1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XX XX |
8 | XX emitArm64.cpp XX |
9 | XX XX |
10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
12 | */ |
13 | |
14 | #include "jitpch.h" |
15 | #ifdef _MSC_VER |
16 | #pragma hdrstop |
17 | #endif |
18 | |
19 | #if defined(_TARGET_ARM64_) |
20 | |
21 | /*****************************************************************************/ |
22 | /*****************************************************************************/ |
23 | |
24 | #include "instr.h" |
25 | #include "emit.h" |
26 | #include "codegen.h" |
27 | |
28 | /* static */ bool emitter::strictArmAsm = true; |
29 | |
30 | /*****************************************************************************/ |
31 | |
32 | const instruction emitJumpKindInstructions[] = { |
33 | INS_nop, |
34 | |
35 | #define JMP_SMALL(en, rev, ins) INS_##ins, |
36 | #include "emitjmps.h" |
37 | }; |
38 | |
39 | const emitJumpKind emitReverseJumpKinds[] = { |
40 | EJ_NONE, |
41 | |
42 | #define JMP_SMALL(en, rev, ins) EJ_##rev, |
43 | #include "emitjmps.h" |
44 | }; |
45 | |
46 | /***************************************************************************** |
47 | * Look up the instruction for a jump kind |
48 | */ |
49 | |
50 | /*static*/ instruction emitter::emitJumpKindToIns(emitJumpKind jumpKind) |
51 | { |
52 | assert((unsigned)jumpKind < ArrLen(emitJumpKindInstructions)); |
53 | return emitJumpKindInstructions[jumpKind]; |
54 | } |
55 | |
56 | /***************************************************************************** |
57 | * Look up the jump kind for an instruction. It better be a conditional |
58 | * branch instruction with a jump kind! |
59 | */ |
60 | |
61 | /*static*/ emitJumpKind emitter::emitInsToJumpKind(instruction ins) |
62 | { |
63 | for (unsigned i = 0; i < ArrLen(emitJumpKindInstructions); i++) |
64 | { |
65 | if (ins == emitJumpKindInstructions[i]) |
66 | { |
67 | emitJumpKind ret = (emitJumpKind)i; |
68 | assert(EJ_NONE < ret && ret < EJ_COUNT); |
69 | return ret; |
70 | } |
71 | } |
72 | unreached(); |
73 | } |
74 | |
75 | /***************************************************************************** |
76 | * Reverse the conditional jump |
77 | */ |
78 | |
79 | /*static*/ emitJumpKind emitter::emitReverseJumpKind(emitJumpKind jumpKind) |
80 | { |
81 | assert(jumpKind < EJ_COUNT); |
82 | return emitReverseJumpKinds[jumpKind]; |
83 | } |
84 | |
85 | /***************************************************************************** |
86 | * |
87 | * Return the allocated size (in bytes) of the given instruction descriptor. |
88 | */ |
89 | |
90 | size_t emitter::emitSizeOfInsDsc(instrDesc* id) |
91 | { |
92 | if (emitIsScnsInsDsc(id)) |
93 | return SMALL_IDSC_SIZE; |
94 | |
95 | assert((unsigned)id->idInsFmt() < emitFmtCount); |
96 | |
97 | ID_OPS idOp = (ID_OPS)emitFmtToOps[id->idInsFmt()]; |
98 | bool isCallIns = (id->idIns() == INS_bl) || (id->idIns() == INS_blr) || (id->idIns() == INS_b_tail) || |
99 | (id->idIns() == INS_br_tail); |
100 | bool maybeCallIns = (id->idIns() == INS_b) || (id->idIns() == INS_br); |
101 | |
102 | switch (idOp) |
103 | { |
104 | case ID_OP_NONE: |
105 | break; |
106 | |
107 | case ID_OP_JMP: |
108 | return sizeof(instrDescJmp); |
109 | |
110 | case ID_OP_CALL: |
111 | assert(isCallIns || maybeCallIns); |
112 | if (id->idIsLargeCall()) |
113 | { |
114 | /* Must be a "fat" call descriptor */ |
115 | return sizeof(instrDescCGCA); |
116 | } |
117 | else |
118 | { |
119 | assert(!id->idIsLargeDsp()); |
120 | assert(!id->idIsLargeCns()); |
121 | return sizeof(instrDesc); |
122 | } |
123 | break; |
124 | |
125 | default: |
126 | NO_WAY("unexpected instruction descriptor format" ); |
127 | break; |
128 | } |
129 | |
130 | if (id->idIsLargeCns()) |
131 | { |
132 | if (id->idIsLargeDsp()) |
133 | return sizeof(instrDescCnsDsp); |
134 | else |
135 | return sizeof(instrDescCns); |
136 | } |
137 | else |
138 | { |
139 | if (id->idIsLargeDsp()) |
140 | return sizeof(instrDescDsp); |
141 | else |
142 | return sizeof(instrDesc); |
143 | } |
144 | } |
145 | |
146 | #ifdef DEBUG |
147 | /***************************************************************************** |
148 | * |
149 | * The following called for each recorded instruction -- use for debugging. |
150 | */ |
151 | void emitter::emitInsSanityCheck(instrDesc* id) |
152 | { |
153 | /* What instruction format have we got? */ |
154 | |
155 | switch (id->idInsFmt()) |
156 | { |
157 | instruction ins; |
158 | emitAttr elemsize; |
159 | emitAttr datasize; |
160 | emitAttr dstsize; |
161 | emitAttr srcsize; |
162 | ssize_t imm; |
163 | unsigned immShift; |
164 | ssize_t index; |
165 | ssize_t index2; |
166 | |
167 | case IF_BI_0A: // BI_0A ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
168 | break; |
169 | |
170 | case IF_BI_0B: // BI_0B ......iiiiiiiiii iiiiiiiiiiii.... simm19:00 |
171 | break; |
172 | |
173 | case IF_LARGEJMP: |
174 | case IF_LARGEADR: |
175 | case IF_LARGELDC: |
176 | break; |
177 | |
178 | case IF_BI_0C: // BI_0C ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
179 | break; |
180 | |
181 | case IF_BI_1A: // BI_1A ......iiiiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
182 | assert(isValidGeneralDatasize(id->idOpSize())); |
183 | assert(isGeneralRegister(id->idReg1())); |
184 | break; |
185 | |
186 | case IF_BI_1B: // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
187 | assert(isValidGeneralDatasize(id->idOpSize())); |
188 | assert(isGeneralRegister(id->idReg1())); |
189 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
190 | break; |
191 | |
192 | case IF_BR_1A: // BR_1A ................ ......nnnnn..... Rn |
193 | assert(isGeneralRegister(id->idReg1())); |
194 | break; |
195 | |
196 | case IF_BR_1B: // BR_1B ................ ......nnnnn..... Rn |
197 | assert(isGeneralRegister(id->idReg3())); |
198 | break; |
199 | |
200 | case IF_LS_1A: // LS_1A .X......iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
201 | assert(isGeneralRegister(id->idReg1()) || isVectorRegister(id->idReg1())); |
202 | assert(insOptsNone(id->idInsOpt())); |
203 | break; |
204 | |
205 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
206 | assert(isIntegerRegister(id->idReg1()) || // ZR |
207 | isVectorRegister(id->idReg1())); |
208 | assert(isIntegerRegister(id->idReg2())); // SP |
209 | assert(emitGetInsSC(id) == 0); |
210 | assert(insOptsNone(id->idInsOpt())); |
211 | break; |
212 | |
213 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
214 | assert(isIntegerRegister(id->idReg1()) || // ZR |
215 | isVectorRegister(id->idReg1())); |
216 | assert(isIntegerRegister(id->idReg2())); // SP |
217 | assert(isValidUimm12(emitGetInsSC(id))); |
218 | assert(insOptsNone(id->idInsOpt())); |
219 | break; |
220 | |
221 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiPPnnnnnttttt Rt Rn imm(-256..+255) no/pre/post inc |
222 | assert(isIntegerRegister(id->idReg1()) || // ZR |
223 | isVectorRegister(id->idReg1())); |
224 | assert(isIntegerRegister(id->idReg2())); // SP |
225 | assert(emitGetInsSC(id) >= -0x100); |
226 | assert(emitGetInsSC(id) < 0x100); |
227 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
228 | break; |
229 | |
230 | case IF_LS_3A: // LS_3A .X.......X.mmmmm oooS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
231 | assert(isIntegerRegister(id->idReg1()) || // ZR |
232 | isVectorRegister(id->idReg1())); |
233 | assert(isIntegerRegister(id->idReg2())); // SP |
234 | if (id->idIsLclVar()) |
235 | { |
236 | assert(isGeneralRegister(codeGen->rsGetRsvdReg())); |
237 | } |
238 | else |
239 | { |
240 | assert(isGeneralRegister(id->idReg3())); |
241 | } |
242 | assert(insOptsLSExtend(id->idInsOpt())); |
243 | break; |
244 | |
245 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnttttt Rt Ra Rn |
246 | assert((isValidGeneralDatasize(id->idOpSize()) && isIntegerRegister(id->idReg1())) || |
247 | (isValidVectorLSPDatasize(id->idOpSize()) && isVectorRegister(id->idReg1()))); |
248 | assert(isIntegerRegister(id->idReg1()) || // ZR |
249 | isVectorRegister(id->idReg1())); |
250 | assert(isIntegerRegister(id->idReg2()) || // ZR |
251 | isVectorRegister(id->idReg2())); |
252 | assert(isIntegerRegister(id->idReg3())); // SP |
253 | assert(emitGetInsSC(id) == 0); |
254 | assert(insOptsNone(id->idInsOpt())); |
255 | break; |
256 | |
257 | case IF_LS_3C: // LS_3C X.........iiiiii iaaaaannnnnttttt Rt Ra Rn imm(im7,sh) |
258 | assert((isValidGeneralDatasize(id->idOpSize()) && isIntegerRegister(id->idReg1())) || |
259 | (isValidVectorLSPDatasize(id->idOpSize()) && isVectorRegister(id->idReg1()))); |
260 | assert(isIntegerRegister(id->idReg1()) || // ZR |
261 | isVectorRegister(id->idReg1())); |
262 | assert(isIntegerRegister(id->idReg2()) || // ZR |
263 | isVectorRegister(id->idReg2())); |
264 | assert(isIntegerRegister(id->idReg3())); // SP |
265 | assert(emitGetInsSC(id) >= -0x40); |
266 | assert(emitGetInsSC(id) < 0x40); |
267 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
268 | break; |
269 | |
270 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
271 | assert(isIntegerRegister(id->idReg1())); |
272 | assert(isIntegerRegister(id->idReg2())); |
273 | assert(isIntegerRegister(id->idReg3())); |
274 | assert(emitGetInsSC(id) == 0); |
275 | assert(!id->idIsLclVar()); |
276 | assert(insOptsNone(id->idInsOpt())); |
277 | break; |
278 | |
279 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
280 | assert(isIntegerRegister(id->idReg1())); |
281 | assert(isIntegerRegister(id->idReg2())); |
282 | assert(isIntegerRegister(id->idReg3())); |
283 | assert(emitGetInsSC(id) == 0); |
284 | assert(!id->idIsLclVar()); |
285 | assert(insOptsNone(id->idInsOpt())); |
286 | break; |
287 | |
288 | case IF_DI_1A: // DI_1A X.......shiiiiii iiiiiinnnnn..... Rn imm(i12,sh) |
289 | assert(isValidGeneralDatasize(id->idOpSize())); |
290 | assert(isGeneralRegister(id->idReg1())); |
291 | assert(isValidUimm12(emitGetInsSC(id))); |
292 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
293 | break; |
294 | |
295 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
296 | assert(isValidGeneralDatasize(id->idOpSize())); |
297 | assert(isGeneralRegister(id->idReg1())); |
298 | assert(isValidImmHWVal(emitGetInsSC(id), id->idOpSize())); |
299 | break; |
300 | |
301 | case IF_DI_1C: // DI_1C X........Nrrrrrr ssssssnnnnn..... Rn imm(N,r,s) |
302 | assert(isValidGeneralDatasize(id->idOpSize())); |
303 | assert(isGeneralRegister(id->idReg1())); |
304 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
305 | break; |
306 | |
307 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
308 | assert(isValidGeneralDatasize(id->idOpSize())); |
309 | assert(isIntegerRegister(id->idReg1())); // SP |
310 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
311 | break; |
312 | |
313 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
314 | assert(isGeneralRegister(id->idReg1())); |
315 | break; |
316 | |
317 | case IF_DI_1F: // DI_1F X..........iiiii cccc..nnnnn.nzcv Rn imm5 nzcv cond |
318 | assert(isValidGeneralDatasize(id->idOpSize())); |
319 | assert(isGeneralRegister(id->idReg1())); |
320 | assert(isValidImmCondFlagsImm5(emitGetInsSC(id))); |
321 | break; |
322 | |
323 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
324 | assert(isValidGeneralDatasize(id->idOpSize())); |
325 | assert(isIntegerRegister(id->idReg1())); // SP |
326 | assert(isIntegerRegister(id->idReg2())); // SP |
327 | assert(isValidUimm12(emitGetInsSC(id))); |
328 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
329 | break; |
330 | |
331 | case IF_DI_2B: // DI_2B X.........Xnnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
332 | assert(isValidGeneralDatasize(id->idOpSize())); |
333 | assert(isGeneralRegister(id->idReg1())); |
334 | assert(isGeneralRegister(id->idReg2())); |
335 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
336 | break; |
337 | |
338 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
339 | assert(isValidGeneralDatasize(id->idOpSize())); |
340 | assert(isIntegerRegister(id->idReg1())); // SP |
341 | assert(isGeneralRegister(id->idReg2())); |
342 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
343 | break; |
344 | |
345 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, imms (N,r,s) |
346 | assert(isValidGeneralDatasize(id->idOpSize())); |
347 | assert(isGeneralRegister(id->idReg1())); |
348 | assert(isGeneralRegister(id->idReg2())); |
349 | assert(isValidImmNRS(emitGetInsSC(id), id->idOpSize())); |
350 | break; |
351 | |
352 | case IF_DR_1D: // DR_1D X............... cccc.......ddddd Rd cond |
353 | assert(isValidGeneralDatasize(id->idOpSize())); |
354 | assert(isGeneralRegister(id->idReg1())); |
355 | assert(isValidImmCond(emitGetInsSC(id))); |
356 | break; |
357 | |
358 | case IF_DR_2A: // DR_2A X..........mmmmm ......nnnnn..... Rn Rm |
359 | assert(isValidGeneralDatasize(id->idOpSize())); |
360 | assert(isGeneralRegister(id->idReg1())); |
361 | assert(isGeneralRegister(id->idReg2())); |
362 | break; |
363 | |
364 | case IF_DR_2B: // DR_2B X.......sh.mmmmm ssssssnnnnn..... Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
365 | assert(isValidGeneralDatasize(id->idOpSize())); |
366 | assert(isIntegerRegister(id->idReg1())); // ZR |
367 | assert(isGeneralRegister(id->idReg2())); |
368 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
369 | if (!insOptsNone(id->idInsOpt())) |
370 | { |
371 | if (id->idIns() == INS_tst) // tst allows ROR, cmp/cmn don't |
372 | { |
373 | assert(insOptsAnyShift(id->idInsOpt())); |
374 | } |
375 | else |
376 | { |
377 | assert(insOptsAluShift(id->idInsOpt())); |
378 | } |
379 | } |
380 | assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0)); |
381 | break; |
382 | |
383 | case IF_DR_2C: // DR_2C X..........mmmmm ooosssnnnnn..... Rn Rm ext(Rm) LSL imm(0-4) |
384 | assert(isValidGeneralDatasize(id->idOpSize())); |
385 | assert(isIntegerRegister(id->idReg1())); // SP |
386 | assert(isGeneralRegister(id->idReg2())); |
387 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL(id->idInsOpt()) || insOptsAnyExtend(id->idInsOpt())); |
388 | assert(emitGetInsSC(id) >= 0); |
389 | assert(emitGetInsSC(id) <= 4); |
390 | if (insOptsLSL(id->idInsOpt())) |
391 | { |
392 | assert(emitGetInsSC(id) > 0); |
393 | } |
394 | break; |
395 | |
396 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnmmmmm Rd Rn cond |
397 | assert(isValidGeneralDatasize(id->idOpSize())); |
398 | assert(isGeneralRegister(id->idReg1())); |
399 | assert(isGeneralRegister(id->idReg2())); |
400 | assert(isValidImmCond(emitGetInsSC(id))); |
401 | break; |
402 | |
403 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
404 | assert(isValidGeneralDatasize(id->idOpSize())); |
405 | assert(isGeneralRegister(id->idReg1())); |
406 | assert(isIntegerRegister(id->idReg2())); // ZR |
407 | break; |
408 | |
409 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
410 | assert(isValidGeneralDatasize(id->idOpSize())); |
411 | assert(isGeneralRegister(id->idReg1())); |
412 | assert(isGeneralRegister(id->idReg2())); |
413 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
414 | assert(insOptsNone(id->idInsOpt()) || insOptsAluShift(id->idInsOpt())); |
415 | assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0)); |
416 | break; |
417 | |
418 | case IF_DR_2G: // DR_2G X............... ......nnnnnddddd Rd Rm |
419 | assert(isValidGeneralDatasize(id->idOpSize())); |
420 | assert(isIntegerRegister(id->idReg1())); // SP |
421 | assert(isIntegerRegister(id->idReg2())); // SP |
422 | break; |
423 | |
424 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
425 | assert(isValidGeneralDatasize(id->idOpSize())); |
426 | assert(isGeneralRegister(id->idReg1())); |
427 | assert(isGeneralRegister(id->idReg2())); |
428 | break; |
429 | |
430 | case IF_DR_2I: // DR_2I X..........mmmmm cccc..nnnnn.nzcv Rn Rm nzcv cond |
431 | assert(isValidGeneralDatasize(id->idOpSize())); |
432 | assert(isGeneralRegister(id->idReg1())); |
433 | assert(isGeneralRegister(id->idReg2())); |
434 | assert(isValidImmCondFlags(emitGetInsSC(id))); |
435 | break; |
436 | |
437 | case IF_DR_2J: // DR_2J ................ ......nnnnnddddd Sd Sn (sha1h) |
438 | assert(isValidGeneralDatasize(id->idOpSize())); |
439 | assert(isVectorRegister(id->idReg1())); |
440 | assert(isVectorRegister(id->idReg2())); |
441 | break; |
442 | |
443 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnmmmmm Rd Rn Rm |
444 | assert(isValidGeneralDatasize(id->idOpSize())); |
445 | assert(isIntegerRegister(id->idReg1())); // SP |
446 | assert(isIntegerRegister(id->idReg2())); // SP |
447 | if (id->idIsLclVar()) |
448 | { |
449 | assert(isGeneralRegister(codeGen->rsGetRsvdReg())); |
450 | } |
451 | else |
452 | { |
453 | assert(isGeneralRegister(id->idReg3())); |
454 | } |
455 | assert(insOptsNone(id->idInsOpt())); |
456 | break; |
457 | |
458 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
459 | assert(isValidGeneralDatasize(id->idOpSize())); |
460 | assert(isGeneralRegister(id->idReg1())); |
461 | assert(isGeneralRegister(id->idReg2())); |
462 | assert(isGeneralRegister(id->idReg3())); |
463 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
464 | assert(insOptsNone(id->idInsOpt()) || insOptsAnyShift(id->idInsOpt())); |
465 | assert(insOptsNone(id->idInsOpt()) || (emitGetInsSC(id) > 0)); |
466 | break; |
467 | |
468 | case IF_DR_3C: // DR_3C X..........mmmmm ooosssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
469 | assert(isValidGeneralDatasize(id->idOpSize())); |
470 | assert(isIntegerRegister(id->idReg1())); // SP |
471 | assert(isIntegerRegister(id->idReg2())); // SP |
472 | assert(isGeneralRegister(id->idReg3())); |
473 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL(id->idInsOpt()) || insOptsAnyExtend(id->idInsOpt())); |
474 | assert(emitGetInsSC(id) >= 0); |
475 | assert(emitGetInsSC(id) <= 4); |
476 | if (insOptsLSL(id->idInsOpt())) |
477 | { |
478 | assert((emitGetInsSC(id) > 0) || |
479 | (id->idReg2() == REG_ZR)); // REG_ZR encodes SP and we allow a shift of zero |
480 | } |
481 | break; |
482 | |
483 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnmmmmm Rd Rn Rm cond |
484 | assert(isValidGeneralDatasize(id->idOpSize())); |
485 | assert(isGeneralRegister(id->idReg1())); |
486 | assert(isGeneralRegister(id->idReg2())); |
487 | assert(isGeneralRegister(id->idReg3())); |
488 | assert(isValidImmCond(emitGetInsSC(id))); |
489 | break; |
490 | |
491 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
492 | assert(isValidGeneralDatasize(id->idOpSize())); |
493 | assert(isGeneralRegister(id->idReg1())); |
494 | assert(isGeneralRegister(id->idReg2())); |
495 | assert(isGeneralRegister(id->idReg3())); |
496 | assert(isValidImmShift(emitGetInsSC(id), id->idOpSize())); |
497 | assert(insOptsNone(id->idInsOpt())); |
498 | break; |
499 | |
500 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnddddd Rd Rn Rm Ra |
501 | assert(isValidGeneralDatasize(id->idOpSize())); |
502 | assert(isGeneralRegister(id->idReg1())); |
503 | assert(isGeneralRegister(id->idReg2())); |
504 | assert(isGeneralRegister(id->idReg3())); |
505 | assert(isGeneralRegister(id->idReg4())); |
506 | break; |
507 | |
508 | case IF_DV_1A: // DV_1A .........X.iiiii iii........ddddd Vd imm8 (fmov - immediate scalar) |
509 | assert(insOptsNone(id->idInsOpt())); |
510 | elemsize = id->idOpSize(); |
511 | assert(isValidVectorElemsizeFloat(elemsize)); |
512 | assert(isVectorRegister(id->idReg1())); |
513 | assert(isValidUimm8(emitGetInsSC(id))); |
514 | break; |
515 | |
516 | case IF_DV_1B: // DV_1B .QX..........iii cmod..iiiiiddddd Vd imm8 (immediate vector) |
517 | ins = id->idIns(); |
518 | imm = emitGetInsSC(id) & 0x0ff; |
519 | immShift = (emitGetInsSC(id) & 0x700) >> 8; |
520 | assert(immShift >= 0); |
521 | datasize = id->idOpSize(); |
522 | assert(isValidVectorDatasize(datasize)); |
523 | assert(isValidArrangement(datasize, id->idInsOpt())); |
524 | elemsize = optGetElemsize(id->idInsOpt()); |
525 | if (ins == INS_fmov) |
526 | { |
527 | assert(isValidVectorElemsizeFloat(elemsize)); |
528 | assert(id->idInsOpt() != INS_OPTS_1D); // Reserved encoding |
529 | assert(immShift == 0); |
530 | } |
531 | else |
532 | { |
533 | assert(isValidVectorElemsize(elemsize)); |
534 | assert((immShift != 4) && (immShift != 7)); // always invalid values |
535 | if (ins != INS_movi) // INS_mvni, INS_orr, INS_bic |
536 | { |
537 | assert((elemsize != EA_1BYTE) && (elemsize != EA_8BYTE)); // only H or S |
538 | if (elemsize == EA_2BYTE) |
539 | { |
540 | assert(immShift < 2); |
541 | } |
542 | else // (elemsize == EA_4BYTE) |
543 | { |
544 | if (ins != INS_mvni) |
545 | { |
546 | assert(immShift < 4); |
547 | } |
548 | } |
549 | } |
550 | } |
551 | assert(isVectorRegister(id->idReg1())); |
552 | assert(isValidUimm8(imm)); |
553 | break; |
554 | |
555 | case IF_DV_1C: // DV_1C .........X...... ......nnnnn..... Vn #0.0 (fcmp - with zero) |
556 | assert(insOptsNone(id->idInsOpt())); |
557 | elemsize = id->idOpSize(); |
558 | assert(isValidVectorElemsizeFloat(elemsize)); |
559 | assert(isVectorRegister(id->idReg1())); |
560 | break; |
561 | |
562 | case IF_DV_2A: // DV_2A .Q.......X...... ......nnnnnddddd Vd Vn (fabs, fcvt - vector) |
563 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
564 | case IF_DV_2P: // DV_2P ................ ......nnnnnddddd Vd Vn (aes*, sha1su1) |
565 | assert(isValidVectorDatasize(id->idOpSize())); |
566 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
567 | assert(isVectorRegister(id->idReg1())); |
568 | assert(isVectorRegister(id->idReg2())); |
569 | break; |
570 | |
571 | case IF_DV_2N: // DV_2N .........iiiiiii ......nnnnnddddd Vd Vn imm (shift - scalar) |
572 | assert(id->idOpSize() == EA_8BYTE); |
573 | assert(insOptsNone(id->idInsOpt())); |
574 | assert(isVectorRegister(id->idReg1())); |
575 | assert(isVectorRegister(id->idReg2())); |
576 | assert(isValidImmShift(emitGetInsSC(id), EA_8BYTE)); |
577 | break; |
578 | |
579 | case IF_DV_2O: // DV_2O .Q.......iiiiiii ......nnnnnddddd Vd Vn imm (shift - vector) |
580 | assert(isValidVectorDatasize(id->idOpSize())); |
581 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
582 | assert(isVectorRegister(id->idReg1())); |
583 | assert(isVectorRegister(id->idReg2())); |
584 | elemsize = optGetElemsize(id->idInsOpt()); |
585 | assert(isValidImmShift(emitGetInsSC(id), elemsize)); |
586 | break; |
587 | |
588 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov/smov - to general) |
589 | elemsize = id->idOpSize(); |
590 | index = emitGetInsSC(id); |
591 | assert(insOptsNone(id->idInsOpt())); |
592 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index)); |
593 | assert(isValidVectorElemsize(elemsize)); |
594 | assert(isGeneralRegister(id->idReg1())); |
595 | assert(isVectorRegister(id->idReg2())); |
596 | break; |
597 | |
598 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
599 | if (id->idIns() == INS_dup) |
600 | { |
601 | datasize = id->idOpSize(); |
602 | assert(isValidVectorDatasize(datasize)); |
603 | assert(isValidArrangement(datasize, id->idInsOpt())); |
604 | elemsize = optGetElemsize(id->idInsOpt()); |
605 | } |
606 | else // INS_ins |
607 | { |
608 | datasize = EA_16BYTE; |
609 | elemsize = id->idOpSize(); |
610 | assert(isValidVectorElemsize(elemsize)); |
611 | } |
612 | assert(isVectorRegister(id->idReg1())); |
613 | assert(isGeneralRegisterOrZR(id->idReg2())); |
614 | break; |
615 | |
616 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
617 | datasize = id->idOpSize(); |
618 | assert(isValidVectorDatasize(datasize)); |
619 | assert(isValidArrangement(datasize, id->idInsOpt())); |
620 | elemsize = optGetElemsize(id->idInsOpt()); |
621 | index = emitGetInsSC(id); |
622 | assert(isValidVectorIndex(datasize, elemsize, index)); |
623 | assert(isVectorRegister(id->idReg1())); |
624 | assert(isVectorRegister(id->idReg2())); |
625 | break; |
626 | |
627 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
628 | elemsize = id->idOpSize(); |
629 | index = emitGetInsSC(id); |
630 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index)); |
631 | assert(isValidVectorElemsize(elemsize)); |
632 | assert(isVectorRegister(id->idReg1())); |
633 | assert(isVectorRegister(id->idReg2())); |
634 | break; |
635 | |
636 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
637 | imm = emitGetInsSC(id); |
638 | index = (imm >> 4) & 0xf; |
639 | index2 = imm & 0xf; |
640 | elemsize = id->idOpSize(); |
641 | assert(isValidVectorElemsize(elemsize)); |
642 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index)); |
643 | assert(isValidVectorIndex(EA_16BYTE, elemsize, index2)); |
644 | assert(isVectorRegister(id->idReg1())); |
645 | assert(isVectorRegister(id->idReg2())); |
646 | break; |
647 | |
648 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
649 | assert(id->idOpSize() == EA_8BYTE); // only type D is supported |
650 | __fallthrough; |
651 | |
652 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov, fcvtXX - register) |
653 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
654 | assert(insOptsNone(id->idInsOpt())); |
655 | assert(isValidVectorElemsizeFloat(id->idOpSize())); |
656 | assert(isVectorRegister(id->idReg1())); |
657 | assert(isVectorRegister(id->idReg2())); |
658 | break; |
659 | |
660 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov/fcvtXX - to general) |
661 | assert(insOptsConvertFloatToInt(id->idInsOpt())); |
662 | dstsize = optGetDstsize(id->idInsOpt()); |
663 | srcsize = optGetSrcsize(id->idInsOpt()); |
664 | assert(isValidGeneralDatasize(dstsize)); |
665 | assert(isValidVectorElemsizeFloat(srcsize)); |
666 | assert(dstsize == id->idOpSize()); |
667 | assert(isGeneralRegister(id->idReg1())); |
668 | assert(isVectorRegister(id->idReg2())); |
669 | break; |
670 | |
671 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov/Xcvtf - from general) |
672 | assert(insOptsConvertIntToFloat(id->idInsOpt())); |
673 | dstsize = optGetDstsize(id->idInsOpt()); |
674 | srcsize = optGetSrcsize(id->idInsOpt()); |
675 | assert(isValidGeneralDatasize(srcsize)); |
676 | assert(isValidVectorElemsizeFloat(dstsize)); |
677 | assert(dstsize == id->idOpSize()); |
678 | assert(isVectorRegister(id->idReg1())); |
679 | assert(isGeneralRegister(id->idReg2())); |
680 | break; |
681 | |
682 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
683 | assert(insOptsConvertFloatToFloat(id->idInsOpt())); |
684 | dstsize = optGetDstsize(id->idInsOpt()); |
685 | srcsize = optGetSrcsize(id->idInsOpt()); |
686 | assert(isValidVectorFcvtsize(srcsize)); |
687 | assert(isValidVectorFcvtsize(dstsize)); |
688 | assert(dstsize == id->idOpSize()); |
689 | assert(isVectorRegister(id->idReg1())); |
690 | assert(isVectorRegister(id->idReg2())); |
691 | break; |
692 | |
693 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
694 | assert(isValidVectorDatasize(id->idOpSize())); |
695 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
696 | assert(isVectorRegister(id->idReg1())); |
697 | assert(isVectorRegister(id->idReg2())); |
698 | assert(isVectorRegister(id->idReg3())); |
699 | elemsize = optGetElemsize(id->idInsOpt()); |
700 | ins = id->idIns(); |
701 | if (ins == INS_mul) |
702 | { |
703 | assert(elemsize != EA_8BYTE); // can't use 2D or 1D |
704 | } |
705 | else if (ins == INS_pmul) |
706 | { |
707 | assert(elemsize == EA_1BYTE); // only supports 8B or 16B |
708 | } |
709 | break; |
710 | |
711 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
712 | assert(isValidVectorDatasize(id->idOpSize())); |
713 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
714 | assert(isVectorRegister(id->idReg1())); |
715 | assert(isVectorRegister(id->idReg2())); |
716 | assert(isVectorRegister(id->idReg3())); |
717 | elemsize = optGetElemsize(id->idInsOpt()); |
718 | assert(isValidVectorIndex(EA_16BYTE, elemsize, emitGetInsSC(id))); |
719 | // Only has encodings for H or S elemsize |
720 | assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); |
721 | break; |
722 | |
723 | case IF_DV_3B: // DV_3B .Q.......X.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
724 | assert(isValidVectorDatasize(id->idOpSize())); |
725 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
726 | assert(isVectorRegister(id->idReg1())); |
727 | assert(isVectorRegister(id->idReg2())); |
728 | assert(isVectorRegister(id->idReg3())); |
729 | break; |
730 | |
731 | case IF_DV_3BI: // DV_3BI .Q.......XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
732 | assert(isValidVectorDatasize(id->idOpSize())); |
733 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
734 | assert(isVectorRegister(id->idReg1())); |
735 | assert(isVectorRegister(id->idReg2())); |
736 | assert(isVectorRegister(id->idReg3())); |
737 | elemsize = optGetElemsize(id->idInsOpt()); |
738 | assert(isValidVectorIndex(id->idOpSize(), elemsize, emitGetInsSC(id))); |
739 | break; |
740 | |
741 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
742 | assert(isValidVectorDatasize(id->idOpSize())); |
743 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
744 | assert(isVectorRegister(id->idReg1())); |
745 | assert(isVectorRegister(id->idReg2())); |
746 | assert(isVectorRegister(id->idReg3())); |
747 | break; |
748 | |
749 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
750 | assert(isValidScalarDatasize(id->idOpSize())); |
751 | assert(insOptsNone(id->idInsOpt())); |
752 | assert(isVectorRegister(id->idReg1())); |
753 | assert(isVectorRegister(id->idReg2())); |
754 | assert(isVectorRegister(id->idReg3())); |
755 | break; |
756 | |
757 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
758 | assert(isValidScalarDatasize(id->idOpSize())); |
759 | assert(insOptsNone(id->idInsOpt())); |
760 | assert(isVectorRegister(id->idReg1())); |
761 | assert(isVectorRegister(id->idReg2())); |
762 | assert(isVectorRegister(id->idReg3())); |
763 | elemsize = id->idOpSize(); |
764 | assert(isValidVectorIndex(EA_16BYTE, elemsize, emitGetInsSC(id))); |
765 | break; |
766 | |
767 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
768 | assert(insOptsNone(id->idInsOpt())); |
769 | assert(id->idOpSize() == EA_8BYTE); |
770 | assert(isVectorRegister(id->idReg1())); |
771 | assert(isVectorRegister(id->idReg2())); |
772 | assert(isVectorRegister(id->idReg3())); |
773 | break; |
774 | |
775 | case IF_DV_3F: // DV_3F ...........mmmmm ......nnnnnddddd Vd Vn Vm |
776 | assert(isValidVectorDatasize(id->idOpSize())); |
777 | assert(isValidArrangement(id->idOpSize(), id->idInsOpt())); |
778 | assert(isVectorRegister(id->idReg1())); |
779 | assert(isVectorRegister(id->idReg2())); |
780 | assert(isVectorRegister(id->idReg3())); |
781 | break; |
782 | |
783 | case IF_DV_4A: // DR_4A .........X.mmmmm .aaaaannnnnddddd Rd Rn Rm Ra (scalar) |
784 | assert(isValidGeneralDatasize(id->idOpSize())); |
785 | assert(isVectorRegister(id->idReg1())); |
786 | assert(isVectorRegister(id->idReg2())); |
787 | assert(isVectorRegister(id->idReg3())); |
788 | assert(isVectorRegister(id->idReg4())); |
789 | break; |
790 | |
791 | case IF_SN_0A: // SN_0A ................ ................ |
792 | case IF_SI_0A: // SI_0A ...........iiiii iiiiiiiiiii..... imm16 |
793 | case IF_SI_0B: // SI_0B ................ ....bbbb........ imm4 - barrier |
794 | break; |
795 | |
796 | default: |
797 | printf("unexpected format %s\n" , emitIfName(id->idInsFmt())); |
798 | assert(!"Unexpected format" ); |
799 | break; |
800 | } |
801 | } |
802 | #endif // DEBUG |
803 | |
804 | bool emitter::emitInsMayWriteToGCReg(instrDesc* id) |
805 | { |
806 | instruction ins = id->idIns(); |
807 | insFormat fmt = id->idInsFmt(); |
808 | |
809 | switch (fmt) |
810 | { |
811 | |
812 | // These are the formats with "destination" registers: |
813 | |
814 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
815 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
816 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
817 | |
818 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
819 | case IF_DI_2B: // DI_2B X.........Xnnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
820 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
821 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, imms (N,r,s) |
822 | |
823 | case IF_DR_1D: // DR_1D X............... cccc.......ddddd Rd cond |
824 | |
825 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnddddd Rd Rn cond |
826 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
827 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
828 | case IF_DR_2G: // DR_2G X............... ......nnnnnddddd Rd Rn |
829 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
830 | |
831 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnddddd Rd Rn Rm |
832 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR} imm(0-63) |
833 | case IF_DR_3C: // DR_3C X..........mmmmm xxxsssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
834 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnddddd Rd Rn Rm cond |
835 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
836 | case IF_DV_3F: // DV_3F ...........mmmmm ......nnnnnddddd Vd Vn Vm (vector) - Vd both source and dest |
837 | |
838 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnddddd Rd Rn Rm Ra |
839 | |
840 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov - to general) |
841 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov - to general) |
842 | |
843 | return true; |
844 | |
845 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
846 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
847 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
848 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
849 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov, fcvtXX - register) |
850 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov - from general) |
851 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
852 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
853 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
854 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
855 | case IF_DV_2P: // DV_2P ................ ......nnnnnddddd Vd Vn (aes*, sha1su1) - Vd both source and |
856 | // destination |
857 | |
858 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
859 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector) |
860 | case IF_DV_3B: // DV_3B .Q.......X.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
861 | case IF_DV_3BI: // DV_3BI .Q.......XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
862 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
863 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
864 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
865 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
866 | case IF_DV_4A: // DV_4A .........X.mmmmm .aaaaannnnnddddd Vd Va Vn Vm (scalar) |
867 | // Tracked GC pointers cannot be placed into the SIMD registers. |
868 | return false; |
869 | |
870 | // These are the load/store formats with "target" registers: |
871 | |
872 | case IF_LS_1A: // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
873 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
874 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
875 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiP.nnnnnttttt Rt Rn imm(-256..+255) pre/post inc |
876 | case IF_LS_3A: // LS_3A .X.......X.mmmmm xxxS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
877 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnttttt Rt Ra Rn |
878 | case IF_LS_3C: // LS_3C X.........iiiiii iaaaaannnnnttttt Rt Ra Rn imm(im7,sh) |
879 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
880 | |
881 | // For the Store instructions the "target" register is actually a "source" value |
882 | |
883 | if (emitInsIsStore(ins)) |
884 | { |
885 | return false; |
886 | } |
887 | else |
888 | { |
889 | assert(emitInsIsLoad(ins)); |
890 | return true; |
891 | } |
892 | |
893 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
894 | // ARMv8.1 Atomics |
895 | assert(emitInsIsStore(ins)); |
896 | assert(emitInsIsLoad(ins)); |
897 | return true; |
898 | |
899 | default: |
900 | return false; |
901 | } |
902 | } |
903 | |
904 | bool emitter::emitInsWritesToLclVarStackLoc(instrDesc* id) |
905 | { |
906 | if (!id->idIsLclVar()) |
907 | return false; |
908 | |
909 | instruction ins = id->idIns(); |
910 | |
911 | // This list is related to the list of instructions used to store local vars in emitIns_S_R(). |
912 | // We don't accept writing to float local vars. |
913 | |
914 | switch (ins) |
915 | { |
916 | case INS_strb: |
917 | case INS_strh: |
918 | case INS_str: |
919 | case INS_stur: |
920 | case INS_sturb: |
921 | case INS_sturh: |
922 | return true; |
923 | default: |
924 | return false; |
925 | } |
926 | } |
927 | |
928 | bool emitter::emitInsWritesToLclVarStackLocPair(instrDesc* id) |
929 | { |
930 | if (!id->idIsLclVar()) |
931 | return false; |
932 | |
933 | instruction ins = id->idIns(); |
934 | |
935 | // This list is related to the list of instructions used to store local vars in emitIns_S_S_R_R(). |
936 | // We don't accept writing to float local vars. |
937 | |
938 | switch (ins) |
939 | { |
940 | case INS_stnp: |
941 | case INS_stp: |
942 | return true; |
943 | default: |
944 | return false; |
945 | } |
946 | } |
947 | |
948 | bool emitter::emitInsMayWriteMultipleRegs(instrDesc* id) |
949 | { |
950 | instruction ins = id->idIns(); |
951 | |
952 | switch (ins) |
953 | { |
954 | case INS_ldp: |
955 | case INS_ldpsw: |
956 | case INS_ldnp: |
957 | return true; |
958 | default: |
959 | return false; |
960 | } |
961 | } |
962 | |
963 | // For the small loads/store instruction we adjust the size 'attr' |
964 | // depending upon whether we have a load or a store |
965 | // |
966 | emitAttr emitter::emitInsAdjustLoadStoreAttr(instruction ins, emitAttr attr) |
967 | { |
968 | if (EA_SIZE(attr) <= EA_4BYTE) |
969 | { |
970 | if (emitInsIsLoad(ins)) |
971 | { |
972 | // The value of 'ins' encodes the size to load |
973 | // we use EA_8BYTE here because it is the size we will write (into dataReg) |
974 | // it is also required when ins is INS_ldrsw |
975 | // |
976 | attr = EA_8BYTE; |
977 | } |
978 | else |
979 | { |
980 | assert(emitInsIsStore(ins)); |
981 | |
982 | // The value of 'ins' encodes the size to store |
983 | // we use EA_4BYTE here because it is the size of the register |
984 | // that we want to display when storing small values |
985 | // |
986 | attr = EA_4BYTE; |
987 | } |
988 | } |
989 | return attr; |
990 | } |
991 | |
992 | // Takes an instrDesc 'id' and uses the instruction 'ins' to determine the |
993 | // size of the target register that is written or read by the instruction. |
994 | // Note that even if EA_4BYTE is returned a load instruction will still |
995 | // always zero the upper 4 bytes of the target register. |
996 | // This method is required so that we can distinguish between loads that are |
997 | // sign-extending as they can have two different sizes for their target register. |
998 | // Additionally for instructions like 'ldr' and 'str' these can load/store |
999 | // either 4 byte or 8 bytes to/from the target register. |
1000 | // By convention the small unsigned load instructions are considered to write |
1001 | // a 4 byte sized target register, though since these also zero the upper 4 bytes |
1002 | // they could equally be considered to write the unsigned value to full 8 byte register. |
1003 | // |
1004 | emitAttr emitter::emitInsTargetRegSize(instrDesc* id) |
1005 | { |
1006 | instruction ins = id->idIns(); |
1007 | emitAttr result = EA_UNKNOWN; |
1008 | |
1009 | // This is used to determine the size of the target registers for a load/store instruction |
1010 | |
1011 | switch (ins) |
1012 | { |
1013 | case INS_ldxrb: |
1014 | case INS_ldarb: |
1015 | case INS_ldaxrb: |
1016 | case INS_stxrb: |
1017 | case INS_stlrb: |
1018 | case INS_stlxrb: |
1019 | case INS_ldrb: |
1020 | case INS_strb: |
1021 | case INS_ldurb: |
1022 | case INS_sturb: |
1023 | result = EA_4BYTE; |
1024 | break; |
1025 | |
1026 | case INS_ldxrh: |
1027 | case INS_ldarh: |
1028 | case INS_ldaxrh: |
1029 | case INS_stxrh: |
1030 | case INS_stlrh: |
1031 | case INS_stlxrh: |
1032 | case INS_ldrh: |
1033 | case INS_strh: |
1034 | case INS_ldurh: |
1035 | case INS_sturh: |
1036 | result = EA_4BYTE; |
1037 | break; |
1038 | |
1039 | case INS_ldrsb: |
1040 | case INS_ldursb: |
1041 | case INS_ldrsh: |
1042 | case INS_ldursh: |
1043 | if (id->idOpSize() == EA_8BYTE) |
1044 | result = EA_8BYTE; |
1045 | else |
1046 | result = EA_4BYTE; |
1047 | break; |
1048 | |
1049 | case INS_ldrsw: |
1050 | case INS_ldursw: |
1051 | case INS_ldpsw: |
1052 | result = EA_8BYTE; |
1053 | break; |
1054 | |
1055 | case INS_ldp: |
1056 | case INS_stp: |
1057 | case INS_ldnp: |
1058 | case INS_stnp: |
1059 | result = id->idOpSize(); |
1060 | break; |
1061 | |
1062 | case INS_ldxr: |
1063 | case INS_ldar: |
1064 | case INS_ldaxr: |
1065 | case INS_stxr: |
1066 | case INS_stlr: |
1067 | case INS_stlxr: |
1068 | case INS_ldr: |
1069 | case INS_str: |
1070 | case INS_ldur: |
1071 | case INS_stur: |
1072 | result = id->idOpSize(); |
1073 | break; |
1074 | |
1075 | default: |
1076 | NO_WAY("unexpected instruction" ); |
1077 | break; |
1078 | } |
1079 | return result; |
1080 | } |
1081 | |
1082 | // Takes an instrDesc and uses the instruction to determine the 'size' of the |
1083 | // data that is loaded from memory. |
1084 | // |
1085 | emitAttr emitter::emitInsLoadStoreSize(instrDesc* id) |
1086 | { |
1087 | instruction ins = id->idIns(); |
1088 | emitAttr result = EA_UNKNOWN; |
1089 | |
1090 | // The 'result' returned is the 'size' of the data that is loaded from memory. |
1091 | |
1092 | switch (ins) |
1093 | { |
1094 | case INS_ldarb: |
1095 | case INS_stlrb: |
1096 | case INS_ldrb: |
1097 | case INS_strb: |
1098 | case INS_ldurb: |
1099 | case INS_sturb: |
1100 | case INS_ldrsb: |
1101 | case INS_ldursb: |
1102 | result = EA_1BYTE; |
1103 | break; |
1104 | |
1105 | case INS_ldarh: |
1106 | case INS_stlrh: |
1107 | case INS_ldrh: |
1108 | case INS_strh: |
1109 | case INS_ldurh: |
1110 | case INS_sturh: |
1111 | case INS_ldrsh: |
1112 | case INS_ldursh: |
1113 | result = EA_2BYTE; |
1114 | break; |
1115 | |
1116 | case INS_ldrsw: |
1117 | case INS_ldursw: |
1118 | case INS_ldpsw: |
1119 | result = EA_4BYTE; |
1120 | break; |
1121 | |
1122 | case INS_ldp: |
1123 | case INS_stp: |
1124 | case INS_ldnp: |
1125 | case INS_stnp: |
1126 | result = id->idOpSize(); |
1127 | break; |
1128 | |
1129 | case INS_ldar: |
1130 | case INS_stlr: |
1131 | case INS_ldr: |
1132 | case INS_str: |
1133 | case INS_ldur: |
1134 | case INS_stur: |
1135 | result = id->idOpSize(); |
1136 | break; |
1137 | |
1138 | default: |
1139 | NO_WAY("unexpected instruction" ); |
1140 | break; |
1141 | } |
1142 | return result; |
1143 | } |
1144 | |
1145 | /*****************************************************************************/ |
1146 | #ifdef DEBUG |
1147 | |
1148 | // clang-format off |
1149 | static const char * const xRegNames[] = |
1150 | { |
1151 | #define REGDEF(name, rnum, mask, xname, wname) xname, |
1152 | #include "register.h" |
1153 | }; |
1154 | |
1155 | static const char * const wRegNames[] = |
1156 | { |
1157 | #define REGDEF(name, rnum, mask, xname, wname) wname, |
1158 | #include "register.h" |
1159 | }; |
1160 | |
1161 | static const char * const vRegNames[] = |
1162 | { |
1163 | "v0" , "v1" , "v2" , "v3" , "v4" , |
1164 | "v5" , "v6" , "v7" , "v8" , "v9" , |
1165 | "v10" , "v11" , "v12" , "v13" , "v14" , |
1166 | "v15" , "v16" , "v17" , "v18" , "v19" , |
1167 | "v20" , "v21" , "v22" , "v23" , "v24" , |
1168 | "v25" , "v26" , "v27" , "v28" , "v29" , |
1169 | "v30" , "v31" |
1170 | }; |
1171 | |
1172 | static const char * const qRegNames[] = |
1173 | { |
1174 | "q0" , "q1" , "q2" , "q3" , "q4" , |
1175 | "q5" , "q6" , "q7" , "q8" , "q9" , |
1176 | "q10" , "q11" , "q12" , "q13" , "q14" , |
1177 | "q15" , "q16" , "q17" , "q18" , "q19" , |
1178 | "q20" , "q21" , "q22" , "q23" , "q24" , |
1179 | "q25" , "q26" , "q27" , "q28" , "q29" , |
1180 | "q30" , "q31" |
1181 | }; |
1182 | |
1183 | static const char * const hRegNames[] = |
1184 | { |
1185 | "h0" , "h1" , "h2" , "h3" , "h4" , |
1186 | "h5" , "h6" , "h7" , "h8" , "h9" , |
1187 | "h10" , "h11" , "h12" , "h13" , "h14" , |
1188 | "h15" , "h16" , "h17" , "h18" , "h19" , |
1189 | "h20" , "h21" , "h22" , "h23" , "h24" , |
1190 | "h25" , "h26" , "h27" , "h28" , "h29" , |
1191 | "h30" , "h31" |
1192 | }; |
1193 | static const char * const bRegNames[] = |
1194 | { |
1195 | "b0" , "b1" , "b2" , "b3" , "b4" , |
1196 | "b5" , "b6" , "b7" , "b8" , "b9" , |
1197 | "b10" , "b11" , "b12" , "b13" , "b14" , |
1198 | "b15" , "b16" , "b17" , "b18" , "b19" , |
1199 | "b20" , "b21" , "b22" , "b23" , "b24" , |
1200 | "b25" , "b26" , "b27" , "b28" , "b29" , |
1201 | "b30" , "b31" |
1202 | }; |
1203 | // clang-format on |
1204 | |
1205 | /***************************************************************************** |
1206 | * |
1207 | * Return a string that represents the given register. |
1208 | */ |
1209 | |
1210 | const char* emitter::emitRegName(regNumber reg, emitAttr size, bool varName) |
1211 | { |
1212 | assert(reg < REG_COUNT); |
1213 | |
1214 | const char* rn = nullptr; |
1215 | |
1216 | if (size == EA_8BYTE) |
1217 | { |
1218 | rn = xRegNames[reg]; |
1219 | } |
1220 | else if (size == EA_4BYTE) |
1221 | { |
1222 | rn = wRegNames[reg]; |
1223 | } |
1224 | else if (isVectorRegister(reg)) |
1225 | { |
1226 | if (size == EA_16BYTE) |
1227 | { |
1228 | rn = qRegNames[reg - REG_V0]; |
1229 | } |
1230 | else if (size == EA_2BYTE) |
1231 | { |
1232 | rn = hRegNames[reg - REG_V0]; |
1233 | } |
1234 | else if (size == EA_1BYTE) |
1235 | { |
1236 | rn = bRegNames[reg - REG_V0]; |
1237 | } |
1238 | } |
1239 | |
1240 | assert(rn != nullptr); |
1241 | |
1242 | return rn; |
1243 | } |
1244 | |
1245 | /***************************************************************************** |
1246 | * |
1247 | * Return a string that represents the given register. |
1248 | */ |
1249 | |
1250 | const char* emitter::emitVectorRegName(regNumber reg) |
1251 | { |
1252 | assert((reg >= REG_V0) && (reg <= REG_V31)); |
1253 | |
1254 | int index = (int)reg - (int)REG_V0; |
1255 | |
1256 | return vRegNames[index]; |
1257 | } |
1258 | #endif // DEBUG |
1259 | |
1260 | /***************************************************************************** |
1261 | * |
1262 | * Returns the base encoding of the given CPU instruction. |
1263 | */ |
1264 | |
1265 | emitter::insFormat emitter::emitInsFormat(instruction ins) |
1266 | { |
1267 | // clang-format off |
1268 | const static insFormat insFormats[] = |
1269 | { |
1270 | #define INST1(id, nm, fp, ldst, fmt, e1 ) fmt, |
1271 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) fmt, |
1272 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) fmt, |
1273 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) fmt, |
1274 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) fmt, |
1275 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) fmt, |
1276 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) fmt, |
1277 | #include "instrs.h" |
1278 | }; |
1279 | // clang-format on |
1280 | |
1281 | assert(ins < ArrLen(insFormats)); |
1282 | assert((insFormats[ins] != IF_NONE)); |
1283 | |
1284 | return insFormats[ins]; |
1285 | } |
1286 | |
1287 | // INST_FP is 1 |
1288 | #define LD 2 |
1289 | #define ST 4 |
1290 | #define CMP 8 |
1291 | |
1292 | // clang-format off |
1293 | /*static*/ const BYTE CodeGenInterface::instInfo[] = |
1294 | { |
1295 | #define INST1(id, nm, fp, ldst, fmt, e1 ) ldst | INST_FP*fp, |
1296 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) ldst | INST_FP*fp, |
1297 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) ldst | INST_FP*fp, |
1298 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) ldst | INST_FP*fp, |
1299 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) ldst | INST_FP*fp, |
1300 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) ldst | INST_FP*fp, |
1301 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) ldst | INST_FP*fp, |
1302 | #include "instrs.h" |
1303 | }; |
1304 | // clang-format on |
1305 | |
1306 | /***************************************************************************** |
1307 | * |
1308 | * Returns true if the instruction is some kind of compare or test instruction |
1309 | */ |
1310 | |
1311 | bool emitter::emitInsIsCompare(instruction ins) |
1312 | { |
1313 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
1314 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
1315 | return (CodeGenInterface::instInfo[ins] & CMP) ? true : false; |
1316 | else |
1317 | return false; |
1318 | } |
1319 | |
1320 | /***************************************************************************** |
1321 | * |
1322 | * Returns true if the instruction is some kind of load instruction |
1323 | */ |
1324 | |
1325 | bool emitter::emitInsIsLoad(instruction ins) |
1326 | { |
1327 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
1328 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
1329 | return (CodeGenInterface::instInfo[ins] & LD) ? true : false; |
1330 | else |
1331 | return false; |
1332 | } |
1333 | /***************************************************************************** |
1334 | * |
1335 | * Returns true if the instruction is some kind of store instruction |
1336 | */ |
1337 | |
1338 | bool emitter::emitInsIsStore(instruction ins) |
1339 | { |
1340 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
1341 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
1342 | return (CodeGenInterface::instInfo[ins] & ST) ? true : false; |
1343 | else |
1344 | return false; |
1345 | } |
1346 | |
1347 | /***************************************************************************** |
1348 | * |
1349 | * Returns true if the instruction is some kind of load/store instruction |
1350 | */ |
1351 | |
1352 | bool emitter::emitInsIsLoadOrStore(instruction ins) |
1353 | { |
1354 | // We have pseudo ins like lea which are not included in emitInsLdStTab. |
1355 | if (ins < ArrLen(CodeGenInterface::instInfo)) |
1356 | return (CodeGenInterface::instInfo[ins] & (LD | ST)) ? true : false; |
1357 | else |
1358 | return false; |
1359 | } |
1360 | |
1361 | #undef LD |
1362 | #undef ST |
1363 | #undef CMP |
1364 | |
1365 | /***************************************************************************** |
1366 | * |
1367 | * Returns the specific encoding of the given CPU instruction and format |
1368 | */ |
1369 | |
1370 | emitter::code_t emitter::emitInsCode(instruction ins, insFormat fmt) |
1371 | { |
1372 | // clang-format off |
1373 | const static code_t insCodes1[] = |
1374 | { |
1375 | #define INST1(id, nm, fp, ldst, fmt, e1 ) e1, |
1376 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) e1, |
1377 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) e1, |
1378 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e1, |
1379 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e1, |
1380 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e1, |
1381 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e1, |
1382 | #include "instrs.h" |
1383 | }; |
1384 | const static code_t insCodes2[] = |
1385 | { |
1386 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1387 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) e2, |
1388 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) e2, |
1389 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e2, |
1390 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e2, |
1391 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e2, |
1392 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e2, |
1393 | #include "instrs.h" |
1394 | }; |
1395 | const static code_t insCodes3[] = |
1396 | { |
1397 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1398 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1399 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) e3, |
1400 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e3, |
1401 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e3, |
1402 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e3, |
1403 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e3, |
1404 | #include "instrs.h" |
1405 | }; |
1406 | const static code_t insCodes4[] = |
1407 | { |
1408 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1409 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1410 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
1411 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) e4, |
1412 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e4, |
1413 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e4, |
1414 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e4, |
1415 | #include "instrs.h" |
1416 | }; |
1417 | const static code_t insCodes5[] = |
1418 | { |
1419 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1420 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1421 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
1422 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
1423 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) e5, |
1424 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e5, |
1425 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e5, |
1426 | #include "instrs.h" |
1427 | }; |
1428 | const static code_t insCodes6[] = |
1429 | { |
1430 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1431 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1432 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
1433 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
1434 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
1435 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) e6, |
1436 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e6, |
1437 | #include "instrs.h" |
1438 | }; |
1439 | const static code_t insCodes7[] = |
1440 | { |
1441 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1442 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1443 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
1444 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
1445 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
1446 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) |
1447 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e7, |
1448 | #include "instrs.h" |
1449 | }; |
1450 | const static code_t insCodes8[] = |
1451 | { |
1452 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1453 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1454 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
1455 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
1456 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
1457 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) |
1458 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e8, |
1459 | #include "instrs.h" |
1460 | }; |
1461 | const static code_t insCodes9[] = |
1462 | { |
1463 | #define INST1(id, nm, fp, ldst, fmt, e1 ) |
1464 | #define INST2(id, nm, fp, ldst, fmt, e1, e2 ) |
1465 | #define INST3(id, nm, fp, ldst, fmt, e1, e2, e3 ) |
1466 | #define INST4(id, nm, fp, ldst, fmt, e1, e2, e3, e4 ) |
1467 | #define INST5(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5 ) |
1468 | #define INST6(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6 ) |
1469 | #define INST9(id, nm, fp, ldst, fmt, e1, e2, e3, e4, e5, e6, e7, e8, e9) e9, |
1470 | #include "instrs.h" |
1471 | }; |
1472 | // clang-format on |
1473 | |
1474 | const static insFormat formatEncode9[9] = {IF_DR_2E, IF_DR_2G, IF_DI_1B, IF_DI_1D, IF_DV_3C, |
1475 | IF_DV_2B, IF_DV_2C, IF_DV_2E, IF_DV_2F}; |
1476 | const static insFormat formatEncode6A[6] = {IF_DR_3A, IF_DR_3B, IF_DR_3C, IF_DI_2A, IF_DV_3A, IF_DV_3E}; |
1477 | const static insFormat formatEncode5A[5] = {IF_LS_2A, IF_LS_2B, IF_LS_2C, IF_LS_3A, IF_LS_1A}; |
1478 | const static insFormat formatEncode5B[5] = {IF_DV_2G, IF_DV_2H, IF_DV_2I, IF_DV_1A, IF_DV_1B}; |
1479 | const static insFormat formatEncode5C[5] = {IF_DR_3A, IF_DR_3B, IF_DI_2C, IF_DV_3C, IF_DV_1B}; |
1480 | const static insFormat formatEncode4A[4] = {IF_LS_2A, IF_LS_2B, IF_LS_2C, IF_LS_3A}; |
1481 | const static insFormat formatEncode4B[4] = {IF_DR_3A, IF_DR_3B, IF_DR_3C, IF_DI_2A}; |
1482 | const static insFormat formatEncode4C[4] = {IF_DR_2A, IF_DR_2B, IF_DR_2C, IF_DI_1A}; |
1483 | const static insFormat formatEncode4D[4] = {IF_DV_3B, IF_DV_3D, IF_DV_3BI, IF_DV_3DI}; |
1484 | const static insFormat formatEncode4E[4] = {IF_DR_3A, IF_DR_3B, IF_DI_2C, IF_DV_3C}; |
1485 | const static insFormat formatEncode4F[4] = {IF_DR_3A, IF_DR_3B, IF_DV_3C, IF_DV_1B}; |
1486 | const static insFormat formatEncode4G[4] = {IF_DR_2E, IF_DR_2F, IF_DV_2M, IF_DV_2L}; |
1487 | const static insFormat formatEncode4H[4] = {IF_DV_3E, IF_DV_3A, IF_DV_2L, IF_DV_2M}; |
1488 | const static insFormat formatEncode4I[4] = {IF_DV_3D, IF_DV_3B, IF_DV_2G, IF_DV_2A}; |
1489 | const static insFormat formatEncode3A[3] = {IF_DR_3A, IF_DR_3B, IF_DI_2C}; |
1490 | const static insFormat formatEncode3B[3] = {IF_DR_2A, IF_DR_2B, IF_DI_1C}; |
1491 | const static insFormat formatEncode3C[3] = {IF_DR_3A, IF_DR_3B, IF_DV_3C}; |
1492 | const static insFormat formatEncode3D[3] = {IF_DV_2C, IF_DV_2D, IF_DV_2E}; |
1493 | const static insFormat formatEncode3E[3] = {IF_DV_3B, IF_DV_3BI, IF_DV_3DI}; |
1494 | const static insFormat formatEncode3F[3] = {IF_DV_2A, IF_DV_2G, IF_DV_2H}; |
1495 | const static insFormat formatEncode3G[3] = {IF_DV_2A, IF_DV_2G, IF_DV_2I}; |
1496 | const static insFormat formatEncode3H[3] = {IF_DR_3A, IF_DV_3A, IF_DV_3AI}; |
1497 | const static insFormat formatEncode3I[3] = {IF_DR_2E, IF_DR_2F, IF_DV_2M}; |
1498 | const static insFormat formatEncode2A[2] = {IF_DR_2E, IF_DR_2F}; |
1499 | const static insFormat formatEncode2B[2] = {IF_DR_3A, IF_DR_3B}; |
1500 | const static insFormat formatEncode2C[2] = {IF_DR_3A, IF_DI_2D}; |
1501 | const static insFormat formatEncode2D[2] = {IF_DR_3A, IF_DI_2B}; |
1502 | const static insFormat formatEncode2E[2] = {IF_LS_3B, IF_LS_3C}; |
1503 | const static insFormat formatEncode2F[2] = {IF_DR_2I, IF_DI_1F}; |
1504 | const static insFormat formatEncode2G[2] = {IF_DV_3B, IF_DV_3D}; |
1505 | const static insFormat formatEncode2H[2] = {IF_DV_2C, IF_DV_2F}; |
1506 | const static insFormat formatEncode2I[2] = {IF_DV_2K, IF_DV_1C}; |
1507 | const static insFormat formatEncode2J[2] = {IF_DV_2A, IF_DV_2G}; |
1508 | const static insFormat formatEncode2K[2] = {IF_DV_2M, IF_DV_2L}; |
1509 | const static insFormat formatEncode2L[2] = {IF_DR_2G, IF_DV_2M}; |
1510 | const static insFormat formatEncode2M[2] = {IF_DV_3A, IF_DV_3AI}; |
1511 | const static insFormat formatEncode2N[2] = {IF_DV_2N, IF_DV_2O}; |
1512 | const static insFormat formatEncode2O[2] = {IF_DV_3E, IF_DV_3A}; |
1513 | const static insFormat formatEncode2P[2] = {IF_DV_2G, IF_DV_3B}; |
1514 | |
1515 | code_t code = BAD_CODE; |
1516 | insFormat insFmt = emitInsFormat(ins); |
1517 | bool encoding_found = false; |
1518 | int index = -1; |
1519 | |
1520 | switch (insFmt) |
1521 | { |
1522 | case IF_EN9: |
1523 | for (index = 0; index < 9; index++) |
1524 | { |
1525 | if (fmt == formatEncode9[index]) |
1526 | { |
1527 | encoding_found = true; |
1528 | break; |
1529 | } |
1530 | } |
1531 | break; |
1532 | |
1533 | case IF_EN6A: |
1534 | for (index = 0; index < 6; index++) |
1535 | { |
1536 | if (fmt == formatEncode6A[index]) |
1537 | { |
1538 | encoding_found = true; |
1539 | break; |
1540 | } |
1541 | } |
1542 | break; |
1543 | |
1544 | case IF_EN5A: |
1545 | for (index = 0; index < 5; index++) |
1546 | { |
1547 | if (fmt == formatEncode5A[index]) |
1548 | { |
1549 | encoding_found = true; |
1550 | break; |
1551 | } |
1552 | } |
1553 | break; |
1554 | |
1555 | case IF_EN5B: |
1556 | for (index = 0; index < 5; index++) |
1557 | { |
1558 | if (fmt == formatEncode5B[index]) |
1559 | { |
1560 | encoding_found = true; |
1561 | break; |
1562 | } |
1563 | } |
1564 | break; |
1565 | |
1566 | case IF_EN5C: |
1567 | for (index = 0; index < 5; index++) |
1568 | { |
1569 | if (fmt == formatEncode5C[index]) |
1570 | { |
1571 | encoding_found = true; |
1572 | break; |
1573 | } |
1574 | } |
1575 | break; |
1576 | |
1577 | case IF_EN4A: |
1578 | for (index = 0; index < 4; index++) |
1579 | { |
1580 | if (fmt == formatEncode4A[index]) |
1581 | { |
1582 | encoding_found = true; |
1583 | break; |
1584 | } |
1585 | } |
1586 | break; |
1587 | |
1588 | case IF_EN4B: |
1589 | for (index = 0; index < 4; index++) |
1590 | { |
1591 | if (fmt == formatEncode4B[index]) |
1592 | { |
1593 | encoding_found = true; |
1594 | break; |
1595 | } |
1596 | } |
1597 | break; |
1598 | |
1599 | case IF_EN4C: |
1600 | for (index = 0; index < 4; index++) |
1601 | { |
1602 | if (fmt == formatEncode4C[index]) |
1603 | { |
1604 | encoding_found = true; |
1605 | break; |
1606 | } |
1607 | } |
1608 | break; |
1609 | |
1610 | case IF_EN4D: |
1611 | for (index = 0; index < 4; index++) |
1612 | { |
1613 | if (fmt == formatEncode4D[index]) |
1614 | { |
1615 | encoding_found = true; |
1616 | break; |
1617 | } |
1618 | } |
1619 | break; |
1620 | |
1621 | case IF_EN4E: |
1622 | for (index = 0; index < 4; index++) |
1623 | { |
1624 | if (fmt == formatEncode4E[index]) |
1625 | { |
1626 | encoding_found = true; |
1627 | break; |
1628 | } |
1629 | } |
1630 | break; |
1631 | |
1632 | case IF_EN4F: |
1633 | for (index = 0; index < 4; index++) |
1634 | { |
1635 | if (fmt == formatEncode4F[index]) |
1636 | { |
1637 | encoding_found = true; |
1638 | break; |
1639 | } |
1640 | } |
1641 | break; |
1642 | |
1643 | case IF_EN4G: |
1644 | for (index = 0; index < 4; index++) |
1645 | { |
1646 | if (fmt == formatEncode4G[index]) |
1647 | { |
1648 | encoding_found = true; |
1649 | break; |
1650 | } |
1651 | } |
1652 | break; |
1653 | |
1654 | case IF_EN4H: |
1655 | for (index = 0; index < 4; index++) |
1656 | { |
1657 | if (fmt == formatEncode4H[index]) |
1658 | { |
1659 | encoding_found = true; |
1660 | break; |
1661 | } |
1662 | } |
1663 | break; |
1664 | |
1665 | case IF_EN4I: |
1666 | for (index = 0; index < 4; index++) |
1667 | { |
1668 | if (fmt == formatEncode4I[index]) |
1669 | { |
1670 | encoding_found = true; |
1671 | break; |
1672 | } |
1673 | } |
1674 | break; |
1675 | |
1676 | case IF_EN3A: |
1677 | for (index = 0; index < 3; index++) |
1678 | { |
1679 | if (fmt == formatEncode3A[index]) |
1680 | { |
1681 | encoding_found = true; |
1682 | break; |
1683 | } |
1684 | } |
1685 | break; |
1686 | |
1687 | case IF_EN3B: |
1688 | for (index = 0; index < 3; index++) |
1689 | { |
1690 | if (fmt == formatEncode3B[index]) |
1691 | { |
1692 | encoding_found = true; |
1693 | break; |
1694 | } |
1695 | } |
1696 | break; |
1697 | |
1698 | case IF_EN3C: |
1699 | for (index = 0; index < 3; index++) |
1700 | { |
1701 | if (fmt == formatEncode3C[index]) |
1702 | { |
1703 | encoding_found = true; |
1704 | break; |
1705 | } |
1706 | } |
1707 | break; |
1708 | |
1709 | case IF_EN3D: |
1710 | for (index = 0; index < 3; index++) |
1711 | { |
1712 | if (fmt == formatEncode3D[index]) |
1713 | { |
1714 | encoding_found = true; |
1715 | break; |
1716 | } |
1717 | } |
1718 | break; |
1719 | |
1720 | case IF_EN3E: |
1721 | for (index = 0; index < 3; index++) |
1722 | { |
1723 | if (fmt == formatEncode3E[index]) |
1724 | { |
1725 | encoding_found = true; |
1726 | break; |
1727 | } |
1728 | } |
1729 | break; |
1730 | |
1731 | case IF_EN3F: |
1732 | for (index = 0; index < 3; index++) |
1733 | { |
1734 | if (fmt == formatEncode3F[index]) |
1735 | { |
1736 | encoding_found = true; |
1737 | break; |
1738 | } |
1739 | } |
1740 | break; |
1741 | |
1742 | case IF_EN3G: |
1743 | for (index = 0; index < 3; index++) |
1744 | { |
1745 | if (fmt == formatEncode3G[index]) |
1746 | { |
1747 | encoding_found = true; |
1748 | break; |
1749 | } |
1750 | } |
1751 | break; |
1752 | |
1753 | case IF_EN3H: |
1754 | for (index = 0; index < 3; index++) |
1755 | { |
1756 | if (fmt == formatEncode3H[index]) |
1757 | { |
1758 | encoding_found = true; |
1759 | break; |
1760 | } |
1761 | } |
1762 | break; |
1763 | |
1764 | case IF_EN3I: |
1765 | for (index = 0; index < 3; index++) |
1766 | { |
1767 | if (fmt == formatEncode3I[index]) |
1768 | { |
1769 | encoding_found = true; |
1770 | break; |
1771 | } |
1772 | } |
1773 | break; |
1774 | |
1775 | case IF_EN2A: |
1776 | for (index = 0; index < 2; index++) |
1777 | { |
1778 | if (fmt == formatEncode2A[index]) |
1779 | { |
1780 | encoding_found = true; |
1781 | break; |
1782 | } |
1783 | } |
1784 | break; |
1785 | |
1786 | case IF_EN2B: |
1787 | for (index = 0; index < 2; index++) |
1788 | { |
1789 | if (fmt == formatEncode2B[index]) |
1790 | { |
1791 | encoding_found = true; |
1792 | break; |
1793 | } |
1794 | } |
1795 | break; |
1796 | |
1797 | case IF_EN2C: |
1798 | for (index = 0; index < 2; index++) |
1799 | { |
1800 | if (fmt == formatEncode2C[index]) |
1801 | { |
1802 | encoding_found = true; |
1803 | break; |
1804 | } |
1805 | } |
1806 | break; |
1807 | |
1808 | case IF_EN2D: |
1809 | for (index = 0; index < 2; index++) |
1810 | { |
1811 | if (fmt == formatEncode2D[index]) |
1812 | { |
1813 | encoding_found = true; |
1814 | break; |
1815 | } |
1816 | } |
1817 | break; |
1818 | |
1819 | case IF_EN2E: |
1820 | for (index = 0; index < 2; index++) |
1821 | { |
1822 | if (fmt == formatEncode2E[index]) |
1823 | { |
1824 | encoding_found = true; |
1825 | break; |
1826 | } |
1827 | } |
1828 | break; |
1829 | |
1830 | case IF_EN2F: |
1831 | for (index = 0; index < 2; index++) |
1832 | { |
1833 | if (fmt == formatEncode2F[index]) |
1834 | { |
1835 | encoding_found = true; |
1836 | break; |
1837 | } |
1838 | } |
1839 | break; |
1840 | |
1841 | case IF_EN2G: |
1842 | for (index = 0; index < 2; index++) |
1843 | { |
1844 | if (fmt == formatEncode2G[index]) |
1845 | { |
1846 | encoding_found = true; |
1847 | break; |
1848 | } |
1849 | } |
1850 | break; |
1851 | |
1852 | case IF_EN2H: |
1853 | for (index = 0; index < 2; index++) |
1854 | { |
1855 | if (fmt == formatEncode2H[index]) |
1856 | { |
1857 | encoding_found = true; |
1858 | break; |
1859 | } |
1860 | } |
1861 | break; |
1862 | |
1863 | case IF_EN2I: |
1864 | for (index = 0; index < 2; index++) |
1865 | { |
1866 | if (fmt == formatEncode2I[index]) |
1867 | { |
1868 | encoding_found = true; |
1869 | break; |
1870 | } |
1871 | } |
1872 | break; |
1873 | |
1874 | case IF_EN2J: |
1875 | for (index = 0; index < 2; index++) |
1876 | { |
1877 | if (fmt == formatEncode2J[index]) |
1878 | { |
1879 | encoding_found = true; |
1880 | break; |
1881 | } |
1882 | } |
1883 | break; |
1884 | |
1885 | case IF_EN2K: |
1886 | for (index = 0; index < 2; index++) |
1887 | { |
1888 | if (fmt == formatEncode2K[index]) |
1889 | { |
1890 | encoding_found = true; |
1891 | break; |
1892 | } |
1893 | } |
1894 | break; |
1895 | |
1896 | case IF_EN2L: |
1897 | for (index = 0; index < 2; index++) |
1898 | { |
1899 | if (fmt == formatEncode2L[index]) |
1900 | { |
1901 | encoding_found = true; |
1902 | break; |
1903 | } |
1904 | } |
1905 | break; |
1906 | |
1907 | case IF_EN2M: |
1908 | for (index = 0; index < 2; index++) |
1909 | { |
1910 | if (fmt == formatEncode2M[index]) |
1911 | { |
1912 | encoding_found = true; |
1913 | break; |
1914 | } |
1915 | } |
1916 | break; |
1917 | |
1918 | case IF_EN2N: |
1919 | for (index = 0; index < 2; index++) |
1920 | { |
1921 | if (fmt == formatEncode2N[index]) |
1922 | { |
1923 | encoding_found = true; |
1924 | break; |
1925 | } |
1926 | } |
1927 | break; |
1928 | |
1929 | case IF_EN2O: |
1930 | for (index = 0; index < 2; index++) |
1931 | { |
1932 | if (fmt == formatEncode2O[index]) |
1933 | { |
1934 | encoding_found = true; |
1935 | break; |
1936 | } |
1937 | } |
1938 | break; |
1939 | |
1940 | case IF_EN2P: |
1941 | for (index = 0; index < 2; index++) |
1942 | { |
1943 | if (fmt == formatEncode2P[index]) |
1944 | { |
1945 | encoding_found = true; |
1946 | break; |
1947 | } |
1948 | } |
1949 | break; |
1950 | |
1951 | case IF_BI_0A: |
1952 | case IF_BI_0B: |
1953 | case IF_BI_0C: |
1954 | case IF_BI_1A: |
1955 | case IF_BI_1B: |
1956 | case IF_BR_1A: |
1957 | case IF_BR_1B: |
1958 | case IF_LS_1A: |
1959 | case IF_LS_2A: |
1960 | case IF_LS_2B: |
1961 | case IF_LS_2C: |
1962 | case IF_LS_3A: |
1963 | case IF_LS_3B: |
1964 | case IF_LS_3C: |
1965 | case IF_LS_3D: |
1966 | case IF_LS_3E: |
1967 | case IF_DI_1A: |
1968 | case IF_DI_1B: |
1969 | case IF_DI_1C: |
1970 | case IF_DI_1D: |
1971 | case IF_DI_1E: |
1972 | case IF_DI_1F: |
1973 | case IF_DI_2A: |
1974 | case IF_DI_2B: |
1975 | case IF_DI_2C: |
1976 | case IF_DI_2D: |
1977 | case IF_DR_1D: |
1978 | case IF_DR_2A: |
1979 | case IF_DR_2B: |
1980 | case IF_DR_2C: |
1981 | case IF_DR_2D: |
1982 | case IF_DR_2E: |
1983 | case IF_DR_2F: |
1984 | case IF_DR_2G: |
1985 | case IF_DR_2H: |
1986 | case IF_DR_2I: |
1987 | case IF_DR_2J: |
1988 | case IF_DR_3A: |
1989 | case IF_DR_3B: |
1990 | case IF_DR_3C: |
1991 | case IF_DR_3D: |
1992 | case IF_DR_3E: |
1993 | case IF_DR_4A: |
1994 | case IF_DV_1A: |
1995 | case IF_DV_1B: |
1996 | case IF_DV_1C: |
1997 | case IF_DV_2A: |
1998 | case IF_DV_2B: |
1999 | case IF_DV_2C: |
2000 | case IF_DV_2D: |
2001 | case IF_DV_2E: |
2002 | case IF_DV_2F: |
2003 | case IF_DV_2G: |
2004 | case IF_DV_2H: |
2005 | case IF_DV_2I: |
2006 | case IF_DV_2J: |
2007 | case IF_DV_2K: |
2008 | case IF_DV_2L: |
2009 | case IF_DV_2M: |
2010 | case IF_DV_2N: |
2011 | case IF_DV_2O: |
2012 | case IF_DV_2P: |
2013 | case IF_DV_3A: |
2014 | case IF_DV_3AI: |
2015 | case IF_DV_3B: |
2016 | case IF_DV_3BI: |
2017 | case IF_DV_3C: |
2018 | case IF_DV_3D: |
2019 | case IF_DV_3DI: |
2020 | case IF_DV_3E: |
2021 | case IF_DV_3F: |
2022 | case IF_DV_4A: |
2023 | case IF_SN_0A: |
2024 | case IF_SI_0A: |
2025 | case IF_SI_0B: |
2026 | |
2027 | index = 0; |
2028 | encoding_found = true; |
2029 | break; |
2030 | |
2031 | default: |
2032 | |
2033 | encoding_found = false; |
2034 | break; |
2035 | } |
2036 | |
2037 | assert(encoding_found); |
2038 | |
2039 | switch (index) |
2040 | { |
2041 | case 0: |
2042 | assert(ins < ArrLen(insCodes1)); |
2043 | code = insCodes1[ins]; |
2044 | break; |
2045 | case 1: |
2046 | assert(ins < ArrLen(insCodes2)); |
2047 | code = insCodes2[ins]; |
2048 | break; |
2049 | case 2: |
2050 | assert(ins < ArrLen(insCodes3)); |
2051 | code = insCodes3[ins]; |
2052 | break; |
2053 | case 3: |
2054 | assert(ins < ArrLen(insCodes4)); |
2055 | code = insCodes4[ins]; |
2056 | break; |
2057 | case 4: |
2058 | assert(ins < ArrLen(insCodes5)); |
2059 | code = insCodes5[ins]; |
2060 | break; |
2061 | case 5: |
2062 | assert(ins < ArrLen(insCodes6)); |
2063 | code = insCodes6[ins]; |
2064 | break; |
2065 | case 6: |
2066 | assert(ins < ArrLen(insCodes7)); |
2067 | code = insCodes7[ins]; |
2068 | break; |
2069 | case 7: |
2070 | assert(ins < ArrLen(insCodes8)); |
2071 | code = insCodes8[ins]; |
2072 | break; |
2073 | case 8: |
2074 | assert(ins < ArrLen(insCodes9)); |
2075 | code = insCodes9[ins]; |
2076 | break; |
2077 | } |
2078 | |
2079 | assert((code != BAD_CODE)); |
2080 | |
2081 | return code; |
2082 | } |
2083 | |
2084 | // true if this 'imm' can be encoded as a input operand to a mov instruction |
2085 | /*static*/ bool emitter::emitIns_valid_imm_for_mov(INT64 imm, emitAttr size) |
2086 | { |
2087 | // Check for "MOV (wide immediate)". |
2088 | if (canEncodeHalfwordImm(imm, size)) |
2089 | return true; |
2090 | |
2091 | // Next try the ones-complement form of 'halfword immediate' imm(i16,hw), |
2092 | // namely "MOV (inverted wide immediate)". |
2093 | ssize_t notOfImm = NOT_helper(imm, getBitWidth(size)); |
2094 | if (canEncodeHalfwordImm(notOfImm, size)) |
2095 | return true; |
2096 | |
2097 | // Finally try "MOV (bitmask immediate)" imm(N,r,s) |
2098 | if (canEncodeBitMaskImm(imm, size)) |
2099 | return true; |
2100 | |
2101 | return false; |
2102 | } |
2103 | |
2104 | // true if this 'imm' can be encoded as a input operand to a vector movi instruction |
2105 | /*static*/ bool emitter::emitIns_valid_imm_for_movi(INT64 imm, emitAttr elemsize) |
2106 | { |
2107 | if (elemsize == EA_8BYTE) |
2108 | { |
2109 | UINT64 uimm = imm; |
2110 | while (uimm != 0) |
2111 | { |
2112 | INT64 loByte = uimm & 0xFF; |
2113 | if ((loByte == 0) || (loByte == 0xFF)) |
2114 | { |
2115 | uimm >>= 8; |
2116 | } |
2117 | else |
2118 | { |
2119 | return false; |
2120 | } |
2121 | } |
2122 | assert(uimm == 0); |
2123 | return true; |
2124 | } |
2125 | else |
2126 | { |
2127 | // First try the standard 'byteShifted immediate' imm(i8,bySh) |
2128 | if (canEncodeByteShiftedImm(imm, elemsize, true)) |
2129 | return true; |
2130 | |
2131 | // Next try the ones-complement form of the 'immediate' imm(i8,bySh) |
2132 | ssize_t notOfImm = NOT_helper(imm, getBitWidth(elemsize)); |
2133 | if (canEncodeByteShiftedImm(notOfImm, elemsize, true)) |
2134 | return true; |
2135 | } |
2136 | return false; |
2137 | } |
2138 | |
2139 | // true if this 'imm' can be encoded as a input operand to a fmov instruction |
2140 | /*static*/ bool emitter::emitIns_valid_imm_for_fmov(double immDbl) |
2141 | { |
2142 | if (canEncodeFloatImm8(immDbl)) |
2143 | return true; |
2144 | |
2145 | return false; |
2146 | } |
2147 | |
2148 | // true if this 'imm' can be encoded as a input operand to an add instruction |
2149 | /*static*/ bool emitter::emitIns_valid_imm_for_add(INT64 imm, emitAttr size) |
2150 | { |
2151 | if (unsigned_abs(imm) <= 0x0fff) |
2152 | return true; |
2153 | else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding |
2154 | return true; |
2155 | |
2156 | return false; |
2157 | } |
2158 | |
2159 | // true if this 'imm' can be encoded as a input operand to an non-add/sub alu instruction |
2160 | /*static*/ bool emitter::emitIns_valid_imm_for_cmp(INT64 imm, emitAttr size) |
2161 | { |
2162 | return emitIns_valid_imm_for_add(imm, size); |
2163 | } |
2164 | |
2165 | // true if this 'imm' can be encoded as a input operand to an non-add/sub alu instruction |
2166 | /*static*/ bool emitter::emitIns_valid_imm_for_alu(INT64 imm, emitAttr size) |
2167 | { |
2168 | if (canEncodeBitMaskImm(imm, size)) |
2169 | return true; |
2170 | |
2171 | return false; |
2172 | } |
2173 | |
2174 | // true if this 'imm' can be encoded as the offset in a ldr/str instruction |
2175 | /*static*/ bool emitter::emitIns_valid_imm_for_ldst_offset(INT64 imm, emitAttr attr) |
2176 | { |
2177 | if (imm == 0) |
2178 | return true; // Encodable using IF_LS_2A |
2179 | |
2180 | if ((imm >= -256) && (imm <= 255)) |
2181 | return true; // Encodable using IF_LS_2C (or possibly IF_LS_2B) |
2182 | |
2183 | if (imm < 0) |
2184 | return false; // not encodable |
2185 | |
2186 | emitAttr size = EA_SIZE(attr); |
2187 | unsigned scale = NaturalScale_helper(size); |
2188 | ssize_t mask = size - 1; // the mask of low bits that must be zero to encode the immediate |
2189 | |
2190 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
2191 | return true; // Encodable using IF_LS_2B |
2192 | |
2193 | return false; // not encodable |
2194 | } |
2195 | |
2196 | /************************************************************************ |
2197 | * |
2198 | * A helper method to return the natural scale for an EA 'size' |
2199 | */ |
2200 | |
2201 | /*static*/ unsigned emitter::NaturalScale_helper(emitAttr size) |
2202 | { |
2203 | assert(size == EA_1BYTE || size == EA_2BYTE || size == EA_4BYTE || size == EA_8BYTE || size == EA_16BYTE); |
2204 | |
2205 | unsigned result = 0; |
2206 | unsigned utemp = (unsigned)size; |
2207 | |
2208 | // Compute log base 2 of utemp (aka 'size') |
2209 | while (utemp > 1) |
2210 | { |
2211 | result++; |
2212 | utemp >>= 1; |
2213 | } |
2214 | |
2215 | return result; |
2216 | } |
2217 | |
2218 | /************************************************************************ |
2219 | * |
2220 | * A helper method to perform a Rotate-Right shift operation |
2221 | * the source is 'value' and it is rotated right by 'sh' bits |
2222 | * 'value' is considered to be a fixed size 'width' set of bits. |
2223 | * |
2224 | * Example |
2225 | * value is '00001111', sh is 2 and width is 8 |
2226 | * result is '11000011' |
2227 | */ |
2228 | |
2229 | /*static*/ UINT64 emitter::ROR_helper(UINT64 value, unsigned sh, unsigned width) |
2230 | { |
2231 | assert(width <= 64); |
2232 | // Check that 'value' fits in 'width' bits |
2233 | assert((width == 64) || (value < (1ULL << width))); |
2234 | // We don't support shifts >= width |
2235 | assert(sh < width); |
2236 | |
2237 | UINT64 result; |
2238 | |
2239 | unsigned rsh = sh; |
2240 | unsigned lsh = width - rsh; |
2241 | |
2242 | result = (value >> rsh); |
2243 | result |= (value << lsh); |
2244 | |
2245 | if (width < 64) |
2246 | { |
2247 | // mask off any extra bits that we got from the left shift |
2248 | result &= ((1ULL << width) - 1); |
2249 | } |
2250 | return result; |
2251 | } |
2252 | /************************************************************************ |
2253 | * |
2254 | * A helper method to perform a 'NOT' bitwise complement operation. |
2255 | * 'value' is considered to be a fixed size 'width' set of bits. |
2256 | * |
2257 | * Example |
2258 | * value is '01001011', and width is 8 |
2259 | * result is '10110100' |
2260 | */ |
2261 | |
2262 | /*static*/ UINT64 emitter::NOT_helper(UINT64 value, unsigned width) |
2263 | { |
2264 | assert(width <= 64); |
2265 | |
2266 | UINT64 result = ~value; |
2267 | |
2268 | if (width < 64) |
2269 | { |
2270 | // Check that 'value' fits in 'width' bits. Don't consider "sign" bits above width. |
2271 | UINT64 maxVal = 1ULL << width; |
2272 | UINT64 lowBitsMask = maxVal - 1; |
2273 | UINT64 signBitsMask = ~lowBitsMask | (1ULL << (width - 1)); // The high bits must be set, and the top bit |
2274 | // (sign bit) must be set. |
2275 | assert((value < maxVal) || ((value & signBitsMask) == signBitsMask)); |
2276 | |
2277 | // mask off any extra bits that we got from the complement operation |
2278 | result &= lowBitsMask; |
2279 | } |
2280 | |
2281 | return result; |
2282 | } |
2283 | |
2284 | /************************************************************************ |
2285 | * |
2286 | * A helper method to perform a bit Replicate operation |
2287 | * the source is 'value' with a fixed size 'width' set of bits. |
2288 | * value is replicated to fill out 32 or 64 bits as determined by 'size'. |
2289 | * |
2290 | * Example |
2291 | * value is '11000011' (0xE3), width is 8 and size is EA_8BYTE |
2292 | * result is '11000011 11000011 11000011 11000011 11000011 11000011 11000011 11000011' |
2293 | * 0xE3E3E3E3E3E3E3E3 |
2294 | */ |
2295 | |
2296 | /*static*/ UINT64 emitter::Replicate_helper(UINT64 value, unsigned width, emitAttr size) |
2297 | { |
2298 | assert(emitter::isValidGeneralDatasize(size)); |
2299 | |
2300 | unsigned immWidth = (size == EA_8BYTE) ? 64 : 32; |
2301 | assert(width <= immWidth); |
2302 | |
2303 | UINT64 result = value; |
2304 | unsigned filledBits = width; |
2305 | |
2306 | while (filledBits < immWidth) |
2307 | { |
2308 | value <<= width; |
2309 | result |= value; |
2310 | filledBits += width; |
2311 | } |
2312 | return result; |
2313 | } |
2314 | |
2315 | /************************************************************************ |
2316 | * |
2317 | * Convert an imm(N,r,s) into a 64-bit immediate |
2318 | * inputs 'bmImm' a bitMaskImm struct |
2319 | * 'size' specifies the size of the result (64 or 32 bits) |
2320 | */ |
2321 | |
2322 | /*static*/ INT64 emitter::emitDecodeBitMaskImm(const emitter::bitMaskImm bmImm, emitAttr size) |
2323 | { |
2324 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
2325 | |
2326 | unsigned N = bmImm.immN; // read the N,R and S values from the 'bitMaskImm' encoding |
2327 | unsigned R = bmImm.immR; |
2328 | unsigned S = bmImm.immS; |
2329 | |
2330 | unsigned elemWidth = 64; // used when immN == 1 |
2331 | |
2332 | if (bmImm.immN == 0) // find the smaller elemWidth when immN == 0 |
2333 | { |
2334 | // Scan S for the highest bit not set |
2335 | elemWidth = 32; |
2336 | for (unsigned bitNum = 5; bitNum > 0; bitNum--) |
2337 | { |
2338 | unsigned oneBit = elemWidth; |
2339 | if ((S & oneBit) == 0) |
2340 | break; |
2341 | elemWidth /= 2; |
2342 | } |
2343 | } |
2344 | else |
2345 | { |
2346 | assert(size == EA_8BYTE); |
2347 | } |
2348 | |
2349 | unsigned maskSR = elemWidth - 1; |
2350 | |
2351 | S &= maskSR; |
2352 | R &= maskSR; |
2353 | |
2354 | // encoding for S is one less than the number of consecutive one bits |
2355 | S++; // Number of consecutive ones to generate in 'welem' |
2356 | |
2357 | // At this point: |
2358 | // |
2359 | // 'elemWidth' is the number of bits that we will use for the ROR and Replicate operations |
2360 | // 'S' is the number of consecutive 1 bits for the immediate |
2361 | // 'R' is the number of bits that we will Rotate Right the immediate |
2362 | // 'size' selects the final size of the immedate that we return (64 or 32 bits) |
2363 | |
2364 | assert(S < elemWidth); // 'elemWidth' consecutive one's is a reserved encoding |
2365 | |
2366 | UINT64 welem; |
2367 | UINT64 wmask; |
2368 | |
2369 | welem = (1ULL << S) - 1; |
2370 | |
2371 | wmask = ROR_helper(welem, R, elemWidth); |
2372 | wmask = Replicate_helper(wmask, elemWidth, size); |
2373 | |
2374 | return wmask; |
2375 | } |
2376 | |
2377 | /***************************************************************************** |
2378 | * |
2379 | * Check if an immediate can use the left shifted by 12 bits encoding |
2380 | */ |
2381 | |
2382 | /*static*/ bool emitter::canEncodeWithShiftImmBy12(INT64 imm) |
2383 | { |
2384 | if (imm < 0) |
2385 | { |
2386 | imm = -imm; // convert to unsigned |
2387 | } |
2388 | |
2389 | if (imm < 0) |
2390 | { |
2391 | return false; // Must be MIN_INT64 |
2392 | } |
2393 | |
2394 | if ((imm & 0xfff) != 0) // Now the low 12 bits all have to be zero |
2395 | { |
2396 | return false; |
2397 | } |
2398 | |
2399 | imm >>= 12; // shift right by 12 bits |
2400 | |
2401 | return (imm <= 0x0fff); // Does it fit in 12 bits |
2402 | } |
2403 | |
2404 | /***************************************************************************** |
2405 | * |
2406 | * Normalize the 'imm' so that the upper bits, as defined by 'size' are zero |
2407 | */ |
2408 | |
2409 | /*static*/ INT64 emitter::normalizeImm64(INT64 imm, emitAttr size) |
2410 | { |
2411 | unsigned immWidth = getBitWidth(size); |
2412 | INT64 result = imm; |
2413 | |
2414 | if (immWidth < 64) |
2415 | { |
2416 | // Check that 'imm' fits in 'immWidth' bits. Don't consider "sign" bits above width. |
2417 | INT64 maxVal = 1LL << immWidth; |
2418 | INT64 lowBitsMask = maxVal - 1; |
2419 | INT64 hiBitsMask = ~lowBitsMask; |
2420 | INT64 signBitsMask = |
2421 | hiBitsMask | (1LL << (immWidth - 1)); // The high bits must be set, and the top bit (sign bit) must be set. |
2422 | assert((imm < maxVal) || ((imm & signBitsMask) == signBitsMask)); |
2423 | |
2424 | // mask off the hiBits |
2425 | result &= lowBitsMask; |
2426 | } |
2427 | return result; |
2428 | } |
2429 | |
2430 | /***************************************************************************** |
2431 | * |
2432 | * Normalize the 'imm' so that the upper bits, as defined by 'size' are zero |
2433 | */ |
2434 | |
2435 | /*static*/ INT32 emitter::normalizeImm32(INT32 imm, emitAttr size) |
2436 | { |
2437 | unsigned immWidth = getBitWidth(size); |
2438 | INT32 result = imm; |
2439 | |
2440 | if (immWidth < 32) |
2441 | { |
2442 | // Check that 'imm' fits in 'immWidth' bits. Don't consider "sign" bits above width. |
2443 | INT32 maxVal = 1 << immWidth; |
2444 | INT32 lowBitsMask = maxVal - 1; |
2445 | INT32 hiBitsMask = ~lowBitsMask; |
2446 | INT32 signBitsMask = hiBitsMask | (1 << (immWidth - 1)); // The high bits must be set, and the top bit |
2447 | // (sign bit) must be set. |
2448 | assert((imm < maxVal) || ((imm & signBitsMask) == signBitsMask)); |
2449 | |
2450 | // mask off the hiBits |
2451 | result &= lowBitsMask; |
2452 | } |
2453 | return result; |
2454 | } |
2455 | |
2456 | /************************************************************************ |
2457 | * |
2458 | * returns true if 'imm' of 'size bits (32/64) can be encoded |
2459 | * using the ARM64 'bitmask immediate' form. |
2460 | * When a non-null value is passed for 'wbBMI' then this method |
2461 | * writes back the 'N','S' and 'R' values use to encode this immediate |
2462 | * |
2463 | */ |
2464 | |
2465 | /*static*/ bool emitter::canEncodeBitMaskImm(INT64 imm, emitAttr size, emitter::bitMaskImm* wbBMI) |
2466 | { |
2467 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
2468 | |
2469 | unsigned immWidth = (size == EA_8BYTE) ? 64 : 32; |
2470 | unsigned maxLen = (size == EA_8BYTE) ? 6 : 5; |
2471 | |
2472 | imm = normalizeImm64(imm, size); |
2473 | |
2474 | // Starting with len=1, elemWidth is 2 bits |
2475 | // len=2, elemWidth is 4 bits |
2476 | // len=3, elemWidth is 8 bits |
2477 | // len=4, elemWidth is 16 bits |
2478 | // len=5, elemWidth is 32 bits |
2479 | // (optionally) len=6, elemWidth is 64 bits |
2480 | // |
2481 | for (unsigned len = 1; (len <= maxLen); len++) |
2482 | { |
2483 | unsigned elemWidth = 1 << len; |
2484 | UINT64 elemMask = ((UINT64)-1) >> (64 - elemWidth); |
2485 | UINT64 tempImm = (UINT64)imm; // A working copy of 'imm' that we can mutate |
2486 | UINT64 elemVal = tempImm & elemMask; // The low 'elemWidth' bits of 'imm' |
2487 | |
2488 | // Check for all 1's or 0's as these can't be encoded |
2489 | if ((elemVal == 0) || (elemVal == elemMask)) |
2490 | continue; |
2491 | |
2492 | // 'checkedBits' is the count of bits that are known to match 'elemVal' when replicated |
2493 | unsigned checkedBits = elemWidth; // by definition the first 'elemWidth' bits match |
2494 | |
2495 | // Now check to see if each of the next bits match... |
2496 | // |
2497 | while (checkedBits < immWidth) |
2498 | { |
2499 | tempImm >>= elemWidth; |
2500 | |
2501 | UINT64 nextElem = tempImm & elemMask; |
2502 | if (nextElem != elemVal) |
2503 | { |
2504 | // Not matching, exit this loop and checkedBits will not be equal to immWidth |
2505 | break; |
2506 | } |
2507 | |
2508 | // The 'nextElem' is matching, so increment 'checkedBits' |
2509 | checkedBits += elemWidth; |
2510 | } |
2511 | |
2512 | // Did the full immediate contain bits that can be formed by repeating 'elemVal'? |
2513 | if (checkedBits == immWidth) |
2514 | { |
2515 | // We are not quite done, since the only values that we can encode as a |
2516 | // 'bitmask immediate' are those that can be formed by starting with a |
2517 | // bit string of 0*1* that is rotated by some number of bits. |
2518 | // |
2519 | // We check to see if 'elemVal' can be formed using these restrictions. |
2520 | // |
2521 | // Observation: |
2522 | // Rotating by one bit any value that passes these restrictions |
2523 | // can be xor-ed with the original value and will result it a string |
2524 | // of bits that have exactly two 1 bits: 'elemRorXor' |
2525 | // Further the distance between the two one bits tells us the value |
2526 | // of S and the location of the 1 bits tells us the value of R |
2527 | // |
2528 | // Some examples: (immWidth is 8) |
2529 | // |
2530 | // S=4,R=0 S=5,R=3 S=3,R=6 |
2531 | // elemVal: 00001111 11100011 00011100 |
2532 | // elemRor: 10000111 11110001 00001110 |
2533 | // elemRorXor: 10001000 00010010 00010010 |
2534 | // compute S 45678--- ---5678- ---3210- |
2535 | // compute R 01234567 ---34567 ------67 |
2536 | |
2537 | UINT64 elemRor = ROR_helper(elemVal, 1, elemWidth); // Rotate 'elemVal' Right by one bit |
2538 | UINT64 elemRorXor = elemVal ^ elemRor; // Xor elemVal and elemRor |
2539 | |
2540 | // If we only have a two-bit change in elemROR then we can form a mask for this value |
2541 | unsigned bitCount = 0; |
2542 | UINT64 oneBit = 0x1; |
2543 | unsigned R = elemWidth; // R is shift count for ROR (rotate right shift) |
2544 | unsigned S = 0; // S is number of consecutive one bits |
2545 | int incr = -1; |
2546 | |
2547 | // Loop over the 'elemWidth' bits in 'elemRorXor' |
2548 | // |
2549 | for (unsigned bitNum = 0; bitNum < elemWidth; bitNum++) |
2550 | { |
2551 | if (incr == -1) |
2552 | { |
2553 | R--; // We decrement R by one whenever incr is -1 |
2554 | } |
2555 | if (bitCount == 1) |
2556 | { |
2557 | S += incr; // We incr/decr S, after we find the first one bit in 'elemRorXor' |
2558 | } |
2559 | |
2560 | // Is this bit position a 1 bit in 'elemRorXor'? |
2561 | // |
2562 | if (oneBit & elemRorXor) |
2563 | { |
2564 | bitCount++; |
2565 | // Is this the first 1 bit that we found in 'elemRorXor'? |
2566 | if (bitCount == 1) |
2567 | { |
2568 | // Does this 1 bit represent a transition to zero bits? |
2569 | bool toZeros = ((oneBit & elemVal) != 0); |
2570 | if (toZeros) |
2571 | { |
2572 | // S :: Count down from elemWidth |
2573 | S = elemWidth; |
2574 | incr = -1; |
2575 | } |
2576 | else // this 1 bit represent a transition to one bits. |
2577 | { |
2578 | // S :: Count up from zero |
2579 | S = 0; |
2580 | incr = +1; |
2581 | } |
2582 | } |
2583 | else // bitCount > 1 |
2584 | { |
2585 | // We found the second (or third...) 1 bit in 'elemRorXor' |
2586 | incr = 0; // stop decrementing 'R' |
2587 | |
2588 | if (bitCount > 2) |
2589 | { |
2590 | // More than 2 transitions from 0/1 in 'elemVal' |
2591 | // This means that 'elemVal' can't be encoded |
2592 | // using a 'bitmask immediate'. |
2593 | // |
2594 | // Furthermore, it will continue to fail |
2595 | // with any larger 'len' that we try. |
2596 | // so just return false. |
2597 | // |
2598 | return false; |
2599 | } |
2600 | } |
2601 | } |
2602 | |
2603 | // shift oneBit left by one bit to test the next position |
2604 | oneBit <<= 1; |
2605 | } |
2606 | |
2607 | // We expect that bitCount will always be two at this point |
2608 | // but just in case return false for any bad cases. |
2609 | // |
2610 | assert(bitCount == 2); |
2611 | if (bitCount != 2) |
2612 | return false; |
2613 | |
2614 | // Perform some sanity checks on the values of 'S' and 'R' |
2615 | assert(S > 0); |
2616 | assert(S < elemWidth); |
2617 | assert(R < elemWidth); |
2618 | |
2619 | // Does the caller want us to return the N,R,S encoding values? |
2620 | // |
2621 | if (wbBMI != nullptr) |
2622 | { |
2623 | |
2624 | // The encoding used for S is one less than the |
2625 | // number of consecutive one bits |
2626 | S--; |
2627 | |
2628 | if (len == 6) |
2629 | { |
2630 | wbBMI->immN = 1; |
2631 | } |
2632 | else |
2633 | { |
2634 | wbBMI->immN = 0; |
2635 | // The encoding used for 'S' here is a bit peculiar. |
2636 | // |
2637 | // The upper bits need to be complemented, followed by a zero bit |
2638 | // then the value of 'S-1' |
2639 | // |
2640 | unsigned upperBitsOfS = 64 - (1 << (len + 1)); |
2641 | S |= upperBitsOfS; |
2642 | } |
2643 | wbBMI->immR = R; |
2644 | wbBMI->immS = S; |
2645 | |
2646 | // Verify that what we are returning is correct. |
2647 | assert(imm == emitDecodeBitMaskImm(*wbBMI, size)); |
2648 | } |
2649 | // Tell the caller that we can successfully encode this immediate |
2650 | // using a 'bitmask immediate'. |
2651 | // |
2652 | return true; |
2653 | } |
2654 | } |
2655 | return false; |
2656 | } |
2657 | |
2658 | /************************************************************************ |
2659 | * |
2660 | * Convert a 64-bit immediate into its 'bitmask immediate' representation imm(N,r,s) |
2661 | */ |
2662 | |
2663 | /*static*/ emitter::bitMaskImm emitter::emitEncodeBitMaskImm(INT64 imm, emitAttr size) |
2664 | { |
2665 | emitter::bitMaskImm result; |
2666 | result.immNRS = 0; |
2667 | |
2668 | bool canEncode = canEncodeBitMaskImm(imm, size, &result); |
2669 | assert(canEncode); |
2670 | |
2671 | return result; |
2672 | } |
2673 | |
2674 | /************************************************************************ |
2675 | * |
2676 | * Convert an imm(i16,hw) into a 32/64-bit immediate |
2677 | * inputs 'hwImm' a halfwordImm struct |
2678 | * 'size' specifies the size of the result (64 or 32 bits) |
2679 | */ |
2680 | |
2681 | /*static*/ INT64 emitter::emitDecodeHalfwordImm(const emitter::halfwordImm hwImm, emitAttr size) |
2682 | { |
2683 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
2684 | |
2685 | unsigned hw = hwImm.immHW; |
2686 | INT64 val = (INT64)hwImm.immVal; |
2687 | |
2688 | assert((hw <= 1) || (size == EA_8BYTE)); |
2689 | |
2690 | INT64 result = val << (16 * hw); |
2691 | return result; |
2692 | } |
2693 | |
2694 | /************************************************************************ |
2695 | * |
2696 | * returns true if 'imm' of 'size' bits (32/64) can be encoded |
2697 | * using the ARM64 'halfword immediate' form. |
2698 | * When a non-null value is passed for 'wbHWI' then this method |
2699 | * writes back the 'immHW' and 'immVal' values use to encode this immediate |
2700 | * |
2701 | */ |
2702 | |
2703 | /*static*/ bool emitter::canEncodeHalfwordImm(INT64 imm, emitAttr size, emitter::halfwordImm* wbHWI) |
2704 | { |
2705 | assert(isValidGeneralDatasize(size)); // Only EA_4BYTE or EA_8BYTE forms |
2706 | |
2707 | unsigned immWidth = (size == EA_8BYTE) ? 64 : 32; |
2708 | unsigned maxHW = (size == EA_8BYTE) ? 4 : 2; |
2709 | |
2710 | // setup immMask to a (EA_4BYTE) 0x00000000_FFFFFFFF or (EA_8BYTE) 0xFFFFFFFF_FFFFFFFF |
2711 | const UINT64 immMask = ((UINT64)-1) >> (64 - immWidth); |
2712 | const INT64 mask16 = (INT64)0xFFFF; |
2713 | |
2714 | imm = normalizeImm64(imm, size); |
2715 | |
2716 | // Try each of the valid hw shift sizes |
2717 | for (unsigned hw = 0; (hw < maxHW); hw++) |
2718 | { |
2719 | INT64 curMask = mask16 << (hw * 16); // Represents the mask of the bits in the current halfword |
2720 | INT64 checkBits = immMask & ~curMask; |
2721 | |
2722 | // Excluding the current halfword (using ~curMask) |
2723 | // does the immediate have zero bits in every other bit that we care about? |
2724 | // note we care about all 64-bits for EA_8BYTE |
2725 | // and we care about the lowest 32 bits for EA_4BYTE |
2726 | // |
2727 | if ((imm & checkBits) == 0) |
2728 | { |
2729 | // Does the caller want us to return the imm(i16,hw) encoding values? |
2730 | // |
2731 | if (wbHWI != nullptr) |
2732 | { |
2733 | INT64 val = ((imm & curMask) >> (hw * 16)) & mask16; |
2734 | wbHWI->immHW = hw; |
2735 | wbHWI->immVal = val; |
2736 | |
2737 | // Verify that what we are returning is correct. |
2738 | assert(imm == emitDecodeHalfwordImm(*wbHWI, size)); |
2739 | } |
2740 | // Tell the caller that we can successfully encode this immediate |
2741 | // using a 'halfword immediate'. |
2742 | // |
2743 | return true; |
2744 | } |
2745 | } |
2746 | return false; |
2747 | } |
2748 | |
2749 | /************************************************************************ |
2750 | * |
2751 | * Convert a 64-bit immediate into its 'halfword immediate' representation imm(i16,hw) |
2752 | */ |
2753 | |
2754 | /*static*/ emitter::halfwordImm emitter::emitEncodeHalfwordImm(INT64 imm, emitAttr size) |
2755 | { |
2756 | emitter::halfwordImm result; |
2757 | result.immHWVal = 0; |
2758 | |
2759 | bool canEncode = canEncodeHalfwordImm(imm, size, &result); |
2760 | assert(canEncode); |
2761 | |
2762 | return result; |
2763 | } |
2764 | |
2765 | /************************************************************************ |
2766 | * |
2767 | * Convert an imm(i8,sh) into a 16/32-bit immediate |
2768 | * inputs 'bsImm' a byteShiftedImm struct |
2769 | * 'size' specifies the size of the result (16 or 32 bits) |
2770 | */ |
2771 | |
2772 | /*static*/ INT32 emitter::emitDecodeByteShiftedImm(const emitter::byteShiftedImm bsImm, emitAttr size) |
2773 | { |
2774 | bool onesShift = (bsImm.immOnes == 1); |
2775 | unsigned bySh = bsImm.immBY; // Num Bytes to shift 0,1,2,3 |
2776 | INT32 val = (INT32)bsImm.immVal; // 8-bit immediate |
2777 | INT32 result = val; |
2778 | |
2779 | if (bySh > 0) |
2780 | { |
2781 | assert((size == EA_2BYTE) || (size == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms |
2782 | if (size == EA_2BYTE) |
2783 | { |
2784 | assert(bySh < 2); |
2785 | } |
2786 | else |
2787 | { |
2788 | assert(bySh < 4); |
2789 | } |
2790 | |
2791 | result <<= (8 * bySh); |
2792 | |
2793 | if (onesShift) |
2794 | { |
2795 | result |= ((1 << (8 * bySh)) - 1); |
2796 | } |
2797 | } |
2798 | return result; |
2799 | } |
2800 | |
2801 | /************************************************************************ |
2802 | * |
2803 | * returns true if 'imm' of 'size' bits (16/32) can be encoded |
2804 | * using the ARM64 'byteShifted immediate' form. |
2805 | * When a non-null value is passed for 'wbBSI' then this method |
2806 | * writes back the 'immBY' and 'immVal' values use to encode this immediate |
2807 | * |
2808 | */ |
2809 | |
2810 | /*static*/ bool emitter::canEncodeByteShiftedImm(INT64 imm, |
2811 | emitAttr size, |
2812 | bool allow_MSL, |
2813 | emitter::byteShiftedImm* wbBSI) |
2814 | { |
2815 | bool canEncode = false; |
2816 | bool onesShift = false; // true if we use the shifting ones variant |
2817 | unsigned bySh = 0; // number of bytes to shift: 0, 1, 2, 3 |
2818 | unsigned imm8 = 0; // immediate to use in the encoding |
2819 | |
2820 | imm = normalizeImm64(imm, size); |
2821 | |
2822 | if (size == EA_1BYTE) |
2823 | { |
2824 | imm8 = (unsigned)imm; |
2825 | assert(imm8 < 0x100); |
2826 | canEncode = true; |
2827 | } |
2828 | else if (size == EA_8BYTE) |
2829 | { |
2830 | imm8 = (unsigned)imm; |
2831 | assert(imm8 < 0x100); |
2832 | canEncode = true; |
2833 | } |
2834 | else |
2835 | { |
2836 | assert((size == EA_2BYTE) || (size == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms |
2837 | |
2838 | unsigned immWidth = (size == EA_4BYTE) ? 32 : 16; |
2839 | unsigned maxBY = (size == EA_4BYTE) ? 4 : 2; |
2840 | |
2841 | // setup immMask to a (EA_2BYTE) 0x0000FFFF or (EA_4BYTE) 0xFFFFFFFF |
2842 | const UINT32 immMask = ((UINT32)-1) >> (32 - immWidth); |
2843 | const INT32 mask8 = (INT32)0xFF; |
2844 | |
2845 | // Try each of the valid by shift sizes |
2846 | for (bySh = 0; (bySh < maxBY); bySh++) |
2847 | { |
2848 | INT32 curMask = mask8 << (bySh * 8); // Represents the mask of the bits in the current byteShifted |
2849 | INT32 checkBits = immMask & ~curMask; |
2850 | INT32 immCheck = (imm & checkBits); |
2851 | |
2852 | // Excluding the current byte (using ~curMask) |
2853 | // does the immediate have zero bits in every other bit that we care about? |
2854 | // or can be use the shifted one variant? |
2855 | // note we care about all 32-bits for EA_4BYTE |
2856 | // and we care about the lowest 16 bits for EA_2BYTE |
2857 | // |
2858 | if (immCheck == 0) |
2859 | { |
2860 | canEncode = true; |
2861 | } |
2862 | if (allow_MSL) |
2863 | { |
2864 | if ((bySh == 1) && (immCheck == 0xFF)) |
2865 | { |
2866 | canEncode = true; |
2867 | onesShift = true; |
2868 | } |
2869 | else if ((bySh == 2) && (immCheck == 0xFFFF)) |
2870 | { |
2871 | canEncode = true; |
2872 | onesShift = true; |
2873 | } |
2874 | } |
2875 | if (canEncode) |
2876 | { |
2877 | imm8 = (unsigned)(((imm & curMask) >> (bySh * 8)) & mask8); |
2878 | break; |
2879 | } |
2880 | } |
2881 | } |
2882 | |
2883 | if (canEncode) |
2884 | { |
2885 | // Does the caller want us to return the imm(i8,bySh) encoding values? |
2886 | // |
2887 | if (wbBSI != nullptr) |
2888 | { |
2889 | wbBSI->immOnes = onesShift; |
2890 | wbBSI->immBY = bySh; |
2891 | wbBSI->immVal = imm8; |
2892 | |
2893 | // Verify that what we are returning is correct. |
2894 | assert(imm == emitDecodeByteShiftedImm(*wbBSI, size)); |
2895 | } |
2896 | // Tell the caller that we can successfully encode this immediate |
2897 | // using a 'byteShifted immediate'. |
2898 | // |
2899 | return true; |
2900 | } |
2901 | return false; |
2902 | } |
2903 | |
2904 | /************************************************************************ |
2905 | * |
2906 | * Convert a 32-bit immediate into its 'byteShifted immediate' representation imm(i8,by) |
2907 | */ |
2908 | |
2909 | /*static*/ emitter::byteShiftedImm emitter::emitEncodeByteShiftedImm(INT64 imm, emitAttr size, bool allow_MSL) |
2910 | { |
2911 | emitter::byteShiftedImm result; |
2912 | result.immBSVal = 0; |
2913 | |
2914 | bool canEncode = canEncodeByteShiftedImm(imm, size, allow_MSL, &result); |
2915 | assert(canEncode); |
2916 | |
2917 | return result; |
2918 | } |
2919 | |
2920 | /************************************************************************ |
2921 | * |
2922 | * Convert a 'float 8-bit immediate' into a double. |
2923 | * inputs 'fpImm' a floatImm8 struct |
2924 | */ |
2925 | |
2926 | /*static*/ double emitter::emitDecodeFloatImm8(const emitter::floatImm8 fpImm) |
2927 | { |
2928 | unsigned sign = fpImm.immSign; |
2929 | unsigned exp = fpImm.immExp ^ 0x4; |
2930 | unsigned mant = fpImm.immMant + 16; |
2931 | unsigned scale = 16 * 8; |
2932 | |
2933 | while (exp > 0) |
2934 | { |
2935 | scale /= 2; |
2936 | exp--; |
2937 | } |
2938 | |
2939 | double result = ((double)mant) / ((double)scale); |
2940 | if (sign == 1) |
2941 | { |
2942 | result = -result; |
2943 | } |
2944 | |
2945 | return result; |
2946 | } |
2947 | |
2948 | /************************************************************************ |
2949 | * |
2950 | * returns true if the 'immDbl' can be encoded using the 'float 8-bit immediate' form. |
2951 | * also returns the encoding if wbFPI is non-null |
2952 | * |
2953 | */ |
2954 | |
2955 | /*static*/ bool emitter::canEncodeFloatImm8(double immDbl, emitter::floatImm8* wbFPI) |
2956 | { |
2957 | bool canEncode = false; |
2958 | double val = immDbl; |
2959 | |
2960 | int sign = 0; |
2961 | if (val < 0.0) |
2962 | { |
2963 | val = -val; |
2964 | sign = 1; |
2965 | } |
2966 | |
2967 | int exp = 0; |
2968 | while ((val < 1.0) && (exp >= -4)) |
2969 | { |
2970 | val *= 2.0; |
2971 | exp--; |
2972 | } |
2973 | while ((val >= 2.0) && (exp <= 5)) |
2974 | { |
2975 | val *= 0.5; |
2976 | exp++; |
2977 | } |
2978 | exp += 3; |
2979 | val *= 16.0; |
2980 | int ival = (int)val; |
2981 | |
2982 | if ((exp >= 0) && (exp <= 7)) |
2983 | { |
2984 | if (val == (double)ival) |
2985 | { |
2986 | canEncode = true; |
2987 | |
2988 | if (wbFPI != nullptr) |
2989 | { |
2990 | ival -= 16; |
2991 | assert((ival >= 0) && (ival <= 15)); |
2992 | |
2993 | wbFPI->immSign = sign; |
2994 | wbFPI->immExp = exp ^ 0x4; |
2995 | wbFPI->immMant = ival; |
2996 | unsigned imm8 = wbFPI->immFPIVal; |
2997 | assert((imm8 >= 0) && (imm8 <= 0xff)); |
2998 | } |
2999 | } |
3000 | } |
3001 | |
3002 | return canEncode; |
3003 | } |
3004 | |
3005 | /************************************************************************ |
3006 | * |
3007 | * Convert a double into its 'float 8-bit immediate' representation |
3008 | */ |
3009 | |
3010 | /*static*/ emitter::floatImm8 emitter::emitEncodeFloatImm8(double immDbl) |
3011 | { |
3012 | emitter::floatImm8 result; |
3013 | result.immFPIVal = 0; |
3014 | |
3015 | bool canEncode = canEncodeFloatImm8(immDbl, &result); |
3016 | assert(canEncode); |
3017 | |
3018 | return result; |
3019 | } |
3020 | |
3021 | /***************************************************************************** |
3022 | * |
3023 | * For the given 'ins' returns the reverse instruction |
3024 | * if one exists, otherwise returns INS_INVALID |
3025 | */ |
3026 | |
3027 | /*static*/ instruction emitter::insReverse(instruction ins) |
3028 | { |
3029 | switch (ins) |
3030 | { |
3031 | case INS_add: |
3032 | return INS_sub; |
3033 | case INS_adds: |
3034 | return INS_subs; |
3035 | |
3036 | case INS_sub: |
3037 | return INS_add; |
3038 | case INS_subs: |
3039 | return INS_adds; |
3040 | |
3041 | case INS_cmp: |
3042 | return INS_cmn; |
3043 | case INS_cmn: |
3044 | return INS_cmp; |
3045 | |
3046 | case INS_ccmp: |
3047 | return INS_ccmn; |
3048 | case INS_ccmn: |
3049 | return INS_ccmp; |
3050 | |
3051 | default: |
3052 | return INS_invalid; |
3053 | } |
3054 | } |
3055 | |
3056 | /***************************************************************************** |
3057 | * |
3058 | * For the given 'datasize' and 'elemsize', make the proper arrangement option |
3059 | * returns the insOpts that specifies the vector register arrangement |
3060 | * if one does not exist returns INS_OPTS_NONE |
3061 | */ |
3062 | |
3063 | /*static*/ insOpts emitter::optMakeArrangement(emitAttr datasize, emitAttr elemsize) |
3064 | { |
3065 | insOpts result = INS_OPTS_NONE; |
3066 | |
3067 | if (datasize == EA_8BYTE) |
3068 | { |
3069 | switch (elemsize) |
3070 | { |
3071 | case EA_1BYTE: |
3072 | result = INS_OPTS_8B; |
3073 | break; |
3074 | case EA_2BYTE: |
3075 | result = INS_OPTS_4H; |
3076 | break; |
3077 | case EA_4BYTE: |
3078 | result = INS_OPTS_2S; |
3079 | break; |
3080 | case EA_8BYTE: |
3081 | result = INS_OPTS_1D; |
3082 | break; |
3083 | default: |
3084 | unreached(); |
3085 | break; |
3086 | } |
3087 | } |
3088 | else if (datasize == EA_16BYTE) |
3089 | { |
3090 | switch (elemsize) |
3091 | { |
3092 | case EA_1BYTE: |
3093 | result = INS_OPTS_16B; |
3094 | break; |
3095 | case EA_2BYTE: |
3096 | result = INS_OPTS_8H; |
3097 | break; |
3098 | case EA_4BYTE: |
3099 | result = INS_OPTS_4S; |
3100 | break; |
3101 | case EA_8BYTE: |
3102 | result = INS_OPTS_2D; |
3103 | break; |
3104 | default: |
3105 | unreached(); |
3106 | break; |
3107 | } |
3108 | } |
3109 | return result; |
3110 | } |
3111 | |
3112 | /***************************************************************************** |
3113 | * |
3114 | * For the given 'datasize' and arrangement 'opts' |
3115 | * returns true is the pair spcifies a valid arrangement |
3116 | */ |
3117 | /*static*/ bool emitter::isValidArrangement(emitAttr datasize, insOpts opt) |
3118 | { |
3119 | if (datasize == EA_8BYTE) |
3120 | { |
3121 | if ((opt == INS_OPTS_8B) || (opt == INS_OPTS_4H) || (opt == INS_OPTS_2S) || (opt == INS_OPTS_1D)) |
3122 | { |
3123 | return true; |
3124 | } |
3125 | } |
3126 | else if (datasize == EA_16BYTE) |
3127 | { |
3128 | if ((opt == INS_OPTS_16B) || (opt == INS_OPTS_8H) || (opt == INS_OPTS_4S) || (opt == INS_OPTS_2D)) |
3129 | { |
3130 | return true; |
3131 | } |
3132 | } |
3133 | return false; |
3134 | } |
3135 | |
3136 | // For the given 'arrangement' returns the 'datasize' specified by the vector register arrangement |
3137 | // asserts and returns EA_UNKNOWN if an invalid 'arrangement' value is passed |
3138 | // |
3139 | /*static*/ emitAttr emitter::optGetDatasize(insOpts arrangement) |
3140 | { |
3141 | if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_2S) || |
3142 | (arrangement == INS_OPTS_1D)) |
3143 | { |
3144 | return EA_8BYTE; |
3145 | } |
3146 | else if ((arrangement == INS_OPTS_16B) || (arrangement == INS_OPTS_8H) || (arrangement == INS_OPTS_4S) || |
3147 | (arrangement == INS_OPTS_2D)) |
3148 | { |
3149 | return EA_16BYTE; |
3150 | } |
3151 | else |
3152 | { |
3153 | assert(!" invalid 'arrangement' value" ); |
3154 | return EA_UNKNOWN; |
3155 | } |
3156 | } |
3157 | |
3158 | // For the given 'arrangement' returns the 'elemsize' specified by the vector register arrangement |
3159 | // asserts and returns EA_UNKNOWN if an invalid 'arrangement' value is passed |
3160 | // |
3161 | /*static*/ emitAttr emitter::optGetElemsize(insOpts arrangement) |
3162 | { |
3163 | if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_16B)) |
3164 | { |
3165 | return EA_1BYTE; |
3166 | } |
3167 | else if ((arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_8H)) |
3168 | { |
3169 | return EA_2BYTE; |
3170 | } |
3171 | else if ((arrangement == INS_OPTS_2S) || (arrangement == INS_OPTS_4S)) |
3172 | { |
3173 | return EA_4BYTE; |
3174 | } |
3175 | else if ((arrangement == INS_OPTS_1D) || (arrangement == INS_OPTS_2D)) |
3176 | { |
3177 | return EA_8BYTE; |
3178 | } |
3179 | else |
3180 | { |
3181 | assert(!" invalid 'arrangement' value" ); |
3182 | return EA_UNKNOWN; |
3183 | } |
3184 | } |
3185 | |
3186 | // For the given 'arrangement' returns the 'widen-arrangement' specified by the vector register arrangement |
3187 | // asserts and returns INS_OPTS_NONE if an invalid 'arrangement' value is passed |
3188 | // |
3189 | /*static*/ insOpts emitter::optWidenElemsize(insOpts arrangement) |
3190 | { |
3191 | if ((arrangement == INS_OPTS_8B) || (arrangement == INS_OPTS_16B)) |
3192 | { |
3193 | return INS_OPTS_8H; |
3194 | } |
3195 | else if ((arrangement == INS_OPTS_4H) || (arrangement == INS_OPTS_8H)) |
3196 | { |
3197 | return INS_OPTS_4S; |
3198 | } |
3199 | else if ((arrangement == INS_OPTS_2S) || (arrangement == INS_OPTS_4S)) |
3200 | { |
3201 | return INS_OPTS_2D; |
3202 | } |
3203 | else |
3204 | { |
3205 | assert(!" invalid 'arrangement' value" ); |
3206 | return INS_OPTS_NONE; |
3207 | } |
3208 | } |
3209 | |
3210 | // For the given 'conversion' returns the 'dstsize' specified by the conversion option |
3211 | /*static*/ emitAttr emitter::optGetDstsize(insOpts conversion) |
3212 | { |
3213 | switch (conversion) |
3214 | { |
3215 | case INS_OPTS_S_TO_8BYTE: |
3216 | case INS_OPTS_D_TO_8BYTE: |
3217 | case INS_OPTS_4BYTE_TO_D: |
3218 | case INS_OPTS_8BYTE_TO_D: |
3219 | case INS_OPTS_S_TO_D: |
3220 | case INS_OPTS_H_TO_D: |
3221 | |
3222 | return EA_8BYTE; |
3223 | |
3224 | case INS_OPTS_S_TO_4BYTE: |
3225 | case INS_OPTS_D_TO_4BYTE: |
3226 | case INS_OPTS_4BYTE_TO_S: |
3227 | case INS_OPTS_8BYTE_TO_S: |
3228 | case INS_OPTS_D_TO_S: |
3229 | case INS_OPTS_H_TO_S: |
3230 | |
3231 | return EA_4BYTE; |
3232 | |
3233 | case INS_OPTS_S_TO_H: |
3234 | case INS_OPTS_D_TO_H: |
3235 | |
3236 | return EA_2BYTE; |
3237 | |
3238 | default: |
3239 | assert(!" invalid 'conversion' value" ); |
3240 | return EA_UNKNOWN; |
3241 | } |
3242 | } |
3243 | |
3244 | // For the given 'conversion' returns the 'srcsize' specified by the conversion option |
3245 | /*static*/ emitAttr emitter::optGetSrcsize(insOpts conversion) |
3246 | { |
3247 | switch (conversion) |
3248 | { |
3249 | case INS_OPTS_D_TO_8BYTE: |
3250 | case INS_OPTS_D_TO_4BYTE: |
3251 | case INS_OPTS_8BYTE_TO_D: |
3252 | case INS_OPTS_8BYTE_TO_S: |
3253 | case INS_OPTS_D_TO_S: |
3254 | case INS_OPTS_D_TO_H: |
3255 | |
3256 | return EA_8BYTE; |
3257 | |
3258 | case INS_OPTS_S_TO_8BYTE: |
3259 | case INS_OPTS_S_TO_4BYTE: |
3260 | case INS_OPTS_4BYTE_TO_S: |
3261 | case INS_OPTS_4BYTE_TO_D: |
3262 | case INS_OPTS_S_TO_D: |
3263 | case INS_OPTS_S_TO_H: |
3264 | |
3265 | return EA_4BYTE; |
3266 | |
3267 | case INS_OPTS_H_TO_S: |
3268 | case INS_OPTS_H_TO_D: |
3269 | |
3270 | return EA_2BYTE; |
3271 | |
3272 | default: |
3273 | assert(!" invalid 'conversion' value" ); |
3274 | return EA_UNKNOWN; |
3275 | } |
3276 | } |
3277 | |
3278 | // For the given 'size' and 'index' returns true if it specifies a valid index for a vector register of 'size' |
3279 | /*static*/ bool emitter::isValidVectorIndex(emitAttr datasize, emitAttr elemsize, ssize_t index) |
3280 | { |
3281 | assert(isValidVectorDatasize(datasize)); |
3282 | assert(isValidVectorElemsize(elemsize)); |
3283 | |
3284 | bool result = false; |
3285 | if (index >= 0) |
3286 | { |
3287 | if (datasize == EA_8BYTE) |
3288 | { |
3289 | switch (elemsize) |
3290 | { |
3291 | case EA_1BYTE: |
3292 | result = (index < 8); |
3293 | break; |
3294 | case EA_2BYTE: |
3295 | result = (index < 4); |
3296 | break; |
3297 | case EA_4BYTE: |
3298 | result = (index < 2); |
3299 | break; |
3300 | case EA_8BYTE: |
3301 | result = (index < 1); |
3302 | break; |
3303 | default: |
3304 | unreached(); |
3305 | break; |
3306 | } |
3307 | } |
3308 | else if (datasize == EA_16BYTE) |
3309 | { |
3310 | switch (elemsize) |
3311 | { |
3312 | case EA_1BYTE: |
3313 | result = (index < 16); |
3314 | break; |
3315 | case EA_2BYTE: |
3316 | result = (index < 8); |
3317 | break; |
3318 | case EA_4BYTE: |
3319 | result = (index < 4); |
3320 | break; |
3321 | case EA_8BYTE: |
3322 | result = (index < 2); |
3323 | break; |
3324 | default: |
3325 | unreached(); |
3326 | break; |
3327 | } |
3328 | } |
3329 | } |
3330 | return result; |
3331 | } |
3332 | |
3333 | /***************************************************************************** |
3334 | * |
3335 | * Add an instruction with no operands. |
3336 | */ |
3337 | |
3338 | void emitter::emitIns(instruction ins) |
3339 | { |
3340 | instrDesc* id = emitNewInstrSmall(EA_8BYTE); |
3341 | insFormat fmt = emitInsFormat(ins); |
3342 | |
3343 | assert(fmt == IF_SN_0A); |
3344 | |
3345 | id->idIns(ins); |
3346 | id->idInsFmt(fmt); |
3347 | |
3348 | dispIns(id); |
3349 | appendToCurIG(id); |
3350 | } |
3351 | |
3352 | /***************************************************************************** |
3353 | * |
3354 | * Add an instruction with a single immediate value. |
3355 | */ |
3356 | |
3357 | void emitter::emitIns_I(instruction ins, emitAttr attr, ssize_t imm) |
3358 | { |
3359 | insFormat fmt = IF_NONE; |
3360 | |
3361 | /* Figure out the encoding format of the instruction */ |
3362 | switch (ins) |
3363 | { |
3364 | case INS_brk: |
3365 | if ((imm & 0x0000ffff) == imm) |
3366 | { |
3367 | fmt = IF_SI_0A; |
3368 | } |
3369 | else |
3370 | { |
3371 | assert(!"Instruction cannot be encoded: IF_SI_0A" ); |
3372 | } |
3373 | break; |
3374 | default: |
3375 | unreached(); |
3376 | break; |
3377 | } |
3378 | assert(fmt != IF_NONE); |
3379 | |
3380 | instrDesc* id = emitNewInstrSC(attr, imm); |
3381 | |
3382 | id->idIns(ins); |
3383 | id->idInsFmt(fmt); |
3384 | |
3385 | dispIns(id); |
3386 | appendToCurIG(id); |
3387 | } |
3388 | |
3389 | /***************************************************************************** |
3390 | * |
3391 | * Add an instruction referencing a single register. |
3392 | */ |
3393 | |
3394 | void emitter::emitIns_R(instruction ins, emitAttr attr, regNumber reg) |
3395 | { |
3396 | emitAttr size = EA_SIZE(attr); |
3397 | insFormat fmt = IF_NONE; |
3398 | instrDesc* id = nullptr; |
3399 | |
3400 | /* Figure out the encoding format of the instruction */ |
3401 | switch (ins) |
3402 | { |
3403 | case INS_br: |
3404 | case INS_ret: |
3405 | assert(isGeneralRegister(reg)); |
3406 | id = emitNewInstrSmall(attr); |
3407 | id->idReg1(reg); |
3408 | fmt = IF_BR_1A; |
3409 | break; |
3410 | |
3411 | default: |
3412 | unreached(); |
3413 | } |
3414 | |
3415 | assert(fmt != IF_NONE); |
3416 | |
3417 | id->idIns(ins); |
3418 | id->idInsFmt(fmt); |
3419 | |
3420 | dispIns(id); |
3421 | appendToCurIG(id); |
3422 | } |
3423 | |
3424 | /***************************************************************************** |
3425 | * |
3426 | * Add an instruction referencing a register and a constant. |
3427 | */ |
3428 | |
3429 | void emitter::emitIns_R_I(instruction ins, emitAttr attr, regNumber reg, ssize_t imm, insOpts opt /* = INS_OPTS_NONE */) |
3430 | { |
3431 | emitAttr size = EA_SIZE(attr); |
3432 | emitAttr elemsize = EA_UNKNOWN; |
3433 | insFormat fmt = IF_NONE; |
3434 | bool canEncode = false; |
3435 | |
3436 | /* Figure out the encoding format of the instruction */ |
3437 | switch (ins) |
3438 | { |
3439 | bitMaskImm bmi; |
3440 | halfwordImm hwi; |
3441 | byteShiftedImm bsi; |
3442 | ssize_t notOfImm; |
3443 | |
3444 | case INS_tst: |
3445 | assert(insOptsNone(opt)); |
3446 | assert(isGeneralRegister(reg)); |
3447 | bmi.immNRS = 0; |
3448 | canEncode = canEncodeBitMaskImm(imm, size, &bmi); |
3449 | if (canEncode) |
3450 | { |
3451 | imm = bmi.immNRS; |
3452 | assert(isValidImmNRS(imm, size)); |
3453 | fmt = IF_DI_1C; |
3454 | } |
3455 | break; |
3456 | |
3457 | case INS_movk: |
3458 | case INS_movn: |
3459 | case INS_movz: |
3460 | assert(isValidGeneralDatasize(size)); |
3461 | assert(insOptsNone(opt)); // No LSL here (you must use emitIns_R_I_I if a shift is needed) |
3462 | assert(isGeneralRegister(reg)); |
3463 | assert(isValidUimm16(imm)); |
3464 | |
3465 | hwi.immHW = 0; |
3466 | hwi.immVal = imm; |
3467 | assert(imm == emitDecodeHalfwordImm(hwi, size)); |
3468 | |
3469 | imm = hwi.immHWVal; |
3470 | canEncode = true; |
3471 | fmt = IF_DI_1B; |
3472 | break; |
3473 | |
3474 | case INS_mov: |
3475 | assert(isValidGeneralDatasize(size)); |
3476 | assert(insOptsNone(opt)); // No explicit LSL here |
3477 | // We will automatically determine the shift based upon the imm |
3478 | |
3479 | // First try the standard 'halfword immediate' imm(i16,hw) |
3480 | hwi.immHWVal = 0; |
3481 | canEncode = canEncodeHalfwordImm(imm, size, &hwi); |
3482 | if (canEncode) |
3483 | { |
3484 | // uses a movz encoding |
3485 | assert(isGeneralRegister(reg)); |
3486 | imm = hwi.immHWVal; |
3487 | assert(isValidImmHWVal(imm, size)); |
3488 | fmt = IF_DI_1B; |
3489 | break; |
3490 | } |
3491 | |
3492 | // Next try the ones-complement form of 'halfword immediate' imm(i16,hw) |
3493 | notOfImm = NOT_helper(imm, getBitWidth(size)); |
3494 | canEncode = canEncodeHalfwordImm(notOfImm, size, &hwi); |
3495 | if (canEncode) |
3496 | { |
3497 | assert(isGeneralRegister(reg)); |
3498 | imm = hwi.immHWVal; |
3499 | ins = INS_movn; // uses a movn encoding |
3500 | assert(isValidImmHWVal(imm, size)); |
3501 | fmt = IF_DI_1B; |
3502 | break; |
3503 | } |
3504 | |
3505 | // Finally try the 'bitmask immediate' imm(N,r,s) |
3506 | bmi.immNRS = 0; |
3507 | canEncode = canEncodeBitMaskImm(imm, size, &bmi); |
3508 | if (canEncode) |
3509 | { |
3510 | assert(isGeneralRegisterOrSP(reg)); |
3511 | reg = encodingSPtoZR(reg); |
3512 | imm = bmi.immNRS; |
3513 | assert(isValidImmNRS(imm, size)); |
3514 | fmt = IF_DI_1D; |
3515 | break; |
3516 | } |
3517 | else |
3518 | { |
3519 | assert(!"Instruction cannot be encoded: mov imm" ); |
3520 | } |
3521 | |
3522 | break; |
3523 | |
3524 | case INS_movi: |
3525 | assert(isValidVectorDatasize(size)); |
3526 | assert(isVectorRegister(reg)); |
3527 | if (insOptsNone(opt) && (size == EA_8BYTE)) |
3528 | { |
3529 | opt = INS_OPTS_1D; |
3530 | } |
3531 | assert(isValidArrangement(size, opt)); |
3532 | elemsize = optGetElemsize(opt); |
3533 | |
3534 | if (elemsize == EA_8BYTE) |
3535 | { |
3536 | size_t uimm = imm; |
3537 | ssize_t imm8 = 0; |
3538 | unsigned pos = 0; |
3539 | canEncode = true; |
3540 | bool failed = false; |
3541 | while (uimm != 0) |
3542 | { |
3543 | INT64 loByte = uimm & 0xFF; |
3544 | if (((loByte == 0) || (loByte == 0xFF)) && (pos < 8)) |
3545 | { |
3546 | if (loByte == 0xFF) |
3547 | { |
3548 | imm8 |= (ssize_t{1} << pos); |
3549 | } |
3550 | uimm >>= 8; |
3551 | pos++; |
3552 | } |
3553 | else |
3554 | { |
3555 | canEncode = false; |
3556 | break; |
3557 | } |
3558 | } |
3559 | imm = imm8; |
3560 | assert(isValidUimm8(imm)); |
3561 | fmt = IF_DV_1B; |
3562 | break; |
3563 | } |
3564 | else |
3565 | { |
3566 | // Vector operation |
3567 | |
3568 | // No explicit LSL/MSL is used for the immediate |
3569 | // We will automatically determine the shift based upon the value of imm |
3570 | |
3571 | // First try the standard 'byteShifted immediate' imm(i8,bySh) |
3572 | bsi.immBSVal = 0; |
3573 | canEncode = canEncodeByteShiftedImm(imm, elemsize, true, &bsi); |
3574 | if (canEncode) |
3575 | { |
3576 | imm = bsi.immBSVal; |
3577 | assert(isValidImmBSVal(imm, size)); |
3578 | fmt = IF_DV_1B; |
3579 | break; |
3580 | } |
3581 | |
3582 | // Next try the ones-complement form of the 'immediate' imm(i8,bySh) |
3583 | if ((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)) // Only EA_2BYTE or EA_4BYTE forms |
3584 | { |
3585 | notOfImm = NOT_helper(imm, getBitWidth(elemsize)); |
3586 | canEncode = canEncodeByteShiftedImm(notOfImm, elemsize, true, &bsi); |
3587 | if (canEncode) |
3588 | { |
3589 | imm = bsi.immBSVal; |
3590 | ins = INS_mvni; // uses a mvni encoding |
3591 | assert(isValidImmBSVal(imm, size)); |
3592 | fmt = IF_DV_1B; |
3593 | break; |
3594 | } |
3595 | } |
3596 | } |
3597 | break; |
3598 | |
3599 | case INS_orr: |
3600 | case INS_bic: |
3601 | case INS_mvni: |
3602 | assert(isValidVectorDatasize(size)); |
3603 | assert(isVectorRegister(reg)); |
3604 | assert(isValidArrangement(size, opt)); |
3605 | elemsize = optGetElemsize(opt); |
3606 | assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); // Only EA_2BYTE or EA_4BYTE forms |
3607 | |
3608 | // Vector operation |
3609 | |
3610 | // No explicit LSL/MSL is used for the immediate |
3611 | // We will automatically determine the shift based upon the value of imm |
3612 | |
3613 | // First try the standard 'byteShifted immediate' imm(i8,bySh) |
3614 | bsi.immBSVal = 0; |
3615 | canEncode = canEncodeByteShiftedImm(imm, elemsize, |
3616 | (ins == INS_mvni), // mvni supports the ones shifting variant (aka MSL) |
3617 | &bsi); |
3618 | if (canEncode) |
3619 | { |
3620 | imm = bsi.immBSVal; |
3621 | assert(isValidImmBSVal(imm, size)); |
3622 | fmt = IF_DV_1B; |
3623 | break; |
3624 | } |
3625 | break; |
3626 | |
3627 | case INS_cmp: |
3628 | case INS_cmn: |
3629 | assert(insOptsNone(opt)); |
3630 | assert(isGeneralRegister(reg)); |
3631 | |
3632 | if (unsigned_abs(imm) <= 0x0fff) |
3633 | { |
3634 | if (imm < 0) |
3635 | { |
3636 | ins = insReverse(ins); |
3637 | imm = -imm; |
3638 | } |
3639 | assert(isValidUimm12(imm)); |
3640 | canEncode = true; |
3641 | fmt = IF_DI_1A; |
3642 | } |
3643 | else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding |
3644 | { |
3645 | // Encoding will use a 12-bit left shift of the immediate |
3646 | opt = INS_OPTS_LSL12; |
3647 | if (imm < 0) |
3648 | { |
3649 | ins = insReverse(ins); |
3650 | imm = -imm; |
3651 | } |
3652 | assert((imm & 0xfff) == 0); |
3653 | imm >>= 12; |
3654 | assert(isValidUimm12(imm)); |
3655 | canEncode = true; |
3656 | fmt = IF_DI_1A; |
3657 | } |
3658 | else |
3659 | { |
3660 | assert(!"Instruction cannot be encoded: IF_DI_1A" ); |
3661 | } |
3662 | break; |
3663 | |
3664 | default: |
3665 | unreached(); |
3666 | break; |
3667 | |
3668 | } // end switch (ins) |
3669 | |
3670 | assert(canEncode); |
3671 | assert(fmt != IF_NONE); |
3672 | |
3673 | instrDesc* id = emitNewInstrSC(attr, imm); |
3674 | |
3675 | id->idIns(ins); |
3676 | id->idInsFmt(fmt); |
3677 | id->idInsOpt(opt); |
3678 | |
3679 | id->idReg1(reg); |
3680 | |
3681 | dispIns(id); |
3682 | appendToCurIG(id); |
3683 | } |
3684 | |
3685 | /***************************************************************************** |
3686 | * |
3687 | * Add an instruction referencing a register and a floating point constant. |
3688 | */ |
3689 | |
3690 | void emitter::emitIns_R_F( |
3691 | instruction ins, emitAttr attr, regNumber reg, double immDbl, insOpts opt /* = INS_OPTS_NONE */) |
3692 | |
3693 | { |
3694 | emitAttr size = EA_SIZE(attr); |
3695 | emitAttr elemsize = EA_UNKNOWN; |
3696 | insFormat fmt = IF_NONE; |
3697 | ssize_t imm = 0; |
3698 | bool canEncode = false; |
3699 | |
3700 | /* Figure out the encoding format of the instruction */ |
3701 | switch (ins) |
3702 | { |
3703 | floatImm8 fpi; |
3704 | |
3705 | case INS_fcmp: |
3706 | case INS_fcmpe: |
3707 | assert(insOptsNone(opt)); |
3708 | assert(isValidVectorElemsizeFloat(size)); |
3709 | assert(isVectorRegister(reg)); |
3710 | if (immDbl == 0.0) |
3711 | { |
3712 | canEncode = true; |
3713 | fmt = IF_DV_1C; |
3714 | } |
3715 | break; |
3716 | |
3717 | case INS_fmov: |
3718 | assert(isVectorRegister(reg)); |
3719 | fpi.immFPIVal = 0; |
3720 | canEncode = canEncodeFloatImm8(immDbl, &fpi); |
3721 | |
3722 | if (insOptsAnyArrangement(opt)) |
3723 | { |
3724 | // Vector operation |
3725 | assert(isValidVectorDatasize(size)); |
3726 | assert(isValidArrangement(size, opt)); |
3727 | elemsize = optGetElemsize(opt); |
3728 | assert(isValidVectorElemsizeFloat(elemsize)); |
3729 | assert(opt != INS_OPTS_1D); // Reserved encoding |
3730 | |
3731 | if (canEncode) |
3732 | { |
3733 | imm = fpi.immFPIVal; |
3734 | assert((imm >= 0) && (imm <= 0xff)); |
3735 | fmt = IF_DV_1B; |
3736 | } |
3737 | } |
3738 | else |
3739 | { |
3740 | // Scalar operation |
3741 | assert(insOptsNone(opt)); |
3742 | assert(isValidVectorElemsizeFloat(size)); |
3743 | |
3744 | if (canEncode) |
3745 | { |
3746 | imm = fpi.immFPIVal; |
3747 | assert((imm >= 0) && (imm <= 0xff)); |
3748 | fmt = IF_DV_1A; |
3749 | } |
3750 | } |
3751 | break; |
3752 | |
3753 | default: |
3754 | unreached(); |
3755 | break; |
3756 | |
3757 | } // end switch (ins) |
3758 | |
3759 | assert(canEncode); |
3760 | assert(fmt != IF_NONE); |
3761 | |
3762 | instrDesc* id = emitNewInstrSC(attr, imm); |
3763 | |
3764 | id->idIns(ins); |
3765 | id->idInsFmt(fmt); |
3766 | id->idInsOpt(opt); |
3767 | |
3768 | id->idReg1(reg); |
3769 | |
3770 | dispIns(id); |
3771 | appendToCurIG(id); |
3772 | } |
3773 | |
3774 | /***************************************************************************** |
3775 | * |
3776 | * Add an instruction referencing two registers |
3777 | */ |
3778 | |
3779 | void emitter::emitIns_R_R( |
3780 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insOpts opt /* = INS_OPTS_NONE */) |
3781 | { |
3782 | emitAttr size = EA_SIZE(attr); |
3783 | emitAttr elemsize = EA_UNKNOWN; |
3784 | insFormat fmt = IF_NONE; |
3785 | |
3786 | /* Figure out the encoding format of the instruction */ |
3787 | switch (ins) |
3788 | { |
3789 | case INS_mov: |
3790 | assert(insOptsNone(opt)); |
3791 | // Is the mov even necessary? |
3792 | if (reg1 == reg2) |
3793 | { |
3794 | // A mov with a EA_4BYTE has the side-effect of clearing the upper bits |
3795 | // So only eliminate mov instructions that are not clearing the upper bits |
3796 | // |
3797 | if (isGeneralRegisterOrSP(reg1) && (size == EA_8BYTE)) |
3798 | { |
3799 | return; |
3800 | } |
3801 | else if (isVectorRegister(reg1) && (size == EA_16BYTE)) |
3802 | { |
3803 | return; |
3804 | } |
3805 | } |
3806 | |
3807 | // Check for the 'mov' aliases for the vector registers |
3808 | if (isVectorRegister(reg1)) |
3809 | { |
3810 | if (isVectorRegister(reg2) && isValidVectorDatasize(size)) |
3811 | { |
3812 | return emitIns_R_R_R(INS_mov, size, reg1, reg2, reg2); |
3813 | } |
3814 | else |
3815 | { |
3816 | return emitIns_R_R_I(INS_mov, size, reg1, reg2, 0); |
3817 | } |
3818 | } |
3819 | else |
3820 | { |
3821 | if (isVectorRegister(reg2)) |
3822 | { |
3823 | assert(isGeneralRegister(reg1)); |
3824 | return emitIns_R_R_I(INS_mov, size, reg1, reg2, 0); |
3825 | } |
3826 | } |
3827 | |
3828 | // Is this a MOV to/from SP instruction? |
3829 | if ((reg1 == REG_SP) || (reg2 == REG_SP)) |
3830 | { |
3831 | assert(isGeneralRegisterOrSP(reg1)); |
3832 | assert(isGeneralRegisterOrSP(reg2)); |
3833 | reg1 = encodingSPtoZR(reg1); |
3834 | reg2 = encodingSPtoZR(reg2); |
3835 | fmt = IF_DR_2G; |
3836 | } |
3837 | else |
3838 | { |
3839 | assert(insOptsNone(opt)); |
3840 | assert(isGeneralRegister(reg1)); |
3841 | assert(isGeneralRegisterOrZR(reg2)); |
3842 | fmt = IF_DR_2E; |
3843 | } |
3844 | break; |
3845 | |
3846 | case INS_dup: |
3847 | // Vector operation |
3848 | assert(insOptsAnyArrangement(opt)); |
3849 | assert(isVectorRegister(reg1)); |
3850 | assert(isGeneralRegisterOrZR(reg2)); |
3851 | assert(isValidVectorDatasize(size)); |
3852 | assert(isValidArrangement(size, opt)); |
3853 | fmt = IF_DV_2C; |
3854 | break; |
3855 | |
3856 | case INS_abs: |
3857 | case INS_not: |
3858 | assert(isVectorRegister(reg1)); |
3859 | assert(isVectorRegister(reg2)); |
3860 | if (ins == INS_not) |
3861 | { |
3862 | assert(isValidVectorDatasize(size)); |
3863 | // Bitwise behavior is independent of element size, but is always encoded as 1 Byte |
3864 | opt = optMakeArrangement(size, EA_1BYTE); |
3865 | } |
3866 | if (insOptsNone(opt)) |
3867 | { |
3868 | // Scalar operation |
3869 | assert(size == EA_8BYTE); // Only type D is supported |
3870 | fmt = IF_DV_2L; |
3871 | } |
3872 | else |
3873 | { |
3874 | // Vector operation |
3875 | assert(insOptsAnyArrangement(opt)); |
3876 | assert(isValidVectorDatasize(size)); |
3877 | assert(isValidArrangement(size, opt)); |
3878 | elemsize = optGetElemsize(opt); |
3879 | fmt = IF_DV_2M; |
3880 | } |
3881 | break; |
3882 | |
3883 | case INS_mvn: |
3884 | case INS_neg: |
3885 | if (isVectorRegister(reg1)) |
3886 | { |
3887 | assert(isVectorRegister(reg2)); |
3888 | if (ins == INS_mvn) |
3889 | { |
3890 | assert(isValidVectorDatasize(size)); |
3891 | // Bitwise behavior is independent of element size, but is always encoded as 1 Byte |
3892 | opt = optMakeArrangement(size, EA_1BYTE); |
3893 | } |
3894 | if (insOptsNone(opt)) |
3895 | { |
3896 | // Scalar operation |
3897 | assert(size == EA_8BYTE); // Only type D is supported |
3898 | fmt = IF_DV_2L; |
3899 | } |
3900 | else |
3901 | { |
3902 | // Vector operation |
3903 | assert(isValidVectorDatasize(size)); |
3904 | assert(isValidArrangement(size, opt)); |
3905 | elemsize = optGetElemsize(opt); |
3906 | fmt = IF_DV_2M; |
3907 | } |
3908 | break; |
3909 | } |
3910 | __fallthrough; |
3911 | |
3912 | case INS_negs: |
3913 | assert(insOptsNone(opt)); |
3914 | assert(isGeneralRegister(reg1)); |
3915 | assert(isGeneralRegisterOrZR(reg2)); |
3916 | fmt = IF_DR_2E; |
3917 | break; |
3918 | |
3919 | case INS_sxtw: |
3920 | assert(size == EA_8BYTE); |
3921 | __fallthrough; |
3922 | |
3923 | case INS_sxtb: |
3924 | case INS_sxth: |
3925 | case INS_uxtb: |
3926 | case INS_uxth: |
3927 | assert(insOptsNone(opt)); |
3928 | assert(isValidGeneralDatasize(size)); |
3929 | assert(isGeneralRegister(reg1)); |
3930 | assert(isGeneralRegister(reg2)); |
3931 | fmt = IF_DR_2H; |
3932 | break; |
3933 | |
3934 | case INS_sxtl: |
3935 | case INS_sxtl2: |
3936 | case INS_uxtl: |
3937 | case INS_uxtl2: |
3938 | return emitIns_R_R_I(ins, size, reg1, reg2, 0, opt); |
3939 | |
3940 | case INS_cls: |
3941 | case INS_clz: |
3942 | case INS_rbit: |
3943 | case INS_rev16: |
3944 | case INS_rev32: |
3945 | case INS_cnt: |
3946 | if (isVectorRegister(reg1)) |
3947 | { |
3948 | assert(isVectorRegister(reg2)); |
3949 | assert(isValidVectorDatasize(size)); |
3950 | assert(isValidArrangement(size, opt)); |
3951 | elemsize = optGetElemsize(opt); |
3952 | if ((ins == INS_cls) || (ins == INS_clz)) |
3953 | { |
3954 | assert(elemsize != EA_8BYTE); // No encoding for type D |
3955 | } |
3956 | else if (ins == INS_rev32) |
3957 | { |
3958 | assert((elemsize == EA_2BYTE) || (elemsize == EA_1BYTE)); |
3959 | } |
3960 | else |
3961 | { |
3962 | assert(elemsize == EA_1BYTE); // Only supports 8B or 16B |
3963 | } |
3964 | fmt = IF_DV_2M; |
3965 | break; |
3966 | } |
3967 | if (ins == INS_cnt) |
3968 | { |
3969 | // Doesn't have general register version(s) |
3970 | break; |
3971 | } |
3972 | |
3973 | __fallthrough; |
3974 | |
3975 | case INS_rev: |
3976 | assert(insOptsNone(opt)); |
3977 | assert(isGeneralRegister(reg1)); |
3978 | assert(isGeneralRegister(reg2)); |
3979 | if (ins == INS_rev32) |
3980 | { |
3981 | assert(size == EA_8BYTE); |
3982 | } |
3983 | else |
3984 | { |
3985 | assert(isValidGeneralDatasize(size)); |
3986 | } |
3987 | fmt = IF_DR_2G; |
3988 | break; |
3989 | |
3990 | case INS_addv: |
3991 | case INS_saddlv: |
3992 | case INS_smaxv: |
3993 | case INS_sminv: |
3994 | case INS_uaddlv: |
3995 | case INS_umaxv: |
3996 | case INS_uminv: |
3997 | case INS_rev64: |
3998 | assert(isVectorRegister(reg1)); |
3999 | assert(isVectorRegister(reg2)); |
4000 | assert(isValidVectorDatasize(size)); |
4001 | assert(isValidArrangement(size, opt)); |
4002 | elemsize = optGetElemsize(opt); |
4003 | assert(elemsize != EA_8BYTE); // No encoding for type D |
4004 | fmt = IF_DV_2M; |
4005 | break; |
4006 | |
4007 | case INS_xtn: |
4008 | case INS_xtn2: |
4009 | assert(isVectorRegister(reg1)); |
4010 | assert(isVectorRegister(reg2)); |
4011 | assert(isValidVectorDatasize(size)); |
4012 | assert(isValidArrangement(size, opt)); |
4013 | elemsize = optGetElemsize(opt); |
4014 | // size is determined by instruction |
4015 | if (ins == INS_xtn) |
4016 | { |
4017 | assert(size == EA_8BYTE); |
4018 | } |
4019 | else // ins == INS_xtn2 |
4020 | { |
4021 | assert(size == EA_16BYTE); |
4022 | } |
4023 | assert(elemsize != EA_8BYTE); // Narrowing must not end with 8 byte data |
4024 | fmt = IF_DV_2M; |
4025 | break; |
4026 | |
4027 | case INS_ldar: |
4028 | case INS_ldaxr: |
4029 | case INS_ldxr: |
4030 | case INS_stlr: |
4031 | assert(isValidGeneralDatasize(size)); |
4032 | |
4033 | __fallthrough; |
4034 | |
4035 | case INS_ldarb: |
4036 | case INS_ldaxrb: |
4037 | case INS_ldxrb: |
4038 | case INS_ldarh: |
4039 | case INS_ldaxrh: |
4040 | case INS_ldxrh: |
4041 | case INS_stlrb: |
4042 | case INS_stlrh: |
4043 | assert(isValidGeneralLSDatasize(size)); |
4044 | assert(isGeneralRegisterOrZR(reg1)); |
4045 | assert(isGeneralRegisterOrSP(reg2)); |
4046 | assert(insOptsNone(opt)); |
4047 | |
4048 | reg2 = encodingSPtoZR(reg2); |
4049 | |
4050 | fmt = IF_LS_2A; |
4051 | break; |
4052 | |
4053 | case INS_ldr: |
4054 | case INS_ldrb: |
4055 | case INS_ldrh: |
4056 | case INS_ldrsb: |
4057 | case INS_ldrsh: |
4058 | case INS_ldrsw: |
4059 | case INS_str: |
4060 | case INS_strb: |
4061 | case INS_strh: |
4062 | |
4063 | case INS_cmp: |
4064 | case INS_cmn: |
4065 | case INS_tst: |
4066 | assert(insOptsNone(opt)); |
4067 | emitIns_R_R_I(ins, attr, reg1, reg2, 0, INS_OPTS_NONE); |
4068 | return; |
4069 | |
4070 | case INS_staddb: |
4071 | emitIns_R_R_R(INS_ldaddb, attr, reg1, REG_ZR, reg2); |
4072 | return; |
4073 | case INS_staddlb: |
4074 | emitIns_R_R_R(INS_ldaddlb, attr, reg1, REG_ZR, reg2); |
4075 | return; |
4076 | case INS_staddh: |
4077 | emitIns_R_R_R(INS_ldaddh, attr, reg1, REG_ZR, reg2); |
4078 | return; |
4079 | case INS_staddlh: |
4080 | emitIns_R_R_R(INS_ldaddlh, attr, reg1, REG_ZR, reg2); |
4081 | return; |
4082 | case INS_stadd: |
4083 | emitIns_R_R_R(INS_ldadd, attr, reg1, REG_ZR, reg2); |
4084 | return; |
4085 | case INS_staddl: |
4086 | emitIns_R_R_R(INS_ldaddl, attr, reg1, REG_ZR, reg2); |
4087 | return; |
4088 | |
4089 | case INS_fmov: |
4090 | assert(isValidVectorElemsizeFloat(size)); |
4091 | |
4092 | // Is the mov even necessary? |
4093 | if (reg1 == reg2) |
4094 | { |
4095 | return; |
4096 | } |
4097 | |
4098 | if (isVectorRegister(reg1)) |
4099 | { |
4100 | if (isVectorRegister(reg2)) |
4101 | { |
4102 | assert(insOptsNone(opt)); |
4103 | fmt = IF_DV_2G; |
4104 | } |
4105 | else |
4106 | { |
4107 | assert(isGeneralRegister(reg2)); |
4108 | |
4109 | // if the optional conversion specifier is not present we calculate it |
4110 | if (opt == INS_OPTS_NONE) |
4111 | { |
4112 | opt = (size == EA_4BYTE) ? INS_OPTS_4BYTE_TO_S : INS_OPTS_8BYTE_TO_D; |
4113 | } |
4114 | assert(insOptsConvertIntToFloat(opt)); |
4115 | |
4116 | fmt = IF_DV_2I; |
4117 | } |
4118 | } |
4119 | else |
4120 | { |
4121 | assert(isGeneralRegister(reg1)); |
4122 | assert(isVectorRegister(reg2)); |
4123 | |
4124 | // if the optional conversion specifier is not present we calculate it |
4125 | if (opt == INS_OPTS_NONE) |
4126 | { |
4127 | opt = (size == EA_4BYTE) ? INS_OPTS_S_TO_4BYTE : INS_OPTS_D_TO_8BYTE; |
4128 | } |
4129 | assert(insOptsConvertFloatToInt(opt)); |
4130 | |
4131 | fmt = IF_DV_2H; |
4132 | } |
4133 | break; |
4134 | |
4135 | case INS_fcmp: |
4136 | case INS_fcmpe: |
4137 | assert(insOptsNone(opt)); |
4138 | assert(isValidVectorElemsizeFloat(size)); |
4139 | assert(isVectorRegister(reg1)); |
4140 | assert(isVectorRegister(reg2)); |
4141 | fmt = IF_DV_2K; |
4142 | break; |
4143 | |
4144 | case INS_fcvtns: |
4145 | case INS_fcvtnu: |
4146 | case INS_fcvtas: |
4147 | case INS_fcvtau: |
4148 | case INS_fcvtps: |
4149 | case INS_fcvtpu: |
4150 | case INS_fcvtms: |
4151 | case INS_fcvtmu: |
4152 | case INS_fcvtzs: |
4153 | case INS_fcvtzu: |
4154 | if (insOptsAnyArrangement(opt)) |
4155 | { |
4156 | // Vector operation |
4157 | assert(isVectorRegister(reg1)); |
4158 | assert(isVectorRegister(reg2)); |
4159 | assert(isValidVectorDatasize(size)); |
4160 | assert(isValidArrangement(size, opt)); |
4161 | elemsize = optGetElemsize(opt); |
4162 | assert(isValidVectorElemsizeFloat(elemsize)); |
4163 | assert(opt != INS_OPTS_1D); // Reserved encoding |
4164 | fmt = IF_DV_2A; |
4165 | } |
4166 | else |
4167 | { |
4168 | // Scalar operation |
4169 | assert(isVectorRegister(reg2)); |
4170 | if (isVectorRegister(reg1)) |
4171 | { |
4172 | assert(insOptsNone(opt)); |
4173 | assert(isValidVectorElemsizeFloat(size)); |
4174 | fmt = IF_DV_2G; |
4175 | } |
4176 | else |
4177 | { |
4178 | assert(isGeneralRegister(reg1)); |
4179 | assert(insOptsConvertFloatToInt(opt)); |
4180 | assert(isValidVectorElemsizeFloat(size)); |
4181 | fmt = IF_DV_2H; |
4182 | } |
4183 | } |
4184 | break; |
4185 | |
4186 | case INS_fcvtl: |
4187 | case INS_fcvtl2: |
4188 | case INS_fcvtn: |
4189 | case INS_fcvtn2: |
4190 | assert(isVectorRegister(reg1)); |
4191 | assert(isVectorRegister(reg2)); |
4192 | assert(isValidVectorDatasize(size)); |
4193 | assert(insOptsNone(opt)); |
4194 | assert(size == EA_8BYTE); // Narrowing from Double or Widening to Double (Half not supported) |
4195 | fmt = IF_DV_2G; |
4196 | break; |
4197 | |
4198 | case INS_scvtf: |
4199 | case INS_ucvtf: |
4200 | if (insOptsAnyArrangement(opt)) |
4201 | { |
4202 | // Vector operation |
4203 | assert(isVectorRegister(reg1)); |
4204 | assert(isVectorRegister(reg2)); |
4205 | assert(isValidVectorDatasize(size)); |
4206 | assert(isValidArrangement(size, opt)); |
4207 | elemsize = optGetElemsize(opt); |
4208 | assert(isValidVectorElemsizeFloat(elemsize)); |
4209 | assert(opt != INS_OPTS_1D); // Reserved encoding |
4210 | fmt = IF_DV_2A; |
4211 | } |
4212 | else |
4213 | { |
4214 | // Scalar operation |
4215 | assert(isVectorRegister(reg1)); |
4216 | if (isVectorRegister(reg2)) |
4217 | { |
4218 | assert(insOptsNone(opt)); |
4219 | assert(isValidVectorElemsizeFloat(size)); |
4220 | fmt = IF_DV_2G; |
4221 | } |
4222 | else |
4223 | { |
4224 | assert(isGeneralRegister(reg2)); |
4225 | assert(insOptsConvertIntToFloat(opt)); |
4226 | assert(isValidVectorElemsizeFloat(size)); |
4227 | fmt = IF_DV_2I; |
4228 | } |
4229 | } |
4230 | break; |
4231 | |
4232 | case INS_fabs: |
4233 | case INS_fneg: |
4234 | case INS_fsqrt: |
4235 | case INS_frinta: |
4236 | case INS_frinti: |
4237 | case INS_frintm: |
4238 | case INS_frintn: |
4239 | case INS_frintp: |
4240 | case INS_frintx: |
4241 | case INS_frintz: |
4242 | if (insOptsAnyArrangement(opt)) |
4243 | { |
4244 | // Vector operation |
4245 | assert(isVectorRegister(reg1)); |
4246 | assert(isVectorRegister(reg2)); |
4247 | assert(isValidVectorDatasize(size)); |
4248 | assert(isValidArrangement(size, opt)); |
4249 | elemsize = optGetElemsize(opt); |
4250 | assert(isValidVectorElemsizeFloat(elemsize)); |
4251 | assert(opt != INS_OPTS_1D); // Reserved encoding |
4252 | fmt = IF_DV_2A; |
4253 | } |
4254 | else |
4255 | { |
4256 | // Scalar operation |
4257 | assert(insOptsNone(opt)); |
4258 | assert(isValidVectorElemsizeFloat(size)); |
4259 | assert(isVectorRegister(reg1)); |
4260 | assert(isVectorRegister(reg2)); |
4261 | fmt = IF_DV_2G; |
4262 | } |
4263 | break; |
4264 | |
4265 | case INS_faddp: |
4266 | // Scalar operation |
4267 | assert(insOptsNone(opt)); |
4268 | assert(isValidVectorElemsizeFloat(size)); |
4269 | assert(isVectorRegister(reg1)); |
4270 | assert(isVectorRegister(reg2)); |
4271 | fmt = IF_DV_2G; |
4272 | break; |
4273 | |
4274 | case INS_fcvt: |
4275 | assert(insOptsConvertFloatToFloat(opt)); |
4276 | assert(isValidVectorFcvtsize(size)); |
4277 | assert(isVectorRegister(reg1)); |
4278 | assert(isVectorRegister(reg2)); |
4279 | fmt = IF_DV_2J; |
4280 | break; |
4281 | |
4282 | case INS_cmeq: |
4283 | case INS_cmge: |
4284 | case INS_cmgt: |
4285 | case INS_cmle: |
4286 | case INS_cmlt: |
4287 | assert(isVectorRegister(reg1)); |
4288 | assert(isVectorRegister(reg2)); |
4289 | |
4290 | if (isValidVectorDatasize(size)) |
4291 | { |
4292 | // Vector operation |
4293 | assert(insOptsAnyArrangement(opt)); |
4294 | assert(isValidArrangement(size, opt)); |
4295 | elemsize = optGetElemsize(opt); |
4296 | fmt = IF_DV_2M; |
4297 | } |
4298 | else |
4299 | { |
4300 | NYI("Untested" ); |
4301 | // Scalar operation |
4302 | assert(size == EA_8BYTE); // Only Double supported |
4303 | fmt = IF_DV_2L; |
4304 | } |
4305 | break; |
4306 | |
4307 | case INS_fcmeq: |
4308 | case INS_fcmge: |
4309 | case INS_fcmgt: |
4310 | case INS_fcmle: |
4311 | case INS_fcmlt: |
4312 | assert(isVectorRegister(reg1)); |
4313 | assert(isVectorRegister(reg2)); |
4314 | |
4315 | if (isValidVectorDatasize(size)) |
4316 | { |
4317 | // Vector operation |
4318 | assert(insOptsAnyArrangement(opt)); |
4319 | assert(isValidArrangement(size, opt)); |
4320 | elemsize = optGetElemsize(opt); |
4321 | assert((elemsize == EA_8BYTE) || (elemsize == EA_4BYTE)); // Only Double/Float supported |
4322 | assert(opt != INS_OPTS_1D); // Reserved encoding |
4323 | fmt = IF_DV_2A; |
4324 | } |
4325 | else |
4326 | { |
4327 | NYI("Untested" ); |
4328 | // Scalar operation |
4329 | assert((size == EA_8BYTE) || (size == EA_4BYTE)); // Only Double/Float supported |
4330 | fmt = IF_DV_2G; |
4331 | } |
4332 | break; |
4333 | case INS_aesd: |
4334 | case INS_aese: |
4335 | case INS_aesmc: |
4336 | case INS_aesimc: |
4337 | assert(isVectorRegister(reg1)); |
4338 | assert(isVectorRegister(reg2)); |
4339 | assert(isValidVectorDatasize(size)); |
4340 | elemsize = optGetElemsize(opt); |
4341 | assert(elemsize == EA_1BYTE); |
4342 | fmt = IF_DV_2P; |
4343 | break; |
4344 | |
4345 | case INS_sha1h: |
4346 | assert(insOptsNone(opt)); |
4347 | assert(isVectorRegister(reg1)); |
4348 | assert(isVectorRegister(reg2)); |
4349 | fmt = IF_DR_2J; |
4350 | break; |
4351 | |
4352 | case INS_sha256su0: |
4353 | case INS_sha1su1: |
4354 | assert(isVectorRegister(reg1)); |
4355 | assert(isVectorRegister(reg2)); |
4356 | assert(isValidVectorDatasize(size)); |
4357 | elemsize = optGetElemsize(opt); |
4358 | assert(elemsize == EA_4BYTE); |
4359 | fmt = IF_DV_2P; |
4360 | break; |
4361 | |
4362 | default: |
4363 | unreached(); |
4364 | break; |
4365 | |
4366 | } // end switch (ins) |
4367 | |
4368 | assert(fmt != IF_NONE); |
4369 | |
4370 | instrDesc* id = emitNewInstrSmall(attr); |
4371 | |
4372 | id->idIns(ins); |
4373 | id->idInsFmt(fmt); |
4374 | id->idInsOpt(opt); |
4375 | |
4376 | id->idReg1(reg1); |
4377 | id->idReg2(reg2); |
4378 | |
4379 | dispIns(id); |
4380 | appendToCurIG(id); |
4381 | } |
4382 | |
4383 | /***************************************************************************** |
4384 | * |
4385 | * Add an instruction referencing a register and two constants. |
4386 | */ |
4387 | |
4388 | void emitter::emitIns_R_I_I( |
4389 | instruction ins, emitAttr attr, regNumber reg, ssize_t imm1, ssize_t imm2, insOpts opt /* = INS_OPTS_NONE */) |
4390 | { |
4391 | emitAttr size = EA_SIZE(attr); |
4392 | insFormat fmt = IF_NONE; |
4393 | size_t immOut = 0; // composed from imm1 and imm2 and stored in the instrDesc |
4394 | |
4395 | /* Figure out the encoding format of the instruction */ |
4396 | switch (ins) |
4397 | { |
4398 | bool canEncode; |
4399 | halfwordImm hwi; |
4400 | |
4401 | case INS_mov: |
4402 | ins = INS_movz; // INS_mov with LSL is an alias for INS_movz LSL |
4403 | __fallthrough; |
4404 | |
4405 | case INS_movk: |
4406 | case INS_movn: |
4407 | case INS_movz: |
4408 | assert(isValidGeneralDatasize(size)); |
4409 | assert(isGeneralRegister(reg)); |
4410 | assert(isValidUimm16(imm1)); |
4411 | assert(insOptsLSL(opt)); // Must be INS_OPTS_LSL |
4412 | |
4413 | if (size == EA_8BYTE) |
4414 | { |
4415 | assert((imm2 == 0) || (imm2 == 16) || // shift amount: 0, 16, 32 or 48 |
4416 | (imm2 == 32) || (imm2 == 48)); |
4417 | } |
4418 | else // EA_4BYTE |
4419 | { |
4420 | assert((imm2 == 0) || (imm2 == 16)); // shift amount: 0 or 16 |
4421 | } |
4422 | |
4423 | hwi.immHWVal = 0; |
4424 | |
4425 | switch (imm2) |
4426 | { |
4427 | case 0: |
4428 | hwi.immHW = 0; |
4429 | canEncode = true; |
4430 | break; |
4431 | |
4432 | case 16: |
4433 | hwi.immHW = 1; |
4434 | canEncode = true; |
4435 | break; |
4436 | |
4437 | case 32: |
4438 | hwi.immHW = 2; |
4439 | canEncode = true; |
4440 | break; |
4441 | |
4442 | case 48: |
4443 | hwi.immHW = 3; |
4444 | canEncode = true; |
4445 | break; |
4446 | |
4447 | default: |
4448 | canEncode = false; |
4449 | } |
4450 | |
4451 | if (canEncode) |
4452 | { |
4453 | hwi.immVal = imm1; |
4454 | |
4455 | immOut = hwi.immHWVal; |
4456 | assert(isValidImmHWVal(immOut, size)); |
4457 | fmt = IF_DI_1B; |
4458 | } |
4459 | break; |
4460 | |
4461 | default: |
4462 | unreached(); |
4463 | break; |
4464 | |
4465 | } // end switch (ins) |
4466 | |
4467 | assert(fmt != IF_NONE); |
4468 | |
4469 | instrDesc* id = emitNewInstrSC(attr, immOut); |
4470 | |
4471 | id->idIns(ins); |
4472 | id->idInsFmt(fmt); |
4473 | |
4474 | id->idReg1(reg); |
4475 | |
4476 | dispIns(id); |
4477 | appendToCurIG(id); |
4478 | } |
4479 | |
4480 | /***************************************************************************** |
4481 | * |
4482 | * Add an instruction referencing two registers and a constant. |
4483 | */ |
4484 | |
4485 | void emitter::emitIns_R_R_I( |
4486 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm, insOpts opt /* = INS_OPTS_NONE */) |
4487 | { |
4488 | emitAttr size = EA_SIZE(attr); |
4489 | emitAttr elemsize = EA_UNKNOWN; |
4490 | insFormat fmt = IF_NONE; |
4491 | bool isLdSt = false; |
4492 | bool isSIMD = false; |
4493 | bool isAddSub = false; |
4494 | bool setFlags = false; |
4495 | unsigned scale = 0; |
4496 | bool unscaledOp = false; |
4497 | |
4498 | /* Figure out the encoding format of the instruction */ |
4499 | switch (ins) |
4500 | { |
4501 | bool canEncode; |
4502 | bitMaskImm bmi; |
4503 | |
4504 | case INS_mov: |
4505 | // Check for the 'mov' aliases for the vector registers |
4506 | assert(insOptsNone(opt)); |
4507 | assert(isValidVectorElemsize(size)); |
4508 | elemsize = size; |
4509 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
4510 | |
4511 | if (isVectorRegister(reg1)) |
4512 | { |
4513 | if (isGeneralRegisterOrZR(reg2)) |
4514 | { |
4515 | fmt = IF_DV_2C; // Alias for 'ins' |
4516 | break; |
4517 | } |
4518 | else if (isVectorRegister(reg2)) |
4519 | { |
4520 | fmt = IF_DV_2E; // Alias for 'dup' |
4521 | break; |
4522 | } |
4523 | } |
4524 | else // isGeneralRegister(reg1) |
4525 | { |
4526 | assert(isGeneralRegister(reg1)); |
4527 | if (isVectorRegister(reg2)) |
4528 | { |
4529 | fmt = IF_DV_2B; // Alias for 'umov' |
4530 | break; |
4531 | } |
4532 | } |
4533 | assert(!" invalid INS_mov operands" ); |
4534 | break; |
4535 | |
4536 | case INS_lsl: |
4537 | case INS_lsr: |
4538 | case INS_asr: |
4539 | assert(insOptsNone(opt)); |
4540 | assert(isValidGeneralDatasize(size)); |
4541 | assert(isGeneralRegister(reg1)); |
4542 | assert(isGeneralRegister(reg2)); |
4543 | assert(isValidImmShift(imm, size)); |
4544 | fmt = IF_DI_2D; |
4545 | break; |
4546 | |
4547 | case INS_ror: |
4548 | assert(insOptsNone(opt)); |
4549 | assert(isValidGeneralDatasize(size)); |
4550 | assert(isGeneralRegister(reg1)); |
4551 | assert(isGeneralRegister(reg2)); |
4552 | assert(isValidImmShift(imm, size)); |
4553 | fmt = IF_DI_2B; |
4554 | break; |
4555 | |
4556 | case INS_sshr: |
4557 | case INS_ssra: |
4558 | case INS_srshr: |
4559 | case INS_srsra: |
4560 | case INS_shl: |
4561 | case INS_ushr: |
4562 | case INS_usra: |
4563 | case INS_urshr: |
4564 | case INS_ursra: |
4565 | case INS_sri: |
4566 | case INS_sli: |
4567 | assert(isVectorRegister(reg1)); |
4568 | assert(isVectorRegister(reg2)); |
4569 | if (insOptsAnyArrangement(opt)) |
4570 | { |
4571 | // Vector operation |
4572 | assert(isValidVectorDatasize(size)); |
4573 | assert(isValidArrangement(size, opt)); |
4574 | elemsize = optGetElemsize(opt); |
4575 | assert(isValidVectorElemsize(elemsize)); |
4576 | assert(isValidImmShift(imm, elemsize)); |
4577 | assert(opt != INS_OPTS_1D); // Reserved encoding |
4578 | fmt = IF_DV_2O; |
4579 | break; |
4580 | } |
4581 | else |
4582 | { |
4583 | // Scalar operation |
4584 | assert(insOptsNone(opt)); |
4585 | assert(size == EA_8BYTE); // only supported size |
4586 | assert(isValidImmShift(imm, size)); |
4587 | fmt = IF_DV_2N; |
4588 | } |
4589 | break; |
4590 | |
4591 | case INS_sxtl: |
4592 | case INS_uxtl: |
4593 | assert(imm == 0); |
4594 | __fallthrough; |
4595 | |
4596 | case INS_shrn: |
4597 | case INS_rshrn: |
4598 | case INS_sshll: |
4599 | case INS_ushll: |
4600 | assert(isVectorRegister(reg1)); |
4601 | assert(isVectorRegister(reg2)); |
4602 | // Vector operation |
4603 | assert(size == EA_8BYTE); |
4604 | assert(isValidArrangement(size, opt)); |
4605 | elemsize = optGetElemsize(opt); |
4606 | assert(elemsize != EA_8BYTE); // Reserved encodings |
4607 | assert(isValidVectorElemsize(elemsize)); |
4608 | assert(isValidImmShift(imm, elemsize)); |
4609 | fmt = IF_DV_2O; |
4610 | break; |
4611 | |
4612 | case INS_sxtl2: |
4613 | case INS_uxtl2: |
4614 | assert(imm == 0); |
4615 | __fallthrough; |
4616 | |
4617 | case INS_shrn2: |
4618 | case INS_rshrn2: |
4619 | case INS_sshll2: |
4620 | case INS_ushll2: |
4621 | assert(isVectorRegister(reg1)); |
4622 | assert(isVectorRegister(reg2)); |
4623 | // Vector operation |
4624 | assert(size == EA_16BYTE); |
4625 | assert(isValidArrangement(size, opt)); |
4626 | elemsize = optGetElemsize(opt); |
4627 | assert(elemsize != EA_8BYTE); // Reserved encodings |
4628 | assert(isValidVectorElemsize(elemsize)); |
4629 | assert(isValidImmShift(imm, elemsize)); |
4630 | fmt = IF_DV_2O; |
4631 | break; |
4632 | |
4633 | case INS_mvn: |
4634 | case INS_neg: |
4635 | case INS_negs: |
4636 | assert(isValidGeneralDatasize(size)); |
4637 | assert(isGeneralRegister(reg1)); |
4638 | assert(isGeneralRegisterOrZR(reg2)); |
4639 | |
4640 | if (imm == 0) |
4641 | { |
4642 | assert(insOptsNone(opt)); // a zero imm, means no alu shift kind |
4643 | |
4644 | fmt = IF_DR_2E; |
4645 | } |
4646 | else |
4647 | { |
4648 | if (ins == INS_mvn) |
4649 | { |
4650 | assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind |
4651 | } |
4652 | else // neg or negs |
4653 | { |
4654 | assert(insOptsAluShift(opt)); // a non-zero imm, must select shift kind, can't use ROR |
4655 | } |
4656 | assert(isValidImmShift(imm, size)); |
4657 | fmt = IF_DR_2F; |
4658 | } |
4659 | break; |
4660 | |
4661 | case INS_tst: |
4662 | assert(isValidGeneralDatasize(size)); |
4663 | assert(isGeneralRegisterOrZR(reg1)); |
4664 | assert(isGeneralRegister(reg2)); |
4665 | |
4666 | if (insOptsAnyShift(opt)) |
4667 | { |
4668 | assert(isValidImmShift(imm, size) && (imm != 0)); |
4669 | fmt = IF_DR_2B; |
4670 | } |
4671 | else |
4672 | { |
4673 | assert(insOptsNone(opt)); // a zero imm, means no alu shift kind |
4674 | assert(imm == 0); |
4675 | fmt = IF_DR_2A; |
4676 | } |
4677 | break; |
4678 | |
4679 | case INS_cmp: |
4680 | case INS_cmn: |
4681 | assert(isValidGeneralDatasize(size)); |
4682 | assert(isGeneralRegisterOrSP(reg1)); |
4683 | assert(isGeneralRegister(reg2)); |
4684 | |
4685 | reg1 = encodingSPtoZR(reg1); |
4686 | if (insOptsAnyExtend(opt)) |
4687 | { |
4688 | assert((imm >= 0) && (imm <= 4)); |
4689 | |
4690 | fmt = IF_DR_2C; |
4691 | } |
4692 | else if (imm == 0) |
4693 | { |
4694 | assert(insOptsNone(opt)); // a zero imm, means no alu shift kind |
4695 | |
4696 | fmt = IF_DR_2A; |
4697 | } |
4698 | else |
4699 | { |
4700 | assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind |
4701 | assert(isValidImmShift(imm, size)); |
4702 | fmt = IF_DR_2B; |
4703 | } |
4704 | break; |
4705 | |
4706 | case INS_ands: |
4707 | case INS_and: |
4708 | case INS_eor: |
4709 | case INS_orr: |
4710 | assert(insOptsNone(opt)); |
4711 | assert(isGeneralRegister(reg2)); |
4712 | if (ins == INS_ands) |
4713 | { |
4714 | assert(isGeneralRegister(reg1)); |
4715 | } |
4716 | else |
4717 | { |
4718 | assert(isGeneralRegisterOrSP(reg1)); |
4719 | reg1 = encodingSPtoZR(reg1); |
4720 | } |
4721 | |
4722 | bmi.immNRS = 0; |
4723 | canEncode = canEncodeBitMaskImm(imm, size, &bmi); |
4724 | if (canEncode) |
4725 | { |
4726 | imm = bmi.immNRS; |
4727 | assert(isValidImmNRS(imm, size)); |
4728 | fmt = IF_DI_2C; |
4729 | } |
4730 | break; |
4731 | |
4732 | case INS_dup: // by element, imm selects the element of reg2 |
4733 | assert(isVectorRegister(reg1)); |
4734 | if (isVectorRegister(reg2)) |
4735 | { |
4736 | if (insOptsAnyArrangement(opt)) |
4737 | { |
4738 | // Vector operation |
4739 | assert(isValidVectorDatasize(size)); |
4740 | assert(isValidArrangement(size, opt)); |
4741 | elemsize = optGetElemsize(opt); |
4742 | assert(isValidVectorElemsize(elemsize)); |
4743 | assert(isValidVectorIndex(size, elemsize, imm)); |
4744 | assert(opt != INS_OPTS_1D); // Reserved encoding |
4745 | fmt = IF_DV_2D; |
4746 | break; |
4747 | } |
4748 | else |
4749 | { |
4750 | // Scalar operation |
4751 | assert(insOptsNone(opt)); |
4752 | elemsize = size; |
4753 | assert(isValidVectorElemsize(elemsize)); |
4754 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
4755 | fmt = IF_DV_2E; |
4756 | break; |
4757 | } |
4758 | } |
4759 | __fallthrough; |
4760 | |
4761 | case INS_ins: // (MOV from general) |
4762 | assert(insOptsNone(opt)); |
4763 | assert(isValidVectorElemsize(size)); |
4764 | assert(isVectorRegister(reg1)); |
4765 | assert(isGeneralRegisterOrZR(reg2)); |
4766 | elemsize = size; |
4767 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
4768 | fmt = IF_DV_2C; |
4769 | break; |
4770 | |
4771 | case INS_umov: // (MOV to general) |
4772 | assert(insOptsNone(opt)); |
4773 | assert(isValidVectorElemsize(size)); |
4774 | assert(isGeneralRegister(reg1)); |
4775 | assert(isVectorRegister(reg2)); |
4776 | elemsize = size; |
4777 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
4778 | fmt = IF_DV_2B; |
4779 | break; |
4780 | |
4781 | case INS_smov: |
4782 | assert(insOptsNone(opt)); |
4783 | assert(isValidVectorElemsize(size)); |
4784 | assert(size != EA_8BYTE); // no encoding, use INS_umov |
4785 | assert(isGeneralRegister(reg1)); |
4786 | assert(isVectorRegister(reg2)); |
4787 | elemsize = size; |
4788 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
4789 | fmt = IF_DV_2B; |
4790 | break; |
4791 | |
4792 | case INS_add: |
4793 | case INS_sub: |
4794 | setFlags = false; |
4795 | isAddSub = true; |
4796 | break; |
4797 | |
4798 | case INS_adds: |
4799 | case INS_subs: |
4800 | setFlags = true; |
4801 | isAddSub = true; |
4802 | break; |
4803 | |
4804 | case INS_ldrsb: |
4805 | case INS_ldursb: |
4806 | // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register |
4807 | assert(isValidGeneralDatasize(size)); |
4808 | unscaledOp = (ins == INS_ldursb); |
4809 | scale = 0; |
4810 | isLdSt = true; |
4811 | break; |
4812 | |
4813 | case INS_ldrsh: |
4814 | case INS_ldursh: |
4815 | // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register |
4816 | assert(isValidGeneralDatasize(size)); |
4817 | unscaledOp = (ins == INS_ldursh); |
4818 | scale = 1; |
4819 | isLdSt = true; |
4820 | break; |
4821 | |
4822 | case INS_ldrsw: |
4823 | case INS_ldursw: |
4824 | // 'size' specifies how we sign-extend into 4 or 8 bytes of the target register |
4825 | assert(size == EA_8BYTE); |
4826 | unscaledOp = (ins == INS_ldursw); |
4827 | scale = 2; |
4828 | isLdSt = true; |
4829 | break; |
4830 | |
4831 | case INS_ldrb: |
4832 | case INS_strb: |
4833 | // size is ignored |
4834 | unscaledOp = false; |
4835 | scale = 0; |
4836 | isLdSt = true; |
4837 | break; |
4838 | |
4839 | case INS_ldurb: |
4840 | case INS_sturb: |
4841 | // size is ignored |
4842 | unscaledOp = true; |
4843 | scale = 0; |
4844 | isLdSt = true; |
4845 | break; |
4846 | |
4847 | case INS_ldrh: |
4848 | case INS_strh: |
4849 | // size is ignored |
4850 | unscaledOp = false; |
4851 | scale = 1; |
4852 | isLdSt = true; |
4853 | break; |
4854 | |
4855 | case INS_ldurh: |
4856 | case INS_sturh: |
4857 | // size is ignored |
4858 | unscaledOp = true; |
4859 | scale = 0; |
4860 | isLdSt = true; |
4861 | break; |
4862 | |
4863 | case INS_ldr: |
4864 | case INS_str: |
4865 | // Is the target a vector register? |
4866 | if (isVectorRegister(reg1)) |
4867 | { |
4868 | assert(isValidVectorLSDatasize(size)); |
4869 | assert(isGeneralRegisterOrSP(reg2)); |
4870 | isSIMD = true; |
4871 | } |
4872 | else |
4873 | { |
4874 | assert(isValidGeneralDatasize(size)); |
4875 | } |
4876 | unscaledOp = false; |
4877 | scale = NaturalScale_helper(size); |
4878 | isLdSt = true; |
4879 | break; |
4880 | |
4881 | case INS_ldur: |
4882 | case INS_stur: |
4883 | // Is the target a vector register? |
4884 | if (isVectorRegister(reg1)) |
4885 | { |
4886 | assert(isValidVectorLSDatasize(size)); |
4887 | assert(isGeneralRegisterOrSP(reg2)); |
4888 | isSIMD = true; |
4889 | } |
4890 | else |
4891 | { |
4892 | assert(isValidGeneralDatasize(size)); |
4893 | } |
4894 | unscaledOp = true; |
4895 | scale = 0; |
4896 | isLdSt = true; |
4897 | break; |
4898 | |
4899 | default: |
4900 | unreached(); |
4901 | break; |
4902 | |
4903 | } // end switch (ins) |
4904 | |
4905 | if (isLdSt) |
4906 | { |
4907 | assert(!isAddSub); |
4908 | |
4909 | if (isSIMD) |
4910 | { |
4911 | assert(isValidVectorLSDatasize(size)); |
4912 | assert(isVectorRegister(reg1)); |
4913 | assert((scale >= 0) && (scale <= 4)); |
4914 | } |
4915 | else |
4916 | { |
4917 | assert(isValidGeneralLSDatasize(size)); |
4918 | assert(isGeneralRegisterOrZR(reg1)); |
4919 | assert((scale >= 0) && (scale <= 3)); |
4920 | } |
4921 | |
4922 | assert(isGeneralRegisterOrSP(reg2)); |
4923 | |
4924 | // Load/Store reserved encodings: |
4925 | if (insOptsIndexed(opt)) |
4926 | { |
4927 | assert(reg1 != reg2); |
4928 | } |
4929 | |
4930 | reg2 = encodingSPtoZR(reg2); |
4931 | |
4932 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
4933 | if (imm == 0) |
4934 | { |
4935 | assert(insOptsNone(opt)); // PRE/POST Index doesn't make sense with an immediate of zero |
4936 | |
4937 | fmt = IF_LS_2A; |
4938 | } |
4939 | else if (insOptsIndexed(opt) || unscaledOp || (imm < 0) || ((imm & mask) != 0)) |
4940 | { |
4941 | if ((imm >= -256) && (imm <= 255)) |
4942 | { |
4943 | fmt = IF_LS_2C; |
4944 | } |
4945 | else |
4946 | { |
4947 | assert(!"Instruction cannot be encoded: IF_LS_2C" ); |
4948 | } |
4949 | } |
4950 | else if (imm > 0) |
4951 | { |
4952 | assert(insOptsNone(opt)); |
4953 | assert(!unscaledOp); |
4954 | |
4955 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
4956 | { |
4957 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
4958 | |
4959 | fmt = IF_LS_2B; |
4960 | } |
4961 | else |
4962 | { |
4963 | assert(!"Instruction cannot be encoded: IF_LS_2B" ); |
4964 | } |
4965 | } |
4966 | } |
4967 | else if (isAddSub) |
4968 | { |
4969 | assert(!isLdSt); |
4970 | assert(insOptsNone(opt)); |
4971 | |
4972 | if (setFlags) // Can't encode SP with setFlags |
4973 | { |
4974 | assert(isGeneralRegister(reg1)); |
4975 | assert(isGeneralRegister(reg2)); |
4976 | } |
4977 | else |
4978 | { |
4979 | assert(isGeneralRegisterOrSP(reg1)); |
4980 | assert(isGeneralRegisterOrSP(reg2)); |
4981 | |
4982 | // Is it just a mov? |
4983 | if (imm == 0) |
4984 | { |
4985 | // Is the mov even necessary? |
4986 | if (reg1 != reg2) |
4987 | { |
4988 | emitIns_R_R(INS_mov, attr, reg1, reg2); |
4989 | } |
4990 | return; |
4991 | } |
4992 | |
4993 | reg1 = encodingSPtoZR(reg1); |
4994 | reg2 = encodingSPtoZR(reg2); |
4995 | } |
4996 | |
4997 | if (unsigned_abs(imm) <= 0x0fff) |
4998 | { |
4999 | if (imm < 0) |
5000 | { |
5001 | ins = insReverse(ins); |
5002 | imm = -imm; |
5003 | } |
5004 | assert(isValidUimm12(imm)); |
5005 | fmt = IF_DI_2A; |
5006 | } |
5007 | else if (canEncodeWithShiftImmBy12(imm)) // Try the shifted by 12 encoding |
5008 | { |
5009 | // Encoding will use a 12-bit left shift of the immediate |
5010 | opt = INS_OPTS_LSL12; |
5011 | if (imm < 0) |
5012 | { |
5013 | ins = insReverse(ins); |
5014 | imm = -imm; |
5015 | } |
5016 | assert((imm & 0xfff) == 0); |
5017 | imm >>= 12; |
5018 | assert(isValidUimm12(imm)); |
5019 | fmt = IF_DI_2A; |
5020 | } |
5021 | else |
5022 | { |
5023 | assert(!"Instruction cannot be encoded: IF_DI_2A" ); |
5024 | } |
5025 | } |
5026 | |
5027 | assert(fmt != IF_NONE); |
5028 | |
5029 | instrDesc* id = emitNewInstrSC(attr, imm); |
5030 | |
5031 | id->idIns(ins); |
5032 | id->idInsFmt(fmt); |
5033 | id->idInsOpt(opt); |
5034 | |
5035 | id->idReg1(reg1); |
5036 | id->idReg2(reg2); |
5037 | |
5038 | dispIns(id); |
5039 | appendToCurIG(id); |
5040 | } |
5041 | |
5042 | /***************************************************************************** |
5043 | * |
5044 | * Add an instruction referencing two registers and a constant. |
5045 | * Also checks for a large immediate that needs a second instruction |
5046 | * and will load it in reg1 |
5047 | * |
5048 | * - Supports instructions: add, adds, sub, subs, and, ands, eor and orr |
5049 | * - Requires that reg1 is a general register and not SP or ZR |
5050 | * - Requires that reg1 != reg2 |
5051 | */ |
5052 | void emitter::emitIns_R_R_Imm(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, ssize_t imm) |
5053 | { |
5054 | assert(isGeneralRegister(reg1)); |
5055 | assert(reg1 != reg2); |
5056 | |
5057 | bool immFits = true; |
5058 | |
5059 | switch (ins) |
5060 | { |
5061 | case INS_add: |
5062 | case INS_adds: |
5063 | case INS_sub: |
5064 | case INS_subs: |
5065 | immFits = emitter::emitIns_valid_imm_for_add(imm, attr); |
5066 | break; |
5067 | |
5068 | case INS_ands: |
5069 | case INS_and: |
5070 | case INS_eor: |
5071 | case INS_orr: |
5072 | immFits = emitter::emitIns_valid_imm_for_alu(imm, attr); |
5073 | break; |
5074 | |
5075 | default: |
5076 | assert(!"Unsupported instruction in emitIns_R_R_Imm" ); |
5077 | } |
5078 | |
5079 | if (immFits) |
5080 | { |
5081 | emitIns_R_R_I(ins, attr, reg1, reg2, imm); |
5082 | } |
5083 | else |
5084 | { |
5085 | // Load 'imm' into the reg1 register |
5086 | // then issue: 'ins' reg1, reg2, reg1 |
5087 | // |
5088 | codeGen->instGen_Set_Reg_To_Imm(attr, reg1, imm); |
5089 | emitIns_R_R_R(ins, attr, reg1, reg2, reg1); |
5090 | } |
5091 | } |
5092 | |
5093 | /***************************************************************************** |
5094 | * |
5095 | * Add an instruction referencing three registers. |
5096 | */ |
5097 | |
5098 | void emitter::emitIns_R_R_R( |
5099 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insOpts opt) /* = INS_OPTS_NONE */ |
5100 | { |
5101 | emitAttr size = EA_SIZE(attr); |
5102 | emitAttr elemsize = EA_UNKNOWN; |
5103 | insFormat fmt = IF_NONE; |
5104 | |
5105 | /* Figure out the encoding format of the instruction */ |
5106 | switch (ins) |
5107 | { |
5108 | case INS_lsl: |
5109 | case INS_lsr: |
5110 | case INS_asr: |
5111 | case INS_ror: |
5112 | case INS_adc: |
5113 | case INS_adcs: |
5114 | case INS_sbc: |
5115 | case INS_sbcs: |
5116 | case INS_udiv: |
5117 | case INS_sdiv: |
5118 | case INS_mneg: |
5119 | case INS_smull: |
5120 | case INS_smnegl: |
5121 | case INS_smulh: |
5122 | case INS_umull: |
5123 | case INS_umnegl: |
5124 | case INS_umulh: |
5125 | case INS_lslv: |
5126 | case INS_lsrv: |
5127 | case INS_asrv: |
5128 | case INS_rorv: |
5129 | assert(insOptsNone(opt)); |
5130 | assert(isValidGeneralDatasize(size)); |
5131 | assert(isGeneralRegister(reg1)); |
5132 | assert(isGeneralRegister(reg2)); |
5133 | assert(isGeneralRegister(reg3)); |
5134 | fmt = IF_DR_3A; |
5135 | break; |
5136 | |
5137 | case INS_mul: |
5138 | if (insOptsNone(opt)) |
5139 | { |
5140 | // general register |
5141 | assert(isValidGeneralDatasize(size)); |
5142 | assert(isGeneralRegister(reg1)); |
5143 | assert(isGeneralRegister(reg2)); |
5144 | assert(isGeneralRegister(reg3)); |
5145 | fmt = IF_DR_3A; |
5146 | break; |
5147 | } |
5148 | __fallthrough; |
5149 | |
5150 | case INS_mla: |
5151 | case INS_mls: |
5152 | case INS_pmul: |
5153 | assert(insOptsAnyArrangement(opt)); |
5154 | assert(isVectorRegister(reg1)); |
5155 | assert(isVectorRegister(reg2)); |
5156 | assert(isVectorRegister(reg3)); |
5157 | assert(isValidVectorDatasize(size)); |
5158 | assert(isValidArrangement(size, opt)); |
5159 | elemsize = optGetElemsize(opt); |
5160 | if (ins == INS_pmul) |
5161 | { |
5162 | assert(elemsize == EA_1BYTE); // only supports 8B or 16B |
5163 | } |
5164 | else // INS_mul, INS_mla, INS_mls |
5165 | { |
5166 | assert(elemsize != EA_8BYTE); // can't use 2D or 1D |
5167 | } |
5168 | fmt = IF_DV_3A; |
5169 | break; |
5170 | |
5171 | case INS_add: |
5172 | case INS_sub: |
5173 | if (isVectorRegister(reg1)) |
5174 | { |
5175 | assert(isVectorRegister(reg2)); |
5176 | assert(isVectorRegister(reg3)); |
5177 | |
5178 | if (insOptsAnyArrangement(opt)) |
5179 | { |
5180 | // Vector operation |
5181 | assert(opt != INS_OPTS_1D); // Reserved encoding |
5182 | assert(isValidVectorDatasize(size)); |
5183 | assert(isValidArrangement(size, opt)); |
5184 | fmt = IF_DV_3A; |
5185 | } |
5186 | else |
5187 | { |
5188 | // Scalar operation |
5189 | assert(insOptsNone(opt)); |
5190 | assert(size == EA_8BYTE); |
5191 | fmt = IF_DV_3E; |
5192 | } |
5193 | break; |
5194 | } |
5195 | __fallthrough; |
5196 | |
5197 | case INS_adds: |
5198 | case INS_subs: |
5199 | emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0, INS_OPTS_NONE); |
5200 | return; |
5201 | |
5202 | case INS_cmeq: |
5203 | case INS_cmge: |
5204 | case INS_cmgt: |
5205 | case INS_cmhi: |
5206 | case INS_cmhs: |
5207 | case INS_ctst: |
5208 | assert(isVectorRegister(reg1)); |
5209 | assert(isVectorRegister(reg2)); |
5210 | assert(isVectorRegister(reg3)); |
5211 | |
5212 | if (isValidVectorDatasize(size)) |
5213 | { |
5214 | // Vector operation |
5215 | assert(insOptsAnyArrangement(opt)); |
5216 | assert(isValidArrangement(size, opt)); |
5217 | elemsize = optGetElemsize(opt); |
5218 | fmt = IF_DV_3A; |
5219 | } |
5220 | else |
5221 | { |
5222 | NYI("Untested" ); |
5223 | // Scalar operation |
5224 | assert(size == EA_8BYTE); // Only Double supported |
5225 | fmt = IF_DV_3E; |
5226 | } |
5227 | break; |
5228 | |
5229 | case INS_fcmeq: |
5230 | case INS_fcmge: |
5231 | case INS_fcmgt: |
5232 | assert(isVectorRegister(reg1)); |
5233 | assert(isVectorRegister(reg2)); |
5234 | assert(isVectorRegister(reg3)); |
5235 | |
5236 | if (isValidVectorDatasize(size)) |
5237 | { |
5238 | // Vector operation |
5239 | assert(insOptsAnyArrangement(opt)); |
5240 | assert(isValidArrangement(size, opt)); |
5241 | elemsize = optGetElemsize(opt); |
5242 | assert((elemsize == EA_8BYTE) || (elemsize == EA_4BYTE)); // Only Double/Float supported |
5243 | assert(opt != INS_OPTS_1D); // Reserved encoding |
5244 | fmt = IF_DV_3B; |
5245 | } |
5246 | else |
5247 | { |
5248 | NYI("Untested" ); |
5249 | // Scalar operation |
5250 | assert((size == EA_8BYTE) || (size == EA_4BYTE)); // Only Double/Float supported |
5251 | fmt = IF_DV_3D; |
5252 | } |
5253 | break; |
5254 | |
5255 | case INS_saba: |
5256 | case INS_sabd: |
5257 | case INS_smax: |
5258 | case INS_smin: |
5259 | case INS_uaba: |
5260 | case INS_uabd: |
5261 | case INS_umax: |
5262 | case INS_umin: |
5263 | assert(isVectorRegister(reg1)); |
5264 | assert(isVectorRegister(reg2)); |
5265 | assert(isVectorRegister(reg3)); |
5266 | assert(insOptsAnyArrangement(opt)); |
5267 | |
5268 | // Vector operation |
5269 | assert(isValidVectorDatasize(size)); |
5270 | assert(isValidArrangement(size, opt)); |
5271 | elemsize = optGetElemsize(opt); |
5272 | assert(elemsize != EA_8BYTE); // can't use 2D or 1D |
5273 | |
5274 | fmt = IF_DV_3A; |
5275 | break; |
5276 | |
5277 | case INS_mov: |
5278 | assert(isVectorRegister(reg1)); |
5279 | assert(isVectorRegister(reg2)); |
5280 | assert(reg2 == reg3); |
5281 | assert(isValidVectorDatasize(size)); |
5282 | // INS_mov is an alias for INS_orr (vector register) |
5283 | if (opt == INS_OPTS_NONE) |
5284 | { |
5285 | elemsize = EA_1BYTE; |
5286 | opt = optMakeArrangement(size, elemsize); |
5287 | } |
5288 | assert(isValidArrangement(size, opt)); |
5289 | fmt = IF_DV_3C; |
5290 | break; |
5291 | |
5292 | case INS_and: |
5293 | case INS_bic: |
5294 | case INS_eor: |
5295 | case INS_orr: |
5296 | case INS_orn: |
5297 | if (isVectorRegister(reg1)) |
5298 | { |
5299 | assert(isValidVectorDatasize(size)); |
5300 | assert(isVectorRegister(reg2)); |
5301 | assert(isVectorRegister(reg3)); |
5302 | if (opt == INS_OPTS_NONE) |
5303 | { |
5304 | elemsize = EA_1BYTE; |
5305 | opt = optMakeArrangement(size, elemsize); |
5306 | } |
5307 | assert(isValidArrangement(size, opt)); |
5308 | fmt = IF_DV_3C; |
5309 | break; |
5310 | } |
5311 | __fallthrough; |
5312 | |
5313 | case INS_ands: |
5314 | case INS_bics: |
5315 | case INS_eon: |
5316 | emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0, INS_OPTS_NONE); |
5317 | return; |
5318 | |
5319 | case INS_bsl: |
5320 | case INS_bit: |
5321 | case INS_bif: |
5322 | assert(isValidVectorDatasize(size)); |
5323 | assert(isVectorRegister(reg1)); |
5324 | assert(isVectorRegister(reg2)); |
5325 | assert(isVectorRegister(reg3)); |
5326 | if (opt == INS_OPTS_NONE) |
5327 | { |
5328 | elemsize = EA_1BYTE; |
5329 | opt = optMakeArrangement(size, elemsize); |
5330 | } |
5331 | assert(isValidArrangement(size, opt)); |
5332 | fmt = IF_DV_3C; |
5333 | break; |
5334 | |
5335 | case INS_fadd: |
5336 | case INS_fsub: |
5337 | case INS_fdiv: |
5338 | case INS_fmax: |
5339 | case INS_fmin: |
5340 | case INS_fabd: |
5341 | case INS_fmul: |
5342 | case INS_fmulx: |
5343 | assert(isVectorRegister(reg1)); |
5344 | assert(isVectorRegister(reg2)); |
5345 | assert(isVectorRegister(reg3)); |
5346 | if (insOptsAnyArrangement(opt)) |
5347 | { |
5348 | // Vector operation |
5349 | assert(isValidVectorDatasize(size)); |
5350 | assert(isValidArrangement(size, opt)); |
5351 | elemsize = optGetElemsize(opt); |
5352 | assert(isValidVectorElemsizeFloat(elemsize)); |
5353 | assert(opt != INS_OPTS_1D); // Reserved encoding |
5354 | fmt = IF_DV_3B; |
5355 | } |
5356 | else |
5357 | { |
5358 | // Scalar operation |
5359 | assert(insOptsNone(opt)); |
5360 | assert(isValidScalarDatasize(size)); |
5361 | fmt = IF_DV_3D; |
5362 | } |
5363 | break; |
5364 | |
5365 | case INS_fnmul: |
5366 | // Scalar operation |
5367 | assert(insOptsNone(opt)); |
5368 | assert(isVectorRegister(reg1)); |
5369 | assert(isVectorRegister(reg2)); |
5370 | assert(isVectorRegister(reg3)); |
5371 | assert(isValidScalarDatasize(size)); |
5372 | fmt = IF_DV_3D; |
5373 | break; |
5374 | |
5375 | case INS_faddp: |
5376 | case INS_fmla: |
5377 | case INS_fmls: |
5378 | assert(isVectorRegister(reg1)); |
5379 | assert(isVectorRegister(reg2)); |
5380 | assert(isVectorRegister(reg3)); |
5381 | assert(insOptsAnyArrangement(opt)); // no scalar encoding, use 4-operand 'fmadd' or 'fmsub' |
5382 | |
5383 | // Vector operation |
5384 | assert(isValidVectorDatasize(size)); |
5385 | assert(isValidArrangement(size, opt)); |
5386 | elemsize = optGetElemsize(opt); |
5387 | assert(isValidVectorElemsizeFloat(elemsize)); |
5388 | assert(opt != INS_OPTS_1D); // Reserved encoding |
5389 | fmt = IF_DV_3B; |
5390 | break; |
5391 | |
5392 | case INS_ldr: |
5393 | case INS_ldrb: |
5394 | case INS_ldrh: |
5395 | case INS_ldrsb: |
5396 | case INS_ldrsh: |
5397 | case INS_ldrsw: |
5398 | case INS_str: |
5399 | case INS_strb: |
5400 | case INS_strh: |
5401 | emitIns_R_R_R_Ext(ins, attr, reg1, reg2, reg3, opt); |
5402 | return; |
5403 | |
5404 | case INS_ldp: |
5405 | case INS_ldpsw: |
5406 | case INS_ldnp: |
5407 | case INS_stp: |
5408 | case INS_stnp: |
5409 | emitIns_R_R_R_I(ins, attr, reg1, reg2, reg3, 0); |
5410 | return; |
5411 | |
5412 | case INS_stxr: |
5413 | case INS_stxrb: |
5414 | case INS_stxrh: |
5415 | case INS_stlxr: |
5416 | case INS_stlxrb: |
5417 | case INS_stlxrh: |
5418 | assert(isGeneralRegisterOrZR(reg1)); |
5419 | assert(isGeneralRegisterOrZR(reg2)); |
5420 | assert(isGeneralRegisterOrSP(reg3)); |
5421 | fmt = IF_LS_3D; |
5422 | break; |
5423 | |
5424 | case INS_casb: |
5425 | case INS_casab: |
5426 | case INS_casalb: |
5427 | case INS_caslb: |
5428 | case INS_cash: |
5429 | case INS_casah: |
5430 | case INS_casalh: |
5431 | case INS_caslh: |
5432 | case INS_cas: |
5433 | case INS_casa: |
5434 | case INS_casal: |
5435 | case INS_casl: |
5436 | case INS_ldaddb: |
5437 | case INS_ldaddab: |
5438 | case INS_ldaddalb: |
5439 | case INS_ldaddlb: |
5440 | case INS_ldaddh: |
5441 | case INS_ldaddah: |
5442 | case INS_ldaddalh: |
5443 | case INS_ldaddlh: |
5444 | case INS_ldadd: |
5445 | case INS_ldadda: |
5446 | case INS_ldaddal: |
5447 | case INS_ldaddl: |
5448 | case INS_swpb: |
5449 | case INS_swpab: |
5450 | case INS_swpalb: |
5451 | case INS_swplb: |
5452 | case INS_swph: |
5453 | case INS_swpah: |
5454 | case INS_swpalh: |
5455 | case INS_swplh: |
5456 | case INS_swp: |
5457 | case INS_swpa: |
5458 | case INS_swpal: |
5459 | case INS_swpl: |
5460 | assert(isGeneralRegisterOrZR(reg1)); |
5461 | assert(isGeneralRegisterOrZR(reg2)); |
5462 | assert(isGeneralRegisterOrSP(reg3)); |
5463 | fmt = IF_LS_3E; |
5464 | break; |
5465 | |
5466 | case INS_sha256h: |
5467 | case INS_sha256h2: |
5468 | case INS_sha256su1: |
5469 | case INS_sha1su0: |
5470 | case INS_sha1c: |
5471 | case INS_sha1p: |
5472 | case INS_sha1m: |
5473 | assert(isValidVectorDatasize(size)); |
5474 | assert(isVectorRegister(reg1)); |
5475 | assert(isVectorRegister(reg2)); |
5476 | assert(isVectorRegister(reg3)); |
5477 | if (opt == INS_OPTS_NONE) |
5478 | { |
5479 | elemsize = EA_4BYTE; |
5480 | opt = optMakeArrangement(size, elemsize); |
5481 | } |
5482 | assert(isValidArrangement(size, opt)); |
5483 | fmt = IF_DV_3F; |
5484 | break; |
5485 | |
5486 | default: |
5487 | unreached(); |
5488 | break; |
5489 | |
5490 | } // end switch (ins) |
5491 | |
5492 | assert(fmt != IF_NONE); |
5493 | |
5494 | instrDesc* id = emitNewInstr(attr); |
5495 | |
5496 | id->idIns(ins); |
5497 | id->idInsFmt(fmt); |
5498 | id->idInsOpt(opt); |
5499 | |
5500 | id->idReg1(reg1); |
5501 | id->idReg2(reg2); |
5502 | id->idReg3(reg3); |
5503 | |
5504 | dispIns(id); |
5505 | appendToCurIG(id); |
5506 | } |
5507 | |
5508 | /***************************************************************************** |
5509 | * |
5510 | * Add an instruction referencing three registers and a constant. |
5511 | */ |
5512 | |
5513 | void emitter::emitIns_R_R_R_I(instruction ins, |
5514 | emitAttr attr, |
5515 | regNumber reg1, |
5516 | regNumber reg2, |
5517 | regNumber reg3, |
5518 | ssize_t imm, |
5519 | insOpts opt /* = INS_OPTS_NONE */, |
5520 | emitAttr attrReg2 /* = EA_UNKNOWN */) |
5521 | { |
5522 | emitAttr size = EA_SIZE(attr); |
5523 | emitAttr elemsize = EA_UNKNOWN; |
5524 | insFormat fmt = IF_NONE; |
5525 | bool isLdSt = false; |
5526 | bool isSIMD = false; |
5527 | bool isAddSub = false; |
5528 | bool setFlags = false; |
5529 | unsigned scale = 0; |
5530 | |
5531 | /* Figure out the encoding format of the instruction */ |
5532 | switch (ins) |
5533 | { |
5534 | case INS_extr: |
5535 | assert(insOptsNone(opt)); |
5536 | assert(isValidGeneralDatasize(size)); |
5537 | assert(isGeneralRegister(reg1)); |
5538 | assert(isGeneralRegister(reg2)); |
5539 | assert(isGeneralRegister(reg3)); |
5540 | assert(isValidImmShift(imm, size)); |
5541 | fmt = IF_DR_3E; |
5542 | break; |
5543 | |
5544 | case INS_and: |
5545 | case INS_ands: |
5546 | case INS_eor: |
5547 | case INS_orr: |
5548 | case INS_bic: |
5549 | case INS_bics: |
5550 | case INS_eon: |
5551 | case INS_orn: |
5552 | assert(isValidGeneralDatasize(size)); |
5553 | assert(isGeneralRegister(reg1)); |
5554 | assert(isGeneralRegister(reg2)); |
5555 | assert(isGeneralRegister(reg3)); |
5556 | assert(isValidImmShift(imm, size)); |
5557 | if (imm == 0) |
5558 | { |
5559 | assert(insOptsNone(opt)); // a zero imm, means no shift kind |
5560 | fmt = IF_DR_3A; |
5561 | } |
5562 | else |
5563 | { |
5564 | assert(insOptsAnyShift(opt)); // a non-zero imm, must select shift kind |
5565 | fmt = IF_DR_3B; |
5566 | } |
5567 | break; |
5568 | |
5569 | case INS_fmul: // by element, imm[0..3] selects the element of reg3 |
5570 | case INS_fmla: |
5571 | case INS_fmls: |
5572 | case INS_fmulx: |
5573 | assert(isVectorRegister(reg1)); |
5574 | assert(isVectorRegister(reg2)); |
5575 | assert(isVectorRegister(reg3)); |
5576 | if (insOptsAnyArrangement(opt)) |
5577 | { |
5578 | // Vector operation |
5579 | assert(isValidVectorDatasize(size)); |
5580 | assert(isValidArrangement(size, opt)); |
5581 | elemsize = optGetElemsize(opt); |
5582 | assert(isValidVectorElemsizeFloat(elemsize)); |
5583 | assert(isValidVectorIndex(size, elemsize, imm)); |
5584 | assert(opt != INS_OPTS_1D); // Reserved encoding |
5585 | fmt = IF_DV_3BI; |
5586 | } |
5587 | else |
5588 | { |
5589 | // Scalar operation |
5590 | assert(insOptsNone(opt)); |
5591 | assert(isValidScalarDatasize(size)); |
5592 | elemsize = size; |
5593 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
5594 | fmt = IF_DV_3DI; |
5595 | } |
5596 | break; |
5597 | |
5598 | case INS_mul: // by element, imm[0..7] selects the element of reg3 |
5599 | case INS_mla: |
5600 | case INS_mls: |
5601 | assert(isVectorRegister(reg1)); |
5602 | assert(isVectorRegister(reg2)); |
5603 | assert(isVectorRegister(reg3)); |
5604 | // Vector operation |
5605 | assert(insOptsAnyArrangement(opt)); |
5606 | assert(isValidVectorDatasize(size)); |
5607 | assert(isValidArrangement(size, opt)); |
5608 | elemsize = optGetElemsize(opt); |
5609 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
5610 | // Only has encodings for H or S elemsize |
5611 | assert((elemsize == EA_2BYTE) || (elemsize == EA_4BYTE)); |
5612 | // Only has encodings for V0..V15 |
5613 | if ((elemsize == EA_2BYTE) && (reg3 >= REG_V16)) |
5614 | { |
5615 | noway_assert(!"Invalid reg3" ); |
5616 | } |
5617 | fmt = IF_DV_3AI; |
5618 | break; |
5619 | |
5620 | case INS_add: |
5621 | case INS_sub: |
5622 | setFlags = false; |
5623 | isAddSub = true; |
5624 | break; |
5625 | |
5626 | case INS_adds: |
5627 | case INS_subs: |
5628 | setFlags = true; |
5629 | isAddSub = true; |
5630 | break; |
5631 | |
5632 | case INS_ldpsw: |
5633 | scale = 2; |
5634 | isLdSt = true; |
5635 | break; |
5636 | |
5637 | case INS_ldnp: |
5638 | case INS_stnp: |
5639 | assert(insOptsNone(opt)); // Can't use Pre/Post index on these two instructions |
5640 | __fallthrough; |
5641 | |
5642 | case INS_ldp: |
5643 | case INS_stp: |
5644 | // Is the target a vector register? |
5645 | if (isVectorRegister(reg1)) |
5646 | { |
5647 | scale = NaturalScale_helper(size); |
5648 | isSIMD = true; |
5649 | } |
5650 | else |
5651 | { |
5652 | scale = (size == EA_8BYTE) ? 3 : 2; |
5653 | } |
5654 | isLdSt = true; |
5655 | break; |
5656 | |
5657 | default: |
5658 | unreached(); |
5659 | break; |
5660 | |
5661 | } // end switch (ins) |
5662 | |
5663 | if (isLdSt) |
5664 | { |
5665 | assert(!isAddSub); |
5666 | assert(isGeneralRegisterOrSP(reg3)); |
5667 | assert(insOptsNone(opt) || insOptsIndexed(opt)); |
5668 | |
5669 | if (isSIMD) |
5670 | { |
5671 | assert(isValidVectorLSPDatasize(size)); |
5672 | assert(isVectorRegister(reg1)); |
5673 | assert(isVectorRegister(reg2)); |
5674 | assert((scale >= 2) && (scale <= 4)); |
5675 | } |
5676 | else |
5677 | { |
5678 | assert(isValidGeneralDatasize(size)); |
5679 | assert(isGeneralRegisterOrZR(reg1)); |
5680 | assert(isGeneralRegisterOrZR(reg2)); |
5681 | assert((scale == 2) || (scale == 3)); |
5682 | } |
5683 | |
5684 | // Load/Store Pair reserved encodings: |
5685 | if (emitInsIsLoad(ins)) |
5686 | { |
5687 | assert(reg1 != reg2); |
5688 | } |
5689 | if (insOptsIndexed(opt)) |
5690 | { |
5691 | assert(reg1 != reg3); |
5692 | assert(reg2 != reg3); |
5693 | } |
5694 | |
5695 | reg3 = encodingSPtoZR(reg3); |
5696 | |
5697 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
5698 | if (imm == 0) |
5699 | { |
5700 | assert(insOptsNone(opt)); // PRE/POST Index doesn't make sense with an immediate of zero |
5701 | |
5702 | fmt = IF_LS_3B; |
5703 | } |
5704 | else |
5705 | { |
5706 | if ((imm & mask) == 0) |
5707 | { |
5708 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
5709 | |
5710 | if ((imm >= -64) && (imm <= 63)) |
5711 | { |
5712 | fmt = IF_LS_3C; |
5713 | } |
5714 | } |
5715 | #ifdef DEBUG |
5716 | if (fmt != IF_LS_3C) |
5717 | { |
5718 | assert(!"Instruction cannot be encoded: IF_LS_3C" ); |
5719 | } |
5720 | #endif |
5721 | } |
5722 | } |
5723 | else if (isAddSub) |
5724 | { |
5725 | bool reg2IsSP = (reg2 == REG_SP); |
5726 | assert(!isLdSt); |
5727 | assert(isValidGeneralDatasize(size)); |
5728 | assert(isGeneralRegister(reg3)); |
5729 | |
5730 | if (setFlags || insOptsAluShift(opt)) // Can't encode SP in reg1 with setFlags or AluShift option |
5731 | { |
5732 | assert(isGeneralRegisterOrZR(reg1)); |
5733 | } |
5734 | else |
5735 | { |
5736 | assert(isGeneralRegisterOrSP(reg1)); |
5737 | reg1 = encodingSPtoZR(reg1); |
5738 | } |
5739 | |
5740 | if (insOptsAluShift(opt)) // Can't encode SP in reg2 with AluShift option |
5741 | { |
5742 | assert(isGeneralRegister(reg2)); |
5743 | } |
5744 | else |
5745 | { |
5746 | assert(isGeneralRegisterOrSP(reg2)); |
5747 | reg2 = encodingSPtoZR(reg2); |
5748 | } |
5749 | |
5750 | if (insOptsAnyExtend(opt)) |
5751 | { |
5752 | assert((imm >= 0) && (imm <= 4)); |
5753 | |
5754 | fmt = IF_DR_3C; |
5755 | } |
5756 | else if (insOptsAluShift(opt)) |
5757 | { |
5758 | // imm should be non-zero and in [1..63] |
5759 | assert(isValidImmShift(imm, size) && (imm != 0)); |
5760 | fmt = IF_DR_3B; |
5761 | } |
5762 | else if (imm == 0) |
5763 | { |
5764 | assert(insOptsNone(opt)); |
5765 | |
5766 | if (reg2IsSP) |
5767 | { |
5768 | // To encode the SP register as reg2 we must use the IF_DR_3C encoding |
5769 | // and also specify a LSL of zero (imm == 0) |
5770 | opt = INS_OPTS_LSL; |
5771 | fmt = IF_DR_3C; |
5772 | } |
5773 | else |
5774 | { |
5775 | fmt = IF_DR_3A; |
5776 | } |
5777 | } |
5778 | else |
5779 | { |
5780 | assert(!"Instruction cannot be encoded: Add/Sub IF_DR_3A" ); |
5781 | } |
5782 | } |
5783 | assert(fmt != IF_NONE); |
5784 | |
5785 | instrDesc* id = emitNewInstrCns(attr, imm); |
5786 | |
5787 | id->idIns(ins); |
5788 | id->idInsFmt(fmt); |
5789 | id->idInsOpt(opt); |
5790 | |
5791 | id->idReg1(reg1); |
5792 | id->idReg2(reg2); |
5793 | id->idReg3(reg3); |
5794 | |
5795 | // Record the attribute for the second register in the pair |
5796 | id->idGCrefReg2(GCT_NONE); |
5797 | if (attrReg2 != EA_UNKNOWN) |
5798 | { |
5799 | // Record the attribute for the second register in the pair |
5800 | assert((fmt == IF_LS_3B) || (fmt == IF_LS_3C)); |
5801 | if (EA_IS_GCREF(attrReg2)) |
5802 | { |
5803 | id->idGCrefReg2(GCT_GCREF); |
5804 | } |
5805 | else if (EA_IS_BYREF(attrReg2)) |
5806 | { |
5807 | id->idGCrefReg2(GCT_BYREF); |
5808 | } |
5809 | } |
5810 | |
5811 | dispIns(id); |
5812 | appendToCurIG(id); |
5813 | } |
5814 | |
5815 | /***************************************************************************** |
5816 | * |
5817 | * Add an instruction referencing three registers, with an extend option |
5818 | */ |
5819 | |
5820 | void emitter::emitIns_R_R_R_Ext(instruction ins, |
5821 | emitAttr attr, |
5822 | regNumber reg1, |
5823 | regNumber reg2, |
5824 | regNumber reg3, |
5825 | insOpts opt, /* = INS_OPTS_NONE */ |
5826 | int shiftAmount) /* = -1 -- unset */ |
5827 | { |
5828 | emitAttr size = EA_SIZE(attr); |
5829 | insFormat fmt = IF_NONE; |
5830 | bool isSIMD = false; |
5831 | int scale = -1; |
5832 | |
5833 | /* Figure out the encoding format of the instruction */ |
5834 | switch (ins) |
5835 | { |
5836 | case INS_ldrb: |
5837 | case INS_ldrsb: |
5838 | case INS_strb: |
5839 | scale = 0; |
5840 | break; |
5841 | |
5842 | case INS_ldrh: |
5843 | case INS_ldrsh: |
5844 | case INS_strh: |
5845 | scale = 1; |
5846 | break; |
5847 | |
5848 | case INS_ldrsw: |
5849 | scale = 2; |
5850 | break; |
5851 | |
5852 | case INS_ldr: |
5853 | case INS_str: |
5854 | // Is the target a vector register? |
5855 | if (isVectorRegister(reg1)) |
5856 | { |
5857 | assert(isValidVectorLSDatasize(size)); |
5858 | scale = NaturalScale_helper(size); |
5859 | isSIMD = true; |
5860 | } |
5861 | else |
5862 | { |
5863 | assert(isValidGeneralDatasize(size)); |
5864 | scale = (size == EA_8BYTE) ? 3 : 2; |
5865 | } |
5866 | |
5867 | break; |
5868 | |
5869 | default: |
5870 | unreached(); |
5871 | break; |
5872 | |
5873 | } // end switch (ins) |
5874 | |
5875 | assert(scale != -1); |
5876 | assert(insOptsLSExtend(opt)); |
5877 | |
5878 | if (isSIMD) |
5879 | { |
5880 | assert(isValidVectorLSDatasize(size)); |
5881 | assert(isVectorRegister(reg1)); |
5882 | } |
5883 | else |
5884 | { |
5885 | assert(isValidGeneralLSDatasize(size)); |
5886 | assert(isGeneralRegisterOrZR(reg1)); |
5887 | } |
5888 | |
5889 | assert(isGeneralRegisterOrSP(reg2)); |
5890 | assert(isGeneralRegister(reg3)); |
5891 | |
5892 | // Load/Store reserved encodings: |
5893 | if (insOptsIndexed(opt)) |
5894 | { |
5895 | assert(reg1 != reg2); |
5896 | } |
5897 | |
5898 | if (shiftAmount == -1) |
5899 | { |
5900 | shiftAmount = insOptsLSL(opt) ? scale : 0; |
5901 | } |
5902 | assert((shiftAmount == scale) || (shiftAmount == 0)); |
5903 | |
5904 | reg2 = encodingSPtoZR(reg2); |
5905 | fmt = IF_LS_3A; |
5906 | |
5907 | instrDesc* id = emitNewInstr(attr); |
5908 | |
5909 | id->idIns(ins); |
5910 | id->idInsFmt(fmt); |
5911 | id->idInsOpt(opt); |
5912 | |
5913 | id->idReg1(reg1); |
5914 | id->idReg2(reg2); |
5915 | id->idReg3(reg3); |
5916 | id->idReg3Scaled(shiftAmount == scale); |
5917 | |
5918 | dispIns(id); |
5919 | appendToCurIG(id); |
5920 | } |
5921 | |
5922 | /***************************************************************************** |
5923 | * |
5924 | * Add an instruction referencing two registers and two constants. |
5925 | */ |
5926 | |
5927 | void emitter::emitIns_R_R_I_I(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, int imm1, int imm2) |
5928 | { |
5929 | emitAttr size = EA_SIZE(attr); |
5930 | emitAttr elemsize = EA_UNKNOWN; |
5931 | insFormat fmt = IF_NONE; |
5932 | size_t immOut = 0; // composed from imm1 and imm2 and stored in the instrDesc |
5933 | |
5934 | /* Figure out the encoding format of the instruction */ |
5935 | switch (ins) |
5936 | { |
5937 | int lsb; |
5938 | int width; |
5939 | bitMaskImm bmi; |
5940 | |
5941 | case INS_bfm: |
5942 | case INS_sbfm: |
5943 | case INS_ubfm: |
5944 | assert(isGeneralRegister(reg1)); |
5945 | assert(isGeneralRegister(reg2)); |
5946 | assert(isValidImmShift(imm1, size)); |
5947 | assert(isValidImmShift(imm2, size)); |
5948 | bmi.immNRS = 0; |
5949 | bmi.immN = (size == EA_8BYTE); |
5950 | bmi.immR = imm1; |
5951 | bmi.immS = imm2; |
5952 | immOut = bmi.immNRS; |
5953 | fmt = IF_DI_2D; |
5954 | break; |
5955 | |
5956 | case INS_bfi: |
5957 | case INS_sbfiz: |
5958 | case INS_ubfiz: |
5959 | assert(isGeneralRegister(reg1)); |
5960 | assert(isGeneralRegister(reg2)); |
5961 | lsb = getBitWidth(size) - imm1; |
5962 | width = imm2 - 1; |
5963 | assert(isValidImmShift(lsb, size)); |
5964 | assert(isValidImmShift(width, size)); |
5965 | bmi.immNRS = 0; |
5966 | bmi.immN = (size == EA_8BYTE); |
5967 | bmi.immR = lsb; |
5968 | bmi.immS = width; |
5969 | immOut = bmi.immNRS; |
5970 | fmt = IF_DI_2D; |
5971 | break; |
5972 | |
5973 | case INS_bfxil: |
5974 | case INS_sbfx: |
5975 | case INS_ubfx: |
5976 | assert(isGeneralRegister(reg1)); |
5977 | assert(isGeneralRegister(reg2)); |
5978 | lsb = imm1; |
5979 | width = imm2 + imm1 - 1; |
5980 | assert(isValidImmShift(lsb, size)); |
5981 | assert(isValidImmShift(width, size)); |
5982 | bmi.immNRS = 0; |
5983 | bmi.immN = (size == EA_8BYTE); |
5984 | bmi.immR = imm1; |
5985 | bmi.immS = imm2 + imm1 - 1; |
5986 | immOut = bmi.immNRS; |
5987 | fmt = IF_DI_2D; |
5988 | break; |
5989 | |
5990 | case INS_mov: |
5991 | case INS_ins: |
5992 | assert(isVectorRegister(reg1)); |
5993 | assert(isVectorRegister(reg2)); |
5994 | elemsize = size; |
5995 | assert(isValidVectorElemsize(elemsize)); |
5996 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm1)); |
5997 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm2)); |
5998 | immOut = (imm1 << 4) + imm2; |
5999 | fmt = IF_DV_2F; |
6000 | break; |
6001 | |
6002 | default: |
6003 | unreached(); |
6004 | break; |
6005 | } |
6006 | assert(fmt != IF_NONE); |
6007 | |
6008 | instrDesc* id = emitNewInstrSC(attr, immOut); |
6009 | |
6010 | id->idIns(ins); |
6011 | id->idInsFmt(fmt); |
6012 | |
6013 | id->idReg1(reg1); |
6014 | id->idReg2(reg2); |
6015 | |
6016 | dispIns(id); |
6017 | appendToCurIG(id); |
6018 | } |
6019 | |
6020 | /***************************************************************************** |
6021 | * |
6022 | * Add an instruction referencing four registers. |
6023 | */ |
6024 | |
6025 | void emitter::emitIns_R_R_R_R( |
6026 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, regNumber reg4) |
6027 | { |
6028 | emitAttr size = EA_SIZE(attr); |
6029 | insFormat fmt = IF_NONE; |
6030 | |
6031 | /* Figure out the encoding format of the instruction */ |
6032 | switch (ins) |
6033 | { |
6034 | case INS_madd: |
6035 | case INS_msub: |
6036 | case INS_smaddl: |
6037 | case INS_smsubl: |
6038 | case INS_umaddl: |
6039 | case INS_umsubl: |
6040 | assert(isValidGeneralDatasize(size)); |
6041 | assert(isGeneralRegister(reg1)); |
6042 | assert(isGeneralRegister(reg2)); |
6043 | assert(isGeneralRegister(reg3)); |
6044 | assert(isGeneralRegister(reg4)); |
6045 | fmt = IF_DR_4A; |
6046 | break; |
6047 | |
6048 | case INS_fmadd: |
6049 | case INS_fmsub: |
6050 | case INS_fnmadd: |
6051 | case INS_fnmsub: |
6052 | // Scalar operation |
6053 | assert(isValidScalarDatasize(size)); |
6054 | assert(isVectorRegister(reg1)); |
6055 | assert(isVectorRegister(reg2)); |
6056 | assert(isVectorRegister(reg3)); |
6057 | assert(isVectorRegister(reg4)); |
6058 | fmt = IF_DV_4A; |
6059 | break; |
6060 | |
6061 | case INS_invalid: |
6062 | fmt = IF_NONE; |
6063 | break; |
6064 | |
6065 | default: |
6066 | unreached(); |
6067 | break; |
6068 | } |
6069 | assert(fmt != IF_NONE); |
6070 | |
6071 | instrDesc* id = emitNewInstr(attr); |
6072 | |
6073 | id->idIns(ins); |
6074 | id->idInsFmt(fmt); |
6075 | |
6076 | id->idReg1(reg1); |
6077 | id->idReg2(reg2); |
6078 | id->idReg3(reg3); |
6079 | id->idReg4(reg4); |
6080 | |
6081 | dispIns(id); |
6082 | appendToCurIG(id); |
6083 | } |
6084 | |
6085 | /***************************************************************************** |
6086 | * |
6087 | * Add an instruction referencing a register and a condition code |
6088 | */ |
6089 | |
6090 | void emitter::emitIns_R_COND(instruction ins, emitAttr attr, regNumber reg, insCond cond) |
6091 | { |
6092 | emitAttr size = EA_SIZE(attr); |
6093 | insFormat fmt = IF_NONE; |
6094 | condFlagsImm cfi; |
6095 | cfi.immCFVal = 0; |
6096 | |
6097 | /* Figure out the encoding format of the instruction */ |
6098 | switch (ins) |
6099 | { |
6100 | case INS_cset: |
6101 | case INS_csetm: |
6102 | assert(isGeneralRegister(reg)); |
6103 | cfi.cond = cond; |
6104 | fmt = IF_DR_1D; |
6105 | break; |
6106 | |
6107 | default: |
6108 | unreached(); |
6109 | break; |
6110 | |
6111 | } // end switch (ins) |
6112 | |
6113 | assert(fmt != IF_NONE); |
6114 | assert(isValidImmCond(cfi.immCFVal)); |
6115 | |
6116 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
6117 | |
6118 | id->idIns(ins); |
6119 | id->idInsFmt(fmt); |
6120 | id->idInsOpt(INS_OPTS_NONE); |
6121 | |
6122 | id->idReg1(reg); |
6123 | |
6124 | dispIns(id); |
6125 | appendToCurIG(id); |
6126 | } |
6127 | |
6128 | /***************************************************************************** |
6129 | * |
6130 | * Add an instruction referencing two registers and a condition code |
6131 | */ |
6132 | |
6133 | void emitter::emitIns_R_R_COND(instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCond cond) |
6134 | { |
6135 | emitAttr size = EA_SIZE(attr); |
6136 | insFormat fmt = IF_NONE; |
6137 | condFlagsImm cfi; |
6138 | cfi.immCFVal = 0; |
6139 | |
6140 | /* Figure out the encoding format of the instruction */ |
6141 | switch (ins) |
6142 | { |
6143 | case INS_cinc: |
6144 | case INS_cinv: |
6145 | case INS_cneg: |
6146 | assert(isGeneralRegister(reg1)); |
6147 | assert(isGeneralRegister(reg2)); |
6148 | cfi.cond = cond; |
6149 | fmt = IF_DR_2D; |
6150 | break; |
6151 | default: |
6152 | unreached(); |
6153 | break; |
6154 | |
6155 | } // end switch (ins) |
6156 | |
6157 | assert(fmt != IF_NONE); |
6158 | assert(isValidImmCond(cfi.immCFVal)); |
6159 | |
6160 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
6161 | |
6162 | id->idIns(ins); |
6163 | id->idInsFmt(fmt); |
6164 | id->idInsOpt(INS_OPTS_NONE); |
6165 | |
6166 | id->idReg1(reg1); |
6167 | id->idReg2(reg2); |
6168 | |
6169 | dispIns(id); |
6170 | appendToCurIG(id); |
6171 | } |
6172 | |
6173 | /***************************************************************************** |
6174 | * |
6175 | * Add an instruction referencing two registers and a condition code |
6176 | */ |
6177 | |
6178 | void emitter::emitIns_R_R_R_COND( |
6179 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, regNumber reg3, insCond cond) |
6180 | { |
6181 | emitAttr size = EA_SIZE(attr); |
6182 | insFormat fmt = IF_NONE; |
6183 | condFlagsImm cfi; |
6184 | cfi.immCFVal = 0; |
6185 | |
6186 | /* Figure out the encoding format of the instruction */ |
6187 | switch (ins) |
6188 | { |
6189 | case INS_csel: |
6190 | case INS_csinc: |
6191 | case INS_csinv: |
6192 | case INS_csneg: |
6193 | assert(isGeneralRegister(reg1)); |
6194 | assert(isGeneralRegister(reg2)); |
6195 | assert(isGeneralRegister(reg3)); |
6196 | cfi.cond = cond; |
6197 | fmt = IF_DR_3D; |
6198 | break; |
6199 | |
6200 | default: |
6201 | unreached(); |
6202 | break; |
6203 | |
6204 | } // end switch (ins) |
6205 | |
6206 | assert(fmt != IF_NONE); |
6207 | assert(isValidImmCond(cfi.immCFVal)); |
6208 | |
6209 | instrDesc* id = emitNewInstr(attr); |
6210 | |
6211 | id->idIns(ins); |
6212 | id->idInsFmt(fmt); |
6213 | id->idInsOpt(INS_OPTS_NONE); |
6214 | |
6215 | id->idReg1(reg1); |
6216 | id->idReg2(reg2); |
6217 | id->idReg3(reg3); |
6218 | id->idSmallCns(cfi.immCFVal); |
6219 | |
6220 | dispIns(id); |
6221 | appendToCurIG(id); |
6222 | } |
6223 | |
6224 | /***************************************************************************** |
6225 | * |
6226 | * Add an instruction referencing two registers the flags and a condition code |
6227 | */ |
6228 | |
6229 | void emitter::emitIns_R_R_FLAGS_COND( |
6230 | instruction ins, emitAttr attr, regNumber reg1, regNumber reg2, insCflags flags, insCond cond) |
6231 | { |
6232 | emitAttr size = EA_SIZE(attr); |
6233 | insFormat fmt = IF_NONE; |
6234 | condFlagsImm cfi; |
6235 | cfi.immCFVal = 0; |
6236 | |
6237 | /* Figure out the encoding format of the instruction */ |
6238 | switch (ins) |
6239 | { |
6240 | case INS_ccmp: |
6241 | case INS_ccmn: |
6242 | assert(isGeneralRegister(reg1)); |
6243 | assert(isGeneralRegister(reg2)); |
6244 | cfi.flags = flags; |
6245 | cfi.cond = cond; |
6246 | fmt = IF_DR_2I; |
6247 | break; |
6248 | default: |
6249 | unreached(); |
6250 | break; |
6251 | } // end switch (ins) |
6252 | |
6253 | assert(fmt != IF_NONE); |
6254 | assert(isValidImmCondFlags(cfi.immCFVal)); |
6255 | |
6256 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
6257 | |
6258 | id->idIns(ins); |
6259 | id->idInsFmt(fmt); |
6260 | id->idInsOpt(INS_OPTS_NONE); |
6261 | |
6262 | id->idReg1(reg1); |
6263 | id->idReg2(reg2); |
6264 | |
6265 | dispIns(id); |
6266 | appendToCurIG(id); |
6267 | } |
6268 | |
6269 | /***************************************************************************** |
6270 | * |
6271 | * Add an instruction referencing a register, an immediate, the flags and a condition code |
6272 | */ |
6273 | |
6274 | void emitter::emitIns_R_I_FLAGS_COND( |
6275 | instruction ins, emitAttr attr, regNumber reg, int imm, insCflags flags, insCond cond) |
6276 | { |
6277 | emitAttr size = EA_SIZE(attr); |
6278 | insFormat fmt = IF_NONE; |
6279 | condFlagsImm cfi; |
6280 | cfi.immCFVal = 0; |
6281 | |
6282 | /* Figure out the encoding format of the instruction */ |
6283 | switch (ins) |
6284 | { |
6285 | case INS_ccmp: |
6286 | case INS_ccmn: |
6287 | assert(isGeneralRegister(reg)); |
6288 | if (imm < 0) |
6289 | { |
6290 | ins = insReverse(ins); |
6291 | imm = -imm; |
6292 | } |
6293 | if ((imm >= 0) && (imm <= 31)) |
6294 | { |
6295 | cfi.imm5 = imm; |
6296 | cfi.flags = flags; |
6297 | cfi.cond = cond; |
6298 | fmt = IF_DI_1F; |
6299 | } |
6300 | else |
6301 | { |
6302 | assert(!"Instruction cannot be encoded: ccmp/ccmn imm5" ); |
6303 | } |
6304 | break; |
6305 | default: |
6306 | unreached(); |
6307 | break; |
6308 | } // end switch (ins) |
6309 | |
6310 | assert(fmt != IF_NONE); |
6311 | assert(isValidImmCondFlagsImm5(cfi.immCFVal)); |
6312 | |
6313 | instrDesc* id = emitNewInstrSC(attr, cfi.immCFVal); |
6314 | |
6315 | id->idIns(ins); |
6316 | id->idInsFmt(fmt); |
6317 | id->idInsOpt(INS_OPTS_NONE); |
6318 | |
6319 | id->idReg1(reg); |
6320 | |
6321 | dispIns(id); |
6322 | appendToCurIG(id); |
6323 | } |
6324 | |
6325 | /***************************************************************************** |
6326 | * |
6327 | * Add a memory barrier instruction with a 'barrier' immediate |
6328 | */ |
6329 | |
6330 | void emitter::emitIns_BARR(instruction ins, insBarrier barrier) |
6331 | { |
6332 | insFormat fmt = IF_NONE; |
6333 | ssize_t imm = 0; |
6334 | |
6335 | /* Figure out the encoding format of the instruction */ |
6336 | switch (ins) |
6337 | { |
6338 | case INS_dsb: |
6339 | case INS_dmb: |
6340 | case INS_isb: |
6341 | |
6342 | fmt = IF_SI_0B; |
6343 | imm = (ssize_t)barrier; |
6344 | break; |
6345 | default: |
6346 | unreached(); |
6347 | break; |
6348 | } // end switch (ins) |
6349 | |
6350 | assert(fmt != IF_NONE); |
6351 | |
6352 | instrDesc* id = emitNewInstrSC(EA_8BYTE, imm); |
6353 | |
6354 | id->idIns(ins); |
6355 | id->idInsFmt(fmt); |
6356 | id->idInsOpt(INS_OPTS_NONE); |
6357 | |
6358 | dispIns(id); |
6359 | appendToCurIG(id); |
6360 | } |
6361 | |
6362 | /***************************************************************************** |
6363 | * |
6364 | * Add an instruction with a static data member operand. If 'size' is 0, the |
6365 | * instruction operates on the address of the static member instead of its |
6366 | * value (e.g. "push offset clsvar", rather than "push dword ptr [clsvar]"). |
6367 | */ |
6368 | |
6369 | void emitter::emitIns_C(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, int offs) |
6370 | { |
6371 | NYI("emitIns_C" ); |
6372 | } |
6373 | |
6374 | /***************************************************************************** |
6375 | * |
6376 | * Add an instruction referencing stack-based local variable. |
6377 | */ |
6378 | |
6379 | void emitter::emitIns_S(instruction ins, emitAttr attr, int varx, int offs) |
6380 | { |
6381 | NYI("emitIns_S" ); |
6382 | } |
6383 | |
6384 | /***************************************************************************** |
6385 | * |
6386 | * Add an instruction referencing a register and a stack-based local variable. |
6387 | */ |
6388 | void emitter::emitIns_R_S(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs) |
6389 | { |
6390 | emitAttr size = EA_SIZE(attr); |
6391 | insFormat fmt = IF_NONE; |
6392 | int disp = 0; |
6393 | unsigned scale = 0; |
6394 | |
6395 | assert(offs >= 0); |
6396 | |
6397 | // TODO-ARM64-CQ: use unscaled loads? |
6398 | /* Figure out the encoding format of the instruction */ |
6399 | switch (ins) |
6400 | { |
6401 | case INS_strb: |
6402 | case INS_ldrb: |
6403 | case INS_ldrsb: |
6404 | scale = 0; |
6405 | break; |
6406 | |
6407 | case INS_strh: |
6408 | case INS_ldrh: |
6409 | case INS_ldrsh: |
6410 | scale = 1; |
6411 | break; |
6412 | |
6413 | case INS_ldrsw: |
6414 | scale = 2; |
6415 | break; |
6416 | |
6417 | case INS_str: |
6418 | case INS_ldr: |
6419 | assert(isValidGeneralDatasize(size) || isValidVectorDatasize(size)); |
6420 | scale = genLog2(EA_SIZE_IN_BYTES(size)); |
6421 | break; |
6422 | |
6423 | case INS_lea: |
6424 | assert(size == EA_8BYTE); |
6425 | scale = 0; |
6426 | break; |
6427 | |
6428 | default: |
6429 | NYI("emitIns_R_S" ); // FP locals? |
6430 | return; |
6431 | |
6432 | } // end switch (ins) |
6433 | |
6434 | /* Figure out the variable's frame position */ |
6435 | ssize_t imm; |
6436 | int base; |
6437 | bool FPbased; |
6438 | |
6439 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
6440 | disp = base + offs; |
6441 | assert((scale >= 0) && (scale <= 4)); |
6442 | |
6443 | regNumber reg2 = FPbased ? REG_FPBASE : REG_SPBASE; |
6444 | reg2 = encodingSPtoZR(reg2); |
6445 | |
6446 | if (ins == INS_lea) |
6447 | { |
6448 | if (disp >= 0) |
6449 | { |
6450 | ins = INS_add; |
6451 | imm = disp; |
6452 | } |
6453 | else |
6454 | { |
6455 | ins = INS_sub; |
6456 | imm = -disp; |
6457 | } |
6458 | |
6459 | if (imm <= 0x0fff) |
6460 | { |
6461 | fmt = IF_DI_2A; // add reg1,reg2,#disp |
6462 | } |
6463 | else |
6464 | { |
6465 | regNumber rsvdReg = codeGen->rsGetRsvdReg(); |
6466 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, rsvdReg, imm); |
6467 | fmt = IF_DR_3A; // add reg1,reg2,rsvdReg |
6468 | } |
6469 | } |
6470 | else |
6471 | { |
6472 | bool useRegForImm = false; |
6473 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
6474 | |
6475 | imm = disp; |
6476 | if (imm == 0) |
6477 | { |
6478 | fmt = IF_LS_2A; |
6479 | } |
6480 | else if ((imm < 0) || ((imm & mask) != 0)) |
6481 | { |
6482 | if ((imm >= -256) && (imm <= 255)) |
6483 | { |
6484 | fmt = IF_LS_2C; |
6485 | } |
6486 | else |
6487 | { |
6488 | useRegForImm = true; |
6489 | } |
6490 | } |
6491 | else if (imm > 0) |
6492 | { |
6493 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
6494 | { |
6495 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
6496 | |
6497 | fmt = IF_LS_2B; |
6498 | } |
6499 | else |
6500 | { |
6501 | useRegForImm = true; |
6502 | } |
6503 | } |
6504 | |
6505 | if (useRegForImm) |
6506 | { |
6507 | regNumber rsvdReg = codeGen->rsGetRsvdReg(); |
6508 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, rsvdReg, imm); |
6509 | fmt = IF_LS_3A; |
6510 | } |
6511 | } |
6512 | |
6513 | assert(fmt != IF_NONE); |
6514 | |
6515 | instrDesc* id = emitNewInstrCns(attr, imm); |
6516 | |
6517 | id->idIns(ins); |
6518 | id->idInsFmt(fmt); |
6519 | id->idInsOpt(INS_OPTS_NONE); |
6520 | |
6521 | id->idReg1(reg1); |
6522 | id->idReg2(reg2); |
6523 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
6524 | id->idSetIsLclVar(); |
6525 | |
6526 | #ifdef DEBUG |
6527 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
6528 | #endif |
6529 | |
6530 | dispIns(id); |
6531 | appendToCurIG(id); |
6532 | } |
6533 | |
6534 | /***************************************************************************** |
6535 | * |
6536 | * Add an instruction referencing two register and consectutive stack-based local variable slots. |
6537 | */ |
6538 | void emitter::emitIns_R_R_S_S( |
6539 | instruction ins, emitAttr attr1, emitAttr attr2, regNumber reg1, regNumber reg2, int varx, int offs) |
6540 | { |
6541 | assert((ins == INS_ldp) || (ins == INS_ldnp)); |
6542 | assert(EA_8BYTE == EA_SIZE(attr1)); |
6543 | assert(EA_8BYTE == EA_SIZE(attr2)); |
6544 | assert(isGeneralRegisterOrZR(reg1)); |
6545 | assert(isGeneralRegisterOrZR(reg2)); |
6546 | assert(offs >= 0); |
6547 | |
6548 | insFormat fmt = IF_LS_3B; |
6549 | int disp = 0; |
6550 | const unsigned scale = 3; |
6551 | |
6552 | /* Figure out the variable's frame position */ |
6553 | int base; |
6554 | bool FPbased; |
6555 | |
6556 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
6557 | disp = base + offs; |
6558 | |
6559 | // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead? |
6560 | regNumber reg3 = FPbased ? REG_FPBASE : REG_SPBASE; |
6561 | reg3 = encodingSPtoZR(reg3); |
6562 | |
6563 | bool useRegForAdr = true; |
6564 | ssize_t imm = disp; |
6565 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
6566 | if (imm == 0) |
6567 | { |
6568 | useRegForAdr = false; |
6569 | } |
6570 | else |
6571 | { |
6572 | if ((imm & mask) == 0) |
6573 | { |
6574 | ssize_t immShift = imm >> scale; // The immediate is scaled by the size of the ld/st |
6575 | |
6576 | if ((immShift >= -64) && (immShift <= 63)) |
6577 | { |
6578 | fmt = IF_LS_3C; |
6579 | useRegForAdr = false; |
6580 | imm = immShift; |
6581 | } |
6582 | } |
6583 | } |
6584 | |
6585 | if (useRegForAdr) |
6586 | { |
6587 | regNumber rsvd = codeGen->rsGetRsvdReg(); |
6588 | emitIns_R_R_Imm(INS_add, EA_PTRSIZE, rsvd, reg3, imm); |
6589 | reg3 = rsvd; |
6590 | imm = 0; |
6591 | } |
6592 | |
6593 | assert(fmt != IF_NONE); |
6594 | |
6595 | instrDesc* id = emitNewInstrCns(attr1, imm); |
6596 | |
6597 | id->idIns(ins); |
6598 | id->idInsFmt(fmt); |
6599 | id->idInsOpt(INS_OPTS_NONE); |
6600 | |
6601 | // Record the attribute for the second register in the pair |
6602 | if (EA_IS_GCREF(attr2)) |
6603 | { |
6604 | id->idGCrefReg2(GCT_GCREF); |
6605 | } |
6606 | else if (EA_IS_BYREF(attr2)) |
6607 | { |
6608 | id->idGCrefReg2(GCT_BYREF); |
6609 | } |
6610 | else |
6611 | { |
6612 | id->idGCrefReg2(GCT_NONE); |
6613 | } |
6614 | |
6615 | id->idReg1(reg1); |
6616 | id->idReg2(reg2); |
6617 | id->idReg3(reg3); |
6618 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
6619 | id->idSetIsLclVar(); |
6620 | |
6621 | #ifdef DEBUG |
6622 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
6623 | #endif |
6624 | |
6625 | dispIns(id); |
6626 | appendToCurIG(id); |
6627 | } |
6628 | |
6629 | /***************************************************************************** |
6630 | * |
6631 | * Add an instruction referencing a stack-based local variable and a register |
6632 | */ |
6633 | void emitter::emitIns_S_R(instruction ins, emitAttr attr, regNumber reg1, int varx, int offs) |
6634 | { |
6635 | assert(offs >= 0); |
6636 | emitAttr size = EA_SIZE(attr); |
6637 | insFormat fmt = IF_NONE; |
6638 | int disp = 0; |
6639 | unsigned scale = 0; |
6640 | bool isVectorStore = false; |
6641 | |
6642 | // TODO-ARM64-CQ: use unscaled loads? |
6643 | /* Figure out the encoding format of the instruction */ |
6644 | switch (ins) |
6645 | { |
6646 | case INS_strb: |
6647 | scale = 0; |
6648 | assert(isGeneralRegisterOrZR(reg1)); |
6649 | break; |
6650 | |
6651 | case INS_strh: |
6652 | scale = 1; |
6653 | assert(isGeneralRegisterOrZR(reg1)); |
6654 | break; |
6655 | |
6656 | case INS_str: |
6657 | if (isGeneralRegisterOrZR(reg1)) |
6658 | { |
6659 | assert(isValidGeneralDatasize(size)); |
6660 | scale = (size == EA_8BYTE) ? 3 : 2; |
6661 | } |
6662 | else |
6663 | { |
6664 | assert(isVectorRegister(reg1)); |
6665 | assert(isValidVectorLSDatasize(size)); |
6666 | scale = NaturalScale_helper(size); |
6667 | isVectorStore = true; |
6668 | } |
6669 | break; |
6670 | |
6671 | default: |
6672 | NYI("emitIns_S_R" ); // FP locals? |
6673 | return; |
6674 | |
6675 | } // end switch (ins) |
6676 | |
6677 | /* Figure out the variable's frame position */ |
6678 | int base; |
6679 | bool FPbased; |
6680 | |
6681 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
6682 | disp = base + offs; |
6683 | assert(scale >= 0); |
6684 | if (isVectorStore) |
6685 | { |
6686 | assert(scale <= 4); |
6687 | } |
6688 | else |
6689 | { |
6690 | assert(scale <= 3); |
6691 | } |
6692 | |
6693 | // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead? |
6694 | regNumber reg2 = FPbased ? REG_FPBASE : REG_SPBASE; |
6695 | reg2 = encodingSPtoZR(reg2); |
6696 | |
6697 | bool useRegForImm = false; |
6698 | ssize_t imm = disp; |
6699 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
6700 | if (imm == 0) |
6701 | { |
6702 | fmt = IF_LS_2A; |
6703 | } |
6704 | else if ((imm < 0) || ((imm & mask) != 0)) |
6705 | { |
6706 | if ((imm >= -256) && (imm <= 255)) |
6707 | { |
6708 | fmt = IF_LS_2C; |
6709 | } |
6710 | else |
6711 | { |
6712 | useRegForImm = true; |
6713 | } |
6714 | } |
6715 | else if (imm > 0) |
6716 | { |
6717 | if (((imm & mask) == 0) && ((imm >> scale) < 0x1000)) |
6718 | { |
6719 | imm >>= scale; // The immediate is scaled by the size of the ld/st |
6720 | |
6721 | fmt = IF_LS_2B; |
6722 | } |
6723 | else |
6724 | { |
6725 | useRegForImm = true; |
6726 | } |
6727 | } |
6728 | |
6729 | if (useRegForImm) |
6730 | { |
6731 | // The reserved register is not stored in idReg3() since that field overlaps with iiaLclVar. |
6732 | // It is instead implicit when idSetIsLclVar() is set, with this encoding format. |
6733 | regNumber rsvdReg = codeGen->rsGetRsvdReg(); |
6734 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, rsvdReg, imm); |
6735 | fmt = IF_LS_3A; |
6736 | } |
6737 | |
6738 | assert(fmt != IF_NONE); |
6739 | |
6740 | instrDesc* id = emitNewInstrCns(attr, imm); |
6741 | |
6742 | id->idIns(ins); |
6743 | id->idInsFmt(fmt); |
6744 | id->idInsOpt(INS_OPTS_NONE); |
6745 | |
6746 | id->idReg1(reg1); |
6747 | id->idReg2(reg2); |
6748 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
6749 | id->idSetIsLclVar(); |
6750 | |
6751 | #ifdef DEBUG |
6752 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
6753 | #endif |
6754 | |
6755 | dispIns(id); |
6756 | appendToCurIG(id); |
6757 | } |
6758 | |
6759 | /***************************************************************************** |
6760 | * |
6761 | * Add an instruction referencing consecutive stack-based local variable slots and two registers |
6762 | */ |
6763 | void emitter::emitIns_S_S_R_R( |
6764 | instruction ins, emitAttr attr1, emitAttr attr2, regNumber reg1, regNumber reg2, int varx, int offs) |
6765 | { |
6766 | assert((ins == INS_stp) || (ins == INS_stnp)); |
6767 | assert(EA_8BYTE == EA_SIZE(attr1)); |
6768 | assert(EA_8BYTE == EA_SIZE(attr2)); |
6769 | assert(isGeneralRegisterOrZR(reg1)); |
6770 | assert(isGeneralRegisterOrZR(reg2)); |
6771 | assert(offs >= 0); |
6772 | |
6773 | insFormat fmt = IF_LS_3B; |
6774 | int disp = 0; |
6775 | const unsigned scale = 3; |
6776 | |
6777 | /* Figure out the variable's frame position */ |
6778 | int base; |
6779 | bool FPbased; |
6780 | |
6781 | base = emitComp->lvaFrameAddress(varx, &FPbased); |
6782 | disp = base + offs; |
6783 | |
6784 | // TODO-ARM64-CQ: with compLocallocUsed, should we use REG_SAVED_LOCALLOC_SP instead? |
6785 | regNumber reg3 = FPbased ? REG_FPBASE : REG_SPBASE; |
6786 | |
6787 | bool useRegForAdr = true; |
6788 | ssize_t imm = disp; |
6789 | ssize_t mask = (1 << scale) - 1; // the mask of low bits that must be zero to encode the immediate |
6790 | if (imm == 0) |
6791 | { |
6792 | useRegForAdr = false; |
6793 | } |
6794 | else |
6795 | { |
6796 | if ((imm & mask) == 0) |
6797 | { |
6798 | ssize_t immShift = imm >> scale; // The immediate is scaled by the size of the ld/st |
6799 | |
6800 | if ((immShift >= -64) && (immShift <= 63)) |
6801 | { |
6802 | fmt = IF_LS_3C; |
6803 | useRegForAdr = false; |
6804 | imm = immShift; |
6805 | } |
6806 | } |
6807 | } |
6808 | |
6809 | if (useRegForAdr) |
6810 | { |
6811 | regNumber rsvd = codeGen->rsGetRsvdReg(); |
6812 | emitIns_R_R_Imm(INS_add, EA_PTRSIZE, rsvd, reg3, imm); |
6813 | reg3 = rsvd; |
6814 | imm = 0; |
6815 | } |
6816 | |
6817 | assert(fmt != IF_NONE); |
6818 | |
6819 | instrDesc* id = emitNewInstrCns(attr1, imm); |
6820 | |
6821 | id->idIns(ins); |
6822 | id->idInsFmt(fmt); |
6823 | id->idInsOpt(INS_OPTS_NONE); |
6824 | |
6825 | // Record the attribute for the second register in the pair |
6826 | if (EA_IS_GCREF(attr2)) |
6827 | { |
6828 | id->idGCrefReg2(GCT_GCREF); |
6829 | } |
6830 | else if (EA_IS_BYREF(attr2)) |
6831 | { |
6832 | id->idGCrefReg2(GCT_BYREF); |
6833 | } |
6834 | else |
6835 | { |
6836 | id->idGCrefReg2(GCT_NONE); |
6837 | } |
6838 | |
6839 | reg3 = encodingSPtoZR(reg3); |
6840 | |
6841 | id->idReg1(reg1); |
6842 | id->idReg2(reg2); |
6843 | id->idReg3(reg3); |
6844 | id->idAddr()->iiaLclVar.initLclVarAddr(varx, offs); |
6845 | id->idSetIsLclVar(); |
6846 | |
6847 | #ifdef DEBUG |
6848 | id->idDebugOnlyInfo()->idVarRefOffs = emitVarRefOffs; |
6849 | #endif |
6850 | |
6851 | dispIns(id); |
6852 | appendToCurIG(id); |
6853 | } |
6854 | |
6855 | /***************************************************************************** |
6856 | * |
6857 | * Add an instruction referencing stack-based local variable and an immediate |
6858 | */ |
6859 | void emitter::emitIns_S_I(instruction ins, emitAttr attr, int varx, int offs, int val) |
6860 | { |
6861 | NYI("emitIns_S_I" ); |
6862 | } |
6863 | |
6864 | /***************************************************************************** |
6865 | * |
6866 | * Add an instruction with a register + static member operands. |
6867 | * Constant is stored into JIT data which is adjacent to code. |
6868 | * No relocation is needed. PC-relative offset will be encoded directly into instruction. |
6869 | * |
6870 | */ |
6871 | void emitter::emitIns_R_C( |
6872 | instruction ins, emitAttr attr, regNumber reg, regNumber addrReg, CORINFO_FIELD_HANDLE fldHnd, int offs) |
6873 | { |
6874 | assert(offs >= 0); |
6875 | assert(instrDesc::fitsInSmallCns(offs)); |
6876 | |
6877 | emitAttr size = EA_SIZE(attr); |
6878 | insFormat fmt = IF_NONE; |
6879 | int disp = 0; |
6880 | instrDescJmp* id = emitNewInstrJmp(); |
6881 | |
6882 | switch (ins) |
6883 | { |
6884 | case INS_adr: |
6885 | // This is case to get address to the constant data. |
6886 | fmt = IF_LARGEADR; |
6887 | assert(isGeneralRegister(reg)); |
6888 | assert(isValidGeneralDatasize(size)); |
6889 | break; |
6890 | |
6891 | case INS_ldr: |
6892 | fmt = IF_LARGELDC; |
6893 | if (isVectorRegister(reg)) |
6894 | { |
6895 | assert(isValidScalarDatasize(size)); |
6896 | // For vector (float/double) register, we should have an integer address reg to |
6897 | // compute long address which consists of page address and page offset. |
6898 | // For integer constant, this is not needed since the dest reg can be used to |
6899 | // compute address as well as contain the final contents. |
6900 | assert(isGeneralRegister(reg) || (addrReg != REG_NA)); |
6901 | } |
6902 | else |
6903 | { |
6904 | assert(isGeneralRegister(reg)); |
6905 | assert(isValidGeneralDatasize(size)); |
6906 | } |
6907 | break; |
6908 | default: |
6909 | unreached(); |
6910 | } |
6911 | |
6912 | assert(fmt != IF_NONE); |
6913 | |
6914 | id->idIns(ins); |
6915 | id->idInsFmt(fmt); |
6916 | id->idInsOpt(INS_OPTS_NONE); |
6917 | id->idSmallCns(offs); |
6918 | id->idOpSize(size); |
6919 | id->idAddr()->iiaFieldHnd = fldHnd; |
6920 | id->idSetIsBound(); // We won't patch address since we will know the exact distance once JIT code and data are |
6921 | // allocated together. |
6922 | |
6923 | id->idReg1(reg); // destination register that will get the constant value. |
6924 | if (addrReg != REG_NA) |
6925 | { |
6926 | id->idReg2(addrReg); // integer register to compute long address (used for vector dest when we end up with long |
6927 | // address) |
6928 | } |
6929 | id->idjShort = false; // Assume loading constant from long address |
6930 | |
6931 | // Keep it long if it's in cold code. |
6932 | id->idjKeepLong = emitComp->fgIsBlockCold(emitComp->compCurBB); |
6933 | |
6934 | #ifdef DEBUG |
6935 | if (emitComp->opts.compLongAddress) |
6936 | id->idjKeepLong = 1; |
6937 | #endif // DEBUG |
6938 | |
6939 | // If it's possible to be shortened, then put it in jump list |
6940 | // to be revisited by emitJumpDistBind. |
6941 | if (!id->idjKeepLong) |
6942 | { |
6943 | /* Record the jump's IG and offset within it */ |
6944 | id->idjIG = emitCurIG; |
6945 | id->idjOffs = emitCurIGsize; |
6946 | |
6947 | /* Append this jump to this IG's jump list */ |
6948 | id->idjNext = emitCurIGjmpList; |
6949 | emitCurIGjmpList = id; |
6950 | |
6951 | #if EMITTER_STATS |
6952 | emitTotalIGjmps++; |
6953 | #endif |
6954 | } |
6955 | |
6956 | dispIns(id); |
6957 | appendToCurIG(id); |
6958 | } |
6959 | |
6960 | /***************************************************************************** |
6961 | * |
6962 | * Add an instruction with a static member + constant. |
6963 | */ |
6964 | |
6965 | void emitter::emitIns_C_I(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, ssize_t offs, ssize_t val) |
6966 | { |
6967 | NYI("emitIns_C_I" ); |
6968 | } |
6969 | |
6970 | /***************************************************************************** |
6971 | * |
6972 | * Add an instruction with a static member + register operands. |
6973 | */ |
6974 | |
6975 | void emitter::emitIns_C_R(instruction ins, emitAttr attr, CORINFO_FIELD_HANDLE fldHnd, regNumber reg, int offs) |
6976 | { |
6977 | assert(!"emitIns_C_R not supported for RyuJIT backend" ); |
6978 | } |
6979 | |
6980 | void emitter::emitIns_R_AR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs) |
6981 | { |
6982 | NYI("emitIns_R_AR" ); |
6983 | } |
6984 | |
6985 | // This computes address from the immediate which is relocatable. |
6986 | void emitter::emitIns_R_AI(instruction ins, emitAttr attr, regNumber ireg, ssize_t addr) |
6987 | { |
6988 | assert(EA_IS_RELOC(attr)); |
6989 | emitAttr size = EA_SIZE(attr); |
6990 | insFormat fmt = IF_DI_1E; |
6991 | bool needAdd = false; |
6992 | instrDescJmp* id = emitNewInstrJmp(); |
6993 | |
6994 | switch (ins) |
6995 | { |
6996 | case INS_adrp: |
6997 | // This computes page address. |
6998 | // page offset is needed using add. |
6999 | needAdd = true; |
7000 | break; |
7001 | case INS_adr: |
7002 | break; |
7003 | default: |
7004 | unreached(); |
7005 | } |
7006 | |
7007 | id->idIns(ins); |
7008 | id->idInsFmt(fmt); |
7009 | id->idInsOpt(INS_OPTS_NONE); |
7010 | id->idOpSize(size); |
7011 | id->idAddr()->iiaAddr = (BYTE*)addr; |
7012 | id->idReg1(ireg); |
7013 | id->idSetIsDspReloc(); |
7014 | |
7015 | dispIns(id); |
7016 | appendToCurIG(id); |
7017 | |
7018 | if (needAdd) |
7019 | { |
7020 | // add reg, reg, imm |
7021 | ins = INS_add; |
7022 | fmt = IF_DI_2A; |
7023 | instrDesc* id = emitAllocInstr(attr); |
7024 | assert(id->idIsReloc()); |
7025 | |
7026 | id->idIns(ins); |
7027 | id->idInsFmt(fmt); |
7028 | id->idInsOpt(INS_OPTS_NONE); |
7029 | id->idOpSize(size); |
7030 | id->idAddr()->iiaAddr = (BYTE*)addr; |
7031 | id->idReg1(ireg); |
7032 | id->idReg2(ireg); |
7033 | |
7034 | dispIns(id); |
7035 | appendToCurIG(id); |
7036 | } |
7037 | } |
7038 | |
7039 | void emitter::emitIns_AR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, int offs) |
7040 | { |
7041 | NYI("emitIns_AR_R" ); |
7042 | } |
7043 | |
7044 | void emitter::emitIns_R_ARR(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp) |
7045 | { |
7046 | NYI("emitIns_R_ARR" ); |
7047 | } |
7048 | |
7049 | void emitter::emitIns_ARR_R(instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, int disp) |
7050 | { |
7051 | NYI("emitIns_R_ARR" ); |
7052 | } |
7053 | |
7054 | void emitter::emitIns_R_ARX( |
7055 | instruction ins, emitAttr attr, regNumber ireg, regNumber reg, regNumber rg2, unsigned mul, int disp) |
7056 | { |
7057 | NYI("emitIns_R_ARR" ); |
7058 | } |
7059 | |
7060 | /***************************************************************************** |
7061 | * |
7062 | * Record that a jump instruction uses the short encoding |
7063 | * |
7064 | */ |
7065 | void emitter::emitSetShortJump(instrDescJmp* id) |
7066 | { |
7067 | if (id->idjKeepLong) |
7068 | return; |
7069 | |
7070 | insFormat fmt = IF_NONE; |
7071 | if (emitIsCondJump(id)) |
7072 | { |
7073 | switch (id->idIns()) |
7074 | { |
7075 | case INS_cbz: |
7076 | case INS_cbnz: |
7077 | fmt = IF_BI_1A; |
7078 | break; |
7079 | case INS_tbz: |
7080 | case INS_tbnz: |
7081 | fmt = IF_BI_1B; |
7082 | break; |
7083 | default: |
7084 | fmt = IF_BI_0B; |
7085 | break; |
7086 | } |
7087 | } |
7088 | else if (emitIsLoadLabel(id)) |
7089 | { |
7090 | fmt = IF_DI_1E; |
7091 | } |
7092 | else if (emitIsLoadConstant(id)) |
7093 | { |
7094 | fmt = IF_LS_1A; |
7095 | } |
7096 | else |
7097 | { |
7098 | unreached(); |
7099 | } |
7100 | |
7101 | id->idInsFmt(fmt); |
7102 | id->idjShort = true; |
7103 | } |
7104 | |
7105 | /***************************************************************************** |
7106 | * |
7107 | * Add a label instruction. |
7108 | */ |
7109 | |
7110 | void emitter::emitIns_R_L(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg) |
7111 | { |
7112 | assert(dst->bbFlags & BBF_JMP_TARGET); |
7113 | |
7114 | insFormat fmt = IF_NONE; |
7115 | |
7116 | switch (ins) |
7117 | { |
7118 | case INS_adr: |
7119 | fmt = IF_LARGEADR; |
7120 | break; |
7121 | default: |
7122 | unreached(); |
7123 | } |
7124 | |
7125 | instrDescJmp* id = emitNewInstrJmp(); |
7126 | |
7127 | id->idIns(ins); |
7128 | id->idInsFmt(fmt); |
7129 | id->idjShort = false; |
7130 | id->idAddr()->iiaBBlabel = dst; |
7131 | id->idReg1(reg); |
7132 | id->idOpSize(EA_PTRSIZE); |
7133 | |
7134 | #ifdef DEBUG |
7135 | // Mark the catch return |
7136 | if (emitComp->compCurBB->bbJumpKind == BBJ_EHCATCHRET) |
7137 | { |
7138 | id->idDebugOnlyInfo()->idCatchRet = true; |
7139 | } |
7140 | #endif // DEBUG |
7141 | |
7142 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
7143 | |
7144 | #ifdef DEBUG |
7145 | if (emitComp->opts.compLongAddress) |
7146 | id->idjKeepLong = 1; |
7147 | #endif // DEBUG |
7148 | |
7149 | /* Record the jump's IG and offset within it */ |
7150 | |
7151 | id->idjIG = emitCurIG; |
7152 | id->idjOffs = emitCurIGsize; |
7153 | |
7154 | /* Append this jump to this IG's jump list */ |
7155 | |
7156 | id->idjNext = emitCurIGjmpList; |
7157 | emitCurIGjmpList = id; |
7158 | |
7159 | #if EMITTER_STATS |
7160 | emitTotalIGjmps++; |
7161 | #endif |
7162 | |
7163 | dispIns(id); |
7164 | appendToCurIG(id); |
7165 | } |
7166 | |
7167 | /***************************************************************************** |
7168 | * |
7169 | * Add a data label instruction. |
7170 | */ |
7171 | |
7172 | void emitter::emitIns_R_D(instruction ins, emitAttr attr, unsigned offs, regNumber reg) |
7173 | { |
7174 | NYI("emitIns_R_D" ); |
7175 | } |
7176 | |
7177 | void emitter::emitIns_J_R(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg) |
7178 | { |
7179 | assert((ins == INS_cbz) || (ins == INS_cbnz)); |
7180 | |
7181 | assert(dst != nullptr); |
7182 | assert((dst->bbFlags & BBF_JMP_TARGET) != 0); |
7183 | |
7184 | insFormat fmt = IF_LARGEJMP; |
7185 | |
7186 | instrDescJmp* id = emitNewInstrJmp(); |
7187 | |
7188 | id->idIns(ins); |
7189 | id->idInsFmt(fmt); |
7190 | id->idReg1(reg); |
7191 | id->idjShort = false; |
7192 | id->idOpSize(EA_SIZE(attr)); |
7193 | |
7194 | id->idAddr()->iiaBBlabel = dst; |
7195 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
7196 | |
7197 | /* Record the jump's IG and offset within it */ |
7198 | |
7199 | id->idjIG = emitCurIG; |
7200 | id->idjOffs = emitCurIGsize; |
7201 | |
7202 | /* Append this jump to this IG's jump list */ |
7203 | |
7204 | id->idjNext = emitCurIGjmpList; |
7205 | emitCurIGjmpList = id; |
7206 | |
7207 | #if EMITTER_STATS |
7208 | emitTotalIGjmps++; |
7209 | #endif |
7210 | |
7211 | dispIns(id); |
7212 | appendToCurIG(id); |
7213 | } |
7214 | |
7215 | void emitter::emitIns_J_R_I(instruction ins, emitAttr attr, BasicBlock* dst, regNumber reg, int imm) |
7216 | { |
7217 | assert((ins == INS_tbz) || (ins == INS_tbnz)); |
7218 | |
7219 | assert(dst != nullptr); |
7220 | assert((dst->bbFlags & BBF_JMP_TARGET) != 0); |
7221 | assert((EA_SIZE(attr) == EA_4BYTE) || (EA_SIZE(attr) == EA_8BYTE)); |
7222 | assert(imm < ((EA_SIZE(attr) == EA_4BYTE) ? 32 : 64)); |
7223 | |
7224 | insFormat fmt = IF_LARGEJMP; |
7225 | |
7226 | instrDescJmp* id = emitNewInstrJmp(); |
7227 | |
7228 | id->idIns(ins); |
7229 | id->idInsFmt(fmt); |
7230 | id->idReg1(reg); |
7231 | id->idjShort = false; |
7232 | id->idSmallCns(imm); |
7233 | id->idOpSize(EA_SIZE(attr)); |
7234 | |
7235 | id->idAddr()->iiaBBlabel = dst; |
7236 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
7237 | |
7238 | /* Record the jump's IG and offset within it */ |
7239 | |
7240 | id->idjIG = emitCurIG; |
7241 | id->idjOffs = emitCurIGsize; |
7242 | |
7243 | /* Append this jump to this IG's jump list */ |
7244 | |
7245 | id->idjNext = emitCurIGjmpList; |
7246 | emitCurIGjmpList = id; |
7247 | |
7248 | #if EMITTER_STATS |
7249 | emitTotalIGjmps++; |
7250 | #endif |
7251 | |
7252 | dispIns(id); |
7253 | appendToCurIG(id); |
7254 | } |
7255 | |
7256 | void emitter::emitIns_J(instruction ins, BasicBlock* dst, int instrCount) |
7257 | { |
7258 | insFormat fmt = IF_NONE; |
7259 | |
7260 | if (dst != nullptr) |
7261 | { |
7262 | assert(dst->bbFlags & BBF_JMP_TARGET); |
7263 | } |
7264 | else |
7265 | { |
7266 | assert(instrCount != 0); |
7267 | } |
7268 | |
7269 | /* Figure out the encoding format of the instruction */ |
7270 | |
7271 | bool idjShort = false; |
7272 | switch (ins) |
7273 | { |
7274 | case INS_bl_local: |
7275 | case INS_b: |
7276 | // Unconditional jump is a single form. |
7277 | idjShort = true; |
7278 | fmt = IF_BI_0A; |
7279 | break; |
7280 | |
7281 | case INS_beq: |
7282 | case INS_bne: |
7283 | case INS_bhs: |
7284 | case INS_blo: |
7285 | case INS_bmi: |
7286 | case INS_bpl: |
7287 | case INS_bvs: |
7288 | case INS_bvc: |
7289 | case INS_bhi: |
7290 | case INS_bls: |
7291 | case INS_bge: |
7292 | case INS_blt: |
7293 | case INS_bgt: |
7294 | case INS_ble: |
7295 | // Assume conditional jump is long. |
7296 | fmt = IF_LARGEJMP; |
7297 | break; |
7298 | |
7299 | default: |
7300 | unreached(); |
7301 | break; |
7302 | } |
7303 | |
7304 | instrDescJmp* id = emitNewInstrJmp(); |
7305 | |
7306 | id->idIns(ins); |
7307 | id->idInsFmt(fmt); |
7308 | id->idjShort = idjShort; |
7309 | |
7310 | #ifdef DEBUG |
7311 | // Mark the finally call |
7312 | if (ins == INS_bl_local && emitComp->compCurBB->bbJumpKind == BBJ_CALLFINALLY) |
7313 | { |
7314 | id->idDebugOnlyInfo()->idFinallyCall = true; |
7315 | } |
7316 | #endif // DEBUG |
7317 | |
7318 | if (dst != nullptr) |
7319 | { |
7320 | id->idAddr()->iiaBBlabel = dst; |
7321 | |
7322 | // Skip unconditional jump that has a single form. |
7323 | // TODO-ARM64-NYI: enable hot/cold splittingNYI. |
7324 | // The target needs to be relocated. |
7325 | if (!idjShort) |
7326 | { |
7327 | id->idjKeepLong = emitComp->fgInDifferentRegions(emitComp->compCurBB, dst); |
7328 | |
7329 | #ifdef DEBUG |
7330 | if (emitComp->opts.compLongAddress) // Force long branches |
7331 | id->idjKeepLong = 1; |
7332 | #endif // DEBUG |
7333 | } |
7334 | } |
7335 | else |
7336 | { |
7337 | id->idAddr()->iiaSetInstrCount(instrCount); |
7338 | id->idjKeepLong = false; |
7339 | /* This jump must be short */ |
7340 | emitSetShortJump(id); |
7341 | id->idSetIsBound(); |
7342 | } |
7343 | |
7344 | /* Record the jump's IG and offset within it */ |
7345 | |
7346 | id->idjIG = emitCurIG; |
7347 | id->idjOffs = emitCurIGsize; |
7348 | |
7349 | /* Append this jump to this IG's jump list */ |
7350 | |
7351 | id->idjNext = emitCurIGjmpList; |
7352 | emitCurIGjmpList = id; |
7353 | |
7354 | #if EMITTER_STATS |
7355 | emitTotalIGjmps++; |
7356 | #endif |
7357 | |
7358 | dispIns(id); |
7359 | appendToCurIG(id); |
7360 | } |
7361 | |
7362 | /***************************************************************************** |
7363 | * |
7364 | * Add a call instruction (direct or indirect). |
7365 | * argSize<0 means that the caller will pop the arguments |
7366 | * |
7367 | * The other arguments are interpreted depending on callType as shown: |
7368 | * Unless otherwise specified, ireg,xreg,xmul,disp should have default values. |
7369 | * |
7370 | * EC_FUNC_TOKEN : addr is the method address |
7371 | * EC_FUNC_ADDR : addr is the absolute address of the function |
7372 | * |
7373 | * If callType is one of these emitCallTypes, addr has to be NULL. |
7374 | * EC_INDIR_R : "call ireg". |
7375 | * |
7376 | * For ARM xreg, xmul and disp are never used and should always be 0/REG_NA. |
7377 | * |
7378 | * Please consult the "debugger team notification" comment in genFnProlog(). |
7379 | */ |
7380 | |
7381 | void emitter::emitIns_Call(EmitCallType callType, |
7382 | CORINFO_METHOD_HANDLE methHnd, |
7383 | INDEBUG_LDISASM_COMMA(CORINFO_SIG_INFO* sigInfo) // used to report call sites to the EE |
7384 | void* addr, |
7385 | ssize_t argSize, |
7386 | emitAttr retSize, |
7387 | emitAttr secondRetSize, |
7388 | VARSET_VALARG_TP ptrVars, |
7389 | regMaskTP gcrefRegs, |
7390 | regMaskTP byrefRegs, |
7391 | IL_OFFSETX ilOffset /* = BAD_IL_OFFSET */, |
7392 | regNumber ireg /* = REG_NA */, |
7393 | regNumber xreg /* = REG_NA */, |
7394 | unsigned xmul /* = 0 */, |
7395 | ssize_t disp /* = 0 */, |
7396 | bool isJump /* = false */) |
7397 | { |
7398 | /* Sanity check the arguments depending on callType */ |
7399 | |
7400 | assert(callType < EC_COUNT); |
7401 | assert((callType != EC_FUNC_TOKEN && callType != EC_FUNC_ADDR) || |
7402 | (ireg == REG_NA && xreg == REG_NA && xmul == 0 && disp == 0)); |
7403 | assert(callType < EC_INDIR_R || addr == NULL); |
7404 | assert(callType != EC_INDIR_R || (ireg < REG_COUNT && xreg == REG_NA && xmul == 0 && disp == 0)); |
7405 | |
7406 | // ARM never uses these |
7407 | assert(xreg == REG_NA && xmul == 0 && disp == 0); |
7408 | |
7409 | // Our stack level should be always greater than the bytes of arguments we push. Just |
7410 | // a sanity test. |
7411 | assert((unsigned)abs(argSize) <= codeGen->genStackLevel); |
7412 | |
7413 | // Trim out any callee-trashed registers from the live set. |
7414 | regMaskTP savedSet = emitGetGCRegsSavedOrModified(methHnd); |
7415 | gcrefRegs &= savedSet; |
7416 | byrefRegs &= savedSet; |
7417 | |
7418 | #ifdef DEBUG |
7419 | if (EMIT_GC_VERBOSE) |
7420 | { |
7421 | printf("Call: GCvars=%s " , VarSetOps::ToString(emitComp, ptrVars)); |
7422 | dumpConvertedVarSet(emitComp, ptrVars); |
7423 | printf(", gcrefRegs=" ); |
7424 | printRegMaskInt(gcrefRegs); |
7425 | emitDispRegSet(gcrefRegs); |
7426 | printf(", byrefRegs=" ); |
7427 | printRegMaskInt(byrefRegs); |
7428 | emitDispRegSet(byrefRegs); |
7429 | printf("\n" ); |
7430 | } |
7431 | #endif |
7432 | |
7433 | /* Managed RetVal: emit sequence point for the call */ |
7434 | if (emitComp->opts.compDbgInfo && ilOffset != BAD_IL_OFFSET) |
7435 | { |
7436 | codeGen->genIPmappingAdd(ilOffset, false); |
7437 | } |
7438 | |
7439 | /* |
7440 | We need to allocate the appropriate instruction descriptor based |
7441 | on whether this is a direct/indirect call, and whether we need to |
7442 | record an updated set of live GC variables. |
7443 | */ |
7444 | instrDesc* id; |
7445 | |
7446 | assert(argSize % REGSIZE_BYTES == 0); |
7447 | int argCnt = (int)(argSize / (int)REGSIZE_BYTES); |
7448 | |
7449 | if (callType >= EC_INDIR_R) |
7450 | { |
7451 | /* Indirect call, virtual calls */ |
7452 | |
7453 | assert(callType == EC_INDIR_R); |
7454 | |
7455 | id = emitNewInstrCallInd(argCnt, disp, ptrVars, gcrefRegs, byrefRegs, retSize, secondRetSize); |
7456 | } |
7457 | else |
7458 | { |
7459 | /* Helper/static/nonvirtual/function calls (direct or through handle), |
7460 | and calls to an absolute addr. */ |
7461 | |
7462 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR); |
7463 | |
7464 | id = emitNewInstrCallDir(argCnt, ptrVars, gcrefRegs, byrefRegs, retSize, secondRetSize); |
7465 | } |
7466 | |
7467 | /* Update the emitter's live GC ref sets */ |
7468 | |
7469 | VarSetOps::Assign(emitComp, emitThisGCrefVars, ptrVars); |
7470 | emitThisGCrefRegs = gcrefRegs; |
7471 | emitThisByrefRegs = byrefRegs; |
7472 | |
7473 | id->idSetIsNoGC(emitNoGChelper(methHnd)); |
7474 | |
7475 | /* Set the instruction - special case jumping a function */ |
7476 | instruction ins; |
7477 | insFormat fmt = IF_NONE; |
7478 | |
7479 | /* Record the address: method, indirection, or funcptr */ |
7480 | |
7481 | if (callType > EC_FUNC_ADDR) |
7482 | { |
7483 | /* This is an indirect call (either a virtual call or func ptr call) */ |
7484 | |
7485 | switch (callType) |
7486 | { |
7487 | case EC_INDIR_R: // the address is in a register |
7488 | |
7489 | id->idSetIsCallRegPtr(); |
7490 | |
7491 | if (isJump) |
7492 | { |
7493 | ins = INS_br_tail; // INS_br_tail Reg |
7494 | } |
7495 | else |
7496 | { |
7497 | ins = INS_blr; // INS_blr Reg |
7498 | } |
7499 | fmt = IF_BR_1B; |
7500 | |
7501 | id->idIns(ins); |
7502 | id->idInsFmt(fmt); |
7503 | |
7504 | id->idReg3(ireg); |
7505 | assert(xreg == REG_NA); |
7506 | break; |
7507 | |
7508 | default: |
7509 | NO_WAY("unexpected instruction" ); |
7510 | break; |
7511 | } |
7512 | } |
7513 | else |
7514 | { |
7515 | /* This is a simple direct call: "call helper/method/addr" */ |
7516 | |
7517 | assert(callType == EC_FUNC_TOKEN || callType == EC_FUNC_ADDR); |
7518 | |
7519 | assert(addr != NULL); |
7520 | |
7521 | if (isJump) |
7522 | { |
7523 | ins = INS_b_tail; // INS_b_tail imm28 |
7524 | } |
7525 | else |
7526 | { |
7527 | ins = INS_bl; // INS_bl imm28 |
7528 | } |
7529 | fmt = IF_BI_0C; |
7530 | |
7531 | id->idIns(ins); |
7532 | id->idInsFmt(fmt); |
7533 | |
7534 | id->idAddr()->iiaAddr = (BYTE*)addr; |
7535 | |
7536 | if (callType == EC_FUNC_ADDR) |
7537 | { |
7538 | id->idSetIsCallAddr(); |
7539 | } |
7540 | |
7541 | if (emitComp->opts.compReloc) |
7542 | { |
7543 | id->idSetIsDspReloc(); |
7544 | } |
7545 | } |
7546 | |
7547 | #ifdef DEBUG |
7548 | if (EMIT_GC_VERBOSE) |
7549 | { |
7550 | if (id->idIsLargeCall()) |
7551 | { |
7552 | printf("[%02u] Rec call GC vars = %s\n" , id->idDebugOnlyInfo()->idNum, |
7553 | VarSetOps::ToString(emitComp, ((instrDescCGCA*)id)->idcGCvars)); |
7554 | } |
7555 | } |
7556 | |
7557 | id->idDebugOnlyInfo()->idMemCookie = (size_t)methHnd; // method token |
7558 | id->idDebugOnlyInfo()->idCallSig = sigInfo; |
7559 | #endif // DEBUG |
7560 | |
7561 | #ifdef LATE_DISASM |
7562 | if (addr != nullptr) |
7563 | { |
7564 | codeGen->getDisAssembler().disSetMethod((size_t)addr, methHnd); |
7565 | } |
7566 | #endif // LATE_DISASM |
7567 | |
7568 | dispIns(id); |
7569 | appendToCurIG(id); |
7570 | } |
7571 | |
7572 | /***************************************************************************** |
7573 | * |
7574 | * Returns true if 'imm' is valid Cond encoding |
7575 | */ |
7576 | |
7577 | /*static*/ bool emitter::isValidImmCond(ssize_t imm) |
7578 | { |
7579 | // range check the ssize_t value, to make sure it is a small unsigned value |
7580 | // and that only the bits in the cfi.cond are set |
7581 | if ((imm < 0) || (imm > 0xF)) |
7582 | return false; |
7583 | |
7584 | condFlagsImm cfi; |
7585 | cfi.immCFVal = (unsigned)imm; |
7586 | |
7587 | return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV). |
7588 | } |
7589 | |
7590 | /***************************************************************************** |
7591 | * |
7592 | * Returns true if 'imm' is valid Cond/Flags encoding |
7593 | */ |
7594 | |
7595 | /*static*/ bool emitter::isValidImmCondFlags(ssize_t imm) |
7596 | { |
7597 | // range check the ssize_t value, to make sure it is a small unsigned value |
7598 | // and that only the bits in the cfi.cond or cfi.flags are set |
7599 | if ((imm < 0) || (imm > 0xFF)) |
7600 | return false; |
7601 | |
7602 | condFlagsImm cfi; |
7603 | cfi.immCFVal = (unsigned)imm; |
7604 | |
7605 | return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV). |
7606 | } |
7607 | |
7608 | /***************************************************************************** |
7609 | * |
7610 | * Returns true if 'imm' is valid Cond/Flags/Imm5 encoding |
7611 | */ |
7612 | |
7613 | /*static*/ bool emitter::isValidImmCondFlagsImm5(ssize_t imm) |
7614 | { |
7615 | // range check the ssize_t value, to make sure it is a small unsigned value |
7616 | // and that only the bits in the cfi.cond, cfi.flags or cfi.imm5 are set |
7617 | if ((imm < 0) || (imm > 0x1FFF)) |
7618 | return false; |
7619 | |
7620 | condFlagsImm cfi; |
7621 | cfi.immCFVal = (unsigned)imm; |
7622 | |
7623 | return (cfi.cond <= INS_COND_LE); // Don't allow 14 & 15 (AL & NV). |
7624 | } |
7625 | |
7626 | /***************************************************************************** |
7627 | * |
7628 | * Returns an encoding for the specified register used in the 'Rd' position |
7629 | */ |
7630 | |
7631 | /*static*/ emitter::code_t emitter::insEncodeReg_Rd(regNumber reg) |
7632 | { |
7633 | assert(isIntegerRegister(reg)); |
7634 | emitter::code_t ureg = (emitter::code_t)reg; |
7635 | assert((ureg >= 0) && (ureg <= 31)); |
7636 | return ureg; |
7637 | } |
7638 | |
7639 | /***************************************************************************** |
7640 | * |
7641 | * Returns an encoding for the specified register used in the 'Rt' position |
7642 | */ |
7643 | |
7644 | /*static*/ emitter::code_t emitter::insEncodeReg_Rt(regNumber reg) |
7645 | { |
7646 | assert(isIntegerRegister(reg)); |
7647 | emitter::code_t ureg = (emitter::code_t)reg; |
7648 | assert((ureg >= 0) && (ureg <= 31)); |
7649 | return ureg; |
7650 | } |
7651 | |
7652 | /***************************************************************************** |
7653 | * |
7654 | * Returns an encoding for the specified register used in the 'Rn' position |
7655 | */ |
7656 | |
7657 | /*static*/ emitter::code_t emitter::insEncodeReg_Rn(regNumber reg) |
7658 | { |
7659 | assert(isIntegerRegister(reg)); |
7660 | emitter::code_t ureg = (emitter::code_t)reg; |
7661 | assert((ureg >= 0) && (ureg <= 31)); |
7662 | return ureg << 5; |
7663 | } |
7664 | |
7665 | /***************************************************************************** |
7666 | * |
7667 | * Returns an encoding for the specified register used in the 'Rm' position |
7668 | */ |
7669 | |
7670 | /*static*/ emitter::code_t emitter::insEncodeReg_Rm(regNumber reg) |
7671 | { |
7672 | assert(isIntegerRegister(reg)); |
7673 | emitter::code_t ureg = (emitter::code_t)reg; |
7674 | assert((ureg >= 0) && (ureg <= 31)); |
7675 | return ureg << 16; |
7676 | } |
7677 | |
7678 | /***************************************************************************** |
7679 | * |
7680 | * Returns an encoding for the specified register used in the 'Ra' position |
7681 | */ |
7682 | |
7683 | /*static*/ emitter::code_t emitter::insEncodeReg_Ra(regNumber reg) |
7684 | { |
7685 | assert(isIntegerRegister(reg)); |
7686 | emitter::code_t ureg = (emitter::code_t)reg; |
7687 | assert((ureg >= 0) && (ureg <= 31)); |
7688 | return ureg << 10; |
7689 | } |
7690 | |
7691 | /***************************************************************************** |
7692 | * |
7693 | * Returns an encoding for the specified register used in the 'Vd' position |
7694 | */ |
7695 | |
7696 | /*static*/ emitter::code_t emitter::insEncodeReg_Vd(regNumber reg) |
7697 | { |
7698 | assert(emitter::isVectorRegister(reg)); |
7699 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
7700 | assert((ureg >= 0) && (ureg <= 31)); |
7701 | return ureg; |
7702 | } |
7703 | |
7704 | /***************************************************************************** |
7705 | * |
7706 | * Returns an encoding for the specified register used in the 'Vt' position |
7707 | */ |
7708 | |
7709 | /*static*/ emitter::code_t emitter::insEncodeReg_Vt(regNumber reg) |
7710 | { |
7711 | assert(emitter::isVectorRegister(reg)); |
7712 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
7713 | assert((ureg >= 0) && (ureg <= 31)); |
7714 | return ureg; |
7715 | } |
7716 | |
7717 | /***************************************************************************** |
7718 | * |
7719 | * Returns an encoding for the specified register used in the 'Vn' position |
7720 | */ |
7721 | |
7722 | /*static*/ emitter::code_t emitter::insEncodeReg_Vn(regNumber reg) |
7723 | { |
7724 | assert(emitter::isVectorRegister(reg)); |
7725 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
7726 | assert((ureg >= 0) && (ureg <= 31)); |
7727 | return ureg << 5; |
7728 | } |
7729 | |
7730 | /***************************************************************************** |
7731 | * |
7732 | * Returns an encoding for the specified register used in the 'Vm' position |
7733 | */ |
7734 | |
7735 | /*static*/ emitter::code_t emitter::insEncodeReg_Vm(regNumber reg) |
7736 | { |
7737 | assert(emitter::isVectorRegister(reg)); |
7738 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
7739 | assert((ureg >= 0) && (ureg <= 31)); |
7740 | return ureg << 16; |
7741 | } |
7742 | |
7743 | /***************************************************************************** |
7744 | * |
7745 | * Returns an encoding for the specified register used in the 'Va' position |
7746 | */ |
7747 | |
7748 | /*static*/ emitter::code_t emitter::insEncodeReg_Va(regNumber reg) |
7749 | { |
7750 | assert(emitter::isVectorRegister(reg)); |
7751 | emitter::code_t ureg = (emitter::code_t)reg - (emitter::code_t)REG_V0; |
7752 | assert((ureg >= 0) && (ureg <= 31)); |
7753 | return ureg << 10; |
7754 | } |
7755 | |
7756 | /***************************************************************************** |
7757 | * |
7758 | * Returns an encoding for the specified condition code. |
7759 | */ |
7760 | |
7761 | /*static*/ emitter::code_t emitter::insEncodeCond(insCond cond) |
7762 | { |
7763 | emitter::code_t uimm = (emitter::code_t)cond; |
7764 | return uimm << 12; |
7765 | } |
7766 | |
7767 | /***************************************************************************** |
7768 | * |
7769 | * Returns an encoding for the condition code with the lowest bit inverted (marked by invert(<cond>) in the |
7770 | * architecture manual). |
7771 | */ |
7772 | |
7773 | /*static*/ emitter::code_t emitter::insEncodeInvertedCond(insCond cond) |
7774 | { |
7775 | emitter::code_t uimm = (emitter::code_t)cond; |
7776 | uimm ^= 1; // invert the lowest bit |
7777 | return uimm << 12; |
7778 | } |
7779 | |
7780 | /***************************************************************************** |
7781 | * |
7782 | * Returns an encoding for the specified flags. |
7783 | */ |
7784 | |
7785 | /*static*/ emitter::code_t emitter::insEncodeFlags(insCflags flags) |
7786 | { |
7787 | emitter::code_t uimm = (emitter::code_t)flags; |
7788 | return uimm; |
7789 | } |
7790 | |
7791 | /***************************************************************************** |
7792 | * |
7793 | * Returns the encoding for the Shift Count bits to be used for Arm64 encodings |
7794 | */ |
7795 | |
7796 | /*static*/ emitter::code_t emitter::insEncodeShiftCount(ssize_t imm, emitAttr size) |
7797 | { |
7798 | assert((imm & 0x003F) == imm); |
7799 | assert(((imm & 0x0020) == 0) || (size == EA_8BYTE)); |
7800 | |
7801 | return (emitter::code_t)imm << 10; |
7802 | } |
7803 | |
7804 | /***************************************************************************** |
7805 | * |
7806 | * Returns the encoding to select a 64-bit datasize for an Arm64 instruction |
7807 | */ |
7808 | |
7809 | /*static*/ emitter::code_t emitter::insEncodeDatasize(emitAttr size) |
7810 | { |
7811 | if (size == EA_8BYTE) |
7812 | { |
7813 | return 0x80000000; // set the bit at location 31 |
7814 | } |
7815 | else |
7816 | { |
7817 | assert(size == EA_4BYTE); |
7818 | return 0; |
7819 | } |
7820 | } |
7821 | |
7822 | /***************************************************************************** |
7823 | * |
7824 | * Returns the encoding to select the datasize for the general load/store Arm64 instructions |
7825 | * |
7826 | */ |
7827 | |
7828 | /*static*/ emitter::code_t emitter::insEncodeDatasizeLS(emitter::code_t code, emitAttr size) |
7829 | { |
7830 | bool exclusive = ((code & 0x35000000) == 0); |
7831 | bool atomic = ((code & 0x31200C00) == 0x30200000); |
7832 | |
7833 | if ((code & 0x00800000) && !exclusive && !atomic) // Is this a sign-extending opcode? (i.e. ldrsw, ldrsh, ldrsb) |
7834 | { |
7835 | if ((code & 0x80000000) == 0) // Is it a ldrsh or ldrsb and not ldrsw ? |
7836 | { |
7837 | if (EA_SIZE(size) != EA_8BYTE) // Do we need to encode the 32-bit Rt size bit? |
7838 | { |
7839 | return 0x00400000; // set the bit at location 22 |
7840 | } |
7841 | } |
7842 | } |
7843 | else if (code & 0x80000000) // Is this a ldr/str/ldur/stur opcode? |
7844 | { |
7845 | if (EA_SIZE(size) == EA_8BYTE) // Do we need to encode the 64-bit size bit? |
7846 | { |
7847 | return 0x40000000; // set the bit at location 30 |
7848 | } |
7849 | } |
7850 | return 0; |
7851 | } |
7852 | |
7853 | /***************************************************************************** |
7854 | * |
7855 | * Returns the encoding to select the datasize for the vector load/store Arm64 instructions |
7856 | * |
7857 | */ |
7858 | |
7859 | /*static*/ emitter::code_t emitter::insEncodeDatasizeVLS(emitter::code_t code, emitAttr size) |
7860 | { |
7861 | code_t result = 0; |
7862 | |
7863 | // Check bit 29 |
7864 | if ((code & 0x20000000) == 0) |
7865 | { |
7866 | // LDR literal |
7867 | |
7868 | if (size == EA_16BYTE) |
7869 | { |
7870 | // set the operation size in bit 31 |
7871 | result = 0x80000000; |
7872 | } |
7873 | else if (size == EA_8BYTE) |
7874 | { |
7875 | // set the operation size in bit 30 |
7876 | result = 0x40000000; |
7877 | } |
7878 | else |
7879 | { |
7880 | assert(size == EA_4BYTE); |
7881 | // no bits are set |
7882 | result = 0x00000000; |
7883 | } |
7884 | } |
7885 | else |
7886 | { |
7887 | // LDR non-literal |
7888 | |
7889 | if (size == EA_16BYTE) |
7890 | { |
7891 | // The operation size in bits 31 and 30 are zero |
7892 | // Bit 23 specifies a 128-bit Load/Store |
7893 | result = 0x00800000; |
7894 | } |
7895 | else if (size == EA_8BYTE) |
7896 | { |
7897 | // set the operation size in bits 31 and 30 |
7898 | result = 0xC0000000; |
7899 | } |
7900 | else if (size == EA_4BYTE) |
7901 | { |
7902 | // set the operation size in bit 31 |
7903 | result = 0x80000000; |
7904 | } |
7905 | else if (size == EA_2BYTE) |
7906 | { |
7907 | // set the operation size in bit 30 |
7908 | result = 0x40000000; |
7909 | } |
7910 | else |
7911 | { |
7912 | assert(size == EA_1BYTE); |
7913 | // The operation size in bits 31 and 30 are zero |
7914 | result = 0x00000000; |
7915 | } |
7916 | } |
7917 | |
7918 | // Or in bit 26 to indicate a Vector register is used as 'target' |
7919 | result |= 0x04000000; |
7920 | |
7921 | return result; |
7922 | } |
7923 | |
7924 | /***************************************************************************** |
7925 | * |
7926 | * Returns the encoding to select the datasize for the vector load/store Arm64 instructions |
7927 | * |
7928 | */ |
7929 | |
7930 | /*static*/ emitter::code_t emitter::insEncodeDatasizeVPLS(emitter::code_t code, emitAttr size) |
7931 | { |
7932 | code_t result = 0; |
7933 | |
7934 | if (size == EA_16BYTE) |
7935 | { |
7936 | // The operation size in bits 31 and 30 are zero |
7937 | // Bit 23 specifies a 128-bit Load/Store |
7938 | result = 0x80000000; |
7939 | } |
7940 | else if (size == EA_8BYTE) |
7941 | { |
7942 | // set the operation size in bits 31 and 30 |
7943 | result = 0x40000000; |
7944 | } |
7945 | else if (size == EA_4BYTE) |
7946 | { |
7947 | // set the operation size in bit 31 |
7948 | result = 0x00000000; |
7949 | } |
7950 | |
7951 | // Or in bit 26 to indicate a Vector register is used as 'target' |
7952 | result |= 0x04000000; |
7953 | |
7954 | return result; |
7955 | } |
7956 | |
7957 | /***************************************************************************** |
7958 | * |
7959 | * Returns the encoding to set the size bit and the N bits for a 'bitfield' instruction |
7960 | * |
7961 | */ |
7962 | |
7963 | /*static*/ emitter::code_t emitter::insEncodeDatasizeBF(emitter::code_t code, emitAttr size) |
7964 | { |
7965 | // is bit 30 equal to 0? |
7966 | if ((code & 0x40000000) == 0) // is the opcode one of extr, sxtb, sxth or sxtw |
7967 | { |
7968 | if (size == EA_8BYTE) // Do we need to set the sf and N bits? |
7969 | { |
7970 | return 0x80400000; // set the sf-bit at location 31 and the N-bit at location 22 |
7971 | } |
7972 | } |
7973 | return 0; // don't set any bits |
7974 | } |
7975 | |
7976 | /***************************************************************************** |
7977 | * |
7978 | * Returns the encoding to select the 64/128-bit datasize for an Arm64 vector instruction |
7979 | */ |
7980 | |
7981 | /*static*/ emitter::code_t emitter::insEncodeVectorsize(emitAttr size) |
7982 | { |
7983 | if (size == EA_16BYTE) |
7984 | { |
7985 | return 0x40000000; // set the bit at location 30 |
7986 | } |
7987 | else |
7988 | { |
7989 | assert(size == EA_8BYTE); |
7990 | return 0; |
7991 | } |
7992 | } |
7993 | |
7994 | /***************************************************************************** |
7995 | * |
7996 | * Returns the encoding to select 'index' for an Arm64 vector elem instruction |
7997 | */ |
7998 | /*static*/ emitter::code_t emitter::insEncodeVectorIndex(emitAttr elemsize, ssize_t index) |
7999 | { |
8000 | code_t bits = (code_t)index; |
8001 | if (elemsize == EA_1BYTE) |
8002 | { |
8003 | bits <<= 1; |
8004 | bits |= 1; |
8005 | } |
8006 | else if (elemsize == EA_2BYTE) |
8007 | { |
8008 | bits <<= 2; |
8009 | bits |= 2; |
8010 | } |
8011 | else if (elemsize == EA_4BYTE) |
8012 | { |
8013 | bits <<= 3; |
8014 | bits |= 4; |
8015 | } |
8016 | else |
8017 | { |
8018 | assert(elemsize == EA_8BYTE); |
8019 | bits <<= 4; |
8020 | bits |= 8; |
8021 | } |
8022 | assert((bits >= 1) && (bits <= 0x1f)); |
8023 | |
8024 | return (bits << 16); // bits at locations [20,19,18,17,16] |
8025 | } |
8026 | |
8027 | /***************************************************************************** |
8028 | * |
8029 | * Returns the encoding to select 'index2' for an Arm64 'ins' elem instruction |
8030 | */ |
8031 | /*static*/ emitter::code_t emitter::insEncodeVectorIndex2(emitAttr elemsize, ssize_t index2) |
8032 | { |
8033 | code_t bits = (code_t)index2; |
8034 | if (elemsize == EA_1BYTE) |
8035 | { |
8036 | // bits are correct |
8037 | } |
8038 | else if (elemsize == EA_2BYTE) |
8039 | { |
8040 | bits <<= 1; |
8041 | } |
8042 | else if (elemsize == EA_4BYTE) |
8043 | { |
8044 | bits <<= 2; |
8045 | } |
8046 | else |
8047 | { |
8048 | assert(elemsize == EA_8BYTE); |
8049 | bits <<= 3; |
8050 | } |
8051 | assert((bits >= 0) && (bits <= 0xf)); |
8052 | |
8053 | return (bits << 11); // bits at locations [14,13,12,11] |
8054 | } |
8055 | |
8056 | /***************************************************************************** |
8057 | * |
8058 | * Returns the encoding to select the 'index' for an Arm64 'mul' by elem instruction |
8059 | */ |
8060 | /*static*/ emitter::code_t emitter::insEncodeVectorIndexLMH(emitAttr elemsize, ssize_t index) |
8061 | { |
8062 | code_t bits = 0; |
8063 | |
8064 | if (elemsize == EA_2BYTE) |
8065 | { |
8066 | assert((index >= 0) && (index <= 7)); |
8067 | if (index & 0x4) |
8068 | { |
8069 | bits |= (1 << 11); // set bit 11 'H' |
8070 | } |
8071 | if (index & 0x2) |
8072 | { |
8073 | bits |= (1 << 21); // set bit 21 'L' |
8074 | } |
8075 | if (index & 0x1) |
8076 | { |
8077 | bits |= (1 << 20); // set bit 20 'M' |
8078 | } |
8079 | } |
8080 | else if (elemsize == EA_4BYTE) |
8081 | { |
8082 | assert((index >= 0) && (index <= 3)); |
8083 | if (index & 0x2) |
8084 | { |
8085 | bits |= (1 << 11); // set bit 11 'H' |
8086 | } |
8087 | if (index & 0x1) |
8088 | { |
8089 | bits |= (1 << 21); // set bit 21 'L' |
8090 | } |
8091 | } |
8092 | else |
8093 | { |
8094 | assert(!"Invalid 'elemsize' value" ); |
8095 | } |
8096 | |
8097 | return bits; |
8098 | } |
8099 | |
8100 | /***************************************************************************** |
8101 | * |
8102 | * Returns the encoding to shift by 'shift' for an Arm64 vector or scalar instruction |
8103 | */ |
8104 | |
8105 | /*static*/ emitter::code_t emitter::insEncodeVectorShift(emitAttr size, ssize_t shift) |
8106 | { |
8107 | assert(shift < getBitWidth(size)); |
8108 | |
8109 | code_t imm = (code_t)(getBitWidth(size) + shift); |
8110 | |
8111 | return imm << 16; |
8112 | } |
8113 | |
8114 | /***************************************************************************** |
8115 | * |
8116 | * Returns the encoding to select the 1/2/4/8 byte elemsize for an Arm64 vector instruction |
8117 | */ |
8118 | |
8119 | /*static*/ emitter::code_t emitter::insEncodeElemsize(emitAttr size) |
8120 | { |
8121 | if (size == EA_8BYTE) |
8122 | { |
8123 | return 0x00C00000; // set the bit at location 23 and 22 |
8124 | } |
8125 | else if (size == EA_4BYTE) |
8126 | { |
8127 | return 0x00800000; // set the bit at location 23 |
8128 | } |
8129 | else if (size == EA_2BYTE) |
8130 | { |
8131 | return 0x00400000; // set the bit at location 22 |
8132 | } |
8133 | assert(size == EA_1BYTE); |
8134 | return 0x00000000; |
8135 | } |
8136 | |
8137 | /***************************************************************************** |
8138 | * |
8139 | * Returns the encoding to select the 4/8 byte elemsize for an Arm64 float vector instruction |
8140 | */ |
8141 | |
8142 | /*static*/ emitter::code_t emitter::insEncodeFloatElemsize(emitAttr size) |
8143 | { |
8144 | if (size == EA_8BYTE) |
8145 | { |
8146 | return 0x00400000; // set the bit at location 22 |
8147 | } |
8148 | assert(size == EA_4BYTE); |
8149 | return 0x00000000; |
8150 | } |
8151 | |
8152 | // Returns the encoding to select the index for an Arm64 float vector by elem instruction |
8153 | /*static*/ emitter::code_t emitter::insEncodeFloatIndex(emitAttr elemsize, ssize_t index) |
8154 | { |
8155 | code_t result = 0x00000000; |
8156 | if (elemsize == EA_8BYTE) |
8157 | { |
8158 | assert((index >= 0) && (index <= 1)); |
8159 | if (index == 1) |
8160 | { |
8161 | result |= 0x00000800; // 'H' - set the bit at location 11 |
8162 | } |
8163 | } |
8164 | else |
8165 | { |
8166 | assert(elemsize == EA_4BYTE); |
8167 | assert((index >= 0) && (index <= 3)); |
8168 | if (index & 2) |
8169 | { |
8170 | result |= 0x00000800; // 'H' - set the bit at location 11 |
8171 | } |
8172 | if (index & 1) |
8173 | { |
8174 | result |= 0x00200000; // 'L' - set the bit at location 21 |
8175 | } |
8176 | } |
8177 | return result; |
8178 | } |
8179 | |
8180 | /***************************************************************************** |
8181 | * |
8182 | * Returns the encoding to select the fcvt operation for Arm64 instructions |
8183 | */ |
8184 | /*static*/ emitter::code_t emitter::insEncodeConvertOpt(insFormat fmt, insOpts conversion) |
8185 | { |
8186 | code_t result = 0; |
8187 | switch (conversion) |
8188 | { |
8189 | case INS_OPTS_S_TO_D: // Single to Double |
8190 | assert(fmt == IF_DV_2J); |
8191 | result = 0x00008000; // type=00, opc=01 |
8192 | break; |
8193 | |
8194 | case INS_OPTS_D_TO_S: // Double to Single |
8195 | assert(fmt == IF_DV_2J); |
8196 | result = 0x00400000; // type=01, opc=00 |
8197 | break; |
8198 | |
8199 | case INS_OPTS_H_TO_S: // Half to Single |
8200 | assert(fmt == IF_DV_2J); |
8201 | result = 0x00C00000; // type=11, opc=00 |
8202 | break; |
8203 | |
8204 | case INS_OPTS_H_TO_D: // Half to Double |
8205 | assert(fmt == IF_DV_2J); |
8206 | result = 0x00C08000; // type=11, opc=01 |
8207 | break; |
8208 | |
8209 | case INS_OPTS_S_TO_H: // Single to Half |
8210 | assert(fmt == IF_DV_2J); |
8211 | result = 0x00018000; // type=00, opc=11 |
8212 | break; |
8213 | |
8214 | case INS_OPTS_D_TO_H: // Double to Half |
8215 | assert(fmt == IF_DV_2J); |
8216 | result = 0x00418000; // type=01, opc=11 |
8217 | break; |
8218 | |
8219 | case INS_OPTS_S_TO_4BYTE: // Single to INT32 |
8220 | assert(fmt == IF_DV_2H); |
8221 | result = 0x00000000; // sf=0, type=00 |
8222 | break; |
8223 | |
8224 | case INS_OPTS_D_TO_4BYTE: // Double to INT32 |
8225 | assert(fmt == IF_DV_2H); |
8226 | result = 0x00400000; // sf=0, type=01 |
8227 | break; |
8228 | |
8229 | case INS_OPTS_S_TO_8BYTE: // Single to INT64 |
8230 | assert(fmt == IF_DV_2H); |
8231 | result = 0x80000000; // sf=1, type=00 |
8232 | break; |
8233 | |
8234 | case INS_OPTS_D_TO_8BYTE: // Double to INT64 |
8235 | assert(fmt == IF_DV_2H); |
8236 | result = 0x80400000; // sf=1, type=01 |
8237 | break; |
8238 | |
8239 | case INS_OPTS_4BYTE_TO_S: // INT32 to Single |
8240 | assert(fmt == IF_DV_2I); |
8241 | result = 0x00000000; // sf=0, type=00 |
8242 | break; |
8243 | |
8244 | case INS_OPTS_4BYTE_TO_D: // INT32 to Double |
8245 | assert(fmt == IF_DV_2I); |
8246 | result = 0x00400000; // sf=0, type=01 |
8247 | break; |
8248 | |
8249 | case INS_OPTS_8BYTE_TO_S: // INT64 to Single |
8250 | assert(fmt == IF_DV_2I); |
8251 | result = 0x80000000; // sf=1, type=00 |
8252 | break; |
8253 | |
8254 | case INS_OPTS_8BYTE_TO_D: // INT64 to Double |
8255 | assert(fmt == IF_DV_2I); |
8256 | result = 0x80400000; // sf=1, type=01 |
8257 | break; |
8258 | |
8259 | default: |
8260 | assert(!"Invalid 'conversion' value" ); |
8261 | break; |
8262 | } |
8263 | return result; |
8264 | } |
8265 | |
8266 | /***************************************************************************** |
8267 | * |
8268 | * Returns the encoding to have the Rn register be updated Pre/Post indexed |
8269 | * or not updated |
8270 | */ |
8271 | |
8272 | /*static*/ emitter::code_t emitter::insEncodeIndexedOpt(insOpts opt) |
8273 | { |
8274 | assert(emitter::insOptsNone(opt) || emitter::insOptsIndexed(opt)); |
8275 | |
8276 | if (emitter::insOptsIndexed(opt)) |
8277 | { |
8278 | if (emitter::insOptsPostIndex(opt)) |
8279 | { |
8280 | return 0x00000400; // set the bit at location 10 |
8281 | } |
8282 | else |
8283 | { |
8284 | assert(emitter::insOptsPreIndex(opt)); |
8285 | return 0x00000C00; // set the bit at location 10 and 11 |
8286 | } |
8287 | } |
8288 | else |
8289 | { |
8290 | assert(emitter::insOptsNone(opt)); |
8291 | return 0; // bits 10 and 11 are zero |
8292 | } |
8293 | } |
8294 | |
8295 | /***************************************************************************** |
8296 | * |
8297 | * Returns the encoding for a ldp/stp instruction to have the Rn register |
8298 | * be updated Pre/Post indexed or not updated |
8299 | */ |
8300 | |
8301 | /*static*/ emitter::code_t emitter::insEncodePairIndexedOpt(instruction ins, insOpts opt) |
8302 | { |
8303 | assert(emitter::insOptsNone(opt) || emitter::insOptsIndexed(opt)); |
8304 | |
8305 | if ((ins == INS_ldnp) || (ins == INS_stnp)) |
8306 | { |
8307 | assert(emitter::insOptsNone(opt)); |
8308 | return 0; // bits 23 and 24 are zero |
8309 | } |
8310 | else |
8311 | { |
8312 | if (emitter::insOptsIndexed(opt)) |
8313 | { |
8314 | if (emitter::insOptsPostIndex(opt)) |
8315 | { |
8316 | return 0x00800000; // set the bit at location 23 |
8317 | } |
8318 | else |
8319 | { |
8320 | assert(emitter::insOptsPreIndex(opt)); |
8321 | return 0x01800000; // set the bit at location 24 and 23 |
8322 | } |
8323 | } |
8324 | else |
8325 | { |
8326 | assert(emitter::insOptsNone(opt)); |
8327 | return 0x01000000; // set the bit at location 24 |
8328 | } |
8329 | } |
8330 | } |
8331 | |
8332 | /***************************************************************************** |
8333 | * |
8334 | * Returns the encoding to apply a Shift Type on the Rm register |
8335 | */ |
8336 | |
8337 | /*static*/ emitter::code_t emitter::insEncodeShiftType(insOpts opt) |
8338 | { |
8339 | if (emitter::insOptsNone(opt)) |
8340 | { |
8341 | // None implies the we encode LSL (with a zero immediate) |
8342 | opt = INS_OPTS_LSL; |
8343 | } |
8344 | assert(emitter::insOptsAnyShift(opt)); |
8345 | |
8346 | emitter::code_t option = (emitter::code_t)opt - (emitter::code_t)INS_OPTS_LSL; |
8347 | assert(option <= 3); |
8348 | |
8349 | return option << 22; // bits 23, 22 |
8350 | } |
8351 | |
8352 | /***************************************************************************** |
8353 | * |
8354 | * Returns the encoding to apply a 12 bit left shift to the immediate |
8355 | */ |
8356 | |
8357 | /*static*/ emitter::code_t emitter::insEncodeShiftImm12(insOpts opt) |
8358 | { |
8359 | if (emitter::insOptsLSL12(opt)) |
8360 | { |
8361 | return 0x00400000; // set the bit at location 22 |
8362 | } |
8363 | return 0; |
8364 | } |
8365 | |
8366 | /***************************************************************************** |
8367 | * |
8368 | * Returns the encoding to have the Rm register use an extend operation |
8369 | */ |
8370 | |
8371 | /*static*/ emitter::code_t emitter::insEncodeExtend(insOpts opt) |
8372 | { |
8373 | if (emitter::insOptsNone(opt) || (opt == INS_OPTS_LSL)) |
8374 | { |
8375 | // None or LSL implies the we encode UXTX |
8376 | opt = INS_OPTS_UXTX; |
8377 | } |
8378 | assert(emitter::insOptsAnyExtend(opt)); |
8379 | |
8380 | emitter::code_t option = (emitter::code_t)opt - (emitter::code_t)INS_OPTS_UXTB; |
8381 | assert(option <= 7); |
8382 | |
8383 | return option << 13; // bits 15,14,13 |
8384 | } |
8385 | |
8386 | /***************************************************************************** |
8387 | * |
8388 | * Returns the encoding to scale the Rm register by {0,1,2,3,4} |
8389 | * when using an extend operation |
8390 | */ |
8391 | |
8392 | /*static*/ emitter::code_t emitter::insEncodeExtendScale(ssize_t imm) |
8393 | { |
8394 | assert((imm >= 0) && (imm <= 4)); |
8395 | |
8396 | return (emitter::code_t)imm << 10; // bits 12,11,10 |
8397 | } |
8398 | |
8399 | /***************************************************************************** |
8400 | * |
8401 | * Returns the encoding to have the Rm register be auto scaled by the ld/st size |
8402 | */ |
8403 | |
8404 | /*static*/ emitter::code_t emitter::insEncodeReg3Scale(bool isScaled) |
8405 | { |
8406 | if (isScaled) |
8407 | { |
8408 | return 0x00001000; // set the bit at location 12 |
8409 | } |
8410 | else |
8411 | { |
8412 | return 0; |
8413 | } |
8414 | } |
8415 | |
8416 | BYTE* emitter::emitOutputLoadLabel(BYTE* dst, BYTE* srcAddr, BYTE* dstAddr, instrDescJmp* id) |
8417 | { |
8418 | instruction ins = id->idIns(); |
8419 | insFormat fmt = id->idInsFmt(); |
8420 | regNumber dstReg = id->idReg1(); |
8421 | if (id->idjShort) |
8422 | { |
8423 | // adr x, [rel addr] -- compute address: current addr(ip) + rel addr. |
8424 | assert(ins == INS_adr); |
8425 | assert(fmt == IF_DI_1E); |
8426 | ssize_t distVal = (ssize_t)(dstAddr - srcAddr); |
8427 | dst = emitOutputShortAddress(dst, ins, fmt, distVal, dstReg); |
8428 | } |
8429 | else |
8430 | { |
8431 | // adrp x, [rel page addr] -- compute page address: current page addr + rel page addr |
8432 | assert(fmt == IF_LARGEADR); |
8433 | ssize_t relPageAddr = |
8434 | (((ssize_t)dstAddr & 0xFFFFFFFFFFFFF000LL) - ((ssize_t)srcAddr & 0xFFFFFFFFFFFFF000LL)) >> 12; |
8435 | dst = emitOutputShortAddress(dst, INS_adrp, IF_DI_1E, relPageAddr, dstReg); |
8436 | |
8437 | // add x, x, page offs -- compute address = page addr + page offs |
8438 | ssize_t imm12 = (ssize_t)dstAddr & 0xFFF; // 12 bits |
8439 | assert(isValidUimm12(imm12)); |
8440 | code_t code = |
8441 | emitInsCode(INS_add, IF_DI_2A); // DI_2A X0010001shiiiiii iiiiiinnnnnddddd 1100 0000 imm(i12, sh) |
8442 | code |= insEncodeDatasize(EA_8BYTE); // X |
8443 | code |= ((code_t)imm12 << 10); // iiiiiiiiiiii |
8444 | code |= insEncodeReg_Rd(dstReg); // ddddd |
8445 | code |= insEncodeReg_Rn(dstReg); // nnnnn |
8446 | dst += emitOutput_Instr(dst, code); |
8447 | } |
8448 | return dst; |
8449 | } |
8450 | |
8451 | /***************************************************************************** |
8452 | * |
8453 | * Output a local jump or other instruction with a pc-relative immediate. |
8454 | * Note that this may be invoked to overwrite an existing jump instruction at 'dst' |
8455 | * to handle forward branch patching. |
8456 | */ |
8457 | |
8458 | BYTE* emitter::emitOutputLJ(insGroup* ig, BYTE* dst, instrDesc* i) |
8459 | { |
8460 | instrDescJmp* id = (instrDescJmp*)i; |
8461 | |
8462 | unsigned srcOffs; |
8463 | unsigned dstOffs; |
8464 | BYTE* srcAddr; |
8465 | BYTE* dstAddr; |
8466 | ssize_t distVal; |
8467 | |
8468 | // Set default ins/fmt from id. |
8469 | instruction ins = id->idIns(); |
8470 | insFormat fmt = id->idInsFmt(); |
8471 | |
8472 | bool loadLabel = false; |
8473 | bool isJump = false; |
8474 | bool loadConstant = false; |
8475 | |
8476 | switch (ins) |
8477 | { |
8478 | default: |
8479 | isJump = true; |
8480 | break; |
8481 | |
8482 | case INS_tbz: |
8483 | case INS_tbnz: |
8484 | case INS_cbz: |
8485 | case INS_cbnz: |
8486 | isJump = true; |
8487 | break; |
8488 | |
8489 | case INS_ldr: |
8490 | case INS_ldrsw: |
8491 | loadConstant = true; |
8492 | break; |
8493 | |
8494 | case INS_adr: |
8495 | case INS_adrp: |
8496 | loadLabel = true; |
8497 | break; |
8498 | } |
8499 | |
8500 | /* Figure out the distance to the target */ |
8501 | |
8502 | srcOffs = emitCurCodeOffs(dst); |
8503 | srcAddr = emitOffsetToPtr(srcOffs); |
8504 | |
8505 | if (id->idAddr()->iiaIsJitDataOffset()) |
8506 | { |
8507 | assert(loadConstant || loadLabel); |
8508 | int doff = id->idAddr()->iiaGetJitDataOffset(); |
8509 | assert(doff >= 0); |
8510 | ssize_t imm = emitGetInsSC(id); |
8511 | assert((imm >= 0) && (imm < 0x1000)); // 0x1000 is arbitrary, currently 'imm' is always 0 |
8512 | |
8513 | unsigned dataOffs = (unsigned)(doff + imm); |
8514 | assert(dataOffs < emitDataSize()); |
8515 | dstAddr = emitDataOffsetToPtr(dataOffs); |
8516 | |
8517 | regNumber dstReg = id->idReg1(); |
8518 | regNumber addrReg = dstReg; // an integer register to compute long address. |
8519 | emitAttr opSize = id->idOpSize(); |
8520 | |
8521 | if (loadConstant) |
8522 | { |
8523 | if (id->idjShort) |
8524 | { |
8525 | // ldr x/v, [rel addr] -- load constant from current addr(ip) + rel addr. |
8526 | assert(ins == INS_ldr); |
8527 | assert(fmt == IF_LS_1A); |
8528 | distVal = (ssize_t)(dstAddr - srcAddr); |
8529 | dst = emitOutputShortConstant(dst, ins, fmt, distVal, dstReg, opSize); |
8530 | } |
8531 | else |
8532 | { |
8533 | // adrp x, [rel page addr] -- compute page address: current page addr + rel page addr |
8534 | assert(fmt == IF_LARGELDC); |
8535 | ssize_t relPageAddr = |
8536 | (((ssize_t)dstAddr & 0xFFFFFFFFFFFFF000LL) - ((ssize_t)srcAddr & 0xFFFFFFFFFFFFF000LL)) >> 12; |
8537 | if (isVectorRegister(dstReg)) |
8538 | { |
8539 | // Update addrReg with the reserved integer register |
8540 | // since we cannot use dstReg (vector) to load constant directly from memory. |
8541 | addrReg = id->idReg2(); |
8542 | assert(isGeneralRegister(addrReg)); |
8543 | } |
8544 | ins = INS_adrp; |
8545 | fmt = IF_DI_1E; |
8546 | dst = emitOutputShortAddress(dst, ins, fmt, relPageAddr, addrReg); |
8547 | |
8548 | // ldr x, [x, page offs] -- load constant from page address + page offset into integer register. |
8549 | ssize_t imm12 = (ssize_t)dstAddr & 0xFFF; // 12 bits |
8550 | assert(isValidUimm12(imm12)); |
8551 | ins = INS_ldr; |
8552 | fmt = IF_LS_2B; |
8553 | dst = emitOutputShortConstant(dst, ins, fmt, imm12, addrReg, opSize); |
8554 | |
8555 | // fmov v, d -- copy constant in integer register to vector register. |
8556 | // This is needed only for vector constant. |
8557 | if (addrReg != dstReg) |
8558 | { |
8559 | // fmov Vd,Rn DV_2I X00111100X100111 000000nnnnnddddd 1E27 0000 Vd,Rn |
8560 | // (scalar, from general) |
8561 | assert(isVectorRegister(dstReg) && isGeneralRegister(addrReg)); |
8562 | ins = INS_fmov; |
8563 | fmt = IF_DV_2I; |
8564 | code_t code = emitInsCode(ins, fmt); |
8565 | |
8566 | code |= insEncodeReg_Vd(dstReg); // ddddd |
8567 | code |= insEncodeReg_Rn(addrReg); // nnnnn |
8568 | if (id->idOpSize() == EA_8BYTE) |
8569 | { |
8570 | code |= 0x80400000; // X ... X |
8571 | } |
8572 | dst += emitOutput_Instr(dst, code); |
8573 | } |
8574 | } |
8575 | } |
8576 | else |
8577 | { |
8578 | assert(loadLabel); |
8579 | dst = emitOutputLoadLabel(dst, srcAddr, dstAddr, id); |
8580 | } |
8581 | |
8582 | return dst; |
8583 | } |
8584 | |
8585 | assert(loadLabel || isJump); |
8586 | |
8587 | if (id->idAddr()->iiaHasInstrCount()) |
8588 | { |
8589 | assert(ig != NULL); |
8590 | int instrCount = id->idAddr()->iiaGetInstrCount(); |
8591 | unsigned insNum = emitFindInsNum(ig, id); |
8592 | if (instrCount < 0) |
8593 | { |
8594 | // Backward branches using instruction count must be within the same instruction group. |
8595 | assert(insNum + 1 >= (unsigned)(-instrCount)); |
8596 | } |
8597 | dstOffs = ig->igOffs + emitFindOffset(ig, (insNum + 1 + instrCount)); |
8598 | dstAddr = emitOffsetToPtr(dstOffs); |
8599 | } |
8600 | else |
8601 | { |
8602 | dstOffs = id->idAddr()->iiaIGlabel->igOffs; |
8603 | dstAddr = emitOffsetToPtr(dstOffs); |
8604 | } |
8605 | |
8606 | distVal = (ssize_t)(dstAddr - srcAddr); |
8607 | |
8608 | if (dstOffs <= srcOffs) |
8609 | { |
8610 | #if DEBUG_EMIT |
8611 | /* This is a backward jump - distance is known at this point */ |
8612 | |
8613 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
8614 | { |
8615 | size_t blkOffs = id->idjIG->igOffs; |
8616 | |
8617 | if (INTERESTING_JUMP_NUM == 0) |
8618 | printf("[3] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
8619 | printf("[3] Jump block is at %08X - %02X = %08X\n" , blkOffs, emitOffsAdj, blkOffs - emitOffsAdj); |
8620 | printf("[3] Jump is at %08X - %02X = %08X\n" , srcOffs, emitOffsAdj, srcOffs - emitOffsAdj); |
8621 | printf("[3] Label block is at %08X - %02X = %08X\n" , dstOffs, emitOffsAdj, dstOffs - emitOffsAdj); |
8622 | } |
8623 | #endif |
8624 | } |
8625 | else |
8626 | { |
8627 | /* This is a forward jump - distance will be an upper limit */ |
8628 | |
8629 | emitFwdJumps = true; |
8630 | |
8631 | /* The target offset will be closer by at least 'emitOffsAdj', but only if this |
8632 | jump doesn't cross the hot-cold boundary. */ |
8633 | |
8634 | if (!emitJumpCrossHotColdBoundary(srcOffs, dstOffs)) |
8635 | { |
8636 | dstOffs -= emitOffsAdj; |
8637 | distVal -= emitOffsAdj; |
8638 | } |
8639 | |
8640 | /* Record the location of the jump for later patching */ |
8641 | |
8642 | id->idjOffs = dstOffs; |
8643 | |
8644 | /* Are we overflowing the id->idjOffs bitfield? */ |
8645 | if (id->idjOffs != dstOffs) |
8646 | IMPL_LIMITATION("Method is too large" ); |
8647 | |
8648 | #if DEBUG_EMIT |
8649 | if (id->idDebugOnlyInfo()->idNum == (unsigned)INTERESTING_JUMP_NUM || INTERESTING_JUMP_NUM == 0) |
8650 | { |
8651 | size_t blkOffs = id->idjIG->igOffs; |
8652 | |
8653 | if (INTERESTING_JUMP_NUM == 0) |
8654 | printf("[4] Jump %u:\n" , id->idDebugOnlyInfo()->idNum); |
8655 | printf("[4] Jump block is at %08X\n" , blkOffs); |
8656 | printf("[4] Jump is at %08X\n" , srcOffs); |
8657 | printf("[4] Label block is at %08X - %02X = %08X\n" , dstOffs + emitOffsAdj, emitOffsAdj, dstOffs); |
8658 | } |
8659 | #endif |
8660 | } |
8661 | |
8662 | #ifdef DEBUG |
8663 | if (0 && emitComp->verbose) |
8664 | { |
8665 | size_t sz = 4; |
8666 | int distValSize = id->idjShort ? 4 : 8; |
8667 | printf("; %s jump [%08X/%03u] from %0*X to %0*X: dist = %08XH\n" , (dstOffs <= srcOffs) ? "Fwd" : "Bwd" , |
8668 | dspPtr(id), id->idDebugOnlyInfo()->idNum, distValSize, srcOffs + sz, distValSize, dstOffs, distVal); |
8669 | } |
8670 | #endif |
8671 | |
8672 | /* For forward jumps, record the address of the distance value */ |
8673 | id->idjTemp.idjAddr = (distVal > 0) ? dst : NULL; |
8674 | |
8675 | if (emitJumpCrossHotColdBoundary(srcOffs, dstOffs)) |
8676 | { |
8677 | assert(!id->idjShort); |
8678 | NYI_ARM64("Relocation Support for long address" ); |
8679 | } |
8680 | |
8681 | assert(insOptsNone(id->idInsOpt())); |
8682 | |
8683 | if (isJump) |
8684 | { |
8685 | if (id->idjShort) |
8686 | { |
8687 | // Short conditional/unconditional jump |
8688 | assert(!id->idjKeepLong); |
8689 | assert(emitJumpCrossHotColdBoundary(srcOffs, dstOffs) == false); |
8690 | assert((fmt == IF_BI_0A) || (fmt == IF_BI_0B) || (fmt == IF_BI_1A) || (fmt == IF_BI_1B)); |
8691 | } |
8692 | else |
8693 | { |
8694 | // Long conditional jump |
8695 | assert(fmt == IF_LARGEJMP); |
8696 | // This is a pseudo-instruction format representing a large conditional branch, to allow |
8697 | // us to get a greater branch target range than we can get by using a straightforward conditional |
8698 | // branch. It is encoded as a short conditional branch that branches around a long unconditional |
8699 | // branch. |
8700 | // |
8701 | // Conceptually, we have: |
8702 | // |
8703 | // b<cond> L_target |
8704 | // |
8705 | // The code we emit is: |
8706 | // |
8707 | // b<!cond> L_not // 4 bytes. Note that we reverse the condition. |
8708 | // b L_target // 4 bytes |
8709 | // L_not: |
8710 | // |
8711 | // Note that we don't actually insert any blocks: we simply encode "b <!cond> L_not" as a branch with |
8712 | // the correct offset. Note also that this works for both integer and floating-point conditions, because |
8713 | // the condition inversion takes ordered/unordered into account, preserving NaN behavior. For example, |
8714 | // "GT" (greater than) is inverted to "LE" (less than, equal, or unordered). |
8715 | |
8716 | instruction reverseIns; |
8717 | insFormat reverseFmt; |
8718 | |
8719 | switch (ins) |
8720 | { |
8721 | case INS_cbz: |
8722 | reverseIns = INS_cbnz; |
8723 | reverseFmt = IF_BI_1A; |
8724 | break; |
8725 | case INS_cbnz: |
8726 | reverseIns = INS_cbz; |
8727 | reverseFmt = IF_BI_1A; |
8728 | break; |
8729 | case INS_tbz: |
8730 | reverseIns = INS_tbnz; |
8731 | reverseFmt = IF_BI_1B; |
8732 | break; |
8733 | case INS_tbnz: |
8734 | reverseIns = INS_tbz; |
8735 | reverseFmt = IF_BI_1B; |
8736 | break; |
8737 | default: |
8738 | reverseIns = emitJumpKindToIns(emitReverseJumpKind(emitInsToJumpKind(ins))); |
8739 | reverseFmt = IF_BI_0B; |
8740 | } |
8741 | |
8742 | dst = |
8743 | emitOutputShortBranch(dst, |
8744 | reverseIns, // reverse the conditional instruction |
8745 | reverseFmt, |
8746 | 8, /* 8 bytes from start of this large conditional pseudo-instruction to L_not. */ |
8747 | id); |
8748 | |
8749 | // Now, pretend we've got a normal unconditional branch, and fall through to the code to emit that. |
8750 | ins = INS_b; |
8751 | fmt = IF_BI_0A; |
8752 | |
8753 | // The distVal was computed based on the beginning of the pseudo-instruction, |
8754 | // So subtract the size of the conditional branch so that it is relative to the |
8755 | // unconditional branch. |
8756 | distVal -= 4; |
8757 | } |
8758 | |
8759 | dst = emitOutputShortBranch(dst, ins, fmt, distVal, id); |
8760 | } |
8761 | else if (loadLabel) |
8762 | { |
8763 | dst = emitOutputLoadLabel(dst, srcAddr, dstAddr, id); |
8764 | } |
8765 | |
8766 | return dst; |
8767 | } |
8768 | |
8769 | /***************************************************************************** |
8770 | * |
8771 | * Output a short branch instruction. |
8772 | */ |
8773 | BYTE* emitter::emitOutputShortBranch(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, instrDescJmp* id) |
8774 | { |
8775 | code_t code = emitInsCode(ins, fmt); |
8776 | |
8777 | ssize_t loBits = (distVal & 3); |
8778 | noway_assert(loBits == 0); |
8779 | distVal >>= 2; // branch offset encodings are scaled by 4. |
8780 | |
8781 | if (fmt == IF_BI_0A) |
8782 | { |
8783 | // INS_b or INS_bl_local |
8784 | noway_assert(isValidSimm26(distVal)); |
8785 | distVal &= 0x3FFFFFFLL; |
8786 | code |= distVal; |
8787 | } |
8788 | else if (fmt == IF_BI_0B) // BI_0B 01010100iiiiiiii iiiiiiiiiiiXXXXX simm19:00 |
8789 | { |
8790 | // INS_beq, INS_bne, etc... |
8791 | noway_assert(isValidSimm19(distVal)); |
8792 | distVal &= 0x7FFFFLL; |
8793 | code |= distVal << 5; |
8794 | } |
8795 | else if (fmt == IF_BI_1A) // BI_1A X.......iiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
8796 | { |
8797 | // INS_cbz or INS_cbnz |
8798 | assert(id != nullptr); |
8799 | code |= insEncodeDatasize(id->idOpSize()); // X |
8800 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
8801 | |
8802 | noway_assert(isValidSimm19(distVal)); |
8803 | distVal &= 0x7FFFFLL; // 19 bits |
8804 | code |= distVal << 5; |
8805 | } |
8806 | else if (fmt == IF_BI_1B) // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
8807 | { |
8808 | // INS_tbz or INS_tbnz |
8809 | assert(id != nullptr); |
8810 | ssize_t imm = emitGetInsSC(id); |
8811 | assert(isValidImmShift(imm, id->idOpSize())); |
8812 | |
8813 | if (imm & 0x20) // test bit 32-63 ? |
8814 | { |
8815 | code |= 0x80000000; // B |
8816 | } |
8817 | code |= ((imm & 0x1F) << 19); // bbbbb |
8818 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
8819 | |
8820 | noway_assert(isValidSimm14(distVal)); |
8821 | distVal &= 0x3FFFLL; // 14 bits |
8822 | code |= distVal << 5; |
8823 | } |
8824 | else |
8825 | { |
8826 | assert(!"Unknown fmt for emitOutputShortBranch" ); |
8827 | } |
8828 | |
8829 | dst += emitOutput_Instr(dst, code); |
8830 | |
8831 | return dst; |
8832 | } |
8833 | |
8834 | /***************************************************************************** |
8835 | * |
8836 | * Output a short address instruction. |
8837 | */ |
8838 | BYTE* emitter::emitOutputShortAddress(BYTE* dst, instruction ins, insFormat fmt, ssize_t distVal, regNumber reg) |
8839 | { |
8840 | ssize_t loBits = (distVal & 3); |
8841 | distVal >>= 2; |
8842 | |
8843 | code_t code = emitInsCode(ins, fmt); |
8844 | if (fmt == IF_DI_1E) // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
8845 | { |
8846 | // INS_adr or INS_adrp |
8847 | code |= insEncodeReg_Rd(reg); // ddddd |
8848 | |
8849 | noway_assert(isValidSimm19(distVal)); |
8850 | distVal &= 0x7FFFFLL; // 19 bits |
8851 | code |= distVal << 5; |
8852 | code |= loBits << 29; // 2 bits |
8853 | } |
8854 | else |
8855 | { |
8856 | assert(!"Unknown fmt for emitOutputShortAddress" ); |
8857 | } |
8858 | |
8859 | dst += emitOutput_Instr(dst, code); |
8860 | |
8861 | return dst; |
8862 | } |
8863 | |
8864 | /***************************************************************************** |
8865 | * |
8866 | * Output a short constant instruction. |
8867 | */ |
8868 | BYTE* emitter::emitOutputShortConstant( |
8869 | BYTE* dst, instruction ins, insFormat fmt, ssize_t imm, regNumber reg, emitAttr opSize) |
8870 | { |
8871 | code_t code = emitInsCode(ins, fmt); |
8872 | |
8873 | if (fmt == IF_LS_1A) |
8874 | { |
8875 | // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt simm21 |
8876 | // INS_ldr or INS_ldrsw (PC-Relative) |
8877 | |
8878 | ssize_t loBits = (imm & 3); |
8879 | noway_assert(loBits == 0); |
8880 | ssize_t distVal = imm >>= 2; // load offset encodings are scaled by 4. |
8881 | |
8882 | noway_assert(isValidSimm19(distVal)); |
8883 | |
8884 | // Is the target a vector register? |
8885 | if (isVectorRegister(reg)) |
8886 | { |
8887 | code |= insEncodeDatasizeVLS(code, opSize); // XX V |
8888 | code |= insEncodeReg_Vt(reg); // ttttt |
8889 | } |
8890 | else |
8891 | { |
8892 | assert(isGeneralRegister(reg)); |
8893 | // insEncodeDatasizeLS is not quite right for this case. |
8894 | // So just specialize it. |
8895 | if ((ins == INS_ldr) && (opSize == EA_8BYTE)) |
8896 | { |
8897 | // set the operation size in bit 30 |
8898 | code |= 0x40000000; |
8899 | } |
8900 | |
8901 | code |= insEncodeReg_Rt(reg); // ttttt |
8902 | } |
8903 | |
8904 | distVal &= 0x7FFFFLL; // 19 bits |
8905 | code |= distVal << 5; |
8906 | } |
8907 | else if (fmt == IF_LS_2B) |
8908 | { |
8909 | // ldr Rt,[Xn+pimm12] LS_2B 1X11100101iiiiii iiiiiinnnnnttttt B940 0000 imm(0-4095<<{2,3}) |
8910 | // INS_ldr or INS_ldrsw (PC-Relative) |
8911 | noway_assert(isValidUimm12(imm)); |
8912 | assert(isGeneralRegister(reg)); |
8913 | |
8914 | if (opSize == EA_8BYTE) |
8915 | { |
8916 | // insEncodeDatasizeLS is not quite right for this case. |
8917 | // So just specialize it. |
8918 | if (ins == INS_ldr) |
8919 | { |
8920 | // set the operation size in bit 30 |
8921 | code |= 0x40000000; |
8922 | } |
8923 | // Low 3 bits should be 0 -- 8 byte JIT data should be aligned on 8 byte. |
8924 | assert((imm & 7) == 0); |
8925 | imm >>= 3; |
8926 | } |
8927 | else |
8928 | { |
8929 | assert(opSize == EA_4BYTE); |
8930 | // Low 2 bits should be 0 -- 4 byte aligned data. |
8931 | assert((imm & 3) == 0); |
8932 | imm >>= 2; |
8933 | } |
8934 | |
8935 | code |= insEncodeReg_Rt(reg); // ttttt |
8936 | code |= insEncodeReg_Rn(reg); // nnnnn |
8937 | code |= imm << 10; |
8938 | } |
8939 | else |
8940 | { |
8941 | assert(!"Unknown fmt for emitOutputShortConstant" ); |
8942 | } |
8943 | |
8944 | dst += emitOutput_Instr(dst, code); |
8945 | |
8946 | return dst; |
8947 | } |
8948 | /***************************************************************************** |
8949 | * |
8950 | * Output a call instruction. |
8951 | */ |
8952 | |
8953 | unsigned emitter::emitOutputCall(insGroup* ig, BYTE* dst, instrDesc* id, code_t code) |
8954 | { |
8955 | const unsigned char callInstrSize = sizeof(code_t); // 4 bytes |
8956 | regMaskTP gcrefRegs; |
8957 | regMaskTP byrefRegs; |
8958 | |
8959 | VARSET_TP GCvars(VarSetOps::UninitVal()); |
8960 | |
8961 | // Is this a "fat" call descriptor? |
8962 | if (id->idIsLargeCall()) |
8963 | { |
8964 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
8965 | gcrefRegs = idCall->idcGcrefRegs; |
8966 | byrefRegs = idCall->idcByrefRegs; |
8967 | VarSetOps::Assign(emitComp, GCvars, idCall->idcGCvars); |
8968 | } |
8969 | else |
8970 | { |
8971 | assert(!id->idIsLargeDsp()); |
8972 | assert(!id->idIsLargeCns()); |
8973 | |
8974 | gcrefRegs = emitDecodeCallGCregs(id); |
8975 | byrefRegs = 0; |
8976 | VarSetOps::AssignNoCopy(emitComp, GCvars, VarSetOps::MakeEmpty(emitComp)); |
8977 | } |
8978 | |
8979 | /* We update the GC info before the call as the variables cannot be |
8980 | used by the call. Killing variables before the call helps with |
8981 | boundary conditions if the call is CORINFO_HELP_THROW - see bug 50029. |
8982 | If we ever track aliased variables (which could be used by the |
8983 | call), we would have to keep them alive past the call. */ |
8984 | |
8985 | emitUpdateLiveGCvars(GCvars, dst); |
8986 | |
8987 | // Now output the call instruction and update the 'dst' pointer |
8988 | // |
8989 | unsigned outputInstrSize = emitOutput_Instr(dst, code); |
8990 | dst += outputInstrSize; |
8991 | |
8992 | // All call instructions are 4-byte in size on ARM64 |
8993 | // |
8994 | assert(outputInstrSize == callInstrSize); |
8995 | |
8996 | // If the method returns a GC ref, mark INTRET (R0) appropriately. |
8997 | if (id->idGCref() == GCT_GCREF) |
8998 | { |
8999 | gcrefRegs |= RBM_INTRET; |
9000 | } |
9001 | else if (id->idGCref() == GCT_BYREF) |
9002 | { |
9003 | byrefRegs |= RBM_INTRET; |
9004 | } |
9005 | |
9006 | // If is a multi-register return method is called, mark INTRET_1 (X1) appropriately |
9007 | if (id->idIsLargeCall()) |
9008 | { |
9009 | instrDescCGCA* idCall = (instrDescCGCA*)id; |
9010 | if (idCall->idSecondGCref() == GCT_GCREF) |
9011 | { |
9012 | gcrefRegs |= RBM_INTRET_1; |
9013 | } |
9014 | else if (idCall->idSecondGCref() == GCT_BYREF) |
9015 | { |
9016 | byrefRegs |= RBM_INTRET_1; |
9017 | } |
9018 | } |
9019 | |
9020 | // If the GC register set has changed, report the new set. |
9021 | if (gcrefRegs != emitThisGCrefRegs) |
9022 | { |
9023 | emitUpdateLiveGCregs(GCT_GCREF, gcrefRegs, dst); |
9024 | } |
9025 | // If the Byref register set has changed, report the new set. |
9026 | if (byrefRegs != emitThisByrefRegs) |
9027 | { |
9028 | emitUpdateLiveGCregs(GCT_BYREF, byrefRegs, dst); |
9029 | } |
9030 | |
9031 | // Some helper calls may be marked as not requiring GC info to be recorded. |
9032 | if ((!id->idIsNoGC())) |
9033 | { |
9034 | // On ARM64, as on AMD64, we don't change the stack pointer to push/pop args. |
9035 | // So we're not really doing a "stack pop" here (note that "args" is 0), but we use this mechanism |
9036 | // to record the call for GC info purposes. (It might be best to use an alternate call, |
9037 | // and protect "emitStackPop" under the EMIT_TRACK_STACK_DEPTH preprocessor variable.) |
9038 | emitStackPop(dst, /*isCall*/ true, callInstrSize, /*args*/ 0); |
9039 | |
9040 | // Do we need to record a call location for GC purposes? |
9041 | // |
9042 | if (!emitFullGCinfo) |
9043 | { |
9044 | emitRecordGCcall(dst, callInstrSize); |
9045 | } |
9046 | } |
9047 | return callInstrSize; |
9048 | } |
9049 | |
9050 | /***************************************************************************** |
9051 | * |
9052 | * Emit a 32-bit Arm64 instruction |
9053 | */ |
9054 | |
9055 | /*static*/ unsigned emitter::emitOutput_Instr(BYTE* dst, code_t code) |
9056 | { |
9057 | assert(sizeof(code_t) == 4); |
9058 | *((code_t*)dst) = code; |
9059 | |
9060 | return sizeof(code_t); |
9061 | } |
9062 | |
9063 | /***************************************************************************** |
9064 | * |
9065 | * Append the machine code corresponding to the given instruction descriptor |
9066 | * to the code block at '*dp'; the base of the code block is 'bp', and 'ig' |
9067 | * is the instruction group that contains the instruction. Updates '*dp' to |
9068 | * point past the generated code, and returns the size of the instruction |
9069 | * descriptor in bytes. |
9070 | */ |
9071 | |
9072 | size_t emitter::emitOutputInstr(insGroup* ig, instrDesc* id, BYTE** dp) |
9073 | { |
9074 | BYTE* dst = *dp; |
9075 | BYTE* odst = dst; |
9076 | code_t code = 0; |
9077 | size_t sz = emitGetInstrDescSize(id); // TODO-ARM64-Cleanup: on ARM, this is set in each case. why? |
9078 | instruction ins = id->idIns(); |
9079 | insFormat fmt = id->idInsFmt(); |
9080 | emitAttr size = id->idOpSize(); |
9081 | unsigned char callInstrSize = 0; |
9082 | |
9083 | #ifdef DEBUG |
9084 | #if DUMP_GC_TABLES |
9085 | bool dspOffs = emitComp->opts.dspGCtbls; |
9086 | #else |
9087 | bool dspOffs = !emitComp->opts.disDiffable; |
9088 | #endif |
9089 | #endif // DEBUG |
9090 | |
9091 | assert(REG_NA == (int)REG_NA); |
9092 | |
9093 | VARSET_TP GCvars(VarSetOps::UninitVal()); |
9094 | |
9095 | /* What instruction format have we got? */ |
9096 | |
9097 | switch (fmt) |
9098 | { |
9099 | ssize_t imm; |
9100 | ssize_t index; |
9101 | ssize_t index2; |
9102 | unsigned cmode; |
9103 | unsigned immShift; |
9104 | emitAttr elemsize; |
9105 | emitAttr datasize; |
9106 | |
9107 | case IF_BI_0A: // BI_0A ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
9108 | case IF_BI_0B: // BI_0B ......iiiiiiiiii iiiiiiiiiii..... simm19:00 |
9109 | case IF_LARGEJMP: |
9110 | assert(id->idGCref() == GCT_NONE); |
9111 | assert(id->idIsBound()); |
9112 | dst = emitOutputLJ(ig, dst, id); |
9113 | sz = sizeof(instrDescJmp); |
9114 | break; |
9115 | |
9116 | case IF_BI_0C: // BI_0C ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
9117 | code = emitInsCode(ins, fmt); |
9118 | sz = id->idIsLargeCall() ? sizeof(instrDescCGCA) : sizeof(instrDesc); |
9119 | dst += emitOutputCall(ig, dst, id, code); |
9120 | // Always call RecordRelocation so that we wire in a JumpStub when we don't reach |
9121 | emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_BRANCH26); |
9122 | break; |
9123 | |
9124 | case IF_BI_1A: // BI_1A ......iiiiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
9125 | assert(insOptsNone(id->idInsOpt())); |
9126 | assert(id->idIsBound()); |
9127 | |
9128 | dst = emitOutputLJ(ig, dst, id); |
9129 | sz = sizeof(instrDescJmp); |
9130 | break; |
9131 | |
9132 | case IF_BI_1B: // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
9133 | assert(insOptsNone(id->idInsOpt())); |
9134 | assert(id->idIsBound()); |
9135 | |
9136 | dst = emitOutputLJ(ig, dst, id); |
9137 | sz = sizeof(instrDescJmp); |
9138 | break; |
9139 | |
9140 | case IF_BR_1A: // BR_1A ................ ......nnnnn..... Rn |
9141 | assert(insOptsNone(id->idInsOpt())); |
9142 | assert((ins == INS_ret) || (ins == INS_br)); |
9143 | code = emitInsCode(ins, fmt); |
9144 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9145 | |
9146 | dst += emitOutput_Instr(dst, code); |
9147 | break; |
9148 | |
9149 | case IF_BR_1B: // BR_1B ................ ......nnnnn..... Rn |
9150 | assert(insOptsNone(id->idInsOpt())); |
9151 | assert((ins == INS_br_tail) || (ins == INS_blr)); |
9152 | code = emitInsCode(ins, fmt); |
9153 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
9154 | |
9155 | sz = id->idIsLargeCall() ? sizeof(instrDescCGCA) : sizeof(instrDesc); |
9156 | dst += emitOutputCall(ig, dst, id, code); |
9157 | break; |
9158 | |
9159 | case IF_LS_1A: // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
9160 | case IF_LARGELDC: |
9161 | assert(insOptsNone(id->idInsOpt())); |
9162 | assert(id->idIsBound()); |
9163 | |
9164 | dst = emitOutputLJ(ig, dst, id); |
9165 | sz = sizeof(instrDescJmp); |
9166 | break; |
9167 | |
9168 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
9169 | assert(insOptsNone(id->idInsOpt())); |
9170 | code = emitInsCode(ins, fmt); |
9171 | // Is the target a vector register? |
9172 | if (isVectorRegister(id->idReg1())) |
9173 | { |
9174 | code &= 0x3FFFFFFF; // clear the size bits |
9175 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
9176 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
9177 | } |
9178 | else |
9179 | { |
9180 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
9181 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
9182 | } |
9183 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9184 | dst += emitOutput_Instr(dst, code); |
9185 | break; |
9186 | |
9187 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
9188 | assert(insOptsNone(id->idInsOpt())); |
9189 | imm = emitGetInsSC(id); |
9190 | assert(isValidUimm12(imm)); |
9191 | code = emitInsCode(ins, fmt); |
9192 | // Is the target a vector register? |
9193 | if (isVectorRegister(id->idReg1())) |
9194 | { |
9195 | code &= 0x3FFFFFFF; // clear the size bits |
9196 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
9197 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
9198 | } |
9199 | else |
9200 | { |
9201 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
9202 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
9203 | } |
9204 | code |= ((code_t)imm << 10); // iiiiiiiiiiii |
9205 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9206 | dst += emitOutput_Instr(dst, code); |
9207 | break; |
9208 | |
9209 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiPPnnnnnttttt Rt Rn imm(-256..+255) no/pre/post inc |
9210 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
9211 | imm = emitGetInsSC(id); |
9212 | assert((imm >= -256) && (imm <= 255)); // signed 9 bits |
9213 | imm &= 0x1ff; // force into unsigned 9 bit representation |
9214 | code = emitInsCode(ins, fmt); |
9215 | // Is the target a vector register? |
9216 | if (isVectorRegister(id->idReg1())) |
9217 | { |
9218 | code &= 0x3FFFFFFF; // clear the size bits |
9219 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
9220 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
9221 | } |
9222 | else |
9223 | { |
9224 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
9225 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
9226 | } |
9227 | code |= insEncodeIndexedOpt(id->idInsOpt()); // PP |
9228 | code |= ((code_t)imm << 12); // iiiiiiiii |
9229 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9230 | dst += emitOutput_Instr(dst, code); |
9231 | break; |
9232 | |
9233 | case IF_LS_3A: // LS_3A .X.......X.mmmmm oooS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
9234 | assert(insOptsLSExtend(id->idInsOpt())); |
9235 | code = emitInsCode(ins, fmt); |
9236 | // Is the target a vector register? |
9237 | if (isVectorRegister(id->idReg1())) |
9238 | { |
9239 | code &= 0x3FFFFFFF; // clear the size bits |
9240 | code |= insEncodeDatasizeVLS(code, id->idOpSize()); // XX |
9241 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
9242 | } |
9243 | else |
9244 | { |
9245 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // .X.......X |
9246 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
9247 | } |
9248 | code |= insEncodeExtend(id->idInsOpt()); // ooo |
9249 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9250 | if (id->idIsLclVar()) |
9251 | { |
9252 | code |= insEncodeReg_Rm(codeGen->rsGetRsvdReg()); // mmmmm |
9253 | } |
9254 | else |
9255 | { |
9256 | code |= insEncodeReg3Scale(id->idReg3Scaled()); // S |
9257 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9258 | } |
9259 | dst += emitOutput_Instr(dst, code); |
9260 | break; |
9261 | |
9262 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnddddd Rd Ra Rn |
9263 | assert(insOptsNone(id->idInsOpt())); |
9264 | code = emitInsCode(ins, fmt); |
9265 | // Is the target a vector register? |
9266 | if (isVectorRegister(id->idReg1())) |
9267 | { |
9268 | code &= 0x3FFFFFFF; // clear the size bits |
9269 | code |= insEncodeDatasizeVPLS(code, id->idOpSize()); // XX |
9270 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
9271 | code |= insEncodeReg_Va(id->idReg2()); // aaaaa |
9272 | } |
9273 | else |
9274 | { |
9275 | code |= insEncodeDatasize(id->idOpSize()); // X |
9276 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
9277 | code |= insEncodeReg_Ra(id->idReg2()); // aaaaa |
9278 | } |
9279 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
9280 | dst += emitOutput_Instr(dst, code); |
9281 | break; |
9282 | |
9283 | case IF_LS_3C: // LS_3C X......PP.iiiiii iaaaaannnnnddddd Rd Ra Rn imm(im7,sh) |
9284 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
9285 | imm = emitGetInsSC(id); |
9286 | assert((imm >= -64) && (imm <= 63)); // signed 7 bits |
9287 | imm &= 0x7f; // force into unsigned 7 bit representation |
9288 | code = emitInsCode(ins, fmt); |
9289 | // Is the target a vector register? |
9290 | if (isVectorRegister(id->idReg1())) |
9291 | { |
9292 | code &= 0x3FFFFFFF; // clear the size bits |
9293 | code |= insEncodeDatasizeVPLS(code, id->idOpSize()); // XX |
9294 | code |= insEncodeReg_Vt(id->idReg1()); // ttttt |
9295 | code |= insEncodeReg_Va(id->idReg2()); // aaaaa |
9296 | } |
9297 | else |
9298 | { |
9299 | code |= insEncodeDatasize(id->idOpSize()); // X |
9300 | code |= insEncodeReg_Rt(id->idReg1()); // ttttt |
9301 | code |= insEncodeReg_Ra(id->idReg2()); // aaaaa |
9302 | } |
9303 | code |= insEncodePairIndexedOpt(ins, id->idInsOpt()); // PP |
9304 | code |= ((code_t)imm << 15); // iiiiiiiii |
9305 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
9306 | dst += emitOutput_Instr(dst, code); |
9307 | break; |
9308 | |
9309 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
9310 | code = emitInsCode(ins, fmt); |
9311 | // Arm64 store exclusive unpredictable cases |
9312 | assert(id->idReg1() != id->idReg2()); |
9313 | assert(id->idReg1() != id->idReg3()); |
9314 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // X |
9315 | code |= insEncodeReg_Rm(id->idReg1()); // mmmmm |
9316 | code |= insEncodeReg_Rt(id->idReg2()); // ttttt |
9317 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
9318 | dst += emitOutput_Instr(dst, code); |
9319 | break; |
9320 | |
9321 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
9322 | code = emitInsCode(ins, fmt); |
9323 | code |= insEncodeDatasizeLS(code, id->idOpSize()); // X |
9324 | code |= insEncodeReg_Rm(id->idReg1()); // mmmmm |
9325 | code |= insEncodeReg_Rt(id->idReg2()); // ttttt |
9326 | code |= insEncodeReg_Rn(id->idReg3()); // nnnnn |
9327 | dst += emitOutput_Instr(dst, code); |
9328 | break; |
9329 | |
9330 | case IF_DI_1A: // DI_1A X.......shiiiiii iiiiiinnnnn..... Rn imm(i12,sh) |
9331 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
9332 | imm = emitGetInsSC(id); |
9333 | assert(isValidUimm12(imm)); |
9334 | code = emitInsCode(ins, fmt); |
9335 | code |= insEncodeDatasize(id->idOpSize()); // X |
9336 | code |= insEncodeShiftImm12(id->idInsOpt()); // sh |
9337 | code |= ((code_t)imm << 10); // iiiiiiiiiiii |
9338 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9339 | dst += emitOutput_Instr(dst, code); |
9340 | break; |
9341 | |
9342 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
9343 | imm = emitGetInsSC(id); |
9344 | assert(isValidImmHWVal(imm, id->idOpSize())); |
9345 | code = emitInsCode(ins, fmt); |
9346 | code |= insEncodeDatasize(id->idOpSize()); // X |
9347 | code |= ((code_t)imm << 5); // hwiiiii iiiiiiiiiii |
9348 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9349 | dst += emitOutput_Instr(dst, code); |
9350 | break; |
9351 | |
9352 | case IF_DI_1C: // DI_1C X........Nrrrrrr ssssssnnnnn..... Rn imm(N,r,s) |
9353 | imm = emitGetInsSC(id); |
9354 | assert(isValidImmNRS(imm, id->idOpSize())); |
9355 | code = emitInsCode(ins, fmt); |
9356 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
9357 | code |= insEncodeDatasize(id->idOpSize()); // X |
9358 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9359 | dst += emitOutput_Instr(dst, code); |
9360 | break; |
9361 | |
9362 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
9363 | imm = emitGetInsSC(id); |
9364 | assert(isValidImmNRS(imm, id->idOpSize())); |
9365 | code = emitInsCode(ins, fmt); |
9366 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
9367 | code |= insEncodeDatasize(id->idOpSize()); // X |
9368 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9369 | dst += emitOutput_Instr(dst, code); |
9370 | break; |
9371 | |
9372 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
9373 | case IF_LARGEADR: |
9374 | assert(insOptsNone(id->idInsOpt())); |
9375 | if (id->idIsReloc()) |
9376 | { |
9377 | code = emitInsCode(ins, fmt); |
9378 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9379 | dst += emitOutput_Instr(dst, code); |
9380 | emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_PAGEBASE_REL21); |
9381 | } |
9382 | else |
9383 | { |
9384 | // Local jmp/load case which does not need a relocation. |
9385 | assert(id->idIsBound()); |
9386 | dst = emitOutputLJ(ig, dst, id); |
9387 | } |
9388 | sz = sizeof(instrDescJmp); |
9389 | break; |
9390 | |
9391 | case IF_DI_1F: // DI_1F X..........iiiii cccc..nnnnn.nzcv Rn imm5 nzcv cond |
9392 | imm = emitGetInsSC(id); |
9393 | assert(isValidImmCondFlagsImm5(imm)); |
9394 | { |
9395 | condFlagsImm cfi; |
9396 | cfi.immCFVal = (unsigned)imm; |
9397 | code = emitInsCode(ins, fmt); |
9398 | code |= insEncodeDatasize(id->idOpSize()); // X |
9399 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9400 | code |= ((code_t)cfi.imm5 << 16); // iiiii |
9401 | code |= insEncodeFlags(cfi.flags); // nzcv |
9402 | code |= insEncodeCond(cfi.cond); // cccc |
9403 | dst += emitOutput_Instr(dst, code); |
9404 | } |
9405 | break; |
9406 | |
9407 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
9408 | assert(insOptsNone(id->idInsOpt()) || insOptsLSL12(id->idInsOpt())); |
9409 | imm = emitGetInsSC(id); |
9410 | assert(isValidUimm12(imm)); |
9411 | code = emitInsCode(ins, fmt); |
9412 | code |= insEncodeDatasize(id->idOpSize()); // X |
9413 | code |= insEncodeShiftImm12(id->idInsOpt()); // sh |
9414 | code |= ((code_t)imm << 10); // iiiiiiiiiiii |
9415 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9416 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9417 | dst += emitOutput_Instr(dst, code); |
9418 | |
9419 | if (id->idIsReloc()) |
9420 | { |
9421 | assert(sz == sizeof(instrDesc)); |
9422 | assert(id->idAddr()->iiaAddr != nullptr); |
9423 | emitRecordRelocation(odst, id->idAddr()->iiaAddr, IMAGE_REL_ARM64_PAGEOFFSET_12A); |
9424 | } |
9425 | break; |
9426 | |
9427 | case IF_DI_2B: // DI_2B X.........Xnnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
9428 | code = emitInsCode(ins, fmt); |
9429 | imm = emitGetInsSC(id); |
9430 | assert(isValidImmShift(imm, id->idOpSize())); |
9431 | code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X |
9432 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9433 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9434 | code |= insEncodeReg_Rm(id->idReg2()); // Reg2 also in mmmmm |
9435 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
9436 | dst += emitOutput_Instr(dst, code); |
9437 | break; |
9438 | |
9439 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
9440 | imm = emitGetInsSC(id); |
9441 | assert(isValidImmNRS(imm, id->idOpSize())); |
9442 | code = emitInsCode(ins, fmt); |
9443 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
9444 | code |= insEncodeDatasize(id->idOpSize()); // X |
9445 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9446 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9447 | dst += emitOutput_Instr(dst, code); |
9448 | break; |
9449 | |
9450 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, imms (N,r,s) |
9451 | if (ins == INS_asr || ins == INS_lsl || ins == INS_lsr) |
9452 | { |
9453 | imm = emitGetInsSC(id); |
9454 | assert(isValidImmShift(imm, id->idOpSize())); |
9455 | |
9456 | // Shift immediates are aliases of the SBFM/UBFM instructions |
9457 | // that actually take 2 registers and 2 constants, |
9458 | // Since we stored the shift immediate value |
9459 | // we need to calculate the N,R and S values here. |
9460 | |
9461 | bitMaskImm bmi; |
9462 | bmi.immNRS = 0; |
9463 | |
9464 | bmi.immN = (size == EA_8BYTE) ? 1 : 0; |
9465 | bmi.immR = imm; |
9466 | bmi.immS = (size == EA_8BYTE) ? 0x3f : 0x1f; |
9467 | |
9468 | // immR and immS are now set correctly for INS_asr and INS_lsr |
9469 | // but for INS_lsl we have to adjust the values for immR and immS |
9470 | // |
9471 | if (ins == INS_lsl) |
9472 | { |
9473 | bmi.immR = -imm & bmi.immS; |
9474 | bmi.immS = bmi.immS - imm; |
9475 | } |
9476 | |
9477 | // setup imm with the proper 13 bit value N:R:S |
9478 | // |
9479 | imm = bmi.immNRS; |
9480 | } |
9481 | else |
9482 | { |
9483 | // The other instructions have already have encoded N,R and S values |
9484 | imm = emitGetInsSC(id); |
9485 | } |
9486 | assert(isValidImmNRS(imm, id->idOpSize())); |
9487 | |
9488 | code = emitInsCode(ins, fmt); |
9489 | code |= ((code_t)imm << 10); // Nrrrrrrssssss |
9490 | code |= insEncodeDatasize(id->idOpSize()); // X |
9491 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9492 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9493 | dst += emitOutput_Instr(dst, code); |
9494 | break; |
9495 | |
9496 | case IF_DR_1D: // DR_1D X............... cccc.......ddddd Rd cond |
9497 | imm = emitGetInsSC(id); |
9498 | assert(isValidImmCond(imm)); |
9499 | { |
9500 | condFlagsImm cfi; |
9501 | cfi.immCFVal = (unsigned)imm; |
9502 | code = emitInsCode(ins, fmt); |
9503 | code |= insEncodeDatasize(id->idOpSize()); // X |
9504 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9505 | code |= insEncodeInvertedCond(cfi.cond); // cccc |
9506 | dst += emitOutput_Instr(dst, code); |
9507 | } |
9508 | break; |
9509 | |
9510 | case IF_DR_2A: // DR_2A X..........mmmmm ......nnnnn..... Rn Rm |
9511 | assert(insOptsNone(id->idInsOpt())); |
9512 | code = emitInsCode(ins, fmt); |
9513 | code |= insEncodeDatasize(id->idOpSize()); // X |
9514 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9515 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9516 | dst += emitOutput_Instr(dst, code); |
9517 | break; |
9518 | |
9519 | case IF_DR_2B: // DR_2B X.......sh.mmmmm ssssssnnnnn..... Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
9520 | code = emitInsCode(ins, fmt); |
9521 | imm = emitGetInsSC(id); |
9522 | assert(isValidImmShift(imm, id->idOpSize())); |
9523 | code |= insEncodeDatasize(id->idOpSize()); // X |
9524 | code |= insEncodeShiftType(id->idInsOpt()); // sh |
9525 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
9526 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9527 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9528 | dst += emitOutput_Instr(dst, code); |
9529 | break; |
9530 | |
9531 | case IF_DR_2C: // DR_2C X..........mmmmm ooosssnnnnn..... Rn Rm ext(Rm) LSL imm(0-4) |
9532 | code = emitInsCode(ins, fmt); |
9533 | imm = emitGetInsSC(id); |
9534 | assert((imm >= 0) && (imm <= 4)); // imm [0..4] |
9535 | code |= insEncodeDatasize(id->idOpSize()); // X |
9536 | code |= insEncodeExtend(id->idInsOpt()); // ooo |
9537 | code |= insEncodeExtendScale(imm); // sss |
9538 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9539 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9540 | dst += emitOutput_Instr(dst, code); |
9541 | break; |
9542 | |
9543 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnddddd Rd Rn cond |
9544 | imm = emitGetInsSC(id); |
9545 | assert(isValidImmCond(imm)); |
9546 | { |
9547 | condFlagsImm cfi; |
9548 | cfi.immCFVal = (unsigned)imm; |
9549 | code = emitInsCode(ins, fmt); |
9550 | code |= insEncodeDatasize(id->idOpSize()); // X |
9551 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9552 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9553 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9554 | code |= insEncodeInvertedCond(cfi.cond); // cccc |
9555 | dst += emitOutput_Instr(dst, code); |
9556 | } |
9557 | break; |
9558 | |
9559 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
9560 | code = emitInsCode(ins, fmt); |
9561 | code |= insEncodeDatasize(id->idOpSize()); // X |
9562 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9563 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9564 | dst += emitOutput_Instr(dst, code); |
9565 | break; |
9566 | |
9567 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
9568 | code = emitInsCode(ins, fmt); |
9569 | imm = emitGetInsSC(id); |
9570 | assert(isValidImmShift(imm, id->idOpSize())); |
9571 | code |= insEncodeDatasize(id->idOpSize()); // X |
9572 | code |= insEncodeShiftType(id->idInsOpt()); // sh |
9573 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
9574 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9575 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9576 | dst += emitOutput_Instr(dst, code); |
9577 | break; |
9578 | |
9579 | case IF_DR_2G: // DR_2G X............... .....xnnnnnddddd Rd Rn |
9580 | code = emitInsCode(ins, fmt); |
9581 | code |= insEncodeDatasize(id->idOpSize()); // X |
9582 | if (ins == INS_rev) |
9583 | { |
9584 | if (size == EA_8BYTE) |
9585 | { |
9586 | code |= 0x00000400; // x - bit at location 10 |
9587 | } |
9588 | } |
9589 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9590 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9591 | dst += emitOutput_Instr(dst, code); |
9592 | break; |
9593 | |
9594 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
9595 | code = emitInsCode(ins, fmt); |
9596 | code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X |
9597 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9598 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9599 | dst += emitOutput_Instr(dst, code); |
9600 | break; |
9601 | |
9602 | case IF_DR_2I: // DR_2I X..........mmmmm cccc..nnnnn.nzcv Rn Rm nzcv cond |
9603 | imm = emitGetInsSC(id); |
9604 | assert(isValidImmCondFlags(imm)); |
9605 | { |
9606 | condFlagsImm cfi; |
9607 | cfi.immCFVal = (unsigned)imm; |
9608 | code = emitInsCode(ins, fmt); |
9609 | code |= insEncodeDatasize(id->idOpSize()); // X |
9610 | code |= insEncodeReg_Rn(id->idReg1()); // nnnnn |
9611 | code |= insEncodeReg_Rm(id->idReg2()); // mmmmm |
9612 | code |= insEncodeFlags(cfi.flags); // nzcv |
9613 | code |= insEncodeCond(cfi.cond); // cccc |
9614 | dst += emitOutput_Instr(dst, code); |
9615 | } |
9616 | break; |
9617 | |
9618 | case IF_DR_2J: // DR_2J ................ ......nnnnnddddd Sd Sn (sha1h) |
9619 | code = emitInsCode(ins, fmt); |
9620 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9621 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9622 | dst += emitOutput_Instr(dst, code); |
9623 | break; |
9624 | |
9625 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnmmmmm Rd Rn Rm |
9626 | code = emitInsCode(ins, fmt); |
9627 | code |= insEncodeDatasize(id->idOpSize()); // X |
9628 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9629 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9630 | if (id->idIsLclVar()) |
9631 | { |
9632 | code |= insEncodeReg_Rm(codeGen->rsGetRsvdReg()); // mmmmm |
9633 | } |
9634 | else |
9635 | { |
9636 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9637 | } |
9638 | dst += emitOutput_Instr(dst, code); |
9639 | break; |
9640 | |
9641 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR} imm(0-63) |
9642 | code = emitInsCode(ins, fmt); |
9643 | imm = emitGetInsSC(id); |
9644 | assert(isValidImmShift(imm, id->idOpSize())); |
9645 | code |= insEncodeDatasize(id->idOpSize()); // X |
9646 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9647 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9648 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9649 | code |= insEncodeShiftType(id->idInsOpt()); // sh |
9650 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
9651 | dst += emitOutput_Instr(dst, code); |
9652 | break; |
9653 | |
9654 | case IF_DR_3C: // DR_3C X..........mmmmm ooosssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
9655 | code = emitInsCode(ins, fmt); |
9656 | imm = emitGetInsSC(id); |
9657 | assert((imm >= 0) && (imm <= 4)); // imm [0..4] |
9658 | code |= insEncodeDatasize(id->idOpSize()); // X |
9659 | code |= insEncodeExtend(id->idInsOpt()); // ooo |
9660 | code |= insEncodeExtendScale(imm); // sss |
9661 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9662 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9663 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9664 | dst += emitOutput_Instr(dst, code); |
9665 | break; |
9666 | |
9667 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnddddd Rd Rn Rm cond |
9668 | imm = emitGetInsSC(id); |
9669 | assert(isValidImmCond(imm)); |
9670 | { |
9671 | condFlagsImm cfi; |
9672 | cfi.immCFVal = (unsigned)imm; |
9673 | code = emitInsCode(ins, fmt); |
9674 | code |= insEncodeDatasize(id->idOpSize()); // X |
9675 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9676 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9677 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9678 | code |= insEncodeCond(cfi.cond); // cccc |
9679 | dst += emitOutput_Instr(dst, code); |
9680 | } |
9681 | break; |
9682 | |
9683 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
9684 | code = emitInsCode(ins, fmt); |
9685 | imm = emitGetInsSC(id); |
9686 | assert(isValidImmShift(imm, id->idOpSize())); |
9687 | code |= insEncodeDatasizeBF(code, id->idOpSize()); // X........X |
9688 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9689 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9690 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9691 | code |= insEncodeShiftCount(imm, id->idOpSize()); // ssssss |
9692 | dst += emitOutput_Instr(dst, code); |
9693 | break; |
9694 | |
9695 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnmmmmm Rd Rn Rm Ra |
9696 | code = emitInsCode(ins, fmt); |
9697 | code |= insEncodeDatasize(id->idOpSize()); // X |
9698 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9699 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9700 | code |= insEncodeReg_Rm(id->idReg3()); // mmmmm |
9701 | code |= insEncodeReg_Ra(id->idReg4()); // aaaaa |
9702 | dst += emitOutput_Instr(dst, code); |
9703 | break; |
9704 | |
9705 | case IF_DV_1A: // DV_1A .........X.iiiii iii........ddddd Vd imm8 (fmov - immediate scalar) |
9706 | imm = emitGetInsSC(id); |
9707 | elemsize = id->idOpSize(); |
9708 | code = emitInsCode(ins, fmt); |
9709 | code |= insEncodeFloatElemsize(elemsize); // X |
9710 | code |= ((code_t)imm << 13); // iiiii iii |
9711 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9712 | dst += emitOutput_Instr(dst, code); |
9713 | break; |
9714 | |
9715 | case IF_DV_1B: // DV_1B .QX..........iii cmod..iiiiiddddd Vd imm8 (immediate vector) |
9716 | imm = emitGetInsSC(id) & 0x0ff; |
9717 | immShift = (emitGetInsSC(id) & 0x700) >> 8; |
9718 | elemsize = optGetElemsize(id->idInsOpt()); |
9719 | cmode = 0; |
9720 | switch (elemsize) |
9721 | { // cmode |
9722 | case EA_1BYTE: |
9723 | cmode = 0xE; // 1110 |
9724 | break; |
9725 | case EA_2BYTE: |
9726 | cmode = 0x8; |
9727 | cmode |= (immShift << 1); // 10x0 |
9728 | break; |
9729 | case EA_4BYTE: |
9730 | if (immShift < 4) |
9731 | { |
9732 | cmode = 0x0; |
9733 | cmode |= (immShift << 1); // 0xx0 |
9734 | } |
9735 | else // MSL |
9736 | { |
9737 | cmode = 0xC; |
9738 | if (immShift & 2) |
9739 | cmode |= 1; // 110x |
9740 | } |
9741 | break; |
9742 | case EA_8BYTE: |
9743 | cmode = 0xE; // 1110 |
9744 | break; |
9745 | default: |
9746 | unreached(); |
9747 | break; |
9748 | } |
9749 | |
9750 | code = emitInsCode(ins, fmt); |
9751 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9752 | if ((ins == INS_fmov) || (ins == INS_movi)) |
9753 | { |
9754 | if (elemsize == EA_8BYTE) |
9755 | { |
9756 | code |= 0x20000000; // X |
9757 | } |
9758 | } |
9759 | if (ins != INS_fmov) |
9760 | { |
9761 | assert((cmode >= 0) && (cmode <= 0xF)); |
9762 | code |= (cmode << 12); // cmod |
9763 | } |
9764 | code |= (((code_t)imm >> 5) << 16); // iii |
9765 | code |= (((code_t)imm & 0x1f) << 5); // iiiii |
9766 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9767 | dst += emitOutput_Instr(dst, code); |
9768 | break; |
9769 | |
9770 | case IF_DV_1C: // DV_1C .........X...... ......nnnnn..... Vn #0.0 (fcmp - with zero) |
9771 | elemsize = id->idOpSize(); |
9772 | code = emitInsCode(ins, fmt); |
9773 | code |= insEncodeFloatElemsize(elemsize); // X |
9774 | code |= insEncodeReg_Vn(id->idReg1()); // nnnnn |
9775 | dst += emitOutput_Instr(dst, code); |
9776 | break; |
9777 | |
9778 | case IF_DV_2A: // DV_2A .Q.......X...... ......nnnnnddddd Vd Vn (fabs, fcvt - vector) |
9779 | elemsize = optGetElemsize(id->idInsOpt()); |
9780 | code = emitInsCode(ins, fmt); |
9781 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9782 | code |= insEncodeFloatElemsize(elemsize); // X |
9783 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9784 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9785 | dst += emitOutput_Instr(dst, code); |
9786 | break; |
9787 | |
9788 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov/smov - to general) |
9789 | elemsize = id->idOpSize(); |
9790 | index = emitGetInsSC(id); |
9791 | datasize = (elemsize == EA_8BYTE) ? EA_16BYTE : EA_8BYTE; |
9792 | if (ins == INS_smov) |
9793 | { |
9794 | datasize = EA_16BYTE; |
9795 | } |
9796 | code = emitInsCode(ins, fmt); |
9797 | code |= insEncodeVectorsize(datasize); // Q |
9798 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
9799 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9800 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9801 | dst += emitOutput_Instr(dst, code); |
9802 | break; |
9803 | |
9804 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
9805 | if (ins == INS_dup) |
9806 | { |
9807 | datasize = id->idOpSize(); |
9808 | elemsize = optGetElemsize(id->idInsOpt()); |
9809 | index = 0; |
9810 | } |
9811 | else // INS_ins |
9812 | { |
9813 | datasize = EA_16BYTE; |
9814 | elemsize = id->idOpSize(); |
9815 | index = emitGetInsSC(id); |
9816 | } |
9817 | code = emitInsCode(ins, fmt); |
9818 | code |= insEncodeVectorsize(datasize); // Q |
9819 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
9820 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9821 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9822 | dst += emitOutput_Instr(dst, code); |
9823 | break; |
9824 | |
9825 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
9826 | index = emitGetInsSC(id); |
9827 | elemsize = optGetElemsize(id->idInsOpt()); |
9828 | code = emitInsCode(ins, fmt); |
9829 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9830 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
9831 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9832 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9833 | dst += emitOutput_Instr(dst, code); |
9834 | break; |
9835 | |
9836 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
9837 | index = emitGetInsSC(id); |
9838 | elemsize = id->idOpSize(); |
9839 | code = emitInsCode(ins, fmt); |
9840 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
9841 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9842 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9843 | dst += emitOutput_Instr(dst, code); |
9844 | break; |
9845 | |
9846 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
9847 | elemsize = id->idOpSize(); |
9848 | imm = emitGetInsSC(id); |
9849 | index = (imm >> 4) & 0xf; |
9850 | index2 = imm & 0xf; |
9851 | code = emitInsCode(ins, fmt); |
9852 | code |= insEncodeVectorIndex(elemsize, index); // iiiii |
9853 | code |= insEncodeVectorIndex2(elemsize, index2); // jjjj |
9854 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9855 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9856 | dst += emitOutput_Instr(dst, code); |
9857 | break; |
9858 | |
9859 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov,fcvtXX - register) |
9860 | elemsize = id->idOpSize(); |
9861 | code = emitInsCode(ins, fmt); |
9862 | code |= insEncodeFloatElemsize(elemsize); // X |
9863 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9864 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9865 | dst += emitOutput_Instr(dst, code); |
9866 | break; |
9867 | |
9868 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov - to general) |
9869 | elemsize = id->idOpSize(); |
9870 | code = emitInsCode(ins, fmt); |
9871 | code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // X X |
9872 | code |= insEncodeReg_Rd(id->idReg1()); // ddddd |
9873 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9874 | dst += emitOutput_Instr(dst, code); |
9875 | break; |
9876 | |
9877 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov - from general) |
9878 | elemsize = id->idOpSize(); |
9879 | code = emitInsCode(ins, fmt); |
9880 | code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // X X |
9881 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9882 | code |= insEncodeReg_Rn(id->idReg2()); // nnnnn |
9883 | dst += emitOutput_Instr(dst, code); |
9884 | break; |
9885 | |
9886 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
9887 | code = emitInsCode(ins, fmt); |
9888 | code |= insEncodeConvertOpt(fmt, id->idInsOpt()); // SS DD |
9889 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9890 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9891 | dst += emitOutput_Instr(dst, code); |
9892 | break; |
9893 | |
9894 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
9895 | elemsize = id->idOpSize(); |
9896 | code = emitInsCode(ins, fmt); |
9897 | code |= insEncodeFloatElemsize(elemsize); // X |
9898 | code |= insEncodeReg_Vn(id->idReg1()); // nnnnn |
9899 | code |= insEncodeReg_Vm(id->idReg2()); // mmmmm |
9900 | dst += emitOutput_Instr(dst, code); |
9901 | break; |
9902 | |
9903 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
9904 | elemsize = id->idOpSize(); |
9905 | code = emitInsCode(ins, fmt); |
9906 | code |= insEncodeElemsize(elemsize); // XX |
9907 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9908 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9909 | dst += emitOutput_Instr(dst, code); |
9910 | break; |
9911 | |
9912 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
9913 | elemsize = optGetElemsize(id->idInsOpt()); |
9914 | code = emitInsCode(ins, fmt); |
9915 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9916 | code |= insEncodeElemsize(elemsize); // XX |
9917 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9918 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9919 | dst += emitOutput_Instr(dst, code); |
9920 | break; |
9921 | |
9922 | case IF_DV_2N: // DV_2N .........iiiiiii ......nnnnnddddd Vd Vn imm (shift - scalar) |
9923 | imm = emitGetInsSC(id); |
9924 | code = emitInsCode(ins, fmt); |
9925 | code |= insEncodeVectorShift(EA_8BYTE, imm); // iiiiiii |
9926 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9927 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9928 | dst += emitOutput_Instr(dst, code); |
9929 | break; |
9930 | |
9931 | case IF_DV_2O: // DV_2O .Q.......iiiiiii ......nnnnnddddd Vd Vn imm (shift - vector) |
9932 | imm = emitGetInsSC(id); |
9933 | elemsize = optGetElemsize(id->idInsOpt()); |
9934 | code = emitInsCode(ins, fmt); |
9935 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9936 | code |= insEncodeVectorShift(elemsize, imm); // iiiiiii |
9937 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9938 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9939 | dst += emitOutput_Instr(dst, code); |
9940 | break; |
9941 | |
9942 | case IF_DV_2P: // DV_2P ............... ......nnnnnddddd Vd Vn (aes*, sha1su1) |
9943 | elemsize = optGetElemsize(id->idInsOpt()); |
9944 | code = emitInsCode(ins, fmt); |
9945 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9946 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9947 | dst += emitOutput_Instr(dst, code); |
9948 | break; |
9949 | |
9950 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
9951 | code = emitInsCode(ins, fmt); |
9952 | elemsize = optGetElemsize(id->idInsOpt()); |
9953 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9954 | code |= insEncodeElemsize(elemsize); // XX |
9955 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9956 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9957 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
9958 | dst += emitOutput_Instr(dst, code); |
9959 | break; |
9960 | |
9961 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector) |
9962 | code = emitInsCode(ins, fmt); |
9963 | imm = emitGetInsSC(id); |
9964 | elemsize = optGetElemsize(id->idInsOpt()); |
9965 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
9966 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9967 | code |= insEncodeElemsize(elemsize); // XX |
9968 | code |= insEncodeVectorIndexLMH(elemsize, imm); // LM H |
9969 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9970 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9971 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
9972 | dst += emitOutput_Instr(dst, code); |
9973 | break; |
9974 | |
9975 | case IF_DV_3B: // DV_3B .Q.......X.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
9976 | code = emitInsCode(ins, fmt); |
9977 | elemsize = optGetElemsize(id->idInsOpt()); |
9978 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9979 | code |= insEncodeFloatElemsize(elemsize); // X |
9980 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9981 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9982 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
9983 | dst += emitOutput_Instr(dst, code); |
9984 | break; |
9985 | |
9986 | case IF_DV_3BI: // DV_3BI .Q.......XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
9987 | code = emitInsCode(ins, fmt); |
9988 | imm = emitGetInsSC(id); |
9989 | elemsize = optGetElemsize(id->idInsOpt()); |
9990 | assert(isValidVectorIndex(id->idOpSize(), elemsize, imm)); |
9991 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
9992 | code |= insEncodeFloatElemsize(elemsize); // X |
9993 | code |= insEncodeFloatIndex(elemsize, imm); // L H |
9994 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
9995 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
9996 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
9997 | dst += emitOutput_Instr(dst, code); |
9998 | break; |
9999 | |
10000 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
10001 | code = emitInsCode(ins, fmt); |
10002 | code |= insEncodeVectorsize(id->idOpSize()); // Q |
10003 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
10004 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
10005 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
10006 | dst += emitOutput_Instr(dst, code); |
10007 | break; |
10008 | |
10009 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
10010 | code = emitInsCode(ins, fmt); |
10011 | code |= insEncodeFloatElemsize(id->idOpSize()); // X |
10012 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
10013 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
10014 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
10015 | dst += emitOutput_Instr(dst, code); |
10016 | break; |
10017 | |
10018 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
10019 | code = emitInsCode(ins, fmt); |
10020 | imm = emitGetInsSC(id); |
10021 | elemsize = id->idOpSize(); |
10022 | assert(isValidVectorIndex(EA_16BYTE, elemsize, imm)); |
10023 | code |= insEncodeFloatElemsize(elemsize); // X |
10024 | code |= insEncodeFloatIndex(elemsize, imm); // L H |
10025 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
10026 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
10027 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
10028 | dst += emitOutput_Instr(dst, code); |
10029 | break; |
10030 | |
10031 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
10032 | case IF_DV_3F: // DV_3F ...........mmmmm ......nnnnnddddd Vd Vn Vm (vector) - source dest regs overlap |
10033 | code = emitInsCode(ins, fmt); |
10034 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
10035 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
10036 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
10037 | dst += emitOutput_Instr(dst, code); |
10038 | break; |
10039 | |
10040 | case IF_DV_4A: // DV_4A .........X.mmmmm .aaaaannnnnddddd Vd Va Vn Vm (scalar) |
10041 | code = emitInsCode(ins, fmt); |
10042 | elemsize = id->idOpSize(); |
10043 | code |= insEncodeFloatElemsize(elemsize); // X |
10044 | code |= insEncodeReg_Vd(id->idReg1()); // ddddd |
10045 | code |= insEncodeReg_Vn(id->idReg2()); // nnnnn |
10046 | code |= insEncodeReg_Vm(id->idReg3()); // mmmmm |
10047 | code |= insEncodeReg_Va(id->idReg4()); // aaaaa |
10048 | dst += emitOutput_Instr(dst, code); |
10049 | break; |
10050 | |
10051 | case IF_SN_0A: // SN_0A ................ ................ |
10052 | code = emitInsCode(ins, fmt); |
10053 | dst += emitOutput_Instr(dst, code); |
10054 | break; |
10055 | |
10056 | case IF_SI_0A: // SI_0A ...........iiiii iiiiiiiiiii..... imm16 |
10057 | imm = emitGetInsSC(id); |
10058 | assert(isValidUimm16(imm)); |
10059 | code = emitInsCode(ins, fmt); |
10060 | code |= ((code_t)imm << 5); // iiiii iiiiiiiiiii |
10061 | dst += emitOutput_Instr(dst, code); |
10062 | break; |
10063 | |
10064 | case IF_SI_0B: // SI_0B ................ ....bbbb........ imm4 - barrier |
10065 | imm = emitGetInsSC(id); |
10066 | assert((imm >= 0) && (imm <= 15)); |
10067 | code = emitInsCode(ins, fmt); |
10068 | code |= ((code_t)imm << 8); // bbbb |
10069 | dst += emitOutput_Instr(dst, code); |
10070 | break; |
10071 | |
10072 | default: |
10073 | assert(!"Unexpected format" ); |
10074 | break; |
10075 | } |
10076 | |
10077 | // Determine if any registers now hold GC refs, or whether a register that was overwritten held a GC ref. |
10078 | // We assume here that "id->idGCref()" is not GC_NONE only if the instruction described by "id" writes a |
10079 | // GC ref to register "id->idReg1()". (It may, apparently, also not be GC_NONE in other cases, such as |
10080 | // for stores, but we ignore those cases here.) |
10081 | if (emitInsMayWriteToGCReg(id)) // True if "id->idIns()" writes to a register than can hold GC ref. |
10082 | { |
10083 | // We assume that "idReg1" is the primary destination register for all instructions |
10084 | if (id->idGCref() != GCT_NONE) |
10085 | { |
10086 | emitGCregLiveUpd(id->idGCref(), id->idReg1(), dst); |
10087 | } |
10088 | else |
10089 | { |
10090 | emitGCregDeadUpd(id->idReg1(), dst); |
10091 | } |
10092 | |
10093 | if (emitInsMayWriteMultipleRegs(id)) |
10094 | { |
10095 | // INS_ldp etc... |
10096 | // "idReg2" is the secondary destination register |
10097 | if (id->idGCrefReg2() != GCT_NONE) |
10098 | { |
10099 | emitGCregLiveUpd(id->idGCrefReg2(), id->idReg2(), dst); |
10100 | } |
10101 | else |
10102 | { |
10103 | emitGCregDeadUpd(id->idReg2(), dst); |
10104 | } |
10105 | } |
10106 | } |
10107 | |
10108 | // Now we determine if the instruction has written to a (local variable) stack location, and either written a GC |
10109 | // ref or overwritten one. |
10110 | if (emitInsWritesToLclVarStackLoc(id) || emitInsWritesToLclVarStackLocPair(id)) |
10111 | { |
10112 | int varNum = id->idAddr()->iiaLclVar.lvaVarNum(); |
10113 | unsigned ofs = AlignDown(id->idAddr()->iiaLclVar.lvaOffset(), TARGET_POINTER_SIZE); |
10114 | bool FPbased; |
10115 | int adr = emitComp->lvaFrameAddress(varNum, &FPbased); |
10116 | if (id->idGCref() != GCT_NONE) |
10117 | { |
10118 | emitGCvarLiveUpd(adr + ofs, varNum, id->idGCref(), dst); |
10119 | } |
10120 | else |
10121 | { |
10122 | // If the type of the local is a gc ref type, update the liveness. |
10123 | var_types vt; |
10124 | if (varNum >= 0) |
10125 | { |
10126 | // "Regular" (non-spill-temp) local. |
10127 | vt = var_types(emitComp->lvaTable[varNum].lvType); |
10128 | } |
10129 | else |
10130 | { |
10131 | TempDsc* tmpDsc = codeGen->regSet.tmpFindNum(varNum); |
10132 | vt = tmpDsc->tdTempType(); |
10133 | } |
10134 | if (vt == TYP_REF || vt == TYP_BYREF) |
10135 | emitGCvarDeadUpd(adr + ofs, dst); |
10136 | } |
10137 | if (emitInsWritesToLclVarStackLocPair(id)) |
10138 | { |
10139 | unsigned ofs2 = ofs + TARGET_POINTER_SIZE; |
10140 | if (id->idGCrefReg2() != GCT_NONE) |
10141 | { |
10142 | emitGCvarLiveUpd(adr + ofs2, varNum, id->idGCrefReg2(), dst); |
10143 | } |
10144 | else |
10145 | { |
10146 | // If the type of the local is a gc ref type, update the liveness. |
10147 | var_types vt; |
10148 | if (varNum >= 0) |
10149 | { |
10150 | // "Regular" (non-spill-temp) local. |
10151 | vt = var_types(emitComp->lvaTable[varNum].lvType); |
10152 | } |
10153 | else |
10154 | { |
10155 | TempDsc* tmpDsc = codeGen->regSet.tmpFindNum(varNum); |
10156 | vt = tmpDsc->tdTempType(); |
10157 | } |
10158 | if (vt == TYP_REF || vt == TYP_BYREF) |
10159 | emitGCvarDeadUpd(adr + ofs2, dst); |
10160 | } |
10161 | } |
10162 | } |
10163 | |
10164 | #ifdef DEBUG |
10165 | /* Make sure we set the instruction descriptor size correctly */ |
10166 | |
10167 | size_t expected = emitSizeOfInsDsc(id); |
10168 | assert(sz == expected); |
10169 | |
10170 | if (emitComp->opts.disAsm || emitComp->opts.dspEmit || emitComp->verbose) |
10171 | { |
10172 | emitDispIns(id, false, dspOffs, true, emitCurCodeOffs(odst), *dp, (dst - *dp), ig); |
10173 | } |
10174 | |
10175 | if (emitComp->compDebugBreak) |
10176 | { |
10177 | // For example, set JitBreakEmitOutputInstr=a6 will break when this method is called for |
10178 | // emitting instruction a6, (i.e. IN00a6 in jitdump). |
10179 | if ((unsigned)JitConfig.JitBreakEmitOutputInstr() == id->idDebugOnlyInfo()->idNum) |
10180 | { |
10181 | assert(!"JitBreakEmitOutputInstr reached" ); |
10182 | } |
10183 | } |
10184 | #endif |
10185 | |
10186 | /* All instructions are expected to generate code */ |
10187 | |
10188 | assert(*dp != dst); |
10189 | |
10190 | *dp = dst; |
10191 | |
10192 | return sz; |
10193 | } |
10194 | |
10195 | /*****************************************************************************/ |
10196 | /*****************************************************************************/ |
10197 | |
10198 | #ifdef DEBUG |
10199 | |
10200 | /***************************************************************************** |
10201 | * |
10202 | * Display the instruction name |
10203 | */ |
10204 | void emitter::emitDispInst(instruction ins) |
10205 | { |
10206 | const char* insstr = codeGen->genInsName(ins); |
10207 | size_t len = strlen(insstr); |
10208 | |
10209 | /* Display the instruction name */ |
10210 | |
10211 | printf("%s" , insstr); |
10212 | |
10213 | // |
10214 | // Add at least one space after the instruction name |
10215 | // and add spaces until we have reach the normal size of 8 |
10216 | do |
10217 | { |
10218 | printf(" " ); |
10219 | len++; |
10220 | } while (len < 8); |
10221 | } |
10222 | |
10223 | /***************************************************************************** |
10224 | * |
10225 | * Display an immediate value |
10226 | */ |
10227 | void emitter::emitDispImm(ssize_t imm, bool addComma, bool alwaysHex /* =false */) |
10228 | { |
10229 | if (strictArmAsm) |
10230 | { |
10231 | printf("#" ); |
10232 | } |
10233 | |
10234 | // Munge any pointers if we want diff-able disassembly. |
10235 | // Since some may be emitted as partial words, print as diffable anything that has |
10236 | // significant bits beyond the lowest 8-bits. |
10237 | if (emitComp->opts.disDiffable) |
10238 | { |
10239 | ssize_t top56bits = (imm >> 8); |
10240 | if ((top56bits != 0) && (top56bits != -1)) |
10241 | imm = 0xD1FFAB1E; |
10242 | } |
10243 | |
10244 | if (!alwaysHex && (imm > -1000) && (imm < 1000)) |
10245 | { |
10246 | printf("%d" , imm); |
10247 | } |
10248 | else |
10249 | { |
10250 | if ((imm < 0) && ((imm & 0xFFFFFFFF00000000LL) == 0xFFFFFFFF00000000LL)) |
10251 | { |
10252 | printf("-" ); |
10253 | imm = -imm; |
10254 | } |
10255 | |
10256 | if ((imm & 0xFFFFFFFF00000000LL) != 0) |
10257 | { |
10258 | printf("0x%llx" , imm); |
10259 | } |
10260 | else |
10261 | { |
10262 | printf("0x%02x" , imm); |
10263 | } |
10264 | } |
10265 | |
10266 | if (addComma) |
10267 | printf(", " ); |
10268 | } |
10269 | |
10270 | /***************************************************************************** |
10271 | * |
10272 | * Display a float zero constant |
10273 | */ |
10274 | void emitter::emitDispFloatZero() |
10275 | { |
10276 | if (strictArmAsm) |
10277 | { |
10278 | printf("#" ); |
10279 | } |
10280 | printf("0.0" ); |
10281 | } |
10282 | |
10283 | /***************************************************************************** |
10284 | * |
10285 | * Display an encoded float constant value |
10286 | */ |
10287 | void emitter::emitDispFloatImm(ssize_t imm8) |
10288 | { |
10289 | assert((0 <= imm8) && (imm8 <= 0x0ff)); |
10290 | if (strictArmAsm) |
10291 | { |
10292 | printf("#" ); |
10293 | } |
10294 | |
10295 | floatImm8 fpImm; |
10296 | fpImm.immFPIVal = (unsigned)imm8; |
10297 | double result = emitDecodeFloatImm8(fpImm); |
10298 | |
10299 | printf("%.4f" , result); |
10300 | } |
10301 | |
10302 | /***************************************************************************** |
10303 | * |
10304 | * Display an immediate that is optionally LSL12. |
10305 | */ |
10306 | void emitter::emitDispImmOptsLSL12(ssize_t imm, insOpts opt) |
10307 | { |
10308 | if (!strictArmAsm && insOptsLSL12(opt)) |
10309 | { |
10310 | imm <<= 12; |
10311 | } |
10312 | emitDispImm(imm, false); |
10313 | if (strictArmAsm && insOptsLSL12(opt)) |
10314 | { |
10315 | printf(", LSL #12" ); |
10316 | } |
10317 | } |
10318 | |
10319 | /***************************************************************************** |
10320 | * |
10321 | * Display an ARM64 condition code for the conditional instructions |
10322 | */ |
10323 | void emitter::emitDispCond(insCond cond) |
10324 | { |
10325 | const static char* armCond[16] = {"eq" , "ne" , "hs" , "lo" , "mi" , "pl" , "vs" , "vc" , |
10326 | "hi" , "ls" , "ge" , "lt" , "gt" , "le" , "AL" , "NV" }; // The last two are invalid |
10327 | unsigned imm = (unsigned)cond; |
10328 | assert((0 <= imm) && (imm < ArrLen(armCond))); |
10329 | printf(armCond[imm]); |
10330 | } |
10331 | |
10332 | /***************************************************************************** |
10333 | * |
10334 | * Display an ARM64 flags for the conditional instructions |
10335 | */ |
10336 | void emitter::emitDispFlags(insCflags flags) |
10337 | { |
10338 | const static char* armFlags[16] = {"0" , "v" , "c" , "cv" , "z" , "zv" , "zc" , "zcv" , |
10339 | "n" , "nv" , "nc" , "ncv" , "nz" , "nzv" , "nzc" , "nzcv" }; |
10340 | unsigned imm = (unsigned)flags; |
10341 | assert((0 <= imm) && (imm < ArrLen(armFlags))); |
10342 | printf(armFlags[imm]); |
10343 | } |
10344 | |
10345 | /***************************************************************************** |
10346 | * |
10347 | * Display an ARM64 'barrier' for the memory barrier instructions |
10348 | */ |
10349 | void emitter::emitDispBarrier(insBarrier barrier) |
10350 | { |
10351 | const static char* armBarriers[16] = {"#0" , "oshld" , "oshst" , "osh" , "#4" , "nshld" , "nshst" , "nsh" , |
10352 | "#8" , "ishld" , "ishst" , "ish" , "#12" , "ld" , "st" , "sy" }; |
10353 | unsigned imm = (unsigned)barrier; |
10354 | assert((0 <= imm) && (imm < ArrLen(armBarriers))); |
10355 | printf(armBarriers[imm]); |
10356 | } |
10357 | |
10358 | /***************************************************************************** |
10359 | * |
10360 | * Prints the encoding for the Shift Type encoding |
10361 | */ |
10362 | |
10363 | void emitter::emitDispShiftOpts(insOpts opt) |
10364 | { |
10365 | if (opt == INS_OPTS_LSL) |
10366 | printf(" LSL " ); |
10367 | else if (opt == INS_OPTS_LSR) |
10368 | printf(" LSR " ); |
10369 | else if (opt == INS_OPTS_ASR) |
10370 | printf(" ASR " ); |
10371 | else if (opt == INS_OPTS_ROR) |
10372 | printf(" ROR " ); |
10373 | else if (opt == INS_OPTS_MSL) |
10374 | printf(" MSL " ); |
10375 | else |
10376 | assert(!"Bad value" ); |
10377 | } |
10378 | |
10379 | /***************************************************************************** |
10380 | * |
10381 | * Prints the encoding for the Extend Type encoding |
10382 | */ |
10383 | |
10384 | void emitter::emitDispExtendOpts(insOpts opt) |
10385 | { |
10386 | if (opt == INS_OPTS_UXTB) |
10387 | printf("UXTB" ); |
10388 | else if (opt == INS_OPTS_UXTH) |
10389 | printf("UXTH" ); |
10390 | else if (opt == INS_OPTS_UXTW) |
10391 | printf("UXTW" ); |
10392 | else if (opt == INS_OPTS_UXTX) |
10393 | printf("UXTX" ); |
10394 | else if (opt == INS_OPTS_SXTB) |
10395 | printf("SXTB" ); |
10396 | else if (opt == INS_OPTS_SXTH) |
10397 | printf("SXTH" ); |
10398 | else if (opt == INS_OPTS_SXTW) |
10399 | printf("SXTW" ); |
10400 | else if (opt == INS_OPTS_SXTX) |
10401 | printf("SXTX" ); |
10402 | else |
10403 | assert(!"Bad value" ); |
10404 | } |
10405 | |
10406 | /***************************************************************************** |
10407 | * |
10408 | * Prints the encoding for the Extend Type encoding in loads/stores |
10409 | */ |
10410 | |
10411 | void emitter::emitDispLSExtendOpts(insOpts opt) |
10412 | { |
10413 | if (opt == INS_OPTS_LSL) |
10414 | printf("LSL" ); |
10415 | else if (opt == INS_OPTS_UXTW) |
10416 | printf("UXTW" ); |
10417 | else if (opt == INS_OPTS_UXTX) |
10418 | printf("UXTX" ); |
10419 | else if (opt == INS_OPTS_SXTW) |
10420 | printf("SXTW" ); |
10421 | else if (opt == INS_OPTS_SXTX) |
10422 | printf("SXTX" ); |
10423 | else |
10424 | assert(!"Bad value" ); |
10425 | } |
10426 | |
10427 | /***************************************************************************** |
10428 | * |
10429 | * Display a register |
10430 | */ |
10431 | void emitter::emitDispReg(regNumber reg, emitAttr attr, bool addComma) |
10432 | { |
10433 | emitAttr size = EA_SIZE(attr); |
10434 | printf(emitRegName(reg, size)); |
10435 | |
10436 | if (addComma) |
10437 | printf(", " ); |
10438 | } |
10439 | |
10440 | /***************************************************************************** |
10441 | * |
10442 | * Display a vector register with an arrangement suffix |
10443 | */ |
10444 | void emitter::emitDispVectorReg(regNumber reg, insOpts opt, bool addComma) |
10445 | { |
10446 | assert(isVectorRegister(reg)); |
10447 | printf(emitVectorRegName(reg)); |
10448 | emitDispArrangement(opt); |
10449 | |
10450 | if (addComma) |
10451 | printf(", " ); |
10452 | } |
10453 | |
10454 | /***************************************************************************** |
10455 | * |
10456 | * Display an vector register index suffix |
10457 | */ |
10458 | void emitter::emitDispVectorRegIndex(regNumber reg, emitAttr elemsize, ssize_t index, bool addComma) |
10459 | { |
10460 | assert(isVectorRegister(reg)); |
10461 | printf(emitVectorRegName(reg)); |
10462 | |
10463 | switch (elemsize) |
10464 | { |
10465 | case EA_1BYTE: |
10466 | printf(".b" ); |
10467 | break; |
10468 | case EA_2BYTE: |
10469 | printf(".h" ); |
10470 | break; |
10471 | case EA_4BYTE: |
10472 | printf(".s" ); |
10473 | break; |
10474 | case EA_8BYTE: |
10475 | printf(".d" ); |
10476 | break; |
10477 | default: |
10478 | assert(!"invalid elemsize" ); |
10479 | break; |
10480 | } |
10481 | |
10482 | printf("[%d]" , index); |
10483 | |
10484 | if (addComma) |
10485 | printf(", " ); |
10486 | } |
10487 | |
10488 | /***************************************************************************** |
10489 | * |
10490 | * Display an arrangement suffix |
10491 | */ |
10492 | void emitter::emitDispArrangement(insOpts opt) |
10493 | { |
10494 | const char* str = "???" ; |
10495 | |
10496 | switch (opt) |
10497 | { |
10498 | case INS_OPTS_8B: |
10499 | str = "8b" ; |
10500 | break; |
10501 | case INS_OPTS_16B: |
10502 | str = "16b" ; |
10503 | break; |
10504 | case INS_OPTS_4H: |
10505 | str = "4h" ; |
10506 | break; |
10507 | case INS_OPTS_8H: |
10508 | str = "8h" ; |
10509 | break; |
10510 | case INS_OPTS_2S: |
10511 | str = "2s" ; |
10512 | break; |
10513 | case INS_OPTS_4S: |
10514 | str = "4s" ; |
10515 | break; |
10516 | case INS_OPTS_1D: |
10517 | str = "1d" ; |
10518 | break; |
10519 | case INS_OPTS_2D: |
10520 | str = "2d" ; |
10521 | break; |
10522 | |
10523 | default: |
10524 | assert(!"Invalid insOpt for vector register" ); |
10525 | } |
10526 | printf("." ); |
10527 | printf(str); |
10528 | } |
10529 | |
10530 | /***************************************************************************** |
10531 | * |
10532 | * Display a register with an optional shift operation |
10533 | */ |
10534 | void emitter::emitDispShiftedReg(regNumber reg, insOpts opt, ssize_t imm, emitAttr attr) |
10535 | { |
10536 | emitAttr size = EA_SIZE(attr); |
10537 | assert((imm & 0x003F) == imm); |
10538 | assert(((imm & 0x0020) == 0) || (size == EA_8BYTE)); |
10539 | |
10540 | printf(emitRegName(reg, size)); |
10541 | |
10542 | if (imm > 0) |
10543 | { |
10544 | if (strictArmAsm) |
10545 | { |
10546 | printf("," ); |
10547 | } |
10548 | emitDispShiftOpts(opt); |
10549 | emitDispImm(imm, false); |
10550 | } |
10551 | } |
10552 | |
10553 | /***************************************************************************** |
10554 | * |
10555 | * Display a register with an optional extend and scale operations |
10556 | */ |
10557 | void emitter::emitDispExtendReg(regNumber reg, insOpts opt, ssize_t imm) |
10558 | { |
10559 | assert((imm >= 0) && (imm <= 4)); |
10560 | assert(insOptsNone(opt) || insOptsAnyExtend(opt) || (opt == INS_OPTS_LSL)); |
10561 | |
10562 | // size is based on the extend option, not the instr size. |
10563 | emitAttr size = insOpts32BitExtend(opt) ? EA_4BYTE : EA_8BYTE; |
10564 | |
10565 | if (strictArmAsm) |
10566 | { |
10567 | if (insOptsNone(opt)) |
10568 | { |
10569 | emitDispReg(reg, size, false); |
10570 | } |
10571 | else |
10572 | { |
10573 | emitDispReg(reg, size, true); |
10574 | if (opt == INS_OPTS_LSL) |
10575 | printf("LSL" ); |
10576 | else |
10577 | emitDispExtendOpts(opt); |
10578 | if ((imm > 0) || (opt == INS_OPTS_LSL)) |
10579 | { |
10580 | printf(" " ); |
10581 | emitDispImm(imm, false); |
10582 | } |
10583 | } |
10584 | } |
10585 | else // !strictArmAsm |
10586 | { |
10587 | if (insOptsNone(opt)) |
10588 | { |
10589 | emitDispReg(reg, size, false); |
10590 | } |
10591 | else |
10592 | { |
10593 | if (opt != INS_OPTS_LSL) |
10594 | { |
10595 | emitDispExtendOpts(opt); |
10596 | printf("(" ); |
10597 | emitDispReg(reg, size, false); |
10598 | printf(")" ); |
10599 | } |
10600 | } |
10601 | if (imm > 0) |
10602 | { |
10603 | printf("*" ); |
10604 | emitDispImm(ssize_t{1} << imm, false); |
10605 | } |
10606 | } |
10607 | } |
10608 | |
10609 | /***************************************************************************** |
10610 | * |
10611 | * Display an addressing operand [reg + imm] |
10612 | */ |
10613 | void emitter::emitDispAddrRI(regNumber reg, insOpts opt, ssize_t imm) |
10614 | { |
10615 | reg = encodingZRtoSP(reg); // ZR (R31) encodes the SP register |
10616 | |
10617 | if (strictArmAsm) |
10618 | { |
10619 | printf("[" ); |
10620 | |
10621 | emitDispReg(reg, EA_8BYTE, false); |
10622 | |
10623 | if (!insOptsPostIndex(opt) && (imm != 0)) |
10624 | { |
10625 | printf("," ); |
10626 | emitDispImm(imm, false); |
10627 | } |
10628 | printf("]" ); |
10629 | |
10630 | if (insOptsPreIndex(opt)) |
10631 | { |
10632 | printf("!" ); |
10633 | } |
10634 | else if (insOptsPostIndex(opt)) |
10635 | { |
10636 | printf("," ); |
10637 | emitDispImm(imm, false); |
10638 | } |
10639 | } |
10640 | else // !strictArmAsm |
10641 | { |
10642 | printf("[" ); |
10643 | |
10644 | const char* operStr = "++" ; |
10645 | if (imm < 0) |
10646 | { |
10647 | operStr = "--" ; |
10648 | imm = -imm; |
10649 | } |
10650 | |
10651 | if (insOptsPreIndex(opt)) |
10652 | { |
10653 | printf(operStr); |
10654 | } |
10655 | |
10656 | emitDispReg(reg, EA_8BYTE, false); |
10657 | |
10658 | if (insOptsPostIndex(opt)) |
10659 | { |
10660 | printf(operStr); |
10661 | } |
10662 | |
10663 | if (insOptsIndexed(opt)) |
10664 | { |
10665 | printf(", " ); |
10666 | } |
10667 | else |
10668 | { |
10669 | printf("%c" , operStr[1]); |
10670 | } |
10671 | emitDispImm(imm, false); |
10672 | printf("]" ); |
10673 | } |
10674 | } |
10675 | |
10676 | /***************************************************************************** |
10677 | * |
10678 | * Display an addressing operand [reg + extended reg] |
10679 | */ |
10680 | void emitter::emitDispAddrRRExt(regNumber reg1, regNumber reg2, insOpts opt, bool isScaled, emitAttr size) |
10681 | { |
10682 | reg1 = encodingZRtoSP(reg1); // ZR (R31) encodes the SP register |
10683 | |
10684 | unsigned scale = 0; |
10685 | if (isScaled) |
10686 | { |
10687 | scale = NaturalScale_helper(size); |
10688 | } |
10689 | |
10690 | printf("[" ); |
10691 | |
10692 | if (strictArmAsm) |
10693 | { |
10694 | emitDispReg(reg1, EA_8BYTE, true); |
10695 | emitDispExtendReg(reg2, opt, scale); |
10696 | } |
10697 | else // !strictArmAsm |
10698 | { |
10699 | emitDispReg(reg1, EA_8BYTE, false); |
10700 | printf("+" ); |
10701 | emitDispExtendReg(reg2, opt, scale); |
10702 | } |
10703 | |
10704 | printf("]" ); |
10705 | } |
10706 | |
10707 | /***************************************************************************** |
10708 | * |
10709 | * Display (optionally) the instruction encoding in hex |
10710 | */ |
10711 | |
10712 | void emitter::emitDispInsHex(BYTE* code, size_t sz) |
10713 | { |
10714 | // We do not display the instruction hex if we want diff-able disassembly |
10715 | if (!emitComp->opts.disDiffable) |
10716 | { |
10717 | if (sz == 4) |
10718 | { |
10719 | printf(" %08X " , (*((code_t*)code))); |
10720 | } |
10721 | else |
10722 | { |
10723 | printf(" " ); |
10724 | } |
10725 | } |
10726 | } |
10727 | |
10728 | /**************************************************************************** |
10729 | * |
10730 | * Display the given instruction. |
10731 | */ |
10732 | |
10733 | void emitter::emitDispIns( |
10734 | instrDesc* id, bool isNew, bool doffs, bool asmfm, unsigned offset, BYTE* pCode, size_t sz, insGroup* ig) |
10735 | { |
10736 | if (EMITVERBOSE) |
10737 | { |
10738 | unsigned idNum = |
10739 | id->idDebugOnlyInfo()->idNum; // Do not remove this! It is needed for VisualStudio conditional breakpoints |
10740 | |
10741 | printf("IN%04x: " , idNum); |
10742 | } |
10743 | |
10744 | if (pCode == NULL) |
10745 | sz = 0; |
10746 | |
10747 | if (!emitComp->opts.dspEmit && !isNew && !asmfm && sz) |
10748 | doffs = true; |
10749 | |
10750 | /* Display the instruction offset */ |
10751 | |
10752 | emitDispInsOffs(offset, doffs); |
10753 | |
10754 | /* Display the instruction hex code */ |
10755 | |
10756 | emitDispInsHex(pCode, sz); |
10757 | |
10758 | printf(" " ); |
10759 | |
10760 | /* Get the instruction and format */ |
10761 | |
10762 | instruction ins = id->idIns(); |
10763 | insFormat fmt = id->idInsFmt(); |
10764 | |
10765 | emitDispInst(ins); |
10766 | |
10767 | /* If this instruction has just been added, check its size */ |
10768 | |
10769 | assert(isNew == false || (int)emitSizeOfInsDsc(id) == emitCurIGfreeNext - (BYTE*)id); |
10770 | |
10771 | /* Figure out the operand size */ |
10772 | emitAttr size = id->idOpSize(); |
10773 | emitAttr attr = size; |
10774 | if (id->idGCref() == GCT_GCREF) |
10775 | attr = EA_GCREF; |
10776 | else if (id->idGCref() == GCT_BYREF) |
10777 | attr = EA_BYREF; |
10778 | |
10779 | switch (fmt) |
10780 | { |
10781 | code_t code; |
10782 | ssize_t imm; |
10783 | int doffs; |
10784 | bool isExtendAlias; |
10785 | bitMaskImm bmi; |
10786 | halfwordImm hwi; |
10787 | condFlagsImm cfi; |
10788 | unsigned scale; |
10789 | unsigned immShift; |
10790 | bool hasShift; |
10791 | ssize_t offs; |
10792 | const char* methodName; |
10793 | emitAttr elemsize; |
10794 | emitAttr datasize; |
10795 | emitAttr srcsize; |
10796 | emitAttr dstsize; |
10797 | ssize_t index; |
10798 | ssize_t index2; |
10799 | |
10800 | case IF_BI_0A: // BI_0A ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
10801 | case IF_BI_0B: // BI_0B ......iiiiiiiiii iiiiiiiiiii..... simm19:00 |
10802 | case IF_LARGEJMP: |
10803 | { |
10804 | if (fmt == IF_LARGEJMP) |
10805 | { |
10806 | printf("(LARGEJMP)" ); |
10807 | } |
10808 | if (id->idAddr()->iiaHasInstrCount()) |
10809 | { |
10810 | int instrCount = id->idAddr()->iiaGetInstrCount(); |
10811 | |
10812 | if (ig == nullptr) |
10813 | { |
10814 | printf("pc%s%d instructions" , (instrCount >= 0) ? "+" : "" , instrCount); |
10815 | } |
10816 | else |
10817 | { |
10818 | unsigned insNum = emitFindInsNum(ig, id); |
10819 | UNATIVE_OFFSET srcOffs = ig->igOffs + emitFindOffset(ig, insNum + 1); |
10820 | UNATIVE_OFFSET dstOffs = ig->igOffs + emitFindOffset(ig, insNum + 1 + instrCount); |
10821 | ssize_t relOffs = (ssize_t)(emitOffsetToPtr(dstOffs) - emitOffsetToPtr(srcOffs)); |
10822 | printf("pc%s%d (%d instructions)" , (relOffs >= 0) ? "+" : "" , relOffs, instrCount); |
10823 | } |
10824 | } |
10825 | else if (id->idIsBound()) |
10826 | { |
10827 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
10828 | } |
10829 | else |
10830 | { |
10831 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
10832 | } |
10833 | } |
10834 | break; |
10835 | |
10836 | case IF_BI_0C: // BI_0C ......iiiiiiiiii iiiiiiiiiiiiiiii simm26:00 |
10837 | if (id->idIsCallAddr()) |
10838 | { |
10839 | offs = (ssize_t)id->idAddr()->iiaAddr; |
10840 | methodName = "" ; |
10841 | } |
10842 | else |
10843 | { |
10844 | offs = 0; |
10845 | methodName = emitComp->eeGetMethodFullName((CORINFO_METHOD_HANDLE)id->idDebugOnlyInfo()->idMemCookie); |
10846 | } |
10847 | |
10848 | if (offs) |
10849 | { |
10850 | if (id->idIsDspReloc()) |
10851 | printf("reloc " ); |
10852 | printf("%08X" , offs); |
10853 | } |
10854 | else |
10855 | { |
10856 | printf("%s" , methodName); |
10857 | } |
10858 | break; |
10859 | |
10860 | case IF_BI_1A: // BI_1A ......iiiiiiiiii iiiiiiiiiiittttt Rt simm19:00 |
10861 | assert(insOptsNone(id->idInsOpt())); |
10862 | emitDispReg(id->idReg1(), size, true); |
10863 | if (id->idIsBound()) |
10864 | { |
10865 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
10866 | } |
10867 | else |
10868 | { |
10869 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
10870 | } |
10871 | break; |
10872 | |
10873 | case IF_BI_1B: // BI_1B B.......bbbbbiii iiiiiiiiiiittttt Rt imm6, simm14:00 |
10874 | assert(insOptsNone(id->idInsOpt())); |
10875 | emitDispReg(id->idReg1(), size, true); |
10876 | emitDispImm(emitGetInsSC(id), true); |
10877 | if (id->idIsBound()) |
10878 | { |
10879 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
10880 | } |
10881 | else |
10882 | { |
10883 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
10884 | } |
10885 | break; |
10886 | |
10887 | case IF_BR_1A: // BR_1A ................ ......nnnnn..... Rn |
10888 | assert(insOptsNone(id->idInsOpt())); |
10889 | emitDispReg(id->idReg1(), size, false); |
10890 | break; |
10891 | |
10892 | case IF_BR_1B: // BR_1B ................ ......nnnnn..... Rn |
10893 | assert(insOptsNone(id->idInsOpt())); |
10894 | emitDispReg(id->idReg3(), size, false); |
10895 | break; |
10896 | |
10897 | case IF_LS_1A: // LS_1A XX...V..iiiiiiii iiiiiiiiiiittttt Rt PC imm(1MB) |
10898 | case IF_DI_1E: // DI_1E .ii.....iiiiiiii iiiiiiiiiiiddddd Rd simm21 |
10899 | case IF_LARGELDC: |
10900 | case IF_LARGEADR: |
10901 | assert(insOptsNone(id->idInsOpt())); |
10902 | emitDispReg(id->idReg1(), size, true); |
10903 | imm = emitGetInsSC(id); |
10904 | |
10905 | /* Is this actually a reference to a data section? */ |
10906 | if (fmt == IF_LARGEADR) |
10907 | { |
10908 | printf("(LARGEADR)" ); |
10909 | } |
10910 | else if (fmt == IF_LARGELDC) |
10911 | { |
10912 | printf("(LARGELDC)" ); |
10913 | } |
10914 | |
10915 | printf("[" ); |
10916 | if (id->idAddr()->iiaIsJitDataOffset()) |
10917 | { |
10918 | doffs = Compiler::eeGetJitDataOffs(id->idAddr()->iiaFieldHnd); |
10919 | /* Display a data section reference */ |
10920 | |
10921 | if (doffs & 1) |
10922 | printf("@CNS%02u" , doffs - 1); |
10923 | else |
10924 | printf("@RWD%02u" , doffs); |
10925 | |
10926 | if (imm != 0) |
10927 | printf("%+Id" , imm); |
10928 | } |
10929 | else |
10930 | { |
10931 | assert(imm == 0); |
10932 | if (id->idIsReloc()) |
10933 | { |
10934 | printf("RELOC " ); |
10935 | emitDispImm((ssize_t)id->idAddr()->iiaAddr, false); |
10936 | } |
10937 | else if (id->idIsBound()) |
10938 | { |
10939 | printf("G_M%03u_IG%02u" , Compiler::s_compMethodsCount, id->idAddr()->iiaIGlabel->igNum); |
10940 | } |
10941 | else |
10942 | { |
10943 | printf("L_M%03u_" FMT_BB, Compiler::s_compMethodsCount, id->idAddr()->iiaBBlabel->bbNum); |
10944 | } |
10945 | } |
10946 | printf("]" ); |
10947 | break; |
10948 | |
10949 | case IF_LS_2A: // LS_2A .X.......X...... ......nnnnnttttt Rt Rn |
10950 | assert(insOptsNone(id->idInsOpt())); |
10951 | assert(emitGetInsSC(id) == 0); |
10952 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
10953 | emitDispAddrRI(id->idReg2(), id->idInsOpt(), 0); |
10954 | break; |
10955 | |
10956 | case IF_LS_2B: // LS_2B .X.......Xiiiiii iiiiiinnnnnttttt Rt Rn imm(0-4095) |
10957 | assert(insOptsNone(id->idInsOpt())); |
10958 | imm = emitGetInsSC(id); |
10959 | scale = NaturalScale_helper(emitInsLoadStoreSize(id)); |
10960 | imm <<= scale; // The immediate is scaled by the size of the ld/st |
10961 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
10962 | emitDispAddrRI(id->idReg2(), id->idInsOpt(), imm); |
10963 | break; |
10964 | |
10965 | case IF_LS_2C: // LS_2C .X.......X.iiiii iiiiPPnnnnnttttt Rt Rn imm(-256..+255) no/pre/post inc |
10966 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
10967 | imm = emitGetInsSC(id); |
10968 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
10969 | emitDispAddrRI(id->idReg2(), id->idInsOpt(), imm); |
10970 | break; |
10971 | |
10972 | case IF_LS_3A: // LS_3A .X.......X.mmmmm oooS..nnnnnttttt Rt Rn Rm ext(Rm) LSL {} |
10973 | assert(insOptsLSExtend(id->idInsOpt())); |
10974 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
10975 | if (id->idIsLclVar()) |
10976 | { |
10977 | emitDispAddrRRExt(id->idReg2(), codeGen->rsGetRsvdReg(), id->idInsOpt(), false, size); |
10978 | } |
10979 | else |
10980 | { |
10981 | emitDispAddrRRExt(id->idReg2(), id->idReg3(), id->idInsOpt(), id->idReg3Scaled(), size); |
10982 | } |
10983 | break; |
10984 | |
10985 | case IF_LS_3B: // LS_3B X............... .aaaaannnnnddddd Rt Ra Rn |
10986 | assert(insOptsNone(id->idInsOpt())); |
10987 | assert(emitGetInsSC(id) == 0); |
10988 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
10989 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
10990 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0); |
10991 | break; |
10992 | |
10993 | case IF_LS_3C: // LS_3C X.........iiiiii iaaaaannnnnddddd Rt Ra Rn imm(im7,sh) |
10994 | assert(insOptsNone(id->idInsOpt()) || insOptsIndexed(id->idInsOpt())); |
10995 | imm = emitGetInsSC(id); |
10996 | scale = NaturalScale_helper(emitInsLoadStoreSize(id)); |
10997 | imm <<= scale; |
10998 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
10999 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
11000 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), imm); |
11001 | break; |
11002 | |
11003 | case IF_LS_3D: // LS_3D .X.......X.mmmmm ......nnnnnttttt Wm Rt Rn |
11004 | assert(insOptsNone(id->idInsOpt())); |
11005 | emitDispReg(id->idReg1(), EA_4BYTE, true); |
11006 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
11007 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0); |
11008 | break; |
11009 | |
11010 | case IF_LS_3E: // LS_3E .X.........mmmmm ......nnnnnttttt Rm Rt Rn ARMv8.1 LSE Atomics |
11011 | assert(insOptsNone(id->idInsOpt())); |
11012 | emitDispReg(id->idReg1(), emitInsTargetRegSize(id), true); |
11013 | emitDispReg(id->idReg2(), emitInsTargetRegSize(id), true); |
11014 | emitDispAddrRI(id->idReg3(), id->idInsOpt(), 0); |
11015 | break; |
11016 | |
11017 | case IF_DI_1A: // DI_1A X.......shiiiiii iiiiiinnnnn..... Rn imm(i12,sh) |
11018 | emitDispReg(id->idReg1(), size, true); |
11019 | emitDispImmOptsLSL12(emitGetInsSC(id), id->idInsOpt()); |
11020 | break; |
11021 | |
11022 | case IF_DI_1B: // DI_1B X........hwiiiii iiiiiiiiiiiddddd Rd imm(i16,hw) |
11023 | emitDispReg(id->idReg1(), size, true); |
11024 | hwi.immHWVal = (unsigned)emitGetInsSC(id); |
11025 | if (ins == INS_mov) |
11026 | { |
11027 | emitDispImm(emitDecodeHalfwordImm(hwi, size), false); |
11028 | } |
11029 | else // movz, movn, movk |
11030 | { |
11031 | emitDispImm(hwi.immVal, false); |
11032 | if (hwi.immHW != 0) |
11033 | { |
11034 | emitDispShiftOpts(INS_OPTS_LSL); |
11035 | emitDispImm(hwi.immHW * 16, false); |
11036 | } |
11037 | } |
11038 | break; |
11039 | |
11040 | case IF_DI_1C: // DI_1C X........Nrrrrrr ssssssnnnnn..... Rn imm(N,r,s) |
11041 | emitDispReg(id->idReg1(), size, true); |
11042 | bmi.immNRS = (unsigned)emitGetInsSC(id); |
11043 | emitDispImm(emitDecodeBitMaskImm(bmi, size), false); |
11044 | break; |
11045 | |
11046 | case IF_DI_1D: // DI_1D X........Nrrrrrr ssssss.....ddddd Rd imm(N,r,s) |
11047 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11048 | bmi.immNRS = (unsigned)emitGetInsSC(id); |
11049 | emitDispImm(emitDecodeBitMaskImm(bmi, size), false); |
11050 | break; |
11051 | |
11052 | case IF_DI_2A: // DI_2A X.......shiiiiii iiiiiinnnnnddddd Rd Rn imm(i12,sh) |
11053 | if ((ins == INS_add) || (ins == INS_sub)) |
11054 | { |
11055 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11056 | emitDispReg(encodingZRtoSP(id->idReg2()), size, true); |
11057 | } |
11058 | else |
11059 | { |
11060 | emitDispReg(id->idReg1(), size, true); |
11061 | emitDispReg(id->idReg2(), size, true); |
11062 | } |
11063 | emitDispImmOptsLSL12(emitGetInsSC(id), id->idInsOpt()); |
11064 | break; |
11065 | |
11066 | case IF_DI_2B: // DI_2B X........X.nnnnn ssssssnnnnnddddd Rd Rn imm(0-63) |
11067 | emitDispReg(id->idReg1(), size, true); |
11068 | emitDispReg(id->idReg2(), size, true); |
11069 | emitDispImm(emitGetInsSC(id), false); |
11070 | break; |
11071 | |
11072 | case IF_DI_2C: // DI_2C X........Nrrrrrr ssssssnnnnnddddd Rd Rn imm(N,r,s) |
11073 | if (ins == INS_ands) |
11074 | { |
11075 | emitDispReg(id->idReg1(), size, true); |
11076 | } |
11077 | else |
11078 | { |
11079 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11080 | } |
11081 | emitDispReg(id->idReg2(), size, true); |
11082 | bmi.immNRS = (unsigned)emitGetInsSC(id); |
11083 | emitDispImm(emitDecodeBitMaskImm(bmi, size), false); |
11084 | break; |
11085 | |
11086 | case IF_DI_2D: // DI_2D X........Nrrrrrr ssssssnnnnnddddd Rd Rn imr, ims (N,r,s) |
11087 | emitDispReg(id->idReg1(), size, true); |
11088 | emitDispReg(id->idReg2(), size, true); |
11089 | |
11090 | imm = emitGetInsSC(id); |
11091 | bmi.immNRS = (unsigned)imm; |
11092 | |
11093 | switch (ins) |
11094 | { |
11095 | case INS_bfm: |
11096 | case INS_sbfm: |
11097 | case INS_ubfm: |
11098 | emitDispImm(bmi.immR, true); |
11099 | emitDispImm(bmi.immS, false); |
11100 | break; |
11101 | |
11102 | case INS_bfi: |
11103 | case INS_sbfiz: |
11104 | case INS_ubfiz: |
11105 | emitDispImm(getBitWidth(size) - bmi.immR, true); |
11106 | emitDispImm(bmi.immS + 1, false); |
11107 | break; |
11108 | |
11109 | case INS_bfxil: |
11110 | case INS_sbfx: |
11111 | case INS_ubfx: |
11112 | emitDispImm(bmi.immR, true); |
11113 | emitDispImm(bmi.immS - bmi.immR + 1, false); |
11114 | break; |
11115 | |
11116 | case INS_asr: |
11117 | case INS_lsr: |
11118 | case INS_lsl: |
11119 | emitDispImm(imm, false); |
11120 | break; |
11121 | |
11122 | default: |
11123 | assert(!"Unexpected instruction in IF_DI_2D" ); |
11124 | } |
11125 | |
11126 | break; |
11127 | |
11128 | case IF_DI_1F: // DI_1F X..........iiiii cccc..nnnnn.nzcv Rn imm5 nzcv cond |
11129 | emitDispReg(id->idReg1(), size, true); |
11130 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
11131 | emitDispImm(cfi.imm5, true); |
11132 | emitDispFlags(cfi.flags); |
11133 | printf("," ); |
11134 | emitDispCond(cfi.cond); |
11135 | break; |
11136 | |
11137 | case IF_DR_1D: // DR_1D X............... cccc.......mmmmm Rd cond |
11138 | emitDispReg(id->idReg1(), size, true); |
11139 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
11140 | emitDispCond(cfi.cond); |
11141 | break; |
11142 | |
11143 | case IF_DR_2A: // DR_2A X..........mmmmm ......nnnnn..... Rn Rm |
11144 | emitDispReg(id->idReg1(), size, true); |
11145 | emitDispReg(id->idReg2(), size, false); |
11146 | break; |
11147 | |
11148 | case IF_DR_2B: // DR_2B X.......sh.mmmmm ssssssnnnnn..... Rn Rm {LSL,LSR,ASR,ROR} imm(0-63) |
11149 | emitDispReg(id->idReg1(), size, true); |
11150 | emitDispShiftedReg(id->idReg2(), id->idInsOpt(), emitGetInsSC(id), size); |
11151 | break; |
11152 | |
11153 | case IF_DR_2C: // DR_2C X..........mmmmm ooosssnnnnn..... Rn Rm ext(Rm) LSL imm(0-4) |
11154 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11155 | imm = emitGetInsSC(id); |
11156 | emitDispExtendReg(id->idReg2(), id->idInsOpt(), imm); |
11157 | break; |
11158 | |
11159 | case IF_DR_2D: // DR_2D X..........nnnnn cccc..nnnnnddddd Rd Rn cond |
11160 | emitDispReg(id->idReg1(), size, true); |
11161 | emitDispReg(id->idReg2(), size, true); |
11162 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
11163 | emitDispCond(cfi.cond); |
11164 | break; |
11165 | |
11166 | case IF_DR_2E: // DR_2E X..........mmmmm ...........ddddd Rd Rm |
11167 | case IF_DR_2J: // DR_2J ................ ......nnnnnddddd Sd Sn |
11168 | emitDispReg(id->idReg1(), size, true); |
11169 | emitDispReg(id->idReg2(), size, false); |
11170 | break; |
11171 | |
11172 | case IF_DR_2F: // DR_2F X.......sh.mmmmm ssssss.....ddddd Rd Rm {LSL,LSR,ASR} imm(0-63) |
11173 | emitDispReg(id->idReg1(), size, true); |
11174 | emitDispShiftedReg(id->idReg2(), id->idInsOpt(), emitGetInsSC(id), size); |
11175 | break; |
11176 | |
11177 | case IF_DR_2G: // DR_2G X............... ......nnnnnddddd Rd Rn |
11178 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11179 | emitDispReg(encodingZRtoSP(id->idReg2()), size, false); |
11180 | break; |
11181 | |
11182 | case IF_DR_2H: // DR_2H X........X...... ......nnnnnddddd Rd Rn |
11183 | emitDispReg(id->idReg1(), size, true); |
11184 | emitDispReg(id->idReg2(), size, false); |
11185 | break; |
11186 | |
11187 | case IF_DR_2I: // DR_2I X..........mmmmm cccc..nnnnn.nzcv Rn Rm nzcv cond |
11188 | emitDispReg(id->idReg1(), size, true); |
11189 | emitDispReg(id->idReg2(), size, true); |
11190 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
11191 | emitDispFlags(cfi.flags); |
11192 | printf("," ); |
11193 | emitDispCond(cfi.cond); |
11194 | break; |
11195 | |
11196 | case IF_DR_3A: // DR_3A X..........mmmmm ......nnnnnmmmmm Rd Rn Rm |
11197 | if ((ins == INS_add) || (ins == INS_sub)) |
11198 | { |
11199 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11200 | emitDispReg(encodingZRtoSP(id->idReg2()), size, true); |
11201 | } |
11202 | else if ((ins == INS_smull) || (ins == INS_smulh)) |
11203 | { |
11204 | // Rd is always 8 bytes |
11205 | emitDispReg(id->idReg1(), EA_8BYTE, true); |
11206 | |
11207 | // Rn, Rm effective size depends on instruction type |
11208 | size = (ins == INS_smulh) ? EA_8BYTE : EA_4BYTE; |
11209 | emitDispReg(id->idReg2(), size, true); |
11210 | } |
11211 | else |
11212 | { |
11213 | emitDispReg(id->idReg1(), size, true); |
11214 | emitDispReg(id->idReg2(), size, true); |
11215 | } |
11216 | if (id->idIsLclVar()) |
11217 | { |
11218 | emitDispReg(codeGen->rsGetRsvdReg(), size, false); |
11219 | } |
11220 | else |
11221 | { |
11222 | emitDispReg(id->idReg3(), size, false); |
11223 | } |
11224 | |
11225 | break; |
11226 | |
11227 | case IF_DR_3B: // DR_3B X.......sh.mmmmm ssssssnnnnnddddd Rd Rn Rm {LSL,LSR,ASR} imm(0-63) |
11228 | emitDispReg(id->idReg1(), size, true); |
11229 | emitDispReg(id->idReg2(), size, true); |
11230 | emitDispShiftedReg(id->idReg3(), id->idInsOpt(), emitGetInsSC(id), size); |
11231 | break; |
11232 | |
11233 | case IF_DR_3C: // DR_3C X..........mmmmm ooosssnnnnnddddd Rd Rn Rm ext(Rm) LSL imm(0-4) |
11234 | emitDispReg(encodingZRtoSP(id->idReg1()), size, true); |
11235 | emitDispReg(encodingZRtoSP(id->idReg2()), size, true); |
11236 | imm = emitGetInsSC(id); |
11237 | emitDispExtendReg(id->idReg3(), id->idInsOpt(), imm); |
11238 | break; |
11239 | |
11240 | case IF_DR_3D: // DR_3D X..........mmmmm cccc..nnnnnmmmmm Rd Rn Rm cond |
11241 | emitDispReg(id->idReg1(), size, true); |
11242 | emitDispReg(id->idReg2(), size, true); |
11243 | emitDispReg(id->idReg3(), size, true); |
11244 | cfi.immCFVal = (unsigned)emitGetInsSC(id); |
11245 | emitDispCond(cfi.cond); |
11246 | break; |
11247 | |
11248 | case IF_DR_3E: // DR_3E X........X.mmmmm ssssssnnnnnddddd Rd Rn Rm imm(0-63) |
11249 | emitDispReg(id->idReg1(), size, true); |
11250 | emitDispReg(id->idReg2(), size, true); |
11251 | emitDispReg(id->idReg3(), size, true); |
11252 | emitDispImm(emitGetInsSC(id), false); |
11253 | break; |
11254 | |
11255 | case IF_DR_4A: // DR_4A X..........mmmmm .aaaaannnnnmmmmm Rd Rn Rm Ra |
11256 | emitDispReg(id->idReg1(), size, true); |
11257 | emitDispReg(id->idReg2(), size, true); |
11258 | emitDispReg(id->idReg3(), size, true); |
11259 | emitDispReg(id->idReg4(), size, false); |
11260 | break; |
11261 | |
11262 | case IF_DV_1A: // DV_1A .........X.iiiii iii........ddddd Vd imm8 (fmov - immediate scalar) |
11263 | elemsize = id->idOpSize(); |
11264 | emitDispReg(id->idReg1(), elemsize, true); |
11265 | emitDispFloatImm(emitGetInsSC(id)); |
11266 | break; |
11267 | |
11268 | case IF_DV_1B: // DV_1B .QX..........iii cmod..iiiiiddddd Vd imm8 (immediate vector) |
11269 | imm = emitGetInsSC(id) & 0x0ff; |
11270 | immShift = (emitGetInsSC(id) & 0x700) >> 8; |
11271 | hasShift = (immShift != 0); |
11272 | elemsize = optGetElemsize(id->idInsOpt()); |
11273 | if (id->idInsOpt() == INS_OPTS_1D) |
11274 | { |
11275 | assert(elemsize == size); |
11276 | emitDispReg(id->idReg1(), size, true); |
11277 | } |
11278 | else |
11279 | { |
11280 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11281 | } |
11282 | if (ins == INS_fmov) |
11283 | { |
11284 | emitDispFloatImm(imm); |
11285 | assert(hasShift == false); |
11286 | } |
11287 | else |
11288 | { |
11289 | if (elemsize == EA_8BYTE) |
11290 | { |
11291 | assert(ins == INS_movi); |
11292 | ssize_t imm64 = 0; |
11293 | const ssize_t mask8 = 0xFF; |
11294 | for (unsigned b = 0; b < 8; b++) |
11295 | { |
11296 | if (imm & (ssize_t{1} << b)) |
11297 | { |
11298 | imm64 |= (mask8 << (b * 8)); |
11299 | } |
11300 | } |
11301 | emitDispImm(imm64, hasShift, true); |
11302 | } |
11303 | else |
11304 | { |
11305 | emitDispImm(imm, hasShift, true); |
11306 | } |
11307 | if (hasShift) |
11308 | { |
11309 | insOpts opt = (immShift & 0x4) ? INS_OPTS_MSL : INS_OPTS_LSL; |
11310 | unsigned shift = (immShift & 0x3) * 8; |
11311 | emitDispShiftOpts(opt); |
11312 | emitDispImm(shift, false); |
11313 | } |
11314 | } |
11315 | break; |
11316 | |
11317 | case IF_DV_1C: // DV_1C .........X...... ......nnnnn..... Vn #0.0 (fcmp - with zero) |
11318 | elemsize = id->idOpSize(); |
11319 | emitDispReg(id->idReg1(), elemsize, true); |
11320 | emitDispFloatZero(); |
11321 | break; |
11322 | |
11323 | case IF_DV_2A: // DV_2A .Q.......X...... ......nnnnnddddd Vd Vn (fabs, fcvt - vector) |
11324 | case IF_DV_2M: // DV_2M .Q......XX...... ......nnnnnddddd Vd Vn (abs, neg - vector) |
11325 | case IF_DV_2P: // DV_2P ................ ......nnnnnddddd Vd Vn (aes*, sha1su1) |
11326 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11327 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), false); |
11328 | break; |
11329 | |
11330 | case IF_DV_2N: // DV_2N .........iiiiiii ......nnnnnddddd Vd Vn imm (shift - scalar) |
11331 | elemsize = id->idOpSize(); |
11332 | emitDispReg(id->idReg1(), elemsize, true); |
11333 | emitDispReg(id->idReg2(), elemsize, true); |
11334 | emitDispImm(emitGetInsSC(id), false); |
11335 | break; |
11336 | |
11337 | case IF_DV_2O: // DV_2O .Q.......iiiiiii ......nnnnnddddd Vd Vn imm (shift - vector) |
11338 | imm = emitGetInsSC(id); |
11339 | // Do we have a sxtl or uxtl instruction? |
11340 | isExtendAlias = ((ins == INS_sxtl) || (ins == INS_sxtl2) || (ins == INS_uxtl) || (ins == INS_uxtl2)); |
11341 | code = emitInsCode(ins, fmt); |
11342 | if (code & 0x00008000) // widen/narrow opcodes |
11343 | { |
11344 | if (code & 0x00002000) // SHL opcodes |
11345 | { |
11346 | emitDispVectorReg(id->idReg1(), optWidenElemsize(id->idInsOpt()), true); |
11347 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), !isExtendAlias); |
11348 | } |
11349 | else // SHR opcodes |
11350 | { |
11351 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11352 | emitDispVectorReg(id->idReg2(), optWidenElemsize(id->idInsOpt()), !isExtendAlias); |
11353 | } |
11354 | } |
11355 | else |
11356 | { |
11357 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11358 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), !isExtendAlias); |
11359 | } |
11360 | // Print the immediate unless we have a sxtl or uxtl instruction |
11361 | if (!isExtendAlias) |
11362 | { |
11363 | emitDispImm(imm, false); |
11364 | } |
11365 | break; |
11366 | |
11367 | case IF_DV_2B: // DV_2B .Q.........iiiii ......nnnnnddddd Rd Vn[] (umov/smov - to general) |
11368 | srcsize = id->idOpSize(); |
11369 | index = emitGetInsSC(id); |
11370 | if (ins == INS_smov) |
11371 | { |
11372 | dstsize = EA_8BYTE; |
11373 | } |
11374 | else // INS_umov or INS_mov |
11375 | { |
11376 | dstsize = (srcsize == EA_8BYTE) ? EA_8BYTE : EA_4BYTE; |
11377 | } |
11378 | emitDispReg(id->idReg1(), dstsize, true); |
11379 | emitDispVectorRegIndex(id->idReg2(), srcsize, index, false); |
11380 | break; |
11381 | |
11382 | case IF_DV_2C: // DV_2C .Q.........iiiii ......nnnnnddddd Vd Rn (dup/ins - vector from general) |
11383 | if (ins == INS_dup) |
11384 | { |
11385 | datasize = id->idOpSize(); |
11386 | assert(isValidVectorDatasize(datasize)); |
11387 | assert(isValidArrangement(datasize, id->idInsOpt())); |
11388 | elemsize = optGetElemsize(id->idInsOpt()); |
11389 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11390 | } |
11391 | else // INS_ins |
11392 | { |
11393 | elemsize = id->idOpSize(); |
11394 | index = emitGetInsSC(id); |
11395 | assert(isValidVectorElemsize(elemsize)); |
11396 | emitDispVectorRegIndex(id->idReg1(), elemsize, index, true); |
11397 | } |
11398 | emitDispReg(id->idReg2(), (elemsize == EA_8BYTE) ? EA_8BYTE : EA_4BYTE, false); |
11399 | break; |
11400 | |
11401 | case IF_DV_2D: // DV_2D .Q.........iiiii ......nnnnnddddd Vd Vn[] (dup - vector) |
11402 | datasize = id->idOpSize(); |
11403 | assert(isValidVectorDatasize(datasize)); |
11404 | assert(isValidArrangement(datasize, id->idInsOpt())); |
11405 | elemsize = optGetElemsize(id->idInsOpt()); |
11406 | index = emitGetInsSC(id); |
11407 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11408 | emitDispVectorRegIndex(id->idReg2(), elemsize, index, false); |
11409 | break; |
11410 | |
11411 | case IF_DV_2E: // DV_2E ...........iiiii ......nnnnnddddd Vd Vn[] (dup - scalar) |
11412 | elemsize = id->idOpSize(); |
11413 | index = emitGetInsSC(id); |
11414 | emitDispReg(id->idReg1(), elemsize, true); |
11415 | emitDispVectorRegIndex(id->idReg2(), elemsize, index, false); |
11416 | break; |
11417 | |
11418 | case IF_DV_2F: // DV_2F ...........iiiii .jjjj.nnnnnddddd Vd[] Vn[] (ins - element) |
11419 | imm = emitGetInsSC(id); |
11420 | index = (imm >> 4) & 0xf; |
11421 | index2 = imm & 0xf; |
11422 | elemsize = id->idOpSize(); |
11423 | emitDispVectorRegIndex(id->idReg1(), elemsize, index, true); |
11424 | emitDispVectorRegIndex(id->idReg2(), elemsize, index2, false); |
11425 | break; |
11426 | |
11427 | case IF_DV_2G: // DV_2G .........X...... ......nnnnnddddd Vd Vn (fmov, fcvtXX - register) |
11428 | case IF_DV_2K: // DV_2K .........X.mmmmm ......nnnnn..... Vn Vm (fcmp) |
11429 | case IF_DV_2L: // DV_2L ........XX...... ......nnnnnddddd Vd Vn (abs, neg - scalar) |
11430 | elemsize = id->idOpSize(); |
11431 | emitDispReg(id->idReg1(), elemsize, true); |
11432 | emitDispReg(id->idReg2(), elemsize, false); |
11433 | break; |
11434 | |
11435 | case IF_DV_2H: // DV_2H X........X...... ......nnnnnddddd Rd Vn (fmov, fcvtXX - to general) |
11436 | case IF_DV_2I: // DV_2I X........X...... ......nnnnnddddd Vd Rn (fmov, Xcvtf - from general) |
11437 | case IF_DV_2J: // DV_2J ........SS.....D D.....nnnnnddddd Vd Vn (fcvt) |
11438 | dstsize = optGetDstsize(id->idInsOpt()); |
11439 | srcsize = optGetSrcsize(id->idInsOpt()); |
11440 | |
11441 | emitDispReg(id->idReg1(), dstsize, true); |
11442 | emitDispReg(id->idReg2(), srcsize, false); |
11443 | break; |
11444 | |
11445 | case IF_DV_3A: // DV_3A .Q......XX.mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
11446 | case IF_DV_3B: // DV_3B .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
11447 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11448 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
11449 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
11450 | break; |
11451 | |
11452 | case IF_DV_3C: // DV_3C .Q.........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
11453 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11454 | if (ins != INS_mov) |
11455 | { |
11456 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
11457 | } |
11458 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
11459 | break; |
11460 | |
11461 | case IF_DV_3AI: // DV_3AI .Q......XXLMmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
11462 | case IF_DV_3BI: // DV_3BI .Q........Lmmmmm ....H.nnnnnddddd Vd Vn Vm[] (vector by elem) |
11463 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11464 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
11465 | elemsize = optGetElemsize(id->idInsOpt()); |
11466 | emitDispVectorRegIndex(id->idReg3(), elemsize, emitGetInsSC(id), false); |
11467 | break; |
11468 | |
11469 | case IF_DV_3D: // DV_3D .........X.mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
11470 | case IF_DV_3E: // DV_3E ...........mmmmm ......nnnnnddddd Vd Vn Vm (scalar) |
11471 | emitDispReg(id->idReg1(), size, true); |
11472 | emitDispReg(id->idReg2(), size, true); |
11473 | emitDispReg(id->idReg3(), size, false); |
11474 | break; |
11475 | |
11476 | case IF_DV_3F: // DV_3F ..........mmmmm ......nnnnnddddd Vd Vn Vm (vector) |
11477 | if ((ins == INS_sha1c) || (ins == INS_sha1m) || (ins == INS_sha1p)) |
11478 | { |
11479 | // Qd, Sn, Vm (vector) |
11480 | emitDispReg(id->idReg1(), size, true); |
11481 | emitDispReg(id->idReg2(), EA_4BYTE, true); |
11482 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
11483 | } |
11484 | else if ((ins == INS_sha256h) || (ins == INS_sha256h2)) |
11485 | { |
11486 | // Qd Qn Vm (vector) |
11487 | emitDispReg(id->idReg1(), size, true); |
11488 | emitDispReg(id->idReg2(), size, true); |
11489 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
11490 | } |
11491 | else // INS_sha1su0, INS_sha256su1 |
11492 | { |
11493 | // Vd, Vn, Vm (vector) |
11494 | emitDispVectorReg(id->idReg1(), id->idInsOpt(), true); |
11495 | emitDispVectorReg(id->idReg2(), id->idInsOpt(), true); |
11496 | emitDispVectorReg(id->idReg3(), id->idInsOpt(), false); |
11497 | } |
11498 | break; |
11499 | |
11500 | case IF_DV_3DI: // DV_3DI .........XLmmmmm ....H.nnnnnddddd Vd Vn Vm[] (scalar by elem) |
11501 | emitDispReg(id->idReg1(), size, true); |
11502 | emitDispReg(id->idReg2(), size, true); |
11503 | elemsize = size; |
11504 | emitDispVectorRegIndex(id->idReg3(), elemsize, emitGetInsSC(id), false); |
11505 | break; |
11506 | |
11507 | case IF_DV_4A: // DV_4A .........X.mmmmm .aaaaannnnnddddd Vd Va Vn Vm (scalar) |
11508 | emitDispReg(id->idReg1(), size, true); |
11509 | emitDispReg(id->idReg2(), size, true); |
11510 | emitDispReg(id->idReg3(), size, true); |
11511 | emitDispReg(id->idReg4(), size, false); |
11512 | break; |
11513 | |
11514 | case IF_SN_0A: // SN_0A ................ ................ |
11515 | break; |
11516 | |
11517 | case IF_SI_0A: // SI_0A ...........iiiii iiiiiiiiiii..... imm16 |
11518 | emitDispImm(emitGetInsSC(id), false); |
11519 | break; |
11520 | |
11521 | case IF_SI_0B: // SI_0B ................ ....bbbb........ imm4 - barrier |
11522 | emitDispBarrier((insBarrier)emitGetInsSC(id)); |
11523 | break; |
11524 | |
11525 | default: |
11526 | printf("unexpected format %s" , emitIfName(id->idInsFmt())); |
11527 | assert(!"unexpectedFormat" ); |
11528 | break; |
11529 | } |
11530 | |
11531 | if (id->idDebugOnlyInfo()->idVarRefOffs) |
11532 | { |
11533 | printf("\t// " ); |
11534 | emitDispFrameRef(id->idAddr()->iiaLclVar.lvaVarNum(), id->idAddr()->iiaLclVar.lvaOffset(), |
11535 | id->idDebugOnlyInfo()->idVarRefOffs, asmfm); |
11536 | } |
11537 | |
11538 | printf("\n" ); |
11539 | } |
11540 | |
11541 | /***************************************************************************** |
11542 | * |
11543 | * Display a stack frame reference. |
11544 | */ |
11545 | |
11546 | void emitter::emitDispFrameRef(int varx, int disp, int offs, bool asmfm) |
11547 | { |
11548 | printf("[" ); |
11549 | |
11550 | if (varx < 0) |
11551 | printf("TEMP_%02u" , -varx); |
11552 | else |
11553 | emitComp->gtDispLclVar(+varx, false); |
11554 | |
11555 | if (disp < 0) |
11556 | printf("-0x%02x" , -disp); |
11557 | else if (disp > 0) |
11558 | printf("+0x%02x" , +disp); |
11559 | |
11560 | printf("]" ); |
11561 | |
11562 | if (varx >= 0 && emitComp->opts.varNames) |
11563 | { |
11564 | LclVarDsc* varDsc; |
11565 | const char* varName; |
11566 | |
11567 | assert((unsigned)varx < emitComp->lvaCount); |
11568 | varDsc = emitComp->lvaTable + varx; |
11569 | varName = emitComp->compLocalVarName(varx, offs); |
11570 | |
11571 | if (varName) |
11572 | { |
11573 | printf("'%s" , varName); |
11574 | |
11575 | if (disp < 0) |
11576 | printf("-%d" , -disp); |
11577 | else if (disp > 0) |
11578 | printf("+%d" , +disp); |
11579 | |
11580 | printf("'" ); |
11581 | } |
11582 | } |
11583 | } |
11584 | |
11585 | #endif // DEBUG |
11586 | |
11587 | // Generate code for a load or store operation with a potentially complex addressing mode |
11588 | // This method handles the case of a GT_IND with contained GT_LEA op1 of the x86 form [base + index*sccale + offset] |
11589 | // Since Arm64 does not directly support this complex of an addressing mode |
11590 | // we may generates up to three instructions for this for Arm64 |
11591 | // |
11592 | void emitter::emitInsLoadStoreOp(instruction ins, emitAttr attr, regNumber dataReg, GenTreeIndir* indir) |
11593 | { |
11594 | emitAttr ldstAttr = isVectorRegister(dataReg) ? attr : emitInsAdjustLoadStoreAttr(ins, attr); |
11595 | |
11596 | GenTree* addr = indir->Addr(); |
11597 | |
11598 | if (addr->isContained()) |
11599 | { |
11600 | assert(addr->OperGet() == GT_LCL_VAR_ADDR || addr->OperGet() == GT_LEA); |
11601 | |
11602 | int offset = 0; |
11603 | DWORD lsl = 0; |
11604 | |
11605 | if (addr->OperGet() == GT_LEA) |
11606 | { |
11607 | offset = addr->AsAddrMode()->Offset(); |
11608 | if (addr->AsAddrMode()->gtScale > 0) |
11609 | { |
11610 | assert(isPow2(addr->AsAddrMode()->gtScale)); |
11611 | BitScanForward(&lsl, addr->AsAddrMode()->gtScale); |
11612 | } |
11613 | } |
11614 | |
11615 | GenTree* memBase = indir->Base(); |
11616 | |
11617 | if (indir->HasIndex()) |
11618 | { |
11619 | GenTree* index = indir->Index(); |
11620 | |
11621 | if (offset != 0) |
11622 | { |
11623 | regNumber tmpReg = indir->GetSingleTempReg(); |
11624 | |
11625 | emitAttr addType = varTypeIsGC(memBase) ? EA_BYREF : EA_PTRSIZE; |
11626 | |
11627 | if (emitIns_valid_imm_for_add(offset, EA_8BYTE)) |
11628 | { |
11629 | if (lsl > 0) |
11630 | { |
11631 | // Generate code to set tmpReg = base + index*scale |
11632 | emitIns_R_R_R_I(INS_add, addType, tmpReg, memBase->gtRegNum, index->gtRegNum, lsl, |
11633 | INS_OPTS_LSL); |
11634 | } |
11635 | else // no scale |
11636 | { |
11637 | // Generate code to set tmpReg = base + index |
11638 | emitIns_R_R_R(INS_add, addType, tmpReg, memBase->gtRegNum, index->gtRegNum); |
11639 | } |
11640 | |
11641 | noway_assert(emitInsIsLoad(ins) || (tmpReg != dataReg)); |
11642 | |
11643 | // Then load/store dataReg from/to [tmpReg + offset] |
11644 | emitIns_R_R_I(ins, ldstAttr, dataReg, tmpReg, offset); |
11645 | } |
11646 | else // large offset |
11647 | { |
11648 | // First load/store tmpReg with the large offset constant |
11649 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset); |
11650 | // Then add the base register |
11651 | // rd = rd + base |
11652 | emitIns_R_R_R(INS_add, addType, tmpReg, tmpReg, memBase->gtRegNum); |
11653 | |
11654 | noway_assert(emitInsIsLoad(ins) || (tmpReg != dataReg)); |
11655 | noway_assert(tmpReg != index->gtRegNum); |
11656 | |
11657 | // Then load/store dataReg from/to [tmpReg + index*scale] |
11658 | emitIns_R_R_R_I(ins, ldstAttr, dataReg, tmpReg, index->gtRegNum, lsl, INS_OPTS_LSL); |
11659 | } |
11660 | } |
11661 | else // (offset == 0) |
11662 | { |
11663 | if (lsl > 0) |
11664 | { |
11665 | // Then load/store dataReg from/to [memBase + index*scale] |
11666 | emitIns_R_R_R_I(ins, ldstAttr, dataReg, memBase->gtRegNum, index->gtRegNum, lsl, INS_OPTS_LSL); |
11667 | } |
11668 | else // no scale |
11669 | { |
11670 | // Then load/store dataReg from/to [memBase + index] |
11671 | emitIns_R_R_R(ins, ldstAttr, dataReg, memBase->gtRegNum, index->gtRegNum); |
11672 | } |
11673 | } |
11674 | } |
11675 | else // no Index register |
11676 | { |
11677 | if (emitIns_valid_imm_for_ldst_offset(offset, EA_SIZE(attr))) |
11678 | { |
11679 | // Then load/store dataReg from/to [memBase + offset] |
11680 | emitIns_R_R_I(ins, ldstAttr, dataReg, memBase->gtRegNum, offset); |
11681 | } |
11682 | else |
11683 | { |
11684 | // We require a tmpReg to hold the offset |
11685 | regNumber tmpReg = indir->GetSingleTempReg(); |
11686 | |
11687 | // First load/store tmpReg with the large offset constant |
11688 | codeGen->instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset); |
11689 | |
11690 | // Then load/store dataReg from/to [memBase + tmpReg] |
11691 | emitIns_R_R_R(ins, ldstAttr, dataReg, memBase->gtRegNum, tmpReg); |
11692 | } |
11693 | } |
11694 | } |
11695 | else // addr is not contained, so we evaluate it into a register |
11696 | { |
11697 | // Then load/store dataReg from/to [addrReg] |
11698 | emitIns_R_R(ins, ldstAttr, dataReg, addr->gtRegNum); |
11699 | } |
11700 | } |
11701 | |
11702 | // The callee must call genConsumeReg() for any non-contained srcs |
11703 | // and genProduceReg() for any non-contained dsts. |
11704 | |
11705 | regNumber emitter::emitInsBinary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src) |
11706 | { |
11707 | regNumber result = REG_NA; |
11708 | |
11709 | // dst can only be a reg |
11710 | assert(!dst->isContained()); |
11711 | |
11712 | // src can be immed or reg |
11713 | assert(!src->isContained() || src->isContainedIntOrIImmed()); |
11714 | |
11715 | // find immed (if any) - it cannot be a dst |
11716 | GenTreeIntConCommon* intConst = nullptr; |
11717 | if (src->isContainedIntOrIImmed()) |
11718 | { |
11719 | intConst = src->AsIntConCommon(); |
11720 | } |
11721 | |
11722 | if (intConst) |
11723 | { |
11724 | emitIns_R_I(ins, attr, dst->gtRegNum, intConst->IconValue()); |
11725 | return dst->gtRegNum; |
11726 | } |
11727 | else |
11728 | { |
11729 | emitIns_R_R(ins, attr, dst->gtRegNum, src->gtRegNum); |
11730 | return dst->gtRegNum; |
11731 | } |
11732 | } |
11733 | |
11734 | // The callee must call genConsumeReg() for any non-contained srcs |
11735 | // and genProduceReg() for any non-contained dsts. |
11736 | |
11737 | regNumber emitter::emitInsTernary(instruction ins, emitAttr attr, GenTree* dst, GenTree* src1, GenTree* src2) |
11738 | { |
11739 | regNumber result = REG_NA; |
11740 | |
11741 | // dst can only be a reg |
11742 | assert(!dst->isContained()); |
11743 | |
11744 | // find immed (if any) - it cannot be a dst |
11745 | // Only one src can be an int. |
11746 | GenTreeIntConCommon* intConst = nullptr; |
11747 | GenTree* nonIntReg = nullptr; |
11748 | |
11749 | if (varTypeIsFloating(dst)) |
11750 | { |
11751 | // src1 can only be a reg |
11752 | assert(!src1->isContained()); |
11753 | // src2 can only be a reg |
11754 | assert(!src2->isContained()); |
11755 | } |
11756 | else // not floating point |
11757 | { |
11758 | // src2 can be immed or reg |
11759 | assert(!src2->isContained() || src2->isContainedIntOrIImmed()); |
11760 | |
11761 | // Check src2 first as we can always allow it to be a contained immediate |
11762 | if (src2->isContainedIntOrIImmed()) |
11763 | { |
11764 | intConst = src2->AsIntConCommon(); |
11765 | nonIntReg = src1; |
11766 | } |
11767 | // Only for commutative operations do we check src1 and allow it to be a contained immediate |
11768 | else if (dst->OperIsCommutative()) |
11769 | { |
11770 | // src1 can be immed or reg |
11771 | assert(!src1->isContained() || src1->isContainedIntOrIImmed()); |
11772 | |
11773 | // Check src1 and allow it to be a contained immediate |
11774 | if (src1->isContainedIntOrIImmed()) |
11775 | { |
11776 | assert(!src2->isContainedIntOrIImmed()); |
11777 | intConst = src1->AsIntConCommon(); |
11778 | nonIntReg = src2; |
11779 | } |
11780 | } |
11781 | else |
11782 | { |
11783 | // src1 can only be a reg |
11784 | assert(!src1->isContained()); |
11785 | } |
11786 | } |
11787 | |
11788 | bool isMulOverflow = false; |
11789 | if (dst->gtOverflowEx()) |
11790 | { |
11791 | if ((ins == INS_add) || (ins == INS_adds)) |
11792 | { |
11793 | ins = INS_adds; |
11794 | } |
11795 | else if ((ins == INS_sub) || (ins == INS_subs)) |
11796 | { |
11797 | ins = INS_subs; |
11798 | } |
11799 | else if (ins == INS_mul) |
11800 | { |
11801 | isMulOverflow = true; |
11802 | assert(intConst == nullptr); // overflow format doesn't support an int constant operand |
11803 | } |
11804 | else |
11805 | { |
11806 | assert(!"Invalid ins for overflow check" ); |
11807 | } |
11808 | } |
11809 | if (intConst != nullptr) |
11810 | { |
11811 | emitIns_R_R_I(ins, attr, dst->gtRegNum, nonIntReg->gtRegNum, intConst->IconValue()); |
11812 | } |
11813 | else |
11814 | { |
11815 | if (isMulOverflow) |
11816 | { |
11817 | regNumber = dst->GetSingleTempReg(); |
11818 | assert(extraReg != dst->gtRegNum); |
11819 | |
11820 | if ((dst->gtFlags & GTF_UNSIGNED) != 0) |
11821 | { |
11822 | if (attr == EA_4BYTE) |
11823 | { |
11824 | // Compute 8 byte results from 4 byte by 4 byte multiplication. |
11825 | emitIns_R_R_R(INS_umull, EA_8BYTE, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
11826 | |
11827 | // Get the high result by shifting dst. |
11828 | emitIns_R_R_I(INS_lsr, EA_8BYTE, extraReg, dst->gtRegNum, 32); |
11829 | } |
11830 | else |
11831 | { |
11832 | assert(attr == EA_8BYTE); |
11833 | // Compute the high result. |
11834 | emitIns_R_R_R(INS_umulh, attr, extraReg, src1->gtRegNum, src2->gtRegNum); |
11835 | |
11836 | // Now multiply without skewing the high result. |
11837 | emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
11838 | } |
11839 | |
11840 | // zero-sign bit comparison to detect overflow. |
11841 | emitIns_R_I(INS_cmp, attr, extraReg, 0); |
11842 | } |
11843 | else |
11844 | { |
11845 | int bitShift = 0; |
11846 | if (attr == EA_4BYTE) |
11847 | { |
11848 | // Compute 8 byte results from 4 byte by 4 byte multiplication. |
11849 | emitIns_R_R_R(INS_smull, EA_8BYTE, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
11850 | |
11851 | // Get the high result by shifting dst. |
11852 | emitIns_R_R_I(INS_lsr, EA_8BYTE, extraReg, dst->gtRegNum, 32); |
11853 | |
11854 | bitShift = 31; |
11855 | } |
11856 | else |
11857 | { |
11858 | assert(attr == EA_8BYTE); |
11859 | // Save the high result in a temporary register. |
11860 | emitIns_R_R_R(INS_smulh, attr, extraReg, src1->gtRegNum, src2->gtRegNum); |
11861 | |
11862 | // Now multiply without skewing the high result. |
11863 | emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
11864 | |
11865 | bitShift = 63; |
11866 | } |
11867 | |
11868 | // Sign bit comparison to detect overflow. |
11869 | emitIns_R_R_I(INS_cmp, attr, extraReg, dst->gtRegNum, bitShift, INS_OPTS_ASR); |
11870 | } |
11871 | } |
11872 | else |
11873 | { |
11874 | // We can just multiply. |
11875 | emitIns_R_R_R(ins, attr, dst->gtRegNum, src1->gtRegNum, src2->gtRegNum); |
11876 | } |
11877 | } |
11878 | |
11879 | if (dst->gtOverflowEx()) |
11880 | { |
11881 | assert(!varTypeIsFloating(dst)); |
11882 | codeGen->genCheckOverflow(dst); |
11883 | } |
11884 | |
11885 | return dst->gtRegNum; |
11886 | } |
11887 | |
11888 | #endif // defined(_TARGET_ARM64_) |
11889 | |