVectorDatasize(id->idOpSize())); |
| 743 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 744 | assert(isVectorRegister(id->idReg1())); |
| 745 | assert(isVectorRegister(id->idReg2())); |
| 746 | assert(isVectorRegister(id->idReg3())); |
| 747 | break; |
| 748 | |
| 749 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 750 | assert(isValidScalarDatasize(id->idOpSize())); |
| 751 | assert(insOptsNone(id->idInsOpt())); |
| 752 | assert(isVectorRegister(id->idReg1())); |
| 753 | assert(isVectorRegister(id->idReg2())); |
| 754 | assert(isVectorRegister(id->idReg3())); |
| 755 | break; |
| 756 | |
| 757 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
| 758 | assert(isValidScalarDatasize(id->idOpSize())); |
| 759 | assert(insOptsNone(id->idInsOpt())); |
| 760 | assert(isVectorRegister(id->idReg1())); |
| 761 | assert(isVectorRegister(id->idReg2())); |
| 762 | assert(isVectorRegister(id->idReg3())); |
| 763 | elemsize = id->idOpSize(); |
| 764 | assert(isValidVectorIndex(EA_16BYTE, elemsize, emitGetInsSC(id))); |
| 765 | break; |
| 766 | |
| 767 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 768 | assert(insOptsNone(id->idInsOpt())); |
| 769 | assert(id->idOpSize() == EA_8BYTE); |
| 770 | assert(isVectorRegister(id->idReg1())); |
| 771 | assert(isVectorRegister(id->idReg2())); |
| 772 | assert(isVectorRegister(id->idReg3())); |
| 773 | break; |
| 774 | |
| 775 | case IF_DV_3F: // DV_3F ...........mmmmm ......nnnnnddddd Vd Vn Vm |
| 776 | assert(isValidVectorDatasize(id->idOpSize())); |
| 777 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
| 778 | assert(isVectorRegister(id->idReg1())); |
| 779 | assert(isVectorRegister(id->idReg2())); |
| 780 | assert(isVectorRegister(id->idReg3())); |
| 781 | break; |
| 782 | |
| 783 | case IF_DV_4A: // DR_4A .........X.mmmmm .aaaaannnnnddddd Rd Rn Rm Ra (scalar) |
| 784 | assert(isValidGeneralDatasize(id->idOpSize())); |
| 785 | assert(isVectorRegister(id->idReg1())); |
| 786 | assert(isVectorRegister(id->idReg2())); |
| 787 | assert(isVectorRegister(id->idReg3())); |
| 788 | assert(isVectorRegister(id->idReg4())); |
| 789 | break; |
| 790 | |
| 791 | case IF_SN_0A: // SN_0A ................ ................ |
| 792 | case IF_SI_0A: // SI_0A ...........iiiii iiiiiiiiiii..... imm16 |
| 793 | case IF_SI_0B: // SI_0B ................ ....bbbb........ imm4 - barrier |
| 794 | break; |
| 795 | |
| 796 | default: |
| 797 | printf("unexpected format %s\n" , emitIfName(id->idInsFmt())); |
| 798 | assert(!"Unexpected format" ); |
| 799 | break; |
| 800 | } |
| 801 | } |
| 802 | #endif // DEBUG |
| 803 | |
| 804 | bool emitter::emitInsMayWriteToGCReg(instrDesc* id) |
| 805 | { |
| 806 | instruction ins = id->idIns(); |
| 807 | insFormat fmt = id->idInsFmt(); |
| 808 | |
| 809 | switch (fmt) |
| 810 | { |
| 811 | |
| 812 | // These are the formats with "destination" registers: |
| 813 | |
| 814 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
| 815 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
| 816 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
| 817 | |
| 818 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
| 819 | case IF_DI_2B: // DI_2B X.........Xnnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
| 820 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
| 821 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, imms (N,r,s) |
| 822 | |
| 823 | case IF_DR_1D: // DR_1D X............... cccc.......ddddd Rd cond |
| 824 | |
| 825 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnddddd Rd Rn cond |
| 826 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
| 827 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
| 828 | case IF_DR_2G: // DR_2G X............... ......nnnnnddddd Rd Rn |
| 829 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
| 830 | |
| 831 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnddddd Rd Rn Rm |
| 832 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR} imm(0-63) |
| 833 | case IF_DR_3C: // DR_3C X..........mmmmm xxxsssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
| 834 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnddddd Rd Rn Rm cond |
| 835 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
| 836 | case IF_DV_3F: // DV_3F ...........mmmmm ......nnnnnddddd Vd Vn Vm (vector) - Vd both source and dest |
| 837 | |
| 838 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnddddd Rd Rn Rm Ra |
| 839 | |
| 840 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov - to general) |
| 841 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov - to general) |
| 842 | |
| 843 | return true; |
| 844 | |
| 845 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
| 846 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
| 847 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
| 848 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
| 849 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov, fcvtXX - register) |
| 850 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov - from general) |
| 851 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
| 852 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
| 853 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
| 854 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
| 855 | case IF_DV_2P: // DV_2P ................ ......nnnnnddddd Vd Vn (aes*, sha1su1) - Vd both source and |
| 856 | // destination |
| 857 | |
| 858 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 859 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector) |
| 860 | case IF_DV_3B: // DV_3B .Q.......X.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 861 | case IF_DV_3BI: // DV_3BI .Q.......XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
| 862 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 863 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 864 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
| 865 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 866 | case IF_DV_4A: // DV_4A .........X.mmmmm .aaaaannnnnddddd Vd Va Vn Vm (scalar) |
| 867 | // Tracked GC pointers cannot be placed into the SIMD registers. |
| 868 | return false; |
| 869 | |
| 870 | // These are the load/store formats with "target" registers: |
| 871 | |
| 872 | case IF_LS_1A: // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
| 873 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
| 874 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
| 875 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiP.nnnnnttttt Rt Rn imm(-256..+255) pre/post inc |
| 876 | case IF_LS_3A: // LS_3A .X.......X.mmmmm xxxS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
| 877 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnttttt Rt Ra Rn |
| 878 | case IF_LS_3C: // LS_3C X.........iiiiii iaaaaannnnnttttt Rt Ra Rn imm(im7,sh) |
| 879 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
| 880 | |
| 881 | // For the Store instructions the "target" register is actually a "source" value |
| 882 | |
| 883 | if (emitInsIsStore(ins)) |
| 884 | { |
| 885 | return false; |
| 886 | } |
| 887 | else |
| 888 | { |
| 889 | assert(emitInsIsLoad(ins)); |
| 890 | return true; |
| 891 | } |
| 892 | |
| 893 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
| 894 | // ARMv8.1 Atomics |
| 895 | assert(emitInsIsStore(ins)); |
| 896 | assert(emitInsIsLoad(ins)); |
| 897 | return true; |
| 898 | |
| 899 | default: |
| 900 | return false; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | bool emitter::emitInsWritesToLclVarStackLoc(instrDesc* id) |
| 905 | { |
| 906 | if (!id->idIsLclVar()) |
| 907 | return false; |
| 908 | |
| 909 | instruction ins = id->idIns(); |
| 910 | |
| 911 | // This list is related to the list of instructions used to store local vars in emitIns_S_R(). |
| 912 | // We don't accept writing to float local vars. |
| 913 | |
| 914 | switch (ins) |
| 915 | { |
| 916 | case INS_strb: |
| 917 | case INS_strh: |
| 918 | case INS_str: |
| 919 | case INS_stur: |
| 920 | case INS_sturb: |
| 921 | case INS_sturh: |
| 922 | return true; |
| 923 | default: |
| 924 | return false; |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | bool emitter::emitInsWritesToLclVarStackLocPair(instrDesc* id) |
| 929 | { |
| 930 | if (!id->idIsLclVar()) |
| 931 | return false; |
| 932 | |
| 933 | instruction ins = id->idIns(); |
| 934 | |
| 935 | // This list is related to the list of instructions used to store local vars in emitIns_S_S_R_R(). |
| 936 | // We don't accept writing to float local vars. |
| 937 | |
| 938 | switch (ins) |
| 939 | { |
| 940 | case INS_stnp: |
| 941 | case INS_stp: |
| 942 | return true; |
| 943 | default: |
| 944 | return false; |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | bool emitter::emitInsMayWriteMultipleRegs(instrDesc* id) |
| 949 | { |
| 950 | instruction ins = id->idIns(); |
| 951 | |
| 952 | switch (ins) |
| 953 | { |
| 954 | case INS_ldp: |
| 955 | case INS_ldpsw: |
| 956 | case INS_ldnp: |
| 957 | return true; |
| 958 | default: |
| 959 | return false; |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | // For the small loads/store instruction we adjust the size 'attr' |
| 964 | // depending upon whether we have a load or a store |
| 965 | // |
| 966 | emitAttr emitter::emitInsAdjustLoadStoreAttr(instruction ins, emitAttr attr) |
| 967 | { |
| 968 | if (EA_SIZE(attr) <= EA_4BYTE) |
| 969 | { |
| 970 | if (emitInsIsLoad(ins)) |
| 971 | { |
| 972 | // The value of 'ins' encodes the size to load |
| 973 | // we use EA_8BYTE here because it is the size we will write (into dataReg) |
| 974 | // it is also required when ins is INS_ldrsw |
| 975 | // |
| 976 | attr = EA_8BYTE; |
| 977 | } |
| 978 | else |
| 979 | { |
| 980 | assert(emitInsIsStore(ins)); |
| 981 | |
| 982 | // The value of 'ins' encodes the size to store |
| 983 | // we use EA_4BYTE here because it is the size of the register |
| 984 | // that we want to display when storing small values |
| 985 | // |
| 986 | attr = EA_4BYTE; |
| 987 | } |
| 988 | } |
| 989 | return attr; |
| 990 | } |
| 991 | |
| 992 | // Takes an instrDesc 'id' and uses the instruction 'ins' to determine the |
| 993 | // size of the target register that is written or read by the instruction. |
| 994 | // Note that even if EA_4BYTE is returned a load instruction will still |
| 995 | // always zero the upper 4 bytes of the target register. |
| 996 | // This method is required so that we can distinguish between loads that are |
| 997 | // sign-extending as they can have two different sizes for their target register. |
| 998 | // Additionally for instructions like 'ldr' and 'str' these can load/store |
| 999 | // either 4 byte or 8 bytes to/from the target register. |
| 1000 | // By convention the small unsigned load instructions are considered to write |
| 1001 | // a 4 byte sized target register, though since these also zero the upper 4 bytes |
| 1002 | // they could equally be considered to write the unsigned value to full 8 byte register. |
| 1003 | // |
| 1004 | emitAttr emitter::emitInsTargetRegSize(instrDesc* id) |
| 1005 | { |
| 1006 | instruction ins = id->idIns(); |
| 1007 | emitAttr result = EA_UNKNOWN; |
| 1008 | |
| 1009 | // This is used to determine the size of the target registers for a load/store instruction |
| 1010 | |
| 1011 | switch (ins) |
| 1012 | { |
| 1013 | case INS_ldxrb: |
| 1014 | case INS_ldarb: |
| 1015 | case INS_ldaxrb: |
| 1016 | case INS_stxrb: |
| 1017 | case INS_stlrb: |
| 1018 | case INS_stlxrb: |
| 1019 | case INS_ldrb: |
| 1020 | case INS_strb: |
| 1021 | case INS_ldurb: |
| 1022 | case INS_sturb: |
| 1023 | result = EA_4BYTE; |
| 1024 | break; |
| 1025 | |
| 1026 | case INS_ldxrh: |
| 1027 | case INS_ldarh: |
| 1028 | case INS_ldaxrh: |
| 1029 | case INS_stxrh: |
| 1030 | case INS_stlrh: |
| 1031 | case INS_stlxrh: |
| 1032 | case INS_ldrh: |
| 1033 | case INS_strh: |
| 1034 | case INS_ldurh: |
| 1035 | case INS_sturh: |
| 1036 | result = EA_4BYTE; |
| 1037 | break; |
| 1038 | |
| 1039 | case INS_ldrsb: |
| 1040 | case INS_ldursb: |
| 1041 | case INS_ldrsh: |
| 1042 | case INS_ldursh: |
| 1043 | if (id->idOpSize() == EA_8BYTE) |
| 1044 | result = EA_8BYTE; |
| 1045 | else |
| 1046 | result = EA_4BYTE; |
| 1047 | break; |
| 1048 | |
| 1049 | case INS_ldrsw: |
| 1050 | case INS_ldursw: |
| 1051 | case INS_ldpsw: |
| 1052 | result = EA_8BYTE; |
| 1053 | break; |
| 1054 | |
| 1055 | case INS_ldp: |
| 1056 | case INS_stp: |
| 1057 | case INS_ldnp: |
| 1058 | case INS_stnp: |
| 1059 | result = id->idOpSize(); |
| 1060 | break; |
| 1061 | |
| 1062 | case INS_ldxr: |
| 1063 | case INS_ldar: |
| 1064 | case INS_ldaxr: |
| 1065 | case INS_stxr: |
| 1066 | case INS_stlr: |
| 1067 | case INS_stlxr: |
| 1068 | case INS_ldr: |
| 1069 | case INS_str: |
| 1070 | case INS_ldur: |
| 1071 | case INS_stur: |
| 1072 | result = id->idOpSize(); |
| 1073 | break; |
| 1074 | |
| 1075 | default: |
| 1076 | NO_WAY("unexpected instruction" ); |
| 1077 | break; |
| 1078 | } |
| 1079 | return result; |
| 1080 | } |
| 1081 | |
| 1082 | // Takes an instrDesc and uses the instruction to determine the 'size' of the |
| 1083 | // data that is loaded from memory. |
| 1084 | // |
| 1085 | emitAttr emitter::emitInsLoadStoreSize(instrDesc* id) |
| 1086 | { |
| 1087 | instruction ins = id->idIns(); |
| 1088 | emitAttr result = EA_UNKNOWN; |
| 1089 | |
| 1090 | // The 'result' returned is the 'size' of the data that is loaded from memory. |
| 1091 | |
| 1092 | switch (ins) |
| 1093 | { |
| 1094 | case INS_ldarb: |
| 1095 | case INS_stlrb: |
| 1096 | case INS_ldrb: |
| 1097 | case INS_strb: |
| 1098 | case INS_ldurb: |
| 1099 | case INS_sturb: |
| 1100 | case INS_ldrsb: |
| 1101 | case INS_ldursb: |
| 1102 | result = EA_1BYTE; |
| 1103 | break; |
| 1104 | |
| 1105 | case INS_ldarh: |
| 1106 | case INS_stlrh: |
| 1107 | case INS_ldrh: |
| 1108 | case INS_strh: |
| 1109 | case INS_ldurh: |
| 1110 | case INS_sturh: |
| 1111 | case INS_ldrsh: |
| 1112 | case INS_ldursh: |
| 1113 | result = EA_2BYTE; |
| 1114 | break; |
| 1115 | |
| 1116 | case INS_ldrsw: |
| 1117 | case INS_ldursw: |
| 1118 | case INS_ldpsw: |
| 1119 | result = EA_4BYTE; |
| 1120 | break; |
| 1121 | |
| 1122 | case INS_ldp: |
| 1123 | case INS_stp: |
| 1124 | case INS_ldnp: |
| 1125 | case INS_stnp: |
| 1126 | result = id->idOpSize(); |
| 1127 | break; |
| 1128 | |
| 1129 | case INS_ldar: |
| 1130 | case INS_stlr: |
| 1131 | case INS_ldr: |
| 1132 | case INS_str: |
| 1133 | case INS_ldur: |
| 1134 | case INS_stur: |
| 1135 | result = id->idOpSize(); |
| 1136 | break; |
| 1137 | |
| 1138 | default: |
| 1139 | NO_WAY("unexpected instruction" ); |
| 1140 | break; |
| 1141 | } |
| 1142 | return result; |
| 1143 | } |
| 1144 | |
| 1145 | /*****************************************************************************/ |
| 1146 | #ifdef DEBUG |
| 1147 | |
| 1148 | // clang-format off |
| 1149 | static const char * const xRegNames[] = |
| 1150 | { |
| 1151 | #define REGDEF(name, rnum, mask, xname, wname) xname, |
| 1152 | #include "register.h" |
| 1153 | }; |
| 1154 | |
| 1155 | static const char * const wRegNames[] = |
| 1156 | { |
| 1157 | #define REGDEF(name, rnum, mask, xname, wname) wname, |
| 1158 | #include "register.h" |
| 1159 | }; |
| 1160 | |
| 1161 | static const char * const vRegNames[] = |
| 1162 | { |
| 1163 | "v0" , "v1" , "v2" , "v3" , "v4" , |
| 1164 | "v5" , "v6" , "v7" , "v8" , "v9" , |
| 1165 | "v10" , "v11" , "v12" , "v13" , "v14" , |
| 1166 | "v15" , "v16" , "v17" , "v18" , "v19" , |
| 1167 | "v20" , "v21" , "v22" , "v23" , "v24" , |
| 1168 | "v25" , "v26" , "v27" , "v28" , "v29" , |
| 1169 | "v30" , "v31" |
| 1170 | }; |
| 1171 | |
| 1172 | static const char * const qRegNames[] = |
| 1173 | { |
| 1174 | "q0" , "q1" , "q2" , "q3" , "q4" , |
| 1175 | "q5" , "q6" , "q7" , "q8" , "q9" , |
| 1176 | "q10" , "q11" , "q12" , "q13" , "q14" , |
| 1177 | "q15" , "q16" , "q17" , "q18" , "q19" , |
| 1178 | "q20" , "q21" , "q22" , "q23" , "q24" , |
| 1179 | "q25" , "q26" , "q27" , "q28" , "q29" , |
| 1180 | "q30" , "q31" |
| 1181 | }; |
| 1182 | |
| 1183 | static const char * const hRegNames[] = |
| 1184 | { |
| 1185 | "h0" , "h1" , "h2" , "h3" , "h4" , |
| 1186 | "h5" , "h6" , "h7" , "h8" , "h9" , |
| 1187 | "h10" , "h11" , "h12" , "h13" , "h14" , |
| 1188 | "h15" , "h16" , "h17" , "h18" , "h19" , |
| 1189 | "h20" , "h21" , "h22" , "h23" , "h24" , |
| 1190 | "h25" , "h26" , "h27" , "h28" , "h29" , |
| 1191 | "h30" , "h31" |
| 1192 | }; |
| 1193 | static const char * const bRegNames[] = |
| 1194 | { |
| 1195 | "b0" , "b1" , "b2" , "b3" , "b4" , |
| 1196 | "b5" , "b6" , "b7" , "b8" , "b9" , |
| 1197 | "b10" , "b11" , "b12" , "b13" , "b14" , |
| 1198 | "b15" , "b16" , "b17" , "b18" , "b19" , |
| 1199 | "b20" , "b21" , "b22" , "b23" , "b24" , |
| 1200 | "b25" , "b26" , "b27" , "b28" , "b29" , |
| 1201 | "b30" , "b31" |
| 1202 | }; |
| 1203 | // clang-format on |
| 1204 | |
| 1205 | /***************************************************************************** |
| 1206 | * |
| 1207 | * Return a string that represents the given register. |
| 1208 | */ |
| 1209 | |
| 1210 | const char* emitter::emitRegName(regNumber reg, emitAttr size, bool varName) |
| 1211 | { |
| 1212 | assert(reg < REG_COUNT); |
| 1213 | |
| 1214 | const char* rn = nullptr; |
| 1215 | |
| 1216 | if (size == EA_8BYTE) |
| 1217 | { |
| 1218 | rn = xRegNames[reg]; |
| 1219 | } |
| 1220 | else if (size == EA_4BYTE) |
| 1221 | { |
| 1222 | rn = wRegNames[reg]; |
| 1223 | } |
| 1224 | else if (isVectorRegister(reg)) |
| 1225 | { |
| 1226 | if (size == EA_16BYTE) |
| 1227 | { |
| 1228 | rn = qRegNames[reg - REG_V0]; |
| 1229 | } |
| 1230 | else if (size == EA_2BYTE) |
| 1231 | { |
| 1232 | rn = hRegNames[reg - REG_V0]; |
| 1233 | } |
| 1234 | else if (size == EA_1BYTE) |
| 1235 | { |
| 1236 | rn = bRegNames[reg - REG_V0]; |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | assert(rn != nullptr); |
| 1241 | |
| 1242 | return rn; |
| 1243 | } |
| 1244 | |
| 1245 | /***************************************************************************** |
| 1246 | * |
| 1247 | * Return a string that represents the given register. |
| 1248 | */ |
| 1249 | |
| 1250 | const char* emitter::emitVectorRegName(regNumber reg) |
| 1251 | { |
| 1252 | assert((reg >= REG_V0) && (reg <= REG_V31)); |
| 1253 | |
| 1254 | int index = (int)reg - (int)REG_V0; |
| 1255 | |
| 1256 | return vRegNames[index]; |
| 1257 | } |
| 1258 | #endif // DEBUG |
| 1259 | |
| 1260 | /***************************************************************************** |
| 1261 | * |
| 1262 | * Returns the base encoding of the given CPU instruction. |
| 1263 | */ |
| 1264 | |
| 1265 | emitter::insFormat emitter::emitInsFormat(instruction ins) |
| 1266 | { |
| 1267 | // clang-format off |
| 1268 | const static insFormat insFormats[] = |
| 1269 | { |
| 1270 | #define INST1(id, nm, fp, ldst, fmt, e1 ) fmt, |
| 1271 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) fmt, |
| 1272 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) fmt, |
| 1273 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) fmt, |
| 1274 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) fmt, |
| 1275 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) fmt, |
| 1276 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) fmt, |
| 1277 | #include "instrs.h" |
| 1278 | }; |
| 1279 | // clang-format on |
| 1280 | |
| 1281 | assert(ins < ArrLen(insFormats)); |
| 1282 | assert((insFormats[ins] != IF_NONE)); |
| 1283 | |
| 1284 | return insFormats[ins]; |
| 1285 | } |
| 1286 | |
| 1287 | // INST_FP is 1 |
| 1288 | #define LD 2 |
| 1289 | #define ST 4 |
| 1290 | #define CMP 8 |
| 1291 | |
| 1292 | // clang-format off |
| 1293 | /*static*/ const BYTE CodeGenInterface::instInfo[] = |
| 1294 | { |
| 1295 | #define INST1(id, nm, fp, ldst, fmt, e1 ) ldst | INST_FP*fp, |
| 1296 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) ldst | INST_FP*fp, |
| 1297 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) ldst | INST_FP*fp, |
| 1298 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) ldst | INST_FP*fp, |
| 1299 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) ldst | INST_FP*fp, |
| 1300 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) ldst | INST_FP*fp, |
| 1301 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) ldst | INST_FP*fp, |
| 1302 | #include "instrs.h" |
| 1303 | }; |
| 1304 | // clang-format on |
| 1305 | |
| 1306 | /***************************************************************************** |
| 1307 | * |
| 1308 | * Returns true if the instruction is some kind of compare or test instruction |
| 1309 | */ |
| 1310 | |
| 1311 | bool emitter::emitInsIsCompare(instruction ins) |
| 1312 | { |
| 1313 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
| 1314 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
| 1315 | return (CodeGenInterface::instInfo[ins] & CMP) ? true : false; |
| 1316 | else |
| 1317 | return false; |
| 1318 | } |
| 1319 | |
| 1320 | /***************************************************************************** |
| 1321 | * |
| 1322 | * Returns true if the instruction is some kind of load instruction |
| 1323 | */ |
| 1324 | |
| 1325 | bool emitter::emitInsIsLoad(instruction ins) |
| 1326 | { |
| 1327 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
| 1328 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
| 1329 | return (CodeGenInterface::instInfo[ins] & LD) ? true : false; |
| 1330 | else |
| 1331 | return false; |
| 1332 | } |
| 1333 | /***************************************************************************** |
| 1334 | * |
| 1335 | * Returns true if the instruction is some kind of store instruction |
| 1336 | */ |
| 1337 | |
| 1338 | bool emitter::emitInsIsStore(instruction ins) |
| 1339 | { |
| 1340 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
| 1341 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
| 1342 | return (CodeGenInterface::instInfo[ins] & ST) ? true : false; |
| 1343 | else |
| 1344 | return false; |
| 1345 | } |
| 1346 | |
| 1347 | /***************************************************************************** |
| 1348 | * |
| 1349 | * Returns true if the instruction is some kind of load/store instruction |
| 1350 | */ |
| 1351 | |
| 1352 | bool emitter::emitInsIsLoadOrStore(instruction ins) |
| 1353 | { |
| 1354 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
| 1355 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
| 1356 | return (CodeGenInterface::instInfo[ins] & (LD | ST)) ? true : false; |
| 1357 | else |
| 1358 | return false; |
| 1359 | } |
| 1360 | |
| 1361 | #undef LD |
| 1362 | #undef ST |
| 1363 | #undef CMP |
| 1364 | |
| 1365 | /***************************************************************************** |
| 1366 | * |
| 1367 | * Returns the specific encoding of the given CPU instruction and format |
| 1368 | */ |
| 1369 | |
| 1370 | emitter::code_t emitter::emitInsCode(instruction ins, insFormat fmt) |
| 1371 | { |
| 1372 | // clang-format off |
| 1373 | const static code_t insCodes1[] = |
| 1374 | { |
| 1375 | #define INST1(id, nm, fp, ldst, fmt, e1 ) e1, |
| 1376 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) e1, |
| 1377 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) e1, |
| 1378 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e1, |
| 1379 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e1, |
| 1380 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e1, |
| 1381 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e1, |
| 1382 | #include "instrs.h" |
| 1383 | }; |
| 1384 | const static code_t insCodes2[] = |
| 1385 | { |
| 1386 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1387 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) e2, |
| 1388 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) e2, |
| 1389 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e2, |
| 1390 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e2, |
| 1391 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e2, |
| 1392 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e2, |
| 1393 | #include "instrs.h" |
| 1394 | }; |
| 1395 | const static code_t insCodes3[] = |
| 1396 | { |
| 1397 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1398 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1399 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) e3, |
| 1400 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e3, |
| 1401 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e3, |
| 1402 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e3, |
| 1403 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e3, |
| 1404 | #include "instrs.h" |
| 1405 | }; |
| 1406 | const static code_t insCodes4[] = |
| 1407 | { |
| 1408 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1409 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1410 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
| 1411 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e4, |
| 1412 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e4, |
| 1413 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e4, |
| 1414 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e4, |
| 1415 | #include "instrs.h" |
| 1416 | }; |
| 1417 | const static code_t insCodes5[] = |
| 1418 | { |
| 1419 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1420 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1421 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
| 1422 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
| 1423 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e5, |
| 1424 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e5, |
| 1425 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e5, |
| 1426 | #include "instrs.h" |
| 1427 | }; |
| 1428 | const static code_t insCodes6[] = |
| 1429 | { |
| 1430 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1431 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1432 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
| 1433 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
| 1434 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
| 1435 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e6, |
| 1436 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e6, |
| 1437 | #include "instrs.h" |
| 1438 | }; |
| 1439 | const static code_t insCodes7[] = |
| 1440 | { |
| 1441 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1442 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1443 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
| 1444 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
| 1445 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
| 1446 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) |
| 1447 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e7, |
| 1448 | #include "instrs.h" |
| 1449 | }; |
| 1450 | const static code_t insCodes8[] = |
| 1451 | { |
| 1452 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1453 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1454 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
| 1455 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
| 1456 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
| 1457 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) |
| 1458 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e8, |
| 1459 | #include "instrs.h" |
| 1460 | }; |
| 1461 | const static code_t insCodes9[] = |
| 1462 | { |
| 1463 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
| 1464 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
| 1465 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
| 1466 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
| 1467 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
| 1468 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) |
| 1469 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e9, |
| 1470 | #include "instrs.h" |
| 1471 | }; |
| 1472 | // clang-format on |
| 1473 | |
| 1474 | const static insFormat formatEncode9[9] = {IF_DR_2E, IF_DR_2G, IF_DI_1B, IF_DI_1D, IF_DV_3C, |
| 1475 | IF_DV_2B, IF_DV_2C, IF_DV_2E, IF_DV_2F}; |
| 1476 | const static insFormat formatEncode6A[6] = {IF_DR_3A, IF_DR_3B, IF_DR_3C, IF_DI_2A, IF_DV_3A, IF_DV_3E}; |
| 1477 | const static insFormat formatEncode5A[5] = {IF_LS_2A, IF_LS_2B, IF_LS_2C, IF_LS_3A, IF_LS_1A}; |
| 1478 | const static insFormat formatEncode5B[5] = {IF_DV_2G, IF_DV_2H, IF_DV_2I, IF_DV_1A, IF_DV_1B}; |
| 1479 | const static insFormat formatEncode5C[5] = {IF_DR_3A, IF_DR_3B, IF_DI_2C, IF_DV_3C, IF_DV_1B}; |
| 1480 | const static insFormat formatEncode4A[4] = {IF_LS_2A, IF_LS_2B, IF_LS_2C, IF_LS_3A}; |
| 1481 | const static insFormat formatEncode4B[4] = {IF_DR_3A, IF_DR_3B, IF_DR_3C, IF_DI_2A}; |
| 1482 | const static insFormat formatEncode4C[4] = {IF_DR_2A, IF_DR_2B, IF_DR_2C, IF_DI_1A}; |
| 1483 | const static insFormat formatEncode4D[4] = {IF_DV_3B, IF_DV_3D, IF_DV_3BI, IF_DV_3DI}; |
| 1484 | const static insFormat formatEncode4E[4] = {IF_DR_3A, IF_DR_3B, IF_DI_2C, IF_DV_3C}; |
| 1485 | const static insFormat formatEncode4F[4] = {IF_DR_3A, IF_DR_3B, IF_DV_3C, IF_DV_1B}; |
| 1486 | const static insFormat formatEncode4G[4] = {IF_DR_2E, IF_DR_2F, IF_DV_2M, IF_DV_2L}; |
| 1487 | const static insFormat formatEncode4H[4] = {IF_DV_3E, IF_DV_3A, IF_DV_2L, IF_DV_2M}; |
| 1488 | const static insFormat formatEncode4I[4] = {IF_DV_3D, IF_DV_3B, IF_DV_2G, IF_DV_2A}; |
| 1489 | const static insFormat formatEncode3A[3] = {IF_DR_3A, IF_DR_3B, IF_DI_2C}; |
| 1490 | const static insFormat formatEncode3B[3] = {IF_DR_2A, IF_DR_2B, IF_DI_1C}; |
| 1491 | const static insFormat formatEncode3C[3] = {IF_DR_3A, IF_DR_3B, IF_DV_3C}; |
| 1492 | const static insFormat formatEncode3D[3] = {IF_DV_2C, IF_DV_2D, IF_DV_2E}; |
| 1493 | const static insFormat formatEncode3E[3] = {IF_DV_3B, IF_DV_3BI, IF_DV_3DI}; |
| 1494 | const static insFormat formatEncode3F[3] = {IF_DV_2A, IF_DV_2G, IF_DV_2H}; |
| 1495 | const static insFormat formatEncode3G[3] = {IF_DV_2A, IF_DV_2G, IF_DV_2I}; |
| 1496 | const static insFormat formatEncode3H[3] = {IF_DR_3A, IF_DV_3A, IF_DV_3AI}; |
| 1497 | const static insFormat formatEncode3I[3] = {IF_DR_2E, IF_DR_2F, IF_DV_2M}; |
| 1498 | const static insFormat formatEncode2A[2] = {IF_DR_2E, IF_DR_2F}; |
| 1499 | const static insFormat formatEncode2B[2] = {IF_DR_3A, IF_DR_3B}; |
| 1500 | const static insFormat formatEncode2C[2] = {IF_DR_3A, IF_DI_2D}; |
| 1501 | const static insFormat formatEncode2D[2] = {IF_DR_3A, IF_DI_2B}; |
| 1502 | const static insFormat formatEncode2E[2] = {IF_LS_3B, IF_LS_3C}; |
| 1503 | const static insFormat formatEncode2F[2] = {IF_DR_2I, IF_DI_1F}; |
| 1504 | const static insFormat formatEncode2G[2] = {IF_DV_3B, IF_DV_3D}; |
| 1505 | const static insFormat formatEncode2H[2] = {IF_DV_2C, IF_DV_2F}; |
| 1506 | const static insFormat formatEncode2I[2] = {IF_DV_2K, IF_DV_1C}; |
| 1507 | const static insFormat formatEncode2J[2] = {IF_DV_2A, IF_DV_2G}; |
| 1508 | const static insFormat formatEncode2K[2] = {IF_DV_2M, IF_DV_2L}; |
| 1509 | const static insFormat formatEncode2L[2] = {IF_DR_2G, IF_DV_2M}; |
| 1510 | const static insFormat formatEncode2M[2] = {IF_DV_3A, IF_DV_3AI}; |
| 1511 | const static insFormat formatEncode2N[2] = {IF_DV_2N, IF_DV_2O}; |
| 1512 | const static insFormat formatEncode2O[2] = {IF_DV_3E, IF_DV_3A}; |
| 1513 | const static insFormat formatEncode2P[2] = {IF_DV_2G, IF_DV_3B}; |
| 1514 | |
| 1515 | code_t code = BAD_CODE; |
| 1516 | insFormat insFmt = emitInsFormat(ins); |
| 1517 | bool encoding_found = false; |
| 1518 | int index = -1; |
| 1519 | |
| 1520 | switch (insFmt) |
| 1521 | { |
| 1522 | case IF_EN9: |
| 1523 | for (index = 0; index < 9; index++) |
| 1524 | { |
| 1525 | if (fmt == formatEncode9[index]) |
| 1526 | { |
| 1527 | encoding_found = true; |
| 1528 | break; |
| 1529 | } |
| 1530 | } |
| 1531 | break; |
| 1532 | |
| 1533 | case IF_EN6A: |
| 1534 | for (index = 0; index < 6; index++) |
| 1535 | { |
| 1536 | if (fmt == formatEncode6A[index]) |
| 1537 | { |
| 1538 | encoding_found = true; |
| 1539 | break; |
| 1540 | } |
| 1541 | } |
| 1542 | break; |
| 1543 | |
| 1544 | case IF_EN5A: |
| 1545 | for (index = 0; index < 5; index++) |
| 1546 | { |
| 1547 | if (fmt == formatEncode5A[index]) |
| 1548 | { |
| 1549 | encoding_found = true; |
| 1550 | break; |
| 1551 | } |
| 1552 | } |
| 1553 | break; |
| 1554 | |
| 1555 | case IF_EN5B: |
| 1556 | for (index = 0; index < 5; index++) |
| 1557 | { |
| 1558 | if (fmt == formatEncode5B[index]) |
| 1559 | { |
| 1560 | encoding_found = true; |
| 1561 | break; |
| 1562 | } |
| 1563 | } |
| 1564 | break; |
| 1565 | |
| 1566 | case IF_EN5C: |
| 1567 | for (index = 0; index < 5; index++) |
| 1568 | { |
| 1569 | if (fmt == formatEncode5C[index]) |
| 1570 | { |
| 1571 | encoding_found = true; |
| 1572 | break; |
| 1573 | } |
| 1574 | } |
| 1575 | break; |
| 1576 | |
| 1577 | case IF_EN4A: |
| 1578 | for (index = 0; index < 4; index++) |
| 1579 | { |
| 1580 | if (fmt == formatEncode4A[index]) |
| 1581 | { |
| 1582 | encoding_found = true; |
| 1583 | break; |
| 1584 | } |
| 1585 | } |
| 1586 | break; |
| 1587 | |
| 1588 | case IF_EN4B: |
| 1589 | for (index = 0; index < 4; index++) |
| 1590 | { |
| 1591 | if (fmt == formatEncode4B[index]) |
| 1592 | { |
| 1593 | encoding_found = true; |
| 1594 | break; |
| 1595 | } |
| 1596 | } |
| 1597 | break; |
| 1598 | |
| 1599 | case IF_EN4C: |
| 1600 | for (index = 0; index < 4; index++) |
| 1601 | { |
| 1602 | if (fmt == formatEncode4C[index]) |
| 1603 | { |
| 1604 | encoding_found = true; |
| 1605 | break; |
| 1606 | } |
| 1607 | } |
| 1608 | break; |
| 1609 | |
| 1610 | case IF_EN4D: |
| 1611 | for (index = 0; index < 4; index++) |
| 1612 | { |
| 1613 | if (fmt == formatEncode4D[index]) |
| 1614 | { |
| 1615 | encoding_found = true; |
| 1616 | break; |
| 1617 | } |
| 1618 | } |
| 1619 | break; |
| 1620 | |
| 1621 | case IF_EN4E: |
| 1622 | for (index = 0; index < 4; index++) |
| 1623 | { |
| 1624 | if (fmt == formatEncode4E[index]) |
| 1625 | { |
| 1626 | encoding_found = true; |
| 1627 | break; |
| 1628 | } |
| 1629 | } |
| 1630 | break; |
| 1631 | |
| 1632 | case IF_EN4F: |
| 1633 | for (index = 0; index < 4; index++) |
| 1634 | { |
| 1635 | if (fmt == formatEncode4F[index]) |
| 1636 | { |
| 1637 | encoding_found = true; |
| 1638 | break; |
| 1639 | } |
| 1640 | } |
| 1641 | break; |
| 1642 | |
| 1643 | case IF_EN4G: |
| 1644 | for (index = 0; index < 4; index++) |
| 1645 | { |
| 1646 | if (fmt == formatEncode4G[index]) |
| 1647 | { |
| 1648 | encoding_found = true; |
| 1649 | break; |
| 1650 | } |
| 1651 | } |
| 1652 | break; |
| 1653 | |
| 1654 | case IF_EN4H: |
| 1655 | for (index = 0; index < 4; index++) |
| 1656 | { |
| 1657 | if (fmt == formatEncode4H[index]) |
| 1658 | { |
| 1659 | encoding_found = true; |
| 1660 | break; |
| 1661 | } |
| 1662 | } |
| 1663 | break; |
| 1664 | |
| 1665 | case IF_EN4I: |
| 1666 | for (index = 0; index < 4; index++) |
| 1667 | { |
| 1668 | if (fmt == formatEncode4I[index]) |
| 1669 | { |
| 1670 | encoding_found = true; |
| 1671 | break; |
| 1672 | } |
| 1673 | } |
| 1674 | break; |
| 1675 | |
| 1676 | case IF_EN3A: |
| 1677 | for (index = 0; index < 3; index++) |
| 1678 | { |
| 1679 | if (fmt == formatEncode3A[index]) |
| 1680 | { |
| 1681 | encoding_found = true; |
| 1682 | break; |
| 1683 | } |
| 1684 | } |
| 1685 | break; |
| 1686 | |
| 1687 | case IF_EN3B: |
| 1688 | for (index = 0; index < 3; index++) |
| 1689 | { |
| 1690 | if (fmt == formatEncode3B[index]) |
| 1691 | { |
| 1692 | encoding_found = true; |
| 1693 | break; |
| 1694 | } |
| 1695 | } |
| 1696 | break; |
| 1697 | |
| 1698 | case IF_EN3C: |
| 1699 | for (index = 0; index < 3; index++) |
| 1700 | { |
| 1701 | if (fmt == formatEncode3C[index]) |
| 1702 | { |
| 1703 | encoding_found = true; |
| 1704 | break; |
| 1705 | } |
| 1706 | } |
| 1707 | break; |
| 1708 | |
| 1709 | case IF_EN3D: |
| 1710 | for (index = 0; index < 3; index++) |
| 1711 | { |
| 1712 | if (fmt == formatEncode3D[index]) |
| 1713 | { |
| 1714 | encoding_found = true; |
| 1715 | break; |
| 1716 | } |
| 1717 | } |
| 1718 | break; |
| 1719 | |
| 1720 | case IF_EN3E: |
| 1721 | for (index = 0; index < 3; index++) |
| 1722 | { |
| 1723 | if (fmt == formatEncode3E[index]) |
| 1724 | { |
| 1725 | encoding_found = true; |
| 1726 | break; |
| 1727 | } |
| 1728 | } |
| 1729 | break; |
| 1730 | |
| 1731 | case IF_EN3F: |
| 1732 | for (index = 0; index < 3; index++) |
| 1733 | { |
| 1734 | if (fmt == formatEncode3F[index]) |
| 1735 | { |
| 1736 | encoding_found = true; |
| 1737 | break; |
| 1738 | } |
| 1739 | } |
| 1740 | break; |
| 1741 | |
| 1742 | case IF_EN3G: |
| 1743 | for (index = 0; index < 3; index++) |
| 1744 | { |
| 1745 | if (fmt == formatEncode3G[index]) |
| 1746 | { |
| 1747 | encoding_found = true; |
| 1748 | break; |
| 1749 | } |
| 1750 | } |
| 1751 | break; |
| 1752 | |
| 1753 | case IF_EN3H: |
| 1754 | for (index = 0; index < 3; index++) |
| 1755 | { |
| 1756 | if (fmt == formatEncode3H[index]) |
| 1757 | { |
| 1758 | encoding_found = true; |
| 1759 | break; |
| 1760 | } |
| 1761 | } |
| 1762 | break; |
| 1763 | |
| 1764 | case IF_EN3I: |
| 1765 | for (index = 0; index < 3; index++) |
| 1766 | { |
| 1767 | if (fmt == formatEncode3I[index]) |
| 1768 | { |
| 1769 | encoding_found = true; |
| 1770 | break; |
| 1771 | } |
| 1772 | } |
| 1773 | break; |
| 1774 | |
| 1775 | case IF_EN2A: |
| 1776 | for (index = 0; index < 2; index++) |
| 1777 | { |
| 1778 | if (fmt == formatEncode2A[index]) |
| 1779 | { |
| 1780 | encoding_found = true; |
| 1781 | break; |
| 1782 | } |
| 1783 | } |
| 1784 | break; |
| 1785 | |
| 1786 | case IF_EN2B: |
| 1787 | for (index = 0; index < 2; index++) |
| 1788 | { |
| 1789 | if (fmt == formatEncode2B[index]) |
| 1790 | { |
| 1791 | encoding_found = true; |
| 1792 | break; |
| 1793 | } |
| 1794 | } |
| 1795 | break; |
| 1796 | |
| 1797 | case IF_EN2C: |
| 1798 | for (index = 0; index < 2; index++) |
| 1799 | { |
| 1800 | if (fmt == formatEncode2C[index]) |
| 1801 | { |
| 1802 | encoding_found = true; |
| 1803 | break; |
| 1804 | } |
| 1805 | } |
| 1806 | break; |
| 1807 | |
| 1808 | case IF_EN2D: |
| 1809 | for (index = 0; index < 2; index++) |
| 1810 | { |
| 1811 | if (fmt == formatEncode2D[index]) |
| 1812 | { |
| 1813 | encoding_found = true; |
| 1814 | break; |
| 1815 | } |
| 1816 | } |
| 1817 | break; |
| 1818 | |
| 1819 | case IF_EN2E: |
| 1820 | for (index = 0; index < 2; index++) |
| 1821 | { |
| 1822 | if (fmt == formatEncode2E[index]) |
| 1823 | { |
| 1824 | encoding_found = true; |
| 1825 | break; |
| 1826 | } |
| 1827 | } |
| 1828 | break; |
| 1829 | |
| 1830 | case IF_EN2F: |
| 1831 | for (index = 0; index < 2; index++) |
| 1832 | { |
| 1833 | if (fmt == formatEncode2F[index]) |
| 1834 | { |
| 1835 | encoding_found = true; |
| 1836 | break; |
| 1837 | } |
| 1838 | } |
| 1839 | break; |
| 1840 | |
| 1841 | case IF_EN2G: |
| 1842 | for (index = 0; index < 2; index++) |
| 1843 | { |
| 1844 | if (fmt == formatEncode2G[index]) |
| 1845 | { |
| 1846 | encoding_found = true; |
| 1847 | break; |
| 1848 | } |
| 1849 | } |
| 1850 | break; |
| 1851 | |
| 1852 | case IF_EN2H: |
| 1853 | for (index = 0; index < 2; index++) |
| 1854 | { |
| 1855 | if (fmt == formatEncode2H[index]) |
| 1856 | { |
| 1857 | encoding_found = true; |
| 1858 | break; |
| 1859 | } |
| 1860 | } |
| 1861 | break; |
| 1862 | |
| 1863 | case IF_EN2I: |
| 1864 | for (index = 0; index < 2; index++) |
| 1865 | { |
| 1866 | if (fmt == formatEncode2I[index]) |
| 1867 | { |
| 1868 | encoding_found = true; |
| 1869 | break; |
| 1870 | } |
| 1871 | } |
| 1872 | break; |
| 1873 | |
| 1874 | case IF_EN2J: |
| 1875 | for (index = 0; index < 2; index++) |
| 1876 | { |
| 1877 | if (fmt == formatEncode2J[index]) |
| 1878 | { |
| 1879 | encoding_found = true; |
| 1880 | break; |
| 1881 | } |
| 1882 | } |
| 1883 | break; |
| 1884 | |
| 1885 | case IF_EN2K: |
| 1886 | for (index = 0; index < 2; index++) |
| 1887 | { |
| 1888 | if (fmt == formatEncode2K[index]) |
| 1889 | { |
| 1890 | encoding_found = true; |
| 1891 | break; |
| 1892 | } |
| 1893 | } |
| 1894 | break; |
| 1895 | |
| 1896 | case IF_EN2L: |
| 1897 | for (index = 0; index < 2; index++) |
| 1898 | { |
| 1899 | if (fmt == formatEncode2L[index]) |
| 1900 | { |
| 1901 | encoding_found = true; |
| 1902 | break; |
| 1903 | } |
| 1904 | } |
| 1905 | break; |
| 1906 | |
| 1907 | case IF_EN2M: |
| 1908 | for (index = 0; index < 2; index++) |
| 1909 | { |
| 1910 | if (fmt == formatEncode2M[index]) |
| 1911 | { |
| 1912 | encoding_found = true; |
| 1913 | break; |
| 1914 | } |
| 1915 | } |
| 1916 | break; |
| 1917 | |
| 1918 | case IF_EN2N: |
| 1919 | for (index = 0; index < 2; index++) |
| 1920 | { |
| 1921 | if (fmt == formatEncode2N[index]) |
| 1922 | { |
| 1923 | encoding_found = true; |
| 1924 | break; |
| 1925 | } |
| 1926 | } |
| 1927 | break; |
| 1928 | |
| 1929 | case IF_EN2O: |
| 1930 | for (index = 0; index < 2; index++) |
| 1931 | { |
| 1932 | if (fmt == formatEncode2O[index]) |
| 1933 | { |
| 1934 | encoding_found = true; |
| 1935 | break; |
| 1936 | } |
| 1937 | } |
| 1938 | break; |
| 1939 | |
| 1940 | case IF_EN2P: |
| 1941 | for (index = 0; index < 2; index++) |
| 1942 | { |
| 1943 | if (fmt == formatEncode2P[index]) |
| 1944 | { |
| 1945 | encoding_found = true; |
| 1946 | break; |
| 1947 | } |
| 1948 | } |
| 1949 | break; |
| 1950 | |
| 1951 | case IF_BI_0A: |
| 1952 | case IF_BI_0B: |
| 1953 | case IF_BI_0C: |
| 1954 | case IF_BI_1A: |
| 1955 | case IF_BI_1B: |
| 1956 | case IF_BR_1A: |
| 1957 | case IF_BR_1B: |
| 1958 | case IF_LS_1A: |
| 1959 | case IF_LS_2A: |
| 1960 | case IF_LS_2B: |
| 1961 | case IF_LS_2C: |
| 1962 | case IF_LS_3A: |
| 1963 | case IF_LS_3B: |
| 1964 | case IF_LS_3C: |
| 1965 | case IF_LS_3D: |
| 1966 | case IF_LS_3E: |
| 1967 | case IF_DI_1A: |
| 1968 | case IF_DI_1B: |
| 1969 | case IF_DI_1C: |
| 1970 | case IF_DI_1D: |
| 1971 | case IF_DI_1E: |
| 1972 | case IF_DI_1F: |
| 1973 | case IF_DI_2A: |
| 1974 | case IF_DI_2B: |
| 1975 | case IF_DI_2C: |
| 1976 | case IF_DI_2D: |
| 1977 | case IF_DR_1D: |
| 1978 | case IF_DR_2A: |
| 1979 | case IF_DR_2B: |
| 1980 | case IF_DR_2C: |
| 1981 | case IF_DR_2D: |
| 1982 | case IF_DR_2E: |
| 1983 | case IF_DR_2F: |
| 1984 | case IF_DR_2G: |
| 1985 | case IF_DR_2H: |
| 1986 | case IF_DR_2I: |
| 1987 | case IF_DR_2J: |
| 1988 | case IF_DR_3A: |
| 1989 | case IF_DR_3B: |
| 1990 | case IF_DR_3C: |
| 1991 | case IF_DR_3D: |
| 1992 | case IF_DR_3E: |
| 1993 | case IF_DR_4A: |
| 1994 | case IF_DV_1A: |
| 1995 | case IF_DV_1B: |
| 1996 | case IF_DV_1C: |
| 1997 | case IF_DV_2A: |
| 1998 | case IF_DV_2B: |
| 1999 | case IF_DV_2C: |
| 2000 | case IF_DV_2D: |
| 2001 | case IF_DV_2E: |
| 2002 | case IF_DV_2F: |
| 2003 | case IF_DV_2G: |
| 2004 | case IF_DV_2H: |
| 2005 | case IF_DV_2I: |
| 2006 | case IF_DV_2J: |
| 2007 | case IF_DV_2K: |
| 2008 | case IF_DV_2L: |
| 2009 | case IF_DV_2M: |
| 2010 | case IF_DV_2N: |
| 2011 | case IF_DV_2O: |
| 2012 | case IF_DV_2P: |
| 2013 | case IF_DV_3A: |
| 2014 | case IF_DV_3AI: |
| 2015 | case IF_DV_3B: |
| 2016 | case IF_DV_3BI: |
| 2017 | case IF_DV_3C: |
| 2018 | case IF_DV_3D: |
| 2019 | case IF_DV_3DI: |
| 2020 | case IF_DV_3E: |
| 2021 | case IF_DV_3F: |
| 2022 | case IF_DV_4A: |
| 2023 | case IF_SN_0A: |
| 2024 | case IF_SI_0A: |
| 2025 | case IF_SI_0B: |
| 2026 | |
| 2027 | index = 0; |
| 2028 | encoding_found = true; |
| 2029 | break; |
| 2030 | |
| 2031 | default: |
| 2032 | |
| 2033 | encoding_found = false; |
| 2034 | break; |
| 2035 | } |
| 2036 | |
| 2037 | assert(encoding_found); |
| 2038 | |
| 2039 | switch (index) |
| 2040 | { |
| 2041 | case 0: |
| 2042 | assert(ins < ArrLen(insCodes1)); |
| 2043 | code = insCodes1[ins]; |
| 2044 | break; |
| 2045 | case 1: |
| 2046 | assert(ins < ArrLen(insCodes2)); |
| 2047 | code = insCodes2[ins]; |
| 2048 | break; |
| 2049 | case 2: |
| 2050 | assert(ins < ArrLen(insCodes3)); |
| 2051 | code = insCodes3[ins]; |
| 2052 | break; |
| 2053 | case 3: |
| 2054 | assert(ins < ArrLen(insCodes4)); |
| 2055 | code = insCodes4[ins]; |
| 2056 | break; |
| 2057 | case 4: |
| 2058 | assert(ins < ArrLen(insCodes5)); |
| 2059 | code = insCodes5[ins]; |
| 2060 | break; |
| 2061 | case 5: |
| 2062 | assert(ins < ArrLen(insCodes6)); |
| 2063 | code = insCodes6[ins]; |
| 2064 | break; |
| 2065 | case 6: |
| 2066 | assert(ins < ArrLen(insCodes7)); |
| 2067 | code = insCodes7[ins]; |
| 2068 | break; |
| 2069 | case 7: |
| 2070 | assert(ins < ArrLen(insCodes8)); |
| 2071 | code = insCodes8[ins]; |
| 2072 | break; |
| 2073 | case 8: |
| 2074 | assert(ins < ArrLen(insCodes9)); |
| 2075 | code = insCodes9[ins]; |
| 2076 | break; |
| 2077 | } |
| 2078 | |
| 2079 | assert((code != BAD_CODE)); |
| 2080 | |
| 2081 | return code; |
| 2082 | } |
| 2083 | |
| 2084 | // true if this 'imm' can be encoded as a input operand to a mov instruction |
| 2085 | /*static*/ bool emitter::emitIns_valid_imm_for_mov(INT64 imm, emitAttr size) |
| 2086 | { |
| 2087 | // Check for "MOV (wide immediate)". |
| 2088 | if (canEncodeHalfwordImm(imm, size)) |
| 2089 | return true; |
| 2090 | |
| 2091 | // Next try the ones-complement form of 'halfword immediate' imm(i16,hw), |
| 2092 | // namely "MOV (inverted wide immediate)". |
| 2093 | ssize_t notOfImm = NOT_helper(imm, getBitWidth(size)); |
| 2094 | if (canEncodeHalfwordImm(notOfImm, size)) |
| 2095 | return true; |
| 2096 | |
| 2097 | // Finally try "MOV (bitmask immediate)" imm(N,r,s) |
| 2098 | if (canEncodeBitMaskImm(imm, size)) |
| 2099 | return true; |
| 2100 | |
| 2101 | return false; |
| 2102 | } |
| 2103 | |
| 2104 | // true if this 'imm' can be encoded as a input operand to a vector movi instruction |
| 2105 | /*static*/ bool emitter::emitIns_valid_imm_for_movi(INT64 imm, emitAttr elemsize) |
| 2106 | { |
| 2107 | if (elemsize == EA_8BYTE) |
| 2108 | { |
| 2109 | UINT64 uimm = imm; |
| 2110 | while (uimm != 0) |
| 2111 | { |
| 2112 | INT64 loByte = uimm & 0xFF; |
| 2113 | if ((loByte == 0) || (loByte == 0xFF)) |
| 2114 | { |
| 2115 | uimm >>= 8; |
| 2116 | } |
| 2117 | else |
| 2118 | { |
| 2119 | return false; |
| 2120 | } |
| 2121 | } |
| 2122 | assert(uimm == 0); |
| 2123 | return true; |
| 2124 | } |
| 2125 | else |
| 2126 | { |
| 2127 | // First try the standard 'byteShifted immediate' imm(i8,bySh) |
| 2128 | if (canEncodeByteShiftedImm(imm, elemsize, true)) |
| 2129 | return true; |
| 2130 | |
| 2131 | // Next try the ones-complement form of the 'immediate' imm(i8,bySh) |
| 2132 | ssize_t notOfImm = NOT_helper(imm, getBitWidth(elemsize)); |
| 2133 | if (canEncodeByteShiftedImm(notOfImm, elemsize, true)) |
| 2134 | return true; |
| 2135 | } |
| 2136 | return false; |
| 2137 | } |
| 2138 | |
| 2139 | // true if this 'imm' can be encoded as a input operand to a fmov instruction |
| 2140 | /*static*/ bool emitter::emitIns_valid_imm_for_fmov(double immDbl) |
| 2141 | { |
| 2142 | if (canEncodeFloatImm8(immDbl)) |
| 2143 | return true; |
| 2144 | |
| 2145 | return false; |
| 2146 | } |
| 2147 | |
| 2148 | // true if this 'imm' can be encoded as a input operand to an add instruction |
| 2149 | /*static*/ bool emitter::emitIns_valid_imm_for_add(INT64 imm, emitAttr size) |
| 2150 | { |
| 2151 | if (unsigned_abs(imm) <= 0x0fff) |
| 2152 | return true; |
| 2153 | else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding |
| 2154 | return true; |
| 2155 | |
| 2156 | return false; |
| 2157 | } |
| 2158 | |
| 2159 | // true if this 'imm' can be encoded as a input operand to an non-add/sub alu instruction |
| 2160 | /*static*/ bool emitter::emitIns_valid_imm_for_cmp(INT64 imm, emitAttr size) |
| 2161 | { |
| 2162 | return emitIns_valid_imm_for_add(imm, size); |
| 2163 | } |
| 2164 | |
| 2165 | // true if this 'imm' can be encoded as a input operand to an non-add/sub alu instruction |
| 2166 | /*static*/ bool emitter::emitIns_valid_imm_for_alu(INT64 imm, emitAttr size) |
| 2167 | { |
| 2168 | if (canEncodeBitMaskImm(imm, size)) |
| 2169 | return true; |
| 2170 | |
| 2171 | return false; |
| 2172 | } |
| 2173 | |
| 2174 | // true if this 'imm' can be encoded as the offset in a ldr/str instruction |
| 2175 | /*static*/ bool emitter::emitIns_valid_imm_for_ldst_offset(INT64 imm, emitAttr attr) |
| 2176 | { |
| 2177 | if (imm == 0) |
| 2178 | return true; // Encodable using IF_LS_2A |
| 2179 | |
| 2180 | if ((imm >= -256) && (imm <= 255)) |
| 2181 | return true; // Encodable using IF_LS_2C (or possibly IF_LS_2B) |
| 2182 | |
| 2183 | if (imm < 0) |
| 2184 | return false; // not encodable |
| 2185 | |
| 2186 | emitAttr size = EA_SIZE(attr); |
| 2187 | unsigned scale = NaturalScale_helper(size); |
| 2188 | ssize_t mask = size - 1; // the mask of low bits that must be zero to encode the immediate |
| 2189 | |
| 2190 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
| 2191 | return true; // Encodable using IF_LS_2B |
| 2192 | |
| 2193 | return false; // not encodable |
| 2194 | } |
| 2195 | |
| 2196 | /************************************************************************ |
| 2197 | * |
| 2198 | * A helper method to return the natural scale for an EA 'size' |
| 2199 | */ |
| 2200 | |
| 2201 | /*static*/ unsigned emitter::NaturalScale_helper(emitAttr size) |
| 2202 | { |
| 2203 | assert(size == EA_1BYTE || size == EA_2BYTE || size == EA_4BYTE || size == EA_8BYTE || size == EA_16BYTE); |
| 2204 | |
| 2205 | unsigned result = 0; |
| 2206 | unsigned utemp = (unsigned)size; |
| 2207 | |
| 2208 | // Compute log base 2 of utemp (aka 'size') |
| 2209 | while (utemp > 1) |
| 2210 | { |
| 2211 | result++; |
| 2212 | utemp >>= 1; |
| 2213 | } |
| 2214 | |
| 2215 | return result; |
| 2216 | } |
| 2217 | |
| 2218 | /************************************************************************ |
| 2219 | * |
| 2220 | * A helper method to perform a Rotate-Right shift operation |
| 2221 | * the source is 'value' and it is rotated right by 'sh' bits |
| 2222 | * 'value' is considered to be a fixed size 'width' set of bits. |
| 2223 | * |
| 2224 | * Example |
| 2225 | * value is '00001111', sh is 2 and width is 8 |
| 2226 | * result is '11000011' |
| 2227 | */ |
| 2228 | |
| 2229 | /*static*/ UINT64 emitter::ROR_helper(UINT64 value, unsigned sh, unsigned width) |
| 2230 | { |
| 2231 | assert(width <= 64); |
| 2232 | // Check that 'value' fits in 'width' bits |
| 2233 | assert((width == 64) || (value < (1ULL << width))); |
| 2234 | // We don't support shifts >= width |
| 2235 | assert(sh < width); |
| 2236 | |
| 2237 | UINT64 result; |
| 2238 | |
| 2239 | unsigned rsh = sh; |
| 2240 | unsigned lsh = width - rsh; |
| 2241 | |
| 2242 | result = (value >> rsh); |
| 2243 | result |= (value << lsh); |
| 2244 | |
| 2245 | if (width < 64) |
| 2246 | { |
| 2247 | // mask off any extra bits that we got from the left shift |
| 2248 | result &= ((1ULL << width) - 1); |
| 2249 | } |
| 2250 | return result; |
| 2251 | } |
| 2252 | /************************************************************************ |
| 2253 | * |
| 2254 | * A helper method to perform a 'NOT' bitwise complement operation. |
| 2255 | * 'value' is considered to be a fixed size 'width' set of bits. |
| 2256 | * |
| 2257 | * Example |
| 2258 | * value is '01001011', and width is 8 |
| 2259 | * result is '10110100' |
| 2260 | */ |
| 2261 | |
| 2262 | /*static*/ UINT64 emitter::NOT_helper(UINT64 value, unsigned width) |
| 2263 | { |
| 2264 | assert(width <= 64); |
| 2265 | |
| 2266 | UINT64 result = ~value; |
| 2267 | |
| 2268 | if (width < 64) |
| 2269 | { |
| 2270 | // Check that 'value' fits in 'width' bits. Don't consider "sign" bits above width. |
| 2271 | UINT64 maxVal = 1ULL << width; |
| 2272 | UINT64 lowBitsMask = maxVal - 1; |
| 2273 | UINT64 signBitsMask = ~lowBitsMask | (1ULL << (width - 1)); // The high bits must be set, and the top bit |
| 2274 | // (sign bit) must be set. |
| 2275 | assert((value < maxVal) || ((value & signBitsMask) == signBitsMask)); |
| 2276 | |
| 2277 | // mask off any extra bits that we got from the complement operation |
| 2278 | result &= lowBitsMask; |
| 2279 | } |
| 2280 | |
| 2281 | return result; |
| 2282 | } |
| 2283 | |
| 2284 | /************************************************************************ |
| 2285 | * |
| 2286 | * A helper method to perform a bit Replicate operation |
| 2287 | * the source is 'value' with a fixed size 'width' set of bits. |
| 2288 | * value is replicated to fill out 32 or 64 bits as determined by 'size'. |
| 2289 | * |
| 2290 | * Example |
| 2291 | * value is '11000011' (0xE3), width is 8 and size is EA_8BYTE |
| 2292 | * result is '11000011 11000011 11000011 11000011 11000011 11000011 11000011 11000011' |
| 2293 | * 0xE3E3E3E3E3E3E3E3 |
| 2294 | */ |
| 2295 | |
| 2296 | /*static*/ UINT64 emitter::Replicate_helper(UINT64 value, unsigned width, emitAttr size) |
| 2297 | { |
| 2298 | assert(emitter::isValidGeneralDatasize(size)); |
| 2299 | |
| 2300 | unsigned immWidth = (size == EA_8BYTE) ? 64 : 32; |
| 2301 | assert(width <= immWidth); |
| 2302 | |
| 2303 | UINT64 result = value; |
| 2304 | unsigned filledBits = width; |
| 2305 | |
| 2306 | while (filledBits < immWidth) |
| 2307 | { |
| 2308 | value <<= width; |
| 2309 | result |= value; |
| 2310 | filledBits += width; |
| 2311 | } |
| 2312 | return result; |
| 2313 | } |
| 2314 | |
| 2315 | /************************************************************************ |
| 2316 | * |
| 2317 | * Convert an imm(N,r,s) into a 64-bit immediate |
| 2318 | * inputs 'bmImm' a bitMaskImm struct |
| 2319 | * 'size' specifies the size of the result (64 or 32 bits) |
| 2320 | */ |
| 2321 | |
| 2322 | /*static*/ INT64 emitter::emitDecodeBitMaskImm(const emitter::bitMaskImm bmImm, emitAttr size) |
| 2323 | { |
| 2324 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
| 2325 | |
| 2326 | unsigned N = bmImm.immN; // read the N,R and S values from the 'bitMaskImm' encoding |
| 2327 | unsigned R = bmImm.immR; |
| 2328 | unsigned S = bmImm.immS; |
| 2329 | |
| 2330 | unsigned elemWidth = 64; // used when immN == 1 |
| 2331 | |
| 2332 | if (bmImm.immN == 0) // find the smaller elemWidth when immN == 0 |
| 2333 | { |
| 2334 | // Scan S for the highest bit not set |
| 2335 | elemWidth = 32; |
| 2336 | for (unsigned bitNum = 5; bitNum > 0; bitNum--) |
| 2337 | { |
| 2338 | unsigned oneBit = elemWidth; |
| 2339 | if ((S & oneBit) == 0) |
| 2340 | break; |
| 2341 | elemWidth /= 2; |
| 2342 | } |
| 2343 | } |
| 2344 | else |
| 2345 | { |
| 2346 | assert(size == EA_8BYTE); |
| 2347 | } |
| 2348 | |
| 2349 | unsigned maskSR = elemWidth - 1; |
| 2350 | |
| 2351 | S &= maskSR; |
| 2352 | R &= maskSR; |
| 2353 | |
| 2354 | // encoding for S is one less than the number of consecutive one bits |
| 2355 | S++; // Number of consecutive ones to generate in 'welem' |
| 2356 | |
| 2357 | // At this point: |
| 2358 | // |
| 2359 | // 'elemWidth' is the number of bits that we will use for the ROR and Replicate operations |
| 2360 | // 'S' is the number of consecutive 1 bits for the immediate |
| 2361 | // 'R' is the number of bits that we will Rotate Right the immediate |
| 2362 | // 'size' selects the final size of the immedate that we return (64 or 32 bits) |
| 2363 | |
| 2364 | assert(S < elemWidth); // 'elemWidth' consecutive one's is a reserved encoding |
| 2365 | |
| 2366 | UINT64 welem; |
| 2367 | UINT64 wmask; |
| 2368 | |
| 2369 | welem = (1ULL << S) - 1; |
| 2370 | |
| 2371 | wmask = ROR_helper(welem, R, elemWidth); |
| 2372 | wmask = Replicate_helper(wmask, elemWidth, size); |
| 2373 | |
| 2374 | return wmask; |
| 2375 | } |
| 2376 | |
| 2377 | /***************************************************************************** |
| 2378 | * |
| 2379 | * Check if an immediate can use the left shifted by 12 bits encoding |
| 2380 | */ |
| 2381 | |
| 2382 | /*static*/ bool emitter::canEncodeWithShiftImmBy12(INT64 imm) |
| 2383 | { |
| 2384 | if (imm < 0) |
| 2385 | { |
| 2386 | imm = -imm; // convert to unsigned |
| 2387 | } |
| 2388 | |
| 2389 | if (imm < 0) |
| 2390 | { |
| 2391 | return false; // Must be MIN_INT64 |
| 2392 | } |
| 2393 | |
| 2394 | if ((imm & 0xfff) != 0) // Now the low 12 bits all have to be zero |
| 2395 | { |
| 2396 | return false; |
| 2397 | } |
| 2398 | |
| 2399 | imm >>= 12; // shift right by 12 bits |
| 2400 | |
| 2401 | return (imm <= 0x0fff); // Does it fit in 12 bits |
| 2402 | } |
| 2403 | |
| 2404 | /***************************************************************************** |
| 2405 | * |
| 2406 | * Normalize the 'imm' so that the upper bits, as defined by 'size' are zero |
| 2407 | */ |
| 2408 | |
| 2409 | /*static*/ INT64 emitter::normalizeImm64(INT64 imm, emitAttr size) |
| 2410 | { |
| 2411 | unsigned immWidth = getBitWidth(size); |
| 2412 | INT64 result = imm; |
| 2413 | |
| 2414 | if (immWidth < 64) |
| 2415 | { |
| 2416 | // Check that 'imm' fits in 'immWidth' bits. Don't consider "sign" bits above width. |
| 2417 | INT64 maxVal = 1LL << immWidth; |
| 2418 | INT64 lowBitsMask = maxVal - 1; |
| 2419 | INT64 hiBitsMask = ~lowBitsMask; |
| 2420 | INT64 signBitsMask = |
| 2421 | hiBitsMask | (1LL << (immWidth - 1)); // The high bits must be set, and the top bit (sign bit) must be set. |
| 2422 | assert((imm < maxVal) || ((imm & signBitsMask) == signBitsMask)); |
| 2423 | |
| 2424 | // mask off the hiBits |
| 2425 | result &= lowBitsMask; |
| 2426 | } |
| 2427 | return result; |
| 2428 | } |
| 2429 | |
| 2430 | /***************************************************************************** |
| 2431 | * |
| 2432 | * Normalize the 'imm' so that the upper bits, as defined by 'size' are zero |
| 2433 | */ |
| 2434 | |
| 2435 | /*static*/ INT32 emitter::normalizeImm32(INT32 imm, emitAttr size) |
| 2436 | { |
| 2437 | unsigned immWidth = getBitWidth(size); |
| 2438 | INT32 result = imm; |
| 2439 | |
| 2440 | if (immWidth < 32) |
| 2441 | { |
| 2442 | // Check that 'imm' fits in 'immWidth' bits. Don't consider "sign" bits above width. |
| 2443 | INT32 maxVal = 1 << immWidth; |
| 2444 | INT32 lowBitsMask = maxVal - 1; |
| 2445 | INT32 hiBitsMask = ~lowBitsMask; |
| 2446 | INT32 signBitsMask = hiBitsMask | (1 << (immWidth - 1)); // The high bits must be set, and the top bit |
| 2447 | // (sign bit) must be set. |
| 2448 | assert((imm < maxVal) || ((imm & signBitsMask) == signBitsMask)); |
| 2449 | |
| 2450 | // mask off the hiBits |
| 2451 | result &= lowBitsMask; |
| 2452 | } |
| 2453 | return result; |
| 2454 | } |
| 2455 | |
| 2456 | /************************************************************************ |
| 2457 | * |
| 2458 | * returns true if 'imm' of 'size bits (32/64) can be encoded |
| 2459 | * using the ARM64 'bitmask immediate' form. |
| 2460 | * When a non-null value is passed for 'wbBMI' then this method |
| 2461 | * writes back the 'N','S' and 'R' values use to encode this immediate |
| 2462 | * |
| 2463 | */ |
| 2464 | |
| 2465 | /*static*/ bool emitter::canEncodeBitMaskImm(INT64 imm, emitAttr size, emitter::bitMaskImm* wbBMI) |
| 2466 | { |
| 2467 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
| 2468 | |
| 2469 | unsigned immWidth = (size == EA_8BYTE) ? 64 : 32; |
| 2470 | unsigned maxLen = (size == EA_8BYTE) ? 6 : 5; |
| 2471 | |
| 2472 | imm = normalizeImm64(imm, size); |
| 2473 | |
| 2474 | // Starting with len=1, elemWidth is 2 bits |
| 2475 | // len=2, elemWidth is 4 bits |
| 2476 | // len=3, elemWidth is 8 bits |
| 2477 | // len=4, elemWidth is 16 bits |
| 2478 | // len=5, elemWidth is 32 bits |
| 2479 | // (optionally) len=6, elemWidth is 64 bits |
| 2480 | // |
| 2481 | for (unsigned len = 1; (len <= maxLen); len++) |
| 2482 | { |
| 2483 | unsigned elemWidth = 1 << len; |
| 2484 | UINT64 elemMask = ((UINT64)-1) >> (64 - elemWidth); |
| 2485 | UINT64 tempImm = (UINT64)imm; // A working copy of 'imm' that we can mutate |
| 2486 | UINT64 elemVal = tempImm & elemMask; // The low 'elemWidth' bits of 'imm' |
| 2487 | |
| 2488 | // Check for all 1's or 0's as these can't be encoded |
| 2489 | if ((elemVal == 0) || (elemVal == elemMask)) |
| 2490 | continue; |
| 2491 | |
| 2492 | // 'checkedBits' is the count of bits that are known to match 'elemVal' when replicated |
| 2493 | unsigned checkedBits = elemWidth; // by definition the first 'elemWidth' bits match |
| 2494 | |
| 2495 | // Now check to see if each of the next bits match... |
| 2496 | // |
| 2497 | while (checkedBits < immWidth) |
| 2498 | { |
| 2499 | tempImm >>= elemWidth; |
| 2500 | |
| 2501 | UINT64 nextElem = tempImm & elemMask; |
| 2502 | if (nextElem != elemVal) |
| 2503 | { |
| 2504 | // Not matching, exit this loop and checkedBits will not be equal to immWidth |
| 2505 | break; |
| 2506 | } |
| 2507 | |
| 2508 | // The 'nextElem' is matching, so increment 'checkedBits' |
| 2509 | checkedBits += elemWidth; |
| 2510 | } |
| 2511 | |
| 2512 | // Did the full immediate contain bits that can be formed by repeating 'elemVal'? |
| 2513 | if (checkedBits == immWidth) |
| 2514 | { |
| 2515 | // We are not quite done, since the only values that we can encode as a |
| 2516 | // 'bitmask immediate' are those that can be formed by starting with a |
| 2517 | // bit string of 0*1* that is rotated by some number of bits. |
| 2518 | // |
| 2519 | // We check to see if 'elemVal' can be formed using these restrictions. |
| 2520 | // |
| 2521 | // Observation: |
| 2522 | // Rotating by one bit any value that passes these restrictions |
| 2523 | // can be xor-ed with the original value and will result it a string |
| 2524 | // of bits that have exactly two 1 bits: 'elemRorXor' |
| 2525 | // Further the distance between the two one bits tells us the value |
| 2526 | // of S and the location of the 1 bits tells us the value of R |
| 2527 | // |
| 2528 | // Some examples: (immWidth is 8) |
| 2529 | // |
| 2530 | // S=4,R=0 S=5,R=3 S=3,R=6 |
| 2531 | // elemVal: 00001111 11100011 00011100 |
| 2532 | // elemRor: 10000111 11110001 00001110 |
| 2533 | // elemRorXor: 10001000 00010010 00010010 |
| 2534 | // compute S 45678--- ---5678- ---3210- |
| 2535 | // compute R 01234567 ---34567 ------67 |
| 2536 | |
| 2537 | UINT64 elemRor = ROR_helper(elemVal, 1, elemWidth); // Rotate 'elemVal' Right by one bit |
| 2538 | UINT64 elemRorXor = elemVal ^ elemRor; // Xor elemVal and elemRor |
| 2539 | |
| 2540 | // If we only have a two-bit change in elemROR then we can form a mask for this value |
| 2541 | unsigned bitCount = 0; |
| 2542 | UINT64 oneBit = 0x1; |
| 2543 | unsigned R = elemWidth; // R is shift count for ROR (rotate right shift) |
| 2544 | unsigned S = 0; // S is number of consecutive one bits |
| 2545 | int incr = -1; |
| 2546 | |
| 2547 | // Loop over the 'elemWidth' bits in 'elemRorXor' |
| 2548 | // |
| 2549 | for (unsigned bitNum = 0; bitNum < elemWidth; bitNum++) |
| 2550 | { |
| 2551 | if (incr == -1) |
| 2552 | { |
| 2553 | R--; // We decrement R by one whenever incr is -1 |
| 2554 | } |
| 2555 | if (bitCount == 1) |
| 2556 | { |
| 2557 | S += incr; // We incr/decr S, after we find the first one bit in 'elemRorXor' |
| 2558 | } |
| 2559 | |
| 2560 | // Is this bit position a 1 bit in 'elemRorXor'? |
| 2561 | // |
| 2562 | if (oneBit & elemRorXor) |
| 2563 | { |
| 2564 | bitCount++; |
| 2565 | // Is this the first 1 bit that we found in 'elemRorXor'? |
| 2566 | if (bitCount == 1) |
| 2567 | { |
| 2568 | // Does this 1 bit represent a transition to zero bits? |
| 2569 | bool toZeros = ((oneBit & elemVal) != 0); |
| 2570 | if (toZeros) |
| 2571 | { |
| 2572 | // S :: Count down from elemWidth |
| 2573 | S = elemWidth; |
| 2574 | incr = -1; |
| 2575 | } |
| 2576 | else // this 1 bit represent a transition to one bits. |
| 2577 | { |
| 2578 | // S :: Count up from zero |
| 2579 | S = 0; |
| 2580 | incr = +1; |
| 2581 | } |
| 2582 | } |
| 2583 | else // bitCount > 1 |
| 2584 | { |
| 2585 | // We found the second (or third...) 1 bit in 'elemRorXor' |
| 2586 | incr = 0; // stop decrementing 'R' |
| 2587 | |
| 2588 | if (bitCount > 2) |
| 2589 | { |
| 2590 | // More than 2 transitions from 0/1 in 'elemVal' |
| 2591 | // This means that 'elemVal' can't be encoded |
| 2592 | // using a 'bitmask immediate'. |
| 2593 | // |
| 2594 | // Furthermore, it will continue to fail |
| 2595 | // with any larger 'len' that we try. |
| 2596 | // so just return false. |
| 2597 | // |
| 2598 | return false; |
| 2599 | } |
| 2600 | } |
| 2601 | } |
| 2602 | |
| 2603 | // shift oneBit left by one bit to test the next position |
| 2604 | oneBit <<= 1; |
| 2605 | } |
| 2606 | |
| 2607 | // We expect that bitCount will always be two at this point |
| 2608 | // but just in case return false for any bad cases. |
| 2609 | // |
| 2610 | assert(bitCount == 2); |
| 2611 | if (bitCount != 2) |
| 2612 | return false; |
| 2613 | |
| 2614 | // Perform some sanity checks on the values of 'S' and 'R' |
| 2615 | assert(S > 0); |
| 2616 | assert(S < elemWidth); |
| 2617 | assert(R < elemWidth); |
| 2618 | |
| 2619 | // Does the caller want us to return the N,R,S encoding values? |
| 2620 | // |
| 2621 | if (wbBMI != nullptr) |
| 2622 | { |
| 2623 | |
| 2624 | // The encoding used for S is one less than the |
| 2625 | // number of consecutive one bits |
| 2626 | S--; |
| 2627 | |
| 2628 | if (len == 6) |
| 2629 | { |
| 2630 | wbBMI->immN = 1; |
| 2631 | } |
| 2632 | else |
| 2633 | { |
| 2634 | wbBMI->immN = 0; |
| 2635 | // The encoding used for 'S' here is a bit peculiar. |
| 2636 | // |
| 2637 | // The upper bits need to be complemented, followed by a zero bit |
| 2638 | // then the value of 'S-1' |
| 2639 | // |
| 2640 | unsigned upperBitsOfS = 64 - (1 << (len + 1)); |
| 2641 | S |= upperBitsOfS; |
| 2642 | } |
| 2643 | wbBMI->immR = R; |
| 2644 | wbBMI->immS = S; |
| 2645 | |
| 2646 | // Verify that what we are returning is correct. |
| 2647 | assert(imm == emitDecodeBitMaskImm(*wbBMI, size)); |
| 2648 | } |
| 2649 | // Tell the caller that we can successfully encode this immediate |
| 2650 | // using a 'bitmask immediate'. |
| 2651 | // |
| 2652 | return true; |
| 2653 | } |
| 2654 | } |
| 2655 | return false; |
| 2656 | } |
| 2657 | |
| 2658 | /************************************************************************ |
| 2659 | * |
| 2660 | * Convert a 64-bit immediate into its 'bitmask immediate' representation imm(N,r,s) |
| 2661 | */ |
| 2662 | |
| 2663 | /*static*/ emitter::bitMaskImm emitter::emitEncodeBitMaskImm(INT64 imm, emitAttr size) |
| 2664 | { |
| 2665 | emitter::bitMaskImm result; |
| 2666 | result.immNRS = 0; |
| 2667 | |
| 2668 | bool canEncode = canEncodeBitMaskImm(imm, size, &result); |
| 2669 | assert(canEncode); |
| 2670 | |
| 2671 | return result; |
| 2672 | } |
| 2673 | |
| 2674 | /************************************************************************ |
| 2675 | * |
| 2676 | * Convert an imm(i16,hw) into a 32/64-bit immediate |
| 2677 | * inputs 'hwImm' a halfwordImm struct |
| 2678 | * 'size' specifies the size of the result (64 or 32 bits) |
| 2679 | */ |
| 2680 | |
| 2681 | /*static*/ INT64 emitter::emitDecodeHalfwordImm(const emitter::halfwordImm hwImm, emitAttr size) |
| 2682 | { |
| 2683 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
| 2684 | |
| 2685 | unsigned hw = hwImm.immHW; |
| 2686 | INT64 val = (INT64)hwImm.immVal; |
| 2687 | |
| 2688 | assert((hw <= 1) || (size == EA_8BYTE)); |
| 2689 | |
| 2690 | INT64 result = val << (16 * hw); |
| 2691 | return result; |
| 2692 | } |
| 2693 | |
| 2694 | /************************************************************************ |
| 2695 | * |
| 2696 | * returns true if 'imm' of 'size' bits (32/64) can be encoded |
| 2697 | * using the ARM64 'halfword immediate' form. |
| 2698 | * When a non-null value is passed for 'wbHWI' then this method |
| 2699 | * writes back the 'immHW' and 'immVal' values use to encode this immediate |
| 2700 | * |
| 2701 | */ |
| 2702 | |
| 2703 | /*static*/ bool emitter::canEncodeHalfwordImm(INT64 imm, emitAttr size, emitter::halfwordImm* wbHWI) |
| 2704 | { |
| 2705 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
| 2706 | |
| 2707 | unsigned immWidth = (size == EA_8BYTE) ? 64 : 32; |
| 2708 | unsigned maxHW = (size == EA_8BYTE) ? 4 : 2; |
| 2709 | |
| 2710 | // setup immMask to a (EA_4BYTE) 0x00000000_FFFFFFFF or (EA_8BYTE) 0xFFFFFFFF_FFFFFFFF |
| 2711 | const UINT64 immMask = ((UINT64)-1) >> (64 - immWidth); |
| 2712 | const INT64 mask16 = (INT64)0xFFFF; |
| 2713 | |
| 2714 | imm = normalizeImm64(imm, size); |
| 2715 | |
| 2716 | // Try each of the valid hw shift sizes |
| 2717 | for (unsigned hw = 0; (hw < maxHW); hw++) |
| 2718 | { |
| 2719 | INT64 curMask = mask16 << (hw * 16); // Represents the mask of the bits in the current halfword |
| 2720 | INT64 checkBits = immMask & ~curMask; |
| 2721 | |
| 2722 | // Excluding the current halfword (using ~curMask) |
| 2723 | // does the immediate have zero bits in every other bit that we care about? |
| 2724 | // note we care about all 64-bits for EA_8BYTE |
| 2725 | // and we care about the lowest 32 bits for EA_4BYTE |
| 2726 | // |
| 2727 | if ((imm & checkBits) == 0) |
| 2728 | { |
| 2729 | // Does the caller want us to return the imm(i16,hw) encoding values? |
| 2730 | // |
| 2731 | if (wbHWI != nullptr) |
| 2732 | { |
| 2733 | INT64 val = ((imm & curMask) >> (hw * 16)) & mask16; |
| 2734 | wbHWI->immHW = hw; |
| 2735 | wbHWI->immVal = val; |
| 2736 | |
| 2737 | // Verify that what we are returning is correct. |
| 2738 | assert(imm == emitDecodeHalfwordImm(*wbHWI, size)); |
| 2739 | } |
| 2740 | // Tell the caller that we can successfully encode this immediate |
| 2741 | // using a 'halfword immediate'. |
| 2742 | // |
| 2743 | return true; |
| 2744 | } |
| 2745 | } |
| 2746 | return false; |
| 2747 | } |
| 2748 | |
| 2749 | /************************************************************************ |
| 2750 | * |
| 2751 | * Convert a 64-bit immediate into its 'halfword immediate' representation imm(i16,hw) |
| 2752 | */ |
| 2753 | |
| 2754 | /*static*/ emitter::halfwordImm emitter::emitEncodeHalfwordImm(INT64 imm, emitAttr size) |
| 2755 | { |
| 2756 | emitter::halfwordImm result; |
| 2757 | result.immHWVal = 0; |
| 2758 | |
| 2759 | bool canEncode = canEncodeHalfwordImm(imm, size, &result); |
| 2760 | assert(canEncode); |
| 2761 | |
| 2762 | return result; |
| 2763 | } |
| 2764 | |
| 2765 | /************************************************************************ |
| 2766 | * |
| 2767 | * Convert an imm(i8,sh) into a 16/32-bit immediate |
| 2768 | * inputs 'bsImm' a byteShiftedImm struct |
| 2769 | * 'size' specifies the size of the result (16 or 32 bits) |
| 2770 | */ |
| 2771 | |
| 2772 | /*static*/ INT32 emitter::emitDecodeByteShiftedImm(const emitter::byteShiftedImm bsImm, emitAttr size) |
| 2773 | { |
| 2774 | bool onesShift = (bsImm.immOnes == 1); |
| 2775 | unsigned bySh = bsImm.immBY; // Num Bytes to shift 0,1,2,3 |
| 2776 | INT32 val = (INT32)bsImm.immVal; // 8-bit immediate |
| 2777 | INT32 result = val; |
| 2778 | |
| 2779 | if (bySh > 0) |
| 2780 | { |
| 2781 | assert((size == EA_2BYTE) || (size == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms |
| 2782 | if (size == EA_2BYTE) |
| 2783 | { |
| 2784 | assert(bySh < 2); |
| 2785 | } |
| 2786 | else |
| 2787 | { |
| 2788 | assert(bySh < 4); |
| 2789 | } |
| 2790 | |
| 2791 | result <<= (8 * bySh); |
| 2792 | |
| 2793 | if (onesShift) |
| 2794 | { |
| 2795 | result |= ((1 << (8 * bySh)) - 1); |
| 2796 | } |
| 2797 | } |
| 2798 | return result; |
| 2799 | } |
| 2800 | |
| 2801 | /************************************************************************ |
| 2802 | * |
| 2803 | * returns true if 'imm' of 'size' bits (16/32) can be encoded |
| 2804 | * using the ARM64 'byteShifted immediate' form. |
| 2805 | * When a non-null value is passed for 'wbBSI' then this method |
| 2806 | * writes back the 'immBY' and 'immVal' values use to encode this immediate |
| 2807 | * |
| 2808 | */ |
| 2809 | |
| 2810 | /*static*/ bool emitter::canEncodeByteShiftedImm(INT64 imm, |
| 2811 | emitAttr size, |
| 2812 | bool allow_MSL, |
| 2813 | emitter::byteShiftedImm* wbBSI) |
| 2814 | { |
| 2815 | bool canEncode = false; |
| 2816 | bool onesShift = false; // true if we use the shifting ones variant |
| 2817 | unsigned bySh = 0; // number of bytes to shift: 0, 1, 2, 3 |
| 2818 | unsigned imm8 = 0; // immediate to use in the encoding |
| 2819 | |
| 2820 | imm = normalizeImm64(imm, size); |
| 2821 | |
| 2822 | if (size == EA_1BYTE) |
| 2823 | { |
| 2824 | imm8 = (unsigned)imm; |
| 2825 | assert(imm8 < 0x100); |
| 2826 | canEncode = true; |
| 2827 | } |
| 2828 | else if (size == EA_8BYTE) |
| 2829 | { |
| 2830 | imm8 = (unsigned)imm; |
| 2831 | assert(imm8 < 0x100); |
| 2832 | canEncode = true; |
| 2833 | } |
| 2834 | else |
| 2835 | { |
| 2836 | assert((size == EA_2BYTE) || (size == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms |
| 2837 | |
| 2838 | unsigned immWidth = (size == EA_4BYTE) ? 32 : 16; |
| 2839 | unsigned maxBY = (size == EA_4BYTE) ? 4 : 2; |
| 2840 | |
| 2841 | // setup immMask to a (EA_2BYTE) 0x0000FFFF or (EA_4BYTE) 0xFFFFFFFF |
| 2842 | const UINT32 immMask = ((UINT32)-1) >> (32 - immWidth); |
| 2843 | const INT32 mask8 = (INT32)0xFF; |
| 2844 | |
| 2845 | // Try each of the valid by shift sizes |
| 2846 | for (bySh = 0; (bySh < maxBY); bySh++) |
| 2847 | { |
| 2848 | INT32 curMask = mask8 << (bySh * 8); // Represents the mask of the bits in the current byteShifted |
| 2849 | INT32 checkBits = immMask & ~curMask; |
| 2850 | INT32 immCheck = (imm & checkBits); |
| 2851 | |
| 2852 | // Excluding the current byte (using ~curMask) |
| 2853 | // does the immediate have zero bits in every other bit that we care about? |
| 2854 | // or can be use the shifted one variant? |
| 2855 | // note we care about all 32-bits for EA_4BYTE |
| 2856 | // and we care about the lowest 16 bits for EA_2BYTE |
| 2857 | // |
| 2858 | if (immCheck == 0) |
| 2859 | { |
| 2860 | canEncode = true; |
| 2861 | } |
| 2862 | if (allow_MSL) |
| 2863 | { |
| 2864 | if ((bySh == 1) && (immCheck == 0xFF)) |
| 2865 | { |
| 2866 | canEncode = true; |
| 2867 | onesShift = true; |
| 2868 | } |
| 2869 | else if ((bySh == 2) && (immCheck == 0xFFFF)) |
| 2870 | { |
| 2871 | canEncode = true; |
| 2872 | onesShift = true; |
| 2873 | } |
| 2874 | } |
| 2875 | if (canEncode) |
| 2876 | { |
| 2877 | imm8 = (unsigned)(((imm & curMask) >> (bySh * 8)) & mask8); |
| 2878 | break; |
| 2879 | } |
| 2880 | } |
| 2881 | } |
| 2882 | |
| 2883 | if (canEncode) |
| 2884 | { |
| 2885 | // Does the caller want us to return the imm(i8,bySh) encoding values? |
| 2886 | // |
| 2887 | if (wbBSI != nullptr) |
| 2888 | { |
| 2889 | wbBSI->immOnes = onesShift; |
| 2890 | wbBSI->immBY = bySh; |
| 2891 | wbBSI->immVal = imm8; |
| 2892 | |
| 2893 | // Verify that what we are returning is correct. |
| 2894 | assert(imm == emitDecodeByteShiftedImm(*wbBSI, size)); |
| 2895 | } |
| 2896 | // Tell the caller that we can successfully encode this immediate |
| 2897 | // using a 'byteShifted immediate'. |
| 2898 | // |
| 2899 | return true; |
| 2900 | } |
| 2901 | return false; |
| 2902 | } |
| 2903 | |
| 2904 | /************************************************************************ |
| 2905 | * |
| 2906 | * Convert a 32-bit immediate into its 'byteShifted immediate' representation imm(i8,by) |
| 2907 | */ |
| 2908 | |
| 2909 | /*static*/ emitter::byteShiftedImm emitter::emitEncodeByteShiftedImm(INT64 imm, emitAttr size, bool allow_MSL) |
| 2910 | { |
| 2911 | emitter::byteShiftedImm result; |
| 2912 | result.immBSVal = 0; |
| 2913 | |
| 2914 | bool canEncode = canEncodeByteShiftedImm(imm, size, allow_MSL, &result); |
| 2915 | assert(canEncode); |
| 2916 | |
| 2917 | return result; |
| 2918 | } |
| 2919 | |
| 2920 | /************************************************************************ |
| 2921 | * |
| 2922 | * Convert a 'float 8-bit immediate' into a double. |
| 2923 | * inputs 'fpImm' a floatImm8 struct |
| 2924 | */ |
| 2925 | |
| 2926 | /*static*/ double emitter::emitDecodeFloatImm8(const emitter::floatImm8 fpImm) |
| 2927 | { |
| 2928 | unsigned sign = fpImm.immSign; |
| 2929 | unsigned exp = fpImm.immExp ^ 0x4; |
| 2930 | unsigned mant = fpImm.immMant + 16; |
| 2931 | unsigned scale = 16 * 8; |
| 2932 | |
| 2933 | while (exp > 0) |
| 2934 | { |
| 2935 | scale /= 2; |
| 2936 | exp--; |
| 2937 | } |
| 2938 | |
| 2939 | double result = ((double)mant) / ((double)scale); |
| 2940 | if (sign == 1) |
| 2941 | { |
| 2942 | result = -result; |
| 2943 | } |
| 2944 | |
| 2945 | return result; |
| 2946 | } |
| 2947 | |
| 2948 | /************************************************************************ |
| 2949 | * |
| 2950 | * returns true if the 'immDbl' can be encoded using the 'float 8-bit immediate' form. |
| 2951 | * also returns the encoding if wbFPI is non-null |
| 2952 | * |
| 2953 | */ |
| 2954 | |
| 2955 | /*static*/ bool emitter::canEncodeFloatImm8(double immDbl, emitter::floatImm8* wbFPI) |
| 2956 | { |
| 2957 | bool canEncode = false; |
| 2958 | double val = immDbl; |
| 2959 | |
| 2960 | int sign = 0; |
| 2961 | if (val < 0.0) |
| 2962 | { |
| 2963 | val = -val; |
| 2964 | sign = 1; |
| 2965 | } |
| 2966 | |
| 2967 | int exp = 0; |
| 2968 | while ((val < 1.0) && (exp >= -4)) |
| 2969 | { |
| 2970 | val *= 2.0; |
| 2971 | exp--; |
| 2972 | } |
| 2973 | while ((val >= 2.0) && (exp <= 5)) |
| 2974 | { |
| 2975 | val *= 0.5; |
| 2976 | exp++; |
| 2977 | } |
| 2978 | exp += 3; |
| 2979 | val *= 16.0; |
| 2980 | int ival = (int)val; |
| 2981 | |
| 2982 | if ((exp >= 0) && (exp <= 7)) |
| 2983 | { |
| 2984 | if (val == (double)ival) |
| 2985 | { |
| 2986 | canEncode = true; |
| 2987 | |
| 2988 | if (wbFPI != nullptr) |
| 2989 | { |
| 2990 | ival -= 16; |
| 2991 | assert((ival >= 0) && (ival <= 15)); |
| 2992 | |
| 2993 | wbFPI->immSign = sign; |
| 2994 | wbFPI->immExp = exp ^ 0x4; |
| 2995 | wbFPI->immMant = ival; |
| 2996 | unsigned imm8 = wbFPI->immFPIVal; |
| 2997 | assert((imm8 >= 0) && (imm8 <= 0xff)); |
| 2998 | } |
| 2999 | } |
| 3000 | } |
| 3001 | |
| 3002 | return canEncode; |
| 3003 | } |
| 3004 | |
| 3005 | /************************************************************************ |
| 3006 | * |
| 3007 | * Convert a double into its 'float 8-bit immediate' representation |
| 3008 | */ |
| 3009 | |
| 3010 | /*static*/ emitter::floatImm8 emitter::emitEncodeFloatImm8(double immDbl) |
| 3011 | { |
| 3012 | emitter::floatImm8 result; |
| 3013 | result.immFPIVal = 0; |
| 3014 | |
| 3015 | bool canEncode = canEncodeFloatImm8(immDbl, &result); |
| 3016 | assert(canEncode); |
| 3017 | |
| 3018 | return result; |
| 3019 | } |
| 3020 | |
| 3021 | /***************************************************************************** |
| 3022 | * |
| 3023 | * For the given 'ins' returns the reverse instruction |
| 3024 | * if one exists, otherwise returns INS_INVALID |
| 3025 | */ |
| 3026 | |
| 3027 | /*static*/ instruction emitter::insReverse(instruction ins) |
| 3028 | { |
| 3029 | switch (ins) |
| 3030 | { |
| 3031 | case INS_add: |
| 3032 | return INS_sub; |
| 3033 | case INS_adds: |
| 3034 | return INS_subs; |
| 3035 | |
| 3036 | case INS_sub: |
| 3037 | return INS_add; |
| 3038 | case INS_subs: |
| 3039 | return INS_adds; |
| 3040 | |
| 3041 | case INS_cmp: |
| 3042 | return INS_cmn; |
| 3043 | case INS_cmn: |
| 3044 | return INS_cmp; |
| 3045 | |
| 3046 | case INS_ccmp: |
| 3047 | return INS_ccmn; |
| 3048 | case INS_ccmn: |
| 3049 | return INS_ccmp; |
| 3050 | |
| 3051 | default: |
| 3052 | return INS_invalid; |
| 3053 | } |
| 3054 | } |
| 3055 | |
| 3056 | /***************************************************************************** |
| 3057 | * |
| 3058 | * For the given 'datasize' and 'elemsize', make the proper arrangement option |
| 3059 | * returns the insOpts that specifies the vector register arrangement |
| 3060 | * if one does not exist returns INS_OPTS_NONE |
| 3061 | */ |
| 3062 | |
| 3063 | /*static*/ insOpts emitter::optMakeArrangement(emitAttr datasize, emitAttr elemsize) |
| 3064 | { |
| 3065 | insOpts result = INS_OPTS_NONE; |
| 3066 | |
| 3067 | if (datasize == EA_8BYTE) |
| 3068 | { |
| 3069 | switch (elemsize) |
| 3070 | { |
| 3071 | case EA_1BYTE: |
| 3072 | result = INS_OPTS_8B; |
| 3073 | break; |
| 3074 | case EA_2BYTE: |
| 3075 | result = INS_OPTS_4H; |
| 3076 | break; |
| 3077 | case EA_4BYTE: |
| 3078 | result = INS_OPTS_2S; |
| 3079 | break; |
| 3080 | case EA_8BYTE: |
| 3081 | result = INS_OPTS_1D; |
| 3082 | break; |
| 3083 | default: |
| 3084 | unreached(); |
| 3085 | break; |
| 3086 | } |
| 3087 | } |
| 3088 | else if (datasize == EA_16BYTE) |
| 3089 | { |
| 3090 | switch (elemsize) |
| 3091 | { |
| 3092 | case EA_1BYTE: |
| 3093 | result = INS_OPTS_16B; |
| 3094 | break; |
| 3095 | case EA_2BYTE: |
| 3096 | result = INS_OPTS_8H; |
| 3097 | break; |
| 3098 | case EA_4BYTE: |
| 3099 | result = INS_OPTS_4S; |
| 3100 | break; |
| 3101 | case EA_8BYTE: |
| 3102 | result = INS_OPTS_2D; |
| 3103 | break; |
| 3104 | default: |
| 3105 | unreached(); |
| 3106 | break; |
| 3107 | } |
| 3108 | } |
| 3109 | return result; |
| 3110 | } |
| 3111 | |
| 3112 | /***************************************************************************** |
| 3113 | * |
| 3114 | * For the given 'datasize' and arrangement 'opts' |
| 3115 | * returns true is the pair spcifies a valid arrangement |
| 3116 | */ |
| 3117 | /*static*/ bool emitter::isValidArrangement(emitAttr datasize, insOpts opt) |
| 3118 | { |
| 3119 | if (datasize == EA_8BYTE) |
| 3120 | { |
| 3121 | if ((opt == INS_OPTS_8B) || (opt == INS_OPTS_4H) || (opt == INS_OPTS_2S) || (opt == INS_OPTS_1D)) |
| 3122 | { |
| 3123 | return true; |
| 3124 | } |
| 3125 | } |
| 3126 | else if (datasize == EA_16BYTE) |
| 3127 | { |
| 3128 | if ((opt == INS_OPTS_16B) || (opt == INS_OPTS_8H) || (opt == INS_OPTS_4S) || (opt == INS_OPTS_2D)) |
| 3129 | { |
| 3130 | return true; |
| 3131 | } |
| 3132 | } |
| 3133 | return false; |
| 3134 | } |
| 3135 | |
| 3136 | // For the given 'arrangement' returns the 'datasize' specified by the vector register arrangement |
| 3137 | // asserts and returns EA_UNKNOWN if an invalid 'arrangement' value is passed |
| 3138 | // |
| 3139 | /*static*/ emitAttr emitter::optGetDatasize(insOpts arrangement) |
| 3140 | { |
| 3141 | if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_2S) || |
| 3142 | (arrangement == INS_OPTS_1D)) |
| 3143 | { |
| 3144 | return EA_8BYTE; |
| 3145 | } |
| 3146 | else if ((arrangement == INS_OPTS_16B) || (arrangement == INS_OPTS_8H) || (arrangement == INS_OPTS_4S) || |
| 3147 | (arrangement == INS_OPTS_2D)) |
| 3148 | { |
| 3149 | return EA_16BYTE; |
| 3150 | } |
| 3151 | else |
| 3152 | { |
| 3153 | assert(!" invalid 'arrangement' value" ); |
| 3154 | return EA_UNKNOWN; |
| 3155 | } |
| 3156 | } |
| 3157 | |
| 3158 | // For the given 'arrangement' returns the 'elemsize' specified by the vector register arrangement |
| 3159 | // asserts and returns EA_UNKNOWN if an invalid 'arrangement' value is passed |
| 3160 | // |
| 3161 | /*static*/ emitAttr emitter::optGetElemsize(insOpts arrangement) |
| 3162 | { |
| 3163 | if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_16B)) |
| 3164 | { |
| 3165 | return EA_1BYTE; |
| 3166 | } |
| 3167 | else if ((arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_8H)) |
| 3168 | { |
| 3169 | return EA_2BYTE; |
| 3170 | } |
| 3171 | else if ((arrangement == INS_OPTS_2S) || (arrangement == INS_OPTS_4S)) |
| 3172 | { |
| 3173 | return EA_4BYTE; |
| 3174 | } |
| 3175 | else if ((arrangement == INS_OPTS_1D) || (arrangement == INS_OPTS_2D)) |
| 3176 | { |
| 3177 | return EA_8BYTE; |
| 3178 | } |
| 3179 | else |
| 3180 | { |
| 3181 | assert(!" invalid 'arrangement' value" ); |
| 3182 | return EA_UNKNOWN; |
| 3183 | } |
| 3184 | } |
| 3185 | |
| 3186 | // For the given 'arrangement' returns the 'widen-arrangement' specified by the vector register arrangement |
| 3187 | // asserts and returns INS_OPTS_NONE if an invalid 'arrangement' value is passed |
| 3188 | // |
| 3189 | /*static*/ insOpts emitter::optWidenElemsize(insOpts arrangement) |
| 3190 | { |
| 3191 | if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_16B)) |
| 3192 | { |
| 3193 | return INS_OPTS_8H; |
| 3194 | } |
| 3195 | else if ((arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_8H)) |
| 3196 | { |
| 3197 | return INS_OPTS_4S; |
| 3198 | } |
| 3199 | else if ((arrangement == INS_OPTS_2S) || (arrangement == INS_OPTS_4S)) |
| 3200 | { |
| 3201 | return INS_OPTS_2D; |
| 3202 | } |
| 3203 | else |
| 3204 | { |
| 3205 | assert(!" invalid 'arrangement' value" ); |
| 3206 | return INS_OPTS_NONE; |
| 3207 | } |
| 3208 | } |
| 3209 | |
| 3210 | // For the given 'conversion' returns the 'dstsize' specified by the conversion option |
| 3211 | /*static*/ emitAttr emitter::optGetDstsize(insOpts conversion) |
| 3212 | { |
| 3213 | switch (conversion) |
| 3214 | { |
| 3215 | case INS_OPTS_S_TO_8BYTE: |
| 3216 | case INS_OPTS_D_TO_8BYTE: |
| 3217 | case INS_OPTS_4BYTE_TO_D: |
| 3218 | case INS_OPTS_8BYTE_TO_D: |
| 3219 | case INS_OPTS_S_TO_D: |
| 3220 | case INS_OPTS_H_TO_D: |
| 3221 | |
| 3222 | return EA_8BYTE; |
| 3223 | |
| 3224 | case INS_OPTS_S_TO_4BYTE: |
| 3225 | case INS_OPTS_D_TO_4BYTE: |
| 3226 | case INS_OPTS_4BYTE_TO_S: |
| 3227 | case INS_OPTS_8BYTE_TO_S: |
| 3228 | case INS_OPTS_D_TO_S: |
| 3229 | case INS_OPTS_H_TO_S: |
| 3230 | |
| 3231 | return EA_4BYTE; |
| 3232 | |
| 3233 | case INS_OPTS_S_TO_H: |
| 3234 | case INS_OPTS_D_TO_H: |
| 3235 | |
| 3236 | return EA_2BYTE; |
| 3237 | |
| 3238 | default: |
| 3239 | assert(!" invalid 'conversion' value" ); |
| 3240 | return EA_UNKNOWN; |
| 3241 | } |
| 3242 | } |
| 3243 | |
| 3244 | // For the given 'conversion' returns the 'srcsize' specified by the conversion option |
| 3245 | /*static*/ emitAttr emitter::optGetSrcsize(insOpts conversion) |
| 3246 | { |
| 3247 | switch (conversion) |
| 3248 | { |
| 3249 | case INS_OPTS_D_TO_8BYTE: |
| 3250 | case INS_OPTS_D_TO_4BYTE: |
| 3251 | case INS_OPTS_8BYTE_TO_D: |
| 3252 | case INS_OPTS_8BYTE_TO_S: |
| 3253 | case INS_OPTS_D_TO_S: |
| 3254 | case INS_OPTS_D_TO_H: |
| 3255 | |
| 3256 | return EA_8BYTE; |
| 3257 | |
| 3258 | case INS_OPTS_S_TO_8BYTE: |
| 3259 | case INS_OPTS_S_TO_4BYTE: |
| 3260 | case INS_OPTS_4BYTE_TO_S: |
| 3261 | case INS_OPTS_4BYTE_TO_D: |
| 3262 | case INS_OPTS_S_TO_D: |
| 3263 | case INS_OPTS_S_TO_H: |
| 3264 | |
| 3265 | return EA_4BYTE; |
| 3266 | |
| 3267 | case INS_OPTS_H_TO_S: |
| 3268 | case INS_OPTS_H_TO_D: |
| 3269 | |
| 3270 | return EA_2BYTE; |
| 3271 | |
| 3272 | default: |
| 3273 | assert(!" invalid 'conversion' value" ); |
| 3274 | return EA_UNKNOWN; |
| 3275 | } |
| 3276 | } |
| 3277 | |
| 3278 | // For the given 'size' and 'index' returns true if it specifies a valid index for a vector register of 'size' |
| 3279 | /*static*/ bool emitter::isValidVectorIndex(emitAttr datasize, emitAttr elemsize, ssize_t index) |
| 3280 | { |
| 3281 | assert(isValidVectorDatasize(datasize)); |
| 3282 | assert(isValidVectorElemsize(elemsize)); |
| 3283 | |
| 3284 | bool result = false; |
| 3285 | if (index >= 0) |
| 3286 | { |
| 3287 | if (datasize == EA_8BYTE) |
| 3288 | { |
| 3289 | switch (elemsize) |
| 3290 | { |
| 3291 | case EA_1BYTE: |
| 3292 | result = (index < 8); |
| 3293 | break; |
| 3294 | case EA_2BYTE: |
| 3295 | result = (index < 4); |
| 3296 | break; |
| 3297 | case EA_4BYTE: |
| 3298 | result = (index < 2); |
| 3299 | break; |
| 3300 | case EA_8BYTE: |
| 3301 | result = (index < 1); |
| 3302 | break; |
| 3303 | default: |
| 3304 | unreached(); |
| 3305 | break; |
| 3306 | } |
| 3307 | } |
| 3308 | else if (datasize == EA_16BYTE) |
| 3309 | { |
| 3310 | switch (elemsize) |
| 3311 | { |
| 3312 | case EA_1BYTE: |
| 3313 | result = (index < 16); |
| 3314 | break; |
| 3315 | case EA_2BYTE: |
| 3316 | result = (index < 8); |
| 3317 | break; |
| 3318 | case EA_4BYTE: |
| 3319 | result = (index < 4); |
| 3320 | break; |
| 3321 | case EA_8BYTE: |
| 3322 | result = (index < 2); |
| 3323 | break; |
| 3324 | default: |
| 3325 | unreached(); |
| 3326 | break; |
| 3327 | } |
| 3328 | } |
| 3329 | } |
| 3330 | return result; |
| 3331 | } |
| 3332 | |
| 3333 | /***************************************************************************** |
| 3334 | * |
| 3335 | * Add an instruction with no operands. |
| 3336 | */ |
| 3337 | |
| 3338 | void emitter::emitIns(instruction ins) |
| 3339 | { |
| 3340 | instrDesc* id = emitNewInstrSmall(EA_8BYTE); |
| 3341 | insFormat fmt = emitInsFormat(ins); |
| 3342 | |
| 3343 | assert(fmt == IF_SN_0A); |
| 3344 | |
| 3345 | id->idIns(ins); |
| 3346 | id->idInsFmt(fmt); |
| 3347 | |
| 3348 | dispIns(id); |
| 3349 | appendToCurIG(id); |
| 3350 | } |
| 3351 | |
| 3352 | /***************************************************************************** |
| 3353 | * |
| 3354 | * Add an instruction with a single immediate value. |
| 3355 | */ |
| 3356 | |
| 3357 | void emitter::emitIns_I(instruction ins, emitAttr attr, ssize_t imm) |
| 3358 | { |
| 3359 | insFormat fmt = IF_NONE; |
| 3360 | |
| 3361 | /* Figure out the encoding format of the instruction */ |
| 3362 | switch (ins) |
| 3363 | { |
| 3364 | case INS_brk: |
| 3365 | if ((imm & 0x0000ffff) == imm) |
| 3366 | { |
| 3367 | fmt = IF_SI_0A; |
| 3368 | } |
| 3369 | else |
| 3370 | { |
| 3371 | assert(!"Instruction cannot be encoded: IF_SI_0A" ); |
| 3372 | } |
| 3373 | break; |
| 3374 | default: |
| 3375 | unreached(); |
| 3376 | break; |
| 3377 | } |
| 3378 | assert(fmt != IF_NONE); |
| 3379 | |
| 3380 | instrDesc* id = emitNewInstrSC(attr, imm); |
| 3381 | |
| 3382 | id->idIns(ins); |
| 3383 | id->idInsFmt(fmt); |
| 3384 | |
| 3385 | dispIns(id); |
| 3386 | appendToCurIG(id); |
| 3387 | } |
| 3388 | |
| 3389 | /***************************************************************************** |
| 3390 | * |
| 3391 | * Add an instruction referencing a single register. |
| 3392 | */ |
| 3393 | |
| 3394 | void emitter::emitIns_R(instruction ins, emitAttr attr, regNumber reg) |
| 3395 | { |
| 3396 | emitAttr size = EA_SIZE(attr); |
| 3397 | insFormat fmt = IF_NONE; |
| 3398 | instrDesc* id = nullptr; |
| 3399 | |
| 3400 | /* Figure out the encoding format of the instruction */ |
| 3401 | switch (ins) |
| 3402 | { |
| 3403 | case INS_br: |
| 3404 | case INS_ret: |
| 3405 | assert(isGeneralRegister(reg)); |
| 3406 | id = emitNewInstrSmall(attr); |
| 3407 | id->idReg1(reg); |
| 3408 | fmt = IF_BR_1A; |
| 3409 | break; |
| 3410 | |
| 3411 | default: |
| 3412 | unreached(); |
| 3413 | } |
| 3414 | |
| 3415 | assert(fmt != IF_NONE); |
| 3416 | |
| 3417 | id->idIns(ins); |
| 3418 | id->idInsFmt(fmt); |
| 3419 | |
| 3420 | dispIns(id); |
| 3421 | appendToCurIG(id); |
| 3422 | } |
| 3423 | |
| 3424 | /***************************************************************************** |
| 3425 | * |
| 3426 | * Add an instruction referencing a register and a constant. |
| 3427 | */ |
| 3428 | |
| 3429 | void emitter::emitIns_R_I(instruction ins, emitAttr attr, regNumber reg, ssize_t imm, insOpts opt /* = INS_OPTS_NONE */) |
| 3430 | { |
| 3431 | emitAttr size = EA_SIZE(attr); |
| 3432 | emitAttr elemsize = EA_UNKNOWN; |
| 3433 | insFormat fmt = IF_NONE; |
| 3434 | bool canEncode = false; |
| 3435 | |
| 3436 | /* Figure out the encoding format of the instruction */ |
| 3437 | switch (ins) |
| 3438 | { |
| 3439 | bitMaskImm bmi; |
| 3440 | halfwordImm hwi; |
| 3441 | byteShiftedImm bsi; |
| 3442 | ssize_t notOfImm; |
| 3443 | |
| 3444 | case INS_tst: |
| 3445 | assert(insOptsNone(opt)); |
| 3446 | assert(isGeneralRegister(reg)); |
| 3447 | bmi.immNRS = 0; |
| 3448 | canEncode = canEncodeBitMaskImm(imm, size, &bmi); |
| 3449 | if (canEncode) |
| 3450 | { |
| 3451 | imm = bmi.immNRS; |
| 3452 | assert(isValidImmNRS(imm, size)); |
| 3453 | fmt = IF_DI_1C; |
| 3454 | } |
| 3455 | break; |
| 3456 | |
| 3457 | case INS_movk: |
| 3458 | case INS_movn: |
| 3459 | case INS_movz: |
| 3460 | assert(isValidGeneralDatasize(size)); |
| 3461 | assert(insOptsNone(opt)); // No LSL here (you must use emitIns_R_I_I if a shift is needed) |
| 3462 | assert(isGeneralRegister(reg)); |
| 3463 | assert(isValidUimm16(imm)); |
| 3464 | |
| 3465 | hwi.immHW = 0; |
| 3466 | hwi.immVal = imm; |
| 3467 | assert(imm == emitDecodeHalfwordImm(hwi, size)); |
| 3468 | |
| 3469 | imm = hwi.immHWVal; |
| 3470 | canEncode = true; |
| 3471 | fmt = IF_DI_1B; |
| 3472 | break; |
| 3473 | |
| 3474 | case INS_mov: |
| 3475 | assert(isValidGeneralDatasize(size)); |
| 3476 | assert(insOptsNone(opt)); // No explicit LSL here |
| 3477 | // We will automatically determine the shift based upon the imm |
| 3478 | |
| 3479 | // First try the standard 'halfword immediate' imm(i16,hw) |
| 3480 | hwi.immHWVal = 0; |
| 3481 | canEncode = canEncodeHalfwordImm(imm, size, &hwi); |
| 3482 | if (canEncode) |
| 3483 | { |
| 3484 | // uses a movz encoding |
| 3485 | assert(isGeneralRegister(reg)); |
| 3486 | imm = hwi.immHWVal; |
| 3487 | assert(isValidImmHWVal(imm, size)); |
| 3488 | fmt = IF_DI_1B; |
| 3489 | break; |
| 3490 | } |
| 3491 | |
| 3492 | // Next try the ones-complement form of 'halfword immediate' imm(i16,hw) |
| 3493 | notOfImm = NOT_helper(imm, getBitWidth(size)); |
| 3494 | canEncode = canEncodeHalfwordImm(notOfImm, size, &hwi); |
| 3495 | if (canEncode) |
| 3496 | { |
| 3497 | assert(isGeneralRegister(reg)); |
| 3498 | imm = hwi.immHWVal; |
| 3499 | ins = INS_movn; // uses a movn encoding |
| 3500 | assert(isValidImmHWVal(imm, size)); |
| 3501 | fmt = IF_DI_1B; |
| 3502 | break; |
| 3503 | } |
| 3504 | |
| 3505 | // Finally try the 'bitmask immediate' imm(N,r,s) |
| 3506 | bmi.immNRS = 0; |
| 3507 | canEncode = canEncodeBitMaskImm(imm, size, &bmi); |
| 3508 | if (canEncode) |
| 3509 | { |
| 3510 | assert(isGeneralRegisterOrSP(reg)); |
| 3511 | reg = encodingSPtoZR(reg); |
| 3512 | imm = bmi.immNRS; |
| 3513 | assert(isValidImmNRS(imm, size)); |
| 3514 | fmt = IF_DI_1D; |
| 3515 | break; |
| 3516 | } |
| 3517 | else |
| 3518 | { |
| 3519 | assert(!"Instruction cannot be encoded: mov imm" ); |
| 3520 | } |
| 3521 | |
| 3522 | break; |
| 3523 | |
| 3524 | case INS_movi: |
| 3525 | assert(isValidVectorDatasize(size)); |
| 3526 | assert(isVectorRegister(reg)); |
| 3527 | if (insOptsNone(opt) && (size == EA_8BYTE)) |
| 3528 | { |
| 3529 | opt = INS_OPTS_1D; |
| 3530 | } |
| 3531 | assert(isValidArrangement(size, opt)); |
| 3532 | elemsize = optGetElemsize(opt); |
| 3533 | |
| 3534 | if (elemsize == EA_8BYTE) |
| 3535 | { |
| 3536 | size_t uimm = imm; |
| 3537 | ssize_t imm8 = 0; |
| 3538 | unsigned pos = 0; |
| 3539 | canEncode = true; |
| 3540 | bool failed = false; |
| 3541 | while (uimm != 0) |
| 3542 | { |
| 3543 | INT64 loByte = uimm & 0xFF; |
| 3544 | if (((loByte == 0) || (loByte == 0xFF)) && (pos < 8)) |
| 3545 | { |
| 3546 | if (loByte == 0xFF) |
| 3547 | { |
| 3548 | imm8 |= (ssize_t{1} << pos); |
| 3549 | } |
| 3550 | uimm >>= 8; |
| 3551 | pos++; |
| 3552 | } |
| 3553 | else |
| 3554 | { |
| 3555 | canEncode = false; |
| 3556 | break; |
| 3557 | } |
| 3558 | } |
| 3559 | imm = imm8; |
| 3560 | assert(isValidUimm8(imm)); |
| 3561 | fmt = IF_DV_1B; |
| 3562 | break; |
| 3563 | } |
| 3564 | else |
| 3565 | { |
| 3566 | // Vector operation |
| 3567 | |
| 3568 | // No explicit LSL/MSL is used for the immediate |
| 3569 | // We will automatically determine the shift based upon the value of imm |
| 3570 | |
| 3571 | // First try the standard 'byteShifted immediate' imm(i8,bySh) |
| 3572 | bsi.immBSVal = 0; |
| 3573 | canEncode = canEncodeByteShiftedImm(imm, elemsize, true, &bsi); |
| 3574 | if (canEncode) |
| 3575 | { |
| 3576 | imm = bsi.immBSVal; |
| 3577 | assert(isValidImmBSVal(imm, size)); |
| 3578 | fmt = IF_DV_1B; |
| 3579 | break; |
| 3580 | } |
| 3581 | |
| 3582 | // Next try the ones-complement form of the 'immediate' imm(i8,bySh) |
| 3583 | if ((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)) // Only EA_2BYTE or EA_4BYTE forms |
| 3584 | { |
| 3585 | notOfImm = NOT_helper(imm, getBitWidth(elemsize)); |
| 3586 | canEncode = canEncodeByteShiftedImm(notOfImm, elemsize, true, &bsi); |
| 3587 | if (canEncode) |
| 3588 | { |
| 3589 | imm = bsi.immBSVal; |
| 3590 | ins = INS_mvni; // uses a mvni encoding |
| 3591 | assert(isValidImmBSVal(imm, size)); |
| 3592 | fmt = IF_DV_1B; |
| 3593 | break; |
| 3594 | } |
| 3595 | } |
| 3596 | } |
| 3597 | break; |
| 3598 | |
| 3599 | case INS_orr: |
| 3600 | case INS_bic: |
| 3601 | case INS_mvni: |
| 3602 | assert(isValidVectorDatasize(size)); |
| 3603 | assert(isVectorRegister(reg)); |
| 3604 | assert(isValidArrangement(size, opt)); |
| 3605 | elemsize = optGetElemsize(opt); |
| 3606 | assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms |
| 3607 | |
| 3608 | // Vector operation |
| 3609 | |
| 3610 | // No explicit LSL/MSL is used for the immediate |
| 3611 | // We will automatically determine the shift based upon the value of imm |
| 3612 | |
| 3613 | // First try the standard 'byteShifted immediate' imm(i8,bySh) |
| 3614 | bsi.immBSVal = 0; |
| 3615 | canEncode = canEncodeByteShiftedImm(imm, elemsize, |
| 3616 | (ins == INS_mvni), // mvni supports the ones shifting variant (aka MSL) |
| 3617 | &bsi); |
| 3618 | if (canEncode) |
| 3619 | { |
| 3620 | imm = bsi.immBSVal; |
| 3621 | assert(isValidImmBSVal(imm, size)); |
| 3622 | fmt = IF_DV_1B; |
| 3623 | break; |
| 3624 | } |
| 3625 | break; |
| 3626 | |
| 3627 | case INS_cmp: |
| 3628 | case INS_cmn: |
| 3629 | assert(insOptsNone(opt)); |
| 3630 | assert(isGeneralRegister(reg)); |
| 3631 | |
| 3632 | if (unsigned_abs(imm) <= 0x0fff) |
| 3633 | { |
| 3634 | if (imm < 0) |
| 3635 | { |
| 3636 | ins = insReverse(ins); |
| 3637 | imm = -imm; |
| 3638 | } |
| 3639 | assert(isValidUimm12(imm)); |
| 3640 | canEncode = true; |
| 3641 | fmt = IF_DI_1A; |
| 3642 | } |
| 3643 | else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding |
| 3644 | { |
| 3645 | // Encoding will use a 12-bit left shift of the immediate |
| 3646 | opt = INS_OPTS_LSL12; |
| 3647 | if (imm < 0) |
| 3648 | { |
| 3649 | ins = insReverse(ins); |
| 3650 | imm = -imm; |
| 3651 | } |
| 3652 | assert((imm & 0xfff) == 0); |
| 3653 | imm >>= 12; |
| 3654 | assert(isValidUimm12(imm)); |
| 3655 | canEncode = true; |
| 3656 | fmt = IF_DI_1A; |
| 3657 | } |
| 3658 | else |
| 3659 | { |
| 3660 | assert(!"Instruction cannot be encoded: IF_DI_1A" ); |
| 3661 | } |
| 3662 | break; |
| 3663 | |
| 3664 | default: |
| 3665 | unreached(); |
| 3666 | break; |
| 3667 | |
| 3668 | } // end switch (ins) |
| 3669 | |
| 3670 | assert(canEncode); |
| 3671 | assert(fmt != IF_NONE); |
| 3672 | |
| 3673 | instrDesc* id = emitNewInstrSC(attr, imm); |
| 3674 | |
| 3675 | id->idIns(ins); |
| 3676 | id->idInsFmt(fmt); |
| 3677 | id->idInsOpt(opt); |
| 3678 | |
| 3679 | id->idReg1(reg); |
| 3680 | |
| 3681 | dispIns(id); |
| 3682 | appendToCurIG(id); |
| 3683 | } |
| 3684 | |
| 3685 | /***************************************************************************** |
| 3686 | * |
| 3687 | * Add an instruction referencing a register and a floating point constant. |
| 3688 | */ |
| 3689 | |
| 3690 | void emitter::emitIns_R_F( |
| 3691 | instruction ins, emitAttr attr, regNumber reg, double immDbl, insOpts opt /* = INS_OPTS_NONE */) |
| 3692 | |
| 3693 | { |
| 3694 | emitAttr size = EA_SIZE(attr); |
| 3695 | emitAttr elemsize = EA_UNKNOWN; |
| 3696 | insFormat fmt = IF_NONE; |
| 3697 | ssize_t imm = 0; |
| 3698 | bool canEncode = false; |
| 3699 | |
| 3700 | /* Figure out the encoding format of the instruction */ |
| 3701 | switch (ins) |
| 3702 | { |
| 3703 | floatImm8 fpi; |
| 3704 | |
| 3705 | case INS_fcmp: |
| 3706 | case INS_fcmpe: |
| 3707 | assert(insOptsNone(opt)); |
| 3708 | assert(isValidVectorElemsizeFloat(size)); |
| 3709 | assert(isVectorRegister(reg)); |
| 3710 | if (immDbl == 0.0) |
| 3711 | { |
| 3712 | canEncode = true; |
| 3713 | fmt = IF_DV_1C; |
| 3714 | } |
| 3715 | break; |
| 3716 | |
| 3717 | case INS_fmov: |
| 3718 | assert(isVectorRegister(reg)); |
| 3719 | fpi.immFPIVal = 0; |
| 3720 | canEncode = canEncodeFloatImm8(immDbl, &fpi); |
| 3721 | |
| 3722 | if (insOptsAnyArrangement(opt)) |
| 3723 | { |
| 3724 | // Vector operation |
| 3725 | assert(isValidVectorDatasize(size)); |
| 3726 | assert(isValidArrangement(size, opt)); |
| 3727 | elemsize = optGetElemsize(opt); |
| 3728 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 3729 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 3730 | |
| 3731 | if (canEncode) |
| 3732 | { |
| 3733 | imm = fpi.immFPIVal; |
| 3734 | assert((imm >= 0) && (imm <= 0xff)); |
| 3735 | fmt = IF_DV_1B; |
| 3736 | } |
| 3737 | } |
| 3738 | else |
| 3739 | { |
| 3740 | // Scalar operation |
| 3741 | assert(insOptsNone(opt)); |
| 3742 | assert(isValidVectorElemsizeFloat(size)); |
| 3743 | |
| 3744 | if (canEncode) |
| 3745 | { |
| 3746 | imm = fpi.immFPIVal; |
| 3747 | assert((imm >= 0) && (imm <= 0xff)); |
| 3748 | fmt = IF_DV_1A; |
| 3749 | } |
| 3750 | } |
| 3751 | break; |
| 3752 | |
| 3753 | default: |
| 3754 | unreached(); |
| 3755 | break; |
| 3756 | |
| 3757 | } // end switch (ins) |
| 3758 | |
| 3759 | assert(canEncode); |
| 3760 | assert(fmt != IF_NONE); |
| 3761 | |
| 3762 | instrDesc* id = emitNewInstrSC(attr, imm); |
| 3763 | |
| 3764 | id->idIns(ins); |
| 3765 | id->idInsFmt(fmt); |
| 3766 | id->idInsOpt(opt); |
| 3767 | |
| 3768 | id->idReg1(reg); |
| 3769 | |
| 3770 | dispIns(id); |
| 3771 | appendToCurIG(id); |
| 3772 | } |
| 3773 | |
| 3774 | /***************************************************************************** |
| 3775 | * |
| 3776 | * Add an instruction referencing two registers |
| 3777 | */ |
| 3778 | |
| 3779 | void emitter::emitIns_R_R( |
| 3780 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insOpts opt /* = INS_OPTS_NONE */) |
| 3781 | { |
| 3782 | emitAttr size = EA_SIZE(attr); |
| 3783 | emitAttr elemsize = EA_UNKNOWN; |
| 3784 | insFormat fmt = IF_NONE; |
| 3785 | |
| 3786 | /* Figure out the encoding format of the instruction */ |
| 3787 | switch (ins) |
| 3788 | { |
| 3789 | case INS_mov: |
| 3790 | assert(insOptsNone(opt)); |
| 3791 | // Is the mov even necessary? |
| 3792 | if (reg1 == reg2) |
| 3793 | { |
| 3794 | // A mov with a EA_4BYTE has the side-effect of clearing the upper bits |
| 3795 | // So only eliminate mov instructions that are not clearing the upper bits |
| 3796 | // |
| 3797 | if (isGeneralRegisterOrSP(reg1) && (size == EA_8BYTE)) |
| 3798 | { |
| 3799 | return; |
| 3800 | } |
| 3801 | else if (isVectorRegister(reg1) && (size == EA_16BYTE)) |
| 3802 | { |
| 3803 | return; |
| 3804 | } |
| 3805 | } |
| 3806 | |
| 3807 | // Check for the 'mov' aliases for the vector registers |
| 3808 | if (isVectorRegister(reg1)) |
| 3809 | { |
| 3810 | if (isVectorRegister(reg2) && isValidVectorDatasize(size)) |
| 3811 | { |
| 3812 | return emitIns_R_R_R(INS_mov, size, reg1, reg2, reg2); |
| 3813 | } |
| 3814 | else |
| 3815 | { |
| 3816 | return emitIns_R_R_I(INS_mov, size, reg1, reg2, 0); |
| 3817 | } |
| 3818 | } |
| 3819 | else |
| 3820 | { |
| 3821 | if (isVectorRegister(reg2)) |
| 3822 | { |
| 3823 | assert(isGeneralRegister(reg1)); |
| 3824 | return emitIns_R_R_I(INS_mov, size, reg1, reg2, 0); |
| 3825 | } |
| 3826 | } |
| 3827 | |
| 3828 | // Is this a MOV to/from SP instruction? |
| 3829 | if ((reg1 == REG_SP) || (reg2 == REG_SP)) |
| 3830 | { |
| 3831 | assert(isGeneralRegisterOrSP(reg1)); |
| 3832 | assert(isGeneralRegisterOrSP(reg2)); |
| 3833 | reg1 = encodingSPtoZR(reg1); |
| 3834 | reg2 = encodingSPtoZR(reg2); |
| 3835 | fmt = IF_DR_2G; |
| 3836 | } |
| 3837 | else |
| 3838 | { |
| 3839 | assert(insOptsNone(opt)); |
| 3840 | assert(isGeneralRegister(reg1)); |
| 3841 | assert(isGeneralRegisterOrZR(reg2)); |
| 3842 | fmt = IF_DR_2E; |
| 3843 | } |
| 3844 | break; |
| 3845 | |
| 3846 | case INS_dup: |
| 3847 | // Vector operation |
| 3848 | assert(insOptsAnyArrangement(opt)); |
| 3849 | assert(isVectorRegister(reg1)); |
| 3850 | assert(isGeneralRegisterOrZR(reg2)); |
| 3851 | assert(isValidVectorDatasize(size)); |
| 3852 | assert(isValidArrangement(size, opt)); |
| 3853 | fmt = IF_DV_2C; |
| 3854 | break; |
| 3855 | |
| 3856 | case INS_abs: |
| 3857 | case INS_not: |
| 3858 | assert(isVectorRegister(reg1)); |
| 3859 | assert(isVectorRegister(reg2)); |
| 3860 | if (ins == INS_not) |
| 3861 | { |
| 3862 | assert(isValidVectorDatasize(size)); |
| 3863 | // Bitwise behavior is independent of element size, but is always encoded as 1 Byte |
| 3864 | opt = optMakeArrangement(size, EA_1BYTE); |
| 3865 | } |
| 3866 | if (insOptsNone(opt)) |
| 3867 | { |
| 3868 | // Scalar operation |
| 3869 | assert(size == EA_8BYTE); // Only type D is supported |
| 3870 | fmt = IF_DV_2L; |
| 3871 | } |
| 3872 | else |
| 3873 | { |
| 3874 | // Vector operation |
| 3875 | assert(insOptsAnyArrangement(opt)); |
| 3876 | assert(isValidVectorDatasize(size)); |
| 3877 | assert(isValidArrangement(size, opt)); |
| 3878 | elemsize = optGetElemsize(opt); |
| 3879 | fmt = IF_DV_2M; |
| 3880 | } |
| 3881 | break; |
| 3882 | |
| 3883 | case INS_mvn: |
| 3884 | case INS_neg: |
| 3885 | if (isVectorRegister(reg1)) |
| 3886 | { |
| 3887 | assert(isVectorRegister(reg2)); |
| 3888 | if (ins == INS_mvn) |
| 3889 | { |
| 3890 | assert(isValidVectorDatasize(size)); |
| 3891 | // Bitwise behavior is independent of element size, but is always encoded as 1 Byte |
| 3892 | opt = optMakeArrangement(size, EA_1BYTE); |
| 3893 | } |
| 3894 | if (insOptsNone(opt)) |
| 3895 | { |
| 3896 | // Scalar operation |
| 3897 | assert(size == EA_8BYTE); // Only type D is supported |
| 3898 | fmt = IF_DV_2L; |
| 3899 | } |
| 3900 | else |
| 3901 | { |
| 3902 | // Vector operation |
| 3903 | assert(isValidVectorDatasize(size)); |
| 3904 | assert(isValidArrangement(size, opt)); |
| 3905 | elemsize = optGetElemsize(opt); |
| 3906 | fmt = IF_DV_2M; |
| 3907 | } |
| 3908 | break; |
| 3909 | } |
| 3910 | __fallthrough; |
| 3911 | |
| 3912 | case INS_negs: |
| 3913 | assert(insOptsNone(opt)); |
| 3914 | assert(isGeneralRegister(reg1)); |
| 3915 | assert(isGeneralRegisterOrZR(reg2)); |
| 3916 | fmt = IF_DR_2E; |
| 3917 | break; |
| 3918 | |
| 3919 | case INS_sxtw: |
| 3920 | assert(size == EA_8BYTE); |
| 3921 | __fallthrough; |
| 3922 | |
| 3923 | case INS_sxtb: |
| 3924 | case INS_sxth: |
| 3925 | case INS_uxtb: |
| 3926 | case INS_uxth: |
| 3927 | assert(insOptsNone(opt)); |
| 3928 | assert(isValidGeneralDatasize(size)); |
| 3929 | assert(isGeneralRegister(reg1)); |
| 3930 | assert(isGeneralRegister(reg2)); |
| 3931 | fmt = IF_DR_2H; |
| 3932 | break; |
| 3933 | |
| 3934 | case INS_sxtl: |
| 3935 | case INS_sxtl2: |
| 3936 | case INS_uxtl: |
| 3937 | case INS_uxtl2: |
| 3938 | return emitIns_R_R_I(ins, size, reg1, reg2, 0, opt); |
| 3939 | |
| 3940 | case INS_cls: |
| 3941 | case INS_clz: |
| 3942 | case INS_rbit: |
| 3943 | case INS_rev16: |
| 3944 | case INS_rev32: |
| 3945 | case INS_cnt: |
| 3946 | if (isVectorRegister(reg1)) |
| 3947 | { |
| 3948 | assert(isVectorRegister(reg2)); |
| 3949 | assert(isValidVectorDatasize(size)); |
| 3950 | assert(isValidArrangement(size, opt)); |
| 3951 | elemsize = optGetElemsize(opt); |
| 3952 | if ((ins == INS_cls) || (ins == INS_clz)) |
| 3953 | { |
| 3954 | assert(elemsize != EA_8BYTE); // No encoding for type D |
| 3955 | } |
| 3956 | else if (ins == INS_rev32) |
| 3957 | { |
| 3958 | assert((elemsize == EA_2BYTE) || (elemsize == EA_1BYTE)); |
| 3959 | } |
| 3960 | else |
| 3961 | { |
| 3962 | assert(elemsize == EA_1BYTE); // Only supports 8B or 16B |
| 3963 | } |
| 3964 | fmt = IF_DV_2M; |
| 3965 | break; |
| 3966 | } |
| 3967 | if (ins == INS_cnt) |
| 3968 | { |
| 3969 | // Doesn't have general register version(s) |
| 3970 | break; |
| 3971 | } |
| 3972 | |
| 3973 | __fallthrough; |
| 3974 | |
| 3975 | case INS_rev: |
| 3976 | assert(insOptsNone(opt)); |
| 3977 | assert(isGeneralRegister(reg1)); |
| 3978 | assert(isGeneralRegister(reg2)); |
| 3979 | if (ins == INS_rev32) |
| 3980 | { |
| 3981 | assert(size == EA_8BYTE); |
| 3982 | } |
| 3983 | else |
| 3984 | { |
| 3985 | assert(isValidGeneralDatasize(size)); |
| 3986 | } |
| 3987 | fmt = IF_DR_2G; |
| 3988 | break; |
| 3989 | |
| 3990 | case INS_addv: |
| 3991 | case INS_saddlv: |
| 3992 | case INS_smaxv: |
| 3993 | case INS_sminv: |
| 3994 | case INS_uaddlv: |
| 3995 | case INS_umaxv: |
| 3996 | case INS_uminv: |
| 3997 | case INS_rev64: |
| 3998 | assert(isVectorRegister(reg1)); |
| 3999 | assert(isVectorRegister(reg2)); |
| 4000 | assert(isValidVectorDatasize(size)); |
| 4001 | assert(isValidArrangement(size, opt)); |
| 4002 | elemsize = optGetElemsize(opt); |
| 4003 | assert(elemsize != EA_8BYTE); // No encoding for type D |
| 4004 | fmt = IF_DV_2M; |
| 4005 | break; |
| 4006 | |
| 4007 | case INS_xtn: |
| 4008 | case INS_xtn2: |
| 4009 | assert(isVectorRegister(reg1)); |
| 4010 | assert(isVectorRegister(reg2)); |
| 4011 | assert(isValidVectorDatasize(size)); |
| 4012 | assert(isValidArrangement(size, opt)); |
| 4013 | elemsize = optGetElemsize(opt); |
| 4014 | // size is determined by instruction |
| 4015 | if (ins == INS_xtn) |
| 4016 | { |
| 4017 | assert(size == EA_8BYTE); |
| 4018 | } |
| 4019 | else // ins == INS_xtn2 |
| 4020 | { |
| 4021 | assert(size == EA_16BYTE); |
| 4022 | } |
| 4023 | assert(elemsize != EA_8BYTE); // Narrowing must not end with 8 byte data |
| 4024 | fmt = IF_DV_2M; |
| 4025 | break; |
| 4026 | |
| 4027 | case INS_ldar: |
| 4028 | case INS_ldaxr: |
| 4029 | case INS_ldxr: |
| 4030 | case INS_stlr: |
| 4031 | assert(isValidGeneralDatasize(size)); |
| 4032 | |
| 4033 | __fallthrough; |
| 4034 | |
| 4035 | case INS_ldarb: |
| 4036 | case INS_ldaxrb: |
| 4037 | case INS_ldxrb: |
| 4038 | case INS_ldarh: |
| 4039 | case INS_ldaxrh: |
| 4040 | case INS_ldxrh: |
| 4041 | case INS_stlrb: |
| 4042 | case INS_stlrh: |
| 4043 | assert(isValidGeneralLSDatasize(size)); |
| 4044 | assert(isGeneralRegisterOrZR(reg1)); |
| 4045 | assert(isGeneralRegisterOrSP(reg2)); |
| 4046 | assert(insOptsNone(opt)); |
| 4047 | |
| 4048 | reg2 = encodingSPtoZR(reg2); |
| 4049 | |
| 4050 | fmt = IF_LS_2A; |
| 4051 | break; |
| 4052 | |
| 4053 | case INS_ldr: |
| 4054 | case INS_ldrb: |
| 4055 | case INS_ldrh: |
| 4056 | case INS_ldrsb: |
| 4057 | case INS_ldrsh: |
| 4058 | case INS_ldrsw: |
| 4059 | case INS_str: |
| 4060 | case INS_strb: |
| 4061 | case INS_strh: |
| 4062 | |
| 4063 | case INS_cmp: |
| 4064 | case INS_cmn: |
| 4065 | case INS_tst: |
| 4066 | assert(insOptsNone(opt)); |
| 4067 | emitIns_R_R_I(ins, attr, reg1, reg2, 0, INS_OPTS_NONE); |
| 4068 | return; |
| 4069 | |
| 4070 | case INS_staddb: |
| 4071 | emitIns_R_R_R(INS_ldaddb, attr, reg1, REG_ZR, reg2); |
| 4072 | return; |
| 4073 | case INS_staddlb: |
| 4074 | emitIns_R_R_R(INS_ldaddlb, attr, reg1, REG_ZR, reg2); |
| 4075 | return; |
| 4076 | case INS_staddh: |
| 4077 | emitIns_R_R_R(INS_ldaddh, attr, reg1, REG_ZR, reg2); |
| 4078 | return; |
| 4079 | case INS_staddlh: |
| 4080 | emitIns_R_R_R(INS_ldaddlh, attr, reg1, REG_ZR, reg2); |
| 4081 | return; |
| 4082 | case INS_stadd: |
| 4083 | emitIns_R_R_R(INS_ldadd, attr, reg1, REG_ZR, reg2); |
| 4084 | return; |
| 4085 | case INS_staddl: |
| 4086 | emitIns_R_R_R(INS_ldaddl, attr, reg1, REG_ZR, reg2); |
| 4087 | return; |
| 4088 | |
| 4089 | case INS_fmov: |
| 4090 | assert(isValidVectorElemsizeFloat(size)); |
| 4091 | |
| 4092 | // Is the mov even necessary? |
| 4093 | if (reg1 == reg2) |
| 4094 | { |
| 4095 | return; |
| 4096 | } |
| 4097 | |
| 4098 | if (isVectorRegister(reg1)) |
| 4099 | { |
| 4100 | if (isVectorRegister(reg2)) |
| 4101 | { |
| 4102 | assert(insOptsNone(opt)); |
| 4103 | fmt = IF_DV_2G; |
| 4104 | } |
| 4105 | else |
| 4106 | { |
| 4107 | assert(isGeneralRegister(reg2)); |
| 4108 | |
| 4109 | // if the optional conversion specifier is not present we calculate it |
| 4110 | if (opt == INS_OPTS_NONE) |
| 4111 | { |
| 4112 | opt = (size == EA_4BYTE) ? INS_OPTS_4BYTE_TO_S : INS_OPTS_8BYTE_TO_D; |
| 4113 | } |
| 4114 | assert(insOptsConvertIntToFloat(opt)); |
| 4115 | |
| 4116 | fmt = IF_DV_2I; |
| 4117 | } |
| 4118 | } |
| 4119 | else |
| 4120 | { |
| 4121 | assert(isGeneralRegister(reg1)); |
| 4122 | assert(isVectorRegister(reg2)); |
| 4123 | |
| 4124 | // if the optional conversion specifier is not present we calculate it |
| 4125 | if (opt == INS_OPTS_NONE) |
| 4126 | { |
| 4127 | opt = (size == EA_4BYTE) ? INS_OPTS_S_TO_4BYTE : INS_OPTS_D_TO_8BYTE; |
| 4128 | } |
| 4129 | assert(insOptsConvertFloatToInt(opt)); |
| 4130 | |
| 4131 | fmt = IF_DV_2H; |
| 4132 | } |
| 4133 | break; |
| 4134 | |
| 4135 | case INS_fcmp: |
| 4136 | case INS_fcmpe: |
| 4137 | assert(insOptsNone(opt)); |
| 4138 | assert(isValidVectorElemsizeFloat(size)); |
| 4139 | assert(isVectorRegister(reg1)); |
| 4140 | assert(isVectorRegister(reg2)); |
| 4141 | fmt = IF_DV_2K; |
| 4142 | break; |
| 4143 | |
| 4144 | case INS_fcvtns: |
| 4145 | case INS_fcvtnu: |
| 4146 | case INS_fcvtas: |
| 4147 | case INS_fcvtau: |
| 4148 | case INS_fcvtps: |
| 4149 | case INS_fcvtpu: |
| 4150 | case INS_fcvtms: |
| 4151 | case INS_fcvtmu: |
| 4152 | case INS_fcvtzs: |
| 4153 | case INS_fcvtzu: |
| 4154 | if (insOptsAnyArrangement(opt)) |
| 4155 | { |
| 4156 | // Vector operation |
| 4157 | assert(isVectorRegister(reg1)); |
| 4158 | assert(isVectorRegister(reg2)); |
| 4159 | assert(isValidVectorDatasize(size)); |
| 4160 | assert(isValidArrangement(size, opt)); |
| 4161 | elemsize = optGetElemsize(opt); |
| 4162 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 4163 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 4164 | fmt = IF_DV_2A; |
| 4165 | } |
| 4166 | else |
| 4167 | { |
| 4168 | // Scalar operation |
| 4169 | assert(isVectorRegister(reg2)); |
| 4170 | if (isVectorRegister(reg1)) |
| 4171 | { |
| 4172 | assert(insOptsNone(opt)); |
| 4173 | assert(isValidVectorElemsizeFloat(size)); |
| 4174 | fmt = IF_DV_2G; |
| 4175 | } |
| 4176 | else |
| 4177 | { |
| 4178 | assert(isGeneralRegister(reg1)); |
| 4179 | assert(insOptsConvertFloatToInt(opt)); |
| 4180 | assert(isValidVectorElemsizeFloat(size)); |
| 4181 | fmt = IF_DV_2H; |
| 4182 | } |
| 4183 | } |
| 4184 | break; |
| 4185 | |
| 4186 | case INS_fcvtl: |
| 4187 | case INS_fcvtl2: |
| 4188 | case INS_fcvtn: |
| 4189 | case INS_fcvtn2: |
| 4190 | assert(isVectorRegister(reg1)); |
| 4191 | assert(isVectorRegister(reg2)); |
| 4192 | assert(isValidVectorDatasize(size)); |
| 4193 | assert(insOptsNone(opt)); |
| 4194 | assert(size == EA_8BYTE); // Narrowing from Double or Widening to Double (Half not supported) |
| 4195 | fmt = IF_DV_2G; |
| 4196 | break; |
| 4197 | |
| 4198 | case INS_scvtf: |
| 4199 | case INS_ucvtf: |
| 4200 | if (insOptsAnyArrangement(opt)) |
| 4201 | { |
| 4202 | // Vector operation |
| 4203 | assert(isVectorRegister(reg1)); |
| 4204 | assert(isVectorRegister(reg2)); |
| 4205 | assert(isValidVectorDatasize(size)); |
| 4206 | assert(isValidArrangement(size, opt)); |
| 4207 | elemsize = optGetElemsize(opt); |
| 4208 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 4209 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 4210 | fmt = IF_DV_2A; |
| 4211 | } |
| 4212 | else |
| 4213 | { |
| 4214 | // Scalar operation |
| 4215 | assert(isVectorRegister(reg1)); |
| 4216 | if (isVectorRegister(reg2)) |
| 4217 | { |
| 4218 | assert(insOptsNone(opt)); |
| 4219 | assert(isValidVectorElemsizeFloat(size)); |
| 4220 | fmt = IF_DV_2G; |
| 4221 | } |
| 4222 | else |
| 4223 | { |
| 4224 | assert(isGeneralRegister(reg2)); |
| 4225 | assert(insOptsConvertIntToFloat(opt)); |
| 4226 | assert(isValidVectorElemsizeFloat(size)); |
| 4227 | fmt = IF_DV_2I; |
| 4228 | } |
| 4229 | } |
| 4230 | break; |
| 4231 | |
| 4232 | case INS_fabs: |
| 4233 | case INS_fneg: |
| 4234 | case INS_fsqrt: |
| 4235 | case INS_frinta: |
| 4236 | case INS_frinti: |
| 4237 | case INS_frintm: |
| 4238 | case INS_frintn: |
| 4239 | case INS_frintp: |
| 4240 | case INS_frintx: |
| 4241 | case INS_frintz: |
| 4242 | if (insOptsAnyArrangement(opt)) |
| 4243 | { |
| 4244 | // Vector operation |
| 4245 | assert(isVectorRegister(reg1)); |
| 4246 | assert(isVectorRegister(reg2)); |
| 4247 | assert(isValidVectorDatasize(size)); |
| 4248 | assert(isValidArrangement(size, opt)); |
| 4249 | elemsize = optGetElemsize(opt); |
| 4250 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 4251 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 4252 | fmt = IF_DV_2A; |
| 4253 | } |
| 4254 | else |
| 4255 | { |
| 4256 | // Scalar operation |
| 4257 | assert(insOptsNone(opt)); |
| 4258 | assert(isValidVectorElemsizeFloat(size)); |
| 4259 | assert(isVectorRegister(reg1)); |
| 4260 | assert(isVectorRegister(reg2)); |
| 4261 | fmt = IF_DV_2G; |
| 4262 | } |
| 4263 | break; |
| 4264 | |
| 4265 | case INS_faddp: |
| 4266 | // Scalar operation |
| 4267 | assert(insOptsNone(opt)); |
| 4268 | assert(isValidVectorElemsizeFloat(size)); |
| 4269 | assert(isVectorRegister(reg1)); |
| 4270 | assert(isVectorRegister(reg2)); |
| 4271 | fmt = IF_DV_2G; |
| 4272 | break; |
| 4273 | |
| 4274 | case INS_fcvt: |
| 4275 | assert(insOptsConvertFloatToFloat(opt)); |
| 4276 | assert(isValidVectorFcvtsize(size)); |
| 4277 | assert(isVectorRegister(reg1)); |
| 4278 | assert(isVectorRegister(reg2)); |
| 4279 | fmt = IF_DV_2J; |
| 4280 | break; |
| 4281 | |
| 4282 | case INS_cmeq: |
| 4283 | case INS_cmge: |
| 4284 | case INS_cmgt: |
| 4285 | case INS_cmle: |
| 4286 | case INS_cmlt: |
| 4287 | assert(isVectorRegister(reg1)); |
| 4288 | assert(isVectorRegister(reg2)); |
| 4289 | |
| 4290 | if (isValidVectorDatasize(size)) |
| 4291 | { |
| 4292 | // Vector operation |
| 4293 | assert(insOptsAnyArrangement(opt)); |
| 4294 | assert(isValidArrangement(size, opt)); |
| 4295 | elemsize = optGetElemsize(opt); |
| 4296 | fmt = IF_DV_2M; |
| 4297 | } |
| 4298 | else |
| 4299 | { |
| 4300 | NYI("Untested" ); |
| 4301 | // Scalar operation |
| 4302 | assert(size == EA_8BYTE); // Only Double supported |
| 4303 | fmt = IF_DV_2L; |
| 4304 | } |
| 4305 | break; |
| 4306 | |
| 4307 | case INS_fcmeq: |
| 4308 | case INS_fcmge: |
| 4309 | case INS_fcmgt: |
| 4310 | case INS_fcmle: |
| 4311 | case INS_fcmlt: |
| 4312 | assert(isVectorRegister(reg1)); |
| 4313 | assert(isVectorRegister(reg2)); |
| 4314 | |
| 4315 | if (isValidVectorDatasize(size)) |
| 4316 | { |
| 4317 | // Vector operation |
| 4318 | assert(insOptsAnyArrangement(opt)); |
| 4319 | assert(isValidArrangement(size, opt)); |
| 4320 | elemsize = optGetElemsize(opt); |
| 4321 | assert((elemsize == EA_8BYTE) || (elemsize == EA_4BYTE)); // Only Double/Float supported |
| 4322 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 4323 | fmt = IF_DV_2A; |
| 4324 | } |
| 4325 | else |
| 4326 | { |
| 4327 | NYI("Untested" ); |
| 4328 | // Scalar operation |
| 4329 | assert((size == EA_8BYTE) || (size == EA_4BYTE)); // Only Double/Float supported |
| 4330 | fmt = IF_DV_2G; |
| 4331 | } |
| 4332 | break; |
| 4333 | case INS_aesd: |
| 4334 | case INS_aese: |
| 4335 | case INS_aesmc: |
| 4336 | case INS_aesimc: |
| 4337 | assert(isVectorRegister(reg1)); |
| 4338 | assert(isVectorRegister(reg2)); |
| 4339 | assert(isValidVectorDatasize(size)); |
| 4340 | elemsize = optGetElemsize(opt); |
| 4341 | assert(elemsize == EA_1BYTE); |
| 4342 | fmt = IF_DV_2P; |
| 4343 | break; |
| 4344 | |
| 4345 | case INS_sha1h: |
| 4346 | assert(insOptsNone(opt)); |
| 4347 | assert(isVectorRegister(reg1)); |
| 4348 | assert(isVectorRegister(reg2)); |
| 4349 | fmt = IF_DR_2J; |
| 4350 | break; |
| 4351 | |
| 4352 | case INS_sha256su0: |
| 4353 | case INS_sha1su1: |
| 4354 | assert(isVectorRegister(reg1)); |
| 4355 | assert(isVectorRegister(reg2)); |
| 4356 | assert(isValidVectorDatasize(size)); |
| 4357 | elemsize = optGetElemsize(opt); |
| 4358 | assert(elemsize == EA_4BYTE); |
| 4359 | fmt = IF_DV_2P; |
| 4360 | break; |
| 4361 | |
| 4362 | default: |
| 4363 | unreached(); |
| 4364 | break; |
| 4365 | |
| 4366 | } // end switch (ins) |
| 4367 | |
| 4368 | assert(fmt != IF_NONE); |
| 4369 | |
| 4370 | instrDesc* id = emitNewInstrSmall(attr); |
| 4371 | |
| 4372 | id->idIns(ins); |
| 4373 | id->idInsFmt(fmt); |
| 4374 | id->idInsOpt(opt); |
| 4375 | |
| 4376 | id->idReg1(reg1); |
| 4377 | id->idReg2(reg2); |
| 4378 | |
| 4379 | dispIns(id); |
| 4380 | appendToCurIG(id); |
| 4381 | } |
| 4382 | |
| 4383 | /***************************************************************************** |
| 4384 | * |
| 4385 | * Add an instruction referencing a register and two constants. |
| 4386 | */ |
| 4387 | |
| 4388 | void emitter::emitIns_R_I_I( |
| 4389 | instruction ins, emitAttr attr, regNumber reg, ssize_t imm1, ssize_t imm2, insOpts opt /* = INS_OPTS_NONE */) |
| 4390 | { |
| 4391 | emitAttr size = EA_SIZE(attr); |
| 4392 | insFormat fmt = IF_NONE; |
| 4393 | size_t immOut = 0; // composed from imm1 and imm2 and stored in the instrDesc |
| 4394 | |
| 4395 | /* Figure out the encoding format of the instruction */ |
| 4396 | switch (ins) |
| 4397 | { |
| 4398 | bool canEncode; |
| 4399 | halfwordImm hwi; |
| 4400 | |
| 4401 | case INS_mov: |
| 4402 | ins = INS_movz; // INS_mov with LSL is an alias for INS_movz LSL |
| 4403 | __fallthrough; |
| 4404 | |
| 4405 | case INS_movk: |
| 4406 | case INS_movn: |
| 4407 | case INS_movz: |
| 4408 | assert(isValidGeneralDatasize(size)); |
| 4409 | assert(isGeneralRegister(reg)); |
| 4410 | assert(isValidUimm16(imm1)); |
| 4411 | assert(insOptsLSL(opt)); // Must be INS_OPTS_LSL |
| 4412 | |
| 4413 | if (size == EA_8BYTE) |
| 4414 | { |
| 4415 | assert((imm2 == 0) || (imm2 == 16) || // shift amount: 0, 16, 32 or 48 |
| 4416 | (imm2 == 32) || (imm2 == 48)); |
| 4417 | } |
| 4418 | else // EA_4BYTE |
| 4419 | { |
| 4420 | assert((imm2 == 0) || (imm2 == 16)); // shift amount: 0 or 16 |
| 4421 | } |
| 4422 | |
| 4423 | hwi.immHWVal = 0; |
| 4424 | |
| 4425 | switch (imm2) |
| 4426 | { |
| 4427 | case 0: |
| 4428 | hwi.immHW = 0; |
| 4429 | canEncode = true; |
| 4430 | break; |
| 4431 | |
| 4432 | case 16: |
| 4433 | hwi.immHW = 1; |
| 4434 | canEncode = true; |
| 4435 | break; |
| 4436 | |
| 4437 | case 32: |
| 4438 | hwi.immHW = 2; |
| 4439 | canEncode = true; |
| 4440 | break; |
| 4441 | |
| 4442 | case 48: |
| 4443 | hwi.immHW = 3; |
| 4444 | canEncode = true; |
| 4445 | break; |
| 4446 | |
| 4447 | default: |
| 4448 | canEncode = false; |
| 4449 | } |
| 4450 | |
| 4451 | if (canEncode) |
| 4452 | { |
| 4453 | hwi.immVal = imm1; |
| 4454 | |
| 4455 | immOut = hwi.immHWVal; |
| 4456 | assert(isValidImmHWVal(immOut, size)); |
| 4457 | fmt = IF_DI_1B; |
| 4458 | } |
| 4459 | break; |
| 4460 | |
| 4461 | default: |
| 4462 | unreached(); |
| 4463 | break; |
| 4464 | |
| 4465 | } // end switch (ins) |
| 4466 | |
| 4467 | assert(fmt != IF_NONE); |
| 4468 | |
| 4469 | instrDesc* id = emitNewInstrSC(attr, immOut); |
| 4470 | |
| 4471 | id->idIns(ins); |
| 4472 | id->idInsFmt(fmt); |
| 4473 | |
| 4474 | id->idReg1(reg); |
| 4475 | |
| 4476 | dispIns(id); |
| 4477 | appendToCurIG(id); |
| 4478 | } |
| 4479 | |
| 4480 | /***************************************************************************** |
| 4481 | * |
| 4482 | * Add an instruction referencing two registers and a constant. |
| 4483 | */ |
| 4484 | |
| 4485 | void emitter::emitIns_R_R_I( |
| 4486 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm, insOpts opt /* = INS_OPTS_NONE */) |
| 4487 | { |
| 4488 | emitAttr size = EA_SIZE(attr); |
| 4489 | emitAttr elemsize = EA_UNKNOWN; |
| 4490 | insFormat fmt = IF_NONE; |
| 4491 | bool isLdSt = false; |
| 4492 | bool isSIMD = false; |
| 4493 | bool isAddSub = false; |
| 4494 | bool setFlags = false; |
| 4495 | unsigned scale = 0; |
| 4496 | bool unscaledOp = false; |
| 4497 | |
| 4498 | /* Figure out the encoding format of the instruction */ |
| 4499 | switch (ins) |
| 4500 | { |
| 4501 | bool canEncode; |
| 4502 | bitMaskImm bmi; |
| 4503 | |
| 4504 | case INS_mov: |
| 4505 | // Check for the 'mov' aliases for the vector registers |
| 4506 | assert(insOptsNone(opt)); |
| 4507 | assert(isValidVectorElemsize(size)); |
| 4508 | elemsize = size; |
| 4509 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 4510 | |
| 4511 | if (isVectorRegister(reg1)) |
| 4512 | { |
| 4513 | if (isGeneralRegisterOrZR(reg2)) |
| 4514 | { |
| 4515 | fmt = IF_DV_2C; // Alias for 'ins' |
| 4516 | break; |
| 4517 | } |
| 4518 | else if (isVectorRegister(reg2)) |
| 4519 | { |
| 4520 | fmt = IF_DV_2E; // Alias for 'dup' |
| 4521 | break; |
| 4522 | } |
| 4523 | } |
| 4524 | else // isGeneralRegister(reg1) |
| 4525 | { |
| 4526 | assert(isGeneralRegister(reg1)); |
| 4527 | if (isVectorRegister(reg2)) |
| 4528 | { |
| 4529 | fmt = IF_DV_2B; // Alias for 'umov' |
| 4530 | break; |
| 4531 | } |
| 4532 | } |
| 4533 | assert(!" invalid INS_mov operands" ); |
| 4534 | break; |
| 4535 | |
| 4536 | case INS_lsl: |
| 4537 | case INS_lsr: |
| 4538 | case INS_asr: |
| 4539 | assert(insOptsNone(opt)); |
| 4540 | assert(isValidGeneralDatasize(size)); |
| 4541 | assert(isGeneralRegister(reg1)); |
| 4542 | assert(isGeneralRegister(reg2)); |
| 4543 | assert(isValidImmShift(imm, size)); |
| 4544 | fmt = IF_DI_2D; |
| 4545 | break; |
| 4546 | |
| 4547 | case INS_ror: |
| 4548 | assert(insOptsNone(opt)); |
| 4549 | assert(isValidGeneralDatasize(size)); |
| 4550 | assert(isGeneralRegister(reg1)); |
| 4551 | assert(isGeneralRegister(reg2)); |
| 4552 | assert(isValidImmShift(imm, size)); |
| 4553 | fmt = IF_DI_2B; |
| 4554 | break; |
| 4555 | |
| 4556 | case INS_sshr: |
| 4557 | case INS_ssra: |
| 4558 | case INS_srshr: |
| 4559 | case INS_srsra: |
| 4560 | case INS_shl: |
| 4561 | case INS_ushr: |
| 4562 | case INS_usra: |
| 4563 | case INS_urshr: |
| 4564 | case INS_ursra: |
| 4565 | case INS_sri: |
| 4566 | case INS_sli: |
| 4567 | assert(isVectorRegister(reg1)); |
| 4568 | assert(isVectorRegister(reg2)); |
| 4569 | if (insOptsAnyArrangement(opt)) |
| 4570 | { |
| 4571 | // Vector operation |
| 4572 | assert(isValidVectorDatasize(size)); |
| 4573 | assert(isValidArrangement(size, opt)); |
| 4574 | elemsize = optGetElemsize(opt); |
| 4575 | assert(isValidVectorElemsize(elemsize)); |
| 4576 | assert(isValidImmShift(imm, elemsize)); |
| 4577 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 4578 | fmt = IF_DV_2O; |
| 4579 | break; |
| 4580 | } |
| 4581 | else |
| 4582 | { |
| 4583 | // Scalar operation |
| 4584 | assert(insOptsNone(opt)); |
| 4585 | assert(size == EA_8BYTE); // only supported size |
| 4586 | assert(isValidImmShift(imm, size)); |
| 4587 | fmt = IF_DV_2N; |
| 4588 | } |
| 4589 | break; |
| 4590 | |
| 4591 | case INS_sxtl: |
| 4592 | case INS_uxtl: |
| 4593 | assert(imm == 0); |
| 4594 | __fallthrough; |
| 4595 | |
| 4596 | case INS_shrn: |
| 4597 | case INS_rshrn: |
| 4598 | case INS_sshll: |
| 4599 | case INS_ushll: |
| 4600 | assert(isVectorRegister(reg1)); |
| 4601 | assert(isVectorRegister(reg2)); |
| 4602 | // Vector operation |
| 4603 | assert(size == EA_8BYTE); |
| 4604 | assert(isValidArrangement(size, opt)); |
| 4605 | elemsize = optGetElemsize(opt); |
| 4606 | assert(elemsize != EA_8BYTE); // Reserved encodings |
| 4607 | assert(isValidVectorElemsize(elemsize)); |
| 4608 | assert(isValidImmShift(imm, elemsize)); |
| 4609 | fmt = IF_DV_2O; |
| 4610 | break; |
| 4611 | |
| 4612 | case INS_sxtl2: |
| 4613 | case INS_uxtl2: |
| 4614 | assert(imm == 0); |
| 4615 | __fallthrough; |
| 4616 | |
| 4617 | case INS_shrn2: |
| 4618 | case INS_rshrn2: |
| 4619 | case INS_sshll2: |
| 4620 | case INS_ushll2: |
| 4621 | assert(isVectorRegister(reg1)); |
| 4622 | assert(isVectorRegister(reg2)); |
| 4623 | // Vector operation |
| 4624 | assert(size == EA_16BYTE); |
| 4625 | assert(isValidArrangement(size, opt)); |
| 4626 | elemsize = optGetElemsize(opt); |
| 4627 | assert(elemsize != EA_8BYTE); // Reserved encodings |
| 4628 | assert(isValidVectorElemsize(elemsize)); |
| 4629 | assert(isValidImmShift(imm, elemsize)); |
| 4630 | fmt = IF_DV_2O; |
| 4631 | break; |
| 4632 | |
| 4633 | case INS_mvn: |
| 4634 | case INS_neg: |
| 4635 | case INS_negs: |
| 4636 | assert(isValidGeneralDatasize(size)); |
| 4637 | assert(isGeneralRegister(reg1)); |
| 4638 | assert(isGeneralRegisterOrZR(reg2)); |
| 4639 | |
| 4640 | if (imm == 0) |
| 4641 | { |
| 4642 | assert(insOptsNone(opt)); // a zero imm, means no alu shift kind |
| 4643 | |
| 4644 | fmt = IF_DR_2E; |
| 4645 | } |
| 4646 | else |
| 4647 | { |
| 4648 | if (ins == INS_mvn) |
| 4649 | { |
| 4650 | assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind |
| 4651 | } |
| 4652 | else // neg or negs |
| 4653 | { |
| 4654 | assert(insOptsAluShift(opt)); // a non-zero imm, must select shift kind, can't use ROR |
| 4655 | } |
| 4656 | assert(isValidImmShift(imm, size)); |
| 4657 | fmt = IF_DR_2F; |
| 4658 | } |
| 4659 | break; |
| 4660 | |
| 4661 | case INS_tst: |
| 4662 | assert(isValidGeneralDatasize(size)); |
| 4663 | assert(isGeneralRegisterOrZR(reg1)); |
| 4664 | assert(isGeneralRegister(reg2)); |
| 4665 | |
| 4666 | if (insOptsAnyShift(opt)) |
| 4667 | { |
| 4668 | assert(isValidImmShift(imm, size) && (imm != 0)); |
| 4669 | fmt = IF_DR_2B; |
| 4670 | } |
| 4671 | else |
| 4672 | { |
| 4673 | assert(insOptsNone(opt)); // a zero imm, means no alu shift kind |
| 4674 | assert(imm == 0); |
| 4675 | fmt = IF_DR_2A; |
| 4676 | } |
| 4677 | break; |
| 4678 | |
| 4679 | case INS_cmp: |
| 4680 | case INS_cmn: |
| 4681 | assert(isValidGeneralDatasize(size)); |
| 4682 | assert(isGeneralRegisterOrSP(reg1)); |
| 4683 | assert(isGeneralRegister(reg2)); |
| 4684 | |
| 4685 | reg1 = encodingSPtoZR(reg1); |
| 4686 | if (insOptsAnyExtend(opt)) |
| 4687 | { |
| 4688 | assert((imm >= 0) && (imm <= 4)); |
| 4689 | |
| 4690 | fmt = IF_DR_2C; |
| 4691 | } |
| 4692 | else if (imm == 0) |
| 4693 | { |
| 4694 | assert(insOptsNone(opt)); // a zero imm, means no alu shift kind |
| 4695 | |
| 4696 | fmt = IF_DR_2A; |
| 4697 | } |
| 4698 | else |
| 4699 | { |
| 4700 | assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind |
| 4701 | assert(isValidImmShift(imm, size)); |
| 4702 | fmt = IF_DR_2B; |
| 4703 | } |
| 4704 | break; |
| 4705 | |
| 4706 | case INS_ands: |
| 4707 | case INS_and: |
| 4708 | case INS_eor: |
| 4709 | case INS_orr: |
| 4710 | assert(insOptsNone(opt)); |
| 4711 | assert(isGeneralRegister(reg2)); |
| 4712 | if (ins == INS_ands) |
| 4713 | { |
| 4714 | assert(isGeneralRegister(reg1)); |
| 4715 | } |
| 4716 | else |
| 4717 | { |
| 4718 | assert(isGeneralRegisterOrSP(reg1)); |
| 4719 | reg1 = encodingSPtoZR(reg1); |
| 4720 | } |
| 4721 | |
| 4722 | bmi.immNRS = 0; |
| 4723 | canEncode = canEncodeBitMaskImm(imm, size, &bmi); |
| 4724 | if (canEncode) |
| 4725 | { |
| 4726 | imm = bmi.immNRS; |
| 4727 | assert(isValidImmNRS(imm, size)); |
| 4728 | fmt = IF_DI_2C; |
| 4729 | } |
| 4730 | break; |
| 4731 | |
| 4732 | case INS_dup: // by element, imm selects the element of reg2 |
| 4733 | assert(isVectorRegister(reg1)); |
| 4734 | if (isVectorRegister(reg2)) |
| 4735 | { |
| 4736 | if (insOptsAnyArrangement(opt)) |
| 4737 | { |
| 4738 | // Vector operation |
| 4739 | assert(isValidVectorDatasize(size)); |
| 4740 | assert(isValidArrangement(size, opt)); |
| 4741 | elemsize = optGetElemsize(opt); |
| 4742 | assert(isValidVectorElemsize(elemsize)); |
| 4743 | assert(isValidVectorIndex(size, elemsize, imm)); |
| 4744 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 4745 | fmt = IF_DV_2D; |
| 4746 | break; |
| 4747 | } |
| 4748 | else |
| 4749 | { |
| 4750 | // Scalar operation |
| 4751 | assert(insOptsNone(opt)); |
| 4752 | elemsize = size; |
| 4753 | assert(isValidVectorElemsize(elemsize)); |
| 4754 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 4755 | fmt = IF_DV_2E; |
| 4756 | break; |
| 4757 | } |
| 4758 | } |
| 4759 | __fallthrough; |
| 4760 | |
| 4761 | case INS_ins: // (MOV from general) |
| 4762 | assert(insOptsNone(opt)); |
| 4763 | assert(isValidVectorElemsize(size)); |
| 4764 | assert(isVectorRegister(reg1)); |
| 4765 | assert(isGeneralRegisterOrZR(reg2)); |
| 4766 | elemsize = size; |
| 4767 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 4768 | fmt = IF_DV_2C; |
| 4769 | break; |
| 4770 | |
| 4771 | case INS_umov: // (MOV to general) |
| 4772 | assert(insOptsNone(opt)); |
| 4773 | assert(isValidVectorElemsize(size)); |
| 4774 | assert(isGeneralRegister(reg1)); |
| 4775 | assert(isVectorRegister(reg2)); |
| 4776 | elemsize = size; |
| 4777 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 4778 | fmt = IF_DV_2B; |
| 4779 | break; |
| 4780 | |
| 4781 | case INS_smov: |
| 4782 | assert(insOptsNone(opt)); |
| 4783 | assert(isValidVectorElemsize(size)); |
| 4784 | assert(size != EA_8BYTE); // no encoding, use INS_umov |
| 4785 | assert(isGeneralRegister(reg1)); |
| 4786 | assert(isVectorRegister(reg2)); |
| 4787 | elemsize = size; |
| 4788 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 4789 | fmt = IF_DV_2B; |
| 4790 | break; |
| 4791 | |
| 4792 | case INS_add: |
| 4793 | case INS_sub: |
| 4794 | setFlags = false; |
| 4795 | isAddSub = true; |
| 4796 | break; |
| 4797 | |
| 4798 | case INS_adds: |
| 4799 | case INS_subs: |
| 4800 | setFlags = true; |
| 4801 | isAddSub = true; |
| 4802 | break; |
| 4803 | |
| 4804 | case INS_ldrsb: |
| 4805 | case INS_ldursb: |
| 4806 | // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register |
| 4807 | assert(isValidGeneralDatasize(size)); |
| 4808 | unscaledOp = (ins == INS_ldursb); |
| 4809 | scale = 0; |
| 4810 | isLdSt = true; |
| 4811 | break; |
| 4812 | |
| 4813 | case INS_ldrsh: |
| 4814 | case INS_ldursh: |
| 4815 | // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register |
| 4816 | assert(isValidGeneralDatasize(size)); |
| 4817 | unscaledOp = (ins == INS_ldursh); |
| 4818 | scale = 1; |
| 4819 | isLdSt = true; |
| 4820 | break; |
| 4821 | |
| 4822 | case INS_ldrsw: |
| 4823 | case INS_ldursw: |
| 4824 | // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register |
| 4825 | assert(size == EA_8BYTE); |
| 4826 | unscaledOp = (ins == INS_ldursw); |
| 4827 | scale = 2; |
| 4828 | isLdSt = true; |
| 4829 | break; |
| 4830 | |
| 4831 | case INS_ldrb: |
| 4832 | case INS_strb: |
| 4833 | // size is ignored |
| 4834 | unscaledOp = false; |
| 4835 | scale = 0; |
| 4836 | isLdSt = true; |
| 4837 | break; |
| 4838 | |
| 4839 | case INS_ldurb: |
| 4840 | case INS_sturb: |
| 4841 | // size is ignored |
| 4842 | unscaledOp = true; |
| 4843 | scale = 0; |
| 4844 | isLdSt = true; |
| 4845 | break; |
| 4846 | |
| 4847 | case INS_ldrh: |
| 4848 | case INS_strh: |
| 4849 | // size is ignored |
| 4850 | unscaledOp = false; |
| 4851 | scale = 1; |
| 4852 | isLdSt = true; |
| 4853 | break; |
| 4854 | |
| 4855 | case INS_ldurh: |
| 4856 | case INS_sturh: |
| 4857 | // size is ignored |
| 4858 | unscaledOp = true; |
| 4859 | scale = 0; |
| 4860 | isLdSt = true; |
| 4861 | break; |
| 4862 | |
| 4863 | case INS_ldr: |
| 4864 | case INS_str: |
| 4865 | // Is the target a vector register? |
| 4866 | if (isVectorRegister(reg1)) |
| 4867 | { |
| 4868 | assert(isValidVectorLSDatasize(size)); |
| 4869 | assert(isGeneralRegisterOrSP(reg2)); |
| 4870 | isSIMD = true; |
| 4871 | } |
| 4872 | else |
| 4873 | { |
| 4874 | assert(isValidGeneralDatasize(size)); |
| 4875 | } |
| 4876 | unscaledOp = false; |
| 4877 | scale = NaturalScale_helper(size); |
| 4878 | isLdSt = true; |
| 4879 | break; |
| 4880 | |
| 4881 | case INS_ldur: |
| 4882 | case INS_stur: |
| 4883 | // Is the target a vector register? |
| 4884 | if (isVectorRegister(reg1)) |
| 4885 | { |
| 4886 | assert(isValidVectorLSDatasize(size)); |
| 4887 | assert(isGeneralRegisterOrSP(reg2)); |
| 4888 | isSIMD = true; |
| 4889 | } |
| 4890 | else |
| 4891 | { |
| 4892 | assert(isValidGeneralDatasize(size)); |
| 4893 | } |
| 4894 | unscaledOp = true; |
| 4895 | scale = 0; |
| 4896 | isLdSt = true; |
| 4897 | break; |
| 4898 | |
| 4899 | default: |
| 4900 | unreached(); |
| 4901 | break; |
| 4902 | |
| 4903 | } // end switch (ins) |
| 4904 | |
| 4905 | if (isLdSt) |
| 4906 | { |
| 4907 | assert(!isAddSub); |
| 4908 | |
| 4909 | if (isSIMD) |
| 4910 | { |
| 4911 | assert(isValidVectorLSDatasize(size)); |
| 4912 | assert(isVectorRegister(reg1)); |
| 4913 | assert((scale >= 0) && (scale <= 4)); |
| 4914 | } |
| 4915 | else |
| 4916 | { |
| 4917 | assert(isValidGeneralLSDatasize(size)); |
| 4918 | assert(isGeneralRegisterOrZR(reg1)); |
| 4919 | assert((scale >= 0) && (scale <= 3)); |
| 4920 | } |
| 4921 | |
| 4922 | assert(isGeneralRegisterOrSP(reg2)); |
| 4923 | |
| 4924 | // Load/Store reserved encodings: |
| 4925 | if (insOptsIndexed(opt)) |
| 4926 | { |
| 4927 | assert(reg1 != reg2); |
| 4928 | } |
| 4929 | |
| 4930 | reg2 = encodingSPtoZR(reg2); |
| 4931 | |
| 4932 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
| 4933 | if (imm == 0) |
| 4934 | { |
| 4935 | assert(insOptsNone(opt)); // PRE/POST Index doesn't make sense with an immediate of zero |
| 4936 | |
| 4937 | fmt = IF_LS_2A; |
| 4938 | } |
| 4939 | else if (insOptsIndexed(opt) || unscaledOp || (imm < 0) || ((imm & mask) != 0)) |
| 4940 | { |
| 4941 | if ((imm >= -256) && (imm <= 255)) |
| 4942 | { |
| 4943 | fmt = IF_LS_2C; |
| 4944 | } |
| 4945 | else |
| 4946 | { |
| 4947 | assert(!"Instruction cannot be encoded: IF_LS_2C" ); |
| 4948 | } |
| 4949 | } |
| 4950 | else if (imm > 0) |
| 4951 | { |
| 4952 | assert(insOptsNone(opt)); |
| 4953 | assert(!unscaledOp); |
| 4954 | |
| 4955 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
| 4956 | { |
| 4957 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
| 4958 | |
| 4959 | fmt = IF_LS_2B; |
| 4960 | } |
| 4961 | else |
| 4962 | { |
| 4963 | assert(!"Instruction cannot be encoded: IF_LS_2B" ); |
| 4964 | } |
| 4965 | } |
| 4966 | } |
| 4967 | else if (isAddSub) |
| 4968 | { |
| 4969 | assert(!isLdSt); |
| 4970 | assert(insOptsNone(opt)); |
| 4971 | |
| 4972 | if (setFlags) // Can't encode SP with setFlags |
| 4973 | { |
| 4974 | assert(isGeneralRegister(reg1)); |
| 4975 | assert(isGeneralRegister(reg2)); |
| 4976 | } |
| 4977 | else |
| 4978 | { |
| 4979 | assert(isGeneralRegisterOrSP(reg1)); |
| 4980 | assert(isGeneralRegisterOrSP(reg2)); |
| 4981 | |
| 4982 | // Is it just a mov? |
| 4983 | if (imm == 0) |
| 4984 | { |
| 4985 | // Is the mov even necessary? |
| 4986 | if (reg1 != reg2) |
| 4987 | { |
| 4988 | emitIns_R_R(INS_mov, attr, reg1, reg2); |
| 4989 | } |
| 4990 | return; |
| 4991 | } |
| 4992 | |
| 4993 | reg1 = encodingSPtoZR(reg1); |
| 4994 | reg2 = encodingSPtoZR(reg2); |
| 4995 | } |
| 4996 | |
| 4997 | if (unsigned_abs(imm) <= 0x0fff) |
| 4998 | { |
| 4999 | if (imm < 0) |
| 5000 | { |
| 5001 | ins = insReverse(ins); |
| 5002 | imm = -imm; |
| 5003 | } |
| 5004 | assert(isValidUimm12(imm)); |
| 5005 | fmt = IF_DI_2A; |
| 5006 | } |
| 5007 | else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding |
| 5008 | { |
| 5009 | // Encoding will use a 12-bit left shift of the immediate |
| 5010 | opt = INS_OPTS_LSL12; |
| 5011 | if (imm < 0) |
| 5012 | { |
| 5013 | ins = insReverse(ins); |
| 5014 | imm = -imm; |
| 5015 | } |
| 5016 | assert((imm & 0xfff) == 0); |
| 5017 | imm >>= 12; |
| 5018 | assert(isValidUimm12(imm)); |
| 5019 | fmt = IF_DI_2A; |
| 5020 | } |
| 5021 | else |
| 5022 | { |
| 5023 | assert(!"Instruction cannot be encoded: IF_DI_2A" ); |
| 5024 | } |
| 5025 | } |
| 5026 | |
| 5027 | assert(fmt != IF_NONE); |
| 5028 | |
| 5029 | instrDesc* id = emitNewInstrSC(attr, imm); |
| 5030 | |
| 5031 | id->idIns(ins); |
| 5032 | id->idInsFmt(fmt); |
| 5033 | id->idInsOpt(opt); |
| 5034 | |
| 5035 | id->idReg1(reg1); |
| 5036 | id->idReg2(reg2); |
| 5037 | |
| 5038 | dispIns(id); |
| 5039 | appendToCurIG(id); |
| 5040 | } |
| 5041 | |
| 5042 | /***************************************************************************** |
| 5043 | * |
| 5044 | * Add an instruction referencing two registers and a constant. |
| 5045 | * Also checks for a large immediate that needs a second instruction |
| 5046 | * and will load it in reg1 |
| 5047 | * |
| 5048 | * - Supports instructions: add, adds, sub, subs, and, ands, eor and orr |
| 5049 | * - Requires that reg1 is a general register and not SP or ZR |
| 5050 | * - Requires that reg1 != reg2 |
| 5051 | */ |
| 5052 | void emitter::emitIns_R_R_Imm(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm) |
| 5053 | { |
| 5054 | assert(isGeneralRegister(reg1)); |
| 5055 | assert(reg1 != reg2); |
| 5056 | |
| 5057 | bool immFits = true; |
| 5058 | |
| 5059 | switch (ins) |
| 5060 | { |
| 5061 | case INS_add: |
| 5062 | case INS_adds: |
| 5063 | case INS_sub: |
| 5064 | case INS_subs: |
| 5065 | immFits = emitter::emitIns_valid_imm_for_add(imm, attr); |
| 5066 | break; |
| 5067 | |
| 5068 | case INS_ands: |
| 5069 | case INS_and: |
| 5070 | case INS_eor: |
| 5071 | case INS_orr: |
| 5072 | immFits = emitter::emitIns_valid_imm_for_alu(imm, attr); |
| 5073 | break; |
| 5074 | |
| 5075 | default: |
| 5076 | assert(!"Unsupported instruction in emitIns_R_R_Imm" ); |
| 5077 | } |
| 5078 | |
| 5079 | if (immFits) |
| 5080 | { |
| 5081 | emitIns_R_R_I(ins, attr, reg1, reg2, imm); |
| 5082 | } |
| 5083 | else |
| 5084 | { |
| 5085 | // Load 'imm' into the reg1 register |
| 5086 | // then issue: 'ins' reg1, reg2, reg1 |
| 5087 | // |
| 5088 | codeGen->instGen_Set_Reg_To_Imm(attr, reg1, imm); |
| 5089 | emitIns_R_R_R(ins, attr, reg1, reg2, reg1); |
| 5090 | } |
| 5091 | } |
| 5092 | |
| 5093 | /***************************************************************************** |
| 5094 | * |
| 5095 | * Add an instruction referencing three registers. |
| 5096 | */ |
| 5097 | |
| 5098 | void emitter::emitIns_R_R_R( |
| 5099 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insOpts opt) /* = INS_OPTS_NONE */ |
| 5100 | { |
| 5101 | emitAttr size = EA_SIZE(attr); |
| 5102 | emitAttr elemsize = EA_UNKNOWN; |
| 5103 | insFormat fmt = IF_NONE; |
| 5104 | |
| 5105 | /* Figure out the encoding format of the instruction */ |
| 5106 | switch (ins) |
| 5107 | { |
| 5108 | case INS_lsl: |
| 5109 | case INS_lsr: |
| 5110 | case INS_asr: |
| 5111 | case INS_ror: |
| 5112 | case INS_adc: |
| 5113 | case INS_adcs: |
| 5114 | case INS_sbc: |
| 5115 | case INS_sbcs: |
| 5116 | case INS_udiv: |
| 5117 | case INS_sdiv: |
| 5118 | case INS_mneg: |
| 5119 | case INS_smull: |
| 5120 | case INS_smnegl: |
| 5121 | case INS_smulh: |
| 5122 | case INS_umull: |
| 5123 | case INS_umnegl: |
| 5124 | case INS_umulh: |
| 5125 | case INS_lslv: |
| 5126 | case INS_lsrv: |
| 5127 | case INS_asrv: |
| 5128 | case INS_rorv: |
| 5129 | assert(insOptsNone(opt)); |
| 5130 | assert(isValidGeneralDatasize(size)); |
| 5131 | assert(isGeneralRegister(reg1)); |
| 5132 | assert(isGeneralRegister(reg2)); |
| 5133 | assert(isGeneralRegister(reg3)); |
| 5134 | fmt = IF_DR_3A; |
| 5135 | break; |
| 5136 | |
| 5137 | case INS_mul: |
| 5138 | if (insOptsNone(opt)) |
| 5139 | { |
| 5140 | // general register |
| 5141 | assert(isValidGeneralDatasize(size)); |
| 5142 | assert(isGeneralRegister(reg1)); |
| 5143 | assert(isGeneralRegister(reg2)); |
| 5144 | assert(isGeneralRegister(reg3)); |
| 5145 | fmt = IF_DR_3A; |
| 5146 | break; |
| 5147 | } |
| 5148 | __fallthrough; |
| 5149 | |
| 5150 | case INS_mla: |
| 5151 | case INS_mls: |
| 5152 | case INS_pmul: |
| 5153 | assert(insOptsAnyArrangement(opt)); |
| 5154 | assert(isVectorRegister(reg1)); |
| 5155 | assert(isVectorRegister(reg2)); |
| 5156 | assert(isVectorRegister(reg3)); |
| 5157 | assert(isValidVectorDatasize(size)); |
| 5158 | assert(isValidArrangement(size, opt)); |
| 5159 | elemsize = optGetElemsize(opt); |
| 5160 | if (ins == INS_pmul) |
| 5161 | { |
| 5162 | assert(elemsize == EA_1BYTE); // only supports 8B or 16B |
| 5163 | } |
| 5164 | else // INS_mul, INS_mla, INS_mls |
| 5165 | { |
| 5166 | assert(elemsize != EA_8BYTE); // can't use 2D or 1D |
| 5167 | } |
| 5168 | fmt = IF_DV_3A; |
| 5169 | break; |
| 5170 | |
| 5171 | case INS_add: |
| 5172 | case INS_sub: |
| 5173 | if (isVectorRegister(reg1)) |
| 5174 | { |
| 5175 | assert(isVectorRegister(reg2)); |
| 5176 | assert(isVectorRegister(reg3)); |
| 5177 | |
| 5178 | if (insOptsAnyArrangement(opt)) |
| 5179 | { |
| 5180 | // Vector operation |
| 5181 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 5182 | assert(isValidVectorDatasize(size)); |
| 5183 | assert(isValidArrangement(size, opt)); |
| 5184 | fmt = IF_DV_3A; |
| 5185 | } |
| 5186 | else |
| 5187 | { |
| 5188 | // Scalar operation |
| 5189 | assert(insOptsNone(opt)); |
| 5190 | assert(size == EA_8BYTE); |
| 5191 | fmt = IF_DV_3E; |
| 5192 | } |
| 5193 | break; |
| 5194 | } |
| 5195 | __fallthrough; |
| 5196 | |
| 5197 | case INS_adds: |
| 5198 | case INS_subs: |
| 5199 | emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0, INS_OPTS_NONE); |
| 5200 | return; |
| 5201 | |
| 5202 | case INS_cmeq: |
| 5203 | case INS_cmge: |
| 5204 | case INS_cmgt: |
| 5205 | case INS_cmhi: |
| 5206 | case INS_cmhs: |
| 5207 | case INS_ctst: |
| 5208 | assert(isVectorRegister(reg1)); |
| 5209 | assert(isVectorRegister(reg2)); |
| 5210 | assert(isVectorRegister(reg3)); |
| 5211 | |
| 5212 | if (isValidVectorDatasize(size)) |
| 5213 | { |
| 5214 | // Vector operation |
| 5215 | assert(insOptsAnyArrangement(opt)); |
| 5216 | assert(isValidArrangement(size, opt)); |
| 5217 | elemsize = optGetElemsize(opt); |
| 5218 | fmt = IF_DV_3A; |
| 5219 | } |
| 5220 | else |
| 5221 | { |
| 5222 | NYI("Untested" ); |
| 5223 | // Scalar operation |
| 5224 | assert(size == EA_8BYTE); // Only Double supported |
| 5225 | fmt = IF_DV_3E; |
| 5226 | } |
| 5227 | break; |
| 5228 | |
| 5229 | case INS_fcmeq: |
| 5230 | case INS_fcmge: |
| 5231 | case INS_fcmgt: |
| 5232 | assert(isVectorRegister(reg1)); |
| 5233 | assert(isVectorRegister(reg2)); |
| 5234 | assert(isVectorRegister(reg3)); |
| 5235 | |
| 5236 | if (isValidVectorDatasize(size)) |
| 5237 | { |
| 5238 | // Vector operation |
| 5239 | assert(insOptsAnyArrangement(opt)); |
| 5240 | assert(isValidArrangement(size, opt)); |
| 5241 | elemsize = optGetElemsize(opt); |
| 5242 | assert((elemsize == EA_8BYTE) || (elemsize == EA_4BYTE)); // Only Double/Float supported |
| 5243 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 5244 | fmt = IF_DV_3B; |
| 5245 | } |
| 5246 | else |
| 5247 | { |
| 5248 | NYI("Untested" ); |
| 5249 | // Scalar operation |
| 5250 | assert((size == EA_8BYTE) || (size == EA_4BYTE)); // Only Double/Float supported |
| 5251 | fmt = IF_DV_3D; |
| 5252 | } |
| 5253 | break; |
| 5254 | |
| 5255 | case INS_saba: |
| 5256 | case INS_sabd: |
| 5257 | case INS_smax: |
| 5258 | case INS_smin: |
| 5259 | case INS_uaba: |
| 5260 | case INS_uabd: |
| 5261 | case INS_umax: |
| 5262 | case INS_umin: |
| 5263 | assert(isVectorRegister(reg1)); |
| 5264 | assert(isVectorRegister(reg2)); |
| 5265 | assert(isVectorRegister(reg3)); |
| 5266 | assert(insOptsAnyArrangement(opt)); |
| 5267 | |
| 5268 | // Vector operation |
| 5269 | assert(isValidVectorDatasize(size)); |
| 5270 | assert(isValidArrangement(size, opt)); |
| 5271 | elemsize = optGetElemsize(opt); |
| 5272 | assert(elemsize != EA_8BYTE); // can't use 2D or 1D |
| 5273 | |
| 5274 | fmt = IF_DV_3A; |
| 5275 | break; |
| 5276 | |
| 5277 | case INS_mov: |
| 5278 | assert(isVectorRegister(reg1)); |
| 5279 | assert(isVectorRegister(reg2)); |
| 5280 | assert(reg2 == reg3); |
| 5281 | assert(isValidVectorDatasize(size)); |
| 5282 | // INS_mov is an alias for INS_orr (vector register) |
| 5283 | if (opt == INS_OPTS_NONE) |
| 5284 | { |
| 5285 | elemsize = EA_1BYTE; |
| 5286 | opt = optMakeArrangement(size, elemsize); |
| 5287 | } |
| 5288 | assert(isValidArrangement(size, opt)); |
| 5289 | fmt = IF_DV_3C; |
| 5290 | break; |
| 5291 | |
| 5292 | case INS_and: |
| 5293 | case INS_bic: |
| 5294 | case INS_eor: |
| 5295 | case INS_orr: |
| 5296 | case INS_orn: |
| 5297 | if (isVectorRegister(reg1)) |
| 5298 | { |
| 5299 | assert(isValidVectorDatasize(size)); |
| 5300 | assert(isVectorRegister(reg2)); |
| 5301 | assert(isVectorRegister(reg3)); |
| 5302 | if (opt == INS_OPTS_NONE) |
| 5303 | { |
| 5304 | elemsize = EA_1BYTE; |
| 5305 | opt = optMakeArrangement(size, elemsize); |
| 5306 | } |
| 5307 | assert(isValidArrangement(size, opt)); |
| 5308 | fmt = IF_DV_3C; |
| 5309 | break; |
| 5310 | } |
| 5311 | __fallthrough; |
| 5312 | |
| 5313 | case INS_ands: |
| 5314 | case INS_bics: |
| 5315 | case INS_eon: |
| 5316 | emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0, INS_OPTS_NONE); |
| 5317 | return; |
| 5318 | |
| 5319 | case INS_bsl: |
| 5320 | case INS_bit: |
| 5321 | case INS_bif: |
| 5322 | assert(isValidVectorDatasize(size)); |
| 5323 | assert(isVectorRegister(reg1)); |
| 5324 | assert(isVectorRegister(reg2)); |
| 5325 | assert(isVectorRegister(reg3)); |
| 5326 | if (opt == INS_OPTS_NONE) |
| 5327 | { |
| 5328 | elemsize = EA_1BYTE; |
| 5329 | opt = optMakeArrangement(size, elemsize); |
| 5330 | } |
| 5331 | assert(isValidArrangement(size, opt)); |
| 5332 | fmt = IF_DV_3C; |
| 5333 | break; |
| 5334 | |
| 5335 | case INS_fadd: |
| 5336 | case INS_fsub: |
| 5337 | case INS_fdiv: |
| 5338 | case INS_fmax: |
| 5339 | case INS_fmin: |
| 5340 | case INS_fabd: |
| 5341 | case INS_fmul: |
| 5342 | case INS_fmulx: |
| 5343 | assert(isVectorRegister(reg1)); |
| 5344 | assert(isVectorRegister(reg2)); |
| 5345 | assert(isVectorRegister(reg3)); |
| 5346 | if (insOptsAnyArrangement(opt)) |
| 5347 | { |
| 5348 | // Vector operation |
| 5349 | assert(isValidVectorDatasize(size)); |
| 5350 | assert(isValidArrangement(size, opt)); |
| 5351 | elemsize = optGetElemsize(opt); |
| 5352 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 5353 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 5354 | fmt = IF_DV_3B; |
| 5355 | } |
| 5356 | else |
| 5357 | { |
| 5358 | // Scalar operation |
| 5359 | assert(insOptsNone(opt)); |
| 5360 | assert(isValidScalarDatasize(size)); |
| 5361 | fmt = IF_DV_3D; |
| 5362 | } |
| 5363 | break; |
| 5364 | |
| 5365 | case INS_fnmul: |
| 5366 | // Scalar operation |
| 5367 | assert(insOptsNone(opt)); |
| 5368 | assert(isVectorRegister(reg1)); |
| 5369 | assert(isVectorRegister(reg2)); |
| 5370 | assert(isVectorRegister(reg3)); |
| 5371 | assert(isValidScalarDatasize(size)); |
| 5372 | fmt = IF_DV_3D; |
| 5373 | break; |
| 5374 | |
| 5375 | case INS_faddp: |
| 5376 | case INS_fmla: |
| 5377 | case INS_fmls: |
| 5378 | assert(isVectorRegister(reg1)); |
| 5379 | assert(isVectorRegister(reg2)); |
| 5380 | assert(isVectorRegister(reg3)); |
| 5381 | assert(insOptsAnyArrangement(opt)); // no scalar encoding, use 4-operand 'fmadd' or 'fmsub' |
| 5382 | |
| 5383 | // Vector operation |
| 5384 | assert(isValidVectorDatasize(size)); |
| 5385 | assert(isValidArrangement(size, opt)); |
| 5386 | elemsize = optGetElemsize(opt); |
| 5387 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 5388 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 5389 | fmt = IF_DV_3B; |
| 5390 | break; |
| 5391 | |
| 5392 | case INS_ldr: |
| 5393 | case INS_ldrb: |
| 5394 | case INS_ldrh: |
| 5395 | case INS_ldrsb: |
| 5396 | case INS_ldrsh: |
| 5397 | case INS_ldrsw: |
| 5398 | case INS_str: |
| 5399 | case INS_strb: |
| 5400 | case INS_strh: |
| 5401 | emitIns_R_R_R_Ext(ins, attr, reg1, reg2, reg3, opt); |
| 5402 | return; |
| 5403 | |
| 5404 | case INS_ldp: |
| 5405 | case INS_ldpsw: |
| 5406 | case INS_ldnp: |
| 5407 | case INS_stp: |
| 5408 | case INS_stnp: |
| 5409 | emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0); |
| 5410 | return; |
| 5411 | |
| 5412 | case INS_stxr: |
| 5413 | case INS_stxrb: |
| 5414 | case INS_stxrh: |
| 5415 | case INS_stlxr: |
| 5416 | case INS_stlxrb: |
| 5417 | case INS_stlxrh: |
| 5418 | assert(isGeneralRegisterOrZR(reg1)); |
| 5419 | assert(isGeneralRegisterOrZR(reg2)); |
| 5420 | assert(isGeneralRegisterOrSP(reg3)); |
| 5421 | fmt = IF_LS_3D; |
| 5422 | break; |
| 5423 | |
| 5424 | case INS_casb: |
| 5425 | case INS_casab: |
| 5426 | case INS_casalb: |
| 5427 | case INS_caslb: |
| 5428 | case INS_cash: |
| 5429 | case INS_casah: |
| 5430 | case INS_casalh: |
| 5431 | case INS_caslh: |
| 5432 | case INS_cas: |
| 5433 | case INS_casa: |
| 5434 | case INS_casal: |
| 5435 | case INS_casl: |
| 5436 | case INS_ldaddb: |
| 5437 | case INS_ldaddab: |
| 5438 | case INS_ldaddalb: |
| 5439 | case INS_ldaddlb: |
| 5440 | case INS_ldaddh: |
| 5441 | case INS_ldaddah: |
| 5442 | case INS_ldaddalh: |
| 5443 | case INS_ldaddlh: |
| 5444 | case INS_ldadd: |
| 5445 | case INS_ldadda: |
| 5446 | case INS_ldaddal: |
| 5447 | case INS_ldaddl: |
| 5448 | case INS_swpb: |
| 5449 | case INS_swpab: |
| 5450 | case INS_swpalb: |
| 5451 | case INS_swplb: |
| 5452 | case INS_swph: |
| 5453 | case INS_swpah: |
| 5454 | case INS_swpalh: |
| 5455 | case INS_swplh: |
| 5456 | case INS_swp: |
| 5457 | case INS_swpa: |
| 5458 | case INS_swpal: |
| 5459 | case INS_swpl: |
| 5460 | assert(isGeneralRegisterOrZR(reg1)); |
| 5461 | assert(isGeneralRegisterOrZR(reg2)); |
| 5462 | assert(isGeneralRegisterOrSP(reg3)); |
| 5463 | fmt = IF_LS_3E; |
| 5464 | break; |
| 5465 | |
| 5466 | case INS_sha256h: |
| 5467 | case INS_sha256h2: |
| 5468 | case INS_sha256su1: |
| 5469 | case INS_sha1su0: |
| 5470 | case INS_sha1c: |
| 5471 | case INS_sha1p: |
| 5472 | case INS_sha1m: |
| 5473 | assert(isValidVectorDatasize(size)); |
| 5474 | assert(isVectorRegister(reg1)); |
| 5475 | assert(isVectorRegister(reg2)); |
| 5476 | assert(isVectorRegister(reg3)); |
| 5477 | if (opt == INS_OPTS_NONE) |
| 5478 | { |
| 5479 | elemsize = EA_4BYTE; |
| 5480 | opt = optMakeArrangement(size, elemsize); |
| 5481 | } |
| 5482 | assert(isValidArrangement(size, opt)); |
| 5483 | fmt = IF_DV_3F; |
| 5484 | break; |
| 5485 | |
| 5486 | default: |
| 5487 | unreached(); |
| 5488 | break; |
| 5489 | |
| 5490 | } // end switch (ins) |
| 5491 | |
| 5492 | assert(fmt != IF_NONE); |
| 5493 | |
| 5494 | instrDesc* id = emitNewInstr(attr); |
| 5495 | |
| 5496 | id->idIns(ins); |
| 5497 | id->idInsFmt(fmt); |
| 5498 | id->idInsOpt(opt); |
| 5499 | |
| 5500 | id->idReg1(reg1); |
| 5501 | id->idReg2(reg2); |
| 5502 | id->idReg3(reg3); |
| 5503 | |
| 5504 | dispIns(id); |
| 5505 | appendToCurIG(id); |
| 5506 | } |
| 5507 | |
| 5508 | /***************************************************************************** |
| 5509 | * |
| 5510 | * Add an instruction referencing three registers and a constant. |
| 5511 | */ |
| 5512 | |
| 5513 | void emitter::emitIns_R_R_R_I(instruction ins, |
| 5514 | emitAttr attr, |
| 5515 | regNumber reg1, |
| 5516 | regNumber reg2, |
| 5517 | regNumber reg3, |
| 5518 | ssize_t imm, |
| 5519 | insOpts opt /* = INS_OPTS_NONE */, |
| 5520 | emitAttr attrReg2 /* = EA_UNKNOWN */) |
| 5521 | { |
| 5522 | emitAttr size = EA_SIZE(attr); |
| 5523 | emitAttr elemsize = EA_UNKNOWN; |
| 5524 | insFormat fmt = IF_NONE; |
| 5525 | bool isLdSt = false; |
| 5526 | bool isSIMD = false; |
| 5527 | bool isAddSub = false; |
| 5528 | bool setFlags = false; |
| 5529 | unsigned scale = 0; |
| 5530 | |
| 5531 | /* Figure out the encoding format of the instruction */ |
| 5532 | switch (ins) |
| 5533 | { |
| 5534 | case INS_extr: |
| 5535 | assert(insOptsNone(opt)); |
| 5536 | assert(isValidGeneralDatasize(size)); |
| 5537 | assert(isGeneralRegister(reg1)); |
| 5538 | assert(isGeneralRegister(reg2)); |
| 5539 | assert(isGeneralRegister(reg3)); |
| 5540 | assert(isValidImmShift(imm, size)); |
| 5541 | fmt = IF_DR_3E; |
| 5542 | break; |
| 5543 | |
| 5544 | case INS_and: |
| 5545 | case INS_ands: |
| 5546 | case INS_eor: |
| 5547 | case INS_orr: |
| 5548 | case INS_bic: |
| 5549 | case INS_bics: |
| 5550 | case INS_eon: |
| 5551 | case INS_orn: |
| 5552 | assert(isValidGeneralDatasize(size)); |
| 5553 | assert(isGeneralRegister(reg1)); |
| 5554 | assert(isGeneralRegister(reg2)); |
| 5555 | assert(isGeneralRegister(reg3)); |
| 5556 | assert(isValidImmShift(imm, size)); |
| 5557 | if (imm == 0) |
| 5558 | { |
| 5559 | assert(insOptsNone(opt)); // a zero imm, means no shift kind |
| 5560 | fmt = IF_DR_3A; |
| 5561 | } |
| 5562 | else |
| 5563 | { |
| 5564 | assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind |
| 5565 | fmt = IF_DR_3B; |
| 5566 | } |
| 5567 | break; |
| 5568 | |
| 5569 | case INS_fmul: // by element, imm[0..3] selects the element of reg3 |
| 5570 | case INS_fmla: |
| 5571 | case INS_fmls: |
| 5572 | case INS_fmulx: |
| 5573 | assert(isVectorRegister(reg1)); |
| 5574 | assert(isVectorRegister(reg2)); |
| 5575 | assert(isVectorRegister(reg3)); |
| 5576 | if (insOptsAnyArrangement(opt)) |
| 5577 | { |
| 5578 | // Vector operation |
| 5579 | assert(isValidVectorDatasize(size)); |
| 5580 | assert(isValidArrangement(size, opt)); |
| 5581 | elemsize = optGetElemsize(opt); |
| 5582 | assert(isValidVectorElemsizeFloat(elemsize)); |
| 5583 | assert(isValidVectorIndex(size, elemsize, imm)); |
| 5584 | assert(opt != INS_OPTS_1D); // Reserved encoding |
| 5585 | fmt = IF_DV_3BI; |
| 5586 | } |
| 5587 | else |
| 5588 | { |
| 5589 | // Scalar operation |
| 5590 | assert(insOptsNone(opt)); |
| 5591 | assert(isValidScalarDatasize(size)); |
| 5592 | elemsize = size; |
| 5593 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 5594 | fmt = IF_DV_3DI; |
| 5595 | } |
| 5596 | break; |
| 5597 | |
| 5598 | case INS_mul: // by element, imm[0..7] selects the element of reg3 |
| 5599 | case INS_mla: |
| 5600 | case INS_mls: |
| 5601 | assert(isVectorRegister(reg1)); |
| 5602 | assert(isVectorRegister(reg2)); |
| 5603 | assert(isVectorRegister(reg3)); |
| 5604 | // Vector operation |
| 5605 | assert(insOptsAnyArrangement(opt)); |
| 5606 | assert(isValidVectorDatasize(size)); |
| 5607 | assert(isValidArrangement(size, opt)); |
| 5608 | elemsize = optGetElemsize(opt); |
| 5609 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 5610 | // Only has encodings for H or S elemsize |
| 5611 | assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); |
| 5612 | // Only has encodings for V0..V15 |
| 5613 | if ((elemsize == EA_2BYTE) && (reg3 >= REG_V16)) |
| 5614 | { |
| 5615 | noway_assert(!"Invalid reg3" ); |
| 5616 | } |
| 5617 | fmt = IF_DV_3AI; |
| 5618 | break; |
| 5619 | |
| 5620 | case INS_add: |
| 5621 | case INS_sub: |
| 5622 | setFlags = false; |
| 5623 | isAddSub = true; |
| 5624 | break; |
| 5625 | |
| 5626 | case INS_adds: |
| 5627 | case INS_subs: |
| 5628 | setFlags = true; |
| 5629 | isAddSub = true; |
| 5630 | break; |
| 5631 | |
| 5632 | case INS_ldpsw: |
| 5633 | scale = 2; |
| 5634 | isLdSt = true; |
| 5635 | break; |
| 5636 | |
| 5637 | case INS_ldnp: |
| 5638 | case INS_stnp: |
| 5639 | assert(insOptsNone(opt)); // Can't use Pre/Post index on these two instructions |
| 5640 | __fallthrough; |
| 5641 | |
| 5642 | case INS_ldp: |
| 5643 | case INS_stp: |
| 5644 | // Is the target a vector register? |
| 5645 | if (isVectorRegister(reg1)) |
| 5646 | { |
| 5647 | scale = NaturalScale_helper(size); |
| 5648 | isSIMD = true; |
| 5649 | } |
| 5650 | else |
| 5651 | { |
| 5652 | scale = (size == EA_8BYTE) ? 3 : 2; |
| 5653 | } |
| 5654 | isLdSt = true; |
| 5655 | break; |
| 5656 | |
| 5657 | default: |
| 5658 | unreached(); |
| 5659 | break; |
| 5660 | |
| 5661 | } // end switch (ins) |
| 5662 | |
| 5663 | if (isLdSt) |
| 5664 | { |
| 5665 | assert(!isAddSub); |
| 5666 | assert(isGeneralRegisterOrSP(reg3)); |
| 5667 | assert(insOptsNone(opt) || insOptsIndexed(opt)); |
| 5668 | |
| 5669 | if (isSIMD) |
| 5670 | { |
| 5671 | assert(isValidVectorLSPDatasize(size)); |
| 5672 | assert(isVectorRegister(reg1)); |
| 5673 | assert(isVectorRegister(reg2)); |
| 5674 | assert((scale >= 2) && (scale <= 4)); |
| 5675 | } |
| 5676 | else |
| 5677 | { |
| 5678 | assert(isValidGeneralDatasize(size)); |
| 5679 | assert(isGeneralRegisterOrZR(reg1)); |
| 5680 | assert(isGeneralRegisterOrZR(reg2)); |
| 5681 | assert((scale == 2) || (scale == 3)); |
| 5682 | } |
| 5683 | |
| 5684 | // Load/Store Pair reserved encodings: |
| 5685 | if (emitInsIsLoad(ins)) |
| 5686 | { |
| 5687 | assert(reg1 != reg2); |
| 5688 | } |
| 5689 | if (insOptsIndexed(opt)) |
| 5690 | { |
| 5691 | assert(reg1 != reg3); |
| 5692 | assert(reg2 != reg3); |
| 5693 | } |
| 5694 | |
| 5695 | reg3 = encodingSPtoZR(reg3); |
| 5696 | |
| 5697 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
| 5698 | if (imm == 0) |
| 5699 | { |
| 5700 | assert(insOptsNone(opt)); // PRE/POST Index doesn't make sense with an immediate of zero |
| 5701 | |
| 5702 | fmt = IF_LS_3B; |
| 5703 | } |
| 5704 | else |
| 5705 | { |
| 5706 | if ((imm & mask) == 0) |
| 5707 | { |
| 5708 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
| 5709 | |
| 5710 | if ((imm >= -64) && (imm <= 63)) |
| 5711 | { |
| 5712 | fmt = IF_LS_3C; |
| 5713 | } |
| 5714 | } |
| 5715 | #ifdef DEBUG |
| 5716 | if (fmt != IF_LS_3C) |
| 5717 | { |
| 5718 | assert(!"Instruction cannot be encoded: IF_LS_3C" ); |
| 5719 | } |
| 5720 | #endif |
| 5721 | } |
| 5722 | } |
| 5723 | else if (isAddSub) |
| 5724 | { |
| 5725 | bool reg2IsSP = (reg2 == REG_SP); |
| 5726 | assert(!isLdSt); |
| 5727 | assert(isValidGeneralDatasize(size)); |
| 5728 | assert(isGeneralRegister(reg3)); |
| 5729 | |
| 5730 | if (setFlags || insOptsAluShift(opt)) // Can't encode SP in reg1 with setFlags or AluShift option |
| 5731 | { |
| 5732 | assert(isGeneralRegisterOrZR(reg1)); |
| 5733 | } |
| 5734 | else |
| 5735 | { |
| 5736 | assert(isGeneralRegisterOrSP(reg1)); |
| 5737 | reg1 = encodingSPtoZR(reg1); |
| 5738 | } |
| 5739 | |
| 5740 | if (insOptsAluShift(opt)) // Can't encode SP in reg2 with AluShift option |
| 5741 | { |
| 5742 | assert(isGeneralRegister(reg2)); |
| 5743 | } |
| 5744 | else |
| 5745 | { |
| 5746 | assert(isGeneralRegisterOrSP(reg2)); |
| 5747 | reg2 = encodingSPtoZR(reg2); |
| 5748 | } |
| 5749 | |
| 5750 | if (insOptsAnyExtend(opt)) |
| 5751 | { |
| 5752 | assert((imm >= 0) && (imm <= 4)); |
| 5753 | |
| 5754 | fmt = IF_DR_3C; |
| 5755 | } |
| 5756 | else if (insOptsAluShift(opt)) |
| 5757 | { |
| 5758 | // imm should be non-zero and in [1..63] |
| 5759 | assert(isValidImmShift(imm, size) && (imm != 0)); |
| 5760 | fmt = IF_DR_3B; |
| 5761 | } |
| 5762 | else if (imm == 0) |
| 5763 | { |
| 5764 | assert(insOptsNone(opt)); |
| 5765 | |
| 5766 | if (reg2IsSP) |
| 5767 | { |
| 5768 | // To encode the SP register as reg2 we must use the IF_DR_3C encoding |
| 5769 | // and also specify a LSL of zero (imm == 0) |
| 5770 | opt = INS_OPTS_LSL; |
| 5771 | fmt = IF_DR_3C; |
| 5772 | } |
| 5773 | else |
| 5774 | { |
| 5775 | fmt = IF_DR_3A; |
| 5776 | } |
| 5777 | } |
| 5778 | else |
| 5779 | { |
| 5780 | assert(!"Instruction cannot be encoded: Add/Sub IF_DR_3A" ); |
| 5781 | } |
| 5782 | } |
| 5783 | assert(fmt != IF_NONE); |
| 5784 | |
| 5785 | instrDesc* id = emitNewInstrCns(attr, imm); |
| 5786 | |
| 5787 | id->idIns(ins); |
| 5788 | id->idInsFmt(fmt); |
| 5789 | id->idInsOpt(opt); |
| 5790 | |
| 5791 | id->idReg1(reg1); |
| 5792 | id->idReg2(reg2); |
| 5793 | id->idReg3(reg3); |
| 5794 | |
| 5795 | // Record the attribute for the second register in the pair |
| 5796 | id->idGCrefReg2(GCT_NONE); |
| 5797 | if (attrReg2 != EA_UNKNOWN) |
| 5798 | { |
| 5799 | // Record the attribute for the second register in the pair |
| 5800 | assert((fmt == IF_LS_3B) || (fmt == IF_LS_3C)); |
| 5801 | if (EA_IS_GCREF(attrReg2)) |
| 5802 | { |
| 5803 | id->idGCrefReg2(GCT_GCREF); |
| 5804 | } |
| 5805 | else if (EA_IS_BYREF(attrReg2)) |
| 5806 | { |
| 5807 | id->idGCrefReg2(GCT_BYREF); |
| 5808 | } |
| 5809 | } |
| 5810 | |
| 5811 | dispIns(id); |
| 5812 | appendToCurIG(id); |
| 5813 | } |
| 5814 | |
| 5815 | /***************************************************************************** |
| 5816 | * |
| 5817 | * Add an instruction referencing three registers, with an extend option |
| 5818 | */ |
| 5819 | |
| 5820 | void emitter::emitIns_R_R_R_Ext(instruction ins, |
| 5821 | emitAttr attr, |
| 5822 | regNumber reg1, |
| 5823 | regNumber reg2, |
| 5824 | regNumber reg3, |
| 5825 | insOpts opt, /* = INS_OPTS_NONE */ |
| 5826 | int shiftAmount) /* = -1 -- unset */ |
| 5827 | { |
| 5828 | emitAttr size = EA_SIZE(attr); |
| 5829 | insFormat fmt = IF_NONE; |
| 5830 | bool isSIMD = false; |
| 5831 | int scale = -1; |
| 5832 | |
| 5833 | /* Figure out the encoding format of the instruction */ |
| 5834 | switch (ins) |
| 5835 | { |
| 5836 | case INS_ldrb: |
| 5837 | case INS_ldrsb: |
| 5838 | case INS_strb: |
| 5839 | scale = 0; |
| 5840 | break; |
| 5841 | |
| 5842 | case INS_ldrh: |
| 5843 | case INS_ldrsh: |
| 5844 | case INS_strh: |
| 5845 | scale = 1; |
| 5846 | break; |
| 5847 | |
| 5848 | case INS_ldrsw: |
| 5849 | scale = 2; |
| 5850 | break; |
| 5851 | |
| 5852 | case INS_ldr: |
| 5853 | case INS_str: |
| 5854 | // Is the target a vector register? |
| 5855 | if (isVectorRegister(reg1)) |
| 5856 | { |
| 5857 | assert(isValidVectorLSDatasize(size)); |
| 5858 | scale = NaturalScale_helper(size); |
| 5859 | isSIMD = true; |
| 5860 | } |
| 5861 | else |
| 5862 | { |
| 5863 | assert(isValidGeneralDatasize(size)); |
| 5864 | scale = (size == EA_8BYTE) ? 3 : 2; |
| 5865 | } |
| 5866 | |
| 5867 | break; |
| 5868 | |
| 5869 | default: |
| 5870 | unreached(); |
| 5871 | break; |
| 5872 | |
| 5873 | } // end switch (ins) |
| 5874 | |
| 5875 | assert(scale != -1); |
| 5876 | assert(insOptsLSExtend(opt)); |
| 5877 | |
| 5878 | if (isSIMD) |
| 5879 | { |
| 5880 | assert(isValidVectorLSDatasize(size)); |
| 5881 | assert(isVectorRegister(reg1)); |
| 5882 | } |
| 5883 | else |
| 5884 | { |
| 5885 | assert(isValidGeneralLSDatasize(size)); |
| 5886 | assert(isGeneralRegisterOrZR(reg1)); |
| 5887 | } |
| 5888 | |
| 5889 | assert(isGeneralRegisterOrSP(reg2)); |
| 5890 | assert(isGeneralRegister(reg3)); |
| 5891 | |
| 5892 | // Load/Store reserved encodings: |
| 5893 | if (insOptsIndexed(opt)) |
| 5894 | { |
| 5895 | assert(reg1 != reg2); |
| 5896 | } |
| 5897 | |
| 5898 | if (shiftAmount == -1) |
| 5899 | { |
| 5900 | shiftAmount = insOptsLSL(opt) ? scale : 0; |
| 5901 | } |
| 5902 | assert((shiftAmount == scale) || (shiftAmount == 0)); |
| 5903 | |
| 5904 | reg2 = encodingSPtoZR(reg2); |
| 5905 | fmt = IF_LS_3A; |
| 5906 | |
| 5907 | instrDesc* id = emitNewInstr(attr); |
| 5908 | |
| 5909 | id->idIns(ins); |
| 5910 | id->idInsFmt(fmt); |
| 5911 | id->idInsOpt(opt); |
| 5912 | |
| 5913 | id->idReg1(reg1); |
| 5914 | id->idReg2(reg2); |
| 5915 | id->idReg3(reg3); |
| 5916 | id->idReg3Scaled(shiftAmount == scale); |
| 5917 | |
| 5918 | dispIns(id); |
| 5919 | appendToCurIG(id); |
| 5920 | } |
| 5921 | |
| 5922 | /***************************************************************************** |
| 5923 | * |
| 5924 | * Add an instruction referencing two registers and two constants. |
| 5925 | */ |
| 5926 | |
| 5927 | void emitter::emitIns_R_R_I_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int imm1, int imm2) |
| 5928 | { |
| 5929 | emitAttr size = EA_SIZE(attr); |
| 5930 | emitAttr elemsize = EA_UNKNOWN; |
| 5931 | insFormat fmt = IF_NONE; |
| 5932 | size_t immOut = 0; // composed from imm1 and imm2 and stored in the instrDesc |
| 5933 | |
| 5934 | /* Figure out the encoding format of the instruction */ |
| 5935 | switch (ins) |
| 5936 | { |
| 5937 | int lsb; |
| 5938 | int width; |
| 5939 | bitMaskImm bmi; |
| 5940 | |
| 5941 | case INS_bfm: |
| 5942 | case INS_sbfm: |
| 5943 | case INS_ubfm: |
| 5944 | assert(isGeneralRegister(reg1)); |
| 5945 | assert(isGeneralRegister(reg2)); |
| 5946 | assert(isValidImmShift(imm1, size)); |
| 5947 | assert(isValidImmShift(imm2, size)); |
| 5948 | bmi.immNRS = 0; |
| 5949 | bmi.immN = (size == EA_8BYTE); |
| 5950 | bmi.immR = imm1; |
| 5951 | bmi.immS = imm2; |
| 5952 | immOut = bmi.immNRS; |
| 5953 | fmt = IF_DI_2D; |
| 5954 | break; |
| 5955 | |
| 5956 | case INS_bfi: |
| 5957 | case INS_sbfiz: |
| 5958 | case INS_ubfiz: |
| 5959 | assert(isGeneralRegister(reg1)); |
| 5960 | assert(isGeneralRegister(reg2)); |
| 5961 | lsb = getBitWidth(size) - imm1; |
| 5962 | width = imm2 - 1; |
| 5963 | assert(isValidImmShift(lsb, size)); |
| 5964 | assert(isValidImmShift(width, size)); |
| 5965 | bmi.immNRS = 0; |
| 5966 | bmi.immN = (size == EA_8BYTE); |
| 5967 | bmi.immR = lsb; |
| 5968 | bmi.immS = width; |
| 5969 | immOut = bmi.immNRS; |
| 5970 | fmt = IF_DI_2D; |
| 5971 | break; |
| 5972 | |
| 5973 | case INS_bfxil: |
| 5974 | case INS_sbfx: |
| 5975 | case INS_ubfx: |
| 5976 | assert(isGeneralRegister(reg1)); |
| 5977 | assert(isGeneralRegister(reg2)); |
| 5978 | lsb = imm1; |
| 5979 | width = imm2 + imm1 - 1; |
| 5980 | assert(isValidImmShift(lsb, size)); |
| 5981 | assert(isValidImmShift(width, size)); |
| 5982 | bmi.immNRS = 0; |
| 5983 | bmi.immN = (size == EA_8BYTE); |
| 5984 | bmi.immR = imm1; |
| 5985 | bmi.immS = imm2 + imm1 - 1; |
| 5986 | immOut = bmi.immNRS; |
| 5987 | fmt = IF_DI_2D; |
| 5988 | break; |
| 5989 | |
| 5990 | case INS_mov: |
| 5991 | case INS_ins: |
| 5992 | assert(isVectorRegister(reg1)); |
| 5993 | assert(isVectorRegister(reg2)); |
| 5994 | elemsize = size; |
| 5995 | assert(isValidVectorElemsize(elemsize)); |
| 5996 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm1)); |
| 5997 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm2)); |
| 5998 | immOut = (imm1 << 4) + imm2; |
| 5999 | fmt = IF_DV_2F; |
| 6000 | break; |
| 6001 | |
| 6002 | default: |
| 6003 | unreached(); |
| 6004 | break; |
| 6005 | } |
| 6006 | assert(fmt != IF_NONE); |
| 6007 | |
| 6008 | instrDesc* id = emitNewInstrSC(attr, immOut); |
| 6009 | |
| 6010 | id->idIns(ins); |
| 6011 | id->idInsFmt(fmt); |
| 6012 | |
| 6013 | id->idReg1(reg1); |
| 6014 | id->idReg2(reg2); |
| 6015 | |
| 6016 | dispIns(id); |
| 6017 | appendToCurIG(id); |
| 6018 | } |
| 6019 | |
| 6020 | /***************************************************************************** |
| 6021 | * |
| 6022 | * Add an instruction referencing four registers. |
| 6023 | */ |
| 6024 | |
| 6025 | void emitter::emitIns_R_R_R_R( |
| 6026 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, regNumber reg4) |
| 6027 | { |
| 6028 | emitAttr size = EA_SIZE(attr); |
| 6029 | insFormat fmt = IF_NONE; |
| 6030 | |
| 6031 | /* Figure out the encoding format of the instruction */ |
| 6032 | switch (ins) |
| 6033 | { |
| 6034 | case INS_madd: |
| 6035 | case INS_msub: |
| 6036 | case INS_smaddl: |
| 6037 | case INS_smsubl: |
| 6038 | case INS_umaddl: |
| 6039 | case INS_umsubl: |
| 6040 | assert(isValidGeneralDatasize(size)); |
| 6041 | assert(isGeneralRegister(reg1)); |
| 6042 | assert(isGeneralRegister(reg2)); |
| 6043 | assert(isGeneralRegister(reg3)); |
| 6044 | assert(isGeneralRegister(reg4)); |
| 6045 | fmt = IF_DR_4A; |
| 6046 | break; |
| 6047 | |
| 6048 | case INS_fmadd: |
| 6049 | case INS_fmsub: |
| 6050 | case INS_fnmadd: |
| 6051 | case INS_fnmsub: |
| 6052 | // Scalar operation |
| 6053 | assert(isValidScalarDatasize(size)); |
| 6054 | assert(isVectorRegister(reg1)); |
| 6055 | assert(isVectorRegister(reg2)); |
| 6056 | assert(isVectorRegister(reg3)); |
| 6057 | assert(isVectorRegister(reg4)); |
| 6058 | fmt = IF_DV_4A; |
| 6059 | break; |
| 6060 | |
| 6061 | case INS_invalid: |
| 6062 | fmt = IF_NONE; |
| 6063 | break; |
| 6064 | |
| 6065 | default: |
| 6066 | unreached(); |
| 6067 | break; |
| 6068 | } |
| 6069 | assert(fmt != IF_NONE); |
| 6070 | |
| 6071 | instrDesc* id = emitNewInstr(attr); |
| 6072 | |
| 6073 | id->idIns(ins); |
| 6074 | id->idInsFmt(fmt); |
| 6075 | |
| 6076 | id->idReg1(reg1); |
| 6077 | id->idReg2(reg2); |
| 6078 | id->idReg3(reg3); |
| 6079 | id->idReg4(reg4); |
| 6080 | |
| 6081 | dispIns(id); |
| 6082 | appendToCurIG(id); |
| 6083 | } |
| 6084 | |
| 6085 | /***************************************************************************** |
| 6086 | * |
| 6087 | * Add an instruction referencing a register and a condition code |
| 6088 | */ |
| 6089 | |
| 6090 | void emitter::emitIns_R_COND(instruction ins, emitAttr attr, regNumber reg, insCond cond) |
| 6091 | { |
| 6092 | emitAttr size = EA_SIZE(attr); |
| 6093 | insFormat fmt = IF_NONE; |
| 6094 | condFlagsImm cfi; |
| 6095 | cfi.immCFVal = 0; |
| 6096 | |
| 6097 | /* Figure out the encoding format of the instruction */ |
| 6098 | switch (ins) |
| 6099 | { |
| 6100 | case INS_cset: |
| 6101 | case INS_csetm: |
| 6102 | assert(isGeneralRegister(reg)); |
| 6103 | cfi.cond = cond; |
| 6104 | fmt = IF_DR_1D; |
| 6105 | break; |
| 6106 | |
| 6107 | default: |
| 6108 | unreached(); |
| 6109 | break; |
| 6110 | |
| 6111 | } // end switch (ins) |
| 6112 | |
| 6113 | assert(fmt != IF_NONE); |
| 6114 | assert(isValidImmCond(cfi.immCFVal)); |
| 6115 | |
| 6116 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
| 6117 | |
| 6118 | id->idIns(ins); |
| 6119 | id->idInsFmt(fmt); |
| 6120 | id->idInsOpt(INS_OPTS_NONE); |
| 6121 | |
| 6122 | id->idReg1(reg); |
| 6123 | |
| 6124 | dispIns(id); |
| 6125 | appendToCurIG(id); |
| 6126 | } |
| 6127 | |
| 6128 | /***************************************************************************** |
| 6129 | * |
| 6130 | * Add an instruction referencing two registers and a condition code |
| 6131 | */ |
| 6132 | |
| 6133 | void emitter::emitIns_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCond cond) |
| 6134 | { |
| 6135 | emitAttr size = EA_SIZE(attr); |
| 6136 | insFormat fmt = IF_NONE; |
| 6137 | condFlagsImm cfi; |
| 6138 | cfi.immCFVal = 0; |
| 6139 | |
| 6140 | /* Figure out the encoding format of the instruction */ |
| 6141 | switch (ins) |
| 6142 | { |
| 6143 | case INS_cinc: |
| 6144 | case INS_cinv: |
| 6145 | case INS_cneg: |
| 6146 | assert(isGeneralRegister(reg1)); |
| 6147 | assert(isGeneralRegister(reg2)); |
| 6148 | cfi.cond = cond; |
| 6149 | fmt = IF_DR_2D; |
| 6150 | break; |
| 6151 | default: |
| 6152 | unreached(); |
| 6153 | break; |
| 6154 | |
| 6155 | } // end switch (ins) |
| 6156 | |
| 6157 | assert(fmt != IF_NONE); |
| 6158 | assert(isValidImmCond(cfi.immCFVal)); |
| 6159 | |
| 6160 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
| 6161 | |
| 6162 | id->idIns(ins); |
| 6163 | id->idInsFmt(fmt); |
| 6164 | id->idInsOpt(INS_OPTS_NONE); |
| 6165 | |
| 6166 | id->idReg1(reg1); |
| 6167 | id->idReg2(reg2); |
| 6168 | |
| 6169 | dispIns(id); |
| 6170 | appendToCurIG(id); |
| 6171 | } |
| 6172 | |
| 6173 | /***************************************************************************** |
| 6174 | * |
| 6175 | * Add an instruction referencing two registers and a condition code |
| 6176 | */ |
| 6177 | |
| 6178 | void emitter::emitIns_R_R_R_COND( |
| 6179 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insCond cond) |
| 6180 | { |
| 6181 | emitAttr size = EA_SIZE(attr); |
| 6182 | insFormat fmt = IF_NONE; |
| 6183 | condFlagsImm cfi; |
| 6184 | cfi.immCFVal = 0; |
| 6185 | |
| 6186 | /* Figure out the encoding format of the instruction */ |
| 6187 | switch (ins) |
| 6188 | { |
| 6189 | case INS_csel: |
| 6190 | case INS_csinc: |
| 6191 | case INS_csinv: |
| 6192 | case INS_csneg: |
| 6193 | assert(isGeneralRegister(reg1)); |
| 6194 | assert(isGeneralRegister(reg2)); |
| 6195 | assert(isGeneralRegister(reg3)); |
| 6196 | cfi.cond = cond; |
| 6197 | fmt = IF_DR_3D; |
| 6198 | break; |
| 6199 | |
| 6200 | default: |
| 6201 | unreached(); |
| 6202 | break; |
| 6203 | |
| 6204 | } // end switch (ins) |
| 6205 | |
| 6206 | assert(fmt != IF_NONE); |
| 6207 | assert(isValidImmCond(cfi.immCFVal)); |
| 6208 | |
| 6209 | instrDesc* id = emitNewInstr(attr); |
| 6210 | |
| 6211 | id->idIns(ins); |
| 6212 | id->idInsFmt(fmt); |
| 6213 | id->idInsOpt(INS_OPTS_NONE); |
| 6214 | |
| 6215 | id->idReg1(reg1); |
| 6216 | id->idReg2(reg2); |
| 6217 | id->idReg3(reg3); |
| 6218 | id->idSmallCns(cfi.immCFVal); |
| 6219 | |
| 6220 | dispIns(id); |
| 6221 | appendToCurIG(id); |
| 6222 | } |
| 6223 | |
| 6224 | /***************************************************************************** |
| 6225 | * |
| 6226 | * Add an instruction referencing two registers the flags and a condition code |
| 6227 | */ |
| 6228 | |
| 6229 | void emitter::emitIns_R_R_FLAGS_COND( |
| 6230 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCflags flags, insCond cond) |
| 6231 | { |
| 6232 | emitAttr size = EA_SIZE(attr); |
| 6233 | insFormat fmt = IF_NONE; |
| 6234 | condFlagsImm cfi; |
| 6235 | cfi.immCFVal = 0; |
| 6236 | |
| 6237 | /* Figure out the encoding format of the instruction */ |
| 6238 | switch (ins) |
| 6239 | { |
| 6240 | case INS_ccmp: |
| 6241 | case INS_ccmn: |
| 6242 | assert(isGeneralRegister(reg1)); |
| 6243 | assert(isGeneralRegister(reg2)); |
| 6244 | cfi.flags = flags; |
| 6245 | cfi.cond = cond; |
| 6246 | fmt = IF_DR_2I; |
| 6247 | break; |
| 6248 | default: |
| 6249 | unreached(); |
| 6250 | break; |
| 6251 | } // end switch (ins) |
| 6252 | |
| 6253 | assert(fmt != IF_NONE); |
| 6254 | assert(isValidImmCondFlags(cfi.immCFVal)); |
| 6255 | |
| 6256 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
| 6257 | |
| 6258 | id->idIns(ins); |
| 6259 | id->idInsFmt(fmt); |
| 6260 | id->idInsOpt(INS_OPTS_NONE); |
| 6261 | |
| 6262 | id->idReg1(reg1); |
| 6263 | id->idReg2(reg2); |
| 6264 | |
| 6265 | dispIns(id); |
| 6266 | appendToCurIG(id); |
| 6267 | } |
| 6268 | |
| 6269 | /***************************************************************************** |
| 6270 | * |
| 6271 | * Add an instruction referencing a register, an immediate, the flags and a condition code |
| 6272 | */ |
| 6273 | |
| 6274 | void emitter::emitIns_R_I_FLAGS_COND( |
| 6275 | instruction ins, emitAttr attr, regNumber reg, int imm, insCflags flags, insCond cond) |
| 6276 | { |
| 6277 | emitAttr size = EA_SIZE(attr); |
| 6278 | insFormat fmt = IF_NONE; |
| 6279 | condFlagsImm cfi; |
| 6280 | cfi.immCFVal = 0; |
| 6281 | |
| 6282 | /* Figure out the encoding format of the instruction */ |
| 6283 | switch (ins) |
| 6284 | { |
| 6285 | case INS_ccmp: |
| 6286 | case INS_ccmn: |
| 6287 | assert(isGeneralRegister(reg)); |
| 6288 | if (imm < 0) |
| 6289 | { |
| 6290 | ins = insReverse(ins); |
| 6291 | imm = -imm; |
| 6292 | } |
| 6293 | if ((imm >= 0) && (imm <= 31)) |
| 6294 | { |
| 6295 | cfi.imm5 = imm; |
| 6296 | cfi.flags = flags; |
| 6297 | cfi.cond = cond; |
| 6298 | fmt = IF_DI_1F; |
| 6299 | } |
| 6300 | else |
| 6301 | { |
| 6302 | assert(!"Instruction cannot be encoded: ccmp/ccmn imm5" ); |
| 6303 | } |
| 6304 | break; |
| 6305 | default: |
| 6306 | unreached(); |
| 6307 | break; |
| 6308 | } // end switch (ins) |
| 6309 | |
| 6310 | assert(fmt != IF_NONE); |
| 6311 | assert(isValidImmCondFlagsImm5(cfi.immCFVal)); |
| 6312 | |
| 6313 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
| 6314 | |
| 6315 | id->idIns(ins); |
| 6316 | id->idInsFmt(fmt); |
| 6317 | id->idInsOpt(INS_OPTS_NONE); |
| 6318 | |
| 6319 | id->idReg1(reg); |
| 6320 | |
| 6321 | dispIns(id); |
| 6322 | appendToCurIG(id); |
| 6323 | } |
| 6324 | |
| 6325 | /***************************************************************************** |
| 6326 | * |
| 6327 | * Add a memory barrier instruction with a 'barrier' immediate |
| 6328 | */ |
| 6329 | |
| 6330 | void emitter::emitIns_BARR(instruction ins, insBarrier barrier) |
| 6331 | { |
| 6332 | insFormat fmt = IF_NONE; |
| 6333 | ssize_t imm = 0; |
| 6334 | |
| 6335 | /* Figure out the encoding format of the instruction */ |
| 6336 | switch (ins) |
| 6337 | { |
| 6338 | case INS_dsb: |
| 6339 | case INS_dmb: |
| 6340 | case INS_isb: |
| 6341 | |
| 6342 | fmt = IF_SI_0B; |
| 6343 | imm = (ssize_t)barrier; |
| 6344 | break; |
| 6345 | default: |
| 6346 | unreached(); |
| 6347 | break; |
| 6348 | } // end switch (ins) |
| 6349 | |
| 6350 | assert(fmt != IF_NONE); |
| 6351 | |
| 6352 | instrDesc* id = emitNewInstrSC(EA_8BYTE, imm); |
| 6353 | |
| 6354 | id->idIns(ins); |
| 6355 | id->idInsFmt(fmt); |
| 6356 | id->idInsOpt(INS_OPTS_NONE); |
| 6357 | |
| 6358 | dispIns(id); |
| 6359 | appendToCurIG(id); |
| 6360 | } |
| 6361 | |
| 6362 | /***************************************************************************** |
| 6363 | * |
| 6364 | * Add an instruction with a static data member operand. If 'size' is 0, the |
| 6365 | * instruction operates on the address of the static member instead of its |
| 6366 | * value (e.g. "push offset clsvar", rather than "push dword ptr [clsvar]"). |
| 6367 | */ |
| 6368 | |
| 6369 | void emitter::emitIns_C(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, int offs) |
| 6370 | { |
| 6371 | NYI("emitIns_C" ); |
| 6372 | } |
| 6373 | |
| 6374 | /***************************************************************************** |
| 6375 | * |
| 6376 | * Add an instruction referencing stack-based local variable. |
| 6377 | */ |
| 6378 | |
| 6379 | void emitter::emitIns_S(instruction ins, emitAttr attr, int varx, int offs) |
| 6380 | { |
| 6381 | NYI("emitIns_S" ); |
| 6382 | } |
| 6383 | |
| 6384 | /***************************************************************************** |
| 6385 | * |
| 6386 | * Add an instruction referencing a register and a stack-based local variable. |
| 6387 | */ |
| 6388 | void emitter::emitIns_R_S(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs) |
| 6389 | { |
| 6390 | emitAttr size = EA_SIZE(attr); |
| 6391 | insFormat fmt = IF_NONE; |
| 6392 | int disp = 0; |
| 6393 | unsigned scale = 0; |
| 6394 | |
| 6395 | assert(offs >= 0); |
| 6396 | |
| 6397 | // TODO-ARM64-CQ: use unscaled loads? |
| 6398 | /* Figure out the encoding format of the instruction */ |
| 6399 | switch (ins) |
| 6400 | { |
| 6401 | case INS_strb: |
| 6402 | case INS_ldrb: |
| 6403 | case INS_ldrsb: |
| 6404 | scale = 0; |
| 6405 | break; |
| 6406 | |
| 6407 | case INS_strh: |
| 6408 | case INS_ldrh: |
| 6409 | case INS_ldrsh: |
| 6410 | scale = 1; |
| 6411 | break; |
| 6412 | |
| 6413 | case INS_ldrsw: |
| 6414 | scale = 2; |
| 6415 | break; |
| 6416 | |
| 6417 | case INS_str: |
| 6418 | case INS_ldr: |
| 6419 | assert(isValidGeneralDatasize(size) || isValidVectorDatasize(size)); |
| 6420 | scale = genLog2(EA_SIZE_IN_BYTES(size)); |
| 6421 | break; |
| 6422 | |
| 6423 | case INS_lea: |
| 6424 | assert(size == EA_8BYTE); |
| 6425 | scale = 0; |
| 6426 | break; |
| 6427 | |
| 6428 | default: |
| 6429 | NYI("emitIns_R_S" ); // FP locals? |
| 6430 | return; |
| 6431 | |
| 6432 | } // end switch (ins) |
| 6433 | |
| 6434 | /* Figure out the variable's frame position */ |
| 6435 | ssize_t imm; |
| 6436 | int base; |
| 6437 | bool FPbased; |
| 6438 | |
| 6439 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
| 6440 | disp = base + offs; |
| 6441 | assert((scale >= 0) && (scale <= 4)); |
| 6442 | |
| 6443 | regNumber reg2 = FPbased ? REG_FPBASE : REG_SPBASE; |
| 6444 | reg2 = encodingSPtoZR(reg2); |
| 6445 | |
| 6446 | if (ins == INS_lea) |
| 6447 | { |
| 6448 | if (disp >= 0) |
| 6449 | { |
| 6450 | ins = INS_add; |
| 6451 | imm = disp; |
| 6452 | } |
| 6453 | else |
| 6454 | { |
| 6455 | ins = INS_sub; |
| 6456 | imm = -disp; |
| 6457 | } |
| 6458 | |
| 6459 | if (imm <= 0x0fff) |
| 6460 | { |
| 6461 | fmt = IF_DI_2A; // add reg1,reg2,#disp |
| 6462 | } |
| 6463 | else |
| 6464 | { |
| 6465 | regNumber rsvdReg = codeGen->rsGetRsvdReg(); |
| 6466 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, rsvdReg, imm); |
| 6467 | fmt = IF_DR_3A; // add reg1,reg2,rsvdReg |
| 6468 | } |
| 6469 | } |
| 6470 | else |
| 6471 | { |
| 6472 | bool useRegForImm = false; |
| 6473 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
| 6474 | |
| 6475 | imm = disp; |
| 6476 | if (imm == 0) |
| 6477 | { |
| 6478 | fmt = IF_LS_2A; |
| 6479 | } |
| 6480 | else if ((imm < 0) || ((imm & mask) != 0)) |
| 6481 | { |
| 6482 | if ((imm >= -256) && (imm <= 255)) |
| 6483 | { |
| 6484 | fmt = IF_LS_2C; |
| 6485 | } |
| 6486 | else |
| 6487 | { |
| 6488 | useRegForImm = true; |
| 6489 | } |
| 6490 | } |
| 6491 | else if (imm > 0) |
| 6492 | { |
| 6493 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
| 6494 | { |
| 6495 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
| 6496 | |
| 6497 | fmt = IF_LS_2B; |
| 6498 | } |
| 6499 | else |
| 6500 | { |
| 6501 | useRegForImm = true; |
| 6502 | } |
| 6503 | } |
| 6504 | |
| 6505 | if (useRegForImm) |
| 6506 | { |
| 6507 | regNumber rsvdReg = codeGen->rsGetRsvdReg(); |
| 6508 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, rsvdReg, imm); |
| 6509 | fmt = IF_LS_3A; |
| 6510 | } |
| 6511 | } |
| 6512 | |
| 6513 | assert(fmt != IF_NONE); |
| 6514 | |
| 6515 | instrDesc* id = emitNewInstrCns(attr, imm); |
| 6516 | |
| 6517 | id->idIns(ins); |
| 6518 | id->idInsFmt(fmt); |
| 6519 | id->idInsOpt(INS_OPTS_NONE); |
| 6520 | |
| 6521 | id->idReg1(reg1); |
| 6522 | id->idReg2(reg2); |
| 6523 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6524 | id->idSetIsLclVar(); |
| 6525 | |
| 6526 | #ifdef DEBUG |
| 6527 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6528 | #endif |
| 6529 | |
| 6530 | dispIns(id); |
| 6531 | appendToCurIG(id); |
| 6532 | } |
| 6533 | |
| 6534 | /***************************************************************************** |
| 6535 | * |
| 6536 | * Add an instruction referencing two register and consectutive stack-based local variable slots. |
| 6537 | */ |
| 6538 | void emitter::emitIns_R_R_S_S( |
| 6539 | instruction ins, emitAttr attr1, emitAttr attr2, regNumber reg1, regNumber reg2, int varx, int offs) |
| 6540 | { |
| 6541 | assert((ins == INS_ldp) || (ins == INS_ldnp)); |
| 6542 | assert(EA_8BYTE == EA_SIZE(attr1)); |
| 6543 | assert(EA_8BYTE == EA_SIZE(attr2)); |
| 6544 | assert(isGeneralRegisterOrZR(reg1)); |
| 6545 | assert(isGeneralRegisterOrZR(reg2)); |
| 6546 | assert(offs >= 0); |
| 6547 | |
| 6548 | insFormat fmt = IF_LS_3B; |
| 6549 | int disp = 0; |
| 6550 | const unsigned scale = 3; |
| 6551 | |
| 6552 | /* Figure out the variable's frame position */ |
| 6553 | int base; |
| 6554 | bool FPbased; |
| 6555 | |
| 6556 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
| 6557 | disp = base + offs; |
| 6558 | |
| 6559 | // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead? |
| 6560 | regNumber reg3 = FPbased ? REG_FPBASE : REG_SPBASE; |
| 6561 | reg3 = encodingSPtoZR(reg3); |
| 6562 | |
| 6563 | bool useRegForAdr = true; |
| 6564 | ssize_t imm = disp; |
| 6565 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
| 6566 | if (imm == 0) |
| 6567 | { |
| 6568 | useRegForAdr = false; |
| 6569 | } |
| 6570 | else |
| 6571 | { |
| 6572 | if ((imm & mask) == 0) |
| 6573 | { |
| 6574 | ssize_t immShift = imm >> scale; // The immediate is scaled by the size of the ld/st |
| 6575 | |
| 6576 | if ((immShift >= -64) && (immShift <= 63)) |
| 6577 | { |
| 6578 | fmt = IF_LS_3C; |
| 6579 | useRegForAdr = false; |
| 6580 | imm = immShift; |
| 6581 | } |
| 6582 | } |
| 6583 | } |
| 6584 | |
| 6585 | if (useRegForAdr) |
| 6586 | { |
| 6587 | regNumber rsvd = codeGen->rsGetRsvdReg(); |
| 6588 | emitIns_R_R_Imm(INS_add, EA_PTRSIZE, rsvd, reg3, imm); |
| 6589 | reg3 = rsvd; |
| 6590 | imm = 0; |
| 6591 | } |
| 6592 | |
| 6593 | assert(fmt != IF_NONE); |
| 6594 | |
| 6595 | instrDesc* id = emitNewInstrCns(attr1, imm); |
| 6596 | |
| 6597 | id->idIns(ins); |
| 6598 | id->idInsFmt(fmt); |
| 6599 | id->idInsOpt(INS_OPTS_NONE); |
| 6600 | |
| 6601 | // Record the attribute for the second register in the pair |
| 6602 | if (EA_IS_GCREF(attr2)) |
| 6603 | { |
| 6604 | id->idGCrefReg2(GCT_GCREF); |
| 6605 | } |
| 6606 | else if (EA_IS_BYREF(attr2)) |
| 6607 | { |
| 6608 | id->idGCrefReg2(GCT_BYREF); |
| 6609 | } |
| 6610 | else |
| 6611 | { |
| 6612 | id->idGCrefReg2(GCT_NONE); |
| 6613 | } |
| 6614 | |
| 6615 | id->idReg1(reg1); |
| 6616 | id->idReg2(reg2); |
| 6617 | id->idReg3(reg3); |
| 6618 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6619 | id->idSetIsLclVar(); |
| 6620 | |
| 6621 | #ifdef DEBUG |
| 6622 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6623 | #endif |
| 6624 | |
| 6625 | dispIns(id); |
| 6626 | appendToCurIG(id); |
| 6627 | } |
| 6628 | |
| 6629 | /***************************************************************************** |
| 6630 | * |
| 6631 | * Add an instruction referencing a stack-based local variable and a register |
| 6632 | */ |
| 6633 | void emitter::emitIns_S_R(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs) |
| 6634 | { |
| 6635 | assert(offs >= 0); |
| 6636 | emitAttr size = EA_SIZE(attr); |
| 6637 | insFormat fmt = IF_NONE; |
| 6638 | int disp = 0; |
| 6639 | unsigned scale = 0; |
| 6640 | bool isVectorStore = false; |
| 6641 | |
| 6642 | // TODO-ARM64-CQ: use unscaled loads? |
| 6643 | /* Figure out the encoding format of the instruction */ |
| 6644 | switch (ins) |
| 6645 | { |
| 6646 | case INS_strb: |
| 6647 | scale = 0; |
| 6648 | assert(isGeneralRegisterOrZR(reg1)); |
| 6649 | break; |
| 6650 | |
| 6651 | case INS_strh: |
| 6652 | scale = 1; |
| 6653 | assert(isGeneralRegisterOrZR(reg1)); |
| 6654 | break; |
| 6655 | |
| 6656 | case INS_str: |
| 6657 | if (isGeneralRegisterOrZR(reg1)) |
| 6658 | { |
| 6659 | assert(isValidGeneralDatasize(size)); |
| 6660 | scale = (size == EA_8BYTE) ? 3 : 2; |
| 6661 | } |
| 6662 | else |
| 6663 | { |
| 6664 | assert(isVectorRegister(reg1)); |
| 6665 | assert(isValidVectorLSDatasize(size)); |
| 6666 | scale = NaturalScale_helper(size); |
| 6667 | isVectorStore = true; |
| 6668 | } |
| 6669 | break; |
| 6670 | |
| 6671 | default: |
| 6672 | NYI("emitIns_S_R" ); // FP locals? |
| 6673 | return; |
| 6674 | |
| 6675 | } // end switch (ins) |
| 6676 | |
| 6677 | /* Figure out the variable's frame position */ |
| 6678 | int base; |
| 6679 | bool FPbased; |
| 6680 | |
| 6681 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
| 6682 | disp = base + offs; |
| 6683 | assert(scale >= 0); |
| 6684 | if (isVectorStore) |
| 6685 | { |
| 6686 | assert(scale <= 4); |
| 6687 | } |
| 6688 | else |
| 6689 | { |
| 6690 | assert(scale <= 3); |
| 6691 | } |
| 6692 | |
| 6693 | // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead? |
| 6694 | regNumber reg2 = FPbased ? REG_FPBASE : REG_SPBASE; |
| 6695 | reg2 = encodingSPtoZR(reg2); |
| 6696 | |
| 6697 | bool useRegForImm = false; |
| 6698 | ssize_t imm = disp; |
| 6699 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
| 6700 | if (imm == 0) |
| 6701 | { |
| 6702 | fmt = IF_LS_2A; |
| 6703 | } |
| 6704 | else if ((imm < 0) || ((imm & mask) != 0)) |
| 6705 | { |
| 6706 | if ((imm >= -256) && (imm <= 255)) |
| 6707 | { |
| 6708 | fmt = IF_LS_2C; |
| 6709 | } |
| 6710 | else |
| 6711 | { |
| 6712 | useRegForImm = true; |
| 6713 | } |
| 6714 | } |
| 6715 | else if (imm > 0) |
| 6716 | { |
| 6717 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
| 6718 | { |
| 6719 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
| 6720 | |
| 6721 | fmt = IF_LS_2B; |
| 6722 | } |
| 6723 | else |
| 6724 | { |
| 6725 | useRegForImm = true; |
| 6726 | } |
| 6727 | } |
| 6728 | |
| 6729 | if (useRegForImm) |
| 6730 | { |
| 6731 | // The reserved register is not stored in idReg3() since that field overlaps with iiaLclVar. |
| 6732 | // It is instead implicit when idSetIsLclVar() is set, with this encoding format. |
| 6733 | regNumber rsvdReg = codeGen->rsGetRsvdReg(); |
| 6734 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, rsvdReg, imm); |
| 6735 | fmt = IF_LS_3A; |
| 6736 | } |
| 6737 | |
| 6738 | assert(fmt != IF_NONE); |
| 6739 | |
| 6740 | instrDesc* id = emitNewInstrCns(attr, imm); |
| 6741 | |
| 6742 | id->idIns(ins); |
| 6743 | id->idInsFmt(fmt); |
| 6744 | id->idInsOpt(INS_OPTS_NONE); |
| 6745 | |
| 6746 | id->idReg1(reg1); |
| 6747 | id->idReg2(reg2); |
| 6748 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6749 | id->idSetIsLclVar(); |
| 6750 | |
| 6751 | #ifdef DEBUG |
| 6752 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6753 | #endif |
| 6754 | |
| 6755 | dispIns(id); |
| 6756 | appendToCurIG(id); |
| 6757 | } |
| 6758 | |
| 6759 | /***************************************************************************** |
| 6760 | * |
| 6761 | * Add an instruction referencing consecutive stack-based local variable slots and two registers |
| 6762 | */ |
| 6763 | void emitter::emitIns_S_S_R_R( |
| 6764 | instruction ins, emitAttr attr1, emitAttr attr2, regNumber reg1, regNumber reg2, int varx, int offs) |
| 6765 | { |
| 6766 | assert((ins == INS_stp) || (ins == INS_stnp)); |
| 6767 | assert(EA_8BYTE == EA_SIZE(attr1)); |
| 6768 | assert(EA_8BYTE == EA_SIZE(attr2)); |
| 6769 | assert(isGeneralRegisterOrZR(reg1)); |
| 6770 | assert(isGeneralRegisterOrZR(reg2)); |
| 6771 | assert(offs >= 0); |
| 6772 | |
| 6773 | insFormat fmt = IF_LS_3B; |
| 6774 | int disp = 0; |
| 6775 | const unsigned scale = 3; |
| 6776 | |
| 6777 | /* Figure out the variable's frame position */ |
| 6778 | int base; |
| 6779 | bool FPbased; |
| 6780 | |
| 6781 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
| 6782 | disp = base + offs; |
| 6783 | |
| 6784 | // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead? |
| 6785 | regNumber reg3 = FPbased ? REG_FPBASE : REG_SPBASE; |
| 6786 | |
| 6787 | bool useRegForAdr = true; |
| 6788 | ssize_t imm = disp; |
| 6789 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
| 6790 | if (imm == 0) |
| 6791 | { |
| 6792 | useRegForAdr = false; |
| 6793 | } |
| 6794 | else |
| 6795 | { |
| 6796 | if ((imm & mask) == 0) |
| 6797 | { |
| 6798 | ssize_t immShift = imm >> scale; // The immediate is scaled by the size of the ld/st |
| 6799 | |
| 6800 | if ((immShift >= -64) && (immShift <= 63)) |
| 6801 | { |
| 6802 | fmt = IF_LS_3C; |
| 6803 | useRegForAdr = false; |
| 6804 | imm = immShift; |
| 6805 | } |
| 6806 | } |
| 6807 | } |
| 6808 | |
| 6809 | if (useRegForAdr) |
| 6810 | { |
| 6811 | regNumber rsvd = codeGen->rsGetRsvdReg(); |
| 6812 | emitIns_R_R_Imm(INS_add, EA_PTRSIZE, rsvd, reg3, imm); |
| 6813 | reg3 = rsvd; |
| 6814 | imm = 0; |
| 6815 | } |
| 6816 | |
| 6817 | assert(fmt != IF_NONE); |
| 6818 | |
| 6819 | instrDesc* id = emitNewInstrCns(attr1, imm); |
| 6820 | |
| 6821 | id->idIns(ins); |
| 6822 | id->idInsFmt(fmt); |
| 6823 | id->idInsOpt(INS_OPTS_NONE); |
| 6824 | |
| 6825 | // Record the attribute for the second register in the pair |
| 6826 | if (EA_IS_GCREF(attr2)) |
| 6827 | { |
| 6828 | id->idGCrefReg2(GCT_GCREF); |
| 6829 | } |
| 6830 | else if (EA_IS_BYREF(attr2)) |
| 6831 | { |
| 6832 | id->idGCrefReg2(GCT_BYREF); |
| 6833 | } |
| 6834 | else |
| 6835 | { |
| 6836 | id->idGCrefReg2(GCT_NONE); |
| 6837 | } |
| 6838 | |
| 6839 | reg3 = encodingSPtoZR(reg3); |
| 6840 | |
| 6841 | id->idReg1(reg1); |
| 6842 | id->idReg2(reg2); |
| 6843 | id->idReg3(reg3); |
| 6844 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
| 6845 | id->idSetIsLclVar(); |
| 6846 | |
| 6847 | #ifdef DEBUG |
| 6848 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
| 6849 | #endif |
| 6850 | |
| 6851 | dispIns(id); |
| 6852 | appendToCurIG(id); |
| 6853 | } |
| 6854 | |
| 6855 | /***************************************************************************** |
| 6856 | * |
| 6857 | * Add an instruction referencing stack-based local variable and an immediate |
| 6858 | */ |
| 6859 | void emitter::emitIns_S_I(instruction ins, emitAttr attr, int varx, int offs, int val) |
| 6860 | { |
| 6861 | NYI("emitIns_S_I" ); |
| 6862 | } |
| 6863 | |
| 6864 | /***************************************************************************** |
| 6865 | * |
| 6866 | * Add an instruction with a register + static member operands. |
| 6867 | * Constant is stored into JIT data which is adjacent to code. |
| 6868 | * No relocation is needed. PC-relative offset will be encoded directly into instruction. |
| 6869 | * |
| 6870 | */ |
| 6871 | void emitter::emitIns_R_C( |
| 6872 | instruction ins, emitAttr attr, regNumber reg, regNumber addrReg, CORINFO_FIELD_HANDLE fldHnd, int offs) |
| 6873 | { |
| 6874 | assert(offs >= 0); |
| 6875 | assert(instrDesc::fitsInSmallCns(offs)); |
| 6876 | |
| 6877 | emitAttr size = EA_SIZE(attr); |
| 6878 | insFormat fmt = IF_NONE; |
| 6879 | int disp = 0; |
| 6880 | instrDescJmp* id = emitNewInstrJmp(); |
| 6881 | |
| 6882 | switch (ins) |
| 6883 | { |
| 6884 | case INS_adr: |
| 6885 | // This is case to get address to the constant data. |
| 6886 | fmt = IF_LARGEADR; |
| 6887 | assert(isGeneralRegister(reg)); |
| 6888 | assert(isValidGeneralDatasize(size)); |
| 6889 | break; |
| 6890 | |
| 6891 | case INS_ldr: |
| 6892 | fmt = IF_LARGELDC; |
| 6893 | if (isVectorRegister(reg)) |
| 6894 | { |
| 6895 | assert(isValidScalarDatasize(size)); |
| 6896 | // For vector (float/double) register, we should have an integer address reg to |
| 6897 | // compute long address which consists of page address and page offset. |
| 6898 | // For integer constant, this is not needed since the dest reg can be used to |
| 6899 | // compute address as well as contain the final contents. |
| 6900 | assert(isGeneralRegister(reg) || (addrReg != REG_NA)); |
| 6901 | } |
| 6902 | else |
| 6903 | { |
| 6904 | assert(isGeneralRegister(reg)); |
| 6905 | assert(isValidGeneralDatasize(size)); |
| 6906 | } |
| 6907 | break; |
| 6908 | default: |
| 6909 | unreached(); |
| 6910 | } |
| 6911 | |
| 6912 | assert(fmt != IF_NONE); |
| 6913 | |
| 6914 | id->idIns(ins); |
| 6915 | id->idInsFmt(fmt); |
| 6916 | id->idInsOpt(INS_OPTS_NONE); |
| 6917 | id->idSmallCns(offs); |
| 6918 | id->idOpSize(size); |
| 6919 | id->idAddr()->iiaFieldHnd = fldHnd; |
| 6920 | id->idSetIsBound(); // We won't patch address since we will know the exact distance once JIT code and data are |
| 6921 | // allocated together. |
| 6922 | |
| 6923 | id->idReg1(reg); // destination register that will get the constant value. |
| 6924 | if (addrReg != REG_NA) |
| 6925 | { |
| 6926 | id->idReg2(addrReg); // integer register to compute long address (used for vector dest when we end up with long |
| 6927 | // address) |
| 6928 | } |
| 6929 | id->idjShort = false; // Assume loading constant from long address |
| 6930 | |
| 6931 | // Keep it long if it's in cold code. |
| 6932 | id->idjKeepLong = emitComp->fgIsBlockCold(emitComp->compCurBB); |
| 6933 | |
| 6934 | #ifdef DEBUG |
| 6935 | if (emitComp->opts.compLongAddress) |
| 6936 | id->idjKeepLong = 1; |
| 6937 | #endif // DEBUG |
| 6938 | |
| 6939 | // If it's possible to be shortened, then put it in jump list |
| 6940 | // to be revisited by emitJumpDistBind. |
| 6941 | if (!id->idjKeepLong) |
| 6942 | { |
| 6943 | /* Record the jump's IG and offset within it */ |
| 6944 | id->idjIG = emitCurIG; |
| 6945 | id->idjOffs = emitCurIGsize; |
| 6946 | |
| 6947 | /* Append this jump to this IG's jump list */ |
| 6948 | id->idjNext = emitCurIGjmpList; |
| 6949 | emitCurIGjmpList = id; |
| 6950 | |
| 6951 | #if EMITTER_STATS |
| 6952 | emitTotalIGjmps++; |
| 6953 | #endif |
| 6954 | } |
| 6955 | |
| 6956 | dispIns(id); |
| 6957 | appendToCurIG(id); |
| 6958 | } |
| 6959 | |
| 6960 | /***************************************************************************** |
| 6961 | * |
| 6962 | * Add an instruction with a static member + constant. |
| 6963 | */ |
| 6964 | |
| 6965 | void emitter::emitIns_C_I(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, ssize_t val) |
| 6966 | { |
| 6967 | NYI("emitIns_C_I" ); |
| 6968 | } |
| 6969 | |
| 6970 | /***************************************************************************** |
| 6971 | * |
| 6972 | * Add an instruction with a static member + register operands. |
| 6973 | */ |
| 6974 | |
| 6975 | void emitter::emitIns_C_R(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, regNumber reg, int offs) |
| 6976 | { |
| 6977 | assert(!"emitIns_C_R not supported for RyuJIT backend" ); |
| 6978 | } |
| 6979 | |
| 6980 | void emitter::emitIns_R_AR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs) |
| 6981 | { |
| 6982 | NYI("emitIns_R_AR" ); |
| 6983 | } |
| 6984 | |
| 6985 | // This computes address from the immediate which is relocatable. |
| 6986 | void emitter::emitIns_R_AI(instruction ins, emitAttr attr, regNumber ireg, ssize_t addr) |
| 6987 | { |
| 6988 | assert(EA_IS_RELOC(attr)); |
| 6989 | emitAttr size = EA_SIZE(attr); |
| 6990 | insFormat fmt = IF_DI_1E; |
| 6991 | bool needAdd = false; |
| 6992 | instrDescJmp* id = emitNewInstrJmp(); |
| 6993 | |
| 6994 | switch (ins) |
| 6995 | { |
| 6996 | case INS_adrp: |
| 6997 | // This computes page address. |
| 6998 | // page offset is needed using add. |
| 6999 | needAdd = true; |
| 7000 | break; |
| 7001 | case INS_adr: |
| 7002 | break; |
| 7003 | default: |
| 7004 | unreached(); |
| 7005 | } |
| 7006 | |
| 7007 | id->idIns(ins); |
| 7008 | id->idInsFmt(fmt); |
| 7009 | id->idInsOpt(INS_OPTS_NONE); |
| 7010 | id->idOpSize(size); |
| 7011 | id->idAddr()->iiaAddr = (BYTE*)addr; |
| 7012 | id->idReg1(ireg); |
| 7013 | id->idSetIsDspReloc(); |
| 7014 | |
| 7015 | dispIns(id); |
| 7016 | appendToCurIG(id); |
| 7017 | |
| 7018 | if (needAdd) |
| 7019 | { |
| 7020 | // add reg, reg, imm |
| 7021 | ins = INS_add; |
| 7022 | fmt = IF_DI_2A; |
| 7023 | instrDesc* id = emitAllocInstr(attr); |
| 7024 | assert(id->idIsReloc()); |
| 7025 | |
| 7026 | id->idIns(ins); |
| 7027 | id->idInsFmt(fmt); |
| 7028 | id->idInsOpt(INS_OPTS_NONE); |
| 7029 | id->idOpSize(size); |
| 7030 | id->idAddr()->iiaAddr = (BYTE*)addr; |
| 7031 | id->idReg1(ireg); |
| 7032 | id->idReg2(ireg); |
| 7033 | |
| 7034 | dispIns(id); |
| 7035 | appendToCurIG(id); |
| 7036 | } |
| 7037 | } |
| 7038 | |
| 7039 | void emitter::emitIns_AR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs) |
| 7040 | { |
| 7041 | NYI("emitIns_AR_R" ); |
| 7042 | } |
| 7043 | |
| 7044 | void emitter::emitIns_R_ARR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp) |
| 7045 | { |
| 7046 | NYI("emitIns_R_ARR" ); |
| 7047 | } |
| 7048 | |
| 7049 | void emitter::emitIns_ARR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp) |
| 7050 | { |
| 7051 | NYI("emitIns_R_ARR" ); |
| 7052 | } |
| 7053 | |
| 7054 | void emitter::emitIns_R_ARX( |
| 7055 | instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, unsigned mul, int disp) |
| 7056 | { |
| 7057 | NYI("emitIns_R_ARR" ); |
| 7058 | } |
| 7059 | |
| 7060 | /***************************************************************************** |
| 7061 | * |
| 7062 | * Record that a jump instruction uses the short encoding |
| 7063 | * |
| 7064 | */ |
| 7065 | void emitter::emitSetShortJump(instrDescJmp* id) |
| 7066 | { |
| 7067 | if (id->idjKeepLong) |
| 7068 | return; |
| 7069 | |
| 7070 | insFormat fmt = IF_NONE; |
| 7071 | if (emitIsCondJump(id)) |
| 7072 | { |
| 7073 | switch (id->idIns()) |
| 7074 | { |
| 7075 | case INS_cbz: |
| 7076 | case INS_cbnz: |
| 7077 | fmt = IF_BI_1A; |
| 7078 | break; |
| 7079 | case INS_tbz: |
| 7080 | case INS_tbnz: |
| 7081 | fmt = IF_BI_1B; |
| 7082 | break; |
| 7083 | default: |
| 7084 | fmt = IF_BI_0B; |
| 7085 | break; |
| 7086 | } |
| 7087 | } |
| 7088 | else if (emitIsLoadLabel(id)) |
| 7089 | { |
| 7090 | fmt = IF_DI_1E; |
| 7091 | } |
| 7092 | else if (emitIsLoadConstant(id)) |
| 7093 | { |
| 7094 | fmt = IF_LS_1A; |
| 7095 | } |
| 7096 | else |
| 7097 | { |
| 7098 | unreached(); |
| 7099 | } |
| 7100 | |
| 7101 | id->idInsFmt(fmt); |
| 7102 | id->idjShort = true; |
| 7103 | } |
| 7104 | |
| 7105 | /***************************************************************************** |
| 7106 | * |
| 7107 | * Add a label instruction. |
| 7108 | */ |
| 7109 | |
| 7110 | void emitter::emitIns_R_L(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg) |
| 7111 | { |
| 7112 | assert(dst->bbFlags & BBF_JMP_TARGET); |
| 7113 | |
| 7114 | insFormat fmt = IF_NONE; |
| 7115 | |
| 7116 | switch (ins) |
| 7117 | { |
| 7118 | case INS_adr: |
| 7119 | fmt = IF_LARGEADR; |
| 7120 | break; |
| 7121 | default: |
| 7122 | unreached(); |
| 7123 | } |
| 7124 | |
| 7125 | instrDescJmp* id = emitNewInstrJmp(); |
| 7126 | |
| 7127 | id->idIns(ins); |
| 7128 | id->idInsFmt(fmt); |
| 7129 | id->idjShort = false; |
| 7130 | id->idAddr()->iiaBBlabel = dst; |
| 7131 | id->idReg1(reg); |
| 7132 | id->idOpSize(EA_PTRSIZE); |
| 7133 | |
| 7134 | #ifdef DEBUG |
| 7135 | // Mark the catch return |
| 7136 | if (emitComp->compCurBB->bbJumpKind == BBJ_EHCATCHRET) |
| 7137 | { |
| 7138 | id->idDebugOnlyInfo()->idCatchRet = true; |
| 7139 | } |
| 7140 | #endif // DEBUG |
| 7141 | |
| 7142 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
| 7143 | |
| 7144 | #ifdef DEBUG |
| 7145 | if (emitComp->opts.compLongAddress) |
| 7146 | id->idjKeepLong = 1; |
| 7147 | #endif // DEBUG |
| 7148 | |
| 7149 | /* Record the jump's IG and offset within it */ |
| 7150 | |
| 7151 | id->idjIG = emitCurIG; |
| 7152 | id->idjOffs = emitCurIGsize; |
| 7153 | |
| 7154 | /* Append this jump to this IG's jump list */ |
| 7155 | |
| 7156 | id->idjNext = emitCurIGjmpList; |
| 7157 | emitCurIGjmpList = id; |
| 7158 | |
| 7159 | #if EMITTER_STATS |
| 7160 | emitTotalIGjmps++; |
| 7161 | #endif |
| 7162 | |
| 7163 | dispIns(id); |
| 7164 | appendToCurIG(id); |
| 7165 | } |
| 7166 | |
| 7167 | /***************************************************************************** |
| 7168 | * |
| 7169 | * Add a data label instruction. |
| 7170 | */ |
| 7171 | |
| 7172 | void emitter::emitIns_R_D(instruction ins, emitAttr attr, unsigned offs, regNumber reg) |
| 7173 | { |
| 7174 | NYI("emitIns_R_D" ); |
| 7175 | } |
| 7176 | |
| 7177 | void emitter::emitIns_J_R(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg) |
| 7178 | { |
| 7179 | assert((ins == INS_cbz) || (ins == INS_cbnz)); |
| 7180 | |
| 7181 | assert(dst != nullptr); |
| 7182 | assert((dst->bbFlags & BBF_JMP_TARGET) != 0); |
| 7183 | |
| 7184 | insFormat fmt = IF_LARGEJMP; |
| 7185 | |
| 7186 | instrDescJmp* id = emitNewInstrJmp(); |
| 7187 | |
| 7188 | id->idIns(ins); |
| 7189 | id->idInsFmt(fmt); |
| 7190 | id->idReg1(reg); |
| 7191 | id->idjShort = false; |
| 7192 | id->idOpSize(EA_SIZE(attr)); |
| 7193 | |
| 7194 | id->idAddr()->iiaBBlabel = dst; |
| 7195 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
| 7196 | |
| 7197 | /* Record the jump's IG and offset within it */ |
| 7198 | |
| 7199 | id->idjIG = emitCurIG; |
| 7200 | id->idjOffs = emitCurIGsize; |
| 7201 | |
| 7202 | /* Append this jump to this IG's jump list */ |
| 7203 | |
| 7204 | id->idjNext = emitCurIGjmpList; |
| 7205 | emitCurIGjmpList = id; |
| 7206 | |
| 7207 | #if EMITTER_STATS |
| 7208 | emitTotalIGjmps++; |
| 7209 | #endif |
| 7210 | |
| 7211 | dispIns(id); |
| 7212 | appendToCurIG(id); |
| 7213 | } |
| 7214 | |
| 7215 | void emitter::emitIns_J_R_I(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg, int imm) |
| 7216 | { |
| 7217 | assert((ins == INS_tbz) || (ins == INS_tbnz)); |
| 7218 | |
| 7219 | assert(dst != nullptr); |
| 7220 | assert((dst->bbFlags & BBF_JMP_TARGET) != 0); |
| 7221 | assert((EA_SIZE(attr) == EA_4BYTE) || (EA_SIZE(attr) == EA_8BYTE)); |
| 7222 | assert(imm < ((EA_SIZE(attr) == EA_4BYTE) ? 32 : 64)); |
| 7223 | |
| 7224 | insFormat fmt = IF_LARGEJMP; |
| 7225 | |
| 7226 | instrDescJmp* id = emitNewInstrJmp(); |
| 7227 | |
| 7228 | id->idIns(ins); |
| 7229 | id->idInsFmt(fmt); |
| 7230 | id->idReg1(reg); |
| 7231 | id->idjShort = false; |
| 7232 | id->idSmallCns(imm); |
| 7233 | id->idOpSize(EA_SIZE(attr)); |
| 7234 | |
| 7235 | id->idAddr()->iiaBBlabel = dst; |
| 7236 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
| 7237 | |
| 7238 | /* Record the jump's IG and offset within it */ |
| 7239 | |
| 7240 | id->idjIG = emitCurIG; |
| 7241 | id->idjOffs = emitCurIGsize; |
| 7242 | |
| 7243 | /* Append this jump to this IG's jump list */ |
| 7244 | |
| 7245 | id->idjNext = emitCurIGjmpList; |
| 7246 | emitCurIGjmpList = id; |
| 7247 | |
| 7248 | #if EMITTER_STATS |
| 7249 | emitTotalIGjmps++; |
| 7250 | #endif |
| 7251 | |
| 7252 | dispIns(id); |
| 7253 | appendToCurIG(id); |
| 7254 | } |
| 7255 | |
| 7256 | void emitter::emitIns_J(instruction ins, BasicBlock* dst, int instrCount) |
| 7257 | { |
| 7258 | insFormat fmt = IF_NONE; |
| 7259 | |
| 7260 | if (dst != nullptr) |
| 7261 | { |
| 7262 | assert(dst->bbFlags & BBF_JMP_TARGET); |
| 7263 | } |
| 7264 | else |
| 7265 | { |
| 7266 | assert(instrCount != 0); |
| 7267 | } |
| 7268 | |
| 7269 | /* Figure out the encoding format of the instruction */ |
| 7270 | |
| 7271 | bool idjShort = false; |
| 7272 | switch (ins) |
| 7273 | { |
| 7274 | case INS_bl_local: |
| 7275 | case INS_b: |
| 7276 | // Unconditional jump is a single form. |
| 7277 | idjShort = true; |
| 7278 | fmt = IF_BI_0A; |
| 7279 | break; |
| 7280 | |
| 7281 | case INS_beq: |
| 7282 | case INS_bne: |
| 7283 | case INS_bhs: |
| 7284 | case INS_blo: |
| 7285 | case INS_bmi: |
| 7286 | case INS_bpl: |
| 7287 | case INS_bvs: |
| 7288 | case INS_bvc: |
| 7289 | case INS_bhi: |
| 7290 | case INS_bls: |
| 7291 | case INS_bge: |
| 7292 | case INS_blt: |
| 7293 | case INS_bgt: |
| 7294 | case INS_ble: |
| 7295 | // Assume conditional jump is long. |
| 7296 | fmt = IF_LARGEJMP; |
| 7297 | break; |
| 7298 | |
| 7299 | default: |
| 7300 | unreached(); |
| 7301 | break; |
| 7302 | } |
| 7303 | |
| 7304 | instrDescJmp* id = emitNewInstrJmp(); |
| 7305 | |
| 7306 | id->idIns(ins); |
| 7307 | id->idInsFmt(fmt); |
| 7308 | id->idjShort = idjShort; |
| 7309 | |
| 7310 | #ifdef DEBUG |
| 7311 | // Mark the finally call |
| 7312 | if (ins == INS_bl_local && emitComp->compCurBB->bbJumpKind == BBJ_CALLFINALLY) |
| 7313 | { |
| 7314 | id->idDebugOnlyInfo()->idFinallyCall = true; |
| 7315 | } |
| 7316 | #endif // DEBUG |
| 7317 | |
| 7318 | if (dst != nullptr) |
| 7319 | { |
| 7320 | id->idAddr()->iiaBBlabel = dst; |
| 7321 | |
| 7322 | // Skip unconditional jump that has a single form. |
| 7323 | // TODO-ARM64-NYI: enable hot/cold splittingNYI. |
| 7324 | // The target needs to be relocated. |
| 7325 | if (!idjShort) |
| 7326 | { |
| 7327 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
| 7328 | |
| 7329 | #ifdef DEBUG |
| 7330 | if (emitComp->opts.compLongAddress) // Force long branches |
| 7331 | id->idjKeepLong = 1; |
| 7332 | #endif // DEBUG |
| 7333 | } |
| 7334 | } |
| 7335 | else |
| 7336 | { |
| 7337 | id->idAddr()->iiaSetInstrCount(instrCount); |
| 7338 | id->idjKeepLong = false; |
| 7339 | /* This jump must be short */ |
| 7340 | emitSetShortJump(id); |
| 7341 | id->idSetIsBound(); |
| 7342 | } |
| 7343 | |
| 7344 | /* Record the jump's IG and offset within it */ |
| 7345 | |
| 7346 | id->idjIG = emitCurIG; |
| 7347 | id->idjOffs = emitCurIGsize; |
| 7348 | |
| 7349 | /* Append this jump to this IG's jump list */ |
| 7350 | |
| 7351 | id->idjNext = emitCurIGjmpList; |
| 7352 | emitCurIGjmpList = id; |
| 7353 | |
| 7354 | #if EMITTER_STATS |
| 7355 | emitTotalIGjmps++; |
| 7356 | #endif |
| 7357 | |
| 7358 | dispIns(id); |
| 7359 | appendToCurIG(id); |
| 7360 | } |
| 7361 | |
| 7362 | /***************************************************************************** |
| 7363 | * |
| 7364 | * Add a call instruction (direct or indirect). |
| 7365 | * argSize<0 means that the caller will pop the arguments |
| 7366 | * |
| 7367 | * The other arguments are interpreted depending on callType as shown: |
| 7368 | * Unless otherwise specified, ireg,xreg,xmul,disp should have default values. |
| 7369 | * |
| 7370 | * EC_FUNC_TOKEN : addr is the method address |
| 7371 | * EC_FUNC_ADDR : addr is the absolute address of the function |
| 7372 | * |
| 7373 | * If callType is one of these emitCallTypes, addr has to be NULL. |
| 7374 | * EC_INDIR_R : "call ireg". |
| 7375 | * |
| 7376 | * For ARM xreg, xmul and disp are never used and should always be 0/REG_NA. |
| 7377 | * |
| 7378 | * Please consult the "debugger team notification" comment in genFnProlog(). |
| 7379 | */ |
| 7380 | |
| 7381 | void emitter::emitIns_Call(EmitCallType callType, |
| 7382 | CORINFO_METHOD_HANDLE methHnd, |
| 7383 | INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) // used to report call sites to the EE |
| 7384 | void* addr, |
| 7385 | ssize_t argSize, |
| 7386 | emitAttr retSize, |
| 7387 | emitAttr secondRetSize, |
| 7388 | VARSET_VALARG_TP ptrVars, |
| 7389 | regMaskTP gcrefRegs, |
| 7390 | regMaskTP byrefRegs, |
| 7391 | IL_OFFSETX ilOffset /* = BAD_IL_OFFSET */, |
| 7392 | regNumber ireg /* = REG_NA */, |
| 7393 | regNumber xreg /* = REG_NA */, |
| 7394 | unsigned xmul /* = 0 */, |
| 7395 | ssize_t disp /* = 0 */, |
| 7396 | bool isJump /* = false */) |
| 7397 | { |
| 7398 | /* Sanity check the arguments depending on callType */ |
| 7399 | |
| 7400 | assert(callType < EC_COUNT); |
| 7401 | assert((callType != EC_FUNC_TOKEN && callType != EC_FUNC_ADDR) || |
| 7402 | (ireg == REG_NA && xreg == REG_NA && xmul == 0 && disp == 0)); |
| 7403 | assert(callType < EC_INDIR_R || addr == NULL); |
| 7404 | assert(callType != EC_INDIR_R || (ireg < REG_COUNT && xreg == REG_NA && xmul == 0 && disp == 0)); |
| 7405 | |
| 7406 | // ARM never uses these |
| 7407 | assert(xreg == REG_NA && xmul == 0 && disp == 0); |
| 7408 | |
| 7409 | // Our stack level should be always greater than the bytes of arguments we push. Just |
| 7410 | // a sanity test. |
| 7411 | assert((unsigned)abs(argSize) <= codeGen->genStackLevel); |
| 7412 | |
| 7413 | // Trim out any callee-trashed registers from the live set. |
| 7414 | regMaskTP savedSet = emitGetGCRegsSavedOrModified(methHnd); |
| 7415 | gcrefRegs &= savedSet; |
| 7416 | byrefRegs &= savedSet; |
| 7417 | |
| 7418 | #ifdef DEBUG |
| 7419 | if (EMIT_GC_VERBOSE) |
| 7420 | { |
| 7421 | printf("Call: GCvars=%s " , VarSetOps::ToString(emitComp, ptrVars)); |
| 7422 | dumpConvertedVarSet(emitComp, ptrVars); |
| 7423 | printf(", gcrefRegs=" ); |
| 7424 | printRegMaskInt(gcrefRegs); |
| 7425 | emitDispRegSet(gcrefRegs); |
| 7426 | printf(", byrefRegs=" ); |
| 7427 | printRegMaskInt(byrefRegs); |
| 7428 | emitDispRegSet(byrefRegs); |
| 7429 | printf("\n" ); |
| 7430 | } |
| 7431 | #endif |
| 7432 | |
| 7433 | /* Managed RetVal: emit sequence point for the call */ |
| 7434 | if (emitComp->opts.compDbgInfo && ilOffset != BAD_IL_OFFSET) |
| 7435 | { |
| 7436 | codeGen->genIPmappingAdd(ilOffset, false); |
| 7437 | } |
| 7438 | |
| 7439 | /* |
| 7440 | We need to allocate the appropriate instruction descriptor based |
| 7441 | on whether this is a direct/indirect call, and whether we need to |
| 7442 | record an updated set of live GC variables. |
| 7443 | */ |
| 7444 | instrDesc* id; |
| 7445 | |
| 7446 | assert(argSize % REGSIZE_BYTES == 0); |
| 7447 | int argCnt = (int)(argSize / (int)REGSIZE_BYTES); |
| 7448 | |
| 7449 | if (callType >= EC_INDIR_R) |
| 7450 | { |
| 7451 | /* Indirect call, virtual calls */ |
| 7452 | |
| 7453 | assert(callType == EC_INDIR_R); |
| 7454 | |
| 7455 | id = emitNewInstrCallInd(argCnt, disp, ptrVars, gcrefRegs, byrefRegs, retSize, secondRetSize); |
| 7456 | } |
| 7457 | else |
| 7458 | { |
| 7459 | /* Helper/static/nonvirtual/function calls (direct or through handle), |
| 7460 | and calls to an absolute addr. */ |
| 7461 | |
| 7462 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR); |
| 7463 | |
| 7464 | id = emitNewInstrCallDir(argCnt, ptrVars, gcrefRegs, byrefRegs, retSize, secondRetSize); |
| 7465 | } |
| 7466 | |
| 7467 | /* Update the emitter's live GC ref sets */ |
| 7468 | |
| 7469 | VarSetOps::Assign(emitComp, emitThisGCrefVars, ptrVars); |
| 7470 | emitThisGCrefRegs = gcrefRegs; |
| 7471 | emitThisByrefRegs = byrefRegs; |
| 7472 | |
| 7473 | id->idSetIsNoGC(emitNoGChelper(methHnd)); |
| 7474 | |
| 7475 | /* Set the instruction - special case jumping a function */ |
| 7476 | instruction ins; |
| 7477 | insFormat fmt = IF_NONE; |
| 7478 | |
| 7479 | /* Record the address: method, indirection, or funcptr */ |
| 7480 | |
| 7481 | if (callType > EC_FUNC_ADDR) |
| 7482 | { |
| 7483 | /* This is an indirect call (either a virtual call or func ptr call) */ |
| 7484 | |
| 7485 | switch (callType) |
| 7486 | { |
| 7487 | case EC_INDIR_R: // the address is in a register |
| 7488 | |
| 7489 | id->idSetIsCallRegPtr(); |
| 7490 | |
| 7491 | if (isJump) |
| 7492 | { |
| 7493 | ins = INS_br_tail; // INS_br_tail Reg |
| 7494 | } |
| 7495 | else |
| 7496 | { |
| 7497 | ins = INS_blr; // INS_blr Reg |
| 7498 | } |
| 7499 | fmt = IF_BR_1B; |
| 7500 | |
| 7501 | id->idIns(ins); |
| 7502 | id->idInsFmt(fmt); |
| 7503 | |
| 7504 | id->idReg3(ireg); |
| 7505 | assert(xreg == REG_NA); |
| 7506 | break; |
| 7507 | |
| 7508 | default: |
| 7509 | NO_WAY("unexpected instruction" ); |
| 7510 | break; |
| 7511 | } |
| 7512 | } |
| 7513 | else |
| 7514 | { |
| 7515 | /* This is a simple direct call: "call helper/method/addr" */ |
| 7516 | |
| 7517 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR); |
| 7518 | |
| 7519 | assert(addr != NULL); |
| 7520 | |
| 7521 | if (isJump) |
| 7522 | { |
| 7523 | ins = INS_b_tail; // INS_b_tail imm28 |
| 7524 | } |
| 7525 | else |
| 7526 | { |
| 7527 | ins = INS_bl; // INS_bl imm28 |
| 7528 | } |
| 7529 | fmt = IF_BI_0C; |
| 7530 | |
| 7531 | id->idIns(ins); |
| 7532 | id->idInsFmt(fmt); |
| 7533 | |
| 7534 | id->idAddr()->iiaAddr = (BYTE*)addr; |
| 7535 | |
| 7536 | if (callType == EC_FUNC_ADDR) |
| 7537 | { |
| 7538 | id->idSetIsCallAddr(); |
| 7539 | } |
| 7540 | |
| 7541 | if (emitComp->opts.compReloc) |
| 7542 | { |
| 7543 | id->idSetIsDspReloc(); |
| 7544 | } |
| 7545 | } |
| 7546 | |
| 7547 | #ifdef DEBUG |
| 7548 | if (EMIT_GC_VERBOSE) |
| 7549 | { |
| 7550 | if (id->idIsLargeCall()) |
| 7551 | { |
| 7552 | printf("[%02u] Rec call GC vars = %s\n" , id->idDebugOnlyInfo()->idNum, |
| 7553 | VarSetOps::ToString(emitComp, ((instrDescCGCA*)id)->idcGCvars)); |
| 7554 | } |
| 7555 | } |
| 7556 | |
| 7557 | id->idDebugOnlyInfo()->idMemCookie = (size_t)methHnd; // method token |
| 7558 | id->idDebugOnlyInfo()->idCallSig = sigInfo; |
| 7559 | #endif // DEBUG |
| 7560 | |
| 7561 | #ifdef LATE_DISASM |
| 7562 | if (addr != nullptr) |
| 7563 | { |
| 7564 | codeGen->getDisAssembler().disSetMethod((size_t)addr, methHnd); |
| 7565 | } |
| 7566 | #endif // LATE_DISASM |
| 7567 | |
| 7568 | dispIns(id); |
| 7569 | appendToCurIG(id); |
| 7570 | } |
| 7571 | |
| 7572 | /***************************************************************************** |
| 7573 | * |
| 7574 | * Returns true if 'imm' is valid Cond encoding |
| 7575 | */ |
| 7576 | |
| 7577 | /*static*/ bool emitter::isValidImmCond(ssize_t imm) |
| 7578 | { |
| 7579 | // range check the ssize_t value, to make sure it is a small unsigned value |
| 7580 | // and that only the bits in the cfi.cond are set |
| 7581 | if ((imm < 0) || (imm > 0xF)) |
| 7582 | return false; |
| 7583 | |
| 7584 | condFlagsImm cfi; |
| 7585 | cfi.immCFVal = (unsigned)imm; |
| 7586 | |
| 7587 | return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV). |
| 7588 | } |
| 7589 | |
| 7590 | /***************************************************************************** |
| 7591 | * |
| 7592 | * Returns true if 'imm' is valid Cond/Flags encoding |
| 7593 | */ |
| 7594 | |
| 7595 | /*static*/ bool emitter::isValidImmCondFlags(ssize_t imm) |
| 7596 | { |
| 7597 | // range check the ssize_t value, to make sure it is a small unsigned value |
| 7598 | // and that only the bits in the cfi.cond or cfi.flags are set |
| 7599 | if ((imm < 0) || (imm > 0xFF)) |
| 7600 | return false; |
| 7601 | |
| 7602 | condFlagsImm cfi; |
| 7603 | cfi.immCFVal = (unsigned)imm; |
| 7604 | |
| 7605 | return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV). |
| 7606 | } |
| 7607 | |
| 7608 | /***************************************************************************** |
| 7609 | * |
| 7610 | * Returns true if 'imm' is valid Cond/Flags/Imm5 encoding |
| 7611 | */ |
| 7612 | |
| 7613 | /*static*/ bool emitter::isValidImmCondFlagsImm5(ssize_t imm) |
| 7614 | { |
| 7615 | // range check the ssize_t value, to make sure it is a small unsigned value |
| 7616 | // and that only the bits in the cfi.cond, cfi.flags or cfi.imm5 are set |
| 7617 | if ((imm < 0) || (imm > 0x1FFF)) |
| 7618 | return false; |
| 7619 | |
| 7620 | condFlagsImm cfi; |
| 7621 | cfi.immCFVal = (unsigned)imm; |
| 7622 | |
| 7623 | return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV). |
| 7624 | } |
| 7625 | |
| 7626 | /***************************************************************************** |
| 7627 | * |
| 7628 | * Returns an encoding for the specified register used in the 'Rd' position |
| 7629 | */ |
| 7630 | |
| 7631 | /*static*/ emitter::code_t emitter::insEncodeReg_Rd(regNumber reg) |
| 7632 | { |
| 7633 | assert(isIntegerRegister(reg)); |
| 7634 | emitter::code_t ureg = (emitter::code_t)reg; |
| 7635 | assert((ureg >= 0) && (ureg <= 31)); |
| 7636 | return ureg; |
| 7637 | } |
| 7638 | |
| 7639 | /***************************************************************************** |
| 7640 | * |
| 7641 | * Returns an encoding for the specified register used in the 'Rt' position |
| 7642 | */ |
| 7643 | |
| 7644 | /*static*/ emitter::code_t emitter::insEncodeReg_Rt(regNumber reg) |
| 7645 | { |
| 7646 | assert(isIntegerRegister(reg)); |
| 7647 | emitter::code_t ureg = (emitter::code_t)reg; |
| 7648 | assert((ureg >= 0) && (ureg <= 31)); |
| 7649 | return ureg; |
| 7650 | } |
| 7651 | |
| 7652 | /***************************************************************************** |
| 7653 | * |
| 7654 | * Returns an encoding for the specified register used in the 'Rn' position |
| 7655 | */ |
| 7656 | |
| 7657 | /*static*/ emitter::code_t emitter::insEncodeReg_Rn(regNumber reg) |
| 7658 | { |
| 7659 | assert(isIntegerRegister(reg)); |
| 7660 | emitter::code_t ureg = (emitter::code_t)reg; |
| 7661 | assert((ureg >= 0) && (ureg <= 31)); |
| 7662 | return ureg << 5; |
| 7663 | } |
| 7664 | |
| 7665 | /***************************************************************************** |
| 7666 | * |
| 7667 | * Returns an encoding for the specified register used in the 'Rm' position |
| 7668 | */ |
| 7669 | |
| 7670 | /*static*/ emitter::code_t emitter::insEncodeReg_Rm(regNumber reg) |
| 7671 | { |
| 7672 | assert(isIntegerRegister(reg)); |
| 7673 | emitter::code_t ureg = (emitter::code_t)reg; |
| 7674 | assert((ureg >= 0) && (ureg <= 31)); |
| 7675 | return ureg << 16; |
| 7676 | } |
| 7677 | |
| 7678 | /***************************************************************************** |
| 7679 | * |
| 7680 | * Returns an encoding for the specified register used in the 'Ra' position |
| 7681 | */ |
| 7682 | |
| 7683 | /*static*/ emitter::code_t emitter::insEncodeReg_Ra(regNumber reg) |
| 7684 | { |
| 7685 | assert(isIntegerRegister(reg)); |
| 7686 | emitter::code_t ureg = (emitter::code_t)reg; |
| 7687 | assert((ureg >= 0) && (ureg <= 31)); |
| 7688 | return ureg << 10; |
| 7689 | } |
| 7690 | |
| 7691 | /***************************************************************************** |
| 7692 | * |
| 7693 | * Returns an encoding for the specified register used in the 'Vd' position |
| 7694 | */ |
| 7695 | |
| 7696 | /*static*/ emitter::code_t emitter::insEncodeReg_Vd(regNumber reg) |
| 7697 | { |
| 7698 | assert(emitter::isVectorRegister(reg)); |
| 7699 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
| 7700 | assert((ureg >= 0) && (ureg <= 31)); |
| 7701 | return ureg; |
| 7702 | } |
| 7703 | |
| 7704 | /***************************************************************************** |
| 7705 | * |
| 7706 | * Returns an encoding for the specified register used in the 'Vt' position |
| 7707 | */ |
| 7708 | |
| 7709 | /*static*/ emitter::code_t emitter::insEncodeReg_Vt(regNumber reg) |
| 7710 | { |
| 7711 | assert(emitter::isVectorRegister(reg)); |
| 7712 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
| 7713 | assert((ureg >= 0) && (ureg <= 31)); |
| 7714 | return ureg; |
| 7715 | } |
| 7716 | |
| 7717 | /***************************************************************************** |
| 7718 | * |
| 7719 | * Returns an encoding for the specified register used in the 'Vn' position |
| 7720 | */ |
| 7721 | |
| 7722 | /*static*/ emitter::code_t emitter::insEncodeReg_Vn(regNumber reg) |
| 7723 | { |
| 7724 | assert(emitter::isVectorRegister(reg)); |
| 7725 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
| 7726 | assert((ureg >= 0) && (ureg <= 31)); |
| 7727 | return ureg << 5; |
| 7728 | } |
| 7729 | |
| 7730 | /***************************************************************************** |
| 7731 | * |
| 7732 | * Returns an encoding for the specified register used in the 'Vm' position |
| 7733 | */ |
| 7734 | |
| 7735 | /*static*/ emitter::code_t emitter::insEncodeReg_Vm(regNumber reg) |
| 7736 | { |
| 7737 | assert(emitter::isVectorRegister(reg)); |
| 7738 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
| 7739 | assert((ureg >= 0) && (ureg <= 31)); |
| 7740 | return ureg << 16; |
| 7741 | } |
| 7742 | |
| 7743 | /***************************************************************************** |
| 7744 | * |
| 7745 | * Returns an encoding for the specified register used in the 'Va' position |
| 7746 | */ |
| 7747 | |
| 7748 | /*static*/ emitter::code_t emitter::insEncodeReg_Va(regNumber reg) |
| 7749 | { |
| 7750 | assert(emitter::isVectorRegister(reg)); |
| 7751 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
| 7752 | assert((ureg >= 0) && (ureg <= 31)); |
| 7753 | return ureg << 10; |
| 7754 | } |
| 7755 | |
| 7756 | /***************************************************************************** |
| 7757 | * |
| 7758 | * Returns an encoding for the specified condition code. |
| 7759 | */ |
| 7760 | |
| 7761 | /*static*/ emitter::code_t emitter::insEncodeCond(insCond cond) |
| 7762 | { |
| 7763 | emitter::code_t uimm = (emitter::code_t)cond; |
| 7764 | return uimm << 12; |
| 7765 | } |
| 7766 | |
| 7767 | /***************************************************************************** |
| 7768 | * |
| 7769 | * Returns an encoding for the condition code with the lowest bit inverted (marked by invert(<cond>) in the |
| 7770 | * architecture manual). |
| 7771 | */ |
| 7772 | |
| 7773 | /*static*/ emitter::code_t emitter::insEncodeInvertedCond(insCond cond) |
| 7774 | { |
| 7775 | emitter::code_t uimm = (emitter::code_t)cond; |
| 7776 | uimm ^= 1; // invert the lowest bit |
| 7777 | return uimm << 12; |
| 7778 | } |
| 7779 | |
| 7780 | /***************************************************************************** |
| 7781 | * |
| 7782 | * Returns an encoding for the specified flags. |
| 7783 | */ |
| 7784 | |
| 7785 | /*static*/ emitter::code_t emitter::insEncodeFlags(insCflags flags) |
| 7786 | { |
| 7787 | emitter::code_t uimm = (emitter::code_t)flags; |
| 7788 | return uimm; |
| 7789 | } |
| 7790 | |
| 7791 | /***************************************************************************** |
| 7792 | * |
| 7793 | * Returns the encoding for the Shift Count bits to be used for Arm64 encodings |
| 7794 | */ |
| 7795 | |
| 7796 | /*static*/ emitter::code_t emitter::insEncodeShiftCount(ssize_t imm, emitAttr size) |
| 7797 | { |
| 7798 | assert((imm & 0x003F) == imm); |
| 7799 | assert(((imm & 0x0020) == 0) || (size == EA_8BYTE)); |
| 7800 | |
| 7801 | return (emitter::code_t)imm << 10; |
| 7802 | } |
| 7803 | |
| 7804 | /***************************************************************************** |
| 7805 | * |
| 7806 | * Returns the encoding to select a 64-bit datasize for an Arm64 instruction |
| 7807 | */ |
| 7808 | |
| 7809 | /*static*/ emitter::code_t emitter::insEncodeDatasize(emitAttr size) |
| 7810 | { |
| 7811 | if (size == EA_8BYTE) |
| 7812 | { |
| 7813 | return 0x80000000; // set the bit at location 31 |
| 7814 | } |
| 7815 | else |
| 7816 | { |
| 7817 | assert(size == EA_4BYTE); |
| 7818 | return 0; |
| 7819 | } |
| 7820 | } |
| 7821 | |
| 7822 | /***************************************************************************** |
| 7823 | * |
| 7824 | * Returns the encoding to select the datasize for the general load/store Arm64 instructions |
| 7825 | * |
| 7826 | */ |
| 7827 | |
| 7828 | /*static*/ emitter::code_t emitter::insEncodeDatasizeLS(emitter::code_t code, emitAttr size) |
| 7829 | { |
| 7830 | bool exclusive = ((code & 0x35000000) == 0); |
| 7831 | bool atomic = ((code & 0x31200C00) == 0x30200000); |
| 7832 | |
| 7833 | if ((code & 0x00800000) && !exclusive && !atomic) // Is this a sign-extending opcode? (i.e. ldrsw, ldrsh, ldrsb) |
| 7834 | { |
| 7835 | if ((code & 0x80000000) == 0) // Is it a ldrsh or ldrsb and not ldrsw ? |
| 7836 | { |
| 7837 | if (EA_SIZE(size) != EA_8BYTE) // Do we need to encode the 32-bit Rt size bit? |
| 7838 | { |
| 7839 | return 0x00400000; // set the bit at location 22 |
| 7840 | } |
| 7841 | } |
| 7842 | } |
| 7843 | else if (code & 0x80000000) // Is this a ldr/str/ldur/stur opcode? |
| 7844 | { |
| 7845 | if (EA_SIZE(size) == EA_8BYTE) // Do we need to encode the 64-bit size bit? |
| 7846 | { |
| 7847 | return 0x40000000; // set the bit at location 30 |
| 7848 | } |
| 7849 | } |
| 7850 | return 0; |
| 7851 | } |
| 7852 | |
| 7853 | /***************************************************************************** |
| 7854 | * |
| 7855 | * Returns the encoding to select the datasize for the vector load/store Arm64 instructions |
| 7856 | * |
| 7857 | */ |
| 7858 | |
| 7859 | /*static*/ emitter::code_t emitter::insEncodeDatasizeVLS(emitter::code_t code, emitAttr size) |
| 7860 | { |
| 7861 | code_t result = 0; |
| 7862 | |
| 7863 | // Check bit 29 |
| 7864 | if ((code & 0x20000000) == 0) |
| 7865 | { |
| 7866 | // LDR literal |
| 7867 | |
| 7868 | if (size == EA_16BYTE) |
| 7869 | { |
| 7870 | // set the operation size in bit 31 |
| 7871 | result = 0x80000000; |
| 7872 | } |
| 7873 | else if (size == EA_8BYTE) |
| 7874 | { |
| 7875 | // set the operation size in bit 30 |
| 7876 | result = 0x40000000; |
| 7877 | } |
| 7878 | else |
| 7879 | { |
| 7880 | assert(size == EA_4BYTE); |
| 7881 | // no bits are set |
| 7882 | result = 0x00000000; |
| 7883 | } |
| 7884 | } |
| 7885 | else |
| 7886 | { |
| 7887 | // LDR non-literal |
| 7888 | |
| 7889 | if (size == EA_16BYTE) |
| 7890 | { |
| 7891 | // The operation size in bits 31 and 30 are zero |
| 7892 | // Bit 23 specifies a 128-bit Load/Store |
| 7893 | result = 0x00800000; |
| 7894 | } |
| 7895 | else if (size == EA_8BYTE) |
| 7896 | { |
| 7897 | // set the operation size in bits 31 and 30 |
| 7898 | result = 0xC0000000; |
| 7899 | } |
| 7900 | else if (size == EA_4BYTE) |
| 7901 | { |
| 7902 | // set the operation size in bit 31 |
| 7903 | result = 0x80000000; |
| 7904 | } |
| 7905 | else if (size == EA_2BYTE) |
| 7906 | { |
| 7907 | // set the operation size in bit 30 |
| 7908 | result = 0x40000000; |
| 7909 | } |
| 7910 | else |
| 7911 | { |
| 7912 | assert(size == EA_1BYTE); |
| 7913 | // The operation size in bits 31 and 30 are zero |
| 7914 | result = 0x00000000; |
| 7915 | } |
| 7916 | } |
| 7917 | |
| 7918 | // Or in bit 26 to indicate a Vector register is used as 'target' |
| 7919 | result |= 0x04000000; |
| 7920 | |
| 7921 | return result; |
| 7922 | } |
| 7923 | |
| 7924 | /***************************************************************************** |
| 7925 | * |
| 7926 | * Returns the encoding to select the datasize for the vector load/store Arm64 instructions |
| 7927 | * |
| 7928 | */ |
| 7929 | |
| 7930 | /*static*/ emitter::code_t emitter::insEncodeDatasizeVPLS(emitter::code_t code, emitAttr size) |
| 7931 | { |
| 7932 | code_t result = 0; |
| 7933 | |
| 7934 | if (size == EA_16BYTE) |
| 7935 | { |
| 7936 | // The operation size in bits 31 and 30 are zero |
| 7937 | // Bit 23 specifies a 128-bit Load/Store |
| 7938 | result = 0x80000000; |
| 7939 | } |
| 7940 | else if (size == EA_8BYTE) |
| 7941 | { |
| 7942 | // set the operation size in bits 31 and 30 |
| 7943 | result = 0x40000000; |
| 7944 | } |
| 7945 | else if (size == EA_4BYTE) |
| 7946 | { |
| 7947 | // set the operation size in bit 31 |
| 7948 | result = 0x00000000; |
| 7949 | } |
| 7950 | |
| 7951 | // Or in bit 26 to indicate a Vector register is used as 'target' |
| 7952 | result |= 0x04000000; |
| 7953 | |
| 7954 | return result; |
| 7955 | } |
| 7956 | |
| 7957 | /***************************************************************************** |
| 7958 | * |
| 7959 | * Returns the encoding to set the size bit and the N bits for a 'bitfield' instruction |
| 7960 | * |
| 7961 | */ |
| 7962 | |
| 7963 | /*static*/ emitter::code_t emitter::insEncodeDatasizeBF(emitter::code_t code, emitAttr size) |
| 7964 | { |
| 7965 | // is bit 30 equal to 0? |
| 7966 | if ((code & 0x40000000) == 0) // is the opcode one of extr, sxtb, sxth or sxtw |
| 7967 | { |
| 7968 | if (size == EA_8BYTE) // Do we need to set the sf and N bits? |
| 7969 | { |
| 7970 | return 0x80400000; // set the sf-bit at location 31 and the N-bit at location 22 |
| 7971 | } |
| 7972 | } |
| 7973 | return 0; // don't set any bits |
| 7974 | } |
| 7975 | |
| 7976 | /***************************************************************************** |
| 7977 | * |
| 7978 | * Returns the encoding to select the 64/128-bit datasize for an Arm64 vector instruction |
| 7979 | */ |
| 7980 | |
| 7981 | /*static*/ emitter::code_t emitter::insEncodeVectorsize(emitAttr size) |
| 7982 | { |
| 7983 | if (size == EA_16BYTE) |
| 7984 | { |
| 7985 | return 0x40000000; // set the bit at location 30 |
| 7986 | } |
| 7987 | else |
| 7988 | { |
| 7989 | assert(size == EA_8BYTE); |
| 7990 | return 0; |
| 7991 | } |
| 7992 | } |
| 7993 | |
| 7994 | /***************************************************************************** |
| 7995 | * |
| 7996 | * Returns the encoding to select 'index' for an Arm64 vector elem instruction |
| 7997 | */ |
| 7998 | /*static*/ emitter::code_t emitter::insEncodeVectorIndex(emitAttr elemsize, ssize_t index) |
| 7999 | { |
| 8000 | code_t bits = (code_t)index; |
| 8001 | if (elemsize == EA_1BYTE) |
| 8002 | { |
| 8003 | bits <<= 1; |
| 8004 | bits |= 1; |
| 8005 | } |
| 8006 | else if (elemsize == EA_2BYTE) |
| 8007 | { |
| 8008 | bits <<= 2; |
| 8009 | bits |= 2; |
| 8010 | } |
| 8011 | else if (elemsize == EA_4BYTE) |
| 8012 | { |
| 8013 | bits <<= 3; |
| 8014 | bits |= 4; |
| 8015 | } |
| 8016 | else |
| 8017 | { |
| 8018 | assert(elemsize == EA_8BYTE); |
| 8019 | bits <<= 4; |
| 8020 | bits |= 8; |
| 8021 | } |
| 8022 | assert((bits >= 1) && (bits <= 0x1f)); |
| 8023 | |
| 8024 | return (bits << 16); // bits at locations [20,19,18,17,16] |
| 8025 | } |
| 8026 | |
| 8027 | /***************************************************************************** |
| 8028 | * |
| 8029 | * Returns the encoding to select 'index2' for an Arm64 'ins' elem instruction |
| 8030 | */ |
| 8031 | /*static*/ emitter::code_t emitter::insEncodeVectorIndex2(emitAttr elemsize, ssize_t index2) |
| 8032 | { |
| 8033 | code_t bits = (code_t)index2; |
| 8034 | if (elemsize == EA_1BYTE) |
| 8035 | { |
| 8036 | // bits are correct |
| 8037 | } |
| 8038 | else if (elemsize == EA_2BYTE) |
| 8039 | { |
| 8040 | bits <<= 1; |
| 8041 | } |
| 8042 | else if (elemsize == EA_4BYTE) |
| 8043 | { |
| 8044 | bits <<= 2; |
| 8045 | } |
| 8046 | else |
| 8047 | { |
| 8048 | assert(elemsize == EA_8BYTE); |
| 8049 | bits <<= 3; |
| 8050 | } |
| 8051 | assert((bits >= 0) && (bits <= 0xf)); |
| 8052 | |
| 8053 | return (bits << 11); // bits at locations [14,13,12,11] |
| 8054 | } |
| 8055 | |
| 8056 | /***************************************************************************** |
| 8057 | * |
| 8058 | * Returns the encoding to select the 'index' for an Arm64 'mul' by elem instruction |
| 8059 | */ |
| 8060 | /*static*/ emitter::code_t emitter::insEncodeVectorIndexLMH(emitAttr elemsize, ssize_t index) |
| 8061 | { |
| 8062 | code_t bits = 0; |
| 8063 | |
| 8064 | if (elemsize == EA_2BYTE) |
| 8065 | { |
| 8066 | assert((index >= 0) && (index <= 7)); |
| 8067 | if (index & 0x4) |
| 8068 | { |
| 8069 | bits |= (1 << 11); // set bit 11 'H' |
| 8070 | } |
| 8071 | if (index & 0x2) |
| 8072 | { |
| 8073 | bits |= (1 << 21); // set bit 21 'L' |
| 8074 | } |
| 8075 | if (index & 0x1) |
| 8076 | { |
| 8077 | bits |= (1 << 20); // set bit 20 'M' |
| 8078 | } |
| 8079 | } |
| 8080 | else if (elemsize == EA_4BYTE) |
| 8081 | { |
| 8082 | assert((index >= 0) && (index <= 3)); |
| 8083 | if (index & 0x2) |
| 8084 | { |
| 8085 | bits |= (1 << 11); // set bit 11 'H' |
| 8086 | } |
| 8087 | if (index & 0x1) |
| 8088 | { |
| 8089 | bits |= (1 << 21); // set bit 21 'L' |
| 8090 | } |
| 8091 | } |
| 8092 | else |
| 8093 | { |
| 8094 | assert(!"Invalid 'elemsize' value" ); |
| 8095 | } |
| 8096 | |
| 8097 | return bits; |
| 8098 | } |
| 8099 | |
| 8100 | /***************************************************************************** |
| 8101 | * |
| 8102 | * Returns the encoding to shift by 'shift' for an Arm64 vector or scalar instruction |
| 8103 | */ |
| 8104 | |
| 8105 | /*static*/ emitter::code_t emitter::insEncodeVectorShift(emitAttr size, ssize_t shift) |
| 8106 | { |
| 8107 | assert(shift < getBitWidth(size)); |
| 8108 | |
| 8109 | code_t imm = (code_t)(getBitWidth(size) + shift); |
| 8110 | |
| 8111 | return imm << 16; |
| 8112 | } |
| 8113 | |
| 8114 | /***************************************************************************** |
| 8115 | * |
| 8116 | * Returns the encoding to select the 1/2/4/8 byte elemsize for an Arm64 vector instruction |
| 8117 | */ |
| 8118 | |
| 8119 | /*static*/ emitter::code_t emitter::insEncodeElemsize(emitAttr size) |
| 8120 | { |
| 8121 | if (size == EA_8BYTE) |
| 8122 | { |
| 8123 | return 0x00C00000; // set the bit at location 23 and 22 |
| 8124 | } |
| 8125 | else if (size == EA_4BYTE) |
| 8126 | { |
| 8127 | return 0x00800000; // set the bit at location 23 |
| 8128 | } |
| 8129 | else if (size == EA_2BYTE) |
| 8130 | { |
| 8131 | return 0x00400000; // set the bit at location 22 |
| 8132 | } |
| 8133 | assert(size == EA_1BYTE); |
| 8134 | return 0x00000000; |
| 8135 | } |
| 8136 | |
| 8137 | /***************************************************************************** |
| 8138 | * |
| 8139 | * Returns the encoding to select the 4/8 byte elemsize for an Arm64 float vector instruction |
| 8140 | */ |
| 8141 | |
| 8142 | /*static*/ emitter::code_t emitter::insEncodeFloatElemsize(emitAttr size) |
| 8143 | { |
| 8144 | if (size == EA_8BYTE) |
| 8145 | { |
| 8146 | return 0x00400000; // set the bit at location 22 |
| 8147 | } |
| 8148 | assert(size == EA_4BYTE); |
| 8149 | return 0x00000000; |
| 8150 | } |
| 8151 | |
| 8152 | // Returns the encoding to select the index for an Arm64 float vector by elem instruction |
| 8153 | /*static*/ emitter::code_t emitter::insEncodeFloatIndex(emitAttr elemsize, ssize_t index) |
| 8154 | { |
| 8155 | code_t result = 0x00000000; |
| 8156 | if (elemsize == EA_8BYTE) |
| 8157 | { |
| 8158 | assert((index >= 0) && (index <= 1)); |
| 8159 | if (index == 1) |
| 8160 | { |
| 8161 | result |= 0x00000800; // 'H' - set the bit at location 11 |
| 8162 | } |
| 8163 | } |
| 8164 | else |
| 8165 | { |
| 8166 | assert(elemsize == EA_4BYTE); |
| 8167 | assert((index >= 0) && (index <= 3)); |
| 8168 | if (index & 2) |
| 8169 | { |
| 8170 | result |= 0x00000800; // 'H' - set the bit at location 11 |
| 8171 | } |
| 8172 | if (index & 1) |
| 8173 | { |
| 8174 | result |= 0x00200000; // 'L' - set the bit at location 21 |
| 8175 | } |
| 8176 | } |
| 8177 | return result; |
| 8178 | } |
| 8179 | |
| 8180 | /***************************************************************************** |
| 8181 | * |
| 8182 | * Returns the encoding to select the fcvt operation for Arm64 instructions |
| 8183 | */ |
| 8184 | /*static*/ emitter::code_t emitter::insEncodeConvertOpt(insFormat fmt, insOpts conversion) |
| 8185 | { |
| 8186 | code_t result = 0; |
| 8187 | switch (conversion) |
| 8188 | { |
| 8189 | case INS_OPTS_S_TO_D: // Single to Double |
| 8190 | assert(fmt == IF_DV_2J); |
| 8191 | result = 0x00008000; // type=00, opc=01 |
| 8192 | break; |
| 8193 | |
| 8194 | case INS_OPTS_D_TO_S: // Double to Single |
| 8195 | assert(fmt == IF_DV_2J); |
| 8196 | result = 0x00400000; // type=01, opc=00 |
| 8197 | break; |
| 8198 | |
| 8199 | case INS_OPTS_H_TO_S: // Half to Single |
| 8200 | assert(fmt == IF_DV_2J); |
| 8201 | result = 0x00C00000; // type=11, opc=00 |
| 8202 | break; |
| 8203 | |
| 8204 | case INS_OPTS_H_TO_D: // Half to Double |
| 8205 | assert(fmt == IF_DV_2J); |
| 8206 | result = 0x00C08000; // type=11, opc=01 |
| 8207 | break; |
| 8208 | |
| 8209 | case INS_OPTS_S_TO_H: // Single to Half |
| 8210 | assert(fmt == IF_DV_2J); |
| 8211 | result = 0x00018000; // type=00, opc=11 |
| 8212 | break; |
| 8213 | |
| 8214 | case INS_OPTS_D_TO_H: // Double to Half |
| 8215 | assert(fmt == IF_DV_2J); |
| 8216 | result = 0x00418000; // type=01, opc=11 |
| 8217 | break; |
| 8218 | |
| 8219 | case INS_OPTS_S_TO_4BYTE: // Single to INT32 |
| 8220 | assert(fmt == IF_DV_2H); |
| 8221 | result = 0x00000000; // sf=0, type=00 |
| 8222 | break; |
| 8223 | |
| 8224 | case INS_OPTS_D_TO_4BYTE: // Double to INT32 |
| 8225 | assert(fmt == IF_DV_2H); |
| 8226 | result = 0x00400000; // sf=0, type=01 |
| 8227 | break; |
| 8228 | |
| 8229 | case INS_OPTS_S_TO_8BYTE: // Single to INT64 |
| 8230 | assert(fmt == IF_DV_2H); |
| 8231 | result = 0x80000000; // sf=1, type=00 |
| 8232 | break; |
| 8233 | |
| 8234 | case INS_OPTS_D_TO_8BYTE: // Double to INT64 |
| 8235 | assert(fmt == IF_DV_2H); |
| 8236 | result = 0x80400000; // sf=1, type=01 |
| 8237 | break; |
| 8238 | |
| 8239 | case INS_OPTS_4BYTE_TO_S: // INT32 to Single |
| 8240 | assert(fmt == IF_DV_2I); |
| 8241 | result = 0x00000000; // sf=0, type=00 |
| 8242 | break; |
| 8243 | |
| 8244 | case INS_OPTS_4BYTE_TO_D: // INT32 to Double |
| 8245 | assert(fmt == IF_DV_2I); |
| 8246 | result = 0x00400000; // sf=0, type=01 |
| 8247 | break; |
| 8248 | |
| 8249 | case INS_OPTS_8BYTE_TO_S: // INT64 to Single |
| 8250 | assert(fmt == IF_DV_2I); |
| 8251 | result = 0x80000000; // sf=1, type=00 |
| 8252 | break; |
| 8253 | |
| 8254 | case INS_OPTS_8BYTE_TO_D: // INT64 to Double |
| 8255 | assert(fmt == IF_DV_2I); |
| 8256 | result = 0x80400000; // sf=1, type=01 |
| 8257 | break; |
| 8258 | |
| 8259 | default: |
| 8260 | assert(!"Invalid 'conversion' value" ); |
| 8261 | break; |
| 8262 | } |
| 8263 | return result; |
| 8264 | } |
| 8265 | |
| 8266 | /***************************************************************************** |
| 8267 | * |
| 8268 | * Returns the encoding to have the Rn register be updated Pre/Post indexed |
| 8269 | * or not updated |
| 8270 | */ |
| 8271 | |
| 8272 | /*static*/ emitter::code_t emitter::insEncodeIndexedOpt(insOpts opt) |
| 8273 | { |
| 8274 | assert(emitter::insOptsNone(opt) || emitter::insOptsIndexed(opt)); |
| 8275 | |
| 8276 | if (emitter::insOptsIndexed(opt)) |
| 8277 | { |
| 8278 | if (emitter::insOptsPostIndex(opt)) |
| 8279 | { |
| 8280 | return 0x00000400; // set the bit at location 10 |
| 8281 | } |
| 8282 | else |
| 8283 | { |
| 8284 | assert(emitter::insOptsPreIndex(opt)); |
| 8285 | return 0x00000C00; // set the bit at location 10 and 11 |
| 8286 | } |
| 8287 | } |
| 8288 | else |
| 8289 | { |
| 8290 | assert(emitter::insOptsNone(opt)); |
| 8291 | return 0; // bits 10 and 11 are zero |
| 8292 | } |
| 8293 | } |
| 8294 | |
| 8295 | /***************************************************************************** |
| 8296 | * |
| 8297 | * Returns the encoding for a ldp/stp instruction to have the Rn register |
| 8298 | * be updated Pre/Post indexed or not updated |
| 8299 | */ |
| 8300 | |
| 8301 | /*static*/ emitter::code_t emitter::insEncodePairIndexedOpt(instruction ins, insOpts opt) |
| 8302 | { |
| 8303 | assert(emitter::insOptsNone(opt) || emitter::insOptsIndexed(opt)); |
| 8304 | |
| 8305 | if ((ins == INS_ldnp) || (ins == INS_stnp)) |
| 8306 | { |
| 8307 | assert(emitter::insOptsNone(opt)); |
| 8308 | return 0; // bits 23 and 24 are zero |
| 8309 | } |
| 8310 | else |
| 8311 | { |
| 8312 | if (emitter::insOptsIndexed(opt)) |
| 8313 | { |
| 8314 | if (emitter::insOptsPostIndex(opt)) |
| 8315 | { |
| 8316 | return 0x00800000; // set the bit at location 23 |
| 8317 | } |
| 8318 | else |
| 8319 | { |
| 8320 | assert(emitter::insOptsPreIndex(opt)); |
| 8321 | return 0x01800000; // set the bit at location 24 and 23 |
| 8322 | } |
| 8323 | } |
| 8324 | else |
| 8325 | { |
| 8326 | assert(emitter::insOptsNone(opt)); |
| 8327 | return 0x01000000; // set the bit at location 24 |
| 8328 | } |
| 8329 | } |
| 8330 | } |
| 8331 | |
| 8332 | /***************************************************************************** |
| 8333 | * |
| 8334 | * Returns the encoding to apply a Shift Type on the Rm register |
| 8335 | */ |
| 8336 | |
| 8337 | /*static*/ emitter::code_t emitter::insEncodeShiftType(insOpts opt) |
| 8338 | { |
| 8339 | if (emitter::insOptsNone(opt)) |
| 8340 | { |
| 8341 | // None implies the we encode LSL (with a zero immediate) |
| 8342 | opt = INS_OPTS_LSL; |
| 8343 | } |
| 8344 | assert(emitter::insOptsAnyShift(opt)); |
| 8345 | |
| 8346 | emitter::code_t option = (emitter::code_t)opt - (emitter::code_t)INS_OPTS_LSL; |
| 8347 | assert(option <= 3); |
| 8348 | |
| 8349 | return option << 22; // bits 23, 22 |
| 8350 | } |
| 8351 | |
| 8352 | /***************************************************************************** |
| 8353 | * |
| 8354 | * Returns the encoding to apply a 12 bit left shift to the immediate |
| 8355 | */ |
| 8356 | |
| 8357 | /*static*/ emitter::code_t emitter::insEncodeShiftImm12(insOpts opt) |
| 8358 | { |
| 8359 | if (emitter::insOptsLSL12(opt)) |
| 8360 | { |
| 8361 | return 0x00400000; // set the bit at location 22 |
| 8362 | } |
| 8363 | return 0; |
| 8364 | } |
| 8365 | |
| 8366 | /***************************************************************************** |
| 8367 | * |
| 8368 | * Returns the encoding to have the Rm register use an extend operation |
| 8369 | */ |
| 8370 | |
| 8371 | /*static*/ emitter::code_t emitter::insEncodeExtend(insOpts opt) |
| 8372 | { |
| 8373 | if (emitter::insOptsNone(opt) || (opt == INS_OPTS_LSL)) |
| 8374 | { |
| 8375 | // None or LSL implies the we encode UXTX |
| 8376 | opt = INS_OPTS_UXTX; |
| 8377 | } |
| 8378 | assert(emitter::insOptsAnyExtend(opt)); |
| 8379 | |
| 8380 | emitter::code_t option = (emitter::code_t)opt - (emitter::code_t)INS_OPTS_UXTB; |
| 8381 | assert(option <= 7); |
| 8382 | |
| 8383 | return option << 13; // bits 15,14,13 |
| 8384 | } |
| 8385 | |
| 8386 | /***************************************************************************** |
| 8387 | * |
| 8388 | * Returns the encoding to scale the Rm register by {0,1,2,3,4} |
| 8389 | * when using an extend operation |
| 8390 | */ |
| 8391 | |
| 8392 | /*static*/ emitter::code_t emitter::insEncodeExtendScale(ssize_t imm) |
| 8393 | { |
| 8394 | assert((imm >= 0) && (imm <= 4)); |
| 8395 | |
| 8396 | return (emitter::code_t)imm << 10; // bits 12,11,10 |
| 8397 | } |
| 8398 | |
| 8399 | /***************************************************************************** |
| 8400 | * |
| 8401 | * Returns the encoding to have the Rm register be auto scaled by the ld/st size |
| 8402 | */ |
| 8403 | |
| 8404 | /*static*/ emitter::code_t emitter::insEncodeReg3Scale(bool isScaled) |
| 8405 | { |
| 8406 | if (isScaled) |
| 8407 | { |
| 8408 | return 0x00001000; // set the bit at location 12 |
| 8409 | } |
| 8410 | else |
| 8411 | { |
| 8412 | return 0; |
| 8413 | } |
| 8414 | } |
| 8415 | |
| 8416 | BYTE* emitter::emitOutputLoadLabel(BYTE* dst, BYTE* srcAddr, BYTE* dstAddr, instrDescJmp* id) |
| 8417 | { |
| 8418 | instruction ins = id->idIns(); |
| 8419 | insFormat fmt = id->idInsFmt(); |
| 8420 | regNumber dstReg = id->idReg1(); |
| 8421 | if (id->idjShort) |
| 8422 | { |
| 8423 | // adr x, [rel addr] -- compute address: current addr(ip) + rel addr. |
| 8424 | assert(ins == INS_adr); |
| 8425 | assert(fmt == IF_DI_1E); |
| 8426 | ssize_t distVal = (ssize_t)(dstAddr - srcAddr); |
| 8427 | dst = emitOutputShortAddress(dst, ins, fmt, distVal, dstReg); |
| 8428 | } |
| 8429 | else |
| 8430 | { |
| 8431 | // adrp x, [rel page addr] -- compute page address: current page addr + rel page addr |
| 8432 | assert(fmt == IF_LARGEADR); |
| 8433 | ssize_t relPageAddr = |
| 8434 | (((ssize_t)dstAddr & 0xFFFFFFFFFFFFF000LL) - ((ssize_t)srcAddr & 0xFFFFFFFFFFFFF000LL)) >> 12; |
| 8435 | dst = emitOutputShortAddress(dst, INS_adrp, IF_DI_1E, relPageAddr, dstReg); |
| 8436 | |
| 8437 | // add x, x, page offs -- compute address = page addr + page offs |
| 8438 | ssize_t imm12 = (ssize_t)dstAddr & 0xFFF; // 12 bits |
| 8439 | assert(isValidUimm12(imm12)); |
| 8440 | code_t code = |
| 8441 | emitInsCode(INS_add, IF_DI_2A); // DI_2A X0010001shiiiiii iiiiiinnnnnddddd 1100 0000 imm(i12, sh) |
| 8442 | code |= insEncodeDatasize(EA_8BYTE); // X |
| 8443 | code |= ((code_t)imm12 << 10); // iiiiiiiiiiii |
| 8444 | code |= insEncodeReg_Rd(dstReg); // ddddd |
| 8445 | code |= insEncodeReg_Rn(dstReg); // nnnnn |
| 8446 | dst += emitOutput_Instr(dst, code); |
| 8447 | } |
| 8448 | return dst; |
| 8449 | } |
| 8450 | |
| 8451 | /***************************************************************************** |
| 8452 | * |
| 8453 | * Output a local jump or other instruction with a pc-relative immediate. |
| 8454 | * Note that this may be invoked to overwrite an existing jump instruction at 'dst' |
| 8455 | * to handle forward branch patching. |
| 8456 | */ |
| 8457 | |
| 8458 | BYTE* emitter::emitOutputLJ(insGroup* ig, BYTE* dst, instrDesc* i) |
| 8459 | { |
| 8460 | instrDescJmp* id = (instrDescJmp*)i; |
| 8461 | |
| 8462 | unsigned srcOffs; |
| 8463 | unsigned dstOffs; |
| 8464 | BYTE* srcAddr; |
| 8465 | BYTE* dstAddr; |
| 8466 | ssize_t distVal; |
| 8467 | |
| 8468 | // Set default ins/fmt from id. |
| 8469 | instruction ins = id->idIns(); |
| 8470 | insFormat fmt = id->idInsFmt(); |
| 8471 | |
| 8472 | bool loadLabel = false; |
| 8473 | bool isJump = false; |
| 8474 | bool loadConstant = false; |
| 8475 | |
| 8476 | switch (ins) |
| 8477 | { |
| 8478 | default: |
| 8479 | isJump = true; |
| 8480 | break; |
| 8481 | |
| 8482 | case INS_tbz: |
| 8483 | case INS_tbnz: |
| 8484 | case INS_cbz: |
| 8485 | case INS_cbnz: |
| 8486 | isJump = true; |
| 8487 | break; |
| 8488 | |
| 8489 | case INS_ldr: |
| 8490 | case INS_ldrsw: |
| 8491 | loadConstant = true; |
| 8492 | break; |
| 8493 | |
| 8494 | case INS_adr: |
| 8495 | case INS_adrp: |
| 8496 | loadLabel = true; |
| 8497 | break; |
| 8498 | } |
| 8499 | |
| 8500 | /* Figure out the distance to the target */ |
| 8501 | |
| 8502 | srcOffs = emitCurCodeOffs(dst); |
| 8503 | srcAddr = emitOffsetToPtr(srcOffs); |
| 8504 | |
| 8505 | if (id->idAddr()->iiaIsJitDataOffset()) |
| 8506 | { |
| 8507 | assert(loadConstant || loadLabel); |
| 8508 | int doff = id->idAddr()->iiaGetJitDataOffset(); |
| 8509 | assert(doff >= 0); |
| 8510 | ssize_t imm = emitGetInsSC(id); |
| 8511 | assert((imm >= 0) && (imm < 0x1000)); // 0x1000 is arbitrary, currently 'imm' is always 0 |
| 8512 | |
| 8513 | unsigned dataOffs = (unsigned)(doff + imm); |
| 8514 | assert(dataOffs < emitDataSize()); |
| 8515 | dstAddr = emitDataOffsetToPtr(dataOffs); |
| 8516 | |
| 8517 | regNumber dstReg = id->idReg1(); |
| 8518 | regNumber addrReg = dstReg; // an integer register to compute long address. |
| 8519 | emitAttr opSize = id->idOpSize(); |
| 8520 | |
| 8521 | if (loadConstant) |
| 8522 | { |
| 8523 | if (id->idjShort) |
| 8524 | { |
| 8525 | // ldr x/v, [rel addr] -- load constant from current addr(ip) + rel addr. |
| 8526 | assert(ins == INS_ldr); |
| 8527 | assert(fmt == IF_LS_1A); |
| 8528 | distVal = (ssize_t)(dstAddr - srcAddr); |
| 8529 | dst = emitOutputShortConstant(dst, ins, fmt, distVal, dstReg, opSize); |
| 8530 | } |
| 8531 | else |
| 8532 | { |
| 8533 | // adrp x, [rel page addr] -- compute page address: current page addr + rel page addr |
| 8534 | assert(fmt == IF_LARGELDC); |
| 8535 | ssize_t relPageAddr = |
| 8536 | (((ssize_t)dstAddr & 0xFFFFFFFFFFFFF000LL) - ((ssize_t)srcAddr & 0xFFFFFFFFFFFFF000LL)) >> 12; |
| 8537 | if (isVectorRegister(dstReg)) |
| 8538 | { |
| 8539 | // Update addrReg with the reserved integer register |
| 8540 | // since we cannot use dstReg (vector) to load constant directly from memory. |
| 8541 | addrReg = id->idReg2(); |
| 8542 | assert(isGeneralRegister(addrReg)); |
| 8543 | } |
| 8544 | ins = INS_adrp; |
| 8545 | fmt = IF_DI_1E; |
| 8546 | dst = emitOutputShortAddress(dst, ins, fmt, relPageAddr, addrReg); |
| 8547 | |
| 8548 | // ldr x, [x, page offs] -- load constant from page address + page offset into integer register. |
| 8549 | ssize_t imm12 = (ssize_t)dstAddr & 0xFFF; // 12 bits |
| 8550 | assert(isValidUimm12(imm12)); |
| 8551 | ins = INS_ldr; |
| 8552 | fmt = IF_LS_2B; |
| 8553 | dst = emitOutputShortConstant(dst, ins, fmt, imm12, addrReg, opSize); |
| 8554 | |
| 8555 | // fmov v, d -- copy constant in integer register to vector register. |
| 8556 | // This is needed only for vector constant. |
| 8557 | if (addrReg != dstReg) |
| 8558 | { |
| 8559 | // fmov Vd,Rn DV_2I X00111100X100111 000000nnnnnddddd 1E27 0000 Vd,Rn |
| 8560 | // (scalar, from general) |
| 8561 | assert(isVectorRegister(dstReg) && isGeneralRegister(addrReg)); |
| 8562 | ins = INS_fmov; |
| 8563 | fmt = IF_DV_2I; |
| 8564 | code_t code = emitInsCode(ins, fmt); |
| 8565 | |
| 8566 | code |= insEncodeReg_Vd(dstReg); // ddddd |
| 8567 | code |= insEncodeReg_Rn(addrReg); // nnnnn |
| 8568 | if (id->idOpSize() == EA_8BYTE) |
| 8569 | { |
| 8570 | code |= 0x80400000; // X ... X |
| 8571 | } |
| 8572 | dst += emitOutput_Instr(dst, code); |
| 8573 | } |
| 8574 | } |
| 8575 | } |
| 8576 | else |
| 8577 | { |
| 8578 | assert(loadLabel); |
| 8579 | dst = emitOutputLoadLabel(dst, srcAddr, dstAddr, id); |
| 8580 | } |
| 8581 | |
| 8582 | return dst; |
| 8583 | } |
| 8584 | |
| 8585 | assert(loadLabel || isJump); |
| 8586 | |
| 8587 | if (id->idAddr()->iiaHasInstrCount()) |
| 8588 | { |
| 8589 | assert(ig != NULL); |
| 8590 | int instrCount = id->idAddr()->iiaGetInstrCount(); |
| 8591 | unsigned insNum = emitFindInsNum(ig, id); |
| 8592 | if (instrCount < 0) |
| 8593 | { |
| 8594 | // Backward branches using instruction count must be within the same instruction group. |
| 8595 | assert(insNum + 1 >= (unsigned)(-instrCount)); |
| 8596 | } |
| 8597 | dstOffs = ig->igOffs + emitFindOffset(ig, (insNum + 1 + instrCount)); |
| 8598 | dstAddr = emitOffsetToPtr(dstOffs); |
| 8599 | } |
| 8600 | else |
| 8601 | { |
| 8602 | dstOffs = id->idAddr()->iiaIGlabel->igOffs; |
| 8603 | dstAddr = emitOffsetToPtr(dstOffs); |
| 8604 | } |
| 8605 | |
| 8606 | distVal = (ssize_t)(dstAddr - srcAddr); |
| 8607 | |
| 8608 | if (dstOffs <= srcOffs) |
| 8609 | { |
| 8610 | #if DEBUG_EMIT |
| 8611 | /* This is a backward jump - distance is known at this point */ |
| 8612 | |
| 8613 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
| 8614 | { |
| 8615 | size_t blkOffs = id->idjIG->igOffs; |
| 8616 | |
| 8617 | if (INTERESTING_JUMP_NUM == 0) |
| 8618 | printf("[3] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
| 8619 | printf("[3] Jump block is at %08X - %02X = %08X\n" , blkOffs, emitOffsAdj, blkOffs - emitOffsAdj); |
| 8620 | printf("[3] Jump is at %08X - %02X = %08X\n" , srcOffs, emitOffsAdj, srcOffs - emitOffsAdj); |
| 8621 | printf("[3] Label block is at %08X - %02X = %08X\n" , dstOffs, emitOffsAdj, dstOffs - emitOffsAdj); |
| 8622 | } |
| 8623 | #endif |
| 8624 | } |
| 8625 | else |
| 8626 | { |
| 8627 | /* This is a forward jump - distance will be an upper limit */ |
| 8628 | |
| 8629 | emitFwdJumps = true; |
| 8630 | |
| 8631 | /* The target offset will be closer by at least 'emitOffsAdj', but only if this |
| 8632 | jump doesn't cross the hot-cold boundary. */ |
| 8633 | |
| 8634 | if (!emitJumpCrossHotColdBoundary(srcOffs, dstOffs)) |
| 8635 | { |
| 8636 | dstOffs -= emitOffsAdj; |
| 8637 | distVal -= emitOffsAdj; |
| 8638 | } |
| 8639 | |
| 8640 | /* Record the location of the jump for later patching */ |
| 8641 | |
| 8642 | id->idjOffs = dstOffs; |
| 8643 | |
| 8644 | /* Are we overflowing the id->idjOffs bitfield? */ |
| 8645 | if (id->idjOffs != dstOffs) |
| 8646 | IMPL_LIMITATION("Method is too large" ); |
| 8647 | |
| 8648 | #if DEBUG_EMIT |
| 8649 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
| 8650 | { |
| 8651 | size_t blkOffs = id->idjIG->igOffs; |
| 8652 | |
| 8653 | if (INTERESTING_JUMP_NUM == 0) |
| 8654 | printf("[4] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
| 8655 | printf("[4] Jump block is at %08X\n" , blkOffs); |
| 8656 | printf("[4] Jump is at %08X\n" , srcOffs); |
| 8657 | printf("[4] Label block is at %08X - %02X = %08X\n" , dstOffs + emitOffsAdj, emitOffsAdj, dstOffs); |
| 8658 | } |
| 8659 | #endif |
| 8660 | } |
| 8661 | |
| 8662 | #ifdef DEBUG |
| 8663 | if (0 && emitComp->verbose) |
| 8664 | { |
| 8665 | size_t sz = 4; |
| 8666 | int distValSize = id->idjShort ? 4 : 8; |
| 8667 | printf("; %s jump [%08X/%03u] from %0*X to %0*X: dist = %08XH\n" , (dstOffs <= srcOffs) ? "Fwd" : "Bwd" , |
| 8668 | dspPtr(id), id->idDebugOnlyInfo()->idNum, distValSize, srcOffs + sz, distValSize, dstOffs, distVal); |
| 8669 | } |
| 8670 | #endif |
| 8671 | |
| 8672 | /* For forward jumps, record the address of the distance value */ |
| 8673 | id->idjTemp.idjAddr = (distVal > 0) ? dst : NULL; |
| 8674 | |
| 8675 | if (emitJumpCrossHotColdBoundary(srcOffs, dstOffs)) |
| 8676 | { |
| 8677 | assert(!id->idjShort); |
| 8678 | NYI_ARM64("Relocation Support for long address" ); |
| 8679 | } |
| 8680 | |
| 8681 | assert(insOptsNone(id->idInsOpt())); |
| 8682 | |
| 8683 | if (isJump) |
| 8684 | { |
| 8685 | if (id->idjShort) |
| 8686 | { |
| 8687 | // Short conditional/unconditional jump |
| 8688 | assert(!id->idjKeepLong); |
| 8689 | assert(emitJumpCrossHotColdBoundary(srcOffs, dstOffs) == false); |
| 8690 | assert((fmt == IF_BI_0A) || (fmt == IF_BI_0B) || (fmt == IF_BI_1A) || (fmt == IF_BI_1B)); |
| 8691 | } |
| 8692 | else |
| 8693 | { |
| 8694 | // Long conditional jump |
| 8695 | assert(fmt == IF_LARGEJMP); |
| 8696 | // This is a pseudo-instruction format representing a large conditional branch, to allow |
| 8697 | // us to get a greater branch target range than we can get by using a straightforward conditional |
| 8698 | // branch. It is encoded as a short conditional branch that branches around a long unconditional |
| 8699 | // branch. |
| 8700 | // |
| 8701 | // Conceptually, we have: |
| 8702 | // |
| 8703 | // b<cond> L_target |
| 8704 | // |
| 8705 | // The code we emit is: |
| 8706 | // |
| 8707 | // b<!cond> L_not // 4 bytes. Note that we reverse the condition. |
| 8708 | // b L_target // 4 bytes |
| 8709 | // L_not: |
| 8710 | // |
| 8711 | // Note that we don't actually insert any blocks: we simply encode "b <!cond> L_not" as a branch with |
| 8712 | // the correct offset. Note also that this works for both integer and floating-point conditions, because |
| 8713 | // the condition inversion takes ordered/unordered into account, preserving NaN behavior. For example, |
| 8714 | // "GT" (greater than) is inverted to "LE" (less than, equal, or unordered). |
| 8715 | |
| 8716 | instruction reverseIns; |
| 8717 | insFormat reverseFmt; |
| 8718 | |
| 8719 | switch (ins) |
| 8720 | { |
| 8721 | case INS_cbz: |
| 8722 | reverseIns = INS_cbnz; |
| 8723 | reverseFmt = IF_BI_1A; |
| 8724 | break; |
| 8725 | case INS_cbnz: |
| 8726 | reverseIns = INS_cbz; |
| 8727 | reverseFmt = IF_BI_1A; |
| 8728 | break; |
| 8729 | case INS_tbz: |
| 8730 | reverseIns = INS_tbnz; |
| 8731 | reverseFmt = IF_BI_1B; |
| 8732 | break; |
| 8733 | case INS_tbnz: |
| 8734 | reverseIns = INS_tbz; |
| 8735 | reverseFmt = IF_BI_1B; |
| 8736 | break; |
| 8737 | default: |
| 8738 | reverseIns = emitJumpKindToIns(emitReverseJumpKind(emitInsToJumpKind(ins))); |
| 8739 | reverseFmt = IF_BI_0B; |
| 8740 | } |
| 8741 | |
| 8742 | dst = |
| 8743 | emitOutputShortBranch(dst, |
| 8744 | reverseIns, // reverse the conditional instruction |
| 8745 | reverseFmt, |
| 8746 | 8, /* 8 bytes from start of this large conditional pseudo-instruction to L_not. */ |
| 8747 | id); |
| 8748 | |
| 8749 | // Now, pretend we've got a normal unconditional branch, and fall through to the code to emit that. |
| 8750 | ins = INS_b; |
| 8751 | fmt = IF_BI_0A; |
| 8752 | |
| 8753 | // The distVal was computed based on the beginning of the pseudo-instruction, |
| 8754 | // So subtract the size of the conditional branch so that it is relative to the |
| 8755 | // unconditional branch. |
| 8756 | distVal -= 4; |
| 8757 | } |
| 8758 | |
| 8759 | dst = emitOutputShortBranch(dst, ins, fmt, distVal, id); |
| 8760 | } |
| 8761 | else if (loadLabel) |
| 8762 | { |
| 8763 | dst = emitOutputLoadLabel(dst, srcAddr, dstAddr, id); |
| 8764 | } |
| 8765 | |
| 8766 | return dst; |
| 8767 | } |
| 8768 | |
| 8769 | /***************************************************************************** |
| 8770 | * |
| 8771 | * Output a short branch instruction. |
| 8772 | */ |
| 8773 | BYTE* emitter::emitOutputShortBranch(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, instrDescJmp* id) |
| 8774 | { |
| 8775 | code_t code = emitInsCode(ins, fmt); |
| 8776 | |
| 8777 | ssize_t loBits = (distVal & 3); |
| 8778 | noway_assert(loBits == 0); |
| 8779 | distVal >>= 2; // branch offset encodings are scaled by 4. |
| 8780 | |
| 8781 | if (fmt == IF_BI_0A) |
| 8782 | { |
| 8783 | // INS_b or INS_bl_local |
| 8784 | noway_assert(isValidSimm26(distVal)); |
| 8785 | distVal &= 0x3FFFFFFLL; |
| 8786 | code |= distVal; |
| 8787 | } |
| 8788 | else if (fmt == IF_BI_0B) // BI_0B 01010100iiiiiiii iiiiiiiiiiiXXXXX simm19:00 |
| 8789 | { |
| 8790 | // INS_beq, INS_bne, etc... |
| 8791 | noway_assert(isValidSimm19(distVal)); |
| 8792 | distVal &= 0x7FFFFLL; |
| 8793 | code |= distVal << 5; |
| 8794 | } |
| 8795 | else if (fmt == IF_BI_1A) // BI_1A X.......iiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
| 8796 | { |
| 8797 | // INS_cbz or INS_cbnz |
| 8798 | assert(id != nullptr); |
| 8799 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 8800 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 8801 | |
| 8802 | noway_assert(isValidSimm19(distVal)); |
| 8803 | distVal &= 0x7FFFFLL; // 19 bits |
| 8804 | code |= distVal << 5; |
| 8805 | } |
| 8806 | else if (fmt == IF_BI_1B) // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
| 8807 | { |
| 8808 | // INS_tbz or INS_tbnz |
| 8809 | assert(id != nullptr); |
| 8810 | ssize_t imm = emitGetInsSC(id); |
| 8811 | assert(isValidImmShift(imm, id->idOpSize())); |
| 8812 | |
| 8813 | if (imm & 0x20) // test bit 32-63 ? |
| 8814 | { |
| 8815 | code |= 0x80000000; // B |
| 8816 | } |
| 8817 | code |= ((imm & 0x1F) << 19); // bbbbb |
| 8818 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 8819 | |
| 8820 | noway_assert(isValidSimm14(distVal)); |
| 8821 | distVal &= 0x3FFFLL; // 14 bits |
| 8822 | code |= distVal << 5; |
| 8823 | } |
| 8824 | else |
| 8825 | { |
| 8826 | assert(!"Unknown fmt for emitOutputShortBranch" ); |
| 8827 | } |
| 8828 | |
| 8829 | dst += emitOutput_Instr(dst, code); |
| 8830 | |
| 8831 | return dst; |
| 8832 | } |
| 8833 | |
| 8834 | /***************************************************************************** |
| 8835 | * |
| 8836 | * Output a short address instruction. |
| 8837 | */ |
| 8838 | BYTE* emitter::emitOutputShortAddress(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg) |
| 8839 | { |
| 8840 | ssize_t loBits = (distVal & 3); |
| 8841 | distVal >>= 2; |
| 8842 | |
| 8843 | code_t code = emitInsCode(ins, fmt); |
| 8844 | if (fmt == IF_DI_1E) // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
| 8845 | { |
| 8846 | // INS_adr or INS_adrp |
| 8847 | code |= insEncodeReg_Rd(reg); // ddddd |
| 8848 | |
| 8849 | noway_assert(isValidSimm19(distVal)); |
| 8850 | distVal &= 0x7FFFFLL; // 19 bits |
| 8851 | code |= distVal << 5; |
| 8852 | code |= loBits << 29; // 2 bits |
| 8853 | } |
| 8854 | else |
| 8855 | { |
| 8856 | assert(!"Unknown fmt for emitOutputShortAddress" ); |
| 8857 | } |
| 8858 | |
| 8859 | dst += emitOutput_Instr(dst, code); |
| 8860 | |
| 8861 | return dst; |
| 8862 | } |
| 8863 | |
| 8864 | /***************************************************************************** |
| 8865 | * |
| 8866 | * Output a short constant instruction. |
| 8867 | */ |
| 8868 | BYTE* emitter::emitOutputShortConstant( |
| 8869 | BYTE* dst, instruction ins, insFormat fmt, ssize_t imm, regNumber reg, emitAttr opSize) |
| 8870 | { |
| 8871 | code_t code = emitInsCode(ins, fmt); |
| 8872 | |
| 8873 | if (fmt == IF_LS_1A) |
| 8874 | { |
| 8875 | // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt simm21 |
| 8876 | // INS_ldr or INS_ldrsw (PC-Relative) |
| 8877 | |
| 8878 | ssize_t loBits = (imm & 3); |
| 8879 | noway_assert(loBits == 0); |
| 8880 | ssize_t distVal = imm >>= 2; // load offset encodings are scaled by 4. |
| 8881 | |
| 8882 | noway_assert(isValidSimm19(distVal)); |
| 8883 | |
| 8884 | // Is the target a vector register? |
| 8885 | if (isVectorRegister(reg)) |
| 8886 | { |
| 8887 | code |= insEncodeDatasizeVLS(code, opSize); // XX V |
| 8888 | code |= insEncodeReg_Vt(reg); // ttttt |
| 8889 | } |
| 8890 | else |
| 8891 | { |
| 8892 | assert(isGeneralRegister(reg)); |
| 8893 | // insEncodeDatasizeLS is not quite right for this case. |
| 8894 | // So just specialize it. |
| 8895 | if ((ins == INS_ldr) && (opSize == EA_8BYTE)) |
| 8896 | { |
| 8897 | // set the operation size in bit 30 |
| 8898 | code |= 0x40000000; |
| 8899 | } |
| 8900 | |
| 8901 | code |= insEncodeReg_Rt(reg); // ttttt |
| 8902 | } |
| 8903 | |
| 8904 | distVal &= 0x7FFFFLL; // 19 bits |
| 8905 | code |= distVal << 5; |
| 8906 | } |
| 8907 | else if (fmt == IF_LS_2B) |
| 8908 | { |
| 8909 | // ldr Rt,[Xn+pimm12] LS_2B 1X11100101iiiiii iiiiiinnnnnttttt B940 0000 imm(0-4095<<{2,3}) |
| 8910 | // INS_ldr or INS_ldrsw (PC-Relative) |
| 8911 | noway_assert(isValidUimm12(imm)); |
| 8912 | assert(isGeneralRegister(reg)); |
| 8913 | |
| 8914 | if (opSize == EA_8BYTE) |
| 8915 | { |
| 8916 | // insEncodeDatasizeLS is not quite right for this case. |
| 8917 | // So just specialize it. |
| 8918 | if (ins == INS_ldr) |
| 8919 | { |
| 8920 | // set the operation size in bit 30 |
| 8921 | code |= 0x40000000; |
| 8922 | } |
| 8923 | // Low 3 bits should be 0 -- 8 byte JIT data should be aligned on 8 byte. |
| 8924 | assert((imm & 7) == 0); |
| 8925 | imm >>= 3; |
| 8926 | } |
| 8927 | else |
| 8928 | { |
| 8929 | assert(opSize == EA_4BYTE); |
| 8930 | // Low 2 bits should be 0 -- 4 byte aligned data. |
| 8931 | assert((imm & 3) == 0); |
| 8932 | imm >>= 2; |
| 8933 | } |
| 8934 | |
| 8935 | code |= insEncodeReg_Rt(reg); // ttttt |
| 8936 | code |= insEncodeReg_Rn(reg); // nnnnn |
| 8937 | code |= imm << 10; |
| 8938 | } |
| 8939 | else |
| 8940 | { |
| 8941 | assert(!"Unknown fmt for emitOutputShortConstant" ); |
| 8942 | } |
| 8943 | |
| 8944 | dst += emitOutput_Instr(dst, code); |
| 8945 | |
| 8946 | return dst; |
| 8947 | } |
| 8948 | /***************************************************************************** |
| 8949 | * |
| 8950 | * Output a call instruction. |
| 8951 | */ |
| 8952 | |
| 8953 | unsigned emitter::emitOutputCall(insGroup* ig, BYTE* dst, instrDesc* id, code_t code) |
| 8954 | { |
| 8955 | const unsigned char callInstrSize = sizeof(code_t); // 4 bytes |
| 8956 | regMaskTP gcrefRegs; |
| 8957 | regMaskTP byrefRegs; |
| 8958 | |
| 8959 | VARSET_TP GCvars(VarSetOps::UninitVal()); |
| 8960 | |
| 8961 | // Is this a "fat" call descriptor? |
| 8962 | if (id->idIsLargeCall()) |
| 8963 | { |
| 8964 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
| 8965 | gcrefRegs = idCall->idcGcrefRegs; |
| 8966 | byrefRegs = idCall->idcByrefRegs; |
| 8967 | VarSetOps::Assign(emitComp, GCvars, idCall->idcGCvars); |
| 8968 | } |
| 8969 | else |
| 8970 | { |
| 8971 | assert(!id->idIsLargeDsp()); |
| 8972 | assert(!id->idIsLargeCns()); |
| 8973 | |
| 8974 | gcrefRegs = emitDecodeCallGCregs(id); |
| 8975 | byrefRegs = 0; |
| 8976 | VarSetOps::AssignNoCopy(emitComp, GCvars, VarSetOps::MakeEmpty(emitComp)); |
| 8977 | } |
| 8978 | |
| 8979 | /* We update the GC info before the call as the variables cannot be |
| 8980 | used by the call. Killing variables before the call helps with |
| 8981 | boundary conditions if the call is CORINFO_HELP_THROW - see bug 50029. |
| 8982 | If we ever track aliased variables (which could be used by the |
| 8983 | call), we would have to keep them alive past the call. */ |
| 8984 | |
| 8985 | emitUpdateLiveGCvars(GCvars, dst); |
| 8986 | |
| 8987 | // Now output the call instruction and update the 'dst' pointer |
| 8988 | // |
| 8989 | unsigned outputInstrSize = emitOutput_Instr(dst, code); |
| 8990 | dst += outputInstrSize; |
| 8991 | |
| 8992 | // All call instructions are 4-byte in size on ARM64 |
| 8993 | // |
| 8994 | assert(outputInstrSize == callInstrSize); |
| 8995 | |
| 8996 | // If the method returns a GC ref, mark INTRET (R0) appropriately. |
| 8997 | if (id->idGCref() == GCT_GCREF) |
| 8998 | { |
| 8999 | gcrefRegs |= RBM_INTRET; |
| 9000 | } |
| 9001 | else if (id->idGCref() == GCT_BYREF) |
| 9002 | { |
| 9003 | byrefRegs |= RBM_INTRET; |
| 9004 | } |
| 9005 | |
| 9006 | // If is a multi-register return method is called, mark INTRET_1 (X1) appropriately |
| 9007 | if (id->idIsLargeCall()) |
| 9008 | { |
| 9009 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
| 9010 | if (idCall->idSecondGCref() == GCT_GCREF) |
| 9011 | { |
| 9012 | gcrefRegs |= RBM_INTRET_1; |
| 9013 | } |
| 9014 | else if (idCall->idSecondGCref() == GCT_BYREF) |
| 9015 | { |
| 9016 | byrefRegs |= RBM_INTRET_1; |
| 9017 | } |
| 9018 | } |
| 9019 | |
| 9020 | // If the GC register set has changed, report the new set. |
| 9021 | if (gcrefRegs != emitThisGCrefRegs) |
| 9022 | { |
| 9023 | emitUpdateLiveGCregs(GCT_GCREF, gcrefRegs, dst); |
| 9024 | } |
| 9025 | // If the Byref register set has changed, report the new set. |
| 9026 | if (byrefRegs != emitThisByrefRegs) |
| 9027 | { |
| 9028 | emitUpdateLiveGCregs(GCT_BYREF, byrefRegs, dst); |
| 9029 | } |
| 9030 | |
| 9031 | // Some helper calls may be marked as not requiring GC info to be recorded. |
| 9032 | if ((!id->idIsNoGC())) |
| 9033 | { |
| 9034 | // On ARM64, as on AMD64, we don't change the stack pointer to push/pop args. |
| 9035 | // So we're not really doing a "stack pop" here (note that "args" is 0), but we use this mechanism |
| 9036 | // to record the call for GC info purposes. (It might be best to use an alternate call, |
| 9037 | // and protect "emitStackPop" under the EMIT_TRACK_STACK_DEPTH preprocessor variable.) |
| 9038 | emitStackPop(dst, /*isCall*/ true, callInstrSize, /*args*/ 0); |
| 9039 | |
| 9040 | // Do we need to record a call location for GC purposes? |
| 9041 | // |
| 9042 | if (!emitFullGCinfo) |
| 9043 | { |
| 9044 | emitRecordGCcall(dst, callInstrSize); |
| 9045 | } |
| 9046 | } |
| 9047 | return callInstrSize; |
| 9048 | } |
| 9049 | |
| 9050 | /***************************************************************************** |
| 9051 | * |
| 9052 | * Emit a 32-bit Arm64 instruction |
| 9053 | */ |
| 9054 | |
| 9055 | /*static*/ unsigned emitter::emitOutput_Instr(BYTE* dst, code_t code) |
| 9056 | { |
| 9057 | assert(sizeof(code_t) == 4); |
| 9058 | *((code_t*)dst) = code; |
| 9059 | |
| 9060 | return sizeof(code_t); |
| 9061 | } |
| 9062 | |
| 9063 | /***************************************************************************** |
| 9064 | * |
| 9065 | * Append the machine code corresponding to the given instruction descriptor |
| 9066 | * to the code block at '*dp'; the base of the code block is 'bp', and 'ig' |
| 9067 | * is the instruction group that contains the instruction. Updates '*dp' to |
| 9068 | * point past the generated code, and returns the size of the instruction |
| 9069 | * descriptor in bytes. |
| 9070 | */ |
| 9071 | |
| 9072 | size_t emitter::emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp) |
| 9073 | { |
| 9074 | BYTE* dst = *dp; |
| 9075 | BYTE* odst = dst; |
| 9076 | code_t code = 0; |
| 9077 | size_t sz = emitGetInstrDescSize(id); // TODO-ARM64-Cleanup: on ARM, this is set in each case. why? |
| 9078 | instruction ins = id->idIns(); |
| 9079 | insFormat fmt = id->idInsFmt(); |
| 9080 | emitAttr size = id->idOpSize(); |
| 9081 | unsigned char callInstrSize = 0; |
| 9082 | |
| 9083 | #ifdef DEBUG |
| 9084 | #if DUMP_GC_TABLES |
| 9085 | bool dspOffs = emitComp->opts.dspGCtbls; |
| 9086 | #else |
| 9087 | bool dspOffs = !emitComp->opts.disDiffable; |
| 9088 | #endif |
| 9089 | #endif // DEBUG |
| 9090 | |
| 9091 | assert(REG_NA == (int)REG_NA); |
| 9092 | |
| 9093 | VARSET_TP GCvars(VarSetOps::UninitVal()); |
| 9094 | |
| 9095 | /* What instruction format have we got? */ |
| 9096 | |
| 9097 | switch (fmt) |
| 9098 | { |
| 9099 | ssize_t imm; |
| 9100 | ssize_t index; |
| 9101 | ssize_t index2; |
| 9102 | unsigned cmode; |
| 9103 | unsigned immShift; |
| 9104 | emitAttr elemsize; |
| 9105 | emitAttr datasize; |
| 9106 | |
| 9107 | case IF_BI_0A: // BI_0A ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
| 9108 | case IF_BI_0B: // BI_0B ......iiiiiiiiii iiiiiiiiiii..... simm19:00 |
| 9109 | case IF_LARGEJMP: |
| 9110 | assert(id->idGCref() == GCT_NONE); |
| 9111 | assert(id->idIsBound()); |
| 9112 | dst = emitOutputLJ(ig, dst, id); |
| 9113 | sz = sizeof(instrDescJmp); |
| 9114 | break; |
| 9115 | |
| 9116 | case IF_BI_0C: // BI_0C ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
| 9117 | code = emitInsCode(ins, fmt); |
| 9118 | sz = id->idIsLargeCall() ? sizeof(instrDescCGCA) : sizeof(instrDesc); |
| 9119 | dst += emitOutputCall(ig, dst, id, code); |
| 9120 | // Always call RecordRelocation so that we wire in a JumpStub when we don't reach |
| 9121 | emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_BRANCH26); |
| 9122 | break; |
| 9123 | |
| 9124 | case IF_BI_1A: // BI_1A ......iiiiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
| 9125 | assert(insOptsNone(id->idInsOpt())); |
| 9126 | assert(id->idIsBound()); |
| 9127 | |
| 9128 | dst = emitOutputLJ(ig, dst, id); |
| 9129 | sz = sizeof(instrDescJmp); |
| 9130 | break; |
| 9131 | |
| 9132 | case IF_BI_1B: // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
| 9133 | assert(insOptsNone(id->idInsOpt())); |
| 9134 | assert(id->idIsBound()); |
| 9135 | |
| 9136 | dst = emitOutputLJ(ig, dst, id); |
| 9137 | sz = sizeof(instrDescJmp); |
| 9138 | break; |
| 9139 | |
| 9140 | case IF_BR_1A: // BR_1A ................ ......nnnnn..... Rn |
| 9141 | assert(insOptsNone(id->idInsOpt())); |
| 9142 | assert((ins == INS_ret) || (ins == INS_br)); |
| 9143 | code = emitInsCode(ins, fmt); |
| 9144 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9145 | |
| 9146 | dst += emitOutput_Instr(dst, code); |
| 9147 | break; |
| 9148 | |
| 9149 | case IF_BR_1B: // BR_1B ................ ......nnnnn..... Rn |
| 9150 | assert(insOptsNone(id->idInsOpt())); |
| 9151 | assert((ins == INS_br_tail) || (ins == INS_blr)); |
| 9152 | code = emitInsCode(ins, fmt); |
| 9153 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
| 9154 | |
| 9155 | sz = id->idIsLargeCall() ? sizeof(instrDescCGCA) : sizeof(instrDesc); |
| 9156 | dst += emitOutputCall(ig, dst, id, code); |
| 9157 | break; |
| 9158 | |
| 9159 | case IF_LS_1A: // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
| 9160 | case IF_LARGELDC: |
| 9161 | assert(insOptsNone(id->idInsOpt())); |
| 9162 | assert(id->idIsBound()); |
| 9163 | |
| 9164 | dst = emitOutputLJ(ig, dst, id); |
| 9165 | sz = sizeof(instrDescJmp); |
| 9166 | break; |
| 9167 | |
| 9168 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
| 9169 | assert(insOptsNone(id->idInsOpt())); |
| 9170 | code = emitInsCode(ins, fmt); |
| 9171 | // Is the target a vector register? |
| 9172 | if (isVectorRegister(id->idReg1())) |
| 9173 | { |
| 9174 | code &= 0x3FFFFFFF; // clear the size bits |
| 9175 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
| 9176 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
| 9177 | } |
| 9178 | else |
| 9179 | { |
| 9180 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
| 9181 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 9182 | } |
| 9183 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9184 | dst += emitOutput_Instr(dst, code); |
| 9185 | break; |
| 9186 | |
| 9187 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
| 9188 | assert(insOptsNone(id->idInsOpt())); |
| 9189 | imm = emitGetInsSC(id); |
| 9190 | assert(isValidUimm12(imm)); |
| 9191 | code = emitInsCode(ins, fmt); |
| 9192 | // Is the target a vector register? |
| 9193 | if (isVectorRegister(id->idReg1())) |
| 9194 | { |
| 9195 | code &= 0x3FFFFFFF; // clear the size bits |
| 9196 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
| 9197 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
| 9198 | } |
| 9199 | else |
| 9200 | { |
| 9201 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
| 9202 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 9203 | } |
| 9204 | code |= ((code_t)imm << 10); // iiiiiiiiiiii |
| 9205 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9206 | dst += emitOutput_Instr(dst, code); |
| 9207 | break; |
| 9208 | |
| 9209 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiPPnnnnnttttt Rt Rn imm(-256..+255) no/pre/post inc |
| 9210 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
| 9211 | imm = emitGetInsSC(id); |
| 9212 | assert((imm >= -256) && (imm <= 255)); // signed 9 bits |
| 9213 | imm &= 0x1ff; // force into unsigned 9 bit representation |
| 9214 | code = emitInsCode(ins, fmt); |
| 9215 | // Is the target a vector register? |
| 9216 | if (isVectorRegister(id->idReg1())) |
| 9217 | { |
| 9218 | code &= 0x3FFFFFFF; // clear the size bits |
| 9219 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
| 9220 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
| 9221 | } |
| 9222 | else |
| 9223 | { |
| 9224 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
| 9225 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 9226 | } |
| 9227 | code |= insEncodeIndexedOpt(id->idInsOpt()); // PP |
| 9228 | code |= ((code_t)imm << 12); // iiiiiiiii |
| 9229 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9230 | dst += emitOutput_Instr(dst, code); |
| 9231 | break; |
| 9232 | |
| 9233 | case IF_LS_3A: // LS_3A .X.......X.mmmmm oooS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
| 9234 | assert(insOptsLSExtend(id->idInsOpt())); |
| 9235 | code = emitInsCode(ins, fmt); |
| 9236 | // Is the target a vector register? |
| 9237 | if (isVectorRegister(id->idReg1())) |
| 9238 | { |
| 9239 | code &= 0x3FFFFFFF; // clear the size bits |
| 9240 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
| 9241 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
| 9242 | } |
| 9243 | else |
| 9244 | { |
| 9245 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
| 9246 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 9247 | } |
| 9248 | code |= insEncodeExtend(id->idInsOpt()); // ooo |
| 9249 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9250 | if (id->idIsLclVar()) |
| 9251 | { |
| 9252 | code |= insEncodeReg_Rm(codeGen->rsGetRsvdReg()); // mmmmm |
| 9253 | } |
| 9254 | else |
| 9255 | { |
| 9256 | code |= insEncodeReg3Scale(id->idReg3Scaled()); // S |
| 9257 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9258 | } |
| 9259 | dst += emitOutput_Instr(dst, code); |
| 9260 | break; |
| 9261 | |
| 9262 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnddddd Rd Ra Rn |
| 9263 | assert(insOptsNone(id->idInsOpt())); |
| 9264 | code = emitInsCode(ins, fmt); |
| 9265 | // Is the target a vector register? |
| 9266 | if (isVectorRegister(id->idReg1())) |
| 9267 | { |
| 9268 | code &= 0x3FFFFFFF; // clear the size bits |
| 9269 | code |= insEncodeDatasizeVPLS(code, id->idOpSize()); // XX |
| 9270 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
| 9271 | code |= insEncodeReg_Va(id->idReg2()); // aaaaa |
| 9272 | } |
| 9273 | else |
| 9274 | { |
| 9275 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9276 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 9277 | code |= insEncodeReg_Ra(id->idReg2()); // aaaaa |
| 9278 | } |
| 9279 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
| 9280 | dst += emitOutput_Instr(dst, code); |
| 9281 | break; |
| 9282 | |
| 9283 | case IF_LS_3C: // LS_3C X......PP.iiiiii iaaaaannnnnddddd Rd Ra Rn imm(im7,sh) |
| 9284 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
| 9285 | imm = emitGetInsSC(id); |
| 9286 | assert((imm >= -64) && (imm <= 63)); // signed 7 bits |
| 9287 | imm &= 0x7f; // force into unsigned 7 bit representation |
| 9288 | code = emitInsCode(ins, fmt); |
| 9289 | // Is the target a vector register? |
| 9290 | if (isVectorRegister(id->idReg1())) |
| 9291 | { |
| 9292 | code &= 0x3FFFFFFF; // clear the size bits |
| 9293 | code |= insEncodeDatasizeVPLS(code, id->idOpSize()); // XX |
| 9294 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
| 9295 | code |= insEncodeReg_Va(id->idReg2()); // aaaaa |
| 9296 | } |
| 9297 | else |
| 9298 | { |
| 9299 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9300 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
| 9301 | code |= insEncodeReg_Ra(id->idReg2()); // aaaaa |
| 9302 | } |
| 9303 | code |= insEncodePairIndexedOpt(ins, id->idInsOpt()); // PP |
| 9304 | code |= ((code_t)imm << 15); // iiiiiiiii |
| 9305 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
| 9306 | dst += emitOutput_Instr(dst, code); |
| 9307 | break; |
| 9308 | |
| 9309 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
| 9310 | code = emitInsCode(ins, fmt); |
| 9311 | // Arm64 store exclusive unpredictable cases |
| 9312 | assert(id->idReg1() != id->idReg2()); |
| 9313 | assert(id->idReg1() != id->idReg3()); |
| 9314 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // X |
| 9315 | code |= insEncodeReg_Rm(id->idReg1()); // mmmmm |
| 9316 | code |= insEncodeReg_Rt(id->idReg2()); // ttttt |
| 9317 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
| 9318 | dst += emitOutput_Instr(dst, code); |
| 9319 | break; |
| 9320 | |
| 9321 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
| 9322 | code = emitInsCode(ins, fmt); |
| 9323 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // X |
| 9324 | code |= insEncodeReg_Rm(id->idReg1()); // mmmmm |
| 9325 | code |= insEncodeReg_Rt(id->idReg2()); // ttttt |
| 9326 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
| 9327 | dst += emitOutput_Instr(dst, code); |
| 9328 | break; |
| 9329 | |
| 9330 | case IF_DI_1A: // DI_1A X.......shiiiiii iiiiiinnnnn..... Rn imm(i12,sh) |
| 9331 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
| 9332 | imm = emitGetInsSC(id); |
| 9333 | assert(isValidUimm12(imm)); |
| 9334 | code = emitInsCode(ins, fmt); |
| 9335 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9336 | code |= insEncodeShiftImm12(id->idInsOpt()); // sh |
| 9337 | code |= ((code_t)imm << 10); // iiiiiiiiiiii |
| 9338 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9339 | dst += emitOutput_Instr(dst, code); |
| 9340 | break; |
| 9341 | |
| 9342 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
| 9343 | imm = emitGetInsSC(id); |
| 9344 | assert(isValidImmHWVal(imm, id->idOpSize())); |
| 9345 | code = emitInsCode(ins, fmt); |
| 9346 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9347 | code |= ((code_t)imm << 5); // hwiiiii iiiiiiiiiii |
| 9348 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9349 | dst += emitOutput_Instr(dst, code); |
| 9350 | break; |
| 9351 | |
| 9352 | case IF_DI_1C: // DI_1C X........Nrrrrrr ssssssnnnnn..... Rn imm(N,r,s) |
| 9353 | imm = emitGetInsSC(id); |
| 9354 | assert(isValidImmNRS(imm, id->idOpSize())); |
| 9355 | code = emitInsCode(ins, fmt); |
| 9356 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
| 9357 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9358 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9359 | dst += emitOutput_Instr(dst, code); |
| 9360 | break; |
| 9361 | |
| 9362 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
| 9363 | imm = emitGetInsSC(id); |
| 9364 | assert(isValidImmNRS(imm, id->idOpSize())); |
| 9365 | code = emitInsCode(ins, fmt); |
| 9366 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
| 9367 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9368 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9369 | dst += emitOutput_Instr(dst, code); |
| 9370 | break; |
| 9371 | |
| 9372 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
| 9373 | case IF_LARGEADR: |
| 9374 | assert(insOptsNone(id->idInsOpt())); |
| 9375 | if (id->idIsReloc()) |
| 9376 | { |
| 9377 | code = emitInsCode(ins, fmt); |
| 9378 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9379 | dst += emitOutput_Instr(dst, code); |
| 9380 | emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_PAGEBASE_REL21); |
| 9381 | } |
| 9382 | else |
| 9383 | { |
| 9384 | // Local jmp/load case which does not need a relocation. |
| 9385 | assert(id->idIsBound()); |
| 9386 | dst = emitOutputLJ(ig, dst, id); |
| 9387 | } |
| 9388 | sz = sizeof(instrDescJmp); |
| 9389 | break; |
| 9390 | |
| 9391 | case IF_DI_1F: // DI_1F X..........iiiii cccc..nnnnn.nzcv Rn imm5 nzcv cond |
| 9392 | imm = emitGetInsSC(id); |
| 9393 | assert(isValidImmCondFlagsImm5(imm)); |
| 9394 | { |
| 9395 | condFlagsImm cfi; |
| 9396 | cfi.immCFVal = (unsigned)imm; |
| 9397 | code = emitInsCode(ins, fmt); |
| 9398 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9399 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9400 | code |= ((code_t)cfi.imm5 << 16); // iiiii |
| 9401 | code |= insEncodeFlags(cfi.flags); // nzcv |
| 9402 | code |= insEncodeCond(cfi.cond); // cccc |
| 9403 | dst += emitOutput_Instr(dst, code); |
| 9404 | } |
| 9405 | break; |
| 9406 | |
| 9407 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
| 9408 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
| 9409 | imm = emitGetInsSC(id); |
| 9410 | assert(isValidUimm12(imm)); |
| 9411 | code = emitInsCode(ins, fmt); |
| 9412 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9413 | code |= insEncodeShiftImm12(id->idInsOpt()); // sh |
| 9414 | code |= ((code_t)imm << 10); // iiiiiiiiiiii |
| 9415 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9416 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9417 | dst += emitOutput_Instr(dst, code); |
| 9418 | |
| 9419 | if (id->idIsReloc()) |
| 9420 | { |
| 9421 | assert(sz == sizeof(instrDesc)); |
| 9422 | assert(id->idAddr()->iiaAddr != nullptr); |
| 9423 | emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_PAGEOFFSET_12A); |
| 9424 | } |
| 9425 | break; |
| 9426 | |
| 9427 | case IF_DI_2B: // DI_2B X.........Xnnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
| 9428 | code = emitInsCode(ins, fmt); |
| 9429 | imm = emitGetInsSC(id); |
| 9430 | assert(isValidImmShift(imm, id->idOpSize())); |
| 9431 | code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X |
| 9432 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9433 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9434 | code |= insEncodeReg_Rm(id->idReg2()); // Reg2 also in mmmmm |
| 9435 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
| 9436 | dst += emitOutput_Instr(dst, code); |
| 9437 | break; |
| 9438 | |
| 9439 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
| 9440 | imm = emitGetInsSC(id); |
| 9441 | assert(isValidImmNRS(imm, id->idOpSize())); |
| 9442 | code = emitInsCode(ins, fmt); |
| 9443 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
| 9444 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9445 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9446 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9447 | dst += emitOutput_Instr(dst, code); |
| 9448 | break; |
| 9449 | |
| 9450 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, imms (N,r,s) |
| 9451 | if (ins == INS_asr || ins == INS_lsl || ins == INS_lsr) |
| 9452 | { |
| 9453 | imm = emitGetInsSC(id); |
| 9454 | assert(isValidImmShift(imm, id->idOpSize())); |
| 9455 | |
| 9456 | // Shift immediates are aliases of the SBFM/UBFM instructions |
| 9457 | // that actually take 2 registers and 2 constants, |
| 9458 | // Since we stored the shift immediate value |
| 9459 | // we need to calculate the N,R and S values here. |
| 9460 | |
| 9461 | bitMaskImm bmi; |
| 9462 | bmi.immNRS = 0; |
| 9463 | |
| 9464 | bmi.immN = (size == EA_8BYTE) ? 1 : 0; |
| 9465 | bmi.immR = imm; |
| 9466 | bmi.immS = (size == EA_8BYTE) ? 0x3f : 0x1f; |
| 9467 | |
| 9468 | // immR and immS are now set correctly for INS_asr and INS_lsr |
| 9469 | // but for INS_lsl we have to adjust the values for immR and immS |
| 9470 | // |
| 9471 | if (ins == INS_lsl) |
| 9472 | { |
| 9473 | bmi.immR = -imm & bmi.immS; |
| 9474 | bmi.immS = bmi.immS - imm; |
| 9475 | } |
| 9476 | |
| 9477 | // setup imm with the proper 13 bit value N:R:S |
| 9478 | // |
| 9479 | imm = bmi.immNRS; |
| 9480 | } |
| 9481 | else |
| 9482 | { |
| 9483 | // The other instructions have already have encoded N,R and S values |
| 9484 | imm = emitGetInsSC(id); |
| 9485 | } |
| 9486 | assert(isValidImmNRS(imm, id->idOpSize())); |
| 9487 | |
| 9488 | code = emitInsCode(ins, fmt); |
| 9489 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
| 9490 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9491 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9492 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9493 | dst += emitOutput_Instr(dst, code); |
| 9494 | break; |
| 9495 | |
| 9496 | case IF_DR_1D: // DR_1D X............... cccc.......ddddd Rd cond |
| 9497 | imm = emitGetInsSC(id); |
| 9498 | assert(isValidImmCond(imm)); |
| 9499 | { |
| 9500 | condFlagsImm cfi; |
| 9501 | cfi.immCFVal = (unsigned)imm; |
| 9502 | code = emitInsCode(ins, fmt); |
| 9503 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9504 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9505 | code |= insEncodeInvertedCond(cfi.cond); // cccc |
| 9506 | dst += emitOutput_Instr(dst, code); |
| 9507 | } |
| 9508 | break; |
| 9509 | |
| 9510 | case IF_DR_2A: // DR_2A X..........mmmmm ......nnnnn..... Rn Rm |
| 9511 | assert(insOptsNone(id->idInsOpt())); |
| 9512 | code = emitInsCode(ins, fmt); |
| 9513 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9514 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9515 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9516 | dst += emitOutput_Instr(dst, code); |
| 9517 | break; |
| 9518 | |
| 9519 | case IF_DR_2B: // DR_2B X.......sh.mmmmm ssssssnnnnn..... Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
| 9520 | code = emitInsCode(ins, fmt); |
| 9521 | imm = emitGetInsSC(id); |
| 9522 | assert(isValidImmShift(imm, id->idOpSize())); |
| 9523 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9524 | code |= insEncodeShiftType(id->idInsOpt()); // sh |
| 9525 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
| 9526 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9527 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9528 | dst += emitOutput_Instr(dst, code); |
| 9529 | break; |
| 9530 | |
| 9531 | case IF_DR_2C: // DR_2C X..........mmmmm ooosssnnnnn..... Rn Rm ext(Rm) LSL imm(0-4) |
| 9532 | code = emitInsCode(ins, fmt); |
| 9533 | imm = emitGetInsSC(id); |
| 9534 | assert((imm >= 0) && (imm <= 4)); // imm [0..4] |
| 9535 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9536 | code |= insEncodeExtend(id->idInsOpt()); // ooo |
| 9537 | code |= insEncodeExtendScale(imm); // sss |
| 9538 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9539 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9540 | dst += emitOutput_Instr(dst, code); |
| 9541 | break; |
| 9542 | |
| 9543 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnddddd Rd Rn cond |
| 9544 | imm = emitGetInsSC(id); |
| 9545 | assert(isValidImmCond(imm)); |
| 9546 | { |
| 9547 | condFlagsImm cfi; |
| 9548 | cfi.immCFVal = (unsigned)imm; |
| 9549 | code = emitInsCode(ins, fmt); |
| 9550 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9551 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9552 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9553 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9554 | code |= insEncodeInvertedCond(cfi.cond); // cccc |
| 9555 | dst += emitOutput_Instr(dst, code); |
| 9556 | } |
| 9557 | break; |
| 9558 | |
| 9559 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
| 9560 | code = emitInsCode(ins, fmt); |
| 9561 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9562 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9563 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9564 | dst += emitOutput_Instr(dst, code); |
| 9565 | break; |
| 9566 | |
| 9567 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
| 9568 | code = emitInsCode(ins, fmt); |
| 9569 | imm = emitGetInsSC(id); |
| 9570 | assert(isValidImmShift(imm, id->idOpSize())); |
| 9571 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9572 | code |= insEncodeShiftType(id->idInsOpt()); // sh |
| 9573 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
| 9574 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9575 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9576 | dst += emitOutput_Instr(dst, code); |
| 9577 | break; |
| 9578 | |
| 9579 | case IF_DR_2G: // DR_2G X............... .....xnnnnnddddd Rd Rn |
| 9580 | code = emitInsCode(ins, fmt); |
| 9581 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9582 | if (ins == INS_rev) |
| 9583 | { |
| 9584 | if (size == EA_8BYTE) |
| 9585 | { |
| 9586 | code |= 0x00000400; // x - bit at location 10 |
| 9587 | } |
| 9588 | } |
| 9589 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9590 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9591 | dst += emitOutput_Instr(dst, code); |
| 9592 | break; |
| 9593 | |
| 9594 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
| 9595 | code = emitInsCode(ins, fmt); |
| 9596 | code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X |
| 9597 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9598 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9599 | dst += emitOutput_Instr(dst, code); |
| 9600 | break; |
| 9601 | |
| 9602 | case IF_DR_2I: // DR_2I X..........mmmmm cccc..nnnnn.nzcv Rn Rm nzcv cond |
| 9603 | imm = emitGetInsSC(id); |
| 9604 | assert(isValidImmCondFlags(imm)); |
| 9605 | { |
| 9606 | condFlagsImm cfi; |
| 9607 | cfi.immCFVal = (unsigned)imm; |
| 9608 | code = emitInsCode(ins, fmt); |
| 9609 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9610 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
| 9611 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
| 9612 | code |= insEncodeFlags(cfi.flags); // nzcv |
| 9613 | code |= insEncodeCond(cfi.cond); // cccc |
| 9614 | dst += emitOutput_Instr(dst, code); |
| 9615 | } |
| 9616 | break; |
| 9617 | |
| 9618 | case IF_DR_2J: // DR_2J ................ ......nnnnnddddd Sd Sn (sha1h) |
| 9619 | code = emitInsCode(ins, fmt); |
| 9620 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9621 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9622 | dst += emitOutput_Instr(dst, code); |
| 9623 | break; |
| 9624 | |
| 9625 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnmmmmm Rd Rn Rm |
| 9626 | code = emitInsCode(ins, fmt); |
| 9627 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9628 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9629 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9630 | if (id->idIsLclVar()) |
| 9631 | { |
| 9632 | code |= insEncodeReg_Rm(codeGen->rsGetRsvdReg()); // mmmmm |
| 9633 | } |
| 9634 | else |
| 9635 | { |
| 9636 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9637 | } |
| 9638 | dst += emitOutput_Instr(dst, code); |
| 9639 | break; |
| 9640 | |
| 9641 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR} imm(0-63) |
| 9642 | code = emitInsCode(ins, fmt); |
| 9643 | imm = emitGetInsSC(id); |
| 9644 | assert(isValidImmShift(imm, id->idOpSize())); |
| 9645 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9646 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9647 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9648 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9649 | code |= insEncodeShiftType(id->idInsOpt()); // sh |
| 9650 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
| 9651 | dst += emitOutput_Instr(dst, code); |
| 9652 | break; |
| 9653 | |
| 9654 | case IF_DR_3C: // DR_3C X..........mmmmm ooosssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
| 9655 | code = emitInsCode(ins, fmt); |
| 9656 | imm = emitGetInsSC(id); |
| 9657 | assert((imm >= 0) && (imm <= 4)); // imm [0..4] |
| 9658 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9659 | code |= insEncodeExtend(id->idInsOpt()); // ooo |
| 9660 | code |= insEncodeExtendScale(imm); // sss |
| 9661 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9662 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9663 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9664 | dst += emitOutput_Instr(dst, code); |
| 9665 | break; |
| 9666 | |
| 9667 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnddddd Rd Rn Rm cond |
| 9668 | imm = emitGetInsSC(id); |
| 9669 | assert(isValidImmCond(imm)); |
| 9670 | { |
| 9671 | condFlagsImm cfi; |
| 9672 | cfi.immCFVal = (unsigned)imm; |
| 9673 | code = emitInsCode(ins, fmt); |
| 9674 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9675 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9676 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9677 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9678 | code |= insEncodeCond(cfi.cond); // cccc |
| 9679 | dst += emitOutput_Instr(dst, code); |
| 9680 | } |
| 9681 | break; |
| 9682 | |
| 9683 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
| 9684 | code = emitInsCode(ins, fmt); |
| 9685 | imm = emitGetInsSC(id); |
| 9686 | assert(isValidImmShift(imm, id->idOpSize())); |
| 9687 | code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X |
| 9688 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9689 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9690 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9691 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
| 9692 | dst += emitOutput_Instr(dst, code); |
| 9693 | break; |
| 9694 | |
| 9695 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnmmmmm Rd Rn Rm Ra |
| 9696 | code = emitInsCode(ins, fmt); |
| 9697 | code |= insEncodeDatasize(id->idOpSize()); // X |
| 9698 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9699 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9700 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
| 9701 | code |= insEncodeReg_Ra(id->idReg4()); // aaaaa |
| 9702 | dst += emitOutput_Instr(dst, code); |
| 9703 | break; |
| 9704 | |
| 9705 | case IF_DV_1A: // DV_1A .........X.iiiii iii........ddddd Vd imm8 (fmov - immediate scalar) |
| 9706 | imm = emitGetInsSC(id); |
| 9707 | elemsize = id->idOpSize(); |
| 9708 | code = emitInsCode(ins, fmt); |
| 9709 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9710 | code |= ((code_t)imm << 13); // iiiii iii |
| 9711 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9712 | dst += emitOutput_Instr(dst, code); |
| 9713 | break; |
| 9714 | |
| 9715 | case IF_DV_1B: // DV_1B .QX..........iii cmod..iiiiiddddd Vd imm8 (immediate vector) |
| 9716 | imm = emitGetInsSC(id) & 0x0ff; |
| 9717 | immShift = (emitGetInsSC(id) & 0x700) >> 8; |
| 9718 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9719 | cmode = 0; |
| 9720 | switch (elemsize) |
| 9721 | { // cmode |
| 9722 | case EA_1BYTE: |
| 9723 | cmode = 0xE; // 1110 |
| 9724 | break; |
| 9725 | case EA_2BYTE: |
| 9726 | cmode = 0x8; |
| 9727 | cmode |= (immShift << 1); // 10x0 |
| 9728 | break; |
| 9729 | case EA_4BYTE: |
| 9730 | if (immShift < 4) |
| 9731 | { |
| 9732 | cmode = 0x0; |
| 9733 | cmode |= (immShift << 1); // 0xx0 |
| 9734 | } |
| 9735 | else // MSL |
| 9736 | { |
| 9737 | cmode = 0xC; |
| 9738 | if (immShift & 2) |
| 9739 | cmode |= 1; // 110x |
| 9740 | } |
| 9741 | break; |
| 9742 | case EA_8BYTE: |
| 9743 | cmode = 0xE; // 1110 |
| 9744 | break; |
| 9745 | default: |
| 9746 | unreached(); |
| 9747 | break; |
| 9748 | } |
| 9749 | |
| 9750 | code = emitInsCode(ins, fmt); |
| 9751 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9752 | if ((ins == INS_fmov) || (ins == INS_movi)) |
| 9753 | { |
| 9754 | if (elemsize == EA_8BYTE) |
| 9755 | { |
| 9756 | code |= 0x20000000; // X |
| 9757 | } |
| 9758 | } |
| 9759 | if (ins != INS_fmov) |
| 9760 | { |
| 9761 | assert((cmode >= 0) && (cmode <= 0xF)); |
| 9762 | code |= (cmode << 12); // cmod |
| 9763 | } |
| 9764 | code |= (((code_t)imm >> 5) << 16); // iii |
| 9765 | code |= (((code_t)imm & 0x1f) << 5); // iiiii |
| 9766 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9767 | dst += emitOutput_Instr(dst, code); |
| 9768 | break; |
| 9769 | |
| 9770 | case IF_DV_1C: // DV_1C .........X...... ......nnnnn..... Vn #0.0 (fcmp - with zero) |
| 9771 | elemsize = id->idOpSize(); |
| 9772 | code = emitInsCode(ins, fmt); |
| 9773 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9774 | code |= insEncodeReg_Vn(id->idReg1()); // nnnnn |
| 9775 | dst += emitOutput_Instr(dst, code); |
| 9776 | break; |
| 9777 | |
| 9778 | case IF_DV_2A: // DV_2A .Q.......X...... ......nnnnnddddd Vd Vn (fabs, fcvt - vector) |
| 9779 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9780 | code = emitInsCode(ins, fmt); |
| 9781 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9782 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9783 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9784 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9785 | dst += emitOutput_Instr(dst, code); |
| 9786 | break; |
| 9787 | |
| 9788 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov/smov - to general) |
| 9789 | elemsize = id->idOpSize(); |
| 9790 | index = emitGetInsSC(id); |
| 9791 | datasize = (elemsize == EA_8BYTE) ? EA_16BYTE : EA_8BYTE; |
| 9792 | if (ins == INS_smov) |
| 9793 | { |
| 9794 | datasize = EA_16BYTE; |
| 9795 | } |
| 9796 | code = emitInsCode(ins, fmt); |
| 9797 | code |= insEncodeVectorsize(datasize); // Q |
| 9798 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
| 9799 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9800 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9801 | dst += emitOutput_Instr(dst, code); |
| 9802 | break; |
| 9803 | |
| 9804 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
| 9805 | if (ins == INS_dup) |
| 9806 | { |
| 9807 | datasize = id->idOpSize(); |
| 9808 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9809 | index = 0; |
| 9810 | } |
| 9811 | else // INS_ins |
| 9812 | { |
| 9813 | datasize = EA_16BYTE; |
| 9814 | elemsize = id->idOpSize(); |
| 9815 | index = emitGetInsSC(id); |
| 9816 | } |
| 9817 | code = emitInsCode(ins, fmt); |
| 9818 | code |= insEncodeVectorsize(datasize); // Q |
| 9819 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
| 9820 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9821 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9822 | dst += emitOutput_Instr(dst, code); |
| 9823 | break; |
| 9824 | |
| 9825 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
| 9826 | index = emitGetInsSC(id); |
| 9827 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9828 | code = emitInsCode(ins, fmt); |
| 9829 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9830 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
| 9831 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9832 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9833 | dst += emitOutput_Instr(dst, code); |
| 9834 | break; |
| 9835 | |
| 9836 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
| 9837 | index = emitGetInsSC(id); |
| 9838 | elemsize = id->idOpSize(); |
| 9839 | code = emitInsCode(ins, fmt); |
| 9840 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
| 9841 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9842 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9843 | dst += emitOutput_Instr(dst, code); |
| 9844 | break; |
| 9845 | |
| 9846 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
| 9847 | elemsize = id->idOpSize(); |
| 9848 | imm = emitGetInsSC(id); |
| 9849 | index = (imm >> 4) & 0xf; |
| 9850 | index2 = imm & 0xf; |
| 9851 | code = emitInsCode(ins, fmt); |
| 9852 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
| 9853 | code |= insEncodeVectorIndex2(elemsize, index2); // jjjj |
| 9854 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9855 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9856 | dst += emitOutput_Instr(dst, code); |
| 9857 | break; |
| 9858 | |
| 9859 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov,fcvtXX - register) |
| 9860 | elemsize = id->idOpSize(); |
| 9861 | code = emitInsCode(ins, fmt); |
| 9862 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9863 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9864 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9865 | dst += emitOutput_Instr(dst, code); |
| 9866 | break; |
| 9867 | |
| 9868 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov - to general) |
| 9869 | elemsize = id->idOpSize(); |
| 9870 | code = emitInsCode(ins, fmt); |
| 9871 | code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // X X |
| 9872 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
| 9873 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9874 | dst += emitOutput_Instr(dst, code); |
| 9875 | break; |
| 9876 | |
| 9877 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov - from general) |
| 9878 | elemsize = id->idOpSize(); |
| 9879 | code = emitInsCode(ins, fmt); |
| 9880 | code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // X X |
| 9881 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9882 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
| 9883 | dst += emitOutput_Instr(dst, code); |
| 9884 | break; |
| 9885 | |
| 9886 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
| 9887 | code = emitInsCode(ins, fmt); |
| 9888 | code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // SS DD |
| 9889 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9890 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9891 | dst += emitOutput_Instr(dst, code); |
| 9892 | break; |
| 9893 | |
| 9894 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
| 9895 | elemsize = id->idOpSize(); |
| 9896 | code = emitInsCode(ins, fmt); |
| 9897 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9898 | code |= insEncodeReg_Vn(id->idReg1()); // nnnnn |
| 9899 | code |= insEncodeReg_Vm(id->idReg2()); // mmmmm |
| 9900 | dst += emitOutput_Instr(dst, code); |
| 9901 | break; |
| 9902 | |
| 9903 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
| 9904 | elemsize = id->idOpSize(); |
| 9905 | code = emitInsCode(ins, fmt); |
| 9906 | code |= insEncodeElemsize(elemsize); // XX |
| 9907 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9908 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9909 | dst += emitOutput_Instr(dst, code); |
| 9910 | break; |
| 9911 | |
| 9912 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
| 9913 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9914 | code = emitInsCode(ins, fmt); |
| 9915 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9916 | code |= insEncodeElemsize(elemsize); // XX |
| 9917 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9918 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9919 | dst += emitOutput_Instr(dst, code); |
| 9920 | break; |
| 9921 | |
| 9922 | case IF_DV_2N: // DV_2N .........iiiiiii ......nnnnnddddd Vd Vn imm (shift - scalar) |
| 9923 | imm = emitGetInsSC(id); |
| 9924 | code = emitInsCode(ins, fmt); |
| 9925 | code |= insEncodeVectorShift(EA_8BYTE, imm); // iiiiiii |
| 9926 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9927 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9928 | dst += emitOutput_Instr(dst, code); |
| 9929 | break; |
| 9930 | |
| 9931 | case IF_DV_2O: // DV_2O .Q.......iiiiiii ......nnnnnddddd Vd Vn imm (shift - vector) |
| 9932 | imm = emitGetInsSC(id); |
| 9933 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9934 | code = emitInsCode(ins, fmt); |
| 9935 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9936 | code |= insEncodeVectorShift(elemsize, imm); // iiiiiii |
| 9937 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9938 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9939 | dst += emitOutput_Instr(dst, code); |
| 9940 | break; |
| 9941 | |
| 9942 | case IF_DV_2P: // DV_2P ............... ......nnnnnddddd Vd Vn (aes*, sha1su1) |
| 9943 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9944 | code = emitInsCode(ins, fmt); |
| 9945 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9946 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9947 | dst += emitOutput_Instr(dst, code); |
| 9948 | break; |
| 9949 | |
| 9950 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 9951 | code = emitInsCode(ins, fmt); |
| 9952 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9953 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9954 | code |= insEncodeElemsize(elemsize); // XX |
| 9955 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9956 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9957 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 9958 | dst += emitOutput_Instr(dst, code); |
| 9959 | break; |
| 9960 | |
| 9961 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector) |
| 9962 | code = emitInsCode(ins, fmt); |
| 9963 | imm = emitGetInsSC(id); |
| 9964 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9965 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 9966 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9967 | code |= insEncodeElemsize(elemsize); // XX |
| 9968 | code |= insEncodeVectorIndexLMH(elemsize, imm); // LM H |
| 9969 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9970 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9971 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 9972 | dst += emitOutput_Instr(dst, code); |
| 9973 | break; |
| 9974 | |
| 9975 | case IF_DV_3B: // DV_3B .Q.......X.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 9976 | code = emitInsCode(ins, fmt); |
| 9977 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9978 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9979 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9980 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9981 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9982 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 9983 | dst += emitOutput_Instr(dst, code); |
| 9984 | break; |
| 9985 | |
| 9986 | case IF_DV_3BI: // DV_3BI .Q.......XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
| 9987 | code = emitInsCode(ins, fmt); |
| 9988 | imm = emitGetInsSC(id); |
| 9989 | elemsize = optGetElemsize(id->idInsOpt()); |
| 9990 | assert(isValidVectorIndex(id->idOpSize(), elemsize, imm)); |
| 9991 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 9992 | code |= insEncodeFloatElemsize(elemsize); // X |
| 9993 | code |= insEncodeFloatIndex(elemsize, imm); // L H |
| 9994 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 9995 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 9996 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 9997 | dst += emitOutput_Instr(dst, code); |
| 9998 | break; |
| 9999 | |
| 10000 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 10001 | code = emitInsCode(ins, fmt); |
| 10002 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
| 10003 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 10004 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 10005 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 10006 | dst += emitOutput_Instr(dst, code); |
| 10007 | break; |
| 10008 | |
| 10009 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 10010 | code = emitInsCode(ins, fmt); |
| 10011 | code |= insEncodeFloatElemsize(id->idOpSize()); // X |
| 10012 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 10013 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 10014 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 10015 | dst += emitOutput_Instr(dst, code); |
| 10016 | break; |
| 10017 | |
| 10018 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
| 10019 | code = emitInsCode(ins, fmt); |
| 10020 | imm = emitGetInsSC(id); |
| 10021 | elemsize = id->idOpSize(); |
| 10022 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
| 10023 | code |= insEncodeFloatElemsize(elemsize); // X |
| 10024 | code |= insEncodeFloatIndex(elemsize, imm); // L H |
| 10025 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 10026 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 10027 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 10028 | dst += emitOutput_Instr(dst, code); |
| 10029 | break; |
| 10030 | |
| 10031 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 10032 | case IF_DV_3F: // DV_3F ...........mmmmm ......nnnnnddddd Vd Vn Vm (vector) - source dest regs overlap |
| 10033 | code = emitInsCode(ins, fmt); |
| 10034 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 10035 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 10036 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 10037 | dst += emitOutput_Instr(dst, code); |
| 10038 | break; |
| 10039 | |
| 10040 | case IF_DV_4A: // DV_4A .........X.mmmmm .aaaaannnnnddddd Vd Va Vn Vm (scalar) |
| 10041 | code = emitInsCode(ins, fmt); |
| 10042 | elemsize = id->idOpSize(); |
| 10043 | code |= insEncodeFloatElemsize(elemsize); // X |
| 10044 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
| 10045 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
| 10046 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
| 10047 | code |= insEncodeReg_Va(id->idReg4()); // aaaaa |
| 10048 | dst += emitOutput_Instr(dst, code); |
| 10049 | break; |
| 10050 | |
| 10051 | case IF_SN_0A: // SN_0A ................ ................ |
| 10052 | code = emitInsCode(ins, fmt); |
| 10053 | dst += emitOutput_Instr(dst, code); |
| 10054 | break; |
| 10055 | |
| 10056 | case IF_SI_0A: // SI_0A ...........iiiii iiiiiiiiiii..... imm16 |
| 10057 | imm = emitGetInsSC(id); |
| 10058 | assert(isValidUimm16(imm)); |
| 10059 | code = emitInsCode(ins, fmt); |
| 10060 | code |= ((code_t)imm << 5); // iiiii iiiiiiiiiii |
| 10061 | dst += emitOutput_Instr(dst, code); |
| 10062 | break; |
| 10063 | |
| 10064 | case IF_SI_0B: // SI_0B ................ ....bbbb........ imm4 - barrier |
| 10065 | imm = emitGetInsSC(id); |
| 10066 | assert((imm >= 0) && (imm <= 15)); |
| 10067 | code = emitInsCode(ins, fmt); |
| 10068 | code |= ((code_t)imm << 8); // bbbb |
| 10069 | dst += emitOutput_Instr(dst, code); |
| 10070 | break; |
| 10071 | |
| 10072 | default: |
| 10073 | assert(!"Unexpected format" ); |
| 10074 | break; |
| 10075 | } |
| 10076 | |
| 10077 | // Determine if any registers now hold GC refs, or whether a register that was overwritten held a GC ref. |
| 10078 | // We assume here that "id->idGCref()" is not GC_NONE only if the instruction described by "id" writes a |
| 10079 | // GC ref to register "id->idReg1()". (It may, apparently, also not be GC_NONE in other cases, such as |
| 10080 | // for stores, but we ignore those cases here.) |
| 10081 | if (emitInsMayWriteToGCReg(id)) // True if "id->idIns()" writes to a register than can hold GC ref. |
| 10082 | { |
| 10083 | // We assume that "idReg1" is the primary destination register for all instructions |
| 10084 | if (id->idGCref() != GCT_NONE) |
| 10085 | { |
| 10086 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
| 10087 | } |
| 10088 | else |
| 10089 | { |
| 10090 | emitGCregDeadUpd(id->idReg1(), dst); |
| 10091 | } |
| 10092 | |
| 10093 | if (emitInsMayWriteMultipleRegs(id)) |
| 10094 | { |
| 10095 | // INS_ldp etc... |
| 10096 | // "idReg2" is the secondary destination register |
| 10097 | if (id->idGCrefReg2() != GCT_NONE) |
| 10098 | { |
| 10099 | emitGCregLiveUpd(id->idGCrefReg2(), id->idReg2(), dst); |
| 10100 | } |
| 10101 | else |
| 10102 | { |
| 10103 | emitGCregDeadUpd(id->idReg2(), dst); |
| 10104 | } |
| 10105 | } |
| 10106 | } |
| 10107 | |
| 10108 | // Now we determine if the instruction has written to a (local variable) stack location, and either written a GC |
| 10109 | // ref or overwritten one. |
| 10110 | if (emitInsWritesToLclVarStackLoc(id) || emitInsWritesToLclVarStackLocPair(id)) |
| 10111 | { |
| 10112 | int varNum = id->idAddr()->iiaLclVar.lvaVarNum(); |
| 10113 | unsigned ofs = AlignDown(id->idAddr()->iiaLclVar.lvaOffset(), TARGET_POINTER_SIZE); |
| 10114 | bool FPbased; |
| 10115 | int adr = emitComp->lvaFrameAddress(varNum, &FPbased); |
| 10116 | if (id->idGCref() != GCT_NONE) |
| 10117 | { |
| 10118 | emitGCvarLiveUpd(adr + ofs, varNum, id->idGCref(), dst); |
| 10119 | } |
| 10120 | else |
| 10121 | { |
| 10122 | // If the type of the local is a gc ref type, update the liveness. |
| 10123 | var_types vt; |
| 10124 | if (varNum >= 0) |
| 10125 | { |
| 10126 | // "Regular" (non-spill-temp) local. |
| 10127 | vt = var_types(emitComp->lvaTable[varNum].lvType); |
| 10128 | } |
| 10129 | else |
| 10130 | { |
| 10131 | TempDsc* tmpDsc = codeGen->regSet.tmpFindNum(varNum); |
| 10132 | vt = tmpDsc->tdTempType(); |
| 10133 | } |
| 10134 | if (vt == TYP_REF || vt == TYP_BYREF) |
| 10135 | emitGCvarDeadUpd(adr + ofs, dst); |
| 10136 | } |
| 10137 | if (emitInsWritesToLclVarStackLocPair(id)) |
| 10138 | { |
| 10139 | unsigned ofs2 = ofs + TARGET_POINTER_SIZE; |
| 10140 | if (id->idGCrefReg2() != GCT_NONE) |
| 10141 | { |
| 10142 | emitGCvarLiveUpd(adr + ofs2, varNum, id->idGCrefReg2(), dst); |
| 10143 | } |
| 10144 | else |
| 10145 | { |
| 10146 | // If the type of the local is a gc ref type, update the liveness. |
| 10147 | var_types vt; |
| 10148 | if (varNum >= 0) |
| 10149 | { |
| 10150 | // "Regular" (non-spill-temp) local. |
| 10151 | vt = var_types(emitComp->lvaTable[varNum].lvType); |
| 10152 | } |
| 10153 | else |
| 10154 | { |
| 10155 | TempDsc* tmpDsc = codeGen->regSet.tmpFindNum(varNum); |
| 10156 | vt = tmpDsc->tdTempType(); |
| 10157 | } |
| 10158 | if (vt == TYP_REF || vt == TYP_BYREF) |
| 10159 | emitGCvarDeadUpd(adr + ofs2, dst); |
| 10160 | } |
| 10161 | } |
| 10162 | } |
| 10163 | |
| 10164 | #ifdef DEBUG |
| 10165 | /* Make sure we set the instruction descriptor size correctly */ |
| 10166 | |
| 10167 | size_t expected = emitSizeOfInsDsc(id); |
| 10168 | assert(sz == expected); |
| 10169 | |
| 10170 | if (emitComp->opts.disAsm || emitComp->opts.dspEmit || emitComp->verbose) |
| 10171 | { |
| 10172 | emitDispIns(id, false, dspOffs, true, emitCurCodeOffs(odst), *dp, (dst - *dp), ig); |
| 10173 | } |
| 10174 | |
| 10175 | if (emitComp->compDebugBreak) |
| 10176 | { |
| 10177 | // For example, set JitBreakEmitOutputInstr=a6 will break when this method is called for |
| 10178 | // emitting instruction a6, (i.e. IN00a6 in jitdump). |
| 10179 | if ((unsigned)JitConfig.JitBreakEmitOutputInstr() == id->idDebugOnlyInfo()->idNum) |
| 10180 | { |
| 10181 | assert(!"JitBreakEmitOutputInstr reached" ); |
| 10182 | } |
| 10183 | } |
| 10184 | #endif |
| 10185 | |
| 10186 | /* All instructions are expected to generate code */ |
| 10187 | |
| 10188 | assert(*dp != dst); |
| 10189 | |
| 10190 | *dp = dst; |
| 10191 | |
| 10192 | return sz; |
| 10193 | } |
| 10194 | |
| 10195 | /*****************************************************************************/ |
| 10196 | /*****************************************************************************/ |
| 10197 | |
| 10198 | #ifdef DEBUG |
| 10199 | |
| 10200 | /***************************************************************************** |
| 10201 | * |
| 10202 | * Display the instruction name |
| 10203 | */ |
| 10204 | void emitter::emitDispInst(instruction ins) |
| 10205 | { |
| 10206 | const char* insstr = codeGen->genInsName(ins); |
| 10207 | size_t len = strlen(insstr); |
| 10208 | |
| 10209 | /* Display the instruction name */ |
| 10210 | |
| 10211 | printf("%s" , insstr); |
| 10212 | |
| 10213 | // |
| 10214 | // Add at least one space after the instruction name |
| 10215 | // and add spaces until we have reach the normal size of 8 |
| 10216 | do |
| 10217 | { |
| 10218 | printf(" " ); |
| 10219 | len++; |
| 10220 | } while (len < 8); |
| 10221 | } |
| 10222 | |
| 10223 | /***************************************************************************** |
| 10224 | * |
| 10225 | * Display an immediate value |
| 10226 | */ |
| 10227 | void emitter::emitDispImm(ssize_t imm, bool addComma, bool alwaysHex /* =false */) |
| 10228 | { |
| 10229 | if (strictArmAsm) |
| 10230 | { |
| 10231 | printf("#" ); |
| 10232 | } |
| 10233 | |
| 10234 | // Munge any pointers if we want diff-able disassembly. |
| 10235 | // Since some may be emitted as partial words, print as diffable anything that has |
| 10236 | // significant bits beyond the lowest 8-bits. |
| 10237 | if (emitComp->opts.disDiffable) |
| 10238 | { |
| 10239 | ssize_t top56bits = (imm >> 8); |
| 10240 | if ((top56bits != 0) && (top56bits != -1)) |
| 10241 | imm = 0xD1FFAB1E; |
| 10242 | } |
| 10243 | |
| 10244 | if (!alwaysHex && (imm > -1000) && (imm < 1000)) |
| 10245 | { |
| 10246 | printf("%d" , imm); |
| 10247 | } |
| 10248 | else |
| 10249 | { |
| 10250 | if ((imm < 0) && ((imm & 0xFFFFFFFF00000000LL) == 0xFFFFFFFF00000000LL)) |
| 10251 | { |
| 10252 | printf("-" ); |
| 10253 | imm = -imm; |
| 10254 | } |
| 10255 | |
| 10256 | if ((imm & 0xFFFFFFFF00000000LL) != 0) |
| 10257 | { |
| 10258 | printf("0x%llx" , imm); |
| 10259 | } |
| 10260 | else |
| 10261 | { |
| 10262 | printf("0x%02x" , imm); |
| 10263 | } |
| 10264 | } |
| 10265 | |
| 10266 | if (addComma) |
| 10267 | printf(", " ); |
| 10268 | } |
| 10269 | |
| 10270 | /***************************************************************************** |
| 10271 | * |
| 10272 | * Display a float zero constant |
| 10273 | */ |
| 10274 | void emitter::emitDispFloatZero() |
| 10275 | { |
| 10276 | if (strictArmAsm) |
| 10277 | { |
| 10278 | printf("#" ); |
| 10279 | } |
| 10280 | printf("0.0" ); |
| 10281 | } |
| 10282 | |
| 10283 | /***************************************************************************** |
| 10284 | * |
| 10285 | * Display an encoded float constant value |
| 10286 | */ |
| 10287 | void emitter::emitDispFloatImm(ssize_t imm8) |
| 10288 | { |
| 10289 | assert((0 <= imm8) && (imm8 <= 0x0ff)); |
| 10290 | if (strictArmAsm) |
| 10291 | { |
| 10292 | printf("#" ); |
| 10293 | } |
| 10294 | |
| 10295 | floatImm8 fpImm; |
| 10296 | fpImm.immFPIVal = (unsigned)imm8; |
| 10297 | double result = emitDecodeFloatImm8(fpImm); |
| 10298 | |
| 10299 | printf("%.4f" , result); |
| 10300 | } |
| 10301 | |
| 10302 | /***************************************************************************** |
| 10303 | * |
| 10304 | * Display an immediate that is optionally LSL12. |
| 10305 | */ |
| 10306 | void emitter::emitDispImmOptsLSL12(ssize_t imm, insOpts opt) |
| 10307 | { |
| 10308 | if (!strictArmAsm && insOptsLSL12(opt)) |
| 10309 | { |
| 10310 | imm <<= 12; |
| 10311 | } |
| 10312 | emitDispImm(imm, false); |
| 10313 | if (strictArmAsm && insOptsLSL12(opt)) |
| 10314 | { |
| 10315 | printf(", LSL #12" ); |
| 10316 | } |
| 10317 | } |
| 10318 | |
| 10319 | /***************************************************************************** |
| 10320 | * |
| 10321 | * Display an ARM64 condition code for the conditional instructions |
| 10322 | */ |
| 10323 | void emitter::emitDispCond(insCond cond) |
| 10324 | { |
| 10325 | const static char* armCond[16] = {"eq" , "ne" , "hs" , "lo" , "mi" , "pl" , "vs" , "vc" , |
| 10326 | "hi" , "ls" , "ge" , "lt" , "gt" , "le" , "AL" , "NV" }; // The last two are invalid |
| 10327 | unsigned imm = (unsigned)cond; |
| 10328 | assert((0 <= imm) && (imm < ArrLen(armCond))); |
| 10329 | printf(armCond[imm]); |
| 10330 | } |
| 10331 | |
| 10332 | /***************************************************************************** |
| 10333 | * |
| 10334 | * Display an ARM64 flags for the conditional instructions |
| 10335 | */ |
| 10336 | void emitter::emitDispFlags(insCflags flags) |
| 10337 | { |
| 10338 | const static char* armFlags[16] = {"0" , "v" , "c" , "cv" , "z" , "zv" , "zc" , "zcv" , |
| 10339 | "n" , "nv" , "nc" , "ncv" , "nz" , "nzv" , "nzc" , "nzcv" }; |
| 10340 | unsigned imm = (unsigned)flags; |
| 10341 | assert((0 <= imm) && (imm < ArrLen(armFlags))); |
| 10342 | printf(armFlags[imm]); |
| 10343 | } |
| 10344 | |
| 10345 | /***************************************************************************** |
| 10346 | * |
| 10347 | * Display an ARM64 'barrier' for the memory barrier instructions |
| 10348 | */ |
| 10349 | void emitter::emitDispBarrier(insBarrier barrier) |
| 10350 | { |
| 10351 | const static char* armBarriers[16] = {"#0" , "oshld" , "oshst" , "osh" , "#4" , "nshld" , "nshst" , "nsh" , |
| 10352 | "#8" , "ishld" , "ishst" , "ish" , "#12" , "ld" , "st" , "sy" }; |
| 10353 | unsigned imm = (unsigned)barrier; |
| 10354 | assert((0 <= imm) && (imm < ArrLen(armBarriers))); |
| 10355 | printf(armBarriers[imm]); |
| 10356 | } |
| 10357 | |
| 10358 | /***************************************************************************** |
| 10359 | * |
| 10360 | * Prints the encoding for the Shift Type encoding |
| 10361 | */ |
| 10362 | |
| 10363 | void emitter::emitDispShiftOpts(insOpts opt) |
| 10364 | { |
| 10365 | if (opt == INS_OPTS_LSL) |
| 10366 | printf(" LSL " ); |
| 10367 | else if (opt == INS_OPTS_LSR) |
| 10368 | printf(" LSR " ); |
| 10369 | else if (opt == INS_OPTS_ASR) |
| 10370 | printf(" ASR " ); |
| 10371 | else if (opt == INS_OPTS_ROR) |
| 10372 | printf(" ROR " ); |
| 10373 | else if (opt == INS_OPTS_MSL) |
| 10374 | printf(" MSL " ); |
| 10375 | else |
| 10376 | assert(!"Bad value" ); |
| 10377 | } |
| 10378 | |
| 10379 | /***************************************************************************** |
| 10380 | * |
| 10381 | * Prints the encoding for the Extend Type encoding |
| 10382 | */ |
| 10383 | |
| 10384 | void emitter::emitDispExtendOpts(insOpts opt) |
| 10385 | { |
| 10386 | if (opt == INS_OPTS_UXTB) |
| 10387 | printf("UXTB" ); |
| 10388 | else if (opt == INS_OPTS_UXTH) |
| 10389 | printf("UXTH" ); |
| 10390 | else if (opt == INS_OPTS_UXTW) |
| 10391 | printf("UXTW" ); |
| 10392 | else if (opt == INS_OPTS_UXTX) |
| 10393 | printf("UXTX" ); |
| 10394 | else if (opt == INS_OPTS_SXTB) |
| 10395 | printf("SXTB" ); |
| 10396 | else if (opt == INS_OPTS_SXTH) |
| 10397 | printf("SXTH" ); |
| 10398 | else if (opt == INS_OPTS_SXTW) |
| 10399 | printf("SXTW" ); |
| 10400 | else if (opt == INS_OPTS_SXTX) |
| 10401 | printf("SXTX" ); |
| 10402 | else |
| 10403 | assert(!"Bad value" ); |
| 10404 | } |
| 10405 | |
| 10406 | /***************************************************************************** |
| 10407 | * |
| 10408 | * Prints the encoding for the Extend Type encoding in loads/stores |
| 10409 | */ |
| 10410 | |
| 10411 | void emitter::emitDispLSExtendOpts(insOpts opt) |
| 10412 | { |
| 10413 | if (opt == INS_OPTS_LSL) |
| 10414 | printf("LSL" ); |
| 10415 | else if (opt == INS_OPTS_UXTW) |
| 10416 | printf("UXTW" ); |
| 10417 | else if (opt == INS_OPTS_UXTX) |
| 10418 | printf("UXTX" ); |
| 10419 | else if (opt == INS_OPTS_SXTW) |
| 10420 | printf("SXTW" ); |
| 10421 | else if (opt == INS_OPTS_SXTX) |
| 10422 | printf("SXTX" ); |
| 10423 | else |
| 10424 | assert(!"Bad value" ); |
| 10425 | } |
| 10426 | |
| 10427 | /***************************************************************************** |
| 10428 | * |
| 10429 | * Display a register |
| 10430 | */ |
| 10431 | void emitter::emitDispReg(regNumber reg, emitAttr attr, bool addComma) |
| 10432 | { |
| 10433 | emitAttr size = EA_SIZE(attr); |
| 10434 | printf(emitRegName(reg, size)); |
| 10435 | |
| 10436 | if (addComma) |
| 10437 | printf(", " ); |
| 10438 | } |
| 10439 | |
| 10440 | /***************************************************************************** |
| 10441 | * |
| 10442 | * Display a vector register with an arrangement suffix |
| 10443 | */ |
| 10444 | void emitter::emitDispVectorReg(regNumber reg, insOpts opt, bool addComma) |
| 10445 | { |
| 10446 | assert(isVectorRegister(reg)); |
| 10447 | printf(emitVectorRegName(reg)); |
| 10448 | emitDispArrangement(opt); |
| 10449 | |
| 10450 | if (addComma) |
| 10451 | printf(", " ); |
| 10452 | } |
| 10453 | |
| 10454 | /***************************************************************************** |
| 10455 | * |
| 10456 | * Display an vector register index suffix |
| 10457 | */ |
| 10458 | void emitter::emitDispVectorRegIndex(regNumber reg, emitAttr elemsize, ssize_t index, bool addComma) |
| 10459 | { |
| 10460 | assert(isVectorRegister(reg)); |
| 10461 | printf(emitVectorRegName(reg)); |
| 10462 | |
| 10463 | switch (elemsize) |
| 10464 | { |
| 10465 | case EA_1BYTE: |
| 10466 | printf(".b" ); |
| 10467 | break; |
| 10468 | case EA_2BYTE: |
| 10469 | printf(".h" ); |
| 10470 | break; |
| 10471 | case EA_4BYTE: |
| 10472 | printf(".s" ); |
| 10473 | break; |
| 10474 | case EA_8BYTE: |
| 10475 | printf(".d" ); |
| 10476 | break; |
| 10477 | default: |
| 10478 | assert(!"invalid elemsize" ); |
| 10479 | break; |
| 10480 | } |
| 10481 | |
| 10482 | printf("[%d]" , index); |
| 10483 | |
| 10484 | if (addComma) |
| 10485 | printf(", " ); |
| 10486 | } |
| 10487 | |
| 10488 | /***************************************************************************** |
| 10489 | * |
| 10490 | * Display an arrangement suffix |
| 10491 | */ |
| 10492 | void emitter::emitDispArrangement(insOpts opt) |
| 10493 | { |
| 10494 | const char* str = "???" ; |
| 10495 | |
| 10496 | switch (opt) |
| 10497 | { |
| 10498 | case INS_OPTS_8B: |
| 10499 | str = "8b" ; |
| 10500 | break; |
| 10501 | case INS_OPTS_16B: |
| 10502 | str = "16b" ; |
| 10503 | break; |
| 10504 | case INS_OPTS_4H: |
| 10505 | str = "4h" ; |
| 10506 | break; |
| 10507 | case INS_OPTS_8H: |
| 10508 | str = "8h" ; |
| 10509 | break; |
| 10510 | case INS_OPTS_2S: |
| 10511 | str = "2s" ; |
| 10512 | break; |
| 10513 | case INS_OPTS_4S: |
| 10514 | str = "4s" ; |
| 10515 | break; |
| 10516 | case INS_OPTS_1D: |
| 10517 | str = "1d" ; |
| 10518 | break; |
| 10519 | case INS_OPTS_2D: |
| 10520 | str = "2d" ; |
| 10521 | break; |
| 10522 | |
| 10523 | default: |
| 10524 | assert(!"Invalid insOpt for vector register" ); |
| 10525 | } |
| 10526 | printf("." ); |
| 10527 | printf(str); |
| 10528 | } |
| 10529 | |
| 10530 | /***************************************************************************** |
| 10531 | * |
| 10532 | * Display a register with an optional shift operation |
| 10533 | */ |
| 10534 | void emitter::emitDispShiftedReg(regNumber reg, insOpts opt, ssize_t imm, emitAttr attr) |
| 10535 | { |
| 10536 | emitAttr size = EA_SIZE(attr); |
| 10537 | assert((imm & 0x003F) == imm); |
| 10538 | assert(((imm & 0x0020) == 0) || (size == EA_8BYTE)); |
| 10539 | |
| 10540 | printf(emitRegName(reg, size)); |
| 10541 | |
| 10542 | if (imm > 0) |
| 10543 | { |
| 10544 | if (strictArmAsm) |
| 10545 | { |
| 10546 | printf("," ); |
| 10547 | } |
| 10548 | emitDispShiftOpts(opt); |
| 10549 | emitDispImm(imm, false); |
| 10550 | } |
| 10551 | } |
| 10552 | |
| 10553 | /***************************************************************************** |
| 10554 | * |
| 10555 | * Display a register with an optional extend and scale operations |
| 10556 | */ |
| 10557 | void emitter::emitDispExtendReg(regNumber reg, insOpts opt, ssize_t imm) |
| 10558 | { |
| 10559 | assert((imm >= 0) && (imm <= 4)); |
| 10560 | assert(insOptsNone(opt) || insOptsAnyExtend(opt) || (opt == INS_OPTS_LSL)); |
| 10561 | |
| 10562 | // size is based on the extend option, not the instr size. |
| 10563 | emitAttr size = insOpts32BitExtend(opt) ? EA_4BYTE : EA_8BYTE; |
| 10564 | |
| 10565 | if (strictArmAsm) |
| 10566 | { |
| 10567 | if (insOptsNone(opt)) |
| 10568 | { |
| 10569 | emitDispReg(reg, size, false); |
| 10570 | } |
| 10571 | else |
| 10572 | { |
| 10573 | emitDispReg(reg, size, true); |
| 10574 | if (opt == INS_OPTS_LSL) |
| 10575 | printf("LSL" ); |
| 10576 | else |
| 10577 | emitDispExtendOpts(opt); |
| 10578 | if ((imm > 0) || (opt == INS_OPTS_LSL)) |
| 10579 | { |
| 10580 | printf(" " ); |
| 10581 | emitDispImm(imm, false); |
| 10582 | } |
| 10583 | } |
| 10584 | } |
| 10585 | else // !strictArmAsm |
| 10586 | { |
| 10587 | if (insOptsNone(opt)) |
| 10588 | { |
| 10589 | emitDispReg(reg, size, false); |
| 10590 | } |
| 10591 | else |
| 10592 | { |
| 10593 | if (opt != INS_OPTS_LSL) |
| 10594 | { |
| 10595 | emitDispExtendOpts(opt); |
| 10596 | printf("(" ); |
| 10597 | emitDispReg(reg, size, false); |
| 10598 | printf(")" ); |
| 10599 | } |
| 10600 | } |
| 10601 | if (imm > 0) |
| 10602 | { |
| 10603 | printf("*" ); |
| 10604 | emitDispImm(ssize_t{1} << imm, false); |
| 10605 | } |
| 10606 | } |
| 10607 | } |
| 10608 | |
| 10609 | /***************************************************************************** |
| 10610 | * |
| 10611 | * Display an addressing operand [reg + imm] |
| 10612 | */ |
| 10613 | void emitter::emitDispAddrRI(regNumber reg, insOpts opt, ssize_t imm) |
| 10614 | { |
| 10615 | reg = encodingZRtoSP(reg); // ZR (R31) encodes the SP register |
| 10616 | |
| 10617 | if (strictArmAsm) |
| 10618 | { |
| 10619 | printf("[" ); |
| 10620 | |
| 10621 | emitDispReg(reg, EA_8BYTE, false); |
| 10622 | |
| 10623 | if (!insOptsPostIndex(opt) && (imm != 0)) |
| 10624 | { |
| 10625 | printf("," ); |
| 10626 | emitDispImm(imm, false); |
| 10627 | } |
| 10628 | printf("]" ); |
| 10629 | |
| 10630 | if (insOptsPreIndex(opt)) |
| 10631 | { |
| 10632 | printf("!" ); |
| 10633 | } |
| 10634 | else if (insOptsPostIndex(opt)) |
| 10635 | { |
| 10636 | printf("," ); |
| 10637 | emitDispImm(imm, false); |
| 10638 | } |
| 10639 | } |
| 10640 | else // !strictArmAsm |
| 10641 | { |
| 10642 | printf("[" ); |
| 10643 | |
| 10644 | const char* operStr = "++" ; |
| 10645 | if (imm < 0) |
| 10646 | { |
| 10647 | operStr = "--" ; |
| 10648 | imm = -imm; |
| 10649 | } |
| 10650 | |
| 10651 | if (insOptsPreIndex(opt)) |
| 10652 | { |
| 10653 | printf(operStr); |
| 10654 | } |
| 10655 | |
| 10656 | emitDispReg(reg, EA_8BYTE, false); |
| 10657 | |
| 10658 | if (insOptsPostIndex(opt)) |
| 10659 | { |
| 10660 | printf(operStr); |
| 10661 | } |
| 10662 | |
| 10663 | if (insOptsIndexed(opt)) |
| 10664 | { |
| 10665 | printf(", " ); |
| 10666 | } |
| 10667 | else |
| 10668 | { |
| 10669 | printf("%c" , operStr[1]); |
| 10670 | } |
| 10671 | emitDispImm(imm, false); |
| 10672 | printf("]" ); |
| 10673 | } |
| 10674 | } |
| 10675 | |
| 10676 | /***************************************************************************** |
| 10677 | * |
| 10678 | * Display an addressing operand [reg + extended reg] |
| 10679 | */ |
| 10680 | void emitter::emitDispAddrRRExt(regNumber reg1, regNumber reg2, insOpts opt, bool isScaled, emitAttr size) |
| 10681 | { |
| 10682 | reg1 = encodingZRtoSP(reg1); // ZR (R31) encodes the SP register |
| 10683 | |
| 10684 | unsigned scale = 0; |
| 10685 | if (isScaled) |
| 10686 | { |
| 10687 | scale = NaturalScale_helper(size); |
| 10688 | } |
| 10689 | |
| 10690 | printf("[" ); |
| 10691 | |
| 10692 | if (strictArmAsm) |
| 10693 | { |
| 10694 | emitDispReg(reg1, EA_8BYTE, true); |
| 10695 | emitDispExtendReg(reg2, opt, scale); |
| 10696 | } |
| 10697 | else // !strictArmAsm |
| 10698 | { |
| 10699 | emitDispReg(reg1, EA_8BYTE, false); |
| 10700 | printf("+" ); |
| 10701 | emitDispExtendReg(reg2, opt, scale); |
| 10702 | } |
| 10703 | |
| 10704 | printf("]" ); |
| 10705 | } |
| 10706 | |
| 10707 | /***************************************************************************** |
| 10708 | * |
| 10709 | * Display (optionally) the instruction encoding in hex |
| 10710 | */ |
| 10711 | |
| 10712 | void emitter::emitDispInsHex(BYTE* code, size_t sz) |
| 10713 | { |
| 10714 | // We do not display the instruction hex if we want diff-able disassembly |
| 10715 | if (!emitComp->opts.disDiffable) |
| 10716 | { |
| 10717 | if (sz == 4) |
| 10718 | { |
| 10719 | printf(" %08X " , (*((code_t*)code))); |
| 10720 | } |
| 10721 | else |
| 10722 | { |
| 10723 | printf(" " ); |
| 10724 | } |
| 10725 | } |
| 10726 | } |
| 10727 | |
| 10728 | /**************************************************************************** |
| 10729 | * |
| 10730 | * Display the given instruction. |
| 10731 | */ |
| 10732 | |
| 10733 | void emitter::emitDispIns( |
| 10734 | instrDesc* id, bool isNew, bool doffs, bool asmfm, unsigned offset, BYTE* pCode, size_t sz, insGroup* ig) |
| 10735 | { |
| 10736 | if (EMITVERBOSE) |
| 10737 | { |
| 10738 | unsigned idNum = |
| 10739 | id->idDebugOnlyInfo()->idNum; // Do not remove this! It is needed for VisualStudio conditional breakpoints |
| 10740 | |
| 10741 | printf("IN%04x: " , idNum); |
| 10742 | } |
| 10743 | |
| 10744 | if (pCode == NULL) |
| 10745 | sz = 0; |
| 10746 | |
| 10747 | if (!emitComp->opts.dspEmit && !isNew && !asmfm && sz) |
| 10748 | doffs = true; |
| 10749 | |
| 10750 | /* Display the instruction offset */ |
| 10751 | |
| 10752 | emitDispInsOffs(offset, doffs); |
| 10753 | |
| 10754 | /* Display the instruction hex code */ |
| 10755 | |
| 10756 | emitDispInsHex(pCode, sz); |
| 10757 | |
| 10758 | printf(" " ); |
| 10759 | |
| 10760 | /* Get the instruction and format */ |
| 10761 | |
| 10762 | instruction ins = id->idIns(); |
| 10763 | insFormat fmt = id->idInsFmt(); |
| 10764 | |
| 10765 | emitDispInst(ins); |
| 10766 | |
| 10767 | /* If this instruction has just been added, check its size */ |
| 10768 | |
| 10769 | assert(isNew == false || (int)emitSizeOfInsDsc(id) == emitCurIGfreeNext - (BYTE*)id); |
| 10770 | |
| 10771 | /* Figure out the operand size */ |
| 10772 | emitAttr size = id->idOpSize(); |
| 10773 | emitAttr attr = size; |
| 10774 | if (id->idGCref() == GCT_GCREF) |
| 10775 | attr = EA_GCREF; |
| 10776 | else if (id->idGCref() == GCT_BYREF) |
| 10777 | attr = EA_BYREF; |
| 10778 | |
| 10779 | switch (fmt) |
| 10780 | { |
| 10781 | code_t code; |
| 10782 | ssize_t imm; |
| 10783 | int doffs; |
| 10784 | bool isExtendAlias; |
| 10785 | bitMaskImm bmi; |
| 10786 | halfwordImm hwi; |
| 10787 | condFlagsImm cfi; |
| 10788 | unsigned scale; |
| 10789 | unsigned immShift; |
| 10790 | bool hasShift; |
| 10791 | ssize_t offs; |
| 10792 | const char* methodName; |
| 10793 | emitAttr elemsize; |
| 10794 | emitAttr datasize; |
| 10795 | emitAttr srcsize; |
| 10796 | emitAttr dstsize; |
| 10797 | ssize_t index; |
| 10798 | ssize_t index2; |
| 10799 | |
| 10800 | case IF_BI_0A: // BI_0A ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
| 10801 | case IF_BI_0B: // BI_0B ......iiiiiiiiii iiiiiiiiiii..... simm19:00 |
| 10802 | case IF_LARGEJMP: |
| 10803 | { |
| 10804 | if (fmt == IF_LARGEJMP) |
| 10805 | { |
| 10806 | printf("(LARGEJMP)" ); |
| 10807 | } |
| 10808 | if (id->idAddr()->iiaHasInstrCount()) |
| 10809 | { |
| 10810 | int instrCount = id->idAddr()->iiaGetInstrCount(); |
| 10811 | |
| 10812 | if (ig == nullptr) |
| 10813 | { |
| 10814 | printf("pc%s%d instructions" , (instrCount >= 0) ? "+" : "" , instrCount); |
| 10815 | } |
| 10816 | else |
| 10817 | { |
| 10818 | unsigned insNum = emitFindInsNum(ig, id); |
| 10819 | UNATIVE_OFFSET srcOffs = ig->igOffs + emitFindOffset(ig, insNum + 1); |
| 10820 | UNATIVE_OFFSET dstOffs = ig->igOffs + emitFindOffset(ig, insNum + 1 + instrCount); |
| 10821 | ssize_t relOffs = (ssize_t)(emitOffsetToPtr(dstOffs) - emitOffsetToPtr(srcOffs)); |
| 10822 | printf("pc%s%d (%d instructions)" , (relOffs >= 0) ? "+" : "" , relOffs, instrCount); |
| 10823 | } |
| 10824 | } |
| 10825 | else if (id->idIsBound()) |
| 10826 | { |
| 10827 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
| 10828 | } |
| 10829 | else |
| 10830 | { |
| 10831 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
| 10832 | } |
| 10833 | } |
| 10834 | break; |
| 10835 | |
| 10836 | case IF_BI_0C: // BI_0C ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
| 10837 | if (id->idIsCallAddr()) |
| 10838 | { |
| 10839 | offs = (ssize_t)id->idAddr()->iiaAddr; |
| 10840 | methodName = "" ; |
| 10841 | } |
| 10842 | else |
| 10843 | { |
| 10844 | offs = 0; |
| 10845 | methodName = emitComp->eeGetMethodFullName((CORINFO_METHOD_HANDLE)id->idDebugOnlyInfo()->idMemCookie); |
| 10846 | } |
| 10847 | |
| 10848 | if (offs) |
| 10849 | { |
| 10850 | if (id->idIsDspReloc()) |
| 10851 | printf("reloc " ); |
| 10852 | printf("%08X" , offs); |
| 10853 | } |
| 10854 | else |
| 10855 | { |
| 10856 | printf("%s" , methodName); |
| 10857 | } |
| 10858 | break; |
| 10859 | |
| 10860 | case IF_BI_1A: // BI_1A ......iiiiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
| 10861 | assert(insOptsNone(id->idInsOpt())); |
| 10862 | emitDispReg(id->idReg1(), size, true); |
| 10863 | if (id->idIsBound()) |
| 10864 | { |
| 10865 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
| 10866 | } |
| 10867 | else |
| 10868 | { |
| 10869 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
| 10870 | } |
| 10871 | break; |
| 10872 | |
| 10873 | case IF_BI_1B: // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
| 10874 | assert(insOptsNone(id->idInsOpt())); |
| 10875 | emitDispReg(id->idReg1(), size, true); |
| 10876 | emitDispImm(emitGetInsSC(id), true); |
| 10877 | if (id->idIsBound()) |
| 10878 | { |
| 10879 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
| 10880 | } |
| 10881 | else |
| 10882 | { |
| 10883 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
| 10884 | } |
| 10885 | break; |
| 10886 | |
| 10887 | case IF_BR_1A: // BR_1A ................ ......nnnnn..... Rn |
| 10888 | assert(insOptsNone(id->idInsOpt())); |
| 10889 | emitDispReg(id->idReg1(), size, false); |
| 10890 | break; |
| 10891 | |
| 10892 | case IF_BR_1B: // BR_1B ................ ......nnnnn..... Rn |
| 10893 | assert(insOptsNone(id->idInsOpt())); |
| 10894 | emitDispReg(id->idReg3(), size, false); |
| 10895 | break; |
| 10896 | |
| 10897 | case IF_LS_1A: // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
| 10898 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
| 10899 | case IF_LARGELDC: |
| 10900 | case IF_LARGEADR: |
| 10901 | assert(insOptsNone(id->idInsOpt())); |
| 10902 | emitDispReg(id->idReg1(), size, true); |
| 10903 | imm = emitGetInsSC(id); |
| 10904 | |
| 10905 | /* Is this actually a reference to a data section? */ |
| 10906 | if (fmt == IF_LARGEADR) |
| 10907 | { |
| 10908 | printf("(LARGEADR)" ); |
| 10909 | } |
| 10910 | else if (fmt == IF_LARGELDC) |
| 10911 | { |
| 10912 | printf("(LARGELDC)" ); |
| 10913 | } |
| 10914 | |
| 10915 | printf("[" ); |
| 10916 | if (id->idAddr()->iiaIsJitDataOffset()) |
| 10917 | { |
| 10918 | doffs = Compiler::eeGetJitDataOffs(id->idAddr()->iiaFieldHnd); |
| 10919 | /* Display a data section reference */ |
| 10920 | |
| 10921 | if (doffs & 1) |
| 10922 | printf("@CNS%02u" , doffs - 1); |
| 10923 | else |
| 10924 | printf("@RWD%02u" , doffs); |
| 10925 | |
| 10926 | if (imm != 0) |
| 10927 | printf("%+Id" , imm); |
| 10928 | } |
| 10929 | else |
| 10930 | { |
| 10931 | assert(imm == 0); |
| 10932 | if (id->idIsReloc()) |
| 10933 | { |
| 10934 | printf("RELOC " ); |
| 10935 | emitDispImm((ssize_t)id->idAddr()->iiaAddr, false); |
| 10936 | } |
| 10937 | else if (id->idIsBound()) |
| 10938 | { |
| 10939 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
| 10940 | } |
| 10941 | else |
| 10942 | { |
| 10943 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
| 10944 | } |
| 10945 | } |
| 10946 | printf("]" ); |
| 10947 | break; |
| 10948 | |
| 10949 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
| 10950 | assert(insOptsNone(id->idInsOpt())); |
| 10951 | assert(emitGetInsSC(id) == 0); |
| 10952 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 10953 | emitDispAddrRI(id->idReg2(), id->idInsOpt(), 0); |
| 10954 | break; |
| 10955 | |
| 10956 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
| 10957 | assert(insOptsNone(id->idInsOpt())); |
| 10958 | imm = emitGetInsSC(id); |
| 10959 | scale = NaturalScale_helper(emitInsLoadStoreSize(id)); |
| 10960 | imm <<= scale; // The immediate is scaled by the size of the ld/st |
| 10961 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 10962 | emitDispAddrRI(id->idReg2(), id->idInsOpt(), imm); |
| 10963 | break; |
| 10964 | |
| 10965 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiPPnnnnnttttt Rt Rn imm(-256..+255) no/pre/post inc |
| 10966 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
| 10967 | imm = emitGetInsSC(id); |
| 10968 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 10969 | emitDispAddrRI(id->idReg2(), id->idInsOpt(), imm); |
| 10970 | break; |
| 10971 | |
| 10972 | case IF_LS_3A: // LS_3A .X.......X.mmmmm oooS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
| 10973 | assert(insOptsLSExtend(id->idInsOpt())); |
| 10974 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 10975 | if (id->idIsLclVar()) |
| 10976 | { |
| 10977 | emitDispAddrRRExt(id->idReg2(), codeGen->rsGetRsvdReg(), id->idInsOpt(), false, size); |
| 10978 | } |
| 10979 | else |
| 10980 | { |
| 10981 | emitDispAddrRRExt(id->idReg2(), id->idReg3(), id->idInsOpt(), id->idReg3Scaled(), size); |
| 10982 | } |
| 10983 | break; |
| 10984 | |
| 10985 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnddddd Rt Ra Rn |
| 10986 | assert(insOptsNone(id->idInsOpt())); |
| 10987 | assert(emitGetInsSC(id) == 0); |
| 10988 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 10989 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
| 10990 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0); |
| 10991 | break; |
| 10992 | |
| 10993 | case IF_LS_3C: // LS_3C X.........iiiiii iaaaaannnnnddddd Rt Ra Rn imm(im7,sh) |
| 10994 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
| 10995 | imm = emitGetInsSC(id); |
| 10996 | scale = NaturalScale_helper(emitInsLoadStoreSize(id)); |
| 10997 | imm <<= scale; |
| 10998 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 10999 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
| 11000 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), imm); |
| 11001 | break; |
| 11002 | |
| 11003 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
| 11004 | assert(insOptsNone(id->idInsOpt())); |
| 11005 | emitDispReg(id->idReg1(), EA_4BYTE, true); |
| 11006 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
| 11007 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0); |
| 11008 | break; |
| 11009 | |
| 11010 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
| 11011 | assert(insOptsNone(id->idInsOpt())); |
| 11012 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
| 11013 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
| 11014 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0); |
| 11015 | break; |
| 11016 | |
| 11017 | case IF_DI_1A: // DI_1A X.......shiiiiii iiiiiinnnnn..... Rn imm(i12,sh) |
| 11018 | emitDispReg(id->idReg1(), size, true); |
| 11019 | emitDispImmOptsLSL12(emitGetInsSC(id), id->idInsOpt()); |
| 11020 | break; |
| 11021 | |
| 11022 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
| 11023 | emitDispReg(id->idReg1(), size, true); |
| 11024 | hwi.immHWVal = (unsigned)emitGetInsSC(id); |
| 11025 | if (ins == INS_mov) |
| 11026 | { |
| 11027 | emitDispImm(emitDecodeHalfwordImm(hwi, size), false); |
| 11028 | } |
| 11029 | else // movz, movn, movk |
| 11030 | { |
| 11031 | emitDispImm(hwi.immVal, false); |
| 11032 | if (hwi.immHW != 0) |
| 11033 | { |
| 11034 | emitDispShiftOpts(INS_OPTS_LSL); |
| 11035 | emitDispImm(hwi.immHW * 16, false); |
| 11036 | } |
| 11037 | } |
| 11038 | break; |
| 11039 | |
| 11040 | case IF_DI_1C: // DI_1C X........Nrrrrrr ssssssnnnnn..... Rn imm(N,r,s) |
| 11041 | emitDispReg(id->idReg1(), size, true); |
| 11042 | bmi.immNRS = (unsigned)emitGetInsSC(id); |
| 11043 | emitDispImm(emitDecodeBitMaskImm(bmi, size), false); |
| 11044 | break; |
| 11045 | |
| 11046 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
| 11047 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11048 | bmi.immNRS = (unsigned)emitGetInsSC(id); |
| 11049 | emitDispImm(emitDecodeBitMaskImm(bmi, size), false); |
| 11050 | break; |
| 11051 | |
| 11052 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
| 11053 | if ((ins == INS_add) || (ins == INS_sub)) |
| 11054 | { |
| 11055 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11056 | emitDispReg(encodingZRtoSP(id->idReg2()), size, true); |
| 11057 | } |
| 11058 | else |
| 11059 | { |
| 11060 | emitDispReg(id->idReg1(), size, true); |
| 11061 | emitDispReg(id->idReg2(), size, true); |
| 11062 | } |
| 11063 | emitDispImmOptsLSL12(emitGetInsSC(id), id->idInsOpt()); |
| 11064 | break; |
| 11065 | |
| 11066 | case IF_DI_2B: // DI_2B X........X.nnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
| 11067 | emitDispReg(id->idReg1(), size, true); |
| 11068 | emitDispReg(id->idReg2(), size, true); |
| 11069 | emitDispImm(emitGetInsSC(id), false); |
| 11070 | break; |
| 11071 | |
| 11072 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
| 11073 | if (ins == INS_ands) |
| 11074 | { |
| 11075 | emitDispReg(id->idReg1(), size, true); |
| 11076 | } |
| 11077 | else |
| 11078 | { |
| 11079 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11080 | } |
| 11081 | emitDispReg(id->idReg2(), size, true); |
| 11082 | bmi.immNRS = (unsigned)emitGetInsSC(id); |
| 11083 | emitDispImm(emitDecodeBitMaskImm(bmi, size), false); |
| 11084 | break; |
| 11085 | |
| 11086 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, ims (N,r,s) |
| 11087 | emitDispReg(id->idReg1(), size, true); |
| 11088 | emitDispReg(id->idReg2(), size, true); |
| 11089 | |
| 11090 | imm = emitGetInsSC(id); |
| 11091 | bmi.immNRS = (unsigned)imm; |
| 11092 | |
| 11093 | switch (ins) |
| 11094 | { |
| 11095 | case INS_bfm: |
| 11096 | case INS_sbfm: |
| 11097 | case INS_ubfm: |
| 11098 | emitDispImm(bmi.immR, true); |
| 11099 | emitDispImm(bmi.immS, false); |
| 11100 | break; |
| 11101 | |
| 11102 | case INS_bfi: |
| 11103 | case INS_sbfiz: |
| 11104 | case INS_ubfiz: |
| 11105 | emitDispImm(getBitWidth(size) - bmi.immR, true); |
| 11106 | emitDispImm(bmi.immS + 1, false); |
| 11107 | break; |
| 11108 | |
| 11109 | case INS_bfxil: |
| 11110 | case INS_sbfx: |
| 11111 | case INS_ubfx: |
| 11112 | emitDispImm(bmi.immR, true); |
| 11113 | emitDispImm(bmi.immS - bmi.immR + 1, false); |
| 11114 | break; |
| 11115 | |
| 11116 | case INS_asr: |
| 11117 | case INS_lsr: |
| 11118 | case INS_lsl: |
| 11119 | emitDispImm(imm, false); |
| 11120 | break; |
| 11121 | |
| 11122 | default: |
| 11123 | assert(!"Unexpected instruction in IF_DI_2D" ); |
| 11124 | } |
| 11125 | |
| 11126 | break; |
| 11127 | |
| 11128 | case IF_DI_1F: // DI_1F X..........iiiii cccc..nnnnn.nzcv Rn imm5 nzcv cond |
| 11129 | emitDispReg(id->idReg1(), size, true); |
| 11130 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
| 11131 | emitDispImm(cfi.imm5, true); |
| 11132 | emitDispFlags(cfi.flags); |
| 11133 | printf("," ); |
| 11134 | emitDispCond(cfi.cond); |
| 11135 | break; |
| 11136 | |
| 11137 | case IF_DR_1D: // DR_1D X............... cccc.......mmmmm Rd cond |
| 11138 | emitDispReg(id->idReg1(), size, true); |
| 11139 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
| 11140 | emitDispCond(cfi.cond); |
| 11141 | break; |
| 11142 | |
| 11143 | case IF_DR_2A: // DR_2A X..........mmmmm ......nnnnn..... Rn Rm |
| 11144 | emitDispReg(id->idReg1(), size, true); |
| 11145 | emitDispReg(id->idReg2(), size, false); |
| 11146 | break; |
| 11147 | |
| 11148 | case IF_DR_2B: // DR_2B X.......sh.mmmmm ssssssnnnnn..... Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
| 11149 | emitDispReg(id->idReg1(), size, true); |
| 11150 | emitDispShiftedReg(id->idReg2(), id->idInsOpt(), emitGetInsSC(id), size); |
| 11151 | break; |
| 11152 | |
| 11153 | case IF_DR_2C: // DR_2C X..........mmmmm ooosssnnnnn..... Rn Rm ext(Rm) LSL imm(0-4) |
| 11154 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11155 | imm = emitGetInsSC(id); |
| 11156 | emitDispExtendReg(id->idReg2(), id->idInsOpt(), imm); |
| 11157 | break; |
| 11158 | |
| 11159 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnddddd Rd Rn cond |
| 11160 | emitDispReg(id->idReg1(), size, true); |
| 11161 | emitDispReg(id->idReg2(), size, true); |
| 11162 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
| 11163 | emitDispCond(cfi.cond); |
| 11164 | break; |
| 11165 | |
| 11166 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
| 11167 | case IF_DR_2J: // DR_2J ................ ......nnnnnddddd Sd Sn |
| 11168 | emitDispReg(id->idReg1(), size, true); |
| 11169 | emitDispReg(id->idReg2(), size, false); |
| 11170 | break; |
| 11171 | |
| 11172 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
| 11173 | emitDispReg(id->idReg1(), size, true); |
| 11174 | emitDispShiftedReg(id->idReg2(), id->idInsOpt(), emitGetInsSC(id), size); |
| 11175 | break; |
| 11176 | |
| 11177 | case IF_DR_2G: // DR_2G X............... ......nnnnnddddd Rd Rn |
| 11178 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11179 | emitDispReg(encodingZRtoSP(id->idReg2()), size, false); |
| 11180 | break; |
| 11181 | |
| 11182 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
| 11183 | emitDispReg(id->idReg1(), size, true); |
| 11184 | emitDispReg(id->idReg2(), size, false); |
| 11185 | break; |
| 11186 | |
| 11187 | case IF_DR_2I: // DR_2I X..........mmmmm cccc..nnnnn.nzcv Rn Rm nzcv cond |
| 11188 | emitDispReg(id->idReg1(), size, true); |
| 11189 | emitDispReg(id->idReg2(), size, true); |
| 11190 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
| 11191 | emitDispFlags(cfi.flags); |
| 11192 | printf("," ); |
| 11193 | emitDispCond(cfi.cond); |
| 11194 | break; |
| 11195 | |
| 11196 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnmmmmm Rd Rn Rm |
| 11197 | if ((ins == INS_add) || (ins == INS_sub)) |
| 11198 | { |
| 11199 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11200 | emitDispReg(encodingZRtoSP(id->idReg2()), size, true); |
| 11201 | } |
| 11202 | else if ((ins == INS_smull) || (ins == INS_smulh)) |
| 11203 | { |
| 11204 | // Rd is always 8 bytes |
| 11205 | emitDispReg(id->idReg1(), EA_8BYTE, true); |
| 11206 | |
| 11207 | // Rn, Rm effective size depends on instruction type |
| 11208 | size = (ins == INS_smulh) ? EA_8BYTE : EA_4BYTE; |
| 11209 | emitDispReg(id->idReg2(), size, true); |
| 11210 | } |
| 11211 | else |
| 11212 | { |
| 11213 | emitDispReg(id->idReg1(), size, true); |
| 11214 | emitDispReg(id->idReg2(), size, true); |
| 11215 | } |
| 11216 | if (id->idIsLclVar()) |
| 11217 | { |
| 11218 | emitDispReg(codeGen->rsGetRsvdReg(), size, false); |
| 11219 | } |
| 11220 | else |
| 11221 | { |
| 11222 | emitDispReg(id->idReg3(), size, false); |
| 11223 | } |
| 11224 | |
| 11225 | break; |
| 11226 | |
| 11227 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR} imm(0-63) |
| 11228 | emitDispReg(id->idReg1(), size, true); |
| 11229 | emitDispReg(id->idReg2(), size, true); |
| 11230 | emitDispShiftedReg(id->idReg3(), id->idInsOpt(), emitGetInsSC(id), size); |
| 11231 | break; |
| 11232 | |
| 11233 | case IF_DR_3C: // DR_3C X..........mmmmm ooosssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
| 11234 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
| 11235 | emitDispReg(encodingZRtoSP(id->idReg2()), size, true); |
| 11236 | imm = emitGetInsSC(id); |
| 11237 | emitDispExtendReg(id->idReg3(), id->idInsOpt(), imm); |
| 11238 | break; |
| 11239 | |
| 11240 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnmmmmm Rd Rn Rm cond |
| 11241 | emitDispReg(id->idReg1(), size, true); |
| 11242 | emitDispReg(id->idReg2(), size, true); |
| 11243 | emitDispReg(id->idReg3(), size, true); |
| 11244 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
| 11245 | emitDispCond(cfi.cond); |
| 11246 | break; |
| 11247 | |
| 11248 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
| 11249 | emitDispReg(id->idReg1(), size, true); |
| 11250 | emitDispReg(id->idReg2(), size, true); |
| 11251 | emitDispReg(id->idReg3(), size, true); |
| 11252 | emitDispImm(emitGetInsSC(id), false); |
| 11253 | break; |
| 11254 | |
| 11255 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnmmmmm Rd Rn Rm Ra |
| 11256 | emitDispReg(id->idReg1(), size, true); |
| 11257 | emitDispReg(id->idReg2(), size, true); |
| 11258 | emitDispReg(id->idReg3(), size, true); |
| 11259 | emitDispReg(id->idReg4(), size, false); |
| 11260 | break; |
| 11261 | |
| 11262 | case IF_DV_1A: // DV_1A .........X.iiiii iii........ddddd Vd imm8 (fmov - immediate scalar) |
| 11263 | elemsize = id->idOpSize(); |
| 11264 | emitDispReg(id->idReg1(), elemsize, true); |
| 11265 | emitDispFloatImm(emitGetInsSC(id)); |
| 11266 | break; |
| 11267 | |
| 11268 | case IF_DV_1B: // DV_1B .QX..........iii cmod..iiiiiddddd Vd imm8 (immediate vector) |
| 11269 | imm = emitGetInsSC(id) & 0x0ff; |
| 11270 | immShift = (emitGetInsSC(id) & 0x700) >> 8; |
| 11271 | hasShift = (immShift != 0); |
| 11272 | elemsize = optGetElemsize(id->idInsOpt()); |
| 11273 | if (id->idInsOpt() == INS_OPTS_1D) |
| 11274 | { |
| 11275 | assert(elemsize == size); |
| 11276 | emitDispReg(id->idReg1(), size, true); |
| 11277 | } |
| 11278 | else |
| 11279 | { |
| 11280 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11281 | } |
| 11282 | if (ins == INS_fmov) |
| 11283 | { |
| 11284 | emitDispFloatImm(imm); |
| 11285 | assert(hasShift == false); |
| 11286 | } |
| 11287 | else |
| 11288 | { |
| 11289 | if (elemsize == EA_8BYTE) |
| 11290 | { |
| 11291 | assert(ins == INS_movi); |
| 11292 | ssize_t imm64 = 0; |
| 11293 | const ssize_t mask8 = 0xFF; |
| 11294 | for (unsigned b = 0; b < 8; b++) |
| 11295 | { |
| 11296 | if (imm & (ssize_t{1} << b)) |
| 11297 | { |
| 11298 | imm64 |= (mask8 << (b * 8)); |
| 11299 | } |
| 11300 | } |
| 11301 | emitDispImm(imm64, hasShift, true); |
| 11302 | } |
| 11303 | else |
| 11304 | { |
| 11305 | emitDispImm(imm, hasShift, true); |
| 11306 | } |
| 11307 | if (hasShift) |
| 11308 | { |
| 11309 | insOpts opt = (immShift & 0x4) ? INS_OPTS_MSL : INS_OPTS_LSL; |
| 11310 | unsigned shift = (immShift & 0x3) * 8; |
| 11311 | emitDispShiftOpts(opt); |
| 11312 | emitDispImm(shift, false); |
| 11313 | } |
| 11314 | } |
| 11315 | break; |
| 11316 | |
| 11317 | case IF_DV_1C: // DV_1C .........X...... ......nnnnn..... Vn #0.0 (fcmp - with zero) |
| 11318 | elemsize = id->idOpSize(); |
| 11319 | emitDispReg(id->idReg1(), elemsize, true); |
| 11320 | emitDispFloatZero(); |
| 11321 | break; |
| 11322 | |
| 11323 | case IF_DV_2A: // DV_2A .Q.......X...... ......nnnnnddddd Vd Vn (fabs, fcvt - vector) |
| 11324 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
| 11325 | case IF_DV_2P: // DV_2P ................ ......nnnnnddddd Vd Vn (aes*, sha1su1) |
| 11326 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11327 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), false); |
| 11328 | break; |
| 11329 | |
| 11330 | case IF_DV_2N: // DV_2N .........iiiiiii ......nnnnnddddd Vd Vn imm (shift - scalar) |
| 11331 | elemsize = id->idOpSize(); |
| 11332 | emitDispReg(id->idReg1(), elemsize, true); |
| 11333 | emitDispReg(id->idReg2(), elemsize, true); |
| 11334 | emitDispImm(emitGetInsSC(id), false); |
| 11335 | break; |
| 11336 | |
| 11337 | case IF_DV_2O: // DV_2O .Q.......iiiiiii ......nnnnnddddd Vd Vn imm (shift - vector) |
| 11338 | imm = emitGetInsSC(id); |
| 11339 | // Do we have a sxtl or uxtl instruction? |
| 11340 | isExtendAlias = ((ins == INS_sxtl) || (ins == INS_sxtl2) || (ins == INS_uxtl) || (ins == INS_uxtl2)); |
| 11341 | code = emitInsCode(ins, fmt); |
| 11342 | if (code & 0x00008000) // widen/narrow opcodes |
| 11343 | { |
| 11344 | if (code & 0x00002000) // SHL opcodes |
| 11345 | { |
| 11346 | emitDispVectorReg(id->idReg1(), optWidenElemsize(id->idInsOpt()), true); |
| 11347 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), !isExtendAlias); |
| 11348 | } |
| 11349 | else // SHR opcodes |
| 11350 | { |
| 11351 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11352 | emitDispVectorReg(id->idReg2(), optWidenElemsize(id->idInsOpt()), !isExtendAlias); |
| 11353 | } |
| 11354 | } |
| 11355 | else |
| 11356 | { |
| 11357 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11358 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), !isExtendAlias); |
| 11359 | } |
| 11360 | // Print the immediate unless we have a sxtl or uxtl instruction |
| 11361 | if (!isExtendAlias) |
| 11362 | { |
| 11363 | emitDispImm(imm, false); |
| 11364 | } |
| 11365 | break; |
| 11366 | |
| 11367 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov/smov - to general) |
| 11368 | srcsize = id->idOpSize(); |
| 11369 | index = emitGetInsSC(id); |
| 11370 | if (ins == INS_smov) |
| 11371 | { |
| 11372 | dstsize = EA_8BYTE; |
| 11373 | } |
| 11374 | else // INS_umov or INS_mov |
| 11375 | { |
| 11376 | dstsize = (srcsize == EA_8BYTE) ? EA_8BYTE : EA_4BYTE; |
| 11377 | } |
| 11378 | emitDispReg(id->idReg1(), dstsize, true); |
| 11379 | emitDispVectorRegIndex(id->idReg2(), srcsize, index, false); |
| 11380 | break; |
| 11381 | |
| 11382 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
| 11383 | if (ins == INS_dup) |
| 11384 | { |
| 11385 | datasize = id->idOpSize(); |
| 11386 | assert(isValidVectorDatasize(datasize)); |
| 11387 | assert(isValidArrangement(datasize, id->idInsOpt())); |
| 11388 | elemsize = optGetElemsize(id->idInsOpt()); |
| 11389 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11390 | } |
| 11391 | else // INS_ins |
| 11392 | { |
| 11393 | elemsize = id->idOpSize(); |
| 11394 | index = emitGetInsSC(id); |
| 11395 | assert(isValidVectorElemsize(elemsize)); |
| 11396 | emitDispVectorRegIndex(id->idReg1(), elemsize, index, true); |
| 11397 | } |
| 11398 | emitDispReg(id->idReg2(), (elemsize == EA_8BYTE) ? EA_8BYTE : EA_4BYTE, false); |
| 11399 | break; |
| 11400 | |
| 11401 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
| 11402 | datasize = id->idOpSize(); |
| 11403 | assert(isValidVectorDatasize(datasize)); |
| 11404 | assert(isValidArrangement(datasize, id->idInsOpt())); |
| 11405 | elemsize = optGetElemsize(id->idInsOpt()); |
| 11406 | index = emitGetInsSC(id); |
| 11407 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11408 | emitDispVectorRegIndex(id->idReg2(), elemsize, index, false); |
| 11409 | break; |
| 11410 | |
| 11411 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
| 11412 | elemsize = id->idOpSize(); |
| 11413 | index = emitGetInsSC(id); |
| 11414 | emitDispReg(id->idReg1(), elemsize, true); |
| 11415 | emitDispVectorRegIndex(id->idReg2(), elemsize, index, false); |
| 11416 | break; |
| 11417 | |
| 11418 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
| 11419 | imm = emitGetInsSC(id); |
| 11420 | index = (imm >> 4) & 0xf; |
| 11421 | index2 = imm & 0xf; |
| 11422 | elemsize = id->idOpSize(); |
| 11423 | emitDispVectorRegIndex(id->idReg1(), elemsize, index, true); |
| 11424 | emitDispVectorRegIndex(id->idReg2(), elemsize, index2, false); |
| 11425 | break; |
| 11426 | |
| 11427 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov, fcvtXX - register) |
| 11428 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
| 11429 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
| 11430 | elemsize = id->idOpSize(); |
| 11431 | emitDispReg(id->idReg1(), elemsize, true); |
| 11432 | emitDispReg(id->idReg2(), elemsize, false); |
| 11433 | break; |
| 11434 | |
| 11435 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov, fcvtXX - to general) |
| 11436 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov, Xcvtf - from general) |
| 11437 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
| 11438 | dstsize = optGetDstsize(id->idInsOpt()); |
| 11439 | srcsize = optGetSrcsize(id->idInsOpt()); |
| 11440 | |
| 11441 | emitDispReg(id->idReg1(), dstsize, true); |
| 11442 | emitDispReg(id->idReg2(), srcsize, false); |
| 11443 | break; |
| 11444 | |
| 11445 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 11446 | case IF_DV_3B: // DV_3B .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 11447 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11448 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
| 11449 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
| 11450 | break; |
| 11451 | |
| 11452 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 11453 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11454 | if (ins != INS_mov) |
| 11455 | { |
| 11456 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
| 11457 | } |
| 11458 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
| 11459 | break; |
| 11460 | |
| 11461 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
| 11462 | case IF_DV_3BI: // DV_3BI .Q........Lmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
| 11463 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11464 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
| 11465 | elemsize = optGetElemsize(id->idInsOpt()); |
| 11466 | emitDispVectorRegIndex(id->idReg3(), elemsize, emitGetInsSC(id), false); |
| 11467 | break; |
| 11468 | |
| 11469 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 11470 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
| 11471 | emitDispReg(id->idReg1(), size, true); |
| 11472 | emitDispReg(id->idReg2(), size, true); |
| 11473 | emitDispReg(id->idReg3(), size, false); |
| 11474 | break; |
| 11475 | |
| 11476 | case IF_DV_3F: // DV_3F ..........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
| 11477 | if ((ins == INS_sha1c) || (ins == INS_sha1m) || (ins == INS_sha1p)) |
| 11478 | { |
| 11479 | // Qd, Sn, Vm (vector) |
| 11480 | emitDispReg(id->idReg1(), size, true); |
| 11481 | emitDispReg(id->idReg2(), EA_4BYTE, true); |
| 11482 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
| 11483 | } |
| 11484 | else if ((ins == INS_sha256h) || (ins == INS_sha256h2)) |
| 11485 | { |
| 11486 | // Qd Qn Vm (vector) |
| 11487 | emitDispReg(id->idReg1(), size, true); |
| 11488 | emitDispReg(id->idReg2(), size, true); |
| 11489 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
| 11490 | } |
| 11491 | else // INS_sha1su0, INS_sha256su1 |
| 11492 | { |
| 11493 | // Vd, Vn, Vm (vector) |
| 11494 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
| 11495 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
| 11496 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
| 11497 | } |
| 11498 | break; |
| 11499 | |
| 11500 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
| 11501 | emitDispReg(id->idReg1(), size, true); |
| 11502 | emitDispReg(id->idReg2(), size, true); |
| 11503 | elemsize = size; |
| 11504 | emitDispVectorRegIndex(id->idReg3(), elemsize, emitGetInsSC(id), false); |
| 11505 | break; |
| 11506 | |
| 11507 | case IF_DV_4A: // DV_4A .........X.mmmmm .aaaaannnnnddddd Vd Va Vn Vm (scalar) |
| 11508 | emitDispReg(id->idReg1(), size, true); |
| 11509 | emitDispReg(id->idReg2(), size, true); |
| 11510 | emitDispReg(id->idReg3(), size, true); |
| 11511 | emitDispReg(id->idReg4(), size, false); |
| 11512 | break; |
| 11513 | |
| 11514 | case IF_SN_0A: // SN_0A ................ ................ |
| 11515 | break; |
| 11516 | |
| 11517 | case IF_SI_0A: // SI_0A ...........iiiii iiiiiiiiiii..... imm16 |
| 11518 | emitDispImm(emitGetInsSC(id), false); |
| 11519 | break; |
| 11520 | |
| 11521 | case IF_SI_0B: // SI_0B ................ ....bbbb........ imm4 - barrier |
| 11522 | emitDispBarrier((insBarrier)emitGetInsSC(id)); |
| 11523 | break; |
| 11524 | |
| 11525 | default: |
| 11526 | printf("unexpected format %s" , emitIfName(id->idInsFmt())); |
| 11527 | assert(!"unexpectedFormat" ); |
| 11528 | break; |
| 11529 | } |
| 11530 | |
| 11531 | if (id->idDebugOnlyInfo()->idVarRefOffs) |
| 11532 | { |
| 11533 | printf("\t// " ); |
| 11534 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
| 11535 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
| 11536 | } |
| 11537 | |
| 11538 | printf("\n" ); |
| 11539 | } |
| 11540 | |
| 11541 | /***************************************************************************** |
| 11542 | * |
| 11543 | * Display a stack frame reference. |
| 11544 | */ |
| 11545 | |
| 11546 | void emitter::emitDispFrameRef(int varx, int disp, int offs, bool asmfm) |
| 11547 | { |
| 11548 | printf("[" ); |
| 11549 | |
| 11550 | if (varx < 0) |
| 11551 | printf("TEMP_%02u" , -varx); |
| 11552 | else |
| 11553 | emitComp->gtDispLclVar(+varx, false); |
| 11554 | |
| 11555 | if (disp < 0) |
| 11556 | printf("-0x%02x" , -disp); |
| 11557 | else if (disp > 0) |
| 11558 | printf("+0x%02x" , +disp); |
| 11559 | |
| 11560 | printf("]" ); |
| 11561 | |
| 11562 | if (varx >= 0 && emitComp->opts.varNames) |
| 11563 | { |
| 11564 | LclVarDsc* varDsc; |
| 11565 | const char* varName; |
| 11566 | |
| 11567 | assert((unsigned)varx < emitComp->lvaCount); |
| 11568 | varDsc = emitComp->lvaTable + varx; |
| 11569 | varName = emitComp->compLocalVarName(varx, offs); |
| 11570 | |
| 11571 | if (varName) |
| 11572 | { |
| 11573 | printf("'%s" , varName); |
| 11574 | |
| 11575 | if (disp < 0) |
| 11576 | printf("-%d" , -disp); |
| 11577 | else if (disp > 0) |
| 11578 | printf("+%d" , +disp); |
| 11579 | |
| 11580 | printf("'" ); |
| 11581 | } |
| 11582 | } |
| 11583 | } |
| 11584 | |
| 11585 | #endif // DEBUG |
| 11586 | |
| 11587 | // Generate code for a load or store operation with a potentially complex addressing mode |
| 11588 | // This method handles the case of a GT_IND with contained GT_LEA op1 of the x86 form [base + index*sccale + offset] |
| 11589 | // Since Arm64 does not directly support this complex of an addressing mode |
| 11590 | // we may generates up to three instructions for this for Arm64 |
| 11591 | // |
| 11592 | void emitter::emitInsLoadStoreOp(instruction ins, emitAttr attr, regNumber dataReg, GenTreeIndir* indir) |
| 11593 | { |
| 11594 | emitAttr ldstAttr = isVectorRegister(dataReg) ? attr : emitInsAdjustLoadStoreAttr(ins, attr); |
| 11595 | |
| 11596 | GenTree* addr = indir->Addr(); |
| 11597 | |
| 11598 | if (addr->isContained()) |
| 11599 | { |
| 11600 | assert(addr->OperGet() == GT_LCL_VAR_ADDR || addr->OperGet() == GT_LEA); |
| 11601 | |
| 11602 | int offset = 0; |
| 11603 | DWORD lsl = 0; |
| 11604 | |
| 11605 | if (addr->OperGet() == GT_LEA) |
| 11606 | { |
| 11607 | offset = addr->AsAddrMode()->Offset(); |
| 11608 | if (addr->AsAddrMode()->gtScale > 0) |
| 11609 | { |
| 11610 | assert(isPow2(addr->AsAddrMode()->gtScale)); |
| 11611 | BitScanForward(&lsl, addr->AsAddrMode()->gtScale); |
| 11612 | } |
| 11613 | } |
| 11614 | |
| 11615 | GenTree* memBase = indir->Base(); |
| 11616 | |
| 11617 | if (indir->HasIndex()) |
| 11618 | { |
| 11619 | GenTree* index = indir->Index(); |
| 11620 | |
| 11621 | if (offset != 0) |
| 11622 | { |
| 11623 | regNumber tmpReg = indir->GetSingleTempReg(); |
| 11624 | |
| 11625 | emitAttr addType = varTypeIsGC(memBase) ? EA_BYREF : EA_PTRSIZE; |
| 11626 | |
| 11627 | if (emitIns_valid_imm_for_add(offset, EA_8BYTE)) |
| 11628 | { |
| 11629 | if (lsl > 0) |
| 11630 | { |
| 11631 | // Generate code to set tmpReg = base + index*scale |
| 11632 | emitIns_R_R_R_I(INS_add, addType, tmpReg, memBase->gtRegNum, index->gtRegNum, lsl, |
| 11633 | INS_OPTS_LSL); |
| 11634 | } |
| 11635 | else // no scale |
| 11636 | { |
| 11637 | // Generate code to set tmpReg = base + index |
| 11638 | emitIns_R_R_R(INS_add, addType, tmpReg, memBase->gtRegNum, index->gtRegNum); |
| 11639 | } |
| 11640 | |
| 11641 | noway_assert(emitInsIsLoad(ins) || (tmpReg != dataReg)); |
| 11642 | |
| 11643 | // Then load/store dataReg from/to [tmpReg + offset] |
| 11644 | emitIns_R_R_I(ins, ldstAttr, dataReg, tmpReg, offset); |
| 11645 | } |
| 11646 | else // large offset |
| 11647 | { |
| 11648 | // First load/store tmpReg with the large offset constant |
| 11649 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset); |
| 11650 | // Then add the base register |
| 11651 | // rd = rd + base |
| 11652 | emitIns_R_R_R(INS_add, addType, tmpReg, tmpReg, memBase->gtRegNum); |
| 11653 | |
| 11654 | noway_assert(emitInsIsLoad(ins) || (tmpReg != dataReg)); |
| 11655 | noway_assert(tmpReg != index->gtRegNum); |
| 11656 | |
| 11657 | // Then load/store dataReg from/to [tmpReg + index*scale] |
| 11658 | emitIns_R_R_R_I(ins, ldstAttr, dataReg, tmpReg, index->gtRegNum, lsl, INS_OPTS_LSL); |
| 11659 | } |
| 11660 | } |
| 11661 | else // (offset == 0) |
| 11662 | { |
| 11663 | if (lsl > 0) |
| 11664 | { |
| 11665 | // Then load/store dataReg from/to [memBase + index*scale] |
| 11666 | emitIns_R_R_R_I(ins, ldstAttr, dataReg, memBase->gtRegNum, index->gtRegNum, lsl, INS_OPTS_LSL); |
| 11667 | } |
| 11668 | else // no scale |
| 11669 | { |
| 11670 | // Then load/store dataReg from/to [memBase + index] |
| 11671 | emitIns_R_R_R(ins, ldstAttr, dataReg, memBase->gtRegNum, index->gtRegNum); |
| 11672 | } |
| 11673 | } |
| 11674 | } |
| 11675 | else // no Index register |
| 11676 | { |
| 11677 | if (emitIns_valid_imm_for_ldst_offset(offset, EA_SIZE(attr))) |
| 11678 | { |
| 11679 | // Then load/store dataReg from/to [memBase + offset] |
| 11680 | emitIns_R_R_I(ins, ldstAttr, dataReg, memBase->gtRegNum, offset); |
| 11681 | } |
| 11682 | else |
| 11683 | { |
| 11684 | // We require a tmpReg to hold the offset |
| 11685 | regNumber tmpReg = indir->GetSingleTempReg(); |
| 11686 | |
| 11687 | // First load/store tmpReg with the large offset constant |
| 11688 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset); |
| 11689 | |
| 11690 | // Then load/store dataReg from/to [memBase + tmpReg] |
| 11691 | emitIns_R_R_R(ins, ldstAttr, dataReg, memBase->gtRegNum, tmpReg); |
| 11692 | } |
| 11693 | } |
| 11694 | } |
| 11695 | else // addr is not contained, so we evaluate it into a register |
| 11696 | { |
| 11697 | // Then load/store dataReg from/to [addrReg] |
| 11698 | emitIns_R_R(ins, ldstAttr, dataReg, addr->gtRegNum); |
| 11699 | } |
| 11700 | } |
| 11701 | |
| 11702 | // The callee must call genConsumeReg() for any non-contained srcs |
| 11703 | // and genProduceReg() for any non-contained dsts. |
| 11704 | |
| 11705 | regNumber emitter::emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src) |
| 11706 | { |
| 11707 | regNumber result = REG_NA; |
| 11708 | |
| 11709 | // dst can only be a reg |
| 11710 | assert(!dst->isContained()); |
| 11711 | |
| 11712 | // src can be immed or reg |
| 11713 | assert(!src->isContained() || src->isContainedIntOrIImmed()); |
| 11714 | |
| 11715 | // find immed (if any) - it cannot be a dst |
| 11716 | GenTreeIntConCommon* intConst = nullptr; |
| 11717 | if (src->isContainedIntOrIImmed()) |
| 11718 | { |
| 11719 | intConst = src->AsIntConCommon(); |
| 11720 | } |
| 11721 | |
| 11722 | if (intConst) |
| 11723 | { |
| 11724 | emitIns_R_I(ins, attr, dst->gtRegNum, intConst->IconValue()); |
| 11725 | return dst->gtRegNum; |
| 11726 | } |
| 11727 | else |
| 11728 | { |
| 11729 | emitIns_R_R(ins, attr, dst->gtRegNum, src->gtRegNum); |
| 11730 | return dst->gtRegNum; |
| 11731 | } |
| 11732 | } |
| 11733 | |
| 11734 | // The callee must call genConsumeReg() for any non-contained srcs |
| 11735 | // and genProduceReg() for any non-contained dsts. |
| 11736 | |
| 11737 | regNumber emitter::emitInsTernary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src1, GenTree* src2) |
| 11738 | { |
| 11739 | regNumber result = REG_NA; |
| 11740 | |
| 11741 | // dst can only be a reg |
| 11742 | assert(!dst->isContained()); |
| 11743 | |
| 11744 | // find immed (if any) - it cannot be a dst |
| 11745 | // Only one src can be an int. |
| 11746 | GenTreeIntConCommon* intConst = nullptr; |
| 11747 | GenTree* nonIntReg = nullptr; |
| 11748 | |
| 11749 | if (varTypeIsFloating(dst)) |
| 11750 | { |
| 11751 | // src1 can only be a reg |
| 11752 | assert(!src1->isContained()); |
| 11753 | // src2 can only be a reg |
| 11754 | assert(!src2->isContained()); |
| 11755 | } |
| 11756 | else // not floating point |
| 11757 | { |
| 11758 | // src2 can be immed or reg |
| 11759 | assert(!src2->isContained() || src2->isContainedIntOrIImmed()); |
| 11760 | |
| 11761 | // Check src2 first as we can always allow it to be a contained immediate |
| 11762 | if (src2->isContainedIntOrIImmed()) |
| 11763 | { |
| 11764 | intConst = src2->AsIntConCommon(); |
| 11765 | nonIntReg = src1; |
| 11766 | } |
| 11767 | // Only for commutative operations do we check src1 and allow it to be a contained immediate |
| 11768 | else if (dst->OperIsCommutative()) |
| 11769 | { |
| 11770 | // src1 can be immed or reg |
| 11771 | assert(!src1->isContained() || src1->isContainedIntOrIImmed()); |
| 11772 | |
| 11773 | // Check src1 and allow it to be a contained immediate |
| 11774 | if (src1->isContainedIntOrIImmed()) |
| 11775 | { |
| 11776 | assert(!src2->isContainedIntOrIImmed()); |
| 11777 | intConst = src1->AsIntConCommon(); |
| 11778 | nonIntReg = src2; |
| 11779 | } |
| 11780 | } |
| 11781 | else |
| 11782 | { |
| 11783 | // src1 can only be a reg |
| 11784 | assert(!src1->isContained()); |
| 11785 | } |
| 11786 | } |
| 11787 | |
| 11788 | bool isMulOverflow = false; |
| 11789 | if (dst->gtOverflowEx()) |
| 11790 | { |
| 11791 | if ((ins == INS_add) || (ins == INS_adds)) |
| 11792 | { |
| 11793 | ins = INS_adds; |
| 11794 | } |
| 11795 | else if ((ins == INS_sub) || (ins == INS_subs)) |
| 11796 | { |
| 11797 | ins = INS_subs; |
| 11798 | } |
| 11799 | else if (ins == INS_mul) |
| 11800 | { |
| 11801 | isMulOverflow = true; |
| 11802 | assert(intConst == nullptr); // overflow format doesn't support an int constant operand |
| 11803 | } |
| 11804 | else |
| 11805 | { |
| 11806 | assert(!"Invalid ins for overflow check" ); |
| 11807 | } |
| 11808 | } |
| 11809 | if (intConst != nullptr) |
| 11810 | { |
| 11811 | emitIns_R_R_I(ins, attr, dst->gtRegNum, nonIntReg->gtRegNum, intConst->IconValue()); |
| 11812 | } |
| 11813 | else |
| 11814 | { |
| 11815 | if (isMulOverflow) |
| 11816 | { |
| 11817 | regNumber = dst->GetSingleTempReg(); |
| 11818 | assert(extraReg != dst->gtRegNum); |
| 11819 | |
| 11820 | if ((dst->gtFlags & GTF_UNSIGNED) != 0) |
| 11821 | { |
| 11822 | if (attr == EA_4BYTE) |
| 11823 | { |
| 11824 | // Compute 8 byte results from 4 byte by 4 byte multiplication. |
| 11825 | emitIns_R_R_R(INS_umull, EA_8BYTE, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
| 11826 | |
| 11827 | // Get the high result by shifting dst. |
| 11828 | emitIns_R_R_I(INS_lsr, EA_8BYTE, extraReg, dst->gtRegNum, 32); |
| 11829 | } |
| 11830 | else |
| 11831 | { |
| 11832 | assert(attr == EA_8BYTE); |
| 11833 | // Compute the high result. |
| 11834 | emitIns_R_R_R(INS_umulh, attr, extraReg, src1->gtRegNum, src2->gtRegNum); |
| 11835 | |
| 11836 | // Now multiply without skewing the high result. |
| 11837 | emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
| 11838 | } |
| 11839 | |
| 11840 | // zero-sign bit comparison to detect overflow. |
| 11841 | emitIns_R_I(INS_cmp, attr, extraReg, 0); |
| 11842 | } |
| 11843 | else |
| 11844 | { |
| 11845 | int bitShift = 0; |
| 11846 | if (attr == EA_4BYTE) |
| 11847 | { |
| 11848 | // Compute 8 byte results from 4 byte by 4 byte multiplication. |
| 11849 | emitIns_R_R_R(INS_smull, EA_8BYTE, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
| 11850 | |
| 11851 | // Get the high result by shifting dst. |
| 11852 | emitIns_R_R_I(INS_lsr, EA_8BYTE, extraReg, dst->gtRegNum, 32); |
| 11853 | |
| 11854 | bitShift = 31; |
| 11855 | } |
| 11856 | else |
| 11857 | { |
| 11858 | assert(attr == EA_8BYTE); |
| 11859 | // Save the high result in a temporary register. |
| 11860 | emitIns_R_R_R(INS_smulh, attr, extraReg, src1->gtRegNum, src2->gtRegNum); |
| 11861 | |
| 11862 | // Now multiply without skewing the high result. |
| 11863 | emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
| 11864 | |
| 11865 | bitShift = 63; |
| 11866 | } |
| 11867 | |
| 11868 | // Sign bit comparison to detect overflow. |
| 11869 | emitIns_R_R_I(INS_cmp, attr, extraReg, dst->gtRegNum, bitShift, INS_OPTS_ASR); |
| 11870 | } |
| 11871 | } |
| 11872 | else |
| 11873 | { |
| 11874 | // We can just multiply. |
| 11875 | emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
| 11876 | } |
| 11877 | } |
| 11878 | |
| 11879 | if (dst->gtOverflowEx()) |
| 11880 | { |
| 11881 | assert(!varTypeIsFloating(dst)); |
| 11882 | codeGen->genCheckOverflow(dst); |
| 11883 | } |
| 11884 | |
| 11885 | return dst->gtRegNum; |
| 11886 | } |
| 11887 | |
| 11888 | #endif // defined(_TARGET_ARM64_) |
| 11889 | |