| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX GenTree XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | |
| 14 | #include "jitpch.h" |
| 15 | #include "hwintrinsic.h" |
| 16 | #include "simd.h" |
| 17 | |
| 18 | #ifdef _MSC_VER |
| 19 | #pragma hdrstop |
| 20 | #endif |
| 21 | |
| 22 | /*****************************************************************************/ |
| 23 | |
| 24 | const unsigned short GenTree::gtOperKindTable[] = { |
| 25 | #define GTNODE(en, st, cm, ok) ok + GTK_COMMUTE *cm, |
| 26 | #include "gtlist.h" |
| 27 | }; |
| 28 | |
| 29 | /***************************************************************************** |
| 30 | * |
| 31 | * The types of different GenTree nodes |
| 32 | */ |
| 33 | |
| 34 | #ifdef DEBUG |
| 35 | |
| 36 | #define INDENT_SIZE 3 |
| 37 | |
| 38 | //-------------------------------------------- |
| 39 | // |
| 40 | // IndentStack: This struct is used, along with its related enums and strings, |
| 41 | // to control both the indendtation and the printing of arcs. |
| 42 | // |
| 43 | // Notes: |
| 44 | // The mode of printing is set in the Constructor, using its 'compiler' argument. |
| 45 | // Currently it only prints arcs when fgOrder == fgOrderLinear. |
| 46 | // The type of arc to print is specified by the IndentInfo enum, and is controlled |
| 47 | // by the caller of the Push() method. |
| 48 | |
| 49 | enum IndentChars |
| 50 | { |
| 51 | ICVertical, |
| 52 | ICBottom, |
| 53 | ICTop, |
| 54 | ICMiddle, |
| 55 | ICDash, |
| 56 | ICEmbedded, |
| 57 | ICTerminal, |
| 58 | ICError, |
| 59 | IndentCharCount |
| 60 | }; |
| 61 | |
| 62 | // clang-format off |
| 63 | // Sets of strings for different dumping options vert bot top mid dash embedded terminal error |
| 64 | static const char* emptyIndents[IndentCharCount] = { " " , " " , " " , " " , " " , "{" , "" , "?" }; |
| 65 | static const char* asciiIndents[IndentCharCount] = { "|" , "\\" , "/" , "+" , "-" , "{" , "*" , "?" }; |
| 66 | static const char* unicodeIndents[IndentCharCount] = { "\xe2\x94\x82" , "\xe2\x94\x94" , "\xe2\x94\x8c" , "\xe2\x94\x9c" , "\xe2\x94\x80" , "{" , "\xe2\x96\x8c" , "?" }; |
| 67 | // clang-format on |
| 68 | |
| 69 | typedef ArrayStack<Compiler::IndentInfo> IndentInfoStack; |
| 70 | struct IndentStack |
| 71 | { |
| 72 | IndentInfoStack stack; |
| 73 | const char** indents; |
| 74 | |
| 75 | // Constructor for IndentStack. Uses 'compiler' to determine the mode of printing. |
| 76 | IndentStack(Compiler* compiler) : stack(compiler->getAllocator(CMK_DebugOnly)) |
| 77 | { |
| 78 | if (compiler->asciiTrees) |
| 79 | { |
| 80 | indents = asciiIndents; |
| 81 | } |
| 82 | else |
| 83 | { |
| 84 | indents = unicodeIndents; |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | // Return the depth of the current indentation. |
| 89 | unsigned Depth() |
| 90 | { |
| 91 | return stack.Height(); |
| 92 | } |
| 93 | |
| 94 | // Push a new indentation onto the stack, of the given type. |
| 95 | void Push(Compiler::IndentInfo info) |
| 96 | { |
| 97 | stack.Push(info); |
| 98 | } |
| 99 | |
| 100 | // Pop the most recent indentation type off the stack. |
| 101 | Compiler::IndentInfo Pop() |
| 102 | { |
| 103 | return stack.Pop(); |
| 104 | } |
| 105 | |
| 106 | // Print the current indentation and arcs. |
| 107 | void print() |
| 108 | { |
| 109 | unsigned indentCount = Depth(); |
| 110 | for (unsigned i = 0; i < indentCount; i++) |
| 111 | { |
| 112 | unsigned index = indentCount - 1 - i; |
| 113 | switch (stack.Index(index)) |
| 114 | { |
| 115 | case Compiler::IndentInfo::IINone: |
| 116 | printf(" " ); |
| 117 | break; |
| 118 | case Compiler::IndentInfo::IIEmbedded: |
| 119 | printf("%s " , indents[ICEmbedded]); |
| 120 | break; |
| 121 | case Compiler::IndentInfo::IIArc: |
| 122 | if (index == 0) |
| 123 | { |
| 124 | printf("%s%s%s" , indents[ICMiddle], indents[ICDash], indents[ICDash]); |
| 125 | } |
| 126 | else |
| 127 | { |
| 128 | printf("%s " , indents[ICVertical]); |
| 129 | } |
| 130 | break; |
| 131 | case Compiler::IndentInfo::IIArcBottom: |
| 132 | printf("%s%s%s" , indents[ICBottom], indents[ICDash], indents[ICDash]); |
| 133 | break; |
| 134 | case Compiler::IndentInfo::IIArcTop: |
| 135 | printf("%s%s%s" , indents[ICTop], indents[ICDash], indents[ICDash]); |
| 136 | break; |
| 137 | case Compiler::IndentInfo::IIError: |
| 138 | printf("%s%s%s" , indents[ICError], indents[ICDash], indents[ICDash]); |
| 139 | break; |
| 140 | default: |
| 141 | unreached(); |
| 142 | } |
| 143 | } |
| 144 | printf("%s" , indents[ICTerminal]); |
| 145 | } |
| 146 | }; |
| 147 | |
| 148 | //------------------------------------------------------------------------ |
| 149 | // printIndent: This is a static method which simply invokes the 'print' |
| 150 | // method on its 'indentStack' argument. |
| 151 | // |
| 152 | // Arguments: |
| 153 | // indentStack - specifies the information for the indentation & arcs to be printed |
| 154 | // |
| 155 | // Notes: |
| 156 | // This method exists to localize the checking for the case where indentStack is null. |
| 157 | |
| 158 | static void printIndent(IndentStack* indentStack) |
| 159 | { |
| 160 | if (indentStack == nullptr) |
| 161 | { |
| 162 | return; |
| 163 | } |
| 164 | indentStack->print(); |
| 165 | } |
| 166 | |
| 167 | #endif |
| 168 | |
| 169 | #if defined(DEBUG) || NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS |
| 170 | |
| 171 | static const char* opNames[] = { |
| 172 | #define GTNODE(en, st, cm, ok) #en, |
| 173 | #include "gtlist.h" |
| 174 | }; |
| 175 | |
| 176 | const char* GenTree::OpName(genTreeOps op) |
| 177 | { |
| 178 | assert((unsigned)op < _countof(opNames)); |
| 179 | |
| 180 | return opNames[op]; |
| 181 | } |
| 182 | |
| 183 | #endif |
| 184 | |
| 185 | #if MEASURE_NODE_SIZE && SMALL_TREE_NODES |
| 186 | |
| 187 | static const char* opStructNames[] = { |
| 188 | #define GTNODE(en, st, cm, ok) #st, |
| 189 | #include "gtlist.h" |
| 190 | }; |
| 191 | |
| 192 | const char* GenTree::OpStructName(genTreeOps op) |
| 193 | { |
| 194 | assert((unsigned)op < _countof(opStructNames)); |
| 195 | |
| 196 | return opStructNames[op]; |
| 197 | } |
| 198 | |
| 199 | #endif |
| 200 | |
| 201 | /***************************************************************************** |
| 202 | * |
| 203 | * When 'SMALL_TREE_NODES' is enabled, we allocate tree nodes in 2 different |
| 204 | * sizes: 'TREE_NODE_SZ_SMALL' for most nodes and 'TREE_NODE_SZ_LARGE' for the |
| 205 | * few nodes (such as calls) that have more fields and take up a lot more space. |
| 206 | */ |
| 207 | |
| 208 | #if SMALL_TREE_NODES |
| 209 | |
| 210 | /* GT_COUNT'th oper is overloaded as 'undefined oper', so allocate storage for GT_COUNT'th oper also */ |
| 211 | /* static */ |
| 212 | unsigned char GenTree::s_gtNodeSizes[GT_COUNT + 1]; |
| 213 | |
| 214 | #if NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS |
| 215 | |
| 216 | unsigned char GenTree::s_gtTrueSizes[GT_COUNT + 1]{ |
| 217 | #define GTNODE(en, st, cm, ok) sizeof(st), |
| 218 | #include "gtlist.h" |
| 219 | }; |
| 220 | |
| 221 | #endif // NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS |
| 222 | |
| 223 | #if COUNT_AST_OPERS |
| 224 | LONG GenTree::s_gtNodeCounts[GT_COUNT + 1] = {0}; |
| 225 | #endif // COUNT_AST_OPERS |
| 226 | |
| 227 | /* static */ |
| 228 | void GenTree::InitNodeSize() |
| 229 | { |
| 230 | /* Set all sizes to 'small' first */ |
| 231 | |
| 232 | for (unsigned op = 0; op <= GT_COUNT; op++) |
| 233 | { |
| 234 | GenTree::s_gtNodeSizes[op] = TREE_NODE_SZ_SMALL; |
| 235 | } |
| 236 | |
| 237 | // Now set all of the appropriate entries to 'large' |
| 238 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 239 | |
| 240 | // clang-format off |
| 241 | #if defined(FEATURE_HFA) || defined(UNIX_AMD64_ABI) |
| 242 | // On ARM32, ARM64 and System V for struct returning |
| 243 | // there is code that does GT_ASG-tree.CopyObj call. |
| 244 | // CopyObj is a large node and the GT_ASG is small, which triggers an exception. |
| 245 | GenTree::s_gtNodeSizes[GT_ASG] = TREE_NODE_SZ_LARGE; |
| 246 | GenTree::s_gtNodeSizes[GT_RETURN] = TREE_NODE_SZ_LARGE; |
| 247 | #endif // defined(FEATURE_HFA) || defined(UNIX_AMD64_ABI) |
| 248 | |
| 249 | GenTree::s_gtNodeSizes[GT_CALL] = TREE_NODE_SZ_LARGE; |
| 250 | GenTree::s_gtNodeSizes[GT_CAST] = TREE_NODE_SZ_LARGE; |
| 251 | GenTree::s_gtNodeSizes[GT_FTN_ADDR] = TREE_NODE_SZ_LARGE; |
| 252 | GenTree::s_gtNodeSizes[GT_BOX] = TREE_NODE_SZ_LARGE; |
| 253 | GenTree::s_gtNodeSizes[GT_INDEX] = TREE_NODE_SZ_LARGE; |
| 254 | GenTree::s_gtNodeSizes[GT_INDEX_ADDR] = TREE_NODE_SZ_LARGE; |
| 255 | GenTree::s_gtNodeSizes[GT_ARR_BOUNDS_CHECK] = TREE_NODE_SZ_LARGE; |
| 256 | #ifdef FEATURE_SIMD |
| 257 | GenTree::s_gtNodeSizes[GT_SIMD_CHK] = TREE_NODE_SZ_LARGE; |
| 258 | #endif // FEATURE_SIMD |
| 259 | #ifdef FEATURE_HW_INTRINSICS |
| 260 | GenTree::s_gtNodeSizes[GT_HW_INTRINSIC_CHK] = TREE_NODE_SZ_LARGE; |
| 261 | #endif // FEATURE_HW_INTRINSICS |
| 262 | |
| 263 | GenTree::s_gtNodeSizes[GT_ARR_ELEM] = TREE_NODE_SZ_LARGE; |
| 264 | GenTree::s_gtNodeSizes[GT_ARR_INDEX] = TREE_NODE_SZ_LARGE; |
| 265 | GenTree::s_gtNodeSizes[GT_ARR_OFFSET] = TREE_NODE_SZ_LARGE; |
| 266 | GenTree::s_gtNodeSizes[GT_RET_EXPR] = TREE_NODE_SZ_LARGE; |
| 267 | GenTree::s_gtNodeSizes[GT_OBJ] = TREE_NODE_SZ_LARGE; |
| 268 | GenTree::s_gtNodeSizes[GT_FIELD] = TREE_NODE_SZ_LARGE; |
| 269 | GenTree::s_gtNodeSizes[GT_STMT] = TREE_NODE_SZ_LARGE; |
| 270 | GenTree::s_gtNodeSizes[GT_CMPXCHG] = TREE_NODE_SZ_LARGE; |
| 271 | GenTree::s_gtNodeSizes[GT_QMARK] = TREE_NODE_SZ_LARGE; |
| 272 | GenTree::s_gtNodeSizes[GT_LEA] = TREE_NODE_SZ_LARGE; |
| 273 | GenTree::s_gtNodeSizes[GT_STORE_OBJ] = TREE_NODE_SZ_LARGE; |
| 274 | GenTree::s_gtNodeSizes[GT_DYN_BLK] = TREE_NODE_SZ_LARGE; |
| 275 | GenTree::s_gtNodeSizes[GT_STORE_DYN_BLK] = TREE_NODE_SZ_LARGE; |
| 276 | GenTree::s_gtNodeSizes[GT_INTRINSIC] = TREE_NODE_SZ_LARGE; |
| 277 | GenTree::s_gtNodeSizes[GT_ALLOCOBJ] = TREE_NODE_SZ_LARGE; |
| 278 | #if USE_HELPERS_FOR_INT_DIV |
| 279 | GenTree::s_gtNodeSizes[GT_DIV] = TREE_NODE_SZ_LARGE; |
| 280 | GenTree::s_gtNodeSizes[GT_UDIV] = TREE_NODE_SZ_LARGE; |
| 281 | GenTree::s_gtNodeSizes[GT_MOD] = TREE_NODE_SZ_LARGE; |
| 282 | GenTree::s_gtNodeSizes[GT_UMOD] = TREE_NODE_SZ_LARGE; |
| 283 | #endif |
| 284 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 285 | // TODO-Throughput: This should not need to be a large node. The object info should be |
| 286 | // obtained from the child node. |
| 287 | GenTree::s_gtNodeSizes[GT_PUTARG_STK] = TREE_NODE_SZ_LARGE; |
| 288 | #if FEATURE_ARG_SPLIT |
| 289 | GenTree::s_gtNodeSizes[GT_PUTARG_SPLIT] = TREE_NODE_SZ_LARGE; |
| 290 | #endif // FEATURE_ARG_SPLIT |
| 291 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 292 | |
| 293 | assert(GenTree::s_gtNodeSizes[GT_RETURN] == GenTree::s_gtNodeSizes[GT_ASG]); |
| 294 | |
| 295 | // This list of assertions should come to contain all GenTree subtypes that are declared |
| 296 | // "small". |
| 297 | assert(sizeof(GenTreeLclFld) <= GenTree::s_gtNodeSizes[GT_LCL_FLD]); |
| 298 | assert(sizeof(GenTreeLclVar) <= GenTree::s_gtNodeSizes[GT_LCL_VAR]); |
| 299 | |
| 300 | static_assert_no_msg(sizeof(GenTree) <= TREE_NODE_SZ_SMALL); |
| 301 | static_assert_no_msg(sizeof(GenTreeUnOp) <= TREE_NODE_SZ_SMALL); |
| 302 | static_assert_no_msg(sizeof(GenTreeOp) <= TREE_NODE_SZ_SMALL); |
| 303 | static_assert_no_msg(sizeof(GenTreeVal) <= TREE_NODE_SZ_SMALL); |
| 304 | static_assert_no_msg(sizeof(GenTreeIntConCommon) <= TREE_NODE_SZ_SMALL); |
| 305 | static_assert_no_msg(sizeof(GenTreePhysReg) <= TREE_NODE_SZ_SMALL); |
| 306 | static_assert_no_msg(sizeof(GenTreeJumpTable) <= TREE_NODE_SZ_SMALL); |
| 307 | static_assert_no_msg(sizeof(GenTreeIntCon) <= TREE_NODE_SZ_SMALL); |
| 308 | static_assert_no_msg(sizeof(GenTreeLngCon) <= TREE_NODE_SZ_SMALL); |
| 309 | static_assert_no_msg(sizeof(GenTreeDblCon) <= TREE_NODE_SZ_SMALL); |
| 310 | static_assert_no_msg(sizeof(GenTreeStrCon) <= TREE_NODE_SZ_SMALL); |
| 311 | static_assert_no_msg(sizeof(GenTreeLclVarCommon) <= TREE_NODE_SZ_SMALL); |
| 312 | static_assert_no_msg(sizeof(GenTreeLclVar) <= TREE_NODE_SZ_SMALL); |
| 313 | static_assert_no_msg(sizeof(GenTreeLclFld) <= TREE_NODE_SZ_SMALL); |
| 314 | static_assert_no_msg(sizeof(GenTreeCC) <= TREE_NODE_SZ_SMALL); |
| 315 | static_assert_no_msg(sizeof(GenTreeCast) <= TREE_NODE_SZ_LARGE); // *** large node |
| 316 | static_assert_no_msg(sizeof(GenTreeBox) <= TREE_NODE_SZ_LARGE); // *** large node |
| 317 | static_assert_no_msg(sizeof(GenTreeField) <= TREE_NODE_SZ_LARGE); // *** large node |
| 318 | static_assert_no_msg(sizeof(GenTreeArgList) <= TREE_NODE_SZ_SMALL); |
| 319 | static_assert_no_msg(sizeof(GenTreeFieldList) <= TREE_NODE_SZ_SMALL); |
| 320 | static_assert_no_msg(sizeof(GenTreeColon) <= TREE_NODE_SZ_SMALL); |
| 321 | static_assert_no_msg(sizeof(GenTreeCall) <= TREE_NODE_SZ_LARGE); // *** large node |
| 322 | static_assert_no_msg(sizeof(GenTreeCmpXchg) <= TREE_NODE_SZ_LARGE); // *** large node |
| 323 | static_assert_no_msg(sizeof(GenTreeFptrVal) <= TREE_NODE_SZ_LARGE); // *** large node |
| 324 | static_assert_no_msg(sizeof(GenTreeQmark) <= TREE_NODE_SZ_LARGE); // *** large node |
| 325 | static_assert_no_msg(sizeof(GenTreeIntrinsic) <= TREE_NODE_SZ_LARGE); // *** large node |
| 326 | static_assert_no_msg(sizeof(GenTreeIndex) <= TREE_NODE_SZ_LARGE); // *** large node |
| 327 | static_assert_no_msg(sizeof(GenTreeArrLen) <= TREE_NODE_SZ_LARGE); // *** large node |
| 328 | static_assert_no_msg(sizeof(GenTreeBoundsChk) <= TREE_NODE_SZ_LARGE); // *** large node |
| 329 | static_assert_no_msg(sizeof(GenTreeArrElem) <= TREE_NODE_SZ_LARGE); // *** large node |
| 330 | static_assert_no_msg(sizeof(GenTreeArrIndex) <= TREE_NODE_SZ_LARGE); // *** large node |
| 331 | static_assert_no_msg(sizeof(GenTreeArrOffs) <= TREE_NODE_SZ_LARGE); // *** large node |
| 332 | static_assert_no_msg(sizeof(GenTreeIndir) <= TREE_NODE_SZ_SMALL); |
| 333 | static_assert_no_msg(sizeof(GenTreeStoreInd) <= TREE_NODE_SZ_SMALL); |
| 334 | static_assert_no_msg(sizeof(GenTreeAddrMode) <= TREE_NODE_SZ_SMALL); |
| 335 | static_assert_no_msg(sizeof(GenTreeObj) <= TREE_NODE_SZ_LARGE); // *** large node |
| 336 | static_assert_no_msg(sizeof(GenTreeBlk) <= TREE_NODE_SZ_SMALL); |
| 337 | static_assert_no_msg(sizeof(GenTreeRetExpr) <= TREE_NODE_SZ_LARGE); // *** large node |
| 338 | static_assert_no_msg(sizeof(GenTreeStmt) <= TREE_NODE_SZ_LARGE); // *** large node |
| 339 | static_assert_no_msg(sizeof(GenTreeClsVar) <= TREE_NODE_SZ_SMALL); |
| 340 | static_assert_no_msg(sizeof(GenTreeArgPlace) <= TREE_NODE_SZ_SMALL); |
| 341 | static_assert_no_msg(sizeof(GenTreeLabel) <= TREE_NODE_SZ_SMALL); |
| 342 | static_assert_no_msg(sizeof(GenTreePhiArg) <= TREE_NODE_SZ_SMALL); |
| 343 | static_assert_no_msg(sizeof(GenTreeAllocObj) <= TREE_NODE_SZ_LARGE); // *** large node |
| 344 | #ifndef FEATURE_PUT_STRUCT_ARG_STK |
| 345 | static_assert_no_msg(sizeof(GenTreePutArgStk) <= TREE_NODE_SZ_SMALL); |
| 346 | #else // FEATURE_PUT_STRUCT_ARG_STK |
| 347 | // TODO-Throughput: This should not need to be a large node. The object info should be |
| 348 | // obtained from the child node. |
| 349 | static_assert_no_msg(sizeof(GenTreePutArgStk) <= TREE_NODE_SZ_LARGE); |
| 350 | #if FEATURE_ARG_SPLIT |
| 351 | static_assert_no_msg(sizeof(GenTreePutArgSplit) <= TREE_NODE_SZ_LARGE); |
| 352 | #endif // FEATURE_ARG_SPLIT |
| 353 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 354 | |
| 355 | #ifdef FEATURE_SIMD |
| 356 | static_assert_no_msg(sizeof(GenTreeSIMD) <= TREE_NODE_SZ_SMALL); |
| 357 | #endif // FEATURE_SIMD |
| 358 | |
| 359 | #ifdef FEATURE_HW_INTRINSICS |
| 360 | static_assert_no_msg(sizeof(GenTreeHWIntrinsic) <= TREE_NODE_SZ_SMALL); |
| 361 | #endif // FEATURE_HW_INTRINSICS |
| 362 | // clang-format on |
| 363 | } |
| 364 | |
| 365 | size_t GenTree::GetNodeSize() const |
| 366 | { |
| 367 | return GenTree::s_gtNodeSizes[gtOper]; |
| 368 | } |
| 369 | |
| 370 | #ifdef DEBUG |
| 371 | bool GenTree::IsNodeProperlySized() const |
| 372 | { |
| 373 | size_t size; |
| 374 | |
| 375 | if (gtDebugFlags & GTF_DEBUG_NODE_SMALL) |
| 376 | { |
| 377 | size = TREE_NODE_SZ_SMALL; |
| 378 | } |
| 379 | else |
| 380 | { |
| 381 | assert(gtDebugFlags & GTF_DEBUG_NODE_LARGE); |
| 382 | size = TREE_NODE_SZ_LARGE; |
| 383 | } |
| 384 | |
| 385 | return GenTree::s_gtNodeSizes[gtOper] <= size; |
| 386 | } |
| 387 | #endif |
| 388 | |
| 389 | #if SMALL_TREE_NODES |
| 390 | //------------------------------------------------------------------------ |
| 391 | // ReplaceWith: replace this with the src node. The source must be an isolated node |
| 392 | // and cannot be used after the replacement. |
| 393 | // |
| 394 | // Arguments: |
| 395 | // src - source tree, that replaces this. |
| 396 | // comp - the compiler instance to transfer annotations for arrays. |
| 397 | // |
| 398 | void GenTree::ReplaceWith(GenTree* src, Compiler* comp) |
| 399 | { |
| 400 | // The source may be big only if the target is also a big node |
| 401 | assert((gtDebugFlags & GTF_DEBUG_NODE_LARGE) || GenTree::s_gtNodeSizes[src->gtOper] == TREE_NODE_SZ_SMALL); |
| 402 | |
| 403 | // The check is effective only if nodes have been already threaded. |
| 404 | assert((src->gtPrev == nullptr) && (src->gtNext == nullptr)); |
| 405 | |
| 406 | RecordOperBashing(OperGet(), src->OperGet()); // nop unless NODEBASH_STATS is enabled |
| 407 | |
| 408 | GenTree* prev = gtPrev; |
| 409 | GenTree* next = gtNext; |
| 410 | // The VTable pointer is copied intentionally here |
| 411 | memcpy((void*)this, (void*)src, src->GetNodeSize()); |
| 412 | this->gtPrev = prev; |
| 413 | this->gtNext = next; |
| 414 | |
| 415 | #ifdef DEBUG |
| 416 | gtSeqNum = 0; |
| 417 | #endif |
| 418 | // Transfer any annotations. |
| 419 | if (src->OperGet() == GT_IND && src->gtFlags & GTF_IND_ARR_INDEX) |
| 420 | { |
| 421 | ArrayInfo arrInfo; |
| 422 | bool b = comp->GetArrayInfoMap()->Lookup(src, &arrInfo); |
| 423 | assert(b); |
| 424 | comp->GetArrayInfoMap()->Set(this, arrInfo); |
| 425 | } |
| 426 | DEBUG_DESTROY_NODE(src); |
| 427 | } |
| 428 | |
| 429 | #endif |
| 430 | |
| 431 | /***************************************************************************** |
| 432 | * |
| 433 | * When 'NODEBASH_STATS' is enabled in "jit.h" we record all instances of |
| 434 | * an existing GenTree node having its operator changed. This can be useful |
| 435 | * for two (related) things - to see what is being bashed (and what isn't), |
| 436 | * and to verify that the existing choices for what nodes are marked 'large' |
| 437 | * are reasonable (to minimize "wasted" space). |
| 438 | * |
| 439 | * And yes, the hash function / logic is simplistic, but it is conflict-free |
| 440 | * and transparent for what we need. |
| 441 | */ |
| 442 | |
| 443 | #if NODEBASH_STATS |
| 444 | |
| 445 | #define BASH_HASH_SIZE 211 |
| 446 | |
| 447 | inline unsigned hashme(genTreeOps op1, genTreeOps op2) |
| 448 | { |
| 449 | return ((op1 * 104729) ^ (op2 * 56569)) % BASH_HASH_SIZE; |
| 450 | } |
| 451 | |
| 452 | struct BashHashDsc |
| 453 | { |
| 454 | unsigned __int32 bhFullHash; // the hash value (unique for all old->new pairs) |
| 455 | unsigned __int32 bhCount; // the same old->new bashings seen so far |
| 456 | unsigned __int8 bhOperOld; // original gtOper |
| 457 | unsigned __int8 bhOperNew; // new gtOper |
| 458 | }; |
| 459 | |
| 460 | static BashHashDsc BashHash[BASH_HASH_SIZE]; |
| 461 | |
| 462 | void GenTree::RecordOperBashing(genTreeOps operOld, genTreeOps operNew) |
| 463 | { |
| 464 | unsigned hash = hashme(operOld, operNew); |
| 465 | BashHashDsc* desc = BashHash + hash; |
| 466 | |
| 467 | if (desc->bhFullHash != hash) |
| 468 | { |
| 469 | noway_assert(desc->bhCount == 0); // if this ever fires, need fix the hash fn |
| 470 | desc->bhFullHash = hash; |
| 471 | } |
| 472 | |
| 473 | desc->bhCount += 1; |
| 474 | desc->bhOperOld = operOld; |
| 475 | desc->bhOperNew = operNew; |
| 476 | } |
| 477 | |
| 478 | void GenTree::ReportOperBashing(FILE* f) |
| 479 | { |
| 480 | unsigned total = 0; |
| 481 | |
| 482 | fflush(f); |
| 483 | |
| 484 | fprintf(f, "\n" ); |
| 485 | fprintf(f, "Bashed gtOper stats:\n" ); |
| 486 | fprintf(f, "\n" ); |
| 487 | fprintf(f, " Old operator New operator #bytes old->new Count\n" ); |
| 488 | fprintf(f, " ---------------------------------------------------------------\n" ); |
| 489 | |
| 490 | for (unsigned h = 0; h < BASH_HASH_SIZE; h++) |
| 491 | { |
| 492 | unsigned count = BashHash[h].bhCount; |
| 493 | if (count == 0) |
| 494 | continue; |
| 495 | |
| 496 | unsigned opOld = BashHash[h].bhOperOld; |
| 497 | unsigned opNew = BashHash[h].bhOperNew; |
| 498 | |
| 499 | fprintf(f, " GT_%-13s -> GT_%-13s [size: %3u->%3u] %c %7u\n" , OpName((genTreeOps)opOld), |
| 500 | OpName((genTreeOps)opNew), s_gtTrueSizes[opOld], s_gtTrueSizes[opNew], |
| 501 | (s_gtTrueSizes[opOld] < s_gtTrueSizes[opNew]) ? 'X' : ' ', count); |
| 502 | total += count; |
| 503 | } |
| 504 | fprintf(f, "\n" ); |
| 505 | fprintf(f, "Total bashings: %u\n" , total); |
| 506 | fprintf(f, "\n" ); |
| 507 | |
| 508 | fflush(f); |
| 509 | } |
| 510 | |
| 511 | #endif // NODEBASH_STATS |
| 512 | |
| 513 | #else // SMALL_TREE_NODES |
| 514 | |
| 515 | #ifdef DEBUG |
| 516 | bool GenTree::IsNodeProperlySized() const |
| 517 | { |
| 518 | return true; |
| 519 | } |
| 520 | #endif |
| 521 | |
| 522 | #endif // SMALL_TREE_NODES |
| 523 | |
| 524 | /*****************************************************************************/ |
| 525 | |
| 526 | #if MEASURE_NODE_SIZE |
| 527 | |
| 528 | void GenTree::DumpNodeSizes(FILE* fp) |
| 529 | { |
| 530 | // Dump the sizes of the various GenTree flavors |
| 531 | |
| 532 | #if SMALL_TREE_NODES |
| 533 | fprintf(fp, "Small tree node size = %3u bytes\n" , TREE_NODE_SZ_SMALL); |
| 534 | #endif |
| 535 | fprintf(fp, "Large tree node size = %3u bytes\n" , TREE_NODE_SZ_LARGE); |
| 536 | fprintf(fp, "\n" ); |
| 537 | |
| 538 | #if SMALL_TREE_NODES |
| 539 | |
| 540 | // Verify that node sizes are set kosherly and dump sizes |
| 541 | for (unsigned op = GT_NONE + 1; op < GT_COUNT; op++) |
| 542 | { |
| 543 | unsigned needSize = s_gtTrueSizes[op]; |
| 544 | unsigned nodeSize = s_gtNodeSizes[op]; |
| 545 | |
| 546 | const char* structNm = OpStructName((genTreeOps)op); |
| 547 | const char* operName = OpName((genTreeOps)op); |
| 548 | |
| 549 | bool repeated = false; |
| 550 | |
| 551 | // Have we seen this struct flavor before? |
| 552 | for (unsigned mop = GT_NONE + 1; mop < op; mop++) |
| 553 | { |
| 554 | if (strcmp(structNm, OpStructName((genTreeOps)mop)) == 0) |
| 555 | { |
| 556 | repeated = true; |
| 557 | break; |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | // Don't repeat the same GenTree flavor unless we have an error |
| 562 | if (!repeated || needSize > nodeSize) |
| 563 | { |
| 564 | unsigned sizeChar = '?'; |
| 565 | |
| 566 | if (nodeSize == TREE_NODE_SZ_SMALL) |
| 567 | sizeChar = 'S'; |
| 568 | else if (nodeSize == TREE_NODE_SZ_LARGE) |
| 569 | sizeChar = 'L'; |
| 570 | |
| 571 | fprintf(fp, "GT_%-16s ... %-19s = %3u bytes (%c)" , operName, structNm, needSize, sizeChar); |
| 572 | if (needSize > nodeSize) |
| 573 | { |
| 574 | fprintf(fp, " -- ERROR -- allocation is only %u bytes!" , nodeSize); |
| 575 | } |
| 576 | else if (needSize <= TREE_NODE_SZ_SMALL && nodeSize == TREE_NODE_SZ_LARGE) |
| 577 | { |
| 578 | fprintf(fp, " ... could be small" ); |
| 579 | } |
| 580 | |
| 581 | fprintf(fp, "\n" ); |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | #endif |
| 586 | } |
| 587 | |
| 588 | #endif // MEASURE_NODE_SIZE |
| 589 | |
| 590 | /***************************************************************************** |
| 591 | * |
| 592 | * Walk all basic blocks and call the given function pointer for all tree |
| 593 | * nodes contained therein. |
| 594 | */ |
| 595 | |
| 596 | void Compiler::fgWalkAllTreesPre(fgWalkPreFn* visitor, void* pCallBackData) |
| 597 | { |
| 598 | BasicBlock* block; |
| 599 | |
| 600 | for (block = fgFirstBB; block; block = block->bbNext) |
| 601 | { |
| 602 | GenTree* tree; |
| 603 | |
| 604 | for (tree = block->bbTreeList; tree; tree = tree->gtNext) |
| 605 | { |
| 606 | assert(tree->gtOper == GT_STMT); |
| 607 | |
| 608 | fgWalkTreePre(&tree->gtStmt.gtStmtExpr, visitor, pCallBackData); |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | //----------------------------------------------------------- |
| 614 | // CopyReg: Copy the _gtRegNum/gtRegTag fields. |
| 615 | // |
| 616 | // Arguments: |
| 617 | // from - GenTree node from which to copy |
| 618 | // |
| 619 | // Return Value: |
| 620 | // None |
| 621 | void GenTree::CopyReg(GenTree* from) |
| 622 | { |
| 623 | _gtRegNum = from->_gtRegNum; |
| 624 | INDEBUG(gtRegTag = from->gtRegTag;) |
| 625 | |
| 626 | // Also copy multi-reg state if this is a call node |
| 627 | if (IsCall()) |
| 628 | { |
| 629 | assert(from->IsCall()); |
| 630 | this->AsCall()->CopyOtherRegs(from->AsCall()); |
| 631 | } |
| 632 | else if (IsCopyOrReload()) |
| 633 | { |
| 634 | this->AsCopyOrReload()->CopyOtherRegs(from->AsCopyOrReload()); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | //------------------------------------------------------------------ |
| 639 | // gtHasReg: Whether node beeen assigned a register by LSRA |
| 640 | // |
| 641 | // Arguments: |
| 642 | // None |
| 643 | // |
| 644 | // Return Value: |
| 645 | // Returns true if the node was assigned a register. |
| 646 | // |
| 647 | // In case of multi-reg call nodes, it is considered |
| 648 | // having a reg if regs are allocated for all its |
| 649 | // return values. |
| 650 | // |
| 651 | // In case of GT_COPY or GT_RELOAD of a multi-reg call, |
| 652 | // GT_COPY/GT_RELOAD is considered having a reg if it |
| 653 | // has a reg assigned to any of its positions. |
| 654 | // |
| 655 | // Assumption: |
| 656 | // In order for this to work properly, gtClearReg must be called |
| 657 | // prior to setting the register value. |
| 658 | // |
| 659 | bool GenTree::gtHasReg() const |
| 660 | { |
| 661 | bool hasReg; |
| 662 | |
| 663 | if (IsMultiRegCall()) |
| 664 | { |
| 665 | // Have to cast away const-ness because GetReturnTypeDesc() is a non-const method |
| 666 | GenTree* tree = const_cast<GenTree*>(this); |
| 667 | GenTreeCall* call = tree->AsCall(); |
| 668 | unsigned regCount = call->GetReturnTypeDesc()->GetReturnRegCount(); |
| 669 | hasReg = false; |
| 670 | |
| 671 | // A Multi-reg call node is said to have regs, if it has |
| 672 | // reg assigned to each of its result registers. |
| 673 | for (unsigned i = 0; i < regCount; ++i) |
| 674 | { |
| 675 | hasReg = (call->GetRegNumByIdx(i) != REG_NA); |
| 676 | if (!hasReg) |
| 677 | { |
| 678 | break; |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | else if (IsCopyOrReloadOfMultiRegCall()) |
| 683 | { |
| 684 | GenTree* tree = const_cast<GenTree*>(this); |
| 685 | GenTreeCopyOrReload* copyOrReload = tree->AsCopyOrReload(); |
| 686 | GenTreeCall* call = copyOrReload->gtGetOp1()->AsCall(); |
| 687 | unsigned regCount = call->GetReturnTypeDesc()->GetReturnRegCount(); |
| 688 | hasReg = false; |
| 689 | |
| 690 | // A Multi-reg copy or reload node is said to have regs, |
| 691 | // if it has valid regs in any of the positions. |
| 692 | for (unsigned i = 0; i < regCount; ++i) |
| 693 | { |
| 694 | hasReg = (copyOrReload->GetRegNumByIdx(i) != REG_NA); |
| 695 | if (hasReg) |
| 696 | { |
| 697 | break; |
| 698 | } |
| 699 | } |
| 700 | } |
| 701 | else |
| 702 | { |
| 703 | hasReg = (gtRegNum != REG_NA); |
| 704 | } |
| 705 | |
| 706 | return hasReg; |
| 707 | } |
| 708 | |
| 709 | //----------------------------------------------------------------------------- |
| 710 | // GetRegisterDstCount: Get the number of registers defined by the node. |
| 711 | // |
| 712 | // Arguments: |
| 713 | // None |
| 714 | // |
| 715 | // Return Value: |
| 716 | // The number of registers that this node defines. |
| 717 | // |
| 718 | // Notes: |
| 719 | // This should not be called on a contained node. |
| 720 | // This does not look at the actual register assignments, if any, and so |
| 721 | // is valid after Lowering. |
| 722 | // |
| 723 | int GenTree::GetRegisterDstCount() const |
| 724 | { |
| 725 | assert(!isContained()); |
| 726 | if (!IsMultiRegNode()) |
| 727 | { |
| 728 | return (IsValue()) ? 1 : 0; |
| 729 | } |
| 730 | else if (IsMultiRegCall()) |
| 731 | { |
| 732 | // temporarily cast away const-ness as AsCall() method is not declared const |
| 733 | GenTree* temp = const_cast<GenTree*>(this); |
| 734 | return temp->AsCall()->GetReturnTypeDesc()->GetReturnRegCount(); |
| 735 | } |
| 736 | else if (IsCopyOrReload()) |
| 737 | { |
| 738 | return gtGetOp1()->GetRegisterDstCount(); |
| 739 | } |
| 740 | #if FEATURE_ARG_SPLIT |
| 741 | else if (OperIsPutArgSplit()) |
| 742 | { |
| 743 | return (const_cast<GenTree*>(this))->AsPutArgSplit()->gtNumRegs; |
| 744 | } |
| 745 | #endif |
| 746 | #if !defined(_TARGET_64BIT_) |
| 747 | else if (OperIsMultiRegOp()) |
| 748 | { |
| 749 | // A MultiRegOp is a GT_MUL_LONG, GT_PUTARG_REG, or GT_BITCAST. |
| 750 | // For the latter two (ARM-only), they only have multiple registers if they produce a long value |
| 751 | // (GT_MUL_LONG always produces a long value). |
| 752 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 753 | #ifdef _TARGET_ARM_ |
| 754 | return (TypeGet() == TYP_LONG) ? 2 : 1; |
| 755 | #else |
| 756 | assert(OperIs(GT_MUL_LONG)); |
| 757 | return 2; |
| 758 | #endif |
| 759 | } |
| 760 | #endif |
| 761 | assert(!"Unexpected multi-reg node" ); |
| 762 | return 0; |
| 763 | } |
| 764 | |
| 765 | //--------------------------------------------------------------- |
| 766 | // gtGetRegMask: Get the reg mask of the node. |
| 767 | // |
| 768 | // Arguments: |
| 769 | // None |
| 770 | // |
| 771 | // Return Value: |
| 772 | // Reg Mask of GenTree node. |
| 773 | // |
| 774 | regMaskTP GenTree::gtGetRegMask() const |
| 775 | { |
| 776 | regMaskTP resultMask; |
| 777 | |
| 778 | if (IsMultiRegCall()) |
| 779 | { |
| 780 | // temporarily cast away const-ness as AsCall() method is not declared const |
| 781 | resultMask = genRegMask(gtRegNum); |
| 782 | GenTree* temp = const_cast<GenTree*>(this); |
| 783 | resultMask |= temp->AsCall()->GetOtherRegMask(); |
| 784 | } |
| 785 | else if (IsCopyOrReloadOfMultiRegCall()) |
| 786 | { |
| 787 | // A multi-reg copy or reload, will have valid regs for only those |
| 788 | // positions that need to be copied or reloaded. Hence we need |
| 789 | // to consider only those registers for computing reg mask. |
| 790 | |
| 791 | GenTree* tree = const_cast<GenTree*>(this); |
| 792 | GenTreeCopyOrReload* copyOrReload = tree->AsCopyOrReload(); |
| 793 | GenTreeCall* call = copyOrReload->gtGetOp1()->AsCall(); |
| 794 | unsigned regCount = call->GetReturnTypeDesc()->GetReturnRegCount(); |
| 795 | |
| 796 | resultMask = RBM_NONE; |
| 797 | for (unsigned i = 0; i < regCount; ++i) |
| 798 | { |
| 799 | regNumber reg = copyOrReload->GetRegNumByIdx(i); |
| 800 | if (reg != REG_NA) |
| 801 | { |
| 802 | resultMask |= genRegMask(reg); |
| 803 | } |
| 804 | } |
| 805 | } |
| 806 | #if FEATURE_ARG_SPLIT |
| 807 | else if (OperIsPutArgSplit()) |
| 808 | { |
| 809 | GenTree* tree = const_cast<GenTree*>(this); |
| 810 | GenTreePutArgSplit* splitArg = tree->AsPutArgSplit(); |
| 811 | unsigned regCount = splitArg->gtNumRegs; |
| 812 | |
| 813 | resultMask = RBM_NONE; |
| 814 | for (unsigned i = 0; i < regCount; ++i) |
| 815 | { |
| 816 | regNumber reg = splitArg->GetRegNumByIdx(i); |
| 817 | assert(reg != REG_NA); |
| 818 | resultMask |= genRegMask(reg); |
| 819 | } |
| 820 | } |
| 821 | #endif // FEATURE_ARG_SPLIT |
| 822 | else |
| 823 | { |
| 824 | resultMask = genRegMask(gtRegNum); |
| 825 | } |
| 826 | |
| 827 | return resultMask; |
| 828 | } |
| 829 | |
| 830 | //--------------------------------------------------------------- |
| 831 | // GetOtherRegMask: Get the reg mask of gtOtherRegs of call node |
| 832 | // |
| 833 | // Arguments: |
| 834 | // None |
| 835 | // |
| 836 | // Return Value: |
| 837 | // Reg mask of gtOtherRegs of call node. |
| 838 | // |
| 839 | regMaskTP GenTreeCall::GetOtherRegMask() const |
| 840 | { |
| 841 | regMaskTP resultMask = RBM_NONE; |
| 842 | |
| 843 | #if FEATURE_MULTIREG_RET |
| 844 | for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i) |
| 845 | { |
| 846 | if (gtOtherRegs[i] != REG_NA) |
| 847 | { |
| 848 | resultMask |= genRegMask((regNumber)gtOtherRegs[i]); |
| 849 | continue; |
| 850 | } |
| 851 | break; |
| 852 | } |
| 853 | #endif |
| 854 | |
| 855 | return resultMask; |
| 856 | } |
| 857 | |
| 858 | //------------------------------------------------------------------------- |
| 859 | // IsPure: |
| 860 | // Returns true if this call is pure. For now, this uses the same |
| 861 | // definition of "pure" that is that used by HelperCallProperties: a |
| 862 | // pure call does not read or write any aliased (e.g. heap) memory or |
| 863 | // have other global side effects (e.g. class constructors, finalizers), |
| 864 | // but is allowed to throw an exception. |
| 865 | // |
| 866 | // NOTE: this call currently only returns true if the call target is a |
| 867 | // helper method that is known to be pure. No other analysis is |
| 868 | // performed. |
| 869 | // |
| 870 | // Arguments: |
| 871 | // Copiler - the compiler context. |
| 872 | // |
| 873 | // Returns: |
| 874 | // True if the call is pure; false otherwise. |
| 875 | // |
| 876 | bool GenTreeCall::IsPure(Compiler* compiler) const |
| 877 | { |
| 878 | return (gtCallType == CT_HELPER) && |
| 879 | compiler->s_helperCallProperties.IsPure(compiler->eeGetHelperNum(gtCallMethHnd)); |
| 880 | } |
| 881 | |
| 882 | //------------------------------------------------------------------------- |
| 883 | // HasSideEffects: |
| 884 | // Returns true if this call has any side effects. All non-helpers are considered to have side-effects. Only helpers |
| 885 | // that do not mutate the heap, do not run constructors, may not throw, and are either a) pure or b) non-finalizing |
| 886 | // allocation functions are considered side-effect-free. |
| 887 | // |
| 888 | // Arguments: |
| 889 | // compiler - the compiler instance |
| 890 | // ignoreExceptions - when `true`, ignores exception side effects |
| 891 | // ignoreCctors - when `true`, ignores class constructor side effects |
| 892 | // |
| 893 | // Return Value: |
| 894 | // true if this call has any side-effects; false otherwise. |
| 895 | bool GenTreeCall::HasSideEffects(Compiler* compiler, bool ignoreExceptions, bool ignoreCctors) const |
| 896 | { |
| 897 | // Generally all GT_CALL nodes are considered to have side-effects, but we may have extra information about helper |
| 898 | // calls that can prove them side-effect-free. |
| 899 | if (gtCallType != CT_HELPER) |
| 900 | { |
| 901 | return true; |
| 902 | } |
| 903 | |
| 904 | CorInfoHelpFunc helper = compiler->eeGetHelperNum(gtCallMethHnd); |
| 905 | HelperCallProperties& helperProperties = compiler->s_helperCallProperties; |
| 906 | |
| 907 | // We definitely care about the side effects if MutatesHeap is true |
| 908 | if (helperProperties.MutatesHeap(helper)) |
| 909 | { |
| 910 | return true; |
| 911 | } |
| 912 | |
| 913 | // Unless we have been instructed to ignore cctors (CSE, for example, ignores cctors), consider them side effects. |
| 914 | if (!ignoreCctors && helperProperties.MayRunCctor(helper)) |
| 915 | { |
| 916 | return true; |
| 917 | } |
| 918 | |
| 919 | // If we also care about exceptions then check if the helper can throw |
| 920 | if (!ignoreExceptions && !helperProperties.NoThrow(helper)) |
| 921 | { |
| 922 | return true; |
| 923 | } |
| 924 | |
| 925 | // If this is not a Pure helper call or an allocator (that will not need to run a finalizer) |
| 926 | // then this call has side effects. |
| 927 | return !helperProperties.IsPure(helper) && |
| 928 | (!helperProperties.IsAllocator(helper) || ((gtCallMoreFlags & GTF_CALL_M_ALLOC_SIDE_EFFECTS) != 0)); |
| 929 | } |
| 930 | |
| 931 | //------------------------------------------------------------------------- |
| 932 | // HasNonStandardAddedArgs: Return true if the method has non-standard args added to the call |
| 933 | // argument list during argument morphing (fgMorphArgs), e.g., passed in R10 or R11 on AMD64. |
| 934 | // See also GetNonStandardAddedArgCount(). |
| 935 | // |
| 936 | // Arguments: |
| 937 | // compiler - the compiler instance |
| 938 | // |
| 939 | // Return Value: |
| 940 | // true if there are any such args, false otherwise. |
| 941 | // |
| 942 | bool GenTreeCall::HasNonStandardAddedArgs(Compiler* compiler) const |
| 943 | { |
| 944 | return GetNonStandardAddedArgCount(compiler) != 0; |
| 945 | } |
| 946 | |
| 947 | //------------------------------------------------------------------------- |
| 948 | // GetNonStandardAddedArgCount: Get the count of non-standard arguments that have been added |
| 949 | // during call argument morphing (fgMorphArgs). Do not count non-standard args that are already |
| 950 | // counted in the argument list prior to morphing. |
| 951 | // |
| 952 | // This function is used to help map the caller and callee arguments during tail call setup. |
| 953 | // |
| 954 | // Arguments: |
| 955 | // compiler - the compiler instance |
| 956 | // |
| 957 | // Return Value: |
| 958 | // The count of args, as described. |
| 959 | // |
| 960 | // Notes: |
| 961 | // It would be more general to have fgMorphArgs set a bit on the call node when such |
| 962 | // args are added to a call, and a bit on each such arg, and then have this code loop |
| 963 | // over the call args when the special call bit is set, counting the args with the special |
| 964 | // arg bit. This seems pretty heavyweight, though. Instead, this logic needs to be kept |
| 965 | // in sync with fgMorphArgs. |
| 966 | // |
| 967 | int GenTreeCall::GetNonStandardAddedArgCount(Compiler* compiler) const |
| 968 | { |
| 969 | if (IsUnmanaged() && !compiler->opts.ShouldUsePInvokeHelpers()) |
| 970 | { |
| 971 | // R11 = PInvoke cookie param |
| 972 | return 1; |
| 973 | } |
| 974 | else if (IsVirtualStub()) |
| 975 | { |
| 976 | // R11 = Virtual stub param |
| 977 | return 1; |
| 978 | } |
| 979 | else if ((gtCallType == CT_INDIRECT) && (gtCallCookie != nullptr)) |
| 980 | { |
| 981 | // R10 = PInvoke target param |
| 982 | // R11 = PInvoke cookie param |
| 983 | return 2; |
| 984 | } |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | //------------------------------------------------------------------------- |
| 989 | // TreatAsHasRetBufArg: |
| 990 | // |
| 991 | // Arguments: |
| 992 | // compiler, the compiler instance so that we can call eeGetHelperNum |
| 993 | // |
| 994 | // Return Value: |
| 995 | // Returns true if we treat the call as if it has a retBuf argument |
| 996 | // This method may actually have a retBuf argument |
| 997 | // or it could be a JIT helper that we are still transforming during |
| 998 | // the importer phase. |
| 999 | // |
| 1000 | // Notes: |
| 1001 | // On ARM64 marking the method with the GTF_CALL_M_RETBUFFARG flag |
| 1002 | // will make HasRetBufArg() return true, but will also force the |
| 1003 | // use of register x8 to pass the RetBuf argument. |
| 1004 | // |
| 1005 | // These two Jit Helpers that we handle here by returning true |
| 1006 | // aren't actually defined to return a struct, so they don't expect |
| 1007 | // their RetBuf to be passed in x8, instead they expect it in x0. |
| 1008 | // |
| 1009 | bool GenTreeCall::TreatAsHasRetBufArg(Compiler* compiler) const |
| 1010 | { |
| 1011 | if (HasRetBufArg()) |
| 1012 | { |
| 1013 | return true; |
| 1014 | } |
| 1015 | else |
| 1016 | { |
| 1017 | // If we see a Jit helper call that returns a TYP_STRUCT we will |
| 1018 | // transform it as if it has a Return Buffer Argument |
| 1019 | // |
| 1020 | if (IsHelperCall() && (gtReturnType == TYP_STRUCT)) |
| 1021 | { |
| 1022 | // There are two possible helper calls that use this path: |
| 1023 | // CORINFO_HELP_GETFIELDSTRUCT and CORINFO_HELP_UNBOX_NULLABLE |
| 1024 | // |
| 1025 | CorInfoHelpFunc helpFunc = compiler->eeGetHelperNum(gtCallMethHnd); |
| 1026 | |
| 1027 | if (helpFunc == CORINFO_HELP_GETFIELDSTRUCT) |
| 1028 | { |
| 1029 | return true; |
| 1030 | } |
| 1031 | else if (helpFunc == CORINFO_HELP_UNBOX_NULLABLE) |
| 1032 | { |
| 1033 | return true; |
| 1034 | } |
| 1035 | else |
| 1036 | { |
| 1037 | assert(!"Unexpected JIT helper in TreatAsHasRetBufArg" ); |
| 1038 | } |
| 1039 | } |
| 1040 | } |
| 1041 | return false; |
| 1042 | } |
| 1043 | |
| 1044 | //------------------------------------------------------------------------- |
| 1045 | // IsHelperCall: Determine if this GT_CALL node is a specific helper call. |
| 1046 | // |
| 1047 | // Arguments: |
| 1048 | // compiler - the compiler instance so that we can call eeFindHelper |
| 1049 | // |
| 1050 | // Return Value: |
| 1051 | // Returns true if this GT_CALL node is a call to the specified helper. |
| 1052 | // |
| 1053 | bool GenTreeCall::IsHelperCall(Compiler* compiler, unsigned helper) const |
| 1054 | { |
| 1055 | return IsHelperCall(compiler->eeFindHelper(helper)); |
| 1056 | } |
| 1057 | |
| 1058 | //------------------------------------------------------------------------ |
| 1059 | // GenTreeCall::ReplaceCallOperand: |
| 1060 | // Replaces a given operand to a call node and updates the call |
| 1061 | // argument table if necessary. |
| 1062 | // |
| 1063 | // Arguments: |
| 1064 | // useEdge - the use edge that points to the operand to be replaced. |
| 1065 | // replacement - the replacement node. |
| 1066 | // |
| 1067 | void GenTreeCall::ReplaceCallOperand(GenTree** useEdge, GenTree* replacement) |
| 1068 | { |
| 1069 | assert(useEdge != nullptr); |
| 1070 | assert(replacement != nullptr); |
| 1071 | assert(TryGetUse(*useEdge, &useEdge)); |
| 1072 | |
| 1073 | GenTree* originalOperand = *useEdge; |
| 1074 | *useEdge = replacement; |
| 1075 | |
| 1076 | const bool isArgument = |
| 1077 | (replacement != gtControlExpr) && |
| 1078 | ((gtCallType != CT_INDIRECT) || ((replacement != gtCallCookie) && (replacement != gtCallAddr))); |
| 1079 | |
| 1080 | if (isArgument) |
| 1081 | { |
| 1082 | if ((originalOperand->gtFlags & GTF_LATE_ARG) != 0) |
| 1083 | { |
| 1084 | replacement->gtFlags |= GTF_LATE_ARG; |
| 1085 | } |
| 1086 | else |
| 1087 | { |
| 1088 | assert((replacement->gtFlags & GTF_LATE_ARG) == 0); |
| 1089 | |
| 1090 | fgArgTabEntry* fp = Compiler::gtArgEntryByNode(this, originalOperand); |
| 1091 | assert(fp->node == originalOperand); |
| 1092 | fp->node = replacement; |
| 1093 | } |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | //------------------------------------------------------------------------- |
| 1098 | // AreArgsComplete: Determine if this GT_CALL node's arguments have been processed. |
| 1099 | // |
| 1100 | // Return Value: |
| 1101 | // Returns true if fgMorphArgs has processed the arguments. |
| 1102 | // |
| 1103 | bool GenTreeCall::AreArgsComplete() const |
| 1104 | { |
| 1105 | if (fgArgInfo == nullptr) |
| 1106 | { |
| 1107 | return false; |
| 1108 | } |
| 1109 | if (fgArgInfo->AreArgsComplete()) |
| 1110 | { |
| 1111 | assert((gtCallLateArgs != nullptr) || !fgArgInfo->HasRegArgs()); |
| 1112 | return true; |
| 1113 | } |
| 1114 | assert(gtCallArgs == nullptr); |
| 1115 | return false; |
| 1116 | } |
| 1117 | |
| 1118 | #if !defined(FEATURE_PUT_STRUCT_ARG_STK) |
| 1119 | unsigned GenTreePutArgStk::getArgSize() |
| 1120 | { |
| 1121 | return genTypeSize(genActualType(gtOp1->gtType)); |
| 1122 | } |
| 1123 | #endif // !defined(FEATURE_PUT_STRUCT_ARG_STK) |
| 1124 | |
| 1125 | /***************************************************************************** |
| 1126 | * |
| 1127 | * Returns non-zero if the two trees are identical. |
| 1128 | */ |
| 1129 | |
| 1130 | bool GenTree::Compare(GenTree* op1, GenTree* op2, bool swapOK) |
| 1131 | { |
| 1132 | genTreeOps oper; |
| 1133 | unsigned kind; |
| 1134 | |
| 1135 | // printf("tree1:\n"); gtDispTree(op1); |
| 1136 | // printf("tree2:\n"); gtDispTree(op2); |
| 1137 | |
| 1138 | AGAIN: |
| 1139 | |
| 1140 | if (op1 == nullptr) |
| 1141 | { |
| 1142 | return (op2 == nullptr); |
| 1143 | } |
| 1144 | if (op2 == nullptr) |
| 1145 | { |
| 1146 | return false; |
| 1147 | } |
| 1148 | if (op1 == op2) |
| 1149 | { |
| 1150 | return true; |
| 1151 | } |
| 1152 | |
| 1153 | assert(op1->gtOper != GT_STMT); |
| 1154 | assert(op2->gtOper != GT_STMT); |
| 1155 | |
| 1156 | oper = op1->OperGet(); |
| 1157 | |
| 1158 | /* The operators must be equal */ |
| 1159 | |
| 1160 | if (oper != op2->gtOper) |
| 1161 | { |
| 1162 | return false; |
| 1163 | } |
| 1164 | |
| 1165 | /* The types must be equal */ |
| 1166 | |
| 1167 | if (op1->gtType != op2->gtType) |
| 1168 | { |
| 1169 | return false; |
| 1170 | } |
| 1171 | |
| 1172 | /* Overflow must be equal */ |
| 1173 | if (op1->gtOverflowEx() != op2->gtOverflowEx()) |
| 1174 | { |
| 1175 | return false; |
| 1176 | } |
| 1177 | |
| 1178 | /* Sensible flags must be equal */ |
| 1179 | if ((op1->gtFlags & (GTF_UNSIGNED)) != (op2->gtFlags & (GTF_UNSIGNED))) |
| 1180 | { |
| 1181 | return false; |
| 1182 | } |
| 1183 | |
| 1184 | /* Figure out what kind of nodes we're comparing */ |
| 1185 | |
| 1186 | kind = op1->OperKind(); |
| 1187 | |
| 1188 | /* Is this a constant node? */ |
| 1189 | |
| 1190 | if (kind & GTK_CONST) |
| 1191 | { |
| 1192 | switch (oper) |
| 1193 | { |
| 1194 | case GT_CNS_INT: |
| 1195 | if (op1->gtIntCon.gtIconVal == op2->gtIntCon.gtIconVal) |
| 1196 | { |
| 1197 | return true; |
| 1198 | } |
| 1199 | break; |
| 1200 | #if 0 |
| 1201 | // TODO-CQ: Enable this in the future |
| 1202 | case GT_CNS_LNG: |
| 1203 | if (op1->gtLngCon.gtLconVal == op2->gtLngCon.gtLconVal) |
| 1204 | return true; |
| 1205 | break; |
| 1206 | |
| 1207 | case GT_CNS_DBL: |
| 1208 | if (op1->gtDblCon.gtDconVal == op2->gtDblCon.gtDconVal) |
| 1209 | return true; |
| 1210 | break; |
| 1211 | #endif |
| 1212 | default: |
| 1213 | break; |
| 1214 | } |
| 1215 | |
| 1216 | return false; |
| 1217 | } |
| 1218 | |
| 1219 | /* Is this a leaf node? */ |
| 1220 | |
| 1221 | if (kind & GTK_LEAF) |
| 1222 | { |
| 1223 | switch (oper) |
| 1224 | { |
| 1225 | case GT_LCL_VAR: |
| 1226 | if (op1->gtLclVarCommon.gtLclNum != op2->gtLclVarCommon.gtLclNum) |
| 1227 | { |
| 1228 | break; |
| 1229 | } |
| 1230 | |
| 1231 | return true; |
| 1232 | |
| 1233 | case GT_LCL_FLD: |
| 1234 | if (op1->gtLclFld.gtLclNum != op2->gtLclFld.gtLclNum || |
| 1235 | op1->gtLclFld.gtLclOffs != op2->gtLclFld.gtLclOffs) |
| 1236 | { |
| 1237 | break; |
| 1238 | } |
| 1239 | |
| 1240 | return true; |
| 1241 | |
| 1242 | case GT_CLS_VAR: |
| 1243 | if (op1->gtClsVar.gtClsVarHnd != op2->gtClsVar.gtClsVarHnd) |
| 1244 | { |
| 1245 | break; |
| 1246 | } |
| 1247 | |
| 1248 | return true; |
| 1249 | |
| 1250 | case GT_LABEL: |
| 1251 | return true; |
| 1252 | |
| 1253 | case GT_ARGPLACE: |
| 1254 | if ((op1->gtType == TYP_STRUCT) && |
| 1255 | (op1->gtArgPlace.gtArgPlaceClsHnd != op2->gtArgPlace.gtArgPlaceClsHnd)) |
| 1256 | { |
| 1257 | break; |
| 1258 | } |
| 1259 | return true; |
| 1260 | |
| 1261 | default: |
| 1262 | break; |
| 1263 | } |
| 1264 | |
| 1265 | return false; |
| 1266 | } |
| 1267 | |
| 1268 | /* Is it a 'simple' unary/binary operator? */ |
| 1269 | |
| 1270 | if (kind & GTK_UNOP) |
| 1271 | { |
| 1272 | if (IsExOp(kind)) |
| 1273 | { |
| 1274 | // ExOp operators extend unary operator with extra, non-GenTree* members. In many cases, |
| 1275 | // these should be included in the comparison. |
| 1276 | switch (oper) |
| 1277 | { |
| 1278 | case GT_ARR_LENGTH: |
| 1279 | if (op1->gtArrLen.ArrLenOffset() != op2->gtArrLen.ArrLenOffset()) |
| 1280 | { |
| 1281 | return false; |
| 1282 | } |
| 1283 | break; |
| 1284 | case GT_CAST: |
| 1285 | if (op1->gtCast.gtCastType != op2->gtCast.gtCastType) |
| 1286 | { |
| 1287 | return false; |
| 1288 | } |
| 1289 | break; |
| 1290 | case GT_OBJ: |
| 1291 | if (op1->AsObj()->gtClass != op2->AsObj()->gtClass) |
| 1292 | { |
| 1293 | return false; |
| 1294 | } |
| 1295 | break; |
| 1296 | |
| 1297 | // For the ones below no extra argument matters for comparison. |
| 1298 | case GT_BOX: |
| 1299 | case GT_RUNTIMELOOKUP: |
| 1300 | break; |
| 1301 | |
| 1302 | default: |
| 1303 | assert(!"unexpected unary ExOp operator" ); |
| 1304 | } |
| 1305 | } |
| 1306 | return Compare(op1->gtOp.gtOp1, op2->gtOp.gtOp1); |
| 1307 | } |
| 1308 | |
| 1309 | if (kind & GTK_BINOP) |
| 1310 | { |
| 1311 | if (IsExOp(kind)) |
| 1312 | { |
| 1313 | // ExOp operators extend unary operator with extra, non-GenTree* members. In many cases, |
| 1314 | // these should be included in the hash code. |
| 1315 | switch (oper) |
| 1316 | { |
| 1317 | case GT_INTRINSIC: |
| 1318 | if (op1->gtIntrinsic.gtIntrinsicId != op2->gtIntrinsic.gtIntrinsicId) |
| 1319 | { |
| 1320 | return false; |
| 1321 | } |
| 1322 | break; |
| 1323 | case GT_LEA: |
| 1324 | if (op1->gtAddrMode.gtScale != op2->gtAddrMode.gtScale) |
| 1325 | { |
| 1326 | return false; |
| 1327 | } |
| 1328 | if (op1->gtAddrMode.Offset() != op2->gtAddrMode.Offset()) |
| 1329 | { |
| 1330 | return false; |
| 1331 | } |
| 1332 | break; |
| 1333 | case GT_INDEX: |
| 1334 | if (op1->gtIndex.gtIndElemSize != op2->gtIndex.gtIndElemSize) |
| 1335 | { |
| 1336 | return false; |
| 1337 | } |
| 1338 | break; |
| 1339 | case GT_INDEX_ADDR: |
| 1340 | if (op1->AsIndexAddr()->gtElemSize != op2->AsIndexAddr()->gtElemSize) |
| 1341 | { |
| 1342 | return false; |
| 1343 | } |
| 1344 | break; |
| 1345 | #ifdef FEATURE_SIMD |
| 1346 | case GT_SIMD: |
| 1347 | if ((op1->AsSIMD()->gtSIMDIntrinsicID != op2->AsSIMD()->gtSIMDIntrinsicID) || |
| 1348 | (op1->AsSIMD()->gtSIMDBaseType != op2->AsSIMD()->gtSIMDBaseType) || |
| 1349 | (op1->AsSIMD()->gtSIMDSize != op2->AsSIMD()->gtSIMDSize)) |
| 1350 | { |
| 1351 | return false; |
| 1352 | } |
| 1353 | break; |
| 1354 | #endif // FEATURE_SIMD |
| 1355 | |
| 1356 | #ifdef FEATURE_HW_INTRINSICS |
| 1357 | case GT_HWIntrinsic: |
| 1358 | if ((op1->AsHWIntrinsic()->gtHWIntrinsicId != op2->AsHWIntrinsic()->gtHWIntrinsicId) || |
| 1359 | (op1->AsHWIntrinsic()->gtSIMDBaseType != op2->AsHWIntrinsic()->gtSIMDBaseType) || |
| 1360 | (op1->AsHWIntrinsic()->gtSIMDSize != op2->AsHWIntrinsic()->gtSIMDSize) || |
| 1361 | (op1->AsHWIntrinsic()->gtIndexBaseType != op2->AsHWIntrinsic()->gtIndexBaseType)) |
| 1362 | { |
| 1363 | return false; |
| 1364 | } |
| 1365 | break; |
| 1366 | #endif |
| 1367 | |
| 1368 | // For the ones below no extra argument matters for comparison. |
| 1369 | case GT_QMARK: |
| 1370 | break; |
| 1371 | |
| 1372 | default: |
| 1373 | assert(!"unexpected binary ExOp operator" ); |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | if (op1->gtOp.gtOp2) |
| 1378 | { |
| 1379 | if (!Compare(op1->gtOp.gtOp1, op2->gtOp.gtOp1, swapOK)) |
| 1380 | { |
| 1381 | if (swapOK && OperIsCommutative(oper) && |
| 1382 | ((op1->gtOp.gtOp1->gtFlags | op1->gtOp.gtOp2->gtFlags | op2->gtOp.gtOp1->gtFlags | |
| 1383 | op2->gtOp.gtOp2->gtFlags) & |
| 1384 | GTF_ALL_EFFECT) == 0) |
| 1385 | { |
| 1386 | if (Compare(op1->gtOp.gtOp1, op2->gtOp.gtOp2, swapOK)) |
| 1387 | { |
| 1388 | op1 = op1->gtOp.gtOp2; |
| 1389 | op2 = op2->gtOp.gtOp1; |
| 1390 | goto AGAIN; |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | return false; |
| 1395 | } |
| 1396 | |
| 1397 | op1 = op1->gtOp.gtOp2; |
| 1398 | op2 = op2->gtOp.gtOp2; |
| 1399 | |
| 1400 | goto AGAIN; |
| 1401 | } |
| 1402 | else |
| 1403 | { |
| 1404 | |
| 1405 | op1 = op1->gtOp.gtOp1; |
| 1406 | op2 = op2->gtOp.gtOp1; |
| 1407 | |
| 1408 | if (!op1) |
| 1409 | { |
| 1410 | return (op2 == nullptr); |
| 1411 | } |
| 1412 | if (!op2) |
| 1413 | { |
| 1414 | return false; |
| 1415 | } |
| 1416 | |
| 1417 | goto AGAIN; |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | /* See what kind of a special operator we have here */ |
| 1422 | |
| 1423 | switch (oper) |
| 1424 | { |
| 1425 | case GT_FIELD: |
| 1426 | if (op1->gtField.gtFldHnd != op2->gtField.gtFldHnd) |
| 1427 | { |
| 1428 | break; |
| 1429 | } |
| 1430 | |
| 1431 | op1 = op1->gtField.gtFldObj; |
| 1432 | op2 = op2->gtField.gtFldObj; |
| 1433 | |
| 1434 | if (op1 || op2) |
| 1435 | { |
| 1436 | if (op1 && op2) |
| 1437 | { |
| 1438 | goto AGAIN; |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | return true; |
| 1443 | |
| 1444 | case GT_CALL: |
| 1445 | |
| 1446 | if (op1->gtCall.gtCallType != op2->gtCall.gtCallType) |
| 1447 | { |
| 1448 | return false; |
| 1449 | } |
| 1450 | |
| 1451 | if (op1->gtCall.gtCallType != CT_INDIRECT) |
| 1452 | { |
| 1453 | if (op1->gtCall.gtCallMethHnd != op2->gtCall.gtCallMethHnd) |
| 1454 | { |
| 1455 | return false; |
| 1456 | } |
| 1457 | |
| 1458 | #ifdef FEATURE_READYTORUN_COMPILER |
| 1459 | if (op1->gtCall.gtEntryPoint.addr != op2->gtCall.gtEntryPoint.addr) |
| 1460 | { |
| 1461 | return false; |
| 1462 | } |
| 1463 | #endif |
| 1464 | } |
| 1465 | else |
| 1466 | { |
| 1467 | if (!Compare(op1->gtCall.gtCallAddr, op2->gtCall.gtCallAddr)) |
| 1468 | { |
| 1469 | return false; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | if (Compare(op1->gtCall.gtCallLateArgs, op2->gtCall.gtCallLateArgs) && |
| 1474 | Compare(op1->gtCall.gtCallArgs, op2->gtCall.gtCallArgs) && |
| 1475 | Compare(op1->gtCall.gtControlExpr, op2->gtCall.gtControlExpr) && |
| 1476 | Compare(op1->gtCall.gtCallObjp, op2->gtCall.gtCallObjp)) |
| 1477 | { |
| 1478 | return true; |
| 1479 | } |
| 1480 | break; |
| 1481 | |
| 1482 | case GT_ARR_ELEM: |
| 1483 | |
| 1484 | if (op1->gtArrElem.gtArrRank != op2->gtArrElem.gtArrRank) |
| 1485 | { |
| 1486 | return false; |
| 1487 | } |
| 1488 | |
| 1489 | // NOTE: gtArrElemSize may need to be handled |
| 1490 | |
| 1491 | unsigned dim; |
| 1492 | for (dim = 0; dim < op1->gtArrElem.gtArrRank; dim++) |
| 1493 | { |
| 1494 | if (!Compare(op1->gtArrElem.gtArrInds[dim], op2->gtArrElem.gtArrInds[dim])) |
| 1495 | { |
| 1496 | return false; |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | op1 = op1->gtArrElem.gtArrObj; |
| 1501 | op2 = op2->gtArrElem.gtArrObj; |
| 1502 | goto AGAIN; |
| 1503 | |
| 1504 | case GT_ARR_OFFSET: |
| 1505 | if (op1->gtArrOffs.gtCurrDim != op2->gtArrOffs.gtCurrDim || |
| 1506 | op1->gtArrOffs.gtArrRank != op2->gtArrOffs.gtArrRank) |
| 1507 | { |
| 1508 | return false; |
| 1509 | } |
| 1510 | return (Compare(op1->gtArrOffs.gtOffset, op2->gtArrOffs.gtOffset) && |
| 1511 | Compare(op1->gtArrOffs.gtIndex, op2->gtArrOffs.gtIndex) && |
| 1512 | Compare(op1->gtArrOffs.gtArrObj, op2->gtArrOffs.gtArrObj)); |
| 1513 | |
| 1514 | case GT_CMPXCHG: |
| 1515 | return Compare(op1->gtCmpXchg.gtOpLocation, op2->gtCmpXchg.gtOpLocation) && |
| 1516 | Compare(op1->gtCmpXchg.gtOpValue, op2->gtCmpXchg.gtOpValue) && |
| 1517 | Compare(op1->gtCmpXchg.gtOpComparand, op2->gtCmpXchg.gtOpComparand); |
| 1518 | |
| 1519 | case GT_ARR_BOUNDS_CHECK: |
| 1520 | #ifdef FEATURE_SIMD |
| 1521 | case GT_SIMD_CHK: |
| 1522 | #endif // FEATURE_SIMD |
| 1523 | #ifdef FEATURE_HW_INTRINSICS |
| 1524 | case GT_HW_INTRINSIC_CHK: |
| 1525 | #endif // FEATURE_HW_INTRINSICS |
| 1526 | return Compare(op1->gtBoundsChk.gtIndex, op2->gtBoundsChk.gtIndex) && |
| 1527 | Compare(op1->gtBoundsChk.gtArrLen, op2->gtBoundsChk.gtArrLen) && |
| 1528 | (op1->gtBoundsChk.gtThrowKind == op2->gtBoundsChk.gtThrowKind); |
| 1529 | |
| 1530 | case GT_STORE_DYN_BLK: |
| 1531 | case GT_DYN_BLK: |
| 1532 | return Compare(op1->gtDynBlk.Addr(), op2->gtDynBlk.Addr()) && |
| 1533 | Compare(op1->gtDynBlk.Data(), op2->gtDynBlk.Data()) && |
| 1534 | Compare(op1->gtDynBlk.gtDynamicSize, op2->gtDynBlk.gtDynamicSize); |
| 1535 | |
| 1536 | default: |
| 1537 | assert(!"unexpected operator" ); |
| 1538 | } |
| 1539 | |
| 1540 | return false; |
| 1541 | } |
| 1542 | |
| 1543 | /***************************************************************************** |
| 1544 | * |
| 1545 | * Returns non-zero if the given tree contains a use of a local #lclNum. |
| 1546 | */ |
| 1547 | |
| 1548 | bool Compiler::gtHasRef(GenTree* tree, ssize_t lclNum, bool defOnly) |
| 1549 | { |
| 1550 | genTreeOps oper; |
| 1551 | unsigned kind; |
| 1552 | |
| 1553 | AGAIN: |
| 1554 | |
| 1555 | assert(tree); |
| 1556 | |
| 1557 | oper = tree->OperGet(); |
| 1558 | kind = tree->OperKind(); |
| 1559 | |
| 1560 | assert(oper != GT_STMT); |
| 1561 | |
| 1562 | /* Is this a constant node? */ |
| 1563 | |
| 1564 | if (kind & GTK_CONST) |
| 1565 | { |
| 1566 | return false; |
| 1567 | } |
| 1568 | |
| 1569 | /* Is this a leaf node? */ |
| 1570 | |
| 1571 | if (kind & GTK_LEAF) |
| 1572 | { |
| 1573 | if (oper == GT_LCL_VAR) |
| 1574 | { |
| 1575 | if (tree->gtLclVarCommon.gtLclNum == (unsigned)lclNum) |
| 1576 | { |
| 1577 | if (!defOnly) |
| 1578 | { |
| 1579 | return true; |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | else if (oper == GT_RET_EXPR) |
| 1584 | { |
| 1585 | return gtHasRef(tree->gtRetExpr.gtInlineCandidate, lclNum, defOnly); |
| 1586 | } |
| 1587 | |
| 1588 | return false; |
| 1589 | } |
| 1590 | |
| 1591 | /* Is it a 'simple' unary/binary operator? */ |
| 1592 | |
| 1593 | if (kind & GTK_SMPOP) |
| 1594 | { |
| 1595 | if (tree->gtGetOp2IfPresent()) |
| 1596 | { |
| 1597 | if (gtHasRef(tree->gtOp.gtOp1, lclNum, defOnly)) |
| 1598 | { |
| 1599 | return true; |
| 1600 | } |
| 1601 | |
| 1602 | tree = tree->gtOp.gtOp2; |
| 1603 | goto AGAIN; |
| 1604 | } |
| 1605 | else |
| 1606 | { |
| 1607 | tree = tree->gtOp.gtOp1; |
| 1608 | |
| 1609 | if (!tree) |
| 1610 | { |
| 1611 | return false; |
| 1612 | } |
| 1613 | |
| 1614 | if (oper == GT_ASG) |
| 1615 | { |
| 1616 | // 'tree' is the gtOp1 of an assignment node. So we can handle |
| 1617 | // the case where defOnly is either true or false. |
| 1618 | |
| 1619 | if (tree->gtOper == GT_LCL_VAR && tree->gtLclVarCommon.gtLclNum == (unsigned)lclNum) |
| 1620 | { |
| 1621 | return true; |
| 1622 | } |
| 1623 | else if (tree->gtOper == GT_FIELD && lclNum == (ssize_t)tree->gtField.gtFldHnd) |
| 1624 | { |
| 1625 | return true; |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | goto AGAIN; |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | /* See what kind of a special operator we have here */ |
| 1634 | |
| 1635 | switch (oper) |
| 1636 | { |
| 1637 | case GT_FIELD: |
| 1638 | if (lclNum == (ssize_t)tree->gtField.gtFldHnd) |
| 1639 | { |
| 1640 | if (!defOnly) |
| 1641 | { |
| 1642 | return true; |
| 1643 | } |
| 1644 | } |
| 1645 | |
| 1646 | tree = tree->gtField.gtFldObj; |
| 1647 | if (tree) |
| 1648 | { |
| 1649 | goto AGAIN; |
| 1650 | } |
| 1651 | break; |
| 1652 | |
| 1653 | case GT_CALL: |
| 1654 | |
| 1655 | if (tree->gtCall.gtCallObjp) |
| 1656 | { |
| 1657 | if (gtHasRef(tree->gtCall.gtCallObjp, lclNum, defOnly)) |
| 1658 | { |
| 1659 | return true; |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | if (tree->gtCall.gtCallArgs) |
| 1664 | { |
| 1665 | if (gtHasRef(tree->gtCall.gtCallArgs, lclNum, defOnly)) |
| 1666 | { |
| 1667 | return true; |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | if (tree->gtCall.gtCallLateArgs) |
| 1672 | { |
| 1673 | if (gtHasRef(tree->gtCall.gtCallLateArgs, lclNum, defOnly)) |
| 1674 | { |
| 1675 | return true; |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | if (tree->gtCall.gtControlExpr) |
| 1680 | { |
| 1681 | if (gtHasRef(tree->gtCall.gtControlExpr, lclNum, defOnly)) |
| 1682 | { |
| 1683 | return true; |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | if (tree->gtCall.gtCallType == CT_INDIRECT) |
| 1688 | { |
| 1689 | // pinvoke-calli cookie is a constant, or constant indirection |
| 1690 | assert(tree->gtCall.gtCallCookie == nullptr || tree->gtCall.gtCallCookie->gtOper == GT_CNS_INT || |
| 1691 | tree->gtCall.gtCallCookie->gtOper == GT_IND); |
| 1692 | |
| 1693 | tree = tree->gtCall.gtCallAddr; |
| 1694 | } |
| 1695 | else |
| 1696 | { |
| 1697 | tree = nullptr; |
| 1698 | } |
| 1699 | |
| 1700 | if (tree) |
| 1701 | { |
| 1702 | goto AGAIN; |
| 1703 | } |
| 1704 | |
| 1705 | break; |
| 1706 | |
| 1707 | case GT_ARR_ELEM: |
| 1708 | if (gtHasRef(tree->gtArrElem.gtArrObj, lclNum, defOnly)) |
| 1709 | { |
| 1710 | return true; |
| 1711 | } |
| 1712 | |
| 1713 | unsigned dim; |
| 1714 | for (dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
| 1715 | { |
| 1716 | if (gtHasRef(tree->gtArrElem.gtArrInds[dim], lclNum, defOnly)) |
| 1717 | { |
| 1718 | return true; |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | break; |
| 1723 | |
| 1724 | case GT_ARR_OFFSET: |
| 1725 | if (gtHasRef(tree->gtArrOffs.gtOffset, lclNum, defOnly) || |
| 1726 | gtHasRef(tree->gtArrOffs.gtIndex, lclNum, defOnly) || |
| 1727 | gtHasRef(tree->gtArrOffs.gtArrObj, lclNum, defOnly)) |
| 1728 | { |
| 1729 | return true; |
| 1730 | } |
| 1731 | break; |
| 1732 | |
| 1733 | case GT_CMPXCHG: |
| 1734 | if (gtHasRef(tree->gtCmpXchg.gtOpLocation, lclNum, defOnly)) |
| 1735 | { |
| 1736 | return true; |
| 1737 | } |
| 1738 | if (gtHasRef(tree->gtCmpXchg.gtOpValue, lclNum, defOnly)) |
| 1739 | { |
| 1740 | return true; |
| 1741 | } |
| 1742 | if (gtHasRef(tree->gtCmpXchg.gtOpComparand, lclNum, defOnly)) |
| 1743 | { |
| 1744 | return true; |
| 1745 | } |
| 1746 | break; |
| 1747 | |
| 1748 | case GT_ARR_BOUNDS_CHECK: |
| 1749 | #ifdef FEATURE_SIMD |
| 1750 | case GT_SIMD_CHK: |
| 1751 | #endif // FEATURE_SIMD |
| 1752 | #ifdef FEATURE_HW_INTRINSICS |
| 1753 | case GT_HW_INTRINSIC_CHK: |
| 1754 | #endif // FEATURE_HW_INTRINSICS |
| 1755 | if (gtHasRef(tree->gtBoundsChk.gtIndex, lclNum, defOnly)) |
| 1756 | { |
| 1757 | return true; |
| 1758 | } |
| 1759 | if (gtHasRef(tree->gtBoundsChk.gtArrLen, lclNum, defOnly)) |
| 1760 | { |
| 1761 | return true; |
| 1762 | } |
| 1763 | break; |
| 1764 | |
| 1765 | case GT_STORE_DYN_BLK: |
| 1766 | if (gtHasRef(tree->gtDynBlk.Data(), lclNum, defOnly)) |
| 1767 | { |
| 1768 | return true; |
| 1769 | } |
| 1770 | __fallthrough; |
| 1771 | case GT_DYN_BLK: |
| 1772 | if (gtHasRef(tree->gtDynBlk.Addr(), lclNum, defOnly)) |
| 1773 | { |
| 1774 | return true; |
| 1775 | } |
| 1776 | if (gtHasRef(tree->gtDynBlk.gtDynamicSize, lclNum, defOnly)) |
| 1777 | { |
| 1778 | return true; |
| 1779 | } |
| 1780 | break; |
| 1781 | |
| 1782 | default: |
| 1783 | #ifdef DEBUG |
| 1784 | gtDispTree(tree); |
| 1785 | #endif |
| 1786 | assert(!"unexpected operator" ); |
| 1787 | } |
| 1788 | |
| 1789 | return false; |
| 1790 | } |
| 1791 | |
| 1792 | struct AddrTakenDsc |
| 1793 | { |
| 1794 | Compiler* comp; |
| 1795 | bool hasAddrTakenLcl; |
| 1796 | }; |
| 1797 | |
| 1798 | /* static */ |
| 1799 | Compiler::fgWalkResult Compiler::gtHasLocalsWithAddrOpCB(GenTree** pTree, fgWalkData* data) |
| 1800 | { |
| 1801 | GenTree* tree = *pTree; |
| 1802 | Compiler* comp = data->compiler; |
| 1803 | |
| 1804 | if (tree->gtOper == GT_LCL_VAR) |
| 1805 | { |
| 1806 | unsigned lclNum = tree->gtLclVarCommon.gtLclNum; |
| 1807 | LclVarDsc* varDsc = &comp->lvaTable[lclNum]; |
| 1808 | |
| 1809 | if (varDsc->lvHasLdAddrOp || varDsc->lvAddrExposed) |
| 1810 | { |
| 1811 | ((AddrTakenDsc*)data->pCallbackData)->hasAddrTakenLcl = true; |
| 1812 | return WALK_ABORT; |
| 1813 | } |
| 1814 | } |
| 1815 | |
| 1816 | return WALK_CONTINUE; |
| 1817 | } |
| 1818 | |
| 1819 | /***************************************************************************** |
| 1820 | * |
| 1821 | * Return true if this tree contains locals with lvHasLdAddrOp or lvAddrExposed |
| 1822 | * flag(s) set. |
| 1823 | */ |
| 1824 | |
| 1825 | bool Compiler::gtHasLocalsWithAddrOp(GenTree* tree) |
| 1826 | { |
| 1827 | AddrTakenDsc desc; |
| 1828 | |
| 1829 | desc.comp = this; |
| 1830 | desc.hasAddrTakenLcl = false; |
| 1831 | |
| 1832 | fgWalkTreePre(&tree, gtHasLocalsWithAddrOpCB, &desc); |
| 1833 | |
| 1834 | return desc.hasAddrTakenLcl; |
| 1835 | } |
| 1836 | |
| 1837 | #ifdef DEBUG |
| 1838 | |
| 1839 | /***************************************************************************** |
| 1840 | * |
| 1841 | * Helper used to compute hash values for trees. |
| 1842 | */ |
| 1843 | |
| 1844 | inline unsigned genTreeHashAdd(unsigned old, unsigned add) |
| 1845 | { |
| 1846 | return (old + old / 2) ^ add; |
| 1847 | } |
| 1848 | |
| 1849 | inline unsigned genTreeHashAdd(unsigned old, void* add) |
| 1850 | { |
| 1851 | return genTreeHashAdd(old, (unsigned)(size_t)add); |
| 1852 | } |
| 1853 | |
| 1854 | /***************************************************************************** |
| 1855 | * |
| 1856 | * Given an arbitrary expression tree, compute a hash value for it. |
| 1857 | */ |
| 1858 | |
| 1859 | unsigned Compiler::gtHashValue(GenTree* tree) |
| 1860 | { |
| 1861 | genTreeOps oper; |
| 1862 | unsigned kind; |
| 1863 | |
| 1864 | unsigned hash = 0; |
| 1865 | |
| 1866 | GenTree* temp; |
| 1867 | |
| 1868 | AGAIN: |
| 1869 | assert(tree); |
| 1870 | assert(tree->gtOper != GT_STMT); |
| 1871 | |
| 1872 | /* Figure out what kind of a node we have */ |
| 1873 | |
| 1874 | oper = tree->OperGet(); |
| 1875 | kind = tree->OperKind(); |
| 1876 | |
| 1877 | /* Include the operator value in the hash */ |
| 1878 | |
| 1879 | hash = genTreeHashAdd(hash, oper); |
| 1880 | |
| 1881 | /* Is this a constant or leaf node? */ |
| 1882 | |
| 1883 | if (kind & (GTK_CONST | GTK_LEAF)) |
| 1884 | { |
| 1885 | size_t add; |
| 1886 | |
| 1887 | switch (oper) |
| 1888 | { |
| 1889 | UINT64 bits; |
| 1890 | case GT_LCL_VAR: |
| 1891 | add = tree->gtLclVar.gtLclNum; |
| 1892 | break; |
| 1893 | case GT_LCL_FLD: |
| 1894 | hash = genTreeHashAdd(hash, tree->gtLclFld.gtLclNum); |
| 1895 | add = tree->gtLclFld.gtLclOffs; |
| 1896 | break; |
| 1897 | |
| 1898 | case GT_CNS_INT: |
| 1899 | add = tree->gtIntCon.gtIconVal; |
| 1900 | break; |
| 1901 | case GT_CNS_LNG: |
| 1902 | bits = (UINT64)tree->gtLngCon.gtLconVal; |
| 1903 | #ifdef _HOST_64BIT_ |
| 1904 | add = bits; |
| 1905 | #else // 32-bit host |
| 1906 | add = genTreeHashAdd(uhi32(bits), ulo32(bits)); |
| 1907 | #endif |
| 1908 | break; |
| 1909 | case GT_CNS_DBL: |
| 1910 | bits = *(UINT64*)(&tree->gtDblCon.gtDconVal); |
| 1911 | #ifdef _HOST_64BIT_ |
| 1912 | add = bits; |
| 1913 | #else // 32-bit host |
| 1914 | add = genTreeHashAdd(uhi32(bits), ulo32(bits)); |
| 1915 | #endif |
| 1916 | break; |
| 1917 | case GT_CNS_STR: |
| 1918 | add = tree->gtStrCon.gtSconCPX; |
| 1919 | break; |
| 1920 | |
| 1921 | case GT_JMP: |
| 1922 | add = tree->gtVal.gtVal1; |
| 1923 | break; |
| 1924 | |
| 1925 | default: |
| 1926 | add = 0; |
| 1927 | break; |
| 1928 | } |
| 1929 | |
| 1930 | // clang-format off |
| 1931 | // narrow 'add' into a 32-bit 'val' |
| 1932 | unsigned val; |
| 1933 | #ifdef _HOST_64BIT_ |
| 1934 | val = genTreeHashAdd(uhi32(add), ulo32(add)); |
| 1935 | #else // 32-bit host |
| 1936 | val = add; |
| 1937 | #endif |
| 1938 | // clang-format on |
| 1939 | |
| 1940 | hash = genTreeHashAdd(hash, val); |
| 1941 | goto DONE; |
| 1942 | } |
| 1943 | |
| 1944 | /* Is it a 'simple' unary/binary operator? */ |
| 1945 | |
| 1946 | GenTree* op1; |
| 1947 | |
| 1948 | if (kind & GTK_UNOP) |
| 1949 | { |
| 1950 | op1 = tree->gtOp.gtOp1; |
| 1951 | /* Special case: no sub-operand at all */ |
| 1952 | |
| 1953 | if (GenTree::IsExOp(kind)) |
| 1954 | { |
| 1955 | // ExOp operators extend operators with extra, non-GenTree* members. In many cases, |
| 1956 | // these should be included in the hash code. |
| 1957 | switch (oper) |
| 1958 | { |
| 1959 | case GT_ARR_LENGTH: |
| 1960 | hash += tree->gtArrLen.ArrLenOffset(); |
| 1961 | break; |
| 1962 | case GT_CAST: |
| 1963 | hash ^= tree->gtCast.gtCastType; |
| 1964 | break; |
| 1965 | case GT_INDEX: |
| 1966 | hash += tree->gtIndex.gtIndElemSize; |
| 1967 | break; |
| 1968 | case GT_INDEX_ADDR: |
| 1969 | hash += tree->AsIndexAddr()->gtElemSize; |
| 1970 | break; |
| 1971 | case GT_ALLOCOBJ: |
| 1972 | hash = genTreeHashAdd(hash, static_cast<unsigned>( |
| 1973 | reinterpret_cast<uintptr_t>(tree->gtAllocObj.gtAllocObjClsHnd))); |
| 1974 | hash = genTreeHashAdd(hash, tree->gtAllocObj.gtNewHelper); |
| 1975 | break; |
| 1976 | case GT_RUNTIMELOOKUP: |
| 1977 | hash = |
| 1978 | genTreeHashAdd(hash, |
| 1979 | static_cast<unsigned>(reinterpret_cast<uintptr_t>(tree->gtRuntimeLookup.gtHnd))); |
| 1980 | break; |
| 1981 | |
| 1982 | case GT_OBJ: |
| 1983 | hash = |
| 1984 | genTreeHashAdd(hash, static_cast<unsigned>(reinterpret_cast<uintptr_t>(tree->gtObj.gtClass))); |
| 1985 | break; |
| 1986 | // For the ones below no extra argument matters for comparison. |
| 1987 | case GT_BOX: |
| 1988 | break; |
| 1989 | |
| 1990 | default: |
| 1991 | assert(!"unexpected unary ExOp operator" ); |
| 1992 | } |
| 1993 | } |
| 1994 | |
| 1995 | if (!op1) |
| 1996 | { |
| 1997 | goto DONE; |
| 1998 | } |
| 1999 | |
| 2000 | tree = op1; |
| 2001 | goto AGAIN; |
| 2002 | } |
| 2003 | |
| 2004 | if (kind & GTK_BINOP) |
| 2005 | { |
| 2006 | if (GenTree::IsExOp(kind)) |
| 2007 | { |
| 2008 | // ExOp operators extend operators with extra, non-GenTree* members. In many cases, |
| 2009 | // these should be included in the hash code. |
| 2010 | switch (oper) |
| 2011 | { |
| 2012 | case GT_INTRINSIC: |
| 2013 | hash += tree->gtIntrinsic.gtIntrinsicId; |
| 2014 | break; |
| 2015 | case GT_LEA: |
| 2016 | hash += static_cast<unsigned>(tree->gtAddrMode.Offset() << 3) + tree->gtAddrMode.gtScale; |
| 2017 | break; |
| 2018 | |
| 2019 | case GT_BLK: |
| 2020 | case GT_STORE_BLK: |
| 2021 | hash += tree->gtBlk.gtBlkSize; |
| 2022 | break; |
| 2023 | |
| 2024 | case GT_OBJ: |
| 2025 | case GT_STORE_OBJ: |
| 2026 | hash ^= PtrToUlong(tree->AsObj()->gtClass); |
| 2027 | break; |
| 2028 | |
| 2029 | case GT_DYN_BLK: |
| 2030 | case GT_STORE_DYN_BLK: |
| 2031 | hash += gtHashValue(tree->AsDynBlk()->gtDynamicSize); |
| 2032 | break; |
| 2033 | |
| 2034 | // For the ones below no extra argument matters for comparison. |
| 2035 | case GT_ARR_INDEX: |
| 2036 | case GT_QMARK: |
| 2037 | case GT_INDEX: |
| 2038 | case GT_INDEX_ADDR: |
| 2039 | break; |
| 2040 | |
| 2041 | #ifdef FEATURE_SIMD |
| 2042 | case GT_SIMD: |
| 2043 | hash += tree->gtSIMD.gtSIMDIntrinsicID; |
| 2044 | hash += tree->gtSIMD.gtSIMDBaseType; |
| 2045 | hash += tree->gtSIMD.gtSIMDSize; |
| 2046 | break; |
| 2047 | #endif // FEATURE_SIMD |
| 2048 | |
| 2049 | #ifdef FEATURE_HW_INTRINSICS |
| 2050 | case GT_HWIntrinsic: |
| 2051 | hash += tree->gtHWIntrinsic.gtHWIntrinsicId; |
| 2052 | hash += tree->gtHWIntrinsic.gtSIMDBaseType; |
| 2053 | hash += tree->gtHWIntrinsic.gtSIMDSize; |
| 2054 | hash += tree->gtHWIntrinsic.gtIndexBaseType; |
| 2055 | break; |
| 2056 | #endif // FEATURE_HW_INTRINSICS |
| 2057 | |
| 2058 | default: |
| 2059 | assert(!"unexpected binary ExOp operator" ); |
| 2060 | } |
| 2061 | } |
| 2062 | |
| 2063 | op1 = tree->gtOp.gtOp1; |
| 2064 | GenTree* op2 = tree->gtOp.gtOp2; |
| 2065 | |
| 2066 | /* Is there a second sub-operand? */ |
| 2067 | |
| 2068 | if (!op2) |
| 2069 | { |
| 2070 | /* Special case: no sub-operands at all */ |
| 2071 | |
| 2072 | if (!op1) |
| 2073 | { |
| 2074 | goto DONE; |
| 2075 | } |
| 2076 | |
| 2077 | /* This is a unary operator */ |
| 2078 | |
| 2079 | tree = op1; |
| 2080 | goto AGAIN; |
| 2081 | } |
| 2082 | |
| 2083 | /* This is a binary operator */ |
| 2084 | |
| 2085 | unsigned hsh1 = gtHashValue(op1); |
| 2086 | |
| 2087 | /* Add op1's hash to the running value and continue with op2 */ |
| 2088 | |
| 2089 | hash = genTreeHashAdd(hash, hsh1); |
| 2090 | |
| 2091 | tree = op2; |
| 2092 | goto AGAIN; |
| 2093 | } |
| 2094 | |
| 2095 | /* See what kind of a special operator we have here */ |
| 2096 | switch (tree->gtOper) |
| 2097 | { |
| 2098 | case GT_FIELD: |
| 2099 | if (tree->gtField.gtFldObj) |
| 2100 | { |
| 2101 | temp = tree->gtField.gtFldObj; |
| 2102 | assert(temp); |
| 2103 | hash = genTreeHashAdd(hash, gtHashValue(temp)); |
| 2104 | } |
| 2105 | break; |
| 2106 | |
| 2107 | case GT_STMT: |
| 2108 | temp = tree->gtStmt.gtStmtExpr; |
| 2109 | assert(temp); |
| 2110 | hash = genTreeHashAdd(hash, gtHashValue(temp)); |
| 2111 | break; |
| 2112 | |
| 2113 | case GT_ARR_ELEM: |
| 2114 | |
| 2115 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtArrElem.gtArrObj)); |
| 2116 | |
| 2117 | unsigned dim; |
| 2118 | for (dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
| 2119 | { |
| 2120 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtArrElem.gtArrInds[dim])); |
| 2121 | } |
| 2122 | |
| 2123 | break; |
| 2124 | |
| 2125 | case GT_ARR_OFFSET: |
| 2126 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtArrOffs.gtOffset)); |
| 2127 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtArrOffs.gtIndex)); |
| 2128 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtArrOffs.gtArrObj)); |
| 2129 | break; |
| 2130 | |
| 2131 | case GT_CALL: |
| 2132 | |
| 2133 | if (tree->gtCall.gtCallObjp && tree->gtCall.gtCallObjp->gtOper != GT_NOP) |
| 2134 | { |
| 2135 | temp = tree->gtCall.gtCallObjp; |
| 2136 | assert(temp); |
| 2137 | hash = genTreeHashAdd(hash, gtHashValue(temp)); |
| 2138 | } |
| 2139 | |
| 2140 | if (tree->gtCall.gtCallArgs) |
| 2141 | { |
| 2142 | temp = tree->gtCall.gtCallArgs; |
| 2143 | assert(temp); |
| 2144 | hash = genTreeHashAdd(hash, gtHashValue(temp)); |
| 2145 | } |
| 2146 | |
| 2147 | if (tree->gtCall.gtCallType == CT_INDIRECT) |
| 2148 | { |
| 2149 | temp = tree->gtCall.gtCallAddr; |
| 2150 | assert(temp); |
| 2151 | hash = genTreeHashAdd(hash, gtHashValue(temp)); |
| 2152 | } |
| 2153 | else |
| 2154 | { |
| 2155 | hash = genTreeHashAdd(hash, tree->gtCall.gtCallMethHnd); |
| 2156 | } |
| 2157 | |
| 2158 | if (tree->gtCall.gtCallLateArgs) |
| 2159 | { |
| 2160 | temp = tree->gtCall.gtCallLateArgs; |
| 2161 | assert(temp); |
| 2162 | hash = genTreeHashAdd(hash, gtHashValue(temp)); |
| 2163 | } |
| 2164 | break; |
| 2165 | |
| 2166 | case GT_CMPXCHG: |
| 2167 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtCmpXchg.gtOpLocation)); |
| 2168 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtCmpXchg.gtOpValue)); |
| 2169 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtCmpXchg.gtOpComparand)); |
| 2170 | break; |
| 2171 | |
| 2172 | case GT_ARR_BOUNDS_CHECK: |
| 2173 | #ifdef FEATURE_SIMD |
| 2174 | case GT_SIMD_CHK: |
| 2175 | #endif // FEATURE_SIMD |
| 2176 | #ifdef FEATURE_HW_INTRINSICS |
| 2177 | case GT_HW_INTRINSIC_CHK: |
| 2178 | #endif // FEATURE_HW_INTRINSICS |
| 2179 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtBoundsChk.gtIndex)); |
| 2180 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtBoundsChk.gtArrLen)); |
| 2181 | hash = genTreeHashAdd(hash, tree->gtBoundsChk.gtThrowKind); |
| 2182 | break; |
| 2183 | |
| 2184 | case GT_STORE_DYN_BLK: |
| 2185 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtDynBlk.Data())); |
| 2186 | __fallthrough; |
| 2187 | case GT_DYN_BLK: |
| 2188 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtDynBlk.Addr())); |
| 2189 | hash = genTreeHashAdd(hash, gtHashValue(tree->gtDynBlk.gtDynamicSize)); |
| 2190 | break; |
| 2191 | |
| 2192 | default: |
| 2193 | #ifdef DEBUG |
| 2194 | gtDispTree(tree); |
| 2195 | #endif |
| 2196 | assert(!"unexpected operator" ); |
| 2197 | break; |
| 2198 | } |
| 2199 | |
| 2200 | DONE: |
| 2201 | |
| 2202 | return hash; |
| 2203 | } |
| 2204 | |
| 2205 | #endif // DEBUG |
| 2206 | |
| 2207 | /***************************************************************************** |
| 2208 | * |
| 2209 | * Return a relational operator that is the reverse of the given one. |
| 2210 | */ |
| 2211 | |
| 2212 | /* static */ |
| 2213 | genTreeOps GenTree::ReverseRelop(genTreeOps relop) |
| 2214 | { |
| 2215 | static const genTreeOps reverseOps[] = { |
| 2216 | GT_NE, // GT_EQ |
| 2217 | GT_EQ, // GT_NE |
| 2218 | GT_GE, // GT_LT |
| 2219 | GT_GT, // GT_LE |
| 2220 | GT_LT, // GT_GE |
| 2221 | GT_LE, // GT_GT |
| 2222 | GT_TEST_NE, // GT_TEST_EQ |
| 2223 | GT_TEST_EQ, // GT_TEST_NE |
| 2224 | }; |
| 2225 | |
| 2226 | assert(reverseOps[GT_EQ - GT_EQ] == GT_NE); |
| 2227 | assert(reverseOps[GT_NE - GT_EQ] == GT_EQ); |
| 2228 | |
| 2229 | assert(reverseOps[GT_LT - GT_EQ] == GT_GE); |
| 2230 | assert(reverseOps[GT_LE - GT_EQ] == GT_GT); |
| 2231 | assert(reverseOps[GT_GE - GT_EQ] == GT_LT); |
| 2232 | assert(reverseOps[GT_GT - GT_EQ] == GT_LE); |
| 2233 | |
| 2234 | assert(reverseOps[GT_TEST_EQ - GT_EQ] == GT_TEST_NE); |
| 2235 | assert(reverseOps[GT_TEST_NE - GT_EQ] == GT_TEST_EQ); |
| 2236 | |
| 2237 | assert(OperIsCompare(relop)); |
| 2238 | assert(relop >= GT_EQ && (unsigned)(relop - GT_EQ) < sizeof(reverseOps)); |
| 2239 | |
| 2240 | return reverseOps[relop - GT_EQ]; |
| 2241 | } |
| 2242 | |
| 2243 | /***************************************************************************** |
| 2244 | * |
| 2245 | * Return a relational operator that will work for swapped operands. |
| 2246 | */ |
| 2247 | |
| 2248 | /* static */ |
| 2249 | genTreeOps GenTree::SwapRelop(genTreeOps relop) |
| 2250 | { |
| 2251 | static const genTreeOps swapOps[] = { |
| 2252 | GT_EQ, // GT_EQ |
| 2253 | GT_NE, // GT_NE |
| 2254 | GT_GT, // GT_LT |
| 2255 | GT_GE, // GT_LE |
| 2256 | GT_LE, // GT_GE |
| 2257 | GT_LT, // GT_GT |
| 2258 | GT_TEST_EQ, // GT_TEST_EQ |
| 2259 | GT_TEST_NE, // GT_TEST_NE |
| 2260 | }; |
| 2261 | |
| 2262 | assert(swapOps[GT_EQ - GT_EQ] == GT_EQ); |
| 2263 | assert(swapOps[GT_NE - GT_EQ] == GT_NE); |
| 2264 | |
| 2265 | assert(swapOps[GT_LT - GT_EQ] == GT_GT); |
| 2266 | assert(swapOps[GT_LE - GT_EQ] == GT_GE); |
| 2267 | assert(swapOps[GT_GE - GT_EQ] == GT_LE); |
| 2268 | assert(swapOps[GT_GT - GT_EQ] == GT_LT); |
| 2269 | |
| 2270 | assert(swapOps[GT_TEST_EQ - GT_EQ] == GT_TEST_EQ); |
| 2271 | assert(swapOps[GT_TEST_NE - GT_EQ] == GT_TEST_NE); |
| 2272 | |
| 2273 | assert(OperIsCompare(relop)); |
| 2274 | assert(relop >= GT_EQ && (unsigned)(relop - GT_EQ) < sizeof(swapOps)); |
| 2275 | |
| 2276 | return swapOps[relop - GT_EQ]; |
| 2277 | } |
| 2278 | |
| 2279 | /***************************************************************************** |
| 2280 | * |
| 2281 | * Reverse the meaning of the given test condition. |
| 2282 | */ |
| 2283 | |
| 2284 | GenTree* Compiler::gtReverseCond(GenTree* tree) |
| 2285 | { |
| 2286 | if (tree->OperIsCompare()) |
| 2287 | { |
| 2288 | tree->SetOper(GenTree::ReverseRelop(tree->OperGet())); |
| 2289 | |
| 2290 | // Flip the GTF_RELOP_NAN_UN bit |
| 2291 | // a ord b === (a != NaN && b != NaN) |
| 2292 | // a unord b === (a == NaN || b == NaN) |
| 2293 | // => !(a ord b) === (a unord b) |
| 2294 | if (varTypeIsFloating(tree->gtOp.gtOp1->TypeGet())) |
| 2295 | { |
| 2296 | tree->gtFlags ^= GTF_RELOP_NAN_UN; |
| 2297 | } |
| 2298 | } |
| 2299 | else if (tree->OperIs(GT_JCC, GT_SETCC)) |
| 2300 | { |
| 2301 | GenTreeCC* cc = tree->AsCC(); |
| 2302 | cc->gtCondition = GenTree::ReverseRelop(cc->gtCondition); |
| 2303 | } |
| 2304 | else if (tree->OperIs(GT_JCMP)) |
| 2305 | { |
| 2306 | // Flip the GTF_JCMP_EQ |
| 2307 | // |
| 2308 | // This causes switching |
| 2309 | // cbz <=> cbnz |
| 2310 | // tbz <=> tbnz |
| 2311 | tree->gtFlags ^= GTF_JCMP_EQ; |
| 2312 | } |
| 2313 | else |
| 2314 | { |
| 2315 | tree = gtNewOperNode(GT_NOT, TYP_INT, tree); |
| 2316 | } |
| 2317 | |
| 2318 | return tree; |
| 2319 | } |
| 2320 | |
| 2321 | /*****************************************************************************/ |
| 2322 | |
| 2323 | #ifdef DEBUG |
| 2324 | |
| 2325 | bool GenTree::gtIsValid64RsltMul() |
| 2326 | { |
| 2327 | if ((gtOper != GT_MUL) || !(gtFlags & GTF_MUL_64RSLT)) |
| 2328 | { |
| 2329 | return false; |
| 2330 | } |
| 2331 | |
| 2332 | GenTree* op1 = gtOp.gtOp1; |
| 2333 | GenTree* op2 = gtOp.gtOp2; |
| 2334 | |
| 2335 | if (TypeGet() != TYP_LONG || op1->TypeGet() != TYP_LONG || op2->TypeGet() != TYP_LONG) |
| 2336 | { |
| 2337 | return false; |
| 2338 | } |
| 2339 | |
| 2340 | if (gtOverflow()) |
| 2341 | { |
| 2342 | return false; |
| 2343 | } |
| 2344 | |
| 2345 | // op1 has to be conv.i8(i4Expr) |
| 2346 | if ((op1->gtOper != GT_CAST) || (genActualType(op1->CastFromType()) != TYP_INT)) |
| 2347 | { |
| 2348 | return false; |
| 2349 | } |
| 2350 | |
| 2351 | // op2 has to be conv.i8(i4Expr) |
| 2352 | if ((op2->gtOper != GT_CAST) || (genActualType(op2->CastFromType()) != TYP_INT)) |
| 2353 | { |
| 2354 | return false; |
| 2355 | } |
| 2356 | |
| 2357 | // The signedness of both casts must be the same |
| 2358 | if (((op1->gtFlags & GTF_UNSIGNED) != 0) != ((op2->gtFlags & GTF_UNSIGNED) != 0)) |
| 2359 | { |
| 2360 | return false; |
| 2361 | } |
| 2362 | |
| 2363 | // Do unsigned mul iff both the casts are unsigned |
| 2364 | if (((op1->gtFlags & GTF_UNSIGNED) != 0) != ((gtFlags & GTF_UNSIGNED) != 0)) |
| 2365 | { |
| 2366 | return false; |
| 2367 | } |
| 2368 | |
| 2369 | return true; |
| 2370 | } |
| 2371 | |
| 2372 | #endif // DEBUG |
| 2373 | |
| 2374 | //------------------------------------------------------------------------------ |
| 2375 | // gtSetListOrder : Figure out the evaluation order for a list of values. |
| 2376 | // |
| 2377 | // |
| 2378 | // Arguments: |
| 2379 | // list - List to figure out the evaluation order for |
| 2380 | // isListCallArgs - True iff the list is a list of call arguments |
| 2381 | // callArgsInRegs - True iff the list is a list of call arguments and they are passed in registers |
| 2382 | // |
| 2383 | // Return Value: |
| 2384 | // True if the operation can be a root of a bitwise rotation tree; false otherwise. |
| 2385 | |
| 2386 | unsigned Compiler::gtSetListOrder(GenTree* list, bool isListCallArgs, bool callArgsInRegs) |
| 2387 | { |
| 2388 | assert((list != nullptr) && list->OperIsAnyList()); |
| 2389 | assert(!callArgsInRegs || isListCallArgs); |
| 2390 | |
| 2391 | ArrayStack<GenTree*> listNodes(getAllocator(CMK_ArrayStack)); |
| 2392 | |
| 2393 | do |
| 2394 | { |
| 2395 | listNodes.Push(list); |
| 2396 | list = list->gtOp.gtOp2; |
| 2397 | } while ((list != nullptr) && (list->OperIsAnyList())); |
| 2398 | |
| 2399 | unsigned nxtlvl = (list == nullptr) ? 0 : gtSetEvalOrder(list); |
| 2400 | while (!listNodes.Empty()) |
| 2401 | { |
| 2402 | list = listNodes.Pop(); |
| 2403 | assert(list && list->OperIsAnyList()); |
| 2404 | GenTree* next = list->gtOp.gtOp2; |
| 2405 | |
| 2406 | unsigned level = 0; |
| 2407 | |
| 2408 | // TODO: Do we have to compute costs differently for argument lists and |
| 2409 | // all other lists? |
| 2410 | // https://github.com/dotnet/coreclr/issues/7095 |
| 2411 | unsigned costSz = (isListCallArgs || (next == nullptr)) ? 0 : 1; |
| 2412 | unsigned costEx = (isListCallArgs || (next == nullptr)) ? 0 : 1; |
| 2413 | |
| 2414 | if (next != nullptr) |
| 2415 | { |
| 2416 | if (isListCallArgs) |
| 2417 | { |
| 2418 | if (level < nxtlvl) |
| 2419 | { |
| 2420 | level = nxtlvl; |
| 2421 | } |
| 2422 | } |
| 2423 | costEx += next->gtCostEx; |
| 2424 | costSz += next->gtCostSz; |
| 2425 | } |
| 2426 | |
| 2427 | GenTree* op1 = list->gtOp.gtOp1; |
| 2428 | unsigned lvl = gtSetEvalOrder(op1); |
| 2429 | |
| 2430 | // Swap the level counts |
| 2431 | if (list->gtFlags & GTF_REVERSE_OPS) |
| 2432 | { |
| 2433 | unsigned tmpl; |
| 2434 | |
| 2435 | tmpl = lvl; |
| 2436 | lvl = nxtlvl; |
| 2437 | nxtlvl = tmpl; |
| 2438 | } |
| 2439 | |
| 2440 | // TODO: Do we have to compute levels differently for argument lists and |
| 2441 | // all other lists? |
| 2442 | // https://github.com/dotnet/coreclr/issues/7095 |
| 2443 | if (isListCallArgs) |
| 2444 | { |
| 2445 | if (level < lvl) |
| 2446 | { |
| 2447 | level = lvl; |
| 2448 | } |
| 2449 | } |
| 2450 | else |
| 2451 | { |
| 2452 | if (lvl < 1) |
| 2453 | { |
| 2454 | level = nxtlvl; |
| 2455 | } |
| 2456 | else if (lvl == nxtlvl) |
| 2457 | { |
| 2458 | level = lvl + 1; |
| 2459 | } |
| 2460 | else |
| 2461 | { |
| 2462 | level = lvl; |
| 2463 | } |
| 2464 | } |
| 2465 | |
| 2466 | if (op1->gtCostEx != 0) |
| 2467 | { |
| 2468 | costEx += op1->gtCostEx; |
| 2469 | costEx += (callArgsInRegs || !isListCallArgs) ? 0 : IND_COST_EX; |
| 2470 | } |
| 2471 | |
| 2472 | if (op1->gtCostSz != 0) |
| 2473 | { |
| 2474 | costSz += op1->gtCostSz; |
| 2475 | #ifdef _TARGET_XARCH_ |
| 2476 | if (callArgsInRegs) // push is smaller than mov to reg |
| 2477 | #endif |
| 2478 | { |
| 2479 | costSz += 1; |
| 2480 | } |
| 2481 | } |
| 2482 | |
| 2483 | list->SetCosts(costEx, costSz); |
| 2484 | |
| 2485 | nxtlvl = level; |
| 2486 | } |
| 2487 | |
| 2488 | return nxtlvl; |
| 2489 | } |
| 2490 | |
| 2491 | //----------------------------------------------------------------------------- |
| 2492 | // gtWalkOp: Traverse and mark an address expression |
| 2493 | // |
| 2494 | // Arguments: |
| 2495 | // op1WB - An out parameter which is either the address expression, or one |
| 2496 | // of its operands. |
| 2497 | // op2WB - An out parameter which starts as either null or one of the operands |
| 2498 | // of the address expression. |
| 2499 | // base - The base address of the addressing mode, or null if 'constOnly' is false |
| 2500 | // constOnly - True if we will only traverse into ADDs with constant op2. |
| 2501 | // |
| 2502 | // This routine is a helper routine for gtSetEvalOrder() and is used to identify the |
| 2503 | // base and index nodes, which will be validated against those identified by |
| 2504 | // genCreateAddrMode(). |
| 2505 | // It also marks the ADD nodes involved in the address expression with the |
| 2506 | // GTF_ADDRMODE_NO_CSE flag which prevents them from being considered for CSE's. |
| 2507 | // |
| 2508 | // Its two output parameters are modified under the following conditions: |
| 2509 | // |
| 2510 | // It is called once with the original address expression as 'op1WB', and |
| 2511 | // with 'constOnly' set to false. On this first invocation, *op1WB is always |
| 2512 | // an ADD node, and it will consider the operands of the ADD even if its op2 is |
| 2513 | // not a constant. However, when it encounters a non-constant or the base in the |
| 2514 | // op2 position, it stops iterating. That operand is returned in the 'op2WB' out |
| 2515 | // parameter, and will be considered on the third invocation of this method if |
| 2516 | // it is an ADD. |
| 2517 | // |
| 2518 | // It is called the second time with the two operands of the original expression, in |
| 2519 | // the original order, and the third time in reverse order. For these invocations |
| 2520 | // 'constOnly' is true, so it will only traverse cascaded ADD nodes if they have a |
| 2521 | // constant op2. |
| 2522 | // |
| 2523 | // The result, after three invocations, is that the values of the two out parameters |
| 2524 | // correspond to the base and index in some fashion. This method doesn't attempt |
| 2525 | // to determine or validate the scale or offset, if any. |
| 2526 | // |
| 2527 | // Assumptions (presumed to be ensured by genCreateAddrMode()): |
| 2528 | // If an ADD has a constant operand, it is in the op2 position. |
| 2529 | // |
| 2530 | // Notes: |
| 2531 | // This method, and its invocation sequence, are quite confusing, and since they |
| 2532 | // were not originally well-documented, this specification is a possibly-imperfect |
| 2533 | // reconstruction. |
| 2534 | // The motivation for the handling of the NOP case is unclear. |
| 2535 | // Note that 'op2WB' is only modified in the initial (!constOnly) case, |
| 2536 | // or if a NOP is encountered in the op1 position. |
| 2537 | // |
| 2538 | void Compiler::gtWalkOp(GenTree** op1WB, GenTree** op2WB, GenTree* base, bool constOnly) |
| 2539 | { |
| 2540 | GenTree* op1 = *op1WB; |
| 2541 | GenTree* op2 = *op2WB; |
| 2542 | |
| 2543 | op1 = op1->gtEffectiveVal(); |
| 2544 | |
| 2545 | // Now we look for op1's with non-overflow GT_ADDs [of constants] |
| 2546 | while ((op1->gtOper == GT_ADD) && (!op1->gtOverflow()) && (!constOnly || (op1->gtOp.gtOp2->IsCnsIntOrI()))) |
| 2547 | { |
| 2548 | // mark it with GTF_ADDRMODE_NO_CSE |
| 2549 | op1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 2550 | |
| 2551 | if (!constOnly) |
| 2552 | { |
| 2553 | op2 = op1->gtOp.gtOp2; |
| 2554 | } |
| 2555 | op1 = op1->gtOp.gtOp1; |
| 2556 | |
| 2557 | // If op1 is a GT_NOP then swap op1 and op2. |
| 2558 | // (Why? Also, presumably op2 is not a GT_NOP in this case?) |
| 2559 | if (op1->gtOper == GT_NOP) |
| 2560 | { |
| 2561 | GenTree* tmp; |
| 2562 | |
| 2563 | tmp = op1; |
| 2564 | op1 = op2; |
| 2565 | op2 = tmp; |
| 2566 | } |
| 2567 | |
| 2568 | if (!constOnly && ((op2 == base) || (!op2->IsCnsIntOrI()))) |
| 2569 | { |
| 2570 | break; |
| 2571 | } |
| 2572 | |
| 2573 | op1 = op1->gtEffectiveVal(); |
| 2574 | } |
| 2575 | |
| 2576 | *op1WB = op1; |
| 2577 | *op2WB = op2; |
| 2578 | } |
| 2579 | |
| 2580 | #ifdef DEBUG |
| 2581 | /***************************************************************************** |
| 2582 | * This is a workaround. It is to help implement an assert in gtSetEvalOrder() that the values |
| 2583 | * gtWalkOp() leaves in op1 and op2 correspond with the values of adr, idx, mul, and cns |
| 2584 | * that are returned by genCreateAddrMode(). It's essentially impossible to determine |
| 2585 | * what gtWalkOp() *should* return for all possible trees. This simply loosens one assert |
| 2586 | * to handle the following case: |
| 2587 | |
| 2588 | indir int |
| 2589 | const(h) int 4 field |
| 2590 | + byref |
| 2591 | lclVar byref V00 this <-- op2 |
| 2592 | comma byref <-- adr (base) |
| 2593 | indir byte |
| 2594 | lclVar byref V00 this |
| 2595 | + byref |
| 2596 | const int 2 <-- mul == 4 |
| 2597 | << int <-- op1 |
| 2598 | lclVar int V01 arg1 <-- idx |
| 2599 | |
| 2600 | * Here, we are planning to generate the address mode [edx+4*eax], where eax = idx and edx = the GT_COMMA expression. |
| 2601 | * To check adr equivalence with op2, we need to walk down the GT_ADD tree just like gtWalkOp() does. |
| 2602 | */ |
| 2603 | GenTree* Compiler::gtWalkOpEffectiveVal(GenTree* op) |
| 2604 | { |
| 2605 | for (;;) |
| 2606 | { |
| 2607 | op = op->gtEffectiveVal(); |
| 2608 | |
| 2609 | if ((op->gtOper != GT_ADD) || op->gtOverflow() || !op->gtOp.gtOp2->IsCnsIntOrI()) |
| 2610 | { |
| 2611 | break; |
| 2612 | } |
| 2613 | |
| 2614 | op = op->gtOp.gtOp1; |
| 2615 | } |
| 2616 | |
| 2617 | return op; |
| 2618 | } |
| 2619 | #endif // DEBUG |
| 2620 | |
| 2621 | /***************************************************************************** |
| 2622 | * |
| 2623 | * Given a tree, set the gtCostEx and gtCostSz fields which |
| 2624 | * are used to measure the relative costs of the codegen of the tree |
| 2625 | * |
| 2626 | */ |
| 2627 | |
| 2628 | void Compiler::gtPrepareCost(GenTree* tree) |
| 2629 | { |
| 2630 | gtSetEvalOrder(tree); |
| 2631 | } |
| 2632 | |
| 2633 | bool Compiler::gtIsLikelyRegVar(GenTree* tree) |
| 2634 | { |
| 2635 | if (tree->gtOper != GT_LCL_VAR) |
| 2636 | { |
| 2637 | return false; |
| 2638 | } |
| 2639 | |
| 2640 | assert(tree->gtLclVar.gtLclNum < lvaTableCnt); |
| 2641 | LclVarDsc* varDsc = lvaTable + tree->gtLclVar.gtLclNum; |
| 2642 | |
| 2643 | if (varDsc->lvDoNotEnregister) |
| 2644 | { |
| 2645 | return false; |
| 2646 | } |
| 2647 | |
| 2648 | // Be pessimistic if ref counts are not yet set up. |
| 2649 | // |
| 2650 | // Perhaps we should be optimistic though. |
| 2651 | // See notes in GitHub issue 18969. |
| 2652 | if (!lvaLocalVarRefCounted()) |
| 2653 | { |
| 2654 | return false; |
| 2655 | } |
| 2656 | |
| 2657 | if (varDsc->lvRefCntWtd() < (BB_UNITY_WEIGHT * 3)) |
| 2658 | { |
| 2659 | return false; |
| 2660 | } |
| 2661 | |
| 2662 | #ifdef _TARGET_X86_ |
| 2663 | if (varTypeIsFloating(tree->TypeGet())) |
| 2664 | return false; |
| 2665 | if (varTypeIsLong(tree->TypeGet())) |
| 2666 | return false; |
| 2667 | #endif |
| 2668 | |
| 2669 | return true; |
| 2670 | } |
| 2671 | |
| 2672 | //------------------------------------------------------------------------ |
| 2673 | // gtCanSwapOrder: Returns true iff the secondNode can be swapped with firstNode. |
| 2674 | // |
| 2675 | // Arguments: |
| 2676 | // firstNode - An operand of a tree that can have GTF_REVERSE_OPS set. |
| 2677 | // secondNode - The other operand of the tree. |
| 2678 | // |
| 2679 | // Return Value: |
| 2680 | // Returns a boolean indicating whether it is safe to reverse the execution |
| 2681 | // order of the two trees, considering any exception, global effects, or |
| 2682 | // ordering constraints. |
| 2683 | // |
| 2684 | bool Compiler::gtCanSwapOrder(GenTree* firstNode, GenTree* secondNode) |
| 2685 | { |
| 2686 | // Relative of order of global / side effects can't be swapped. |
| 2687 | |
| 2688 | bool canSwap = true; |
| 2689 | |
| 2690 | if (optValnumCSE_phase) |
| 2691 | { |
| 2692 | canSwap = optCSE_canSwap(firstNode, secondNode); |
| 2693 | } |
| 2694 | |
| 2695 | // We cannot swap in the presence of special side effects such as GT_CATCH_ARG. |
| 2696 | |
| 2697 | if (canSwap && (firstNode->gtFlags & GTF_ORDER_SIDEEFF)) |
| 2698 | { |
| 2699 | canSwap = false; |
| 2700 | } |
| 2701 | |
| 2702 | // When strict side effect order is disabled we allow GTF_REVERSE_OPS to be set |
| 2703 | // when one or both sides contains a GTF_CALL or GTF_EXCEPT. |
| 2704 | // Currently only the C and C++ languages allow non strict side effect order. |
| 2705 | |
| 2706 | unsigned strictEffects = GTF_GLOB_EFFECT; |
| 2707 | |
| 2708 | if (canSwap && (firstNode->gtFlags & strictEffects)) |
| 2709 | { |
| 2710 | // op1 has side efects that can't be reordered. |
| 2711 | // Check for some special cases where we still may be able to swap. |
| 2712 | |
| 2713 | if (secondNode->gtFlags & strictEffects) |
| 2714 | { |
| 2715 | // op2 has also has non reorderable side effects - can't swap. |
| 2716 | canSwap = false; |
| 2717 | } |
| 2718 | else |
| 2719 | { |
| 2720 | // No side effects in op2 - we can swap iff op1 has no way of modifying op2, |
| 2721 | // i.e. through byref assignments or calls or op2 is a constant. |
| 2722 | |
| 2723 | if (firstNode->gtFlags & strictEffects & GTF_PERSISTENT_SIDE_EFFECTS) |
| 2724 | { |
| 2725 | // We have to be conservative - can swap iff op2 is constant. |
| 2726 | if (!secondNode->OperIsConst()) |
| 2727 | { |
| 2728 | canSwap = false; |
| 2729 | } |
| 2730 | } |
| 2731 | } |
| 2732 | } |
| 2733 | return canSwap; |
| 2734 | } |
| 2735 | |
| 2736 | /***************************************************************************** |
| 2737 | * |
| 2738 | * Given a tree, figure out the order in which its sub-operands should be |
| 2739 | * evaluated. If the second operand of a binary operator is more expensive |
| 2740 | * than the first operand, then try to swap the operand trees. Updates the |
| 2741 | * GTF_REVERSE_OPS bit if necessary in this case. |
| 2742 | * |
| 2743 | * Returns the Sethi 'complexity' estimate for this tree (the higher |
| 2744 | * the number, the higher is the tree's resources requirement). |
| 2745 | * |
| 2746 | * This function sets: |
| 2747 | * 1. gtCostEx to the execution complexity estimate |
| 2748 | * 2. gtCostSz to the code size estimate |
| 2749 | * 3. Sometimes sets GTF_ADDRMODE_NO_CSE on nodes in the tree. |
| 2750 | * 4. DEBUG-only: clears GTF_DEBUG_NODE_MORPHED. |
| 2751 | */ |
| 2752 | |
| 2753 | #ifdef _PREFAST_ |
| 2754 | #pragma warning(push) |
| 2755 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
| 2756 | #endif |
| 2757 | unsigned Compiler::gtSetEvalOrder(GenTree* tree) |
| 2758 | { |
| 2759 | assert(tree); |
| 2760 | assert(tree->gtOper != GT_STMT); |
| 2761 | |
| 2762 | #ifdef DEBUG |
| 2763 | /* Clear the GTF_DEBUG_NODE_MORPHED flag as well */ |
| 2764 | tree->gtDebugFlags &= ~GTF_DEBUG_NODE_MORPHED; |
| 2765 | #endif |
| 2766 | |
| 2767 | /* Is this a FP value? */ |
| 2768 | |
| 2769 | bool isflt = varTypeIsFloating(tree->TypeGet()); |
| 2770 | |
| 2771 | /* Figure out what kind of a node we have */ |
| 2772 | |
| 2773 | const genTreeOps oper = tree->OperGet(); |
| 2774 | const unsigned kind = tree->OperKind(); |
| 2775 | |
| 2776 | /* Assume no fixed registers will be trashed */ |
| 2777 | |
| 2778 | unsigned level; |
| 2779 | int costEx; |
| 2780 | int costSz; |
| 2781 | |
| 2782 | #ifdef DEBUG |
| 2783 | costEx = -1; |
| 2784 | costSz = -1; |
| 2785 | #endif |
| 2786 | |
| 2787 | /* Is this a constant or a leaf node? */ |
| 2788 | |
| 2789 | if (kind & (GTK_LEAF | GTK_CONST)) |
| 2790 | { |
| 2791 | switch (oper) |
| 2792 | { |
| 2793 | #ifdef _TARGET_ARM_ |
| 2794 | case GT_CNS_LNG: |
| 2795 | costSz = 9; |
| 2796 | costEx = 4; |
| 2797 | goto COMMON_CNS; |
| 2798 | |
| 2799 | case GT_CNS_STR: |
| 2800 | // Uses movw/movt |
| 2801 | costSz = 7; |
| 2802 | costEx = 3; |
| 2803 | goto COMMON_CNS; |
| 2804 | |
| 2805 | case GT_CNS_INT: |
| 2806 | { |
| 2807 | // If the constant is a handle then it will need to have a relocation |
| 2808 | // applied to it. |
| 2809 | // Any constant that requires a reloc must use the movw/movt sequence |
| 2810 | // |
| 2811 | GenTreeIntConCommon* con = tree->AsIntConCommon(); |
| 2812 | |
| 2813 | if (con->ImmedValNeedsReloc(this) || |
| 2814 | !codeGen->validImmForInstr(INS_mov, (target_ssize_t)tree->gtIntCon.gtIconVal)) |
| 2815 | { |
| 2816 | // Uses movw/movt |
| 2817 | costSz = 7; |
| 2818 | costEx = 3; |
| 2819 | } |
| 2820 | else if (((unsigned)tree->gtIntCon.gtIconVal) <= 0x00ff) |
| 2821 | { |
| 2822 | // mov Rd, <const8> |
| 2823 | costSz = 1; |
| 2824 | costEx = 1; |
| 2825 | } |
| 2826 | else |
| 2827 | { |
| 2828 | // Uses movw/mvn |
| 2829 | costSz = 3; |
| 2830 | costEx = 1; |
| 2831 | } |
| 2832 | goto COMMON_CNS; |
| 2833 | } |
| 2834 | |
| 2835 | #elif defined _TARGET_XARCH_ |
| 2836 | |
| 2837 | case GT_CNS_LNG: |
| 2838 | costSz = 10; |
| 2839 | costEx = 3; |
| 2840 | goto COMMON_CNS; |
| 2841 | |
| 2842 | case GT_CNS_STR: |
| 2843 | costSz = 4; |
| 2844 | costEx = 1; |
| 2845 | goto COMMON_CNS; |
| 2846 | |
| 2847 | case GT_CNS_INT: |
| 2848 | { |
| 2849 | // If the constant is a handle then it will need to have a relocation |
| 2850 | // applied to it. |
| 2851 | // |
| 2852 | GenTreeIntConCommon* con = tree->AsIntConCommon(); |
| 2853 | |
| 2854 | bool iconNeedsReloc = con->ImmedValNeedsReloc(this); |
| 2855 | |
| 2856 | if (!iconNeedsReloc && con->FitsInI8()) |
| 2857 | { |
| 2858 | costSz = 1; |
| 2859 | costEx = 1; |
| 2860 | } |
| 2861 | #if defined(_TARGET_AMD64_) |
| 2862 | else if (iconNeedsReloc || !con->FitsInI32()) |
| 2863 | { |
| 2864 | costSz = 10; |
| 2865 | costEx = 3; |
| 2866 | } |
| 2867 | #endif // _TARGET_AMD64_ |
| 2868 | else |
| 2869 | { |
| 2870 | costSz = 4; |
| 2871 | costEx = 1; |
| 2872 | } |
| 2873 | goto COMMON_CNS; |
| 2874 | } |
| 2875 | |
| 2876 | #elif defined(_TARGET_ARM64_) |
| 2877 | case GT_CNS_LNG: |
| 2878 | case GT_CNS_STR: |
| 2879 | case GT_CNS_INT: |
| 2880 | // TODO-ARM64-NYI: Need cost estimates. |
| 2881 | costSz = 1; |
| 2882 | costEx = 1; |
| 2883 | goto COMMON_CNS; |
| 2884 | |
| 2885 | #else |
| 2886 | case GT_CNS_LNG: |
| 2887 | case GT_CNS_STR: |
| 2888 | case GT_CNS_INT: |
| 2889 | #error "Unknown _TARGET_" |
| 2890 | #endif |
| 2891 | |
| 2892 | COMMON_CNS: |
| 2893 | /* |
| 2894 | Note that some code below depends on constants always getting |
| 2895 | moved to be the second operand of a binary operator. This is |
| 2896 | easily accomplished by giving constants a level of 0, which |
| 2897 | we do on the next line. If you ever decide to change this, be |
| 2898 | aware that unless you make other arrangements for integer |
| 2899 | constants to be moved, stuff will break. |
| 2900 | */ |
| 2901 | |
| 2902 | level = 0; |
| 2903 | break; |
| 2904 | |
| 2905 | case GT_CNS_DBL: |
| 2906 | level = 0; |
| 2907 | /* We use fldz and fld1 to load 0.0 and 1.0, but all other */ |
| 2908 | /* floating point constants are loaded using an indirection */ |
| 2909 | if ((*((__int64*)&(tree->gtDblCon.gtDconVal)) == 0) || |
| 2910 | (*((__int64*)&(tree->gtDblCon.gtDconVal)) == I64(0x3ff0000000000000))) |
| 2911 | { |
| 2912 | costEx = 1; |
| 2913 | costSz = 1; |
| 2914 | } |
| 2915 | else |
| 2916 | { |
| 2917 | costEx = IND_COST_EX; |
| 2918 | costSz = 4; |
| 2919 | } |
| 2920 | break; |
| 2921 | |
| 2922 | case GT_LCL_VAR: |
| 2923 | level = 1; |
| 2924 | if (gtIsLikelyRegVar(tree)) |
| 2925 | { |
| 2926 | costEx = 1; |
| 2927 | costSz = 1; |
| 2928 | /* Sign-extend and zero-extend are more expensive to load */ |
| 2929 | if (lvaTable[tree->gtLclVar.gtLclNum].lvNormalizeOnLoad()) |
| 2930 | { |
| 2931 | costEx += 1; |
| 2932 | costSz += 1; |
| 2933 | } |
| 2934 | } |
| 2935 | else |
| 2936 | { |
| 2937 | costEx = IND_COST_EX; |
| 2938 | costSz = 2; |
| 2939 | /* Sign-extend and zero-extend are more expensive to load */ |
| 2940 | if (varTypeIsSmall(tree->TypeGet())) |
| 2941 | { |
| 2942 | costEx += 1; |
| 2943 | costSz += 1; |
| 2944 | } |
| 2945 | } |
| 2946 | #if defined(_TARGET_AMD64_) |
| 2947 | // increase costSz for floating point locals |
| 2948 | if (isflt) |
| 2949 | { |
| 2950 | costSz += 1; |
| 2951 | if (!gtIsLikelyRegVar(tree)) |
| 2952 | { |
| 2953 | costSz += 1; |
| 2954 | } |
| 2955 | } |
| 2956 | #endif |
| 2957 | break; |
| 2958 | |
| 2959 | case GT_CLS_VAR: |
| 2960 | #ifdef _TARGET_ARM_ |
| 2961 | // We generate movw/movt/ldr |
| 2962 | level = 1; |
| 2963 | costEx = 3 + IND_COST_EX; // 6 |
| 2964 | costSz = 4 + 4 + 2; // 10 |
| 2965 | break; |
| 2966 | #endif |
| 2967 | case GT_LCL_FLD: |
| 2968 | level = 1; |
| 2969 | costEx = IND_COST_EX; |
| 2970 | costSz = 4; |
| 2971 | if (varTypeIsSmall(tree->TypeGet())) |
| 2972 | { |
| 2973 | costEx += 1; |
| 2974 | costSz += 1; |
| 2975 | } |
| 2976 | break; |
| 2977 | |
| 2978 | case GT_PHI_ARG: |
| 2979 | case GT_ARGPLACE: |
| 2980 | level = 0; |
| 2981 | costEx = 0; |
| 2982 | costSz = 0; |
| 2983 | break; |
| 2984 | |
| 2985 | default: |
| 2986 | level = 1; |
| 2987 | costEx = 1; |
| 2988 | costSz = 1; |
| 2989 | break; |
| 2990 | } |
| 2991 | goto DONE; |
| 2992 | } |
| 2993 | |
| 2994 | /* Is it a 'simple' unary/binary operator? */ |
| 2995 | |
| 2996 | if (kind & GTK_SMPOP) |
| 2997 | { |
| 2998 | int lvlb; // preference for op2 |
| 2999 | unsigned lvl2; // scratch variable |
| 3000 | |
| 3001 | GenTree* op1 = tree->gtOp.gtOp1; |
| 3002 | GenTree* op2 = tree->gtGetOp2IfPresent(); |
| 3003 | |
| 3004 | costEx = 0; |
| 3005 | costSz = 0; |
| 3006 | |
| 3007 | if (tree->OperIsAddrMode()) |
| 3008 | { |
| 3009 | if (op1 == nullptr) |
| 3010 | { |
| 3011 | op1 = op2; |
| 3012 | op2 = nullptr; |
| 3013 | } |
| 3014 | } |
| 3015 | |
| 3016 | /* Check for a nilary operator */ |
| 3017 | |
| 3018 | if (op1 == nullptr) |
| 3019 | { |
| 3020 | assert(op2 == nullptr); |
| 3021 | |
| 3022 | level = 0; |
| 3023 | |
| 3024 | goto DONE; |
| 3025 | } |
| 3026 | |
| 3027 | /* Is this a unary operator? */ |
| 3028 | |
| 3029 | if (op2 == nullptr) |
| 3030 | { |
| 3031 | /* Process the operand of the operator */ |
| 3032 | |
| 3033 | /* Most Unary ops have costEx of 1 */ |
| 3034 | costEx = 1; |
| 3035 | costSz = 1; |
| 3036 | |
| 3037 | level = gtSetEvalOrder(op1); |
| 3038 | |
| 3039 | /* Special handling for some operators */ |
| 3040 | |
| 3041 | switch (oper) |
| 3042 | { |
| 3043 | case GT_JTRUE: |
| 3044 | costEx = 2; |
| 3045 | costSz = 2; |
| 3046 | break; |
| 3047 | |
| 3048 | case GT_SWITCH: |
| 3049 | costEx = 10; |
| 3050 | costSz = 5; |
| 3051 | break; |
| 3052 | |
| 3053 | case GT_CAST: |
| 3054 | #if defined(_TARGET_ARM_) |
| 3055 | costEx = 1; |
| 3056 | costSz = 1; |
| 3057 | if (isflt || varTypeIsFloating(op1->TypeGet())) |
| 3058 | { |
| 3059 | costEx = 3; |
| 3060 | costSz = 4; |
| 3061 | } |
| 3062 | #elif defined(_TARGET_ARM64_) |
| 3063 | costEx = 1; |
| 3064 | costSz = 2; |
| 3065 | if (isflt || varTypeIsFloating(op1->TypeGet())) |
| 3066 | { |
| 3067 | costEx = 2; |
| 3068 | costSz = 4; |
| 3069 | } |
| 3070 | #elif defined(_TARGET_XARCH_) |
| 3071 | costEx = 1; |
| 3072 | costSz = 2; |
| 3073 | |
| 3074 | if (isflt || varTypeIsFloating(op1->TypeGet())) |
| 3075 | { |
| 3076 | /* cast involving floats always go through memory */ |
| 3077 | costEx = IND_COST_EX * 2; |
| 3078 | costSz = 6; |
| 3079 | } |
| 3080 | #else |
| 3081 | #error "Unknown _TARGET_" |
| 3082 | #endif |
| 3083 | |
| 3084 | /* Overflow casts are a lot more expensive */ |
| 3085 | if (tree->gtOverflow()) |
| 3086 | { |
| 3087 | costEx += 6; |
| 3088 | costSz += 6; |
| 3089 | } |
| 3090 | |
| 3091 | break; |
| 3092 | |
| 3093 | case GT_LIST: |
| 3094 | case GT_FIELD_LIST: |
| 3095 | case GT_NOP: |
| 3096 | costEx = 0; |
| 3097 | costSz = 0; |
| 3098 | break; |
| 3099 | |
| 3100 | case GT_INTRINSIC: |
| 3101 | // GT_INTRINSIC intrinsics Sin, Cos, Sqrt, Abs ... have higher costs. |
| 3102 | // TODO: tune these costs target specific as some of these are |
| 3103 | // target intrinsics and would cost less to generate code. |
| 3104 | switch (tree->gtIntrinsic.gtIntrinsicId) |
| 3105 | { |
| 3106 | default: |
| 3107 | assert(!"missing case for gtIntrinsicId" ); |
| 3108 | costEx = 12; |
| 3109 | costSz = 12; |
| 3110 | break; |
| 3111 | |
| 3112 | case CORINFO_INTRINSIC_Sin: |
| 3113 | case CORINFO_INTRINSIC_Cos: |
| 3114 | case CORINFO_INTRINSIC_Sqrt: |
| 3115 | case CORINFO_INTRINSIC_Cbrt: |
| 3116 | case CORINFO_INTRINSIC_Cosh: |
| 3117 | case CORINFO_INTRINSIC_Sinh: |
| 3118 | case CORINFO_INTRINSIC_Tan: |
| 3119 | case CORINFO_INTRINSIC_Tanh: |
| 3120 | case CORINFO_INTRINSIC_Asin: |
| 3121 | case CORINFO_INTRINSIC_Asinh: |
| 3122 | case CORINFO_INTRINSIC_Acos: |
| 3123 | case CORINFO_INTRINSIC_Acosh: |
| 3124 | case CORINFO_INTRINSIC_Atan: |
| 3125 | case CORINFO_INTRINSIC_Atanh: |
| 3126 | case CORINFO_INTRINSIC_Atan2: |
| 3127 | case CORINFO_INTRINSIC_Log10: |
| 3128 | case CORINFO_INTRINSIC_Pow: |
| 3129 | case CORINFO_INTRINSIC_Exp: |
| 3130 | case CORINFO_INTRINSIC_Ceiling: |
| 3131 | case CORINFO_INTRINSIC_Floor: |
| 3132 | case CORINFO_INTRINSIC_Object_GetType: |
| 3133 | // Giving intrinsics a large fixed execution cost is because we'd like to CSE |
| 3134 | // them, even if they are implemented by calls. This is different from modeling |
| 3135 | // user calls since we never CSE user calls. |
| 3136 | costEx = 36; |
| 3137 | costSz = 4; |
| 3138 | break; |
| 3139 | |
| 3140 | case CORINFO_INTRINSIC_Abs: |
| 3141 | costEx = 5; |
| 3142 | costSz = 15; |
| 3143 | break; |
| 3144 | |
| 3145 | case CORINFO_INTRINSIC_Round: |
| 3146 | costEx = 3; |
| 3147 | costSz = 4; |
| 3148 | break; |
| 3149 | } |
| 3150 | level++; |
| 3151 | break; |
| 3152 | |
| 3153 | case GT_NOT: |
| 3154 | case GT_NEG: |
| 3155 | // We need to ensure that -x is evaluated before x or else |
| 3156 | // we get burned while adjusting genFPstkLevel in x*-x where |
| 3157 | // the rhs x is the last use of the enregistered x. |
| 3158 | // |
| 3159 | // Even in the integer case we want to prefer to |
| 3160 | // evaluate the side without the GT_NEG node, all other things |
| 3161 | // being equal. Also a GT_NOT requires a scratch register |
| 3162 | |
| 3163 | level++; |
| 3164 | break; |
| 3165 | |
| 3166 | case GT_ADDR: |
| 3167 | |
| 3168 | costEx = 0; |
| 3169 | costSz = 1; |
| 3170 | |
| 3171 | // If we have a GT_ADDR of an GT_IND we can just copy the costs from indOp1 |
| 3172 | if (op1->OperGet() == GT_IND) |
| 3173 | { |
| 3174 | GenTree* indOp1 = op1->gtOp.gtOp1; |
| 3175 | costEx = indOp1->gtCostEx; |
| 3176 | costSz = indOp1->gtCostSz; |
| 3177 | } |
| 3178 | break; |
| 3179 | |
| 3180 | case GT_ARR_LENGTH: |
| 3181 | level++; |
| 3182 | |
| 3183 | /* Array Len should be the same as an indirections, which have a costEx of IND_COST_EX */ |
| 3184 | costEx = IND_COST_EX - 1; |
| 3185 | costSz = 2; |
| 3186 | break; |
| 3187 | |
| 3188 | case GT_MKREFANY: |
| 3189 | case GT_OBJ: |
| 3190 | // We estimate the cost of a GT_OBJ or GT_MKREFANY to be two loads (GT_INDs) |
| 3191 | costEx = 2 * IND_COST_EX; |
| 3192 | costSz = 2 * 2; |
| 3193 | break; |
| 3194 | |
| 3195 | case GT_BOX: |
| 3196 | // We estimate the cost of a GT_BOX to be two stores (GT_INDs) |
| 3197 | costEx = 2 * IND_COST_EX; |
| 3198 | costSz = 2 * 2; |
| 3199 | break; |
| 3200 | |
| 3201 | case GT_BLK: |
| 3202 | case GT_IND: |
| 3203 | |
| 3204 | /* An indirection should always have a non-zero level. |
| 3205 | * Only constant leaf nodes have level 0. |
| 3206 | */ |
| 3207 | |
| 3208 | if (level == 0) |
| 3209 | { |
| 3210 | level = 1; |
| 3211 | } |
| 3212 | |
| 3213 | /* Indirections have a costEx of IND_COST_EX */ |
| 3214 | costEx = IND_COST_EX; |
| 3215 | costSz = 2; |
| 3216 | |
| 3217 | /* If we have to sign-extend or zero-extend, bump the cost */ |
| 3218 | if (varTypeIsSmall(tree->TypeGet())) |
| 3219 | { |
| 3220 | costEx += 1; |
| 3221 | costSz += 1; |
| 3222 | } |
| 3223 | |
| 3224 | if (isflt) |
| 3225 | { |
| 3226 | if (tree->TypeGet() == TYP_DOUBLE) |
| 3227 | { |
| 3228 | costEx += 1; |
| 3229 | } |
| 3230 | #ifdef _TARGET_ARM_ |
| 3231 | costSz += 2; |
| 3232 | #endif // _TARGET_ARM_ |
| 3233 | } |
| 3234 | |
| 3235 | // Can we form an addressing mode with this indirection? |
| 3236 | // TODO-CQ: Consider changing this to op1->gtEffectiveVal() to take into account |
| 3237 | // addressing modes hidden under a comma node. |
| 3238 | |
| 3239 | if (op1->gtOper == GT_ADD) |
| 3240 | { |
| 3241 | bool rev; |
| 3242 | #if SCALED_ADDR_MODES |
| 3243 | unsigned mul; |
| 3244 | #endif // SCALED_ADDR_MODES |
| 3245 | ssize_t cns; |
| 3246 | GenTree* base; |
| 3247 | GenTree* idx; |
| 3248 | |
| 3249 | // See if we can form a complex addressing mode. |
| 3250 | |
| 3251 | GenTree* addr = op1->gtEffectiveVal(); |
| 3252 | |
| 3253 | bool doAddrMode = true; |
| 3254 | // See if we can form a complex addressing mode. |
| 3255 | // Always use an addrMode for an array index indirection. |
| 3256 | // TODO-1stClassStructs: Always do this, but first make sure it's |
| 3257 | // done in Lowering as well. |
| 3258 | if ((tree->gtFlags & GTF_IND_ARR_INDEX) == 0) |
| 3259 | { |
| 3260 | if (tree->TypeGet() == TYP_STRUCT) |
| 3261 | { |
| 3262 | doAddrMode = false; |
| 3263 | } |
| 3264 | else if (varTypeIsStruct(tree)) |
| 3265 | { |
| 3266 | // This is a heuristic attempting to match prior behavior when indirections |
| 3267 | // under a struct assignment would not be considered for addressing modes. |
| 3268 | if (compCurStmt != nullptr) |
| 3269 | { |
| 3270 | GenTree* expr = compCurStmt->gtStmt.gtStmtExpr; |
| 3271 | if ((expr->OperGet() == GT_ASG) && |
| 3272 | ((expr->gtGetOp1() == tree) || (expr->gtGetOp2() == tree))) |
| 3273 | { |
| 3274 | doAddrMode = false; |
| 3275 | } |
| 3276 | } |
| 3277 | } |
| 3278 | } |
| 3279 | if ((doAddrMode) && |
| 3280 | codeGen->genCreateAddrMode(addr, // address |
| 3281 | false, // fold |
| 3282 | &rev, // reverse ops |
| 3283 | &base, // base addr |
| 3284 | &idx, // index val |
| 3285 | #if SCALED_ADDR_MODES |
| 3286 | &mul, // scaling |
| 3287 | #endif // SCALED_ADDR_MODES |
| 3288 | &cns)) // displacement |
| 3289 | { |
| 3290 | // We can form a complex addressing mode, so mark each of the interior |
| 3291 | // nodes with GTF_ADDRMODE_NO_CSE and calculate a more accurate cost. |
| 3292 | |
| 3293 | addr->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3294 | #ifdef _TARGET_XARCH_ |
| 3295 | // addrmodeCount is the count of items that we used to form |
| 3296 | // an addressing mode. The maximum value is 4 when we have |
| 3297 | // all of these: { base, idx, cns, mul } |
| 3298 | // |
| 3299 | unsigned addrmodeCount = 0; |
| 3300 | if (base) |
| 3301 | { |
| 3302 | costEx += base->gtCostEx; |
| 3303 | costSz += base->gtCostSz; |
| 3304 | addrmodeCount++; |
| 3305 | } |
| 3306 | |
| 3307 | if (idx) |
| 3308 | { |
| 3309 | costEx += idx->gtCostEx; |
| 3310 | costSz += idx->gtCostSz; |
| 3311 | addrmodeCount++; |
| 3312 | } |
| 3313 | |
| 3314 | if (cns) |
| 3315 | { |
| 3316 | if (((signed char)cns) == ((int)cns)) |
| 3317 | { |
| 3318 | costSz += 1; |
| 3319 | } |
| 3320 | else |
| 3321 | { |
| 3322 | costSz += 4; |
| 3323 | } |
| 3324 | addrmodeCount++; |
| 3325 | } |
| 3326 | if (mul) |
| 3327 | { |
| 3328 | addrmodeCount++; |
| 3329 | } |
| 3330 | // When we form a complex addressing mode we can reduced the costs |
| 3331 | // associated with the interior GT_ADD and GT_LSH nodes: |
| 3332 | // |
| 3333 | // GT_ADD -- reduce this interior GT_ADD by (-3,-3) |
| 3334 | // / \ -- |
| 3335 | // GT_ADD 'cns' -- reduce this interior GT_ADD by (-2,-2) |
| 3336 | // / \ -- |
| 3337 | // 'base' GT_LSL -- reduce this interior GT_LSL by (-1,-1) |
| 3338 | // / \ -- |
| 3339 | // 'idx' 'mul' |
| 3340 | // |
| 3341 | if (addrmodeCount > 1) |
| 3342 | { |
| 3343 | // The number of interior GT_ADD and GT_LSL will always be one less than addrmodeCount |
| 3344 | // |
| 3345 | addrmodeCount--; |
| 3346 | |
| 3347 | GenTree* tmp = addr; |
| 3348 | while (addrmodeCount > 0) |
| 3349 | { |
| 3350 | // decrement the gtCosts for the interior GT_ADD or GT_LSH node by the remaining |
| 3351 | // addrmodeCount |
| 3352 | tmp->SetCosts(tmp->gtCostEx - addrmodeCount, tmp->gtCostSz - addrmodeCount); |
| 3353 | |
| 3354 | addrmodeCount--; |
| 3355 | if (addrmodeCount > 0) |
| 3356 | { |
| 3357 | GenTree* tmpOp1 = tmp->gtOp.gtOp1; |
| 3358 | GenTree* tmpOp2 = tmp->gtGetOp2(); |
| 3359 | assert(tmpOp2 != nullptr); |
| 3360 | |
| 3361 | if ((tmpOp1 != base) && (tmpOp1->OperGet() == GT_ADD)) |
| 3362 | { |
| 3363 | tmp = tmpOp1; |
| 3364 | } |
| 3365 | else if (tmpOp2->OperGet() == GT_LSH) |
| 3366 | { |
| 3367 | tmp = tmpOp2; |
| 3368 | } |
| 3369 | else if (tmpOp1->OperGet() == GT_LSH) |
| 3370 | { |
| 3371 | tmp = tmpOp1; |
| 3372 | } |
| 3373 | else if (tmpOp2->OperGet() == GT_ADD) |
| 3374 | { |
| 3375 | tmp = tmpOp2; |
| 3376 | } |
| 3377 | else |
| 3378 | { |
| 3379 | // We can very rarely encounter a tree that has a GT_COMMA node |
| 3380 | // that is difficult to walk, so we just early out without decrementing. |
| 3381 | addrmodeCount = 0; |
| 3382 | } |
| 3383 | } |
| 3384 | } |
| 3385 | } |
| 3386 | #elif defined _TARGET_ARM_ |
| 3387 | if (base) |
| 3388 | { |
| 3389 | costEx += base->gtCostEx; |
| 3390 | costSz += base->gtCostSz; |
| 3391 | if ((base->gtOper == GT_LCL_VAR) && ((idx == NULL) || (cns == 0))) |
| 3392 | { |
| 3393 | costSz -= 1; |
| 3394 | } |
| 3395 | } |
| 3396 | |
| 3397 | if (idx) |
| 3398 | { |
| 3399 | costEx += idx->gtCostEx; |
| 3400 | costSz += idx->gtCostSz; |
| 3401 | if (mul > 0) |
| 3402 | { |
| 3403 | costSz += 2; |
| 3404 | } |
| 3405 | } |
| 3406 | |
| 3407 | if (cns) |
| 3408 | { |
| 3409 | if (cns >= 128) // small offsets fits into a 16-bit instruction |
| 3410 | { |
| 3411 | if (cns < 4096) // medium offsets require a 32-bit instruction |
| 3412 | { |
| 3413 | if (!isflt) |
| 3414 | costSz += 2; |
| 3415 | } |
| 3416 | else |
| 3417 | { |
| 3418 | costEx += 2; // Very large offsets require movw/movt instructions |
| 3419 | costSz += 8; |
| 3420 | } |
| 3421 | } |
| 3422 | } |
| 3423 | #elif defined _TARGET_ARM64_ |
| 3424 | if (base) |
| 3425 | { |
| 3426 | costEx += base->gtCostEx; |
| 3427 | costSz += base->gtCostSz; |
| 3428 | } |
| 3429 | |
| 3430 | if (idx) |
| 3431 | { |
| 3432 | costEx += idx->gtCostEx; |
| 3433 | costSz += idx->gtCostSz; |
| 3434 | } |
| 3435 | |
| 3436 | if (cns != 0) |
| 3437 | { |
| 3438 | if (cns >= (4096 * genTypeSize(tree->TypeGet()))) |
| 3439 | { |
| 3440 | costEx += 1; |
| 3441 | costSz += 4; |
| 3442 | } |
| 3443 | } |
| 3444 | #else |
| 3445 | #error "Unknown _TARGET_" |
| 3446 | #endif |
| 3447 | |
| 3448 | assert(addr->gtOper == GT_ADD); |
| 3449 | assert(!addr->gtOverflow()); |
| 3450 | assert(op2 == nullptr); |
| 3451 | assert(mul != 1); |
| 3452 | |
| 3453 | // If we have an addressing mode, we have one of: |
| 3454 | // [base + cns] |
| 3455 | // [ idx * mul ] // mul >= 2, else we would use base instead of idx |
| 3456 | // [ idx * mul + cns] // mul >= 2, else we would use base instead of idx |
| 3457 | // [base + idx * mul ] // mul can be 0, 2, 4, or 8 |
| 3458 | // [base + idx * mul + cns] // mul can be 0, 2, 4, or 8 |
| 3459 | // Note that mul == 0 is semantically equivalent to mul == 1. |
| 3460 | // Note that cns can be zero. |
| 3461 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 3462 | |
| 3463 | #if SCALED_ADDR_MODES |
| 3464 | assert((base != nullptr) || (idx != nullptr && mul >= 2)); |
| 3465 | #else |
| 3466 | assert(base != NULL); |
| 3467 | #endif |
| 3468 | |
| 3469 | INDEBUG(GenTree* op1Save = addr); |
| 3470 | |
| 3471 | // Walk 'addr' identifying non-overflow ADDs that will be part of the address mode. |
| 3472 | // Note that we will be modifying 'op1' and 'op2' so that eventually they should |
| 3473 | // map to the base and index. |
| 3474 | op1 = addr; |
| 3475 | gtWalkOp(&op1, &op2, base, false); |
| 3476 | |
| 3477 | // op1 and op2 are now descendents of the root GT_ADD of the addressing mode. |
| 3478 | assert(op1 != op1Save); |
| 3479 | assert(op2 != nullptr); |
| 3480 | |
| 3481 | // Walk the operands again (the third operand is unused in this case). |
| 3482 | // This time we will only consider adds with constant op2's, since |
| 3483 | // we have already found either a non-ADD op1 or a non-constant op2. |
| 3484 | gtWalkOp(&op1, &op2, nullptr, true); |
| 3485 | |
| 3486 | #if defined(_TARGET_XARCH_) |
| 3487 | // For XARCH we will fold GT_ADDs in the op2 position into the addressing mode, so we call |
| 3488 | // gtWalkOp on both operands of the original GT_ADD. |
| 3489 | // This is not done for ARMARCH. Though the stated reason is that we don't try to create a |
| 3490 | // scaled index, in fact we actually do create them (even base + index*scale + offset). |
| 3491 | |
| 3492 | // At this point, 'op2' may itself be an ADD of a constant that should be folded |
| 3493 | // into the addressing mode. |
| 3494 | // Walk op2 looking for non-overflow GT_ADDs of constants. |
| 3495 | gtWalkOp(&op2, &op1, nullptr, true); |
| 3496 | #endif // defined(_TARGET_XARCH_) |
| 3497 | |
| 3498 | // OK we are done walking the tree |
| 3499 | // Now assert that op1 and op2 correspond with base and idx |
| 3500 | // in one of the several acceptable ways. |
| 3501 | |
| 3502 | // Note that sometimes op1/op2 is equal to idx/base |
| 3503 | // and other times op1/op2 is a GT_COMMA node with |
| 3504 | // an effective value that is idx/base |
| 3505 | |
| 3506 | if (mul > 1) |
| 3507 | { |
| 3508 | if ((op1 != base) && (op1->gtOper == GT_LSH)) |
| 3509 | { |
| 3510 | op1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3511 | if (op1->gtOp.gtOp1->gtOper == GT_MUL) |
| 3512 | { |
| 3513 | op1->gtOp.gtOp1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3514 | } |
| 3515 | assert((base == nullptr) || (op2 == base) || |
| 3516 | (op2->gtEffectiveVal() == base->gtEffectiveVal()) || |
| 3517 | (gtWalkOpEffectiveVal(op2) == gtWalkOpEffectiveVal(base))); |
| 3518 | } |
| 3519 | else |
| 3520 | { |
| 3521 | assert(op2); |
| 3522 | assert(op2->gtOper == GT_LSH || op2->gtOper == GT_MUL); |
| 3523 | op2->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3524 | // We may have eliminated multiple shifts and multiplies in the addressing mode, |
| 3525 | // so navigate down through them to get to "idx". |
| 3526 | GenTree* op2op1 = op2->gtOp.gtOp1; |
| 3527 | while ((op2op1->gtOper == GT_LSH || op2op1->gtOper == GT_MUL) && op2op1 != idx) |
| 3528 | { |
| 3529 | op2op1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3530 | op2op1 = op2op1->gtOp.gtOp1; |
| 3531 | } |
| 3532 | assert(op1->gtEffectiveVal() == base); |
| 3533 | assert(op2op1 == idx); |
| 3534 | } |
| 3535 | } |
| 3536 | else |
| 3537 | { |
| 3538 | assert(mul == 0); |
| 3539 | |
| 3540 | if ((op1 == idx) || (op1->gtEffectiveVal() == idx)) |
| 3541 | { |
| 3542 | if (idx != nullptr) |
| 3543 | { |
| 3544 | if ((op1->gtOper == GT_MUL) || (op1->gtOper == GT_LSH)) |
| 3545 | { |
| 3546 | if ((op1->gtOp.gtOp1->gtOper == GT_NOP) || |
| 3547 | (op1->gtOp.gtOp1->gtOper == GT_MUL && |
| 3548 | op1->gtOp.gtOp1->gtOp.gtOp1->gtOper == GT_NOP)) |
| 3549 | { |
| 3550 | op1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3551 | if (op1->gtOp.gtOp1->gtOper == GT_MUL) |
| 3552 | { |
| 3553 | op1->gtOp.gtOp1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3554 | } |
| 3555 | } |
| 3556 | } |
| 3557 | } |
| 3558 | assert((op2 == base) || (op2->gtEffectiveVal() == base)); |
| 3559 | } |
| 3560 | else if ((op1 == base) || (op1->gtEffectiveVal() == base)) |
| 3561 | { |
| 3562 | if (idx != nullptr) |
| 3563 | { |
| 3564 | assert(op2); |
| 3565 | if ((op2->gtOper == GT_MUL) || (op2->gtOper == GT_LSH)) |
| 3566 | { |
| 3567 | if ((op2->gtOp.gtOp1->gtOper == GT_NOP) || |
| 3568 | (op2->gtOp.gtOp1->gtOper == GT_MUL && |
| 3569 | op2->gtOp.gtOp1->gtOp.gtOp1->gtOper == GT_NOP)) |
| 3570 | { |
| 3571 | op2->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3572 | if (op2->gtOp.gtOp1->gtOper == GT_MUL) |
| 3573 | { |
| 3574 | op2->gtOp.gtOp1->gtFlags |= GTF_ADDRMODE_NO_CSE; |
| 3575 | } |
| 3576 | } |
| 3577 | } |
| 3578 | assert((op2 == idx) || (op2->gtEffectiveVal() == idx)); |
| 3579 | } |
| 3580 | } |
| 3581 | else |
| 3582 | { |
| 3583 | // op1 isn't base or idx. Is this possible? Or should there be an assert? |
| 3584 | } |
| 3585 | } |
| 3586 | goto DONE; |
| 3587 | |
| 3588 | } // end if (genCreateAddrMode(...)) |
| 3589 | |
| 3590 | } // end if (op1->gtOper == GT_ADD) |
| 3591 | else if (gtIsLikelyRegVar(op1)) |
| 3592 | { |
| 3593 | /* Indirection of an enregister LCL_VAR, don't increase costEx/costSz */ |
| 3594 | goto DONE; |
| 3595 | } |
| 3596 | #ifdef _TARGET_XARCH_ |
| 3597 | else if (op1->IsCnsIntOrI()) |
| 3598 | { |
| 3599 | // Indirection of a CNS_INT, subtract 1 from costEx |
| 3600 | // makes costEx 3 for x86 and 4 for amd64 |
| 3601 | // |
| 3602 | costEx += (op1->gtCostEx - 1); |
| 3603 | costSz += op1->gtCostSz; |
| 3604 | goto DONE; |
| 3605 | } |
| 3606 | #endif |
| 3607 | break; |
| 3608 | |
| 3609 | default: |
| 3610 | break; |
| 3611 | } |
| 3612 | costEx += op1->gtCostEx; |
| 3613 | costSz += op1->gtCostSz; |
| 3614 | goto DONE; |
| 3615 | } |
| 3616 | |
| 3617 | /* Binary operator - check for certain special cases */ |
| 3618 | |
| 3619 | lvlb = 0; |
| 3620 | |
| 3621 | /* Default Binary ops have a cost of 1,1 */ |
| 3622 | costEx = 1; |
| 3623 | costSz = 1; |
| 3624 | |
| 3625 | #ifdef _TARGET_ARM_ |
| 3626 | if (isflt) |
| 3627 | { |
| 3628 | costSz += 2; |
| 3629 | } |
| 3630 | #endif |
| 3631 | #ifndef _TARGET_64BIT_ |
| 3632 | if (varTypeIsLong(op1->TypeGet())) |
| 3633 | { |
| 3634 | /* Operations on longs are more expensive */ |
| 3635 | costEx += 3; |
| 3636 | costSz += 3; |
| 3637 | } |
| 3638 | #endif |
| 3639 | switch (oper) |
| 3640 | { |
| 3641 | case GT_MOD: |
| 3642 | case GT_UMOD: |
| 3643 | |
| 3644 | /* Modulo by a power of 2 is easy */ |
| 3645 | |
| 3646 | if (op2->IsCnsIntOrI()) |
| 3647 | { |
| 3648 | size_t ival = op2->gtIntConCommon.IconValue(); |
| 3649 | |
| 3650 | if (ival > 0 && ival == genFindLowestBit(ival)) |
| 3651 | { |
| 3652 | break; |
| 3653 | } |
| 3654 | } |
| 3655 | |
| 3656 | __fallthrough; |
| 3657 | |
| 3658 | case GT_DIV: |
| 3659 | case GT_UDIV: |
| 3660 | |
| 3661 | if (isflt) |
| 3662 | { |
| 3663 | /* fp division is very expensive to execute */ |
| 3664 | costEx = 36; // TYP_DOUBLE |
| 3665 | costSz += 3; |
| 3666 | } |
| 3667 | else |
| 3668 | { |
| 3669 | /* integer division is also very expensive */ |
| 3670 | costEx = 20; |
| 3671 | costSz += 2; |
| 3672 | |
| 3673 | // Encourage the first operand to be evaluated (into EAX/EDX) first */ |
| 3674 | lvlb -= 3; |
| 3675 | } |
| 3676 | break; |
| 3677 | |
| 3678 | case GT_MUL: |
| 3679 | |
| 3680 | if (isflt) |
| 3681 | { |
| 3682 | /* FP multiplication instructions are more expensive */ |
| 3683 | costEx += 4; |
| 3684 | costSz += 3; |
| 3685 | } |
| 3686 | else |
| 3687 | { |
| 3688 | /* Integer multiplication instructions are more expensive */ |
| 3689 | costEx += 3; |
| 3690 | costSz += 2; |
| 3691 | |
| 3692 | if (tree->gtOverflow()) |
| 3693 | { |
| 3694 | /* Overflow check are more expensive */ |
| 3695 | costEx += 3; |
| 3696 | costSz += 3; |
| 3697 | } |
| 3698 | |
| 3699 | #ifdef _TARGET_X86_ |
| 3700 | if ((tree->gtType == TYP_LONG) || tree->gtOverflow()) |
| 3701 | { |
| 3702 | /* We use imulEAX for TYP_LONG and overflow multiplications */ |
| 3703 | // Encourage the first operand to be evaluated (into EAX/EDX) first */ |
| 3704 | lvlb -= 4; |
| 3705 | |
| 3706 | /* The 64-bit imul instruction costs more */ |
| 3707 | costEx += 4; |
| 3708 | } |
| 3709 | #endif // _TARGET_X86_ |
| 3710 | } |
| 3711 | break; |
| 3712 | |
| 3713 | case GT_ADD: |
| 3714 | case GT_SUB: |
| 3715 | if (isflt) |
| 3716 | { |
| 3717 | /* FP instructions are a bit more expensive */ |
| 3718 | costEx += 4; |
| 3719 | costSz += 3; |
| 3720 | break; |
| 3721 | } |
| 3722 | |
| 3723 | /* Overflow check are more expensive */ |
| 3724 | if (tree->gtOverflow()) |
| 3725 | { |
| 3726 | costEx += 3; |
| 3727 | costSz += 3; |
| 3728 | } |
| 3729 | break; |
| 3730 | |
| 3731 | case GT_COMMA: |
| 3732 | |
| 3733 | /* Comma tosses the result of the left operand */ |
| 3734 | gtSetEvalOrder(op1); |
| 3735 | level = gtSetEvalOrder(op2); |
| 3736 | |
| 3737 | /* GT_COMMA cost is the sum of op1 and op2 costs */ |
| 3738 | costEx = (op1->gtCostEx + op2->gtCostEx); |
| 3739 | costSz = (op1->gtCostSz + op2->gtCostSz); |
| 3740 | |
| 3741 | goto DONE; |
| 3742 | |
| 3743 | case GT_COLON: |
| 3744 | |
| 3745 | level = gtSetEvalOrder(op1); |
| 3746 | lvl2 = gtSetEvalOrder(op2); |
| 3747 | |
| 3748 | if (level < lvl2) |
| 3749 | { |
| 3750 | level = lvl2; |
| 3751 | } |
| 3752 | else if (level == lvl2) |
| 3753 | { |
| 3754 | level += 1; |
| 3755 | } |
| 3756 | |
| 3757 | costEx = op1->gtCostEx + op2->gtCostEx; |
| 3758 | costSz = op1->gtCostSz + op2->gtCostSz; |
| 3759 | |
| 3760 | goto DONE; |
| 3761 | |
| 3762 | case GT_LIST: |
| 3763 | case GT_FIELD_LIST: |
| 3764 | { |
| 3765 | const bool isListCallArgs = false; |
| 3766 | const bool callArgsInRegs = false; |
| 3767 | return gtSetListOrder(tree, isListCallArgs, callArgsInRegs); |
| 3768 | } |
| 3769 | |
| 3770 | case GT_ASG: |
| 3771 | /* Assignments need a bit of special handling */ |
| 3772 | /* Process the target */ |
| 3773 | level = gtSetEvalOrder(op1); |
| 3774 | |
| 3775 | if (gtIsLikelyRegVar(op1)) |
| 3776 | { |
| 3777 | assert(lvlb == 0); |
| 3778 | lvl2 = gtSetEvalOrder(op2); |
| 3779 | |
| 3780 | /* Assignment to an enregistered LCL_VAR */ |
| 3781 | costEx = op2->gtCostEx; |
| 3782 | costSz = max(3, op2->gtCostSz); // 3 is an estimate for a reg-reg assignment |
| 3783 | goto DONE_OP1_AFTER_COST; |
| 3784 | } |
| 3785 | goto DONE_OP1; |
| 3786 | |
| 3787 | default: |
| 3788 | break; |
| 3789 | } |
| 3790 | |
| 3791 | /* Process the sub-operands */ |
| 3792 | |
| 3793 | level = gtSetEvalOrder(op1); |
| 3794 | if (lvlb < 0) |
| 3795 | { |
| 3796 | level -= lvlb; // lvlb is negative, so this increases level |
| 3797 | lvlb = 0; |
| 3798 | } |
| 3799 | |
| 3800 | DONE_OP1: |
| 3801 | assert(lvlb >= 0); |
| 3802 | lvl2 = gtSetEvalOrder(op2) + lvlb; |
| 3803 | |
| 3804 | costEx += (op1->gtCostEx + op2->gtCostEx); |
| 3805 | costSz += (op1->gtCostSz + op2->gtCostSz); |
| 3806 | |
| 3807 | DONE_OP1_AFTER_COST: |
| 3808 | |
| 3809 | bool bReverseInAssignment = false; |
| 3810 | if (oper == GT_ASG) |
| 3811 | { |
| 3812 | GenTree* op1Val = op1; |
| 3813 | |
| 3814 | // Skip over the GT_IND/GT_ADDR tree (if one exists) |
| 3815 | // |
| 3816 | if ((op1->gtOper == GT_IND) && (op1->gtOp.gtOp1->gtOper == GT_ADDR)) |
| 3817 | { |
| 3818 | op1Val = op1->gtOp.gtOp1->gtOp.gtOp1; |
| 3819 | } |
| 3820 | |
| 3821 | switch (op1Val->gtOper) |
| 3822 | { |
| 3823 | case GT_IND: |
| 3824 | case GT_BLK: |
| 3825 | case GT_OBJ: |
| 3826 | case GT_DYN_BLK: |
| 3827 | |
| 3828 | // In an indirection, the destination address is evaluated prior to the source. |
| 3829 | // If we have any side effects on the target indirection, |
| 3830 | // we have to evaluate op1 first. |
| 3831 | // However, if the LHS is a lclVar address, SSA relies on using evaluation order for its |
| 3832 | // renaming, and therefore the RHS must be evaluated first. |
| 3833 | // If we have an assignment involving a lclVar address, the LHS may be marked as having |
| 3834 | // side-effects. |
| 3835 | // However the side-effects won't require that we evaluate the LHS address first: |
| 3836 | // - The GTF_GLOB_REF might have been conservatively set on a FIELD of a local. |
| 3837 | // - The local might be address-exposed, but that side-effect happens at the actual assignment (not |
| 3838 | // when its address is "evaluated") so it doesn't change the side effect to "evaluate" the address |
| 3839 | // after the RHS (note that in this case it won't be renamed by SSA anyway, but the reordering is |
| 3840 | // safe). |
| 3841 | // |
| 3842 | if (op1Val->AsIndir()->Addr()->IsLocalAddrExpr()) |
| 3843 | { |
| 3844 | bReverseInAssignment = true; |
| 3845 | tree->gtFlags |= GTF_REVERSE_OPS; |
| 3846 | break; |
| 3847 | } |
| 3848 | if (op1Val->AsIndir()->Addr()->gtFlags & GTF_ALL_EFFECT) |
| 3849 | { |
| 3850 | break; |
| 3851 | } |
| 3852 | |
| 3853 | // In case op2 assigns to a local var that is used in op1Val, we have to evaluate op1Val first. |
| 3854 | if (op2->gtFlags & GTF_ASG) |
| 3855 | { |
| 3856 | break; |
| 3857 | } |
| 3858 | |
| 3859 | // If op2 is simple then evaluate op1 first |
| 3860 | |
| 3861 | if (op2->OperKind() & GTK_LEAF) |
| 3862 | { |
| 3863 | break; |
| 3864 | } |
| 3865 | |
| 3866 | // fall through and set GTF_REVERSE_OPS |
| 3867 | |
| 3868 | case GT_LCL_VAR: |
| 3869 | case GT_LCL_FLD: |
| 3870 | |
| 3871 | // We evaluate op2 before op1 |
| 3872 | bReverseInAssignment = true; |
| 3873 | tree->gtFlags |= GTF_REVERSE_OPS; |
| 3874 | break; |
| 3875 | |
| 3876 | default: |
| 3877 | break; |
| 3878 | } |
| 3879 | } |
| 3880 | else if (kind & GTK_RELOP) |
| 3881 | { |
| 3882 | /* Float compares remove both operands from the FP stack */ |
| 3883 | /* Also FP comparison uses EAX for flags */ |
| 3884 | |
| 3885 | if (varTypeIsFloating(op1->TypeGet())) |
| 3886 | { |
| 3887 | level++; |
| 3888 | lvl2++; |
| 3889 | } |
| 3890 | if ((tree->gtFlags & GTF_RELOP_JMP_USED) == 0) |
| 3891 | { |
| 3892 | /* Using a setcc instruction is more expensive */ |
| 3893 | costEx += 3; |
| 3894 | } |
| 3895 | } |
| 3896 | |
| 3897 | /* Check for other interesting cases */ |
| 3898 | |
| 3899 | switch (oper) |
| 3900 | { |
| 3901 | case GT_LSH: |
| 3902 | case GT_RSH: |
| 3903 | case GT_RSZ: |
| 3904 | case GT_ROL: |
| 3905 | case GT_ROR: |
| 3906 | /* Variable sized shifts are more expensive and use REG_SHIFT */ |
| 3907 | |
| 3908 | if (!op2->IsCnsIntOrI()) |
| 3909 | { |
| 3910 | costEx += 3; |
| 3911 | #ifndef _TARGET_64BIT_ |
| 3912 | // Variable sized LONG shifts require the use of a helper call |
| 3913 | // |
| 3914 | if (tree->gtType == TYP_LONG) |
| 3915 | { |
| 3916 | level += 5; |
| 3917 | lvl2 += 5; |
| 3918 | costEx += 3 * IND_COST_EX; |
| 3919 | costSz += 4; |
| 3920 | } |
| 3921 | #endif // !_TARGET_64BIT_ |
| 3922 | } |
| 3923 | break; |
| 3924 | |
| 3925 | case GT_INTRINSIC: |
| 3926 | |
| 3927 | switch (tree->gtIntrinsic.gtIntrinsicId) |
| 3928 | { |
| 3929 | case CORINFO_INTRINSIC_Atan2: |
| 3930 | case CORINFO_INTRINSIC_Pow: |
| 3931 | // These math intrinsics are actually implemented by user calls. |
| 3932 | // Increase the Sethi 'complexity' by two to reflect the argument |
| 3933 | // register requirement. |
| 3934 | level += 2; |
| 3935 | break; |
| 3936 | default: |
| 3937 | assert(!"Unknown binary GT_INTRINSIC operator" ); |
| 3938 | break; |
| 3939 | } |
| 3940 | |
| 3941 | break; |
| 3942 | |
| 3943 | default: |
| 3944 | break; |
| 3945 | } |
| 3946 | |
| 3947 | /* We need to evalutate constants later as many places in codegen |
| 3948 | can't handle op1 being a constant. This is normally naturally |
| 3949 | enforced as constants have the least level of 0. However, |
| 3950 | sometimes we end up with a tree like "cns1 < nop(cns2)". In |
| 3951 | such cases, both sides have a level of 0. So encourage constants |
| 3952 | to be evaluated last in such cases */ |
| 3953 | |
| 3954 | if ((level == 0) && (level == lvl2) && (op1->OperKind() & GTK_CONST) && |
| 3955 | (tree->OperIsCommutative() || tree->OperIsCompare())) |
| 3956 | { |
| 3957 | lvl2++; |
| 3958 | } |
| 3959 | |
| 3960 | /* We try to swap operands if the second one is more expensive */ |
| 3961 | bool tryToSwap; |
| 3962 | GenTree* opA; |
| 3963 | GenTree* opB; |
| 3964 | |
| 3965 | if (tree->gtFlags & GTF_REVERSE_OPS) |
| 3966 | { |
| 3967 | opA = op2; |
| 3968 | opB = op1; |
| 3969 | } |
| 3970 | else |
| 3971 | { |
| 3972 | opA = op1; |
| 3973 | opB = op2; |
| 3974 | } |
| 3975 | |
| 3976 | if (fgOrder == FGOrderLinear) |
| 3977 | { |
| 3978 | // Don't swap anything if we're in linear order; we're really just interested in the costs. |
| 3979 | tryToSwap = false; |
| 3980 | } |
| 3981 | else if (bReverseInAssignment) |
| 3982 | { |
| 3983 | // Assignments are special, we want the reverseops flags |
| 3984 | // so if possible it was set above. |
| 3985 | tryToSwap = false; |
| 3986 | } |
| 3987 | else if ((oper == GT_INTRINSIC) && IsIntrinsicImplementedByUserCall(tree->AsIntrinsic()->gtIntrinsicId)) |
| 3988 | { |
| 3989 | // We do not swap operand execution order for intrinsics that are implemented by user calls |
| 3990 | // because of trickiness around ensuring the execution order does not change during rationalization. |
| 3991 | tryToSwap = false; |
| 3992 | } |
| 3993 | else |
| 3994 | { |
| 3995 | if (tree->gtFlags & GTF_REVERSE_OPS) |
| 3996 | { |
| 3997 | tryToSwap = (level > lvl2); |
| 3998 | } |
| 3999 | else |
| 4000 | { |
| 4001 | tryToSwap = (level < lvl2); |
| 4002 | } |
| 4003 | |
| 4004 | // Try to force extra swapping when in the stress mode: |
| 4005 | if (compStressCompile(STRESS_REVERSE_FLAG, 60) && ((tree->gtFlags & GTF_REVERSE_OPS) == 0) && |
| 4006 | ((op2->OperKind() & GTK_CONST) == 0)) |
| 4007 | { |
| 4008 | tryToSwap = true; |
| 4009 | } |
| 4010 | } |
| 4011 | |
| 4012 | if (tryToSwap) |
| 4013 | { |
| 4014 | bool canSwap = gtCanSwapOrder(opA, opB); |
| 4015 | |
| 4016 | if (canSwap) |
| 4017 | { |
| 4018 | /* Can we swap the order by commuting the operands? */ |
| 4019 | |
| 4020 | switch (oper) |
| 4021 | { |
| 4022 | case GT_EQ: |
| 4023 | case GT_NE: |
| 4024 | case GT_LT: |
| 4025 | case GT_LE: |
| 4026 | case GT_GE: |
| 4027 | case GT_GT: |
| 4028 | if (GenTree::SwapRelop(oper) != oper) |
| 4029 | { |
| 4030 | tree->SetOper(GenTree::SwapRelop(oper), GenTree::PRESERVE_VN); |
| 4031 | } |
| 4032 | |
| 4033 | __fallthrough; |
| 4034 | |
| 4035 | case GT_ADD: |
| 4036 | case GT_MUL: |
| 4037 | |
| 4038 | case GT_OR: |
| 4039 | case GT_XOR: |
| 4040 | case GT_AND: |
| 4041 | |
| 4042 | /* Swap the operands */ |
| 4043 | |
| 4044 | tree->gtOp.gtOp1 = op2; |
| 4045 | tree->gtOp.gtOp2 = op1; |
| 4046 | break; |
| 4047 | |
| 4048 | case GT_QMARK: |
| 4049 | case GT_COLON: |
| 4050 | case GT_MKREFANY: |
| 4051 | break; |
| 4052 | |
| 4053 | case GT_LIST: |
| 4054 | case GT_FIELD_LIST: |
| 4055 | break; |
| 4056 | |
| 4057 | default: |
| 4058 | |
| 4059 | /* Mark the operand's evaluation order to be swapped */ |
| 4060 | if (tree->gtFlags & GTF_REVERSE_OPS) |
| 4061 | { |
| 4062 | tree->gtFlags &= ~GTF_REVERSE_OPS; |
| 4063 | } |
| 4064 | else |
| 4065 | { |
| 4066 | tree->gtFlags |= GTF_REVERSE_OPS; |
| 4067 | } |
| 4068 | |
| 4069 | break; |
| 4070 | } |
| 4071 | } |
| 4072 | } |
| 4073 | |
| 4074 | /* Swap the level counts */ |
| 4075 | if (tree->gtFlags & GTF_REVERSE_OPS) |
| 4076 | { |
| 4077 | unsigned tmpl; |
| 4078 | |
| 4079 | tmpl = level; |
| 4080 | level = lvl2; |
| 4081 | lvl2 = tmpl; |
| 4082 | } |
| 4083 | |
| 4084 | /* Compute the sethi number for this binary operator */ |
| 4085 | |
| 4086 | if (level < 1) |
| 4087 | { |
| 4088 | level = lvl2; |
| 4089 | } |
| 4090 | else if (level == lvl2) |
| 4091 | { |
| 4092 | level += 1; |
| 4093 | } |
| 4094 | |
| 4095 | goto DONE; |
| 4096 | } |
| 4097 | |
| 4098 | /* See what kind of a special operator we have here */ |
| 4099 | |
| 4100 | switch (oper) |
| 4101 | { |
| 4102 | unsigned lvl2; // Scratch variable |
| 4103 | |
| 4104 | case GT_CALL: |
| 4105 | |
| 4106 | assert(tree->gtFlags & GTF_CALL); |
| 4107 | |
| 4108 | level = 0; |
| 4109 | costEx = 5; |
| 4110 | costSz = 2; |
| 4111 | |
| 4112 | /* Evaluate the 'this' argument, if present */ |
| 4113 | |
| 4114 | if (tree->gtCall.gtCallObjp) |
| 4115 | { |
| 4116 | GenTree* thisVal = tree->gtCall.gtCallObjp; |
| 4117 | |
| 4118 | lvl2 = gtSetEvalOrder(thisVal); |
| 4119 | if (level < lvl2) |
| 4120 | { |
| 4121 | level = lvl2; |
| 4122 | } |
| 4123 | costEx += thisVal->gtCostEx; |
| 4124 | costSz += thisVal->gtCostSz + 1; |
| 4125 | } |
| 4126 | |
| 4127 | /* Evaluate the arguments, right to left */ |
| 4128 | |
| 4129 | if (tree->gtCall.gtCallArgs) |
| 4130 | { |
| 4131 | const bool isListCallArgs = true; |
| 4132 | const bool callArgsInRegs = false; |
| 4133 | lvl2 = gtSetListOrder(tree->gtCall.gtCallArgs, isListCallArgs, callArgsInRegs); |
| 4134 | if (level < lvl2) |
| 4135 | { |
| 4136 | level = lvl2; |
| 4137 | } |
| 4138 | costEx += tree->gtCall.gtCallArgs->gtCostEx; |
| 4139 | costSz += tree->gtCall.gtCallArgs->gtCostSz; |
| 4140 | } |
| 4141 | |
| 4142 | /* Evaluate the temp register arguments list |
| 4143 | * This is a "hidden" list and its only purpose is to |
| 4144 | * extend the life of temps until we make the call */ |
| 4145 | |
| 4146 | if (tree->gtCall.gtCallLateArgs) |
| 4147 | { |
| 4148 | const bool isListCallArgs = true; |
| 4149 | const bool callArgsInRegs = true; |
| 4150 | lvl2 = gtSetListOrder(tree->gtCall.gtCallLateArgs, isListCallArgs, callArgsInRegs); |
| 4151 | if (level < lvl2) |
| 4152 | { |
| 4153 | level = lvl2; |
| 4154 | } |
| 4155 | costEx += tree->gtCall.gtCallLateArgs->gtCostEx; |
| 4156 | costSz += tree->gtCall.gtCallLateArgs->gtCostSz; |
| 4157 | } |
| 4158 | |
| 4159 | if (tree->gtCall.gtCallType == CT_INDIRECT) |
| 4160 | { |
| 4161 | // pinvoke-calli cookie is a constant, or constant indirection |
| 4162 | assert(tree->gtCall.gtCallCookie == nullptr || tree->gtCall.gtCallCookie->gtOper == GT_CNS_INT || |
| 4163 | tree->gtCall.gtCallCookie->gtOper == GT_IND); |
| 4164 | |
| 4165 | GenTree* indirect = tree->gtCall.gtCallAddr; |
| 4166 | |
| 4167 | lvl2 = gtSetEvalOrder(indirect); |
| 4168 | if (level < lvl2) |
| 4169 | { |
| 4170 | level = lvl2; |
| 4171 | } |
| 4172 | costEx += indirect->gtCostEx + IND_COST_EX; |
| 4173 | costSz += indirect->gtCostSz; |
| 4174 | } |
| 4175 | else |
| 4176 | { |
| 4177 | #ifdef _TARGET_ARM_ |
| 4178 | if (tree->gtCall.IsVirtualStub()) |
| 4179 | { |
| 4180 | // We generate movw/movt/ldr |
| 4181 | costEx += (1 + IND_COST_EX); |
| 4182 | costSz += 8; |
| 4183 | if (tree->gtCall.gtCallMoreFlags & GTF_CALL_M_VIRTSTUB_REL_INDIRECT) |
| 4184 | { |
| 4185 | // Must use R12 for the ldr target -- REG_JUMP_THUNK_PARAM |
| 4186 | costSz += 2; |
| 4187 | } |
| 4188 | } |
| 4189 | else if (!opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PREJIT)) |
| 4190 | { |
| 4191 | costEx += 2; |
| 4192 | costSz += 6; |
| 4193 | } |
| 4194 | costSz += 2; |
| 4195 | #endif |
| 4196 | #ifdef _TARGET_XARCH_ |
| 4197 | costSz += 3; |
| 4198 | #endif |
| 4199 | } |
| 4200 | |
| 4201 | level += 1; |
| 4202 | |
| 4203 | /* Virtual calls are a bit more expensive */ |
| 4204 | if (tree->gtCall.IsVirtual()) |
| 4205 | { |
| 4206 | costEx += 2 * IND_COST_EX; |
| 4207 | costSz += 2; |
| 4208 | } |
| 4209 | |
| 4210 | level += 5; |
| 4211 | costEx += 3 * IND_COST_EX; |
| 4212 | break; |
| 4213 | |
| 4214 | case GT_ARR_ELEM: |
| 4215 | |
| 4216 | level = gtSetEvalOrder(tree->gtArrElem.gtArrObj); |
| 4217 | costEx = tree->gtArrElem.gtArrObj->gtCostEx; |
| 4218 | costSz = tree->gtArrElem.gtArrObj->gtCostSz; |
| 4219 | |
| 4220 | unsigned dim; |
| 4221 | for (dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
| 4222 | { |
| 4223 | lvl2 = gtSetEvalOrder(tree->gtArrElem.gtArrInds[dim]); |
| 4224 | if (level < lvl2) |
| 4225 | { |
| 4226 | level = lvl2; |
| 4227 | } |
| 4228 | costEx += tree->gtArrElem.gtArrInds[dim]->gtCostEx; |
| 4229 | costSz += tree->gtArrElem.gtArrInds[dim]->gtCostSz; |
| 4230 | } |
| 4231 | |
| 4232 | level += tree->gtArrElem.gtArrRank; |
| 4233 | costEx += 2 + (tree->gtArrElem.gtArrRank * (IND_COST_EX + 1)); |
| 4234 | costSz += 2 + (tree->gtArrElem.gtArrRank * 2); |
| 4235 | break; |
| 4236 | |
| 4237 | case GT_ARR_OFFSET: |
| 4238 | level = gtSetEvalOrder(tree->gtArrOffs.gtOffset); |
| 4239 | costEx = tree->gtArrOffs.gtOffset->gtCostEx; |
| 4240 | costSz = tree->gtArrOffs.gtOffset->gtCostSz; |
| 4241 | lvl2 = gtSetEvalOrder(tree->gtArrOffs.gtIndex); |
| 4242 | level = max(level, lvl2); |
| 4243 | costEx += tree->gtArrOffs.gtIndex->gtCostEx; |
| 4244 | costSz += tree->gtArrOffs.gtIndex->gtCostSz; |
| 4245 | lvl2 = gtSetEvalOrder(tree->gtArrOffs.gtArrObj); |
| 4246 | level = max(level, lvl2); |
| 4247 | costEx += tree->gtArrOffs.gtArrObj->gtCostEx; |
| 4248 | costSz += tree->gtArrOffs.gtArrObj->gtCostSz; |
| 4249 | break; |
| 4250 | |
| 4251 | case GT_CMPXCHG: |
| 4252 | |
| 4253 | level = gtSetEvalOrder(tree->gtCmpXchg.gtOpLocation); |
| 4254 | costSz = tree->gtCmpXchg.gtOpLocation->gtCostSz; |
| 4255 | |
| 4256 | lvl2 = gtSetEvalOrder(tree->gtCmpXchg.gtOpValue); |
| 4257 | if (level < lvl2) |
| 4258 | { |
| 4259 | level = lvl2; |
| 4260 | } |
| 4261 | costSz += tree->gtCmpXchg.gtOpValue->gtCostSz; |
| 4262 | |
| 4263 | lvl2 = gtSetEvalOrder(tree->gtCmpXchg.gtOpComparand); |
| 4264 | if (level < lvl2) |
| 4265 | { |
| 4266 | level = lvl2; |
| 4267 | } |
| 4268 | costSz += tree->gtCmpXchg.gtOpComparand->gtCostSz; |
| 4269 | |
| 4270 | costEx = MAX_COST; // Seriously, what could be more expensive than lock cmpxchg? |
| 4271 | costSz += 5; // size of lock cmpxchg [reg+C], reg |
| 4272 | break; |
| 4273 | |
| 4274 | case GT_ARR_BOUNDS_CHECK: |
| 4275 | #ifdef FEATURE_SIMD |
| 4276 | case GT_SIMD_CHK: |
| 4277 | #endif // FEATURE_SIMD |
| 4278 | #ifdef FEATURE_HW_INTRINSICS |
| 4279 | case GT_HW_INTRINSIC_CHK: |
| 4280 | #endif // FEATURE_HW_INTRINSICS |
| 4281 | |
| 4282 | costEx = 4; // cmp reg,reg and jae throw (not taken) |
| 4283 | costSz = 7; // jump to cold section |
| 4284 | |
| 4285 | level = gtSetEvalOrder(tree->gtBoundsChk.gtIndex); |
| 4286 | costEx += tree->gtBoundsChk.gtIndex->gtCostEx; |
| 4287 | costSz += tree->gtBoundsChk.gtIndex->gtCostSz; |
| 4288 | |
| 4289 | lvl2 = gtSetEvalOrder(tree->gtBoundsChk.gtArrLen); |
| 4290 | if (level < lvl2) |
| 4291 | { |
| 4292 | level = lvl2; |
| 4293 | } |
| 4294 | costEx += tree->gtBoundsChk.gtArrLen->gtCostEx; |
| 4295 | costSz += tree->gtBoundsChk.gtArrLen->gtCostSz; |
| 4296 | |
| 4297 | break; |
| 4298 | |
| 4299 | case GT_STORE_DYN_BLK: |
| 4300 | case GT_DYN_BLK: |
| 4301 | { |
| 4302 | costEx = 0; |
| 4303 | costSz = 0; |
| 4304 | level = 0; |
| 4305 | if (oper == GT_STORE_DYN_BLK) |
| 4306 | { |
| 4307 | lvl2 = gtSetEvalOrder(tree->gtDynBlk.Data()); |
| 4308 | level = max(level, lvl2); |
| 4309 | costEx += tree->gtDynBlk.Data()->gtCostEx; |
| 4310 | costSz += tree->gtDynBlk.Data()->gtCostSz; |
| 4311 | } |
| 4312 | lvl2 = gtSetEvalOrder(tree->gtDynBlk.Addr()); |
| 4313 | level = max(level, lvl2); |
| 4314 | costEx = tree->gtDynBlk.Addr()->gtCostEx; |
| 4315 | costSz = tree->gtDynBlk.Addr()->gtCostSz; |
| 4316 | unsigned sizeLevel = gtSetEvalOrder(tree->gtDynBlk.gtDynamicSize); |
| 4317 | |
| 4318 | // Determine whether the size node should be evaluated first. |
| 4319 | // We would like to do this if the sizeLevel is larger than the current level, |
| 4320 | // but we have to ensure that we obey ordering constraints. |
| 4321 | if (tree->AsDynBlk()->gtEvalSizeFirst != (level < sizeLevel)) |
| 4322 | { |
| 4323 | bool canChange = true; |
| 4324 | |
| 4325 | GenTree* sizeNode = tree->AsDynBlk()->gtDynamicSize; |
| 4326 | GenTree* dst = tree->AsDynBlk()->Addr(); |
| 4327 | GenTree* src = tree->AsDynBlk()->Data(); |
| 4328 | |
| 4329 | if (tree->AsDynBlk()->gtEvalSizeFirst) |
| 4330 | { |
| 4331 | canChange = gtCanSwapOrder(sizeNode, dst); |
| 4332 | if (canChange && (src != nullptr)) |
| 4333 | { |
| 4334 | canChange = gtCanSwapOrder(sizeNode, src); |
| 4335 | } |
| 4336 | } |
| 4337 | else |
| 4338 | { |
| 4339 | canChange = gtCanSwapOrder(dst, sizeNode); |
| 4340 | if (canChange && (src != nullptr)) |
| 4341 | { |
| 4342 | gtCanSwapOrder(src, sizeNode); |
| 4343 | } |
| 4344 | } |
| 4345 | if (canChange) |
| 4346 | { |
| 4347 | tree->AsDynBlk()->gtEvalSizeFirst = (level < sizeLevel); |
| 4348 | } |
| 4349 | } |
| 4350 | level = max(level, sizeLevel); |
| 4351 | costEx += tree->gtDynBlk.gtDynamicSize->gtCostEx; |
| 4352 | costSz += tree->gtDynBlk.gtDynamicSize->gtCostSz; |
| 4353 | } |
| 4354 | break; |
| 4355 | |
| 4356 | case GT_INDEX_ADDR: |
| 4357 | costEx = 6; // cmp reg,reg; jae throw; mov reg, [addrmode] (not taken) |
| 4358 | costSz = 9; // jump to cold section |
| 4359 | |
| 4360 | level = gtSetEvalOrder(tree->AsIndexAddr()->Index()); |
| 4361 | costEx += tree->AsIndexAddr()->Index()->gtCostEx; |
| 4362 | costSz += tree->AsIndexAddr()->Index()->gtCostSz; |
| 4363 | |
| 4364 | lvl2 = gtSetEvalOrder(tree->AsIndexAddr()->Arr()); |
| 4365 | if (level < lvl2) |
| 4366 | { |
| 4367 | level = lvl2; |
| 4368 | } |
| 4369 | costEx += tree->AsIndexAddr()->Arr()->gtCostEx; |
| 4370 | costSz += tree->AsIndexAddr()->Arr()->gtCostSz; |
| 4371 | break; |
| 4372 | |
| 4373 | default: |
| 4374 | #ifdef DEBUG |
| 4375 | if (verbose) |
| 4376 | { |
| 4377 | printf("unexpected operator in this tree:\n" ); |
| 4378 | gtDispTree(tree); |
| 4379 | } |
| 4380 | #endif |
| 4381 | NO_WAY("unexpected operator" ); |
| 4382 | } |
| 4383 | |
| 4384 | DONE: |
| 4385 | |
| 4386 | #ifdef FEATURE_HW_INTRINSICS |
| 4387 | if ((oper == GT_HWIntrinsic) && (tree->gtGetOp1() == nullptr)) |
| 4388 | { |
| 4389 | // We can have nullary HWIntrinsic nodes, and we must have non-zero cost. |
| 4390 | costEx = 1; |
| 4391 | costSz = 1; |
| 4392 | } |
| 4393 | #endif // FEATURE_HW_INTRINSICS |
| 4394 | |
| 4395 | // Some path through this function must have set the costs. |
| 4396 | assert(costEx != -1); |
| 4397 | assert(costSz != -1); |
| 4398 | |
| 4399 | tree->SetCosts(costEx, costSz); |
| 4400 | |
| 4401 | return level; |
| 4402 | } |
| 4403 | #ifdef _PREFAST_ |
| 4404 | #pragma warning(pop) |
| 4405 | #endif |
| 4406 | |
| 4407 | /***************************************************************************** |
| 4408 | * |
| 4409 | * If the given tree is an integer constant that can be used |
| 4410 | * in a scaled index address mode as a multiplier (e.g. "[4*index]"), then return |
| 4411 | * the scale factor: 2, 4, or 8. Otherwise, return 0. Note that we never return 1, |
| 4412 | * to match the behavior of GetScaleIndexShf(). |
| 4413 | */ |
| 4414 | |
| 4415 | unsigned GenTree::GetScaleIndexMul() |
| 4416 | { |
| 4417 | if (IsCnsIntOrI() && jitIsScaleIndexMul(gtIntConCommon.IconValue()) && gtIntConCommon.IconValue() != 1) |
| 4418 | { |
| 4419 | return (unsigned)gtIntConCommon.IconValue(); |
| 4420 | } |
| 4421 | |
| 4422 | return 0; |
| 4423 | } |
| 4424 | |
| 4425 | /***************************************************************************** |
| 4426 | * |
| 4427 | * If the given tree is the right-hand side of a left shift (that is, |
| 4428 | * 'y' in the tree 'x' << 'y'), and it is an integer constant that can be used |
| 4429 | * in a scaled index address mode as a multiplier (e.g. "[4*index]"), then return |
| 4430 | * the scale factor: 2, 4, or 8. Otherwise, return 0. |
| 4431 | */ |
| 4432 | |
| 4433 | unsigned GenTree::GetScaleIndexShf() |
| 4434 | { |
| 4435 | if (IsCnsIntOrI() && jitIsScaleIndexShift(gtIntConCommon.IconValue())) |
| 4436 | { |
| 4437 | return (unsigned)(1 << gtIntConCommon.IconValue()); |
| 4438 | } |
| 4439 | |
| 4440 | return 0; |
| 4441 | } |
| 4442 | |
| 4443 | /***************************************************************************** |
| 4444 | * |
| 4445 | * If the given tree is a scaled index (i.e. "op * 4" or "op << 2"), returns |
| 4446 | * the multiplier: 2, 4, or 8; otherwise returns 0. Note that "1" is never |
| 4447 | * returned. |
| 4448 | */ |
| 4449 | |
| 4450 | unsigned GenTree::GetScaledIndex() |
| 4451 | { |
| 4452 | // with (!opts.OptEnabled(CLFLG_CONSTANTFOLD) we can have |
| 4453 | // CNS_INT * CNS_INT |
| 4454 | // |
| 4455 | if (gtOp.gtOp1->IsCnsIntOrI()) |
| 4456 | { |
| 4457 | return 0; |
| 4458 | } |
| 4459 | |
| 4460 | switch (gtOper) |
| 4461 | { |
| 4462 | case GT_MUL: |
| 4463 | return gtOp.gtOp2->GetScaleIndexMul(); |
| 4464 | |
| 4465 | case GT_LSH: |
| 4466 | return gtOp.gtOp2->GetScaleIndexShf(); |
| 4467 | |
| 4468 | default: |
| 4469 | assert(!"GenTree::GetScaledIndex() called with illegal gtOper" ); |
| 4470 | break; |
| 4471 | } |
| 4472 | |
| 4473 | return 0; |
| 4474 | } |
| 4475 | |
| 4476 | /***************************************************************************** |
| 4477 | * |
| 4478 | * Returns true if "addr" is a GT_ADD node, at least one of whose arguments is an integer (<= 32 bit) |
| 4479 | * constant. If it returns true, it sets "*offset" to (one of the) constant value(s), and |
| 4480 | * "*addr" to the other argument. |
| 4481 | */ |
| 4482 | |
| 4483 | bool GenTree::IsAddWithI32Const(GenTree** addr, int* offset) |
| 4484 | { |
| 4485 | if (OperGet() == GT_ADD) |
| 4486 | { |
| 4487 | if (gtOp.gtOp1->IsIntCnsFitsInI32()) |
| 4488 | { |
| 4489 | *offset = (int)gtOp.gtOp1->gtIntCon.gtIconVal; |
| 4490 | *addr = gtOp.gtOp2; |
| 4491 | return true; |
| 4492 | } |
| 4493 | else if (gtOp.gtOp2->IsIntCnsFitsInI32()) |
| 4494 | { |
| 4495 | *offset = (int)gtOp.gtOp2->gtIntCon.gtIconVal; |
| 4496 | *addr = gtOp.gtOp1; |
| 4497 | return true; |
| 4498 | } |
| 4499 | } |
| 4500 | // Otherwise... |
| 4501 | return false; |
| 4502 | } |
| 4503 | |
| 4504 | //------------------------------------------------------------------------ |
| 4505 | // gtGetChildPointer: If 'parent' is the parent of this node, return the pointer |
| 4506 | // to the child node so that it can be modified; otherwise, return nullptr. |
| 4507 | // |
| 4508 | // Arguments: |
| 4509 | // parent - The possible parent of this node |
| 4510 | // |
| 4511 | // Return Value: |
| 4512 | // If "child" is a child of "parent", returns a pointer to the child node in the parent |
| 4513 | // (i.e. a pointer to a GenTree pointer). |
| 4514 | // Otherwise, returns nullptr. |
| 4515 | // |
| 4516 | // Assumptions: |
| 4517 | // 'parent' must be non-null |
| 4518 | // |
| 4519 | // Notes: |
| 4520 | // When FEATURE_MULTIREG_ARGS is defined we can get here with GT_OBJ tree. |
| 4521 | // This happens when we have a struct that is passed in multiple registers. |
| 4522 | // |
| 4523 | // Also note that when UNIX_AMD64_ABI is defined the GT_LDOBJ |
| 4524 | // later gets converted to a GT_FIELD_LIST with two GT_LCL_FLDs in Lower/LowerXArch. |
| 4525 | // |
| 4526 | |
| 4527 | GenTree** GenTree::gtGetChildPointer(GenTree* parent) const |
| 4528 | |
| 4529 | { |
| 4530 | switch (parent->OperGet()) |
| 4531 | { |
| 4532 | default: |
| 4533 | if (!parent->OperIsSimple()) |
| 4534 | { |
| 4535 | return nullptr; |
| 4536 | } |
| 4537 | if (this == parent->gtOp.gtOp1) |
| 4538 | { |
| 4539 | return &(parent->gtOp.gtOp1); |
| 4540 | } |
| 4541 | if (this == parent->gtOp.gtOp2) |
| 4542 | { |
| 4543 | return &(parent->gtOp.gtOp2); |
| 4544 | } |
| 4545 | break; |
| 4546 | |
| 4547 | case GT_CMPXCHG: |
| 4548 | if (this == parent->gtCmpXchg.gtOpLocation) |
| 4549 | { |
| 4550 | return &(parent->gtCmpXchg.gtOpLocation); |
| 4551 | } |
| 4552 | if (this == parent->gtCmpXchg.gtOpValue) |
| 4553 | { |
| 4554 | return &(parent->gtCmpXchg.gtOpValue); |
| 4555 | } |
| 4556 | if (this == parent->gtCmpXchg.gtOpComparand) |
| 4557 | { |
| 4558 | return &(parent->gtCmpXchg.gtOpComparand); |
| 4559 | } |
| 4560 | break; |
| 4561 | |
| 4562 | case GT_ARR_BOUNDS_CHECK: |
| 4563 | #ifdef FEATURE_SIMD |
| 4564 | case GT_SIMD_CHK: |
| 4565 | #endif // FEATURE_SIMD |
| 4566 | #ifdef FEATURE_HW_INTRINSICS |
| 4567 | case GT_HW_INTRINSIC_CHK: |
| 4568 | #endif // FEATURE_HW_INTRINSICS |
| 4569 | if (this == parent->gtBoundsChk.gtIndex) |
| 4570 | { |
| 4571 | return &(parent->gtBoundsChk.gtIndex); |
| 4572 | } |
| 4573 | if (this == parent->gtBoundsChk.gtArrLen) |
| 4574 | { |
| 4575 | return &(parent->gtBoundsChk.gtArrLen); |
| 4576 | } |
| 4577 | if (this == parent->gtBoundsChk.gtIndRngFailBB) |
| 4578 | { |
| 4579 | return &(parent->gtBoundsChk.gtIndRngFailBB); |
| 4580 | } |
| 4581 | break; |
| 4582 | |
| 4583 | case GT_ARR_ELEM: |
| 4584 | if (this == parent->gtArrElem.gtArrObj) |
| 4585 | { |
| 4586 | return &(parent->gtArrElem.gtArrObj); |
| 4587 | } |
| 4588 | for (int i = 0; i < GT_ARR_MAX_RANK; i++) |
| 4589 | { |
| 4590 | if (this == parent->gtArrElem.gtArrInds[i]) |
| 4591 | { |
| 4592 | return &(parent->gtArrElem.gtArrInds[i]); |
| 4593 | } |
| 4594 | } |
| 4595 | break; |
| 4596 | |
| 4597 | case GT_ARR_OFFSET: |
| 4598 | if (this == parent->gtArrOffs.gtOffset) |
| 4599 | { |
| 4600 | return &(parent->gtArrOffs.gtOffset); |
| 4601 | } |
| 4602 | if (this == parent->gtArrOffs.gtIndex) |
| 4603 | { |
| 4604 | return &(parent->gtArrOffs.gtIndex); |
| 4605 | } |
| 4606 | if (this == parent->gtArrOffs.gtArrObj) |
| 4607 | { |
| 4608 | return &(parent->gtArrOffs.gtArrObj); |
| 4609 | } |
| 4610 | break; |
| 4611 | |
| 4612 | case GT_STORE_DYN_BLK: |
| 4613 | case GT_DYN_BLK: |
| 4614 | if (this == parent->gtDynBlk.gtOp1) |
| 4615 | { |
| 4616 | return &(parent->gtDynBlk.gtOp1); |
| 4617 | } |
| 4618 | if (this == parent->gtDynBlk.gtOp2) |
| 4619 | { |
| 4620 | return &(parent->gtDynBlk.gtOp2); |
| 4621 | } |
| 4622 | if (this == parent->gtDynBlk.gtDynamicSize) |
| 4623 | { |
| 4624 | return &(parent->gtDynBlk.gtDynamicSize); |
| 4625 | } |
| 4626 | break; |
| 4627 | |
| 4628 | case GT_FIELD: |
| 4629 | if (this == parent->AsField()->gtFldObj) |
| 4630 | { |
| 4631 | return &(parent->AsField()->gtFldObj); |
| 4632 | } |
| 4633 | break; |
| 4634 | |
| 4635 | case GT_RET_EXPR: |
| 4636 | if (this == parent->gtRetExpr.gtInlineCandidate) |
| 4637 | { |
| 4638 | return &(parent->gtRetExpr.gtInlineCandidate); |
| 4639 | } |
| 4640 | break; |
| 4641 | |
| 4642 | case GT_CALL: |
| 4643 | { |
| 4644 | GenTreeCall* call = parent->AsCall(); |
| 4645 | |
| 4646 | if (this == call->gtCallObjp) |
| 4647 | { |
| 4648 | return &(call->gtCallObjp); |
| 4649 | } |
| 4650 | if (this == call->gtCallArgs) |
| 4651 | { |
| 4652 | return reinterpret_cast<GenTree**>(&(call->gtCallArgs)); |
| 4653 | } |
| 4654 | if (this == call->gtCallLateArgs) |
| 4655 | { |
| 4656 | return reinterpret_cast<GenTree**>(&(call->gtCallLateArgs)); |
| 4657 | } |
| 4658 | if (this == call->gtControlExpr) |
| 4659 | { |
| 4660 | return &(call->gtControlExpr); |
| 4661 | } |
| 4662 | if (call->gtCallType == CT_INDIRECT) |
| 4663 | { |
| 4664 | if (this == call->gtCallCookie) |
| 4665 | { |
| 4666 | return &(call->gtCallCookie); |
| 4667 | } |
| 4668 | if (this == call->gtCallAddr) |
| 4669 | { |
| 4670 | return &(call->gtCallAddr); |
| 4671 | } |
| 4672 | } |
| 4673 | } |
| 4674 | break; |
| 4675 | |
| 4676 | case GT_STMT: |
| 4677 | noway_assert(!"Illegal node for gtGetChildPointer()" ); |
| 4678 | unreached(); |
| 4679 | } |
| 4680 | |
| 4681 | return nullptr; |
| 4682 | } |
| 4683 | |
| 4684 | bool GenTree::TryGetUse(GenTree* def, GenTree*** use) |
| 4685 | { |
| 4686 | assert(def != nullptr); |
| 4687 | assert(use != nullptr); |
| 4688 | |
| 4689 | switch (OperGet()) |
| 4690 | { |
| 4691 | // Leaf nodes |
| 4692 | case GT_LCL_VAR: |
| 4693 | case GT_LCL_FLD: |
| 4694 | case GT_LCL_VAR_ADDR: |
| 4695 | case GT_LCL_FLD_ADDR: |
| 4696 | case GT_CATCH_ARG: |
| 4697 | case GT_LABEL: |
| 4698 | case GT_FTN_ADDR: |
| 4699 | case GT_RET_EXPR: |
| 4700 | case GT_CNS_INT: |
| 4701 | case GT_CNS_LNG: |
| 4702 | case GT_CNS_DBL: |
| 4703 | case GT_CNS_STR: |
| 4704 | case GT_MEMORYBARRIER: |
| 4705 | case GT_JMP: |
| 4706 | case GT_JCC: |
| 4707 | case GT_SETCC: |
| 4708 | case GT_NO_OP: |
| 4709 | case GT_START_NONGC: |
| 4710 | case GT_PROF_HOOK: |
| 4711 | #if !FEATURE_EH_FUNCLETS |
| 4712 | case GT_END_LFIN: |
| 4713 | #endif // !FEATURE_EH_FUNCLETS |
| 4714 | case GT_PHI_ARG: |
| 4715 | case GT_JMPTABLE: |
| 4716 | case GT_CLS_VAR: |
| 4717 | case GT_CLS_VAR_ADDR: |
| 4718 | case GT_ARGPLACE: |
| 4719 | case GT_PHYSREG: |
| 4720 | case GT_EMITNOP: |
| 4721 | case GT_PINVOKE_PROLOG: |
| 4722 | case GT_PINVOKE_EPILOG: |
| 4723 | case GT_IL_OFFSET: |
| 4724 | return false; |
| 4725 | |
| 4726 | // Standard unary operators |
| 4727 | case GT_STORE_LCL_VAR: |
| 4728 | case GT_STORE_LCL_FLD: |
| 4729 | case GT_NOT: |
| 4730 | case GT_NEG: |
| 4731 | case GT_COPY: |
| 4732 | case GT_RELOAD: |
| 4733 | case GT_ARR_LENGTH: |
| 4734 | case GT_CAST: |
| 4735 | case GT_BITCAST: |
| 4736 | case GT_CKFINITE: |
| 4737 | case GT_LCLHEAP: |
| 4738 | case GT_ADDR: |
| 4739 | case GT_IND: |
| 4740 | case GT_OBJ: |
| 4741 | case GT_BLK: |
| 4742 | case GT_BOX: |
| 4743 | case GT_ALLOCOBJ: |
| 4744 | case GT_RUNTIMELOOKUP: |
| 4745 | case GT_INIT_VAL: |
| 4746 | case GT_JTRUE: |
| 4747 | case GT_SWITCH: |
| 4748 | case GT_NULLCHECK: |
| 4749 | case GT_PUTARG_REG: |
| 4750 | case GT_PUTARG_STK: |
| 4751 | case GT_RETURNTRAP: |
| 4752 | case GT_NOP: |
| 4753 | case GT_RETURN: |
| 4754 | case GT_RETFILT: |
| 4755 | case GT_BSWAP: |
| 4756 | case GT_BSWAP16: |
| 4757 | if (def == this->AsUnOp()->gtOp1) |
| 4758 | { |
| 4759 | *use = &this->AsUnOp()->gtOp1; |
| 4760 | return true; |
| 4761 | } |
| 4762 | return false; |
| 4763 | |
| 4764 | // Variadic nodes |
| 4765 | case GT_PHI: |
| 4766 | assert(this->AsUnOp()->gtOp1 != nullptr); |
| 4767 | return this->AsUnOp()->gtOp1->TryGetUseList(def, use); |
| 4768 | |
| 4769 | case GT_FIELD_LIST: |
| 4770 | return TryGetUseList(def, use); |
| 4771 | |
| 4772 | #if FEATURE_ARG_SPLIT |
| 4773 | case GT_PUTARG_SPLIT: |
| 4774 | if (this->AsUnOp()->gtOp1->gtOper == GT_FIELD_LIST) |
| 4775 | { |
| 4776 | return this->AsUnOp()->gtOp1->TryGetUseList(def, use); |
| 4777 | } |
| 4778 | if (def == this->AsUnOp()->gtOp1) |
| 4779 | { |
| 4780 | *use = &this->AsUnOp()->gtOp1; |
| 4781 | return true; |
| 4782 | } |
| 4783 | return false; |
| 4784 | #endif // FEATURE_ARG_SPLIT |
| 4785 | |
| 4786 | #ifdef FEATURE_SIMD |
| 4787 | case GT_SIMD: |
| 4788 | if (this->AsSIMD()->gtSIMDIntrinsicID == SIMDIntrinsicInitN) |
| 4789 | { |
| 4790 | assert(this->AsSIMD()->gtOp1 != nullptr); |
| 4791 | return this->AsSIMD()->gtOp1->TryGetUseList(def, use); |
| 4792 | } |
| 4793 | |
| 4794 | return TryGetUseBinOp(def, use); |
| 4795 | #endif // FEATURE_SIMD |
| 4796 | |
| 4797 | #ifdef FEATURE_HW_INTRINSICS |
| 4798 | case GT_HWIntrinsic: |
| 4799 | if ((this->AsHWIntrinsic()->gtOp1 != nullptr) && this->AsHWIntrinsic()->gtOp1->OperIsList()) |
| 4800 | { |
| 4801 | return this->AsHWIntrinsic()->gtOp1->TryGetUseList(def, use); |
| 4802 | } |
| 4803 | |
| 4804 | return TryGetUseBinOp(def, use); |
| 4805 | #endif // FEATURE_HW_INTRINSICS |
| 4806 | |
| 4807 | // Special nodes |
| 4808 | case GT_CMPXCHG: |
| 4809 | { |
| 4810 | GenTreeCmpXchg* const cmpXchg = this->AsCmpXchg(); |
| 4811 | if (def == cmpXchg->gtOpLocation) |
| 4812 | { |
| 4813 | *use = &cmpXchg->gtOpLocation; |
| 4814 | return true; |
| 4815 | } |
| 4816 | if (def == cmpXchg->gtOpValue) |
| 4817 | { |
| 4818 | *use = &cmpXchg->gtOpValue; |
| 4819 | return true; |
| 4820 | } |
| 4821 | if (def == cmpXchg->gtOpComparand) |
| 4822 | { |
| 4823 | *use = &cmpXchg->gtOpComparand; |
| 4824 | return true; |
| 4825 | } |
| 4826 | return false; |
| 4827 | } |
| 4828 | |
| 4829 | case GT_ARR_BOUNDS_CHECK: |
| 4830 | #ifdef FEATURE_SIMD |
| 4831 | case GT_SIMD_CHK: |
| 4832 | #endif // FEATURE_SIMD |
| 4833 | #ifdef FEATURE_HW_INTRINSICS |
| 4834 | case GT_HW_INTRINSIC_CHK: |
| 4835 | #endif // FEATURE_HW_INTRINSICS |
| 4836 | { |
| 4837 | GenTreeBoundsChk* const boundsChk = this->AsBoundsChk(); |
| 4838 | if (def == boundsChk->gtIndex) |
| 4839 | { |
| 4840 | *use = &boundsChk->gtIndex; |
| 4841 | return true; |
| 4842 | } |
| 4843 | if (def == boundsChk->gtArrLen) |
| 4844 | { |
| 4845 | *use = &boundsChk->gtArrLen; |
| 4846 | return true; |
| 4847 | } |
| 4848 | return false; |
| 4849 | } |
| 4850 | |
| 4851 | case GT_FIELD: |
| 4852 | if (def == this->AsField()->gtFldObj) |
| 4853 | { |
| 4854 | *use = &this->AsField()->gtFldObj; |
| 4855 | return true; |
| 4856 | } |
| 4857 | return false; |
| 4858 | |
| 4859 | case GT_STMT: |
| 4860 | if (def == this->AsStmt()->gtStmtExpr) |
| 4861 | { |
| 4862 | *use = &this->AsStmt()->gtStmtExpr; |
| 4863 | return true; |
| 4864 | } |
| 4865 | return false; |
| 4866 | |
| 4867 | case GT_ARR_ELEM: |
| 4868 | { |
| 4869 | GenTreeArrElem* const arrElem = this->AsArrElem(); |
| 4870 | if (def == arrElem->gtArrObj) |
| 4871 | { |
| 4872 | *use = &arrElem->gtArrObj; |
| 4873 | return true; |
| 4874 | } |
| 4875 | for (unsigned i = 0; i < arrElem->gtArrRank; i++) |
| 4876 | { |
| 4877 | if (def == arrElem->gtArrInds[i]) |
| 4878 | { |
| 4879 | *use = &arrElem->gtArrInds[i]; |
| 4880 | return true; |
| 4881 | } |
| 4882 | } |
| 4883 | return false; |
| 4884 | } |
| 4885 | |
| 4886 | case GT_ARR_OFFSET: |
| 4887 | { |
| 4888 | GenTreeArrOffs* const arrOffs = this->AsArrOffs(); |
| 4889 | if (def == arrOffs->gtOffset) |
| 4890 | { |
| 4891 | *use = &arrOffs->gtOffset; |
| 4892 | return true; |
| 4893 | } |
| 4894 | if (def == arrOffs->gtIndex) |
| 4895 | { |
| 4896 | *use = &arrOffs->gtIndex; |
| 4897 | return true; |
| 4898 | } |
| 4899 | if (def == arrOffs->gtArrObj) |
| 4900 | { |
| 4901 | *use = &arrOffs->gtArrObj; |
| 4902 | return true; |
| 4903 | } |
| 4904 | return false; |
| 4905 | } |
| 4906 | |
| 4907 | case GT_DYN_BLK: |
| 4908 | { |
| 4909 | GenTreeDynBlk* const dynBlock = this->AsDynBlk(); |
| 4910 | if (def == dynBlock->gtOp1) |
| 4911 | { |
| 4912 | *use = &dynBlock->gtOp1; |
| 4913 | return true; |
| 4914 | } |
| 4915 | if (def == dynBlock->gtDynamicSize) |
| 4916 | { |
| 4917 | *use = &dynBlock->gtDynamicSize; |
| 4918 | return true; |
| 4919 | } |
| 4920 | return false; |
| 4921 | } |
| 4922 | |
| 4923 | case GT_STORE_DYN_BLK: |
| 4924 | { |
| 4925 | GenTreeDynBlk* const dynBlock = this->AsDynBlk(); |
| 4926 | if (def == dynBlock->gtOp1) |
| 4927 | { |
| 4928 | *use = &dynBlock->gtOp1; |
| 4929 | return true; |
| 4930 | } |
| 4931 | if (def == dynBlock->gtOp2) |
| 4932 | { |
| 4933 | *use = &dynBlock->gtOp2; |
| 4934 | return true; |
| 4935 | } |
| 4936 | if (def == dynBlock->gtDynamicSize) |
| 4937 | { |
| 4938 | *use = &dynBlock->gtDynamicSize; |
| 4939 | return true; |
| 4940 | } |
| 4941 | return false; |
| 4942 | } |
| 4943 | |
| 4944 | case GT_CALL: |
| 4945 | { |
| 4946 | GenTreeCall* const call = this->AsCall(); |
| 4947 | if (def == call->gtCallObjp) |
| 4948 | { |
| 4949 | *use = &call->gtCallObjp; |
| 4950 | return true; |
| 4951 | } |
| 4952 | if (def == call->gtControlExpr) |
| 4953 | { |
| 4954 | *use = &call->gtControlExpr; |
| 4955 | return true; |
| 4956 | } |
| 4957 | if (call->gtCallType == CT_INDIRECT) |
| 4958 | { |
| 4959 | if (def == call->gtCallCookie) |
| 4960 | { |
| 4961 | *use = &call->gtCallCookie; |
| 4962 | return true; |
| 4963 | } |
| 4964 | if (def == call->gtCallAddr) |
| 4965 | { |
| 4966 | *use = &call->gtCallAddr; |
| 4967 | return true; |
| 4968 | } |
| 4969 | } |
| 4970 | if ((call->gtCallArgs != nullptr) && call->gtCallArgs->TryGetUseList(def, use)) |
| 4971 | { |
| 4972 | return true; |
| 4973 | } |
| 4974 | |
| 4975 | return (call->gtCallLateArgs != nullptr) && call->gtCallLateArgs->TryGetUseList(def, use); |
| 4976 | } |
| 4977 | |
| 4978 | // Binary nodes |
| 4979 | default: |
| 4980 | assert(this->OperIsBinary()); |
| 4981 | return TryGetUseBinOp(def, use); |
| 4982 | } |
| 4983 | } |
| 4984 | |
| 4985 | bool GenTree::TryGetUseList(GenTree* def, GenTree*** use) |
| 4986 | { |
| 4987 | assert(def != nullptr); |
| 4988 | assert(use != nullptr); |
| 4989 | |
| 4990 | for (GenTreeArgList* node = this->AsArgList(); node != nullptr; node = node->Rest()) |
| 4991 | { |
| 4992 | if (def == node->gtOp1) |
| 4993 | { |
| 4994 | *use = &node->gtOp1; |
| 4995 | return true; |
| 4996 | } |
| 4997 | } |
| 4998 | return false; |
| 4999 | } |
| 5000 | |
| 5001 | bool GenTree::TryGetUseBinOp(GenTree* def, GenTree*** use) |
| 5002 | { |
| 5003 | assert(def != nullptr); |
| 5004 | assert(use != nullptr); |
| 5005 | assert(this->OperIsBinary()); |
| 5006 | |
| 5007 | GenTreeOp* const binOp = this->AsOp(); |
| 5008 | if (def == binOp->gtOp1) |
| 5009 | { |
| 5010 | *use = &binOp->gtOp1; |
| 5011 | return true; |
| 5012 | } |
| 5013 | if (def == binOp->gtOp2) |
| 5014 | { |
| 5015 | *use = &binOp->gtOp2; |
| 5016 | return true; |
| 5017 | } |
| 5018 | return false; |
| 5019 | } |
| 5020 | |
| 5021 | //------------------------------------------------------------------------ |
| 5022 | // GenTree::ReplaceOperand: |
| 5023 | // Replace a given operand to this node with a new operand. If the |
| 5024 | // current node is a call node, this will also udpate the call |
| 5025 | // argument table if necessary. |
| 5026 | // |
| 5027 | // Arguments: |
| 5028 | // useEdge - the use edge that points to the operand to be replaced. |
| 5029 | // replacement - the replacement node. |
| 5030 | // |
| 5031 | void GenTree::ReplaceOperand(GenTree** useEdge, GenTree* replacement) |
| 5032 | { |
| 5033 | assert(useEdge != nullptr); |
| 5034 | assert(replacement != nullptr); |
| 5035 | assert(TryGetUse(*useEdge, &useEdge)); |
| 5036 | |
| 5037 | if (OperGet() == GT_CALL) |
| 5038 | { |
| 5039 | AsCall()->ReplaceCallOperand(useEdge, replacement); |
| 5040 | } |
| 5041 | else |
| 5042 | { |
| 5043 | *useEdge = replacement; |
| 5044 | } |
| 5045 | } |
| 5046 | |
| 5047 | //------------------------------------------------------------------------ |
| 5048 | // gtGetParent: Get the parent of this node, and optionally capture the |
| 5049 | // pointer to the child so that it can be modified. |
| 5050 | // |
| 5051 | // Arguments: |
| 5052 | |
| 5053 | // parentChildPointer - A pointer to a GenTree** (yes, that's three |
| 5054 | // levels, i.e. GenTree ***), which if non-null, |
| 5055 | // will be set to point to the field in the parent |
| 5056 | // that points to this node. |
| 5057 | // |
| 5058 | // Return value - The parent of this node. |
| 5059 | // |
| 5060 | // Notes: |
| 5061 | // |
| 5062 | // This requires that the execution order must be defined (i.e. gtSetEvalOrder() has been called). |
| 5063 | // To enable the child to be replaced, it accepts an argument, parentChildPointer that, if non-null, |
| 5064 | // will be set to point to the child pointer in the parent that points to this node. |
| 5065 | |
| 5066 | GenTree* GenTree::gtGetParent(GenTree*** parentChildPtrPtr) const |
| 5067 | { |
| 5068 | // Find the parent node; it must be after this node in the execution order. |
| 5069 | GenTree** parentChildPtr = nullptr; |
| 5070 | GenTree* parent; |
| 5071 | for (parent = gtNext; parent != nullptr; parent = parent->gtNext) |
| 5072 | { |
| 5073 | parentChildPtr = gtGetChildPointer(parent); |
| 5074 | if (parentChildPtr != nullptr) |
| 5075 | { |
| 5076 | break; |
| 5077 | } |
| 5078 | } |
| 5079 | if (parentChildPtrPtr != nullptr) |
| 5080 | { |
| 5081 | *parentChildPtrPtr = parentChildPtr; |
| 5082 | } |
| 5083 | return parent; |
| 5084 | } |
| 5085 | |
| 5086 | //------------------------------------------------------------------------------ |
| 5087 | // OperRequiresAsgFlag : Check whether the operation requires GTF_ASG flag regardless |
| 5088 | // of the children's flags. |
| 5089 | // |
| 5090 | |
| 5091 | bool GenTree::OperRequiresAsgFlag() |
| 5092 | { |
| 5093 | if (OperIs(GT_ASG) || OperIs(GT_XADD, GT_XCHG, GT_LOCKADD, GT_CMPXCHG, GT_MEMORYBARRIER)) |
| 5094 | { |
| 5095 | return true; |
| 5096 | } |
| 5097 | #ifdef FEATURE_HW_INTRINSICS |
| 5098 | if (gtOper == GT_HWIntrinsic) |
| 5099 | { |
| 5100 | GenTreeHWIntrinsic* hwIntrinsicNode = this->AsHWIntrinsic(); |
| 5101 | if (hwIntrinsicNode->OperIsMemoryStore()) |
| 5102 | { |
| 5103 | // A MemoryStore operation is an assignment |
| 5104 | return true; |
| 5105 | } |
| 5106 | } |
| 5107 | #endif // FEATURE_HW_INTRINSICS |
| 5108 | return false; |
| 5109 | } |
| 5110 | |
| 5111 | //------------------------------------------------------------------------------ |
| 5112 | // OperRequiresCallFlag : Check whether the operation requires GTF_CALL flag regardless |
| 5113 | // of the children's flags. |
| 5114 | // |
| 5115 | |
| 5116 | bool GenTree::OperRequiresCallFlag(Compiler* comp) |
| 5117 | { |
| 5118 | switch (gtOper) |
| 5119 | { |
| 5120 | case GT_CALL: |
| 5121 | return true; |
| 5122 | |
| 5123 | case GT_INTRINSIC: |
| 5124 | return comp->IsIntrinsicImplementedByUserCall(this->AsIntrinsic()->gtIntrinsicId); |
| 5125 | |
| 5126 | #if FEATURE_FIXED_OUT_ARGS && !defined(_TARGET_64BIT_) |
| 5127 | case GT_LSH: |
| 5128 | case GT_RSH: |
| 5129 | case GT_RSZ: |
| 5130 | |
| 5131 | // Variable shifts of a long end up being helper calls, so mark the tree as such in morph. |
| 5132 | // This is potentially too conservative, since they'll get treated as having side effects. |
| 5133 | // It is important to mark them as calls so if they are part of an argument list, |
| 5134 | // they will get sorted and processed properly (for example, it is important to handle |
| 5135 | // all nested calls before putting struct arguments in the argument registers). We |
| 5136 | // could mark the trees just before argument processing, but it would require a full |
| 5137 | // tree walk of the argument tree, so we just do it when morphing, instead, even though we'll |
| 5138 | // mark non-argument trees (that will still get converted to calls, anyway). |
| 5139 | return (this->TypeGet() == TYP_LONG) && (gtGetOp2()->OperGet() != GT_CNS_INT); |
| 5140 | #endif // FEATURE_FIXED_OUT_ARGS && !_TARGET_64BIT_ |
| 5141 | |
| 5142 | default: |
| 5143 | return false; |
| 5144 | } |
| 5145 | } |
| 5146 | |
| 5147 | //------------------------------------------------------------------------------ |
| 5148 | // OperIsImplicitIndir : Check whether the operation contains an implicit |
| 5149 | // indirection. |
| 5150 | // Arguments: |
| 5151 | // this - a GenTree node |
| 5152 | // |
| 5153 | // Return Value: |
| 5154 | // True if the given node contains an implicit indirection |
| 5155 | // |
| 5156 | // Note that for the GT_HWIntrinsic node we have to examine the |
| 5157 | // details of the node to determine its result. |
| 5158 | // |
| 5159 | |
| 5160 | bool GenTree::OperIsImplicitIndir() const |
| 5161 | { |
| 5162 | switch (gtOper) |
| 5163 | { |
| 5164 | case GT_LOCKADD: |
| 5165 | case GT_XADD: |
| 5166 | case GT_XCHG: |
| 5167 | case GT_CMPXCHG: |
| 5168 | case GT_BLK: |
| 5169 | case GT_OBJ: |
| 5170 | case GT_DYN_BLK: |
| 5171 | case GT_STORE_BLK: |
| 5172 | case GT_STORE_OBJ: |
| 5173 | case GT_STORE_DYN_BLK: |
| 5174 | case GT_BOX: |
| 5175 | case GT_ARR_INDEX: |
| 5176 | case GT_ARR_ELEM: |
| 5177 | case GT_ARR_OFFSET: |
| 5178 | return true; |
| 5179 | #ifdef FEATURE_HW_INTRINSICS |
| 5180 | case GT_HWIntrinsic: |
| 5181 | { |
| 5182 | GenTreeHWIntrinsic* hwIntrinsicNode = (const_cast<GenTree*>(this))->AsHWIntrinsic(); |
| 5183 | return hwIntrinsicNode->OperIsMemoryLoadOrStore(); |
| 5184 | } |
| 5185 | #endif // FEATURE_HW_INTRINSICS |
| 5186 | default: |
| 5187 | return false; |
| 5188 | } |
| 5189 | } |
| 5190 | |
| 5191 | //------------------------------------------------------------------------------ |
| 5192 | // OperMayThrow : Check whether the operation may throw. |
| 5193 | // |
| 5194 | // |
| 5195 | // Arguments: |
| 5196 | // comp - Compiler instance |
| 5197 | // |
| 5198 | // Return Value: |
| 5199 | // True if the given operator may cause an exception |
| 5200 | |
| 5201 | bool GenTree::OperMayThrow(Compiler* comp) |
| 5202 | { |
| 5203 | GenTree* op; |
| 5204 | |
| 5205 | switch (gtOper) |
| 5206 | { |
| 5207 | case GT_MOD: |
| 5208 | case GT_DIV: |
| 5209 | case GT_UMOD: |
| 5210 | case GT_UDIV: |
| 5211 | |
| 5212 | /* Division with a non-zero, non-minus-one constant does not throw an exception */ |
| 5213 | |
| 5214 | op = gtOp.gtOp2; |
| 5215 | |
| 5216 | if (varTypeIsFloating(op->TypeGet())) |
| 5217 | { |
| 5218 | return false; // Floating point division does not throw. |
| 5219 | } |
| 5220 | |
| 5221 | // For integers only division by 0 or by -1 can throw |
| 5222 | if (op->IsIntegralConst() && !op->IsIntegralConst(0) && !op->IsIntegralConst(-1)) |
| 5223 | { |
| 5224 | return false; |
| 5225 | } |
| 5226 | return true; |
| 5227 | |
| 5228 | case GT_INTRINSIC: |
| 5229 | // If this is an intrinsic that represents the object.GetType(), it can throw an NullReferenceException. |
| 5230 | // Report it as may throw. |
| 5231 | // Note: Some of the rest of the existing intrinsics could potentially throw an exception (for example |
| 5232 | // the array and string element access ones). They are handled differently than the GetType intrinsic |
| 5233 | // and are not marked with GTF_EXCEPT. If these are revisited at some point to be marked as |
| 5234 | // GTF_EXCEPT, |
| 5235 | // the code below might need to be specialized to handle them properly. |
| 5236 | if ((this->gtFlags & GTF_EXCEPT) != 0) |
| 5237 | { |
| 5238 | return true; |
| 5239 | } |
| 5240 | |
| 5241 | break; |
| 5242 | |
| 5243 | case GT_CALL: |
| 5244 | |
| 5245 | CorInfoHelpFunc helper; |
| 5246 | helper = comp->eeGetHelperNum(this->AsCall()->gtCallMethHnd); |
| 5247 | return ((helper == CORINFO_HELP_UNDEF) || !comp->s_helperCallProperties.NoThrow(helper)); |
| 5248 | |
| 5249 | case GT_IND: |
| 5250 | case GT_BLK: |
| 5251 | case GT_OBJ: |
| 5252 | case GT_DYN_BLK: |
| 5253 | case GT_STORE_BLK: |
| 5254 | case GT_NULLCHECK: |
| 5255 | return (((this->gtFlags & GTF_IND_NONFAULTING) == 0) && comp->fgAddrCouldBeNull(this->AsIndir()->Addr())); |
| 5256 | |
| 5257 | case GT_ARR_LENGTH: |
| 5258 | return (((this->gtFlags & GTF_IND_NONFAULTING) == 0) && |
| 5259 | comp->fgAddrCouldBeNull(this->AsArrLen()->ArrRef())); |
| 5260 | |
| 5261 | case GT_ARR_ELEM: |
| 5262 | return comp->fgAddrCouldBeNull(this->gtArrElem.gtArrObj); |
| 5263 | |
| 5264 | case GT_ARR_BOUNDS_CHECK: |
| 5265 | case GT_ARR_INDEX: |
| 5266 | case GT_ARR_OFFSET: |
| 5267 | case GT_LCLHEAP: |
| 5268 | case GT_CKFINITE: |
| 5269 | #ifdef FEATURE_SIMD |
| 5270 | case GT_SIMD_CHK: |
| 5271 | #endif // FEATURE_SIMD |
| 5272 | #ifdef FEATURE_HW_INTRINSICS |
| 5273 | case GT_HW_INTRINSIC_CHK: |
| 5274 | #endif // FEATURE_HW_INTRINSICS |
| 5275 | case GT_INDEX_ADDR: |
| 5276 | return true; |
| 5277 | |
| 5278 | #ifdef FEATURE_HW_INTRINSICS |
| 5279 | case GT_HWIntrinsic: |
| 5280 | { |
| 5281 | GenTreeHWIntrinsic* hwIntrinsicNode = this->AsHWIntrinsic(); |
| 5282 | assert(hwIntrinsicNode != nullptr); |
| 5283 | if (hwIntrinsicNode->OperIsMemoryLoadOrStore()) |
| 5284 | { |
| 5285 | // This operation contains an implicit indirection |
| 5286 | // it could throw a null reference exception. |
| 5287 | // |
| 5288 | return true; |
| 5289 | } |
| 5290 | } |
| 5291 | #endif // FEATURE_HW_INTRINSICS |
| 5292 | |
| 5293 | default: |
| 5294 | break; |
| 5295 | } |
| 5296 | |
| 5297 | /* Overflow arithmetic operations also throw exceptions */ |
| 5298 | |
| 5299 | if (gtOverflowEx()) |
| 5300 | { |
| 5301 | return true; |
| 5302 | } |
| 5303 | |
| 5304 | return false; |
| 5305 | } |
| 5306 | |
| 5307 | #if DEBUGGABLE_GENTREE |
| 5308 | // static |
| 5309 | GenTree::VtablePtr GenTree::s_vtablesForOpers[] = {nullptr}; |
| 5310 | GenTree::VtablePtr GenTree::s_vtableForOp = nullptr; |
| 5311 | |
| 5312 | GenTree::VtablePtr GenTree::GetVtableForOper(genTreeOps oper) |
| 5313 | { |
| 5314 | noway_assert(oper < GT_COUNT); |
| 5315 | |
| 5316 | // First, check a cache. |
| 5317 | |
| 5318 | if (s_vtablesForOpers[oper] != nullptr) |
| 5319 | { |
| 5320 | return s_vtablesForOpers[oper]; |
| 5321 | } |
| 5322 | |
| 5323 | // Otherwise, look up the correct vtable entry. Note that we want the most derived GenTree subtype |
| 5324 | // for an oper. E.g., GT_LCL_VAR is defined in GTSTRUCT_3 as GenTreeLclVar and in GTSTRUCT_N as |
| 5325 | // GenTreeLclVarCommon. We want the GenTreeLclVar vtable, since nothing should actually be |
| 5326 | // instantiated as a GenTreeLclVarCommon. |
| 5327 | |
| 5328 | VtablePtr res = nullptr; |
| 5329 | switch (oper) |
| 5330 | { |
| 5331 | |
| 5332 | // clang-format off |
| 5333 | |
| 5334 | #define GTSTRUCT_0(nm, tag) /*handle explicitly*/ |
| 5335 | #define GTSTRUCT_1(nm, tag) \ |
| 5336 | case tag: \ |
| 5337 | { \ |
| 5338 | GenTree##nm gt; \ |
| 5339 | res = *reinterpret_cast<VtablePtr*>(>); \ |
| 5340 | } \ |
| 5341 | break; |
| 5342 | #define GTSTRUCT_2(nm, tag, tag2) \ |
| 5343 | case tag: \ |
| 5344 | case tag2: \ |
| 5345 | { \ |
| 5346 | GenTree##nm gt; \ |
| 5347 | res = *reinterpret_cast<VtablePtr*>(>); \ |
| 5348 | } \ |
| 5349 | break; |
| 5350 | #define GTSTRUCT_3(nm, tag, tag2, tag3) \ |
| 5351 | case tag: \ |
| 5352 | case tag2: \ |
| 5353 | case tag3: \ |
| 5354 | { \ |
| 5355 | GenTree##nm gt; \ |
| 5356 | res = *reinterpret_cast<VtablePtr*>(>); \ |
| 5357 | } \ |
| 5358 | break; |
| 5359 | #define GTSTRUCT_4(nm, tag, tag2, tag3, tag4) \ |
| 5360 | case tag: \ |
| 5361 | case tag2: \ |
| 5362 | case tag3: \ |
| 5363 | case tag4: \ |
| 5364 | { \ |
| 5365 | GenTree##nm gt; \ |
| 5366 | res = *reinterpret_cast<VtablePtr*>(>); \ |
| 5367 | } \ |
| 5368 | break; |
| 5369 | #define GTSTRUCT_N(nm, ...) /*handle explicitly*/ |
| 5370 | #define GTSTRUCT_2_SPECIAL(nm, tag, tag2) /*handle explicitly*/ |
| 5371 | #define GTSTRUCT_3_SPECIAL(nm, tag, tag2, tag3) /*handle explicitly*/ |
| 5372 | #include "gtstructs.h" |
| 5373 | |
| 5374 | // clang-format on |
| 5375 | |
| 5376 | // Handle the special cases. |
| 5377 | // The following opers are in GTSTRUCT_N but no other place (namely, no subtypes). |
| 5378 | |
| 5379 | case GT_STORE_BLK: |
| 5380 | case GT_BLK: |
| 5381 | { |
| 5382 | GenTreeBlk gt; |
| 5383 | res = *reinterpret_cast<VtablePtr*>(>); |
| 5384 | } |
| 5385 | break; |
| 5386 | |
| 5387 | case GT_IND: |
| 5388 | case GT_NULLCHECK: |
| 5389 | { |
| 5390 | GenTreeIndir gt; |
| 5391 | res = *reinterpret_cast<VtablePtr*>(>); |
| 5392 | } |
| 5393 | break; |
| 5394 | |
| 5395 | // Handle GT_LIST (but not GT_FIELD_LIST, which is also in a GTSTRUCT_1). |
| 5396 | |
| 5397 | case GT_LIST: |
| 5398 | { |
| 5399 | GenTreeArgList gt; |
| 5400 | res = *reinterpret_cast<VtablePtr*>(>); |
| 5401 | } |
| 5402 | break; |
| 5403 | |
| 5404 | // We don't need to handle GTSTRUCT_N for LclVarCommon, since all those allowed opers are specified |
| 5405 | // in their proper subtype. Similarly for GenTreeIndir. |
| 5406 | |
| 5407 | default: |
| 5408 | { |
| 5409 | // Should be unary or binary op. |
| 5410 | if (s_vtableForOp == nullptr) |
| 5411 | { |
| 5412 | unsigned opKind = OperKind(oper); |
| 5413 | assert(!IsExOp(opKind)); |
| 5414 | assert(OperIsSimple(oper) || OperIsLeaf(oper)); |
| 5415 | // Need to provide non-null operands. |
| 5416 | GenTreeIntCon dummyOp(TYP_INT, 0); |
| 5417 | GenTreeOp gt(oper, TYP_INT, &dummyOp, ((opKind & GTK_UNOP) ? nullptr : &dummyOp)); |
| 5418 | s_vtableForOp = *reinterpret_cast<VtablePtr*>(>); |
| 5419 | } |
| 5420 | res = s_vtableForOp; |
| 5421 | break; |
| 5422 | } |
| 5423 | } |
| 5424 | s_vtablesForOpers[oper] = res; |
| 5425 | return res; |
| 5426 | } |
| 5427 | |
| 5428 | void GenTree::SetVtableForOper(genTreeOps oper) |
| 5429 | { |
| 5430 | *reinterpret_cast<VtablePtr*>(this) = GetVtableForOper(oper); |
| 5431 | } |
| 5432 | #endif // DEBUGGABLE_GENTREE |
| 5433 | |
| 5434 | GenTree* Compiler::gtNewOperNode(genTreeOps oper, var_types type, GenTree* op1, GenTree* op2) |
| 5435 | { |
| 5436 | assert(op1 != nullptr); |
| 5437 | assert(op2 != nullptr); |
| 5438 | |
| 5439 | // We should not be allocating nodes that extend GenTreeOp with this; |
| 5440 | // should call the appropriate constructor for the extended type. |
| 5441 | assert(!GenTree::IsExOp(GenTree::OperKind(oper))); |
| 5442 | |
| 5443 | GenTree* node = new (this, oper) GenTreeOp(oper, type, op1, op2); |
| 5444 | |
| 5445 | return node; |
| 5446 | } |
| 5447 | |
| 5448 | GenTree* Compiler::gtNewQmarkNode(var_types type, GenTree* cond, GenTree* colon) |
| 5449 | { |
| 5450 | compQmarkUsed = true; |
| 5451 | cond->gtFlags |= GTF_RELOP_QMARK; |
| 5452 | GenTree* result = new (this, GT_QMARK) GenTreeQmark(type, cond, colon, this); |
| 5453 | #ifdef DEBUG |
| 5454 | if (compQmarkRationalized) |
| 5455 | { |
| 5456 | fgCheckQmarkAllowedForm(result); |
| 5457 | } |
| 5458 | #endif |
| 5459 | return result; |
| 5460 | } |
| 5461 | |
| 5462 | GenTreeQmark::GenTreeQmark(var_types type, GenTree* cond, GenTree* colonOp, Compiler* comp) |
| 5463 | : GenTreeOp(GT_QMARK, type, cond, colonOp) |
| 5464 | { |
| 5465 | // These must follow a specific form. |
| 5466 | assert(cond != nullptr && cond->TypeGet() == TYP_INT); |
| 5467 | assert(colonOp != nullptr && colonOp->OperGet() == GT_COLON); |
| 5468 | } |
| 5469 | |
| 5470 | GenTreeIntCon* Compiler::gtNewIconNode(ssize_t value, var_types type) |
| 5471 | { |
| 5472 | return new (this, GT_CNS_INT) GenTreeIntCon(type, value); |
| 5473 | } |
| 5474 | |
| 5475 | // return a new node representing the value in a physical register |
| 5476 | GenTree* Compiler::gtNewPhysRegNode(regNumber reg, var_types type) |
| 5477 | { |
| 5478 | assert(genIsValidIntReg(reg) || (reg == REG_SPBASE)); |
| 5479 | GenTree* result = new (this, GT_PHYSREG) GenTreePhysReg(reg, type); |
| 5480 | return result; |
| 5481 | } |
| 5482 | |
| 5483 | GenTree* Compiler::gtNewJmpTableNode() |
| 5484 | { |
| 5485 | GenTree* node = new (this, GT_JMPTABLE) GenTreeJumpTable(TYP_INT); |
| 5486 | node->gtJumpTable.gtJumpTableAddr = 0; |
| 5487 | return node; |
| 5488 | } |
| 5489 | |
| 5490 | /***************************************************************************** |
| 5491 | * |
| 5492 | * Converts an annotated token into an icon flags (so that we will later be |
| 5493 | * able to tell the type of the handle that will be embedded in the icon |
| 5494 | * node) |
| 5495 | */ |
| 5496 | |
| 5497 | unsigned Compiler::gtTokenToIconFlags(unsigned token) |
| 5498 | { |
| 5499 | unsigned flags = 0; |
| 5500 | |
| 5501 | switch (TypeFromToken(token)) |
| 5502 | { |
| 5503 | case mdtTypeRef: |
| 5504 | case mdtTypeDef: |
| 5505 | case mdtTypeSpec: |
| 5506 | flags = GTF_ICON_CLASS_HDL; |
| 5507 | break; |
| 5508 | |
| 5509 | case mdtMethodDef: |
| 5510 | flags = GTF_ICON_METHOD_HDL; |
| 5511 | break; |
| 5512 | |
| 5513 | case mdtFieldDef: |
| 5514 | flags = GTF_ICON_FIELD_HDL; |
| 5515 | break; |
| 5516 | |
| 5517 | default: |
| 5518 | flags = GTF_ICON_TOKEN_HDL; |
| 5519 | break; |
| 5520 | } |
| 5521 | |
| 5522 | return flags; |
| 5523 | } |
| 5524 | |
| 5525 | //----------------------------------------------------------------------------------------- |
| 5526 | // gtNewIndOfIconHandleNode: Creates an indirection GenTree node of a constant handle |
| 5527 | // |
| 5528 | // Arguments: |
| 5529 | // indType - The type returned by the indirection node |
| 5530 | // addr - The constant address to read from |
| 5531 | // iconFlags - The GTF_ICON flag value that specifies the kind of handle that we have |
| 5532 | // isInvariant - The indNode should also be marked as invariant |
| 5533 | // |
| 5534 | // Return Value: |
| 5535 | // Returns a GT_IND node representing value at the address provided by 'value' |
| 5536 | // |
| 5537 | // Notes: |
| 5538 | // The GT_IND node is marked as non-faulting |
| 5539 | // If the indType is GT_REF we also mark the indNode as GTF_GLOB_REF |
| 5540 | // |
| 5541 | |
| 5542 | GenTree* Compiler::gtNewIndOfIconHandleNode(var_types indType, size_t addr, unsigned iconFlags, bool isInvariant) |
| 5543 | { |
| 5544 | GenTree* addrNode = gtNewIconHandleNode(addr, iconFlags); |
| 5545 | GenTree* indNode = gtNewOperNode(GT_IND, indType, addrNode); |
| 5546 | |
| 5547 | // This indirection won't cause an exception. |
| 5548 | // |
| 5549 | indNode->gtFlags |= GTF_IND_NONFAULTING; |
| 5550 | |
| 5551 | // String Literal handles are indirections that return a TYP_REF. |
| 5552 | // They are pointers into the GC heap and they are not invariant |
| 5553 | // as the address is a reportable GC-root and as such it can be |
| 5554 | // modified during a GC collection |
| 5555 | // |
| 5556 | if (indType == TYP_REF) |
| 5557 | { |
| 5558 | // This indirection points into the gloabal heap |
| 5559 | indNode->gtFlags |= GTF_GLOB_REF; |
| 5560 | } |
| 5561 | if (isInvariant) |
| 5562 | { |
| 5563 | // This indirection also is invariant. |
| 5564 | indNode->gtFlags |= GTF_IND_INVARIANT; |
| 5565 | } |
| 5566 | return indNode; |
| 5567 | } |
| 5568 | |
| 5569 | /***************************************************************************** |
| 5570 | * |
| 5571 | * Allocates a integer constant entry that represents a HANDLE to something. |
| 5572 | * It may not be allowed to embed HANDLEs directly into the JITed code (for eg, |
| 5573 | * as arguments to JIT helpers). Get a corresponding value that can be embedded. |
| 5574 | * If the handle needs to be accessed via an indirection, pValue points to it. |
| 5575 | */ |
| 5576 | |
| 5577 | GenTree* Compiler::gtNewIconEmbHndNode(void* value, void* pValue, unsigned iconFlags, void* compileTimeHandle) |
| 5578 | { |
| 5579 | GenTree* iconNode; |
| 5580 | GenTree* handleNode; |
| 5581 | |
| 5582 | if (value != nullptr) |
| 5583 | { |
| 5584 | // When 'value' is non-null, pValue is required to be null |
| 5585 | assert(pValue == nullptr); |
| 5586 | |
| 5587 | // use 'value' to construct an integer constant node |
| 5588 | iconNode = gtNewIconHandleNode((size_t)value, iconFlags); |
| 5589 | |
| 5590 | // 'value' is the handle |
| 5591 | handleNode = iconNode; |
| 5592 | } |
| 5593 | else |
| 5594 | { |
| 5595 | // When 'value' is null, pValue is required to be non-null |
| 5596 | assert(pValue != nullptr); |
| 5597 | |
| 5598 | // use 'pValue' to construct an integer constant node |
| 5599 | iconNode = gtNewIconHandleNode((size_t)pValue, iconFlags); |
| 5600 | |
| 5601 | // 'pValue' is an address of a location that contains the handle |
| 5602 | |
| 5603 | // construct the indirection of 'pValue' |
| 5604 | handleNode = gtNewOperNode(GT_IND, TYP_I_IMPL, iconNode); |
| 5605 | |
| 5606 | // This indirection won't cause an exception. |
| 5607 | handleNode->gtFlags |= GTF_IND_NONFAULTING; |
| 5608 | #if 0 |
| 5609 | // It should also be invariant, but marking it as such leads to bad diffs. |
| 5610 | |
| 5611 | // This indirection also is invariant. |
| 5612 | handleNode->gtFlags |= GTF_IND_INVARIANT; |
| 5613 | #endif |
| 5614 | } |
| 5615 | |
| 5616 | iconNode->gtIntCon.gtCompileTimeHandle = (size_t)compileTimeHandle; |
| 5617 | |
| 5618 | return handleNode; |
| 5619 | } |
| 5620 | |
| 5621 | /*****************************************************************************/ |
| 5622 | GenTree* Compiler::gtNewStringLiteralNode(InfoAccessType iat, void* pValue) |
| 5623 | { |
| 5624 | GenTree* tree = nullptr; |
| 5625 | |
| 5626 | switch (iat) |
| 5627 | { |
| 5628 | case IAT_VALUE: // constructStringLiteral in CoreRT case can return IAT_VALUE |
| 5629 | tree = gtNewIconEmbHndNode(pValue, nullptr, GTF_ICON_STR_HDL, nullptr); |
| 5630 | tree->gtType = TYP_REF; |
| 5631 | tree = gtNewOperNode(GT_NOP, TYP_REF, tree); // prevents constant folding |
| 5632 | break; |
| 5633 | |
| 5634 | case IAT_PVALUE: // The value needs to be accessed via an indirection |
| 5635 | // Create an indirection |
| 5636 | tree = gtNewIndOfIconHandleNode(TYP_REF, (size_t)pValue, GTF_ICON_STR_HDL, false); |
| 5637 | break; |
| 5638 | |
| 5639 | case IAT_PPVALUE: // The value needs to be accessed via a double indirection |
| 5640 | // Create the first indirection |
| 5641 | tree = gtNewIndOfIconHandleNode(TYP_I_IMPL, (size_t)pValue, GTF_ICON_PSTR_HDL, true); |
| 5642 | |
| 5643 | // Create the second indirection |
| 5644 | tree = gtNewOperNode(GT_IND, TYP_REF, tree); |
| 5645 | // This indirection won't cause an exception. |
| 5646 | tree->gtFlags |= GTF_IND_NONFAULTING; |
| 5647 | // This indirection points into the gloabal heap (it is String Object) |
| 5648 | tree->gtFlags |= GTF_GLOB_REF; |
| 5649 | break; |
| 5650 | |
| 5651 | default: |
| 5652 | noway_assert(!"Unexpected InfoAccessType" ); |
| 5653 | } |
| 5654 | |
| 5655 | return tree; |
| 5656 | } |
| 5657 | |
| 5658 | /*****************************************************************************/ |
| 5659 | |
| 5660 | GenTree* Compiler::gtNewLconNode(__int64 value) |
| 5661 | { |
| 5662 | #ifdef _TARGET_64BIT_ |
| 5663 | GenTree* node = new (this, GT_CNS_INT) GenTreeIntCon(TYP_LONG, value); |
| 5664 | #else |
| 5665 | GenTree* node = new (this, GT_CNS_LNG) GenTreeLngCon(value); |
| 5666 | #endif |
| 5667 | |
| 5668 | return node; |
| 5669 | } |
| 5670 | |
| 5671 | GenTree* Compiler::gtNewDconNode(double value) |
| 5672 | { |
| 5673 | GenTree* node = new (this, GT_CNS_DBL) GenTreeDblCon(value); |
| 5674 | |
| 5675 | return node; |
| 5676 | } |
| 5677 | |
| 5678 | GenTree* Compiler::gtNewSconNode(int CPX, CORINFO_MODULE_HANDLE scpHandle) |
| 5679 | { |
| 5680 | |
| 5681 | #if SMALL_TREE_NODES |
| 5682 | |
| 5683 | /* 'GT_CNS_STR' nodes later get transformed into 'GT_CALL' */ |
| 5684 | |
| 5685 | assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_CNS_STR]); |
| 5686 | |
| 5687 | GenTree* node = new (this, GT_CALL) GenTreeStrCon(CPX, scpHandle DEBUGARG(/*largeNode*/ true)); |
| 5688 | #else |
| 5689 | GenTree* node = new (this, GT_CNS_STR) GenTreeStrCon(CPX, scpHandle DEBUGARG(/*largeNode*/ true)); |
| 5690 | #endif |
| 5691 | |
| 5692 | return node; |
| 5693 | } |
| 5694 | |
| 5695 | GenTree* Compiler::gtNewZeroConNode(var_types type) |
| 5696 | { |
| 5697 | GenTree* zero; |
| 5698 | switch (type) |
| 5699 | { |
| 5700 | case TYP_INT: |
| 5701 | zero = gtNewIconNode(0); |
| 5702 | break; |
| 5703 | |
| 5704 | case TYP_BYREF: |
| 5705 | __fallthrough; |
| 5706 | |
| 5707 | case TYP_REF: |
| 5708 | zero = gtNewIconNode(0); |
| 5709 | zero->gtType = type; |
| 5710 | break; |
| 5711 | |
| 5712 | case TYP_LONG: |
| 5713 | zero = gtNewLconNode(0); |
| 5714 | break; |
| 5715 | |
| 5716 | case TYP_FLOAT: |
| 5717 | zero = gtNewDconNode(0.0); |
| 5718 | zero->gtType = type; |
| 5719 | break; |
| 5720 | |
| 5721 | case TYP_DOUBLE: |
| 5722 | zero = gtNewDconNode(0.0); |
| 5723 | break; |
| 5724 | |
| 5725 | default: |
| 5726 | noway_assert(!"Bad type in gtNewZeroConNode" ); |
| 5727 | zero = nullptr; |
| 5728 | break; |
| 5729 | } |
| 5730 | return zero; |
| 5731 | } |
| 5732 | |
| 5733 | GenTree* Compiler::gtNewOneConNode(var_types type) |
| 5734 | { |
| 5735 | GenTree* one; |
| 5736 | switch (type) |
| 5737 | { |
| 5738 | case TYP_INT: |
| 5739 | case TYP_UINT: |
| 5740 | one = gtNewIconNode(1); |
| 5741 | break; |
| 5742 | |
| 5743 | case TYP_LONG: |
| 5744 | case TYP_ULONG: |
| 5745 | one = gtNewLconNode(1); |
| 5746 | break; |
| 5747 | |
| 5748 | case TYP_FLOAT: |
| 5749 | case TYP_DOUBLE: |
| 5750 | one = gtNewDconNode(1.0); |
| 5751 | one->gtType = type; |
| 5752 | break; |
| 5753 | |
| 5754 | default: |
| 5755 | noway_assert(!"Bad type in gtNewOneConNode" ); |
| 5756 | one = nullptr; |
| 5757 | break; |
| 5758 | } |
| 5759 | return one; |
| 5760 | } |
| 5761 | |
| 5762 | #ifdef FEATURE_SIMD |
| 5763 | //--------------------------------------------------------------------- |
| 5764 | // gtNewSIMDVectorZero: create a GT_SIMD node for Vector<T>.Zero |
| 5765 | // |
| 5766 | // Arguments: |
| 5767 | // simdType - simd vector type |
| 5768 | // baseType - element type of vector |
| 5769 | // size - size of vector in bytes |
| 5770 | GenTree* Compiler::gtNewSIMDVectorZero(var_types simdType, var_types baseType, unsigned size) |
| 5771 | { |
| 5772 | baseType = genActualType(baseType); |
| 5773 | GenTree* initVal = gtNewZeroConNode(baseType); |
| 5774 | initVal->gtType = baseType; |
| 5775 | return gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, baseType, size); |
| 5776 | } |
| 5777 | |
| 5778 | //--------------------------------------------------------------------- |
| 5779 | // gtNewSIMDVectorOne: create a GT_SIMD node for Vector<T>.One |
| 5780 | // |
| 5781 | // Arguments: |
| 5782 | // simdType - simd vector type |
| 5783 | // baseType - element type of vector |
| 5784 | // size - size of vector in bytes |
| 5785 | GenTree* Compiler::gtNewSIMDVectorOne(var_types simdType, var_types baseType, unsigned size) |
| 5786 | { |
| 5787 | GenTree* initVal; |
| 5788 | if (varTypeIsSmallInt(baseType)) |
| 5789 | { |
| 5790 | unsigned baseSize = genTypeSize(baseType); |
| 5791 | int val; |
| 5792 | if (baseSize == 1) |
| 5793 | { |
| 5794 | val = 0x01010101; |
| 5795 | } |
| 5796 | else |
| 5797 | { |
| 5798 | val = 0x00010001; |
| 5799 | } |
| 5800 | initVal = gtNewIconNode(val); |
| 5801 | } |
| 5802 | else |
| 5803 | { |
| 5804 | initVal = gtNewOneConNode(baseType); |
| 5805 | } |
| 5806 | |
| 5807 | baseType = genActualType(baseType); |
| 5808 | initVal->gtType = baseType; |
| 5809 | return gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, baseType, size); |
| 5810 | } |
| 5811 | #endif // FEATURE_SIMD |
| 5812 | |
| 5813 | GenTreeCall* Compiler::gtNewIndCallNode(GenTree* addr, var_types type, GenTreeArgList* args, IL_OFFSETX ilOffset) |
| 5814 | { |
| 5815 | return gtNewCallNode(CT_INDIRECT, (CORINFO_METHOD_HANDLE)addr, type, args, ilOffset); |
| 5816 | } |
| 5817 | |
| 5818 | GenTreeCall* Compiler::gtNewCallNode( |
| 5819 | gtCallTypes callType, CORINFO_METHOD_HANDLE callHnd, var_types type, GenTreeArgList* args, IL_OFFSETX ilOffset) |
| 5820 | { |
| 5821 | GenTreeCall* node = new (this, GT_CALL) GenTreeCall(genActualType(type)); |
| 5822 | |
| 5823 | node->gtFlags |= (GTF_CALL | GTF_GLOB_REF); |
| 5824 | if (args) |
| 5825 | { |
| 5826 | node->gtFlags |= (args->gtFlags & GTF_ALL_EFFECT); |
| 5827 | } |
| 5828 | node->gtCallType = callType; |
| 5829 | node->gtCallMethHnd = callHnd; |
| 5830 | node->gtCallArgs = args; |
| 5831 | node->gtCallObjp = nullptr; |
| 5832 | node->fgArgInfo = nullptr; |
| 5833 | node->callSig = nullptr; |
| 5834 | node->gtRetClsHnd = nullptr; |
| 5835 | node->gtControlExpr = nullptr; |
| 5836 | node->gtCallMoreFlags = 0; |
| 5837 | |
| 5838 | if (callType == CT_INDIRECT) |
| 5839 | { |
| 5840 | node->gtCallCookie = nullptr; |
| 5841 | } |
| 5842 | else |
| 5843 | { |
| 5844 | node->gtInlineCandidateInfo = nullptr; |
| 5845 | } |
| 5846 | node->gtCallLateArgs = nullptr; |
| 5847 | node->gtReturnType = type; |
| 5848 | |
| 5849 | #ifdef FEATURE_READYTORUN_COMPILER |
| 5850 | node->gtEntryPoint.addr = nullptr; |
| 5851 | node->gtEntryPoint.accessType = IAT_VALUE; |
| 5852 | #endif |
| 5853 | |
| 5854 | #if defined(DEBUG) || defined(INLINE_DATA) |
| 5855 | // These get updated after call node is built. |
| 5856 | node->gtInlineObservation = InlineObservation::CALLEE_UNUSED_INITIAL; |
| 5857 | node->gtRawILOffset = BAD_IL_OFFSET; |
| 5858 | #endif |
| 5859 | |
| 5860 | // Spec: Managed Retval sequence points needs to be generated while generating debug info for debuggable code. |
| 5861 | // |
| 5862 | // Implementation note: if not generating MRV info genCallSite2ILOffsetMap will be NULL and |
| 5863 | // codegen will pass BAD_IL_OFFSET as IL offset of a call node to emitter, which will cause emitter |
| 5864 | // not to emit IP mapping entry. |
| 5865 | if (opts.compDbgCode && opts.compDbgInfo) |
| 5866 | { |
| 5867 | // Managed Retval - IL offset of the call. This offset is used to emit a |
| 5868 | // CALL_INSTRUCTION type sequence point while emitting corresponding native call. |
| 5869 | // |
| 5870 | // TODO-Cleanup: |
| 5871 | // a) (Opt) We need not store this offset if the method doesn't return a |
| 5872 | // value. Rather it can be made BAD_IL_OFFSET to prevent a sequence |
| 5873 | // point being emitted. |
| 5874 | // |
| 5875 | // b) (Opt) Add new sequence points only if requested by debugger through |
| 5876 | // a new boundary type - ICorDebugInfo::BoundaryTypes |
| 5877 | if (genCallSite2ILOffsetMap == nullptr) |
| 5878 | { |
| 5879 | genCallSite2ILOffsetMap = new (getAllocator()) CallSiteILOffsetTable(getAllocator()); |
| 5880 | } |
| 5881 | |
| 5882 | // Make sure that there are no duplicate entries for a given call node |
| 5883 | assert(!genCallSite2ILOffsetMap->Lookup(node)); |
| 5884 | genCallSite2ILOffsetMap->Set(node, ilOffset); |
| 5885 | } |
| 5886 | |
| 5887 | // Initialize gtOtherRegs |
| 5888 | node->ClearOtherRegs(); |
| 5889 | |
| 5890 | // Initialize spill flags of gtOtherRegs |
| 5891 | node->ClearOtherRegFlags(); |
| 5892 | |
| 5893 | #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 5894 | // Initialize the multi-reg long return info if necessary |
| 5895 | if (varTypeIsLong(node)) |
| 5896 | { |
| 5897 | // The return type will remain as the incoming long type |
| 5898 | node->gtReturnType = node->gtType; |
| 5899 | |
| 5900 | // Initialize Return type descriptor of call node |
| 5901 | ReturnTypeDesc* retTypeDesc = node->GetReturnTypeDesc(); |
| 5902 | retTypeDesc->InitializeLongReturnType(this); |
| 5903 | |
| 5904 | // must be a long returned in two registers |
| 5905 | assert(retTypeDesc->GetReturnRegCount() == 2); |
| 5906 | } |
| 5907 | #endif // defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 5908 | |
| 5909 | return node; |
| 5910 | } |
| 5911 | |
| 5912 | GenTree* Compiler::gtNewLclvNode(unsigned lnum, var_types type, IL_OFFSETX ILoffs) |
| 5913 | { |
| 5914 | // We need to ensure that all struct values are normalized. |
| 5915 | // It might be nice to assert this in general, but we have assignments of int to long. |
| 5916 | if (varTypeIsStruct(type)) |
| 5917 | { |
| 5918 | // Make an exception for implicit by-ref parameters during global morph, since |
| 5919 | // their lvType has been updated to byref but their appearances have not yet all |
| 5920 | // been rewritten and so may have struct type still. |
| 5921 | assert(type == lvaTable[lnum].lvType || |
| 5922 | (lvaIsImplicitByRefLocal(lnum) && fgGlobalMorph && (lvaTable[lnum].lvType == TYP_BYREF))); |
| 5923 | } |
| 5924 | GenTree* node = new (this, GT_LCL_VAR) GenTreeLclVar(type, lnum, ILoffs); |
| 5925 | |
| 5926 | /* Cannot have this assert because the inliner uses this function |
| 5927 | * to add temporaries */ |
| 5928 | |
| 5929 | // assert(lnum < lvaCount); |
| 5930 | |
| 5931 | return node; |
| 5932 | } |
| 5933 | |
| 5934 | GenTree* Compiler::gtNewLclLNode(unsigned lnum, var_types type, IL_OFFSETX ILoffs) |
| 5935 | { |
| 5936 | // We need to ensure that all struct values are normalized. |
| 5937 | // It might be nice to assert this in general, but we have assignments of int to long. |
| 5938 | if (varTypeIsStruct(type)) |
| 5939 | { |
| 5940 | // Make an exception for implicit by-ref parameters during global morph, since |
| 5941 | // their lvType has been updated to byref but their appearances have not yet all |
| 5942 | // been rewritten and so may have struct type still. |
| 5943 | assert(type == lvaTable[lnum].lvType || |
| 5944 | (lvaIsImplicitByRefLocal(lnum) && fgGlobalMorph && (lvaTable[lnum].lvType == TYP_BYREF))); |
| 5945 | } |
| 5946 | #if SMALL_TREE_NODES |
| 5947 | /* This local variable node may later get transformed into a large node */ |
| 5948 | |
| 5949 | // assert(GenTree::s_gtNodeSizes[GT_CALL] > GenTree::s_gtNodeSizes[GT_LCL_VAR]); |
| 5950 | |
| 5951 | GenTree* node = new (this, GT_CALL) GenTreeLclVar(type, lnum, ILoffs DEBUGARG(/*largeNode*/ true)); |
| 5952 | #else |
| 5953 | GenTree* node = new (this, GT_LCL_VAR) GenTreeLclVar(type, lnum, ILoffs DEBUGARG(/*largeNode*/ true)); |
| 5954 | #endif |
| 5955 | |
| 5956 | return node; |
| 5957 | } |
| 5958 | |
| 5959 | GenTreeLclFld* Compiler::gtNewLclFldNode(unsigned lnum, var_types type, unsigned offset) |
| 5960 | { |
| 5961 | GenTreeLclFld* node = new (this, GT_LCL_FLD) GenTreeLclFld(type, lnum, offset); |
| 5962 | |
| 5963 | /* Cannot have this assert because the inliner uses this function |
| 5964 | * to add temporaries */ |
| 5965 | |
| 5966 | // assert(lnum < lvaCount); |
| 5967 | |
| 5968 | node->gtFieldSeq = FieldSeqStore::NotAField(); |
| 5969 | return node; |
| 5970 | } |
| 5971 | |
| 5972 | GenTree* Compiler::gtNewInlineCandidateReturnExpr(GenTree* inlineCandidate, var_types type) |
| 5973 | |
| 5974 | { |
| 5975 | assert(GenTree::s_gtNodeSizes[GT_RET_EXPR] == TREE_NODE_SZ_LARGE); |
| 5976 | |
| 5977 | GenTree* node = new (this, GT_RET_EXPR) GenTreeRetExpr(type); |
| 5978 | |
| 5979 | node->gtRetExpr.gtInlineCandidate = inlineCandidate; |
| 5980 | |
| 5981 | if (varTypeIsStruct(inlineCandidate) && !inlineCandidate->OperIsBlkOp()) |
| 5982 | { |
| 5983 | node->gtRetExpr.gtRetClsHnd = gtGetStructHandle(inlineCandidate); |
| 5984 | } |
| 5985 | |
| 5986 | // GT_RET_EXPR node eventually might be bashed back to GT_CALL (when inlining is aborted for example). |
| 5987 | // Therefore it should carry the GTF_CALL flag so that all the rules about spilling can apply to it as well. |
| 5988 | // For example, impImportLeave or CEE_POP need to spill GT_RET_EXPR before empty the evaluation stack. |
| 5989 | node->gtFlags |= GTF_CALL; |
| 5990 | |
| 5991 | return node; |
| 5992 | } |
| 5993 | |
| 5994 | GenTreeArgList* Compiler::gtNewListNode(GenTree* op1, GenTreeArgList* op2) |
| 5995 | { |
| 5996 | assert((op1 != nullptr) && (op1->OperGet() != GT_LIST)); |
| 5997 | |
| 5998 | return new (this, GT_LIST) GenTreeArgList(op1, op2); |
| 5999 | } |
| 6000 | |
| 6001 | /***************************************************************************** |
| 6002 | * |
| 6003 | * Create a list out of one value. |
| 6004 | */ |
| 6005 | |
| 6006 | GenTreeArgList* Compiler::gtNewArgList(GenTree* arg) |
| 6007 | { |
| 6008 | return new (this, GT_LIST) GenTreeArgList(arg); |
| 6009 | } |
| 6010 | |
| 6011 | /***************************************************************************** |
| 6012 | * |
| 6013 | * Create a list out of the two values. |
| 6014 | */ |
| 6015 | |
| 6016 | GenTreeArgList* Compiler::gtNewArgList(GenTree* arg1, GenTree* arg2) |
| 6017 | { |
| 6018 | return new (this, GT_LIST) GenTreeArgList(arg1, gtNewArgList(arg2)); |
| 6019 | } |
| 6020 | |
| 6021 | /***************************************************************************** |
| 6022 | * |
| 6023 | * Create a list out of the three values. |
| 6024 | */ |
| 6025 | |
| 6026 | GenTreeArgList* Compiler::gtNewArgList(GenTree* arg1, GenTree* arg2, GenTree* arg3) |
| 6027 | { |
| 6028 | return new (this, GT_LIST) GenTreeArgList(arg1, gtNewArgList(arg2, arg3)); |
| 6029 | } |
| 6030 | |
| 6031 | /***************************************************************************** |
| 6032 | * |
| 6033 | * Create a list out of the three values. |
| 6034 | */ |
| 6035 | |
| 6036 | GenTreeArgList* Compiler::gtNewArgList(GenTree* arg1, GenTree* arg2, GenTree* arg3, GenTree* arg4) |
| 6037 | { |
| 6038 | return new (this, GT_LIST) GenTreeArgList(arg1, gtNewArgList(arg2, arg3, arg4)); |
| 6039 | } |
| 6040 | |
| 6041 | /***************************************************************************** |
| 6042 | * |
| 6043 | * Given a GT_CALL node, access the fgArgInfo and find the entry |
| 6044 | * that has the matching argNum and return the fgArgTableEntryPtr |
| 6045 | */ |
| 6046 | |
| 6047 | fgArgTabEntry* Compiler::gtArgEntryByArgNum(GenTreeCall* call, unsigned argNum) |
| 6048 | { |
| 6049 | fgArgInfo* argInfo = call->fgArgInfo; |
| 6050 | noway_assert(argInfo != nullptr); |
| 6051 | return argInfo->GetArgEntry(argNum); |
| 6052 | } |
| 6053 | |
| 6054 | /***************************************************************************** |
| 6055 | * |
| 6056 | * Given a GT_CALL node, access the fgArgInfo and find the entry |
| 6057 | * that has the matching node and return the fgArgTableEntryPtr |
| 6058 | */ |
| 6059 | |
| 6060 | fgArgTabEntry* Compiler::gtArgEntryByNode(GenTreeCall* call, GenTree* node) |
| 6061 | { |
| 6062 | fgArgInfo* argInfo = call->fgArgInfo; |
| 6063 | noway_assert(argInfo != nullptr); |
| 6064 | |
| 6065 | unsigned argCount = argInfo->ArgCount(); |
| 6066 | fgArgTabEntry** argTable = argInfo->ArgTable(); |
| 6067 | fgArgTabEntry* curArgTabEntry = nullptr; |
| 6068 | |
| 6069 | for (unsigned i = 0; i < argCount; i++) |
| 6070 | { |
| 6071 | curArgTabEntry = argTable[i]; |
| 6072 | |
| 6073 | if (curArgTabEntry->node == node) |
| 6074 | { |
| 6075 | return curArgTabEntry; |
| 6076 | } |
| 6077 | else if (curArgTabEntry->parent != nullptr) |
| 6078 | { |
| 6079 | assert(curArgTabEntry->parent->OperIsList()); |
| 6080 | if (curArgTabEntry->parent->Current() == node) |
| 6081 | { |
| 6082 | return curArgTabEntry; |
| 6083 | } |
| 6084 | } |
| 6085 | else // (curArgTabEntry->parent == NULL) |
| 6086 | { |
| 6087 | if (call->gtCallObjp == node) |
| 6088 | { |
| 6089 | return curArgTabEntry; |
| 6090 | } |
| 6091 | } |
| 6092 | } |
| 6093 | noway_assert(!"gtArgEntryByNode: node not found" ); |
| 6094 | return nullptr; |
| 6095 | } |
| 6096 | |
| 6097 | /***************************************************************************** |
| 6098 | * |
| 6099 | * Find and return the entry with the given "lateArgInx". Requires that one is found |
| 6100 | * (asserts this). |
| 6101 | */ |
| 6102 | fgArgTabEntry* Compiler::gtArgEntryByLateArgIndex(GenTreeCall* call, unsigned lateArgInx) |
| 6103 | { |
| 6104 | fgArgInfo* argInfo = call->fgArgInfo; |
| 6105 | noway_assert(argInfo != nullptr); |
| 6106 | assert(lateArgInx != UINT_MAX); |
| 6107 | |
| 6108 | unsigned argCount = argInfo->ArgCount(); |
| 6109 | fgArgTabEntry** argTable = argInfo->ArgTable(); |
| 6110 | fgArgTabEntry* curArgTabEntry = nullptr; |
| 6111 | |
| 6112 | for (unsigned i = 0; i < argCount; i++) |
| 6113 | { |
| 6114 | curArgTabEntry = argTable[i]; |
| 6115 | if (curArgTabEntry->isLateArg() && curArgTabEntry->lateArgInx == lateArgInx) |
| 6116 | { |
| 6117 | return curArgTabEntry; |
| 6118 | } |
| 6119 | } |
| 6120 | noway_assert(!"gtArgEntryByNode: node not found" ); |
| 6121 | return nullptr; |
| 6122 | } |
| 6123 | |
| 6124 | //------------------------------------------------------------------------ |
| 6125 | // gtArgNodeByLateArgInx: Given a call instruction, find the argument with the given |
| 6126 | // late arg index (i.e. the given position in the gtCallLateArgs list). |
| 6127 | // Arguments: |
| 6128 | // call - the call node |
| 6129 | // lateArgInx - the index into the late args list |
| 6130 | // |
| 6131 | // Return value: |
| 6132 | // The late argument node. |
| 6133 | // |
| 6134 | GenTree* Compiler::gtArgNodeByLateArgInx(GenTreeCall* call, unsigned lateArgInx) |
| 6135 | { |
| 6136 | GenTree* argx = nullptr; |
| 6137 | unsigned regIndex = 0; |
| 6138 | |
| 6139 | for (GenTreeArgList *list = call->gtCall.gtCallLateArgs; list != nullptr; regIndex++, list = list->Rest()) |
| 6140 | { |
| 6141 | argx = list->Current(); |
| 6142 | assert(!argx->IsArgPlaceHolderNode()); // No placeholder nodes are in gtCallLateArgs; |
| 6143 | if (regIndex == lateArgInx) |
| 6144 | { |
| 6145 | break; |
| 6146 | } |
| 6147 | } |
| 6148 | noway_assert(argx != nullptr); |
| 6149 | return argx; |
| 6150 | } |
| 6151 | |
| 6152 | /***************************************************************************** |
| 6153 | * |
| 6154 | * Given an fgArgTabEntry*, return true if it is the 'this' pointer argument. |
| 6155 | */ |
| 6156 | bool Compiler::gtArgIsThisPtr(fgArgTabEntry* argEntry) |
| 6157 | { |
| 6158 | return (argEntry->parent == nullptr); |
| 6159 | } |
| 6160 | |
| 6161 | /***************************************************************************** |
| 6162 | * |
| 6163 | * Create a node that will assign 'src' to 'dst'. |
| 6164 | */ |
| 6165 | |
| 6166 | GenTree* Compiler::gtNewAssignNode(GenTree* dst, GenTree* src) |
| 6167 | { |
| 6168 | /* Mark the target as being assigned */ |
| 6169 | |
| 6170 | if ((dst->gtOper == GT_LCL_VAR) || (dst->OperGet() == GT_LCL_FLD)) |
| 6171 | { |
| 6172 | dst->gtFlags |= GTF_VAR_DEF; |
| 6173 | if (dst->IsPartialLclFld(this)) |
| 6174 | { |
| 6175 | // We treat these partial writes as combined uses and defs. |
| 6176 | dst->gtFlags |= GTF_VAR_USEASG; |
| 6177 | } |
| 6178 | } |
| 6179 | dst->gtFlags |= GTF_DONT_CSE; |
| 6180 | |
| 6181 | /* Create the assignment node */ |
| 6182 | |
| 6183 | GenTree* asg = gtNewOperNode(GT_ASG, dst->TypeGet(), dst, src); |
| 6184 | |
| 6185 | /* Mark the expression as containing an assignment */ |
| 6186 | |
| 6187 | asg->gtFlags |= GTF_ASG; |
| 6188 | |
| 6189 | return asg; |
| 6190 | } |
| 6191 | |
| 6192 | //------------------------------------------------------------------------ |
| 6193 | // gtNewObjNode: Creates a new Obj node. |
| 6194 | // |
| 6195 | // Arguments: |
| 6196 | // structHnd - The class handle of the struct type. |
| 6197 | // addr - The address of the struct. |
| 6198 | // |
| 6199 | // Return Value: |
| 6200 | // Returns a node representing the struct value at the given address. |
| 6201 | // |
| 6202 | // Assumptions: |
| 6203 | // Any entry and exit conditions, such as required preconditions of |
| 6204 | // data structures, memory to be freed by caller, etc. |
| 6205 | // |
| 6206 | // Notes: |
| 6207 | // It will currently return a GT_OBJ node for any struct type, but may |
| 6208 | // return a GT_IND or a non-indirection for a scalar type. |
| 6209 | // The node will not yet have its GC info initialized. This is because |
| 6210 | // we may not need this info if this is an r-value. |
| 6211 | |
| 6212 | GenTree* Compiler::gtNewObjNode(CORINFO_CLASS_HANDLE structHnd, GenTree* addr) |
| 6213 | { |
| 6214 | var_types nodeType = impNormStructType(structHnd); |
| 6215 | assert(varTypeIsStruct(nodeType)); |
| 6216 | unsigned size = info.compCompHnd->getClassSize(structHnd); |
| 6217 | |
| 6218 | // It would be convenient to set the GC info at this time, but we don't actually require |
| 6219 | // it unless this is going to be a destination. |
| 6220 | if (!varTypeIsStruct(nodeType)) |
| 6221 | { |
| 6222 | if ((addr->gtOper == GT_ADDR) && (addr->gtGetOp1()->TypeGet() == nodeType)) |
| 6223 | { |
| 6224 | return addr->gtGetOp1(); |
| 6225 | } |
| 6226 | else |
| 6227 | { |
| 6228 | return gtNewOperNode(GT_IND, nodeType, addr); |
| 6229 | } |
| 6230 | } |
| 6231 | GenTreeBlk* newBlkOrObjNode = new (this, GT_OBJ) GenTreeObj(nodeType, addr, structHnd, size); |
| 6232 | |
| 6233 | // An Obj is not a global reference, if it is known to be a local struct. |
| 6234 | if ((addr->gtFlags & GTF_GLOB_REF) == 0) |
| 6235 | { |
| 6236 | GenTreeLclVarCommon* lclNode = addr->IsLocalAddrExpr(); |
| 6237 | if (lclNode != nullptr) |
| 6238 | { |
| 6239 | newBlkOrObjNode->gtFlags |= GTF_IND_NONFAULTING; |
| 6240 | if (!lvaIsImplicitByRefLocal(lclNode->gtLclNum)) |
| 6241 | { |
| 6242 | newBlkOrObjNode->gtFlags &= ~GTF_GLOB_REF; |
| 6243 | } |
| 6244 | } |
| 6245 | } |
| 6246 | return newBlkOrObjNode; |
| 6247 | } |
| 6248 | |
| 6249 | //------------------------------------------------------------------------ |
| 6250 | // gtSetObjGcInfo: Set the GC info on an object node |
| 6251 | // |
| 6252 | // Arguments: |
| 6253 | // objNode - The object node of interest |
| 6254 | |
| 6255 | void Compiler::gtSetObjGcInfo(GenTreeObj* objNode) |
| 6256 | { |
| 6257 | CORINFO_CLASS_HANDLE structHnd = objNode->gtClass; |
| 6258 | var_types nodeType = objNode->TypeGet(); |
| 6259 | unsigned size = objNode->gtBlkSize; |
| 6260 | unsigned slots = 0; |
| 6261 | unsigned gcPtrCount = 0; |
| 6262 | BYTE* gcPtrs = nullptr; |
| 6263 | |
| 6264 | assert(varTypeIsStruct(nodeType)); |
| 6265 | assert(size == info.compCompHnd->getClassSize(structHnd)); |
| 6266 | assert(nodeType == impNormStructType(structHnd)); |
| 6267 | |
| 6268 | if (nodeType == TYP_STRUCT) |
| 6269 | { |
| 6270 | if (size >= TARGET_POINTER_SIZE) |
| 6271 | { |
| 6272 | // Get the GC fields info |
| 6273 | var_types simdBaseType; // Dummy argument |
| 6274 | slots = roundUp(size, TARGET_POINTER_SIZE) / TARGET_POINTER_SIZE; |
| 6275 | gcPtrs = new (this, CMK_ASTNode) BYTE[slots]; |
| 6276 | nodeType = impNormStructType(structHnd, gcPtrs, &gcPtrCount, &simdBaseType); |
| 6277 | } |
| 6278 | } |
| 6279 | objNode->SetGCInfo(gcPtrs, gcPtrCount, slots); |
| 6280 | assert(objNode->gtType == nodeType); |
| 6281 | } |
| 6282 | |
| 6283 | //------------------------------------------------------------------------ |
| 6284 | // gtNewStructVal: Return a node that represents a struct value |
| 6285 | // |
| 6286 | // Arguments: |
| 6287 | // structHnd - The class for the struct |
| 6288 | // addr - The address of the struct |
| 6289 | // |
| 6290 | // Return Value: |
| 6291 | // A block, object or local node that represents the struct value pointed to by 'addr'. |
| 6292 | |
| 6293 | GenTree* Compiler::gtNewStructVal(CORINFO_CLASS_HANDLE structHnd, GenTree* addr) |
| 6294 | { |
| 6295 | if (addr->gtOper == GT_ADDR) |
| 6296 | { |
| 6297 | GenTree* val = addr->gtGetOp1(); |
| 6298 | if (val->OperGet() == GT_LCL_VAR) |
| 6299 | { |
| 6300 | unsigned lclNum = addr->gtGetOp1()->AsLclVarCommon()->gtLclNum; |
| 6301 | LclVarDsc* varDsc = &(lvaTable[lclNum]); |
| 6302 | if (varTypeIsStruct(varDsc) && (varDsc->lvVerTypeInfo.GetClassHandle() == structHnd) && |
| 6303 | !lvaIsImplicitByRefLocal(lclNum)) |
| 6304 | { |
| 6305 | return addr->gtGetOp1(); |
| 6306 | } |
| 6307 | } |
| 6308 | } |
| 6309 | return gtNewObjNode(structHnd, addr); |
| 6310 | } |
| 6311 | |
| 6312 | //------------------------------------------------------------------------ |
| 6313 | // gtNewBlockVal: Return a node that represents a possibly untyped block value |
| 6314 | // |
| 6315 | // Arguments: |
| 6316 | // addr - The address of the block |
| 6317 | // size - The size of the block |
| 6318 | // |
| 6319 | // Return Value: |
| 6320 | // A block, object or local node that represents the block value pointed to by 'addr'. |
| 6321 | |
| 6322 | GenTree* Compiler::gtNewBlockVal(GenTree* addr, unsigned size) |
| 6323 | { |
| 6324 | // By default we treat this as an opaque struct type with known size. |
| 6325 | var_types blkType = TYP_STRUCT; |
| 6326 | if ((addr->gtOper == GT_ADDR) && (addr->gtGetOp1()->OperGet() == GT_LCL_VAR)) |
| 6327 | { |
| 6328 | GenTree* val = addr->gtGetOp1(); |
| 6329 | #if FEATURE_SIMD |
| 6330 | if (varTypeIsSIMD(val)) |
| 6331 | { |
| 6332 | if (genTypeSize(val->TypeGet()) == size) |
| 6333 | { |
| 6334 | blkType = val->TypeGet(); |
| 6335 | return addr->gtGetOp1(); |
| 6336 | } |
| 6337 | } |
| 6338 | else |
| 6339 | #endif // FEATURE_SIMD |
| 6340 | if (val->TypeGet() == TYP_STRUCT) |
| 6341 | { |
| 6342 | GenTreeLclVarCommon* lcl = addr->gtGetOp1()->AsLclVarCommon(); |
| 6343 | LclVarDsc* varDsc = &(lvaTable[lcl->gtLclNum]); |
| 6344 | if ((varDsc->TypeGet() == TYP_STRUCT) && (varDsc->lvExactSize == size)) |
| 6345 | { |
| 6346 | return addr->gtGetOp1(); |
| 6347 | } |
| 6348 | } |
| 6349 | } |
| 6350 | return new (this, GT_BLK) GenTreeBlk(GT_BLK, blkType, addr, size); |
| 6351 | } |
| 6352 | |
| 6353 | // Creates a new assignment node for a CpObj. |
| 6354 | // Parameters (exactly the same as MSIL CpObj): |
| 6355 | // |
| 6356 | // dstAddr - The target to copy the struct to |
| 6357 | // srcAddr - The source to copy the struct from |
| 6358 | // structHnd - A class token that represents the type of object being copied. May be null |
| 6359 | // if FEATURE_SIMD is enabled and the source has a SIMD type. |
| 6360 | // isVolatile - Is this marked as volatile memory? |
| 6361 | |
| 6362 | GenTree* Compiler::gtNewCpObjNode(GenTree* dstAddr, GenTree* srcAddr, CORINFO_CLASS_HANDLE structHnd, bool isVolatile) |
| 6363 | { |
| 6364 | GenTree* lhs = gtNewStructVal(structHnd, dstAddr); |
| 6365 | GenTree* src = nullptr; |
| 6366 | unsigned size; |
| 6367 | |
| 6368 | if (lhs->OperIsBlk()) |
| 6369 | { |
| 6370 | size = lhs->AsBlk()->gtBlkSize; |
| 6371 | if (lhs->OperGet() == GT_OBJ) |
| 6372 | { |
| 6373 | gtSetObjGcInfo(lhs->AsObj()); |
| 6374 | } |
| 6375 | } |
| 6376 | else |
| 6377 | { |
| 6378 | size = genTypeSize(lhs->gtType); |
| 6379 | } |
| 6380 | |
| 6381 | if (srcAddr->OperGet() == GT_ADDR) |
| 6382 | { |
| 6383 | src = srcAddr->gtOp.gtOp1; |
| 6384 | } |
| 6385 | else |
| 6386 | { |
| 6387 | src = gtNewOperNode(GT_IND, lhs->TypeGet(), srcAddr); |
| 6388 | } |
| 6389 | |
| 6390 | GenTree* result = gtNewBlkOpNode(lhs, src, size, isVolatile, true); |
| 6391 | return result; |
| 6392 | } |
| 6393 | |
| 6394 | //------------------------------------------------------------------------ |
| 6395 | // FixupInitBlkValue: Fixup the init value for an initBlk operation |
| 6396 | // |
| 6397 | // Arguments: |
| 6398 | // asgType - The type of assignment that the initBlk is being transformed into |
| 6399 | // |
| 6400 | // Return Value: |
| 6401 | // Modifies the constant value on this node to be the appropriate "fill" |
| 6402 | // value for the initblk. |
| 6403 | // |
| 6404 | // Notes: |
| 6405 | // The initBlk MSIL instruction takes a byte value, which must be |
| 6406 | // extended to the size of the assignment when an initBlk is transformed |
| 6407 | // to an assignment of a primitive type. |
| 6408 | // This performs the appropriate extension. |
| 6409 | |
| 6410 | void GenTreeIntCon::FixupInitBlkValue(var_types asgType) |
| 6411 | { |
| 6412 | assert(varTypeIsIntegralOrI(asgType)); |
| 6413 | unsigned size = genTypeSize(asgType); |
| 6414 | if (size > 1) |
| 6415 | { |
| 6416 | size_t cns = gtIconVal; |
| 6417 | cns = cns & 0xFF; |
| 6418 | cns |= cns << 8; |
| 6419 | if (size >= 4) |
| 6420 | { |
| 6421 | cns |= cns << 16; |
| 6422 | #ifdef _TARGET_64BIT_ |
| 6423 | if (size == 8) |
| 6424 | { |
| 6425 | cns |= cns << 32; |
| 6426 | } |
| 6427 | #endif // _TARGET_64BIT_ |
| 6428 | |
| 6429 | // Make the type match for evaluation types. |
| 6430 | gtType = asgType; |
| 6431 | |
| 6432 | // if we are initializing a GC type the value being assigned must be zero (null). |
| 6433 | assert(!varTypeIsGC(asgType) || (cns == 0)); |
| 6434 | } |
| 6435 | |
| 6436 | gtIconVal = cns; |
| 6437 | } |
| 6438 | } |
| 6439 | |
| 6440 | // |
| 6441 | //------------------------------------------------------------------------ |
| 6442 | // gtBlockOpInit: Initializes a BlkOp GenTree |
| 6443 | // |
| 6444 | // Arguments: |
| 6445 | // result - an assignment node that is to be initialized. |
| 6446 | // dst - the target (destination) we want to either initialize or copy to. |
| 6447 | // src - the init value for InitBlk or the source struct for CpBlk/CpObj. |
| 6448 | // isVolatile - specifies whether this node is a volatile memory operation. |
| 6449 | // |
| 6450 | // Assumptions: |
| 6451 | // 'result' is an assignment that is newly constructed. |
| 6452 | // If 'dst' is TYP_STRUCT, then it must be a block node or lclVar. |
| 6453 | // |
| 6454 | // Notes: |
| 6455 | // This procedure centralizes all the logic to both enforce proper structure and |
| 6456 | // to properly construct any InitBlk/CpBlk node. |
| 6457 | |
| 6458 | void Compiler::gtBlockOpInit(GenTree* result, GenTree* dst, GenTree* srcOrFillVal, bool isVolatile) |
| 6459 | { |
| 6460 | if (!result->OperIsBlkOp()) |
| 6461 | { |
| 6462 | assert(dst->TypeGet() != TYP_STRUCT); |
| 6463 | return; |
| 6464 | } |
| 6465 | #ifdef DEBUG |
| 6466 | // If the copy involves GC pointers, the caller must have already set |
| 6467 | // the node additional members (gtGcPtrs, gtGcPtrCount, gtSlots) on the dst. |
| 6468 | if ((dst->gtOper == GT_OBJ) && dst->AsBlk()->HasGCPtr()) |
| 6469 | { |
| 6470 | GenTreeObj* objNode = dst->AsObj(); |
| 6471 | assert(objNode->gtGcPtrs != nullptr); |
| 6472 | assert(!IsUninitialized(objNode->gtGcPtrs)); |
| 6473 | assert(!IsUninitialized(objNode->gtGcPtrCount)); |
| 6474 | assert(!IsUninitialized(objNode->gtSlots) && objNode->gtSlots > 0); |
| 6475 | |
| 6476 | for (unsigned i = 0; i < objNode->gtGcPtrCount; ++i) |
| 6477 | { |
| 6478 | CorInfoGCType t = (CorInfoGCType)objNode->gtGcPtrs[i]; |
| 6479 | switch (t) |
| 6480 | { |
| 6481 | case TYPE_GC_NONE: |
| 6482 | case TYPE_GC_REF: |
| 6483 | case TYPE_GC_BYREF: |
| 6484 | case TYPE_GC_OTHER: |
| 6485 | break; |
| 6486 | default: |
| 6487 | unreached(); |
| 6488 | } |
| 6489 | } |
| 6490 | } |
| 6491 | #endif // DEBUG |
| 6492 | |
| 6493 | /* In the case of CpBlk, we want to avoid generating |
| 6494 | * nodes where the source and destination are the same |
| 6495 | * because of two reasons, first, is useless, second |
| 6496 | * it introduces issues in liveness and also copying |
| 6497 | * memory from an overlapping memory location is |
| 6498 | * undefined both as per the ECMA standard and also |
| 6499 | * the memcpy semantics specify that. |
| 6500 | * |
| 6501 | * NOTE: In this case we'll only detect the case for addr of a local |
| 6502 | * and a local itself, any other complex expressions won't be |
| 6503 | * caught. |
| 6504 | * |
| 6505 | * TODO-Cleanup: though having this logic is goodness (i.e. avoids self-assignment |
| 6506 | * of struct vars very early), it was added because fgInterBlockLocalVarLiveness() |
| 6507 | * isn't handling self-assignment of struct variables correctly. This issue may not |
| 6508 | * surface if struct promotion is ON (which is the case on x86/arm). But still the |
| 6509 | * fundamental issue exists that needs to be addressed. |
| 6510 | */ |
| 6511 | if (result->OperIsCopyBlkOp()) |
| 6512 | { |
| 6513 | GenTree* currSrc = srcOrFillVal; |
| 6514 | GenTree* currDst = dst; |
| 6515 | |
| 6516 | if (currSrc->OperIsBlk() && (currSrc->AsBlk()->Addr()->OperGet() == GT_ADDR)) |
| 6517 | { |
| 6518 | currSrc = currSrc->AsBlk()->Addr()->gtGetOp1(); |
| 6519 | } |
| 6520 | if (currDst->OperIsBlk() && (currDst->AsBlk()->Addr()->OperGet() == GT_ADDR)) |
| 6521 | { |
| 6522 | currDst = currDst->AsBlk()->Addr()->gtGetOp1(); |
| 6523 | } |
| 6524 | |
| 6525 | if (currSrc->OperGet() == GT_LCL_VAR && currDst->OperGet() == GT_LCL_VAR && |
| 6526 | currSrc->gtLclVarCommon.gtLclNum == currDst->gtLclVarCommon.gtLclNum) |
| 6527 | { |
| 6528 | // Make this a NOP |
| 6529 | // TODO-Cleanup: probably doesn't matter, but could do this earlier and avoid creating a GT_ASG |
| 6530 | result->gtBashToNOP(); |
| 6531 | return; |
| 6532 | } |
| 6533 | } |
| 6534 | |
| 6535 | // Propagate all effect flags from children |
| 6536 | result->gtFlags |= dst->gtFlags & GTF_ALL_EFFECT; |
| 6537 | result->gtFlags |= result->gtOp.gtOp2->gtFlags & GTF_ALL_EFFECT; |
| 6538 | |
| 6539 | result->gtFlags |= (dst->gtFlags & GTF_EXCEPT) | (srcOrFillVal->gtFlags & GTF_EXCEPT); |
| 6540 | |
| 6541 | if (isVolatile) |
| 6542 | { |
| 6543 | result->gtFlags |= GTF_BLK_VOLATILE; |
| 6544 | } |
| 6545 | |
| 6546 | #ifdef FEATURE_SIMD |
| 6547 | if (result->OperIsCopyBlkOp() && varTypeIsSIMD(srcOrFillVal)) |
| 6548 | { |
| 6549 | // If the source is a GT_SIMD node of SIMD type, then the dst lclvar struct |
| 6550 | // should be labeled as simd intrinsic related struct. |
| 6551 | // This is done so that the morpher can transform any field accesses into |
| 6552 | // intrinsics, thus avoiding conflicting access methods (fields vs. whole-register). |
| 6553 | |
| 6554 | GenTree* src = srcOrFillVal; |
| 6555 | if (src->OperIsIndir() && (src->AsIndir()->Addr()->OperGet() == GT_ADDR)) |
| 6556 | { |
| 6557 | src = src->AsIndir()->Addr()->gtGetOp1(); |
| 6558 | } |
| 6559 | #ifdef FEATURE_HW_INTRINSICS |
| 6560 | if ((src->OperGet() == GT_SIMD) || (src->OperGet() == GT_HWIntrinsic)) |
| 6561 | #else |
| 6562 | if (src->OperGet() == GT_SIMD) |
| 6563 | #endif // FEATURE_HW_INTRINSICS |
| 6564 | { |
| 6565 | if (dst->OperIsBlk() && (dst->AsIndir()->Addr()->OperGet() == GT_ADDR)) |
| 6566 | { |
| 6567 | dst = dst->AsIndir()->Addr()->gtGetOp1(); |
| 6568 | } |
| 6569 | |
| 6570 | if (dst->OperIsLocal() && varTypeIsStruct(dst)) |
| 6571 | { |
| 6572 | setLclRelatedToSIMDIntrinsic(dst); |
| 6573 | } |
| 6574 | } |
| 6575 | } |
| 6576 | #endif // FEATURE_SIMD |
| 6577 | } |
| 6578 | |
| 6579 | //------------------------------------------------------------------------ |
| 6580 | // gtNewBlkOpNode: Creates a GenTree for a block (struct) assignment. |
| 6581 | // |
| 6582 | // Arguments: |
| 6583 | // dst - Destination or target to copy to / initialize the buffer. |
| 6584 | // srcOrFillVall - the size of the buffer to copy/initialize or zero, in the case of CpObj. |
| 6585 | // size - The size of the buffer or a class token (in the case of CpObj). |
| 6586 | // isVolatile - Whether this is a volatile memory operation or not. |
| 6587 | // isCopyBlock - True if this is a block copy (rather than a block init). |
| 6588 | // |
| 6589 | // Return Value: |
| 6590 | // Returns the newly constructed and initialized block operation. |
| 6591 | // |
| 6592 | // Notes: |
| 6593 | // If size is zero, the dst must be a GT_OBJ with the class handle. |
| 6594 | // 'dst' must be a block node or lclVar. |
| 6595 | // |
| 6596 | GenTree* Compiler::gtNewBlkOpNode(GenTree* dst, GenTree* srcOrFillVal, unsigned size, bool isVolatile, bool isCopyBlock) |
| 6597 | { |
| 6598 | assert(dst->OperIsBlk() || dst->OperIsLocal()); |
| 6599 | if (isCopyBlock) |
| 6600 | { |
| 6601 | srcOrFillVal->gtFlags |= GTF_DONT_CSE; |
| 6602 | if (srcOrFillVal->OperIsIndir() && (srcOrFillVal->gtGetOp1()->gtOper == GT_ADDR)) |
| 6603 | { |
| 6604 | srcOrFillVal = srcOrFillVal->gtGetOp1()->gtGetOp1(); |
| 6605 | } |
| 6606 | } |
| 6607 | else |
| 6608 | { |
| 6609 | // InitBlk |
| 6610 | assert(varTypeIsIntegral(srcOrFillVal)); |
| 6611 | if (varTypeIsStruct(dst)) |
| 6612 | { |
| 6613 | if (!srcOrFillVal->IsIntegralConst(0)) |
| 6614 | { |
| 6615 | srcOrFillVal = gtNewOperNode(GT_INIT_VAL, TYP_INT, srcOrFillVal); |
| 6616 | } |
| 6617 | } |
| 6618 | } |
| 6619 | |
| 6620 | GenTree* result = gtNewAssignNode(dst, srcOrFillVal); |
| 6621 | gtBlockOpInit(result, dst, srcOrFillVal, isVolatile); |
| 6622 | return result; |
| 6623 | } |
| 6624 | |
| 6625 | //------------------------------------------------------------------------ |
| 6626 | // gtNewPutArgReg: Creates a new PutArgReg node. |
| 6627 | // |
| 6628 | // Arguments: |
| 6629 | // type - The actual type of the argument |
| 6630 | // arg - The argument node |
| 6631 | // argReg - The register that the argument will be passed in |
| 6632 | // |
| 6633 | // Return Value: |
| 6634 | // Returns the newly created PutArgReg node. |
| 6635 | // |
| 6636 | // Notes: |
| 6637 | // The node is generated as GenTreeMultiRegOp on RyuJIT/armel, GenTreeOp on all the other archs. |
| 6638 | // |
| 6639 | GenTree* Compiler::gtNewPutArgReg(var_types type, GenTree* arg, regNumber argReg) |
| 6640 | { |
| 6641 | assert(arg != nullptr); |
| 6642 | |
| 6643 | GenTree* node = nullptr; |
| 6644 | #if defined(_TARGET_ARM_) |
| 6645 | // A PUTARG_REG could be a MultiRegOp on arm since we could move a double register to two int registers. |
| 6646 | node = new (this, GT_PUTARG_REG) GenTreeMultiRegOp(GT_PUTARG_REG, type, arg, nullptr); |
| 6647 | if (type == TYP_LONG) |
| 6648 | { |
| 6649 | node->AsMultiRegOp()->gtOtherReg = REG_NEXT(argReg); |
| 6650 | } |
| 6651 | #else |
| 6652 | node = gtNewOperNode(GT_PUTARG_REG, type, arg); |
| 6653 | #endif |
| 6654 | node->gtRegNum = argReg; |
| 6655 | |
| 6656 | return node; |
| 6657 | } |
| 6658 | |
| 6659 | //------------------------------------------------------------------------ |
| 6660 | // gtNewBitCastNode: Creates a new BitCast node. |
| 6661 | // |
| 6662 | // Arguments: |
| 6663 | // type - The actual type of the argument |
| 6664 | // arg - The argument node |
| 6665 | // argReg - The register that the argument will be passed in |
| 6666 | // |
| 6667 | // Return Value: |
| 6668 | // Returns the newly created BitCast node. |
| 6669 | // |
| 6670 | // Notes: |
| 6671 | // The node is generated as GenTreeMultiRegOp on RyuJIT/arm, as GenTreeOp on all the other archs. |
| 6672 | // |
| 6673 | GenTree* Compiler::gtNewBitCastNode(var_types type, GenTree* arg) |
| 6674 | { |
| 6675 | assert(arg != nullptr); |
| 6676 | |
| 6677 | GenTree* node = nullptr; |
| 6678 | #if defined(_TARGET_ARM_) |
| 6679 | // A BITCAST could be a MultiRegOp on arm since we could move a double register to two int registers. |
| 6680 | node = new (this, GT_BITCAST) GenTreeMultiRegOp(GT_BITCAST, type, arg, nullptr); |
| 6681 | #else |
| 6682 | node = gtNewOperNode(GT_BITCAST, type, arg); |
| 6683 | #endif |
| 6684 | |
| 6685 | return node; |
| 6686 | } |
| 6687 | |
| 6688 | //------------------------------------------------------------------------ |
| 6689 | // gtNewAllocObjNode: Helper to create an object allocation node. |
| 6690 | // |
| 6691 | // Arguments: |
| 6692 | // pResolvedToken - Resolved token for the object being allocated |
| 6693 | // useParent - true iff the token represents a child of the object's class |
| 6694 | // |
| 6695 | // Return Value: |
| 6696 | // Returns GT_ALLOCOBJ node that will be later morphed into an |
| 6697 | // allocation helper call or local variable allocation on the stack. |
| 6698 | |
| 6699 | GenTreeAllocObj* Compiler::gtNewAllocObjNode(CORINFO_RESOLVED_TOKEN* pResolvedToken, BOOL useParent) |
| 6700 | { |
| 6701 | const BOOL mustRestoreHandle = TRUE; |
| 6702 | BOOL* const pRuntimeLookup = nullptr; |
| 6703 | bool usingReadyToRunHelper = false; |
| 6704 | CorInfoHelpFunc helper = CORINFO_HELP_UNDEF; |
| 6705 | GenTree* opHandle = impTokenToHandle(pResolvedToken, pRuntimeLookup, mustRestoreHandle, useParent); |
| 6706 | |
| 6707 | #ifdef FEATURE_READYTORUN_COMPILER |
| 6708 | CORINFO_CONST_LOOKUP lookup = {}; |
| 6709 | |
| 6710 | if (opts.IsReadyToRun()) |
| 6711 | { |
| 6712 | helper = CORINFO_HELP_READYTORUN_NEW; |
| 6713 | CORINFO_LOOKUP_KIND* const pGenericLookupKind = nullptr; |
| 6714 | usingReadyToRunHelper = |
| 6715 | info.compCompHnd->getReadyToRunHelper(pResolvedToken, pGenericLookupKind, helper, &lookup); |
| 6716 | } |
| 6717 | #endif |
| 6718 | |
| 6719 | if (!usingReadyToRunHelper) |
| 6720 | { |
| 6721 | if (opHandle == nullptr) |
| 6722 | { |
| 6723 | // We must be backing out of an inline. |
| 6724 | assert(compDonotInline()); |
| 6725 | return nullptr; |
| 6726 | } |
| 6727 | } |
| 6728 | |
| 6729 | bool helperHasSideEffects; |
| 6730 | CorInfoHelpFunc helperTemp = |
| 6731 | info.compCompHnd->getNewHelper(pResolvedToken, info.compMethodHnd, &helperHasSideEffects); |
| 6732 | |
| 6733 | if (!usingReadyToRunHelper) |
| 6734 | { |
| 6735 | helper = helperTemp; |
| 6736 | } |
| 6737 | |
| 6738 | // TODO: ReadyToRun: When generic dictionary lookups are necessary, replace the lookup call |
| 6739 | // and the newfast call with a single call to a dynamic R2R cell that will: |
| 6740 | // 1) Load the context |
| 6741 | // 2) Perform the generic dictionary lookup and caching, and generate the appropriate stub |
| 6742 | // 3) Allocate and return the new object for boxing |
| 6743 | // Reason: performance (today, we'll always use the slow helper for the R2R generics case) |
| 6744 | |
| 6745 | GenTreeAllocObj* allocObj = |
| 6746 | gtNewAllocObjNode(helper, helperHasSideEffects, pResolvedToken->hClass, TYP_REF, opHandle); |
| 6747 | |
| 6748 | #ifdef FEATURE_READYTORUN_COMPILER |
| 6749 | if (usingReadyToRunHelper) |
| 6750 | { |
| 6751 | allocObj->gtEntryPoint = lookup; |
| 6752 | } |
| 6753 | #endif |
| 6754 | |
| 6755 | return allocObj; |
| 6756 | } |
| 6757 | |
| 6758 | /***************************************************************************** |
| 6759 | * |
| 6760 | * Clones the given tree value and returns a copy of the given tree. |
| 6761 | * If 'complexOK' is false, the cloning is only done provided the tree |
| 6762 | * is not too complex (whatever that may mean); |
| 6763 | * If 'complexOK' is true, we try slightly harder to clone the tree. |
| 6764 | * In either case, NULL is returned if the tree cannot be cloned |
| 6765 | * |
| 6766 | * Note that there is the function gtCloneExpr() which does a more |
| 6767 | * complete job if you can't handle this function failing. |
| 6768 | */ |
| 6769 | |
| 6770 | GenTree* Compiler::gtClone(GenTree* tree, bool complexOK) |
| 6771 | { |
| 6772 | GenTree* copy; |
| 6773 | |
| 6774 | switch (tree->gtOper) |
| 6775 | { |
| 6776 | case GT_CNS_INT: |
| 6777 | |
| 6778 | #if defined(LATE_DISASM) |
| 6779 | if (tree->IsIconHandle()) |
| 6780 | { |
| 6781 | copy = gtNewIconHandleNode(tree->gtIntCon.gtIconVal, tree->gtFlags, tree->gtIntCon.gtFieldSeq); |
| 6782 | copy->gtIntCon.gtCompileTimeHandle = tree->gtIntCon.gtCompileTimeHandle; |
| 6783 | copy->gtType = tree->gtType; |
| 6784 | } |
| 6785 | else |
| 6786 | #endif |
| 6787 | { |
| 6788 | copy = new (this, GT_CNS_INT) |
| 6789 | GenTreeIntCon(tree->gtType, tree->gtIntCon.gtIconVal, tree->gtIntCon.gtFieldSeq); |
| 6790 | copy->gtIntCon.gtCompileTimeHandle = tree->gtIntCon.gtCompileTimeHandle; |
| 6791 | } |
| 6792 | break; |
| 6793 | |
| 6794 | case GT_CNS_LNG: |
| 6795 | copy = gtNewLconNode(tree->gtLngCon.gtLconVal); |
| 6796 | break; |
| 6797 | |
| 6798 | case GT_LCL_VAR: |
| 6799 | // Remember that the LclVar node has been cloned. The flag will be set |
| 6800 | // on 'copy' as well. |
| 6801 | tree->gtFlags |= GTF_VAR_CLONED; |
| 6802 | copy = gtNewLclvNode(tree->gtLclVarCommon.gtLclNum, tree->gtType, tree->gtLclVar.gtLclILoffs); |
| 6803 | break; |
| 6804 | |
| 6805 | case GT_LCL_FLD: |
| 6806 | case GT_LCL_FLD_ADDR: |
| 6807 | // Remember that the LclVar node has been cloned. The flag will be set |
| 6808 | // on 'copy' as well. |
| 6809 | tree->gtFlags |= GTF_VAR_CLONED; |
| 6810 | copy = new (this, tree->gtOper) |
| 6811 | GenTreeLclFld(tree->gtOper, tree->TypeGet(), tree->gtLclFld.gtLclNum, tree->gtLclFld.gtLclOffs); |
| 6812 | copy->gtLclFld.gtFieldSeq = tree->gtLclFld.gtFieldSeq; |
| 6813 | break; |
| 6814 | |
| 6815 | case GT_CLS_VAR: |
| 6816 | copy = new (this, GT_CLS_VAR) |
| 6817 | GenTreeClsVar(tree->gtType, tree->gtClsVar.gtClsVarHnd, tree->gtClsVar.gtFieldSeq); |
| 6818 | break; |
| 6819 | |
| 6820 | default: |
| 6821 | if (!complexOK) |
| 6822 | { |
| 6823 | return nullptr; |
| 6824 | } |
| 6825 | |
| 6826 | if (tree->gtOper == GT_FIELD) |
| 6827 | { |
| 6828 | GenTree* objp; |
| 6829 | |
| 6830 | // copied from line 9850 |
| 6831 | |
| 6832 | objp = nullptr; |
| 6833 | if (tree->gtField.gtFldObj) |
| 6834 | { |
| 6835 | objp = gtClone(tree->gtField.gtFldObj, false); |
| 6836 | if (!objp) |
| 6837 | { |
| 6838 | return objp; |
| 6839 | } |
| 6840 | } |
| 6841 | |
| 6842 | copy = gtNewFieldRef(tree->TypeGet(), tree->gtField.gtFldHnd, objp, tree->gtField.gtFldOffset); |
| 6843 | copy->gtField.gtFldMayOverlap = tree->gtField.gtFldMayOverlap; |
| 6844 | #ifdef FEATURE_READYTORUN_COMPILER |
| 6845 | copy->gtField.gtFieldLookup = tree->gtField.gtFieldLookup; |
| 6846 | #endif |
| 6847 | } |
| 6848 | else if (tree->OperIs(GT_ADD, GT_SUB)) |
| 6849 | { |
| 6850 | GenTree* op1 = tree->gtOp.gtOp1; |
| 6851 | GenTree* op2 = tree->gtOp.gtOp2; |
| 6852 | |
| 6853 | if (op1->OperIsLeaf() && op2->OperIsLeaf()) |
| 6854 | { |
| 6855 | op1 = gtClone(op1); |
| 6856 | if (op1 == nullptr) |
| 6857 | { |
| 6858 | return nullptr; |
| 6859 | } |
| 6860 | op2 = gtClone(op2); |
| 6861 | if (op2 == nullptr) |
| 6862 | { |
| 6863 | return nullptr; |
| 6864 | } |
| 6865 | |
| 6866 | copy = gtNewOperNode(tree->OperGet(), tree->TypeGet(), op1, op2); |
| 6867 | } |
| 6868 | else |
| 6869 | { |
| 6870 | return nullptr; |
| 6871 | } |
| 6872 | } |
| 6873 | else if (tree->gtOper == GT_ADDR) |
| 6874 | { |
| 6875 | GenTree* op1 = gtClone(tree->gtOp.gtOp1); |
| 6876 | if (op1 == nullptr) |
| 6877 | { |
| 6878 | return nullptr; |
| 6879 | } |
| 6880 | copy = gtNewOperNode(GT_ADDR, tree->TypeGet(), op1); |
| 6881 | } |
| 6882 | else |
| 6883 | { |
| 6884 | return nullptr; |
| 6885 | } |
| 6886 | |
| 6887 | break; |
| 6888 | } |
| 6889 | |
| 6890 | copy->gtFlags |= tree->gtFlags & ~GTF_NODE_MASK; |
| 6891 | #if defined(DEBUG) |
| 6892 | copy->gtDebugFlags |= tree->gtDebugFlags & ~GTF_DEBUG_NODE_MASK; |
| 6893 | #endif // defined(DEBUG) |
| 6894 | |
| 6895 | return copy; |
| 6896 | } |
| 6897 | |
| 6898 | //------------------------------------------------------------------------ |
| 6899 | // gtCloneExpr: Create a copy of `tree`, adding flags `addFlags`, mapping |
| 6900 | // local `varNum` to int constant `varVal` if it appears at |
| 6901 | // the root, and mapping uses of local `deepVarNum` to constant |
| 6902 | // `deepVarVal` if they occur beyond the root. |
| 6903 | // |
| 6904 | // Arguments: |
| 6905 | // tree - GenTree to create a copy of |
| 6906 | // addFlags - GTF_* flags to add to the copied tree nodes |
| 6907 | // varNum - lclNum to replace at the root, or ~0 for no root replacement |
| 6908 | // varVal - If replacing at root, replace local `varNum` with IntCns `varVal` |
| 6909 | // deepVarNum - lclNum to replace uses of beyond the root, or ~0 for no replacement |
| 6910 | // deepVarVal - If replacing beyond root, replace `deepVarNum` with IntCns `deepVarVal` |
| 6911 | // |
| 6912 | // Return Value: |
| 6913 | // A copy of the given tree with the replacements and added flags specified. |
| 6914 | // |
| 6915 | // Notes: |
| 6916 | // Top-level callers should generally call the overload that doesn't have |
| 6917 | // the explicit `deepVarNum` and `deepVarVal` parameters; those are used in |
| 6918 | // recursive invocations to avoid replacing defs. |
| 6919 | |
| 6920 | GenTree* Compiler::gtCloneExpr( |
| 6921 | GenTree* tree, unsigned addFlags, unsigned varNum, int varVal, unsigned deepVarNum, int deepVarVal) |
| 6922 | { |
| 6923 | if (tree == nullptr) |
| 6924 | { |
| 6925 | return nullptr; |
| 6926 | } |
| 6927 | |
| 6928 | /* Figure out what kind of a node we have */ |
| 6929 | |
| 6930 | genTreeOps oper = tree->OperGet(); |
| 6931 | unsigned kind = tree->OperKind(); |
| 6932 | GenTree* copy; |
| 6933 | |
| 6934 | /* Is this a constant or leaf node? */ |
| 6935 | |
| 6936 | if (kind & (GTK_CONST | GTK_LEAF)) |
| 6937 | { |
| 6938 | switch (oper) |
| 6939 | { |
| 6940 | case GT_CNS_INT: |
| 6941 | |
| 6942 | #if defined(LATE_DISASM) |
| 6943 | if (tree->IsIconHandle()) |
| 6944 | { |
| 6945 | copy = gtNewIconHandleNode(tree->gtIntCon.gtIconVal, tree->gtFlags, tree->gtIntCon.gtFieldSeq); |
| 6946 | copy->gtIntCon.gtCompileTimeHandle = tree->gtIntCon.gtCompileTimeHandle; |
| 6947 | copy->gtType = tree->gtType; |
| 6948 | } |
| 6949 | else |
| 6950 | #endif |
| 6951 | { |
| 6952 | copy = gtNewIconNode(tree->gtIntCon.gtIconVal, tree->gtType); |
| 6953 | copy->gtIntCon.gtCompileTimeHandle = tree->gtIntCon.gtCompileTimeHandle; |
| 6954 | copy->gtIntCon.gtFieldSeq = tree->gtIntCon.gtFieldSeq; |
| 6955 | } |
| 6956 | goto DONE; |
| 6957 | |
| 6958 | case GT_CNS_LNG: |
| 6959 | copy = gtNewLconNode(tree->gtLngCon.gtLconVal); |
| 6960 | goto DONE; |
| 6961 | |
| 6962 | case GT_CNS_DBL: |
| 6963 | copy = gtNewDconNode(tree->gtDblCon.gtDconVal); |
| 6964 | copy->gtType = tree->gtType; // keep the same type |
| 6965 | goto DONE; |
| 6966 | |
| 6967 | case GT_CNS_STR: |
| 6968 | copy = gtNewSconNode(tree->gtStrCon.gtSconCPX, tree->gtStrCon.gtScpHnd); |
| 6969 | goto DONE; |
| 6970 | |
| 6971 | case GT_LCL_VAR: |
| 6972 | |
| 6973 | if (tree->gtLclVarCommon.gtLclNum == varNum) |
| 6974 | { |
| 6975 | copy = gtNewIconNode(varVal, tree->gtType); |
| 6976 | if (tree->gtFlags & GTF_VAR_ARR_INDEX) |
| 6977 | { |
| 6978 | copy->LabelIndex(this); |
| 6979 | } |
| 6980 | } |
| 6981 | else |
| 6982 | { |
| 6983 | // Remember that the LclVar node has been cloned. The flag will |
| 6984 | // be set on 'copy' as well. |
| 6985 | tree->gtFlags |= GTF_VAR_CLONED; |
| 6986 | copy = gtNewLclvNode(tree->gtLclVar.gtLclNum, tree->gtType, tree->gtLclVar.gtLclILoffs); |
| 6987 | copy->AsLclVarCommon()->SetSsaNum(tree->AsLclVarCommon()->GetSsaNum()); |
| 6988 | } |
| 6989 | copy->gtFlags = tree->gtFlags; |
| 6990 | goto DONE; |
| 6991 | |
| 6992 | case GT_LCL_FLD: |
| 6993 | if (tree->gtLclFld.gtLclNum == varNum) |
| 6994 | { |
| 6995 | IMPL_LIMITATION("replacing GT_LCL_FLD with a constant" ); |
| 6996 | } |
| 6997 | else |
| 6998 | { |
| 6999 | // Remember that the LclVar node has been cloned. The flag will |
| 7000 | // be set on 'copy' as well. |
| 7001 | tree->gtFlags |= GTF_VAR_CLONED; |
| 7002 | copy = new (this, GT_LCL_FLD) |
| 7003 | GenTreeLclFld(tree->TypeGet(), tree->gtLclFld.gtLclNum, tree->gtLclFld.gtLclOffs); |
| 7004 | copy->gtLclFld.gtFieldSeq = tree->gtLclFld.gtFieldSeq; |
| 7005 | copy->gtFlags = tree->gtFlags; |
| 7006 | } |
| 7007 | goto DONE; |
| 7008 | |
| 7009 | case GT_CLS_VAR: |
| 7010 | copy = new (this, GT_CLS_VAR) |
| 7011 | GenTreeClsVar(tree->TypeGet(), tree->gtClsVar.gtClsVarHnd, tree->gtClsVar.gtFieldSeq); |
| 7012 | goto DONE; |
| 7013 | |
| 7014 | case GT_RET_EXPR: |
| 7015 | // GT_RET_EXPR is unique node, that contains a link to a gtInlineCandidate node, |
| 7016 | // that is part of another statement. We cannot clone both here and cannot |
| 7017 | // create another GT_RET_EXPR that points to the same gtInlineCandidate. |
| 7018 | NO_WAY("Cloning of GT_RET_EXPR node not supported" ); |
| 7019 | goto DONE; |
| 7020 | |
| 7021 | case GT_MEMORYBARRIER: |
| 7022 | copy = new (this, GT_MEMORYBARRIER) GenTree(GT_MEMORYBARRIER, TYP_VOID); |
| 7023 | goto DONE; |
| 7024 | |
| 7025 | case GT_ARGPLACE: |
| 7026 | copy = gtNewArgPlaceHolderNode(tree->gtType, tree->gtArgPlace.gtArgPlaceClsHnd); |
| 7027 | goto DONE; |
| 7028 | |
| 7029 | case GT_FTN_ADDR: |
| 7030 | copy = new (this, oper) GenTreeFptrVal(tree->gtType, tree->gtFptrVal.gtFptrMethod); |
| 7031 | |
| 7032 | #ifdef FEATURE_READYTORUN_COMPILER |
| 7033 | copy->gtFptrVal.gtEntryPoint = tree->gtFptrVal.gtEntryPoint; |
| 7034 | #endif |
| 7035 | goto DONE; |
| 7036 | |
| 7037 | case GT_CATCH_ARG: |
| 7038 | case GT_NO_OP: |
| 7039 | copy = new (this, oper) GenTree(oper, tree->gtType); |
| 7040 | goto DONE; |
| 7041 | |
| 7042 | #if !FEATURE_EH_FUNCLETS |
| 7043 | case GT_END_LFIN: |
| 7044 | #endif // !FEATURE_EH_FUNCLETS |
| 7045 | case GT_JMP: |
| 7046 | copy = new (this, oper) GenTreeVal(oper, tree->gtType, tree->gtVal.gtVal1); |
| 7047 | goto DONE; |
| 7048 | |
| 7049 | case GT_LABEL: |
| 7050 | copy = new (this, oper) GenTreeLabel(tree->gtLabel.gtLabBB); |
| 7051 | goto DONE; |
| 7052 | |
| 7053 | default: |
| 7054 | NO_WAY("Cloning of node not supported" ); |
| 7055 | goto DONE; |
| 7056 | } |
| 7057 | } |
| 7058 | |
| 7059 | /* Is it a 'simple' unary/binary operator? */ |
| 7060 | |
| 7061 | if (kind & GTK_SMPOP) |
| 7062 | { |
| 7063 | /* If necessary, make sure we allocate a "fat" tree node */ |
| 7064 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 7065 | |
| 7066 | #if SMALL_TREE_NODES |
| 7067 | switch (oper) |
| 7068 | { |
| 7069 | /* These nodes sometimes get bashed to "fat" ones */ |
| 7070 | |
| 7071 | case GT_MUL: |
| 7072 | case GT_DIV: |
| 7073 | case GT_MOD: |
| 7074 | |
| 7075 | case GT_UDIV: |
| 7076 | case GT_UMOD: |
| 7077 | |
| 7078 | // In the implementation of gtNewLargeOperNode you have |
| 7079 | // to give an oper that will create a small node, |
| 7080 | // otherwise it asserts. |
| 7081 | // |
| 7082 | if (GenTree::s_gtNodeSizes[oper] == TREE_NODE_SZ_SMALL) |
| 7083 | { |
| 7084 | copy = gtNewLargeOperNode(oper, tree->TypeGet(), tree->gtOp.gtOp1, |
| 7085 | tree->OperIsBinary() ? tree->gtOp.gtOp2 : nullptr); |
| 7086 | } |
| 7087 | else // Always a large tree |
| 7088 | { |
| 7089 | if (tree->OperIsBinary()) |
| 7090 | { |
| 7091 | copy = gtNewOperNode(oper, tree->TypeGet(), tree->gtOp.gtOp1, tree->gtOp.gtOp2); |
| 7092 | } |
| 7093 | else |
| 7094 | { |
| 7095 | copy = gtNewOperNode(oper, tree->TypeGet(), tree->gtOp.gtOp1); |
| 7096 | } |
| 7097 | } |
| 7098 | break; |
| 7099 | |
| 7100 | case GT_CAST: |
| 7101 | copy = |
| 7102 | new (this, LargeOpOpcode()) GenTreeCast(tree->TypeGet(), tree->gtCast.CastOp(), tree->IsUnsigned(), |
| 7103 | tree->gtCast.gtCastType DEBUGARG(/*largeNode*/ TRUE)); |
| 7104 | break; |
| 7105 | |
| 7106 | // The nodes below this are not bashed, so they can be allocated at their individual sizes. |
| 7107 | |
| 7108 | case GT_LIST: |
| 7109 | assert((tree->gtOp.gtOp2 == nullptr) || tree->gtOp.gtOp2->OperIsList()); |
| 7110 | copy = new (this, GT_LIST) GenTreeArgList(tree->gtOp.gtOp1); |
| 7111 | copy->gtOp.gtOp2 = tree->gtOp.gtOp2; |
| 7112 | break; |
| 7113 | |
| 7114 | case GT_FIELD_LIST: |
| 7115 | copy = new (this, GT_FIELD_LIST) GenTreeFieldList(tree->gtOp.gtOp1, tree->AsFieldList()->gtFieldOffset, |
| 7116 | tree->AsFieldList()->gtFieldType, nullptr); |
| 7117 | copy->gtOp.gtOp2 = tree->gtOp.gtOp2; |
| 7118 | copy->gtFlags = (copy->gtFlags & ~GTF_FIELD_LIST_HEAD) | (tree->gtFlags & GTF_FIELD_LIST_HEAD); |
| 7119 | break; |
| 7120 | |
| 7121 | case GT_INDEX: |
| 7122 | { |
| 7123 | GenTreeIndex* asInd = tree->AsIndex(); |
| 7124 | copy = new (this, GT_INDEX) |
| 7125 | GenTreeIndex(asInd->TypeGet(), asInd->Arr(), asInd->Index(), asInd->gtIndElemSize); |
| 7126 | copy->AsIndex()->gtStructElemClass = asInd->gtStructElemClass; |
| 7127 | } |
| 7128 | break; |
| 7129 | |
| 7130 | case GT_INDEX_ADDR: |
| 7131 | { |
| 7132 | GenTreeIndexAddr* asIndAddr = tree->AsIndexAddr(); |
| 7133 | |
| 7134 | copy = new (this, GT_INDEX_ADDR) |
| 7135 | GenTreeIndexAddr(asIndAddr->Arr(), asIndAddr->Index(), asIndAddr->gtElemType, |
| 7136 | asIndAddr->gtStructElemClass, asIndAddr->gtElemSize, asIndAddr->gtLenOffset, |
| 7137 | asIndAddr->gtElemOffset); |
| 7138 | copy->AsIndexAddr()->gtIndRngFailBB = asIndAddr->gtIndRngFailBB; |
| 7139 | } |
| 7140 | break; |
| 7141 | |
| 7142 | case GT_ALLOCOBJ: |
| 7143 | { |
| 7144 | GenTreeAllocObj* asAllocObj = tree->AsAllocObj(); |
| 7145 | copy = new (this, GT_ALLOCOBJ) |
| 7146 | GenTreeAllocObj(tree->TypeGet(), asAllocObj->gtNewHelper, asAllocObj->gtHelperHasSideEffects, |
| 7147 | asAllocObj->gtAllocObjClsHnd, asAllocObj->gtOp1); |
| 7148 | } |
| 7149 | break; |
| 7150 | |
| 7151 | case GT_RUNTIMELOOKUP: |
| 7152 | { |
| 7153 | GenTreeRuntimeLookup* asRuntimeLookup = tree->AsRuntimeLookup(); |
| 7154 | |
| 7155 | copy = new (this, GT_RUNTIMELOOKUP) |
| 7156 | GenTreeRuntimeLookup(asRuntimeLookup->gtHnd, asRuntimeLookup->gtHndType, asRuntimeLookup->gtOp1); |
| 7157 | } |
| 7158 | break; |
| 7159 | |
| 7160 | case GT_ARR_LENGTH: |
| 7161 | copy = gtNewArrLen(tree->TypeGet(), tree->gtOp.gtOp1, tree->gtArrLen.ArrLenOffset()); |
| 7162 | break; |
| 7163 | |
| 7164 | case GT_ARR_INDEX: |
| 7165 | copy = new (this, GT_ARR_INDEX) |
| 7166 | GenTreeArrIndex(tree->TypeGet(), |
| 7167 | gtCloneExpr(tree->gtArrIndex.ArrObj(), addFlags, deepVarNum, deepVarVal), |
| 7168 | gtCloneExpr(tree->gtArrIndex.IndexExpr(), addFlags, deepVarNum, deepVarVal), |
| 7169 | tree->gtArrIndex.gtCurrDim, tree->gtArrIndex.gtArrRank, |
| 7170 | tree->gtArrIndex.gtArrElemType); |
| 7171 | break; |
| 7172 | |
| 7173 | case GT_QMARK: |
| 7174 | copy = new (this, GT_QMARK) GenTreeQmark(tree->TypeGet(), tree->gtOp.gtOp1, tree->gtOp.gtOp2, this); |
| 7175 | break; |
| 7176 | |
| 7177 | case GT_OBJ: |
| 7178 | copy = new (this, GT_OBJ) |
| 7179 | GenTreeObj(tree->TypeGet(), tree->gtOp.gtOp1, tree->AsObj()->gtClass, tree->gtBlk.gtBlkSize); |
| 7180 | copy->AsObj()->CopyGCInfo(tree->AsObj()); |
| 7181 | copy->gtBlk.gtBlkOpGcUnsafe = tree->gtBlk.gtBlkOpGcUnsafe; |
| 7182 | break; |
| 7183 | |
| 7184 | case GT_BLK: |
| 7185 | copy = new (this, GT_BLK) GenTreeBlk(GT_BLK, tree->TypeGet(), tree->gtOp.gtOp1, tree->gtBlk.gtBlkSize); |
| 7186 | copy->gtBlk.gtBlkOpGcUnsafe = tree->gtBlk.gtBlkOpGcUnsafe; |
| 7187 | break; |
| 7188 | |
| 7189 | case GT_DYN_BLK: |
| 7190 | copy = new (this, GT_DYN_BLK) GenTreeDynBlk(tree->gtOp.gtOp1, tree->gtDynBlk.gtDynamicSize); |
| 7191 | copy->gtBlk.gtBlkOpGcUnsafe = tree->gtBlk.gtBlkOpGcUnsafe; |
| 7192 | break; |
| 7193 | |
| 7194 | case GT_BOX: |
| 7195 | copy = new (this, GT_BOX) |
| 7196 | GenTreeBox(tree->TypeGet(), tree->gtOp.gtOp1, tree->gtBox.gtAsgStmtWhenInlinedBoxValue, |
| 7197 | tree->gtBox.gtCopyStmtWhenInlinedBoxValue); |
| 7198 | break; |
| 7199 | |
| 7200 | case GT_INTRINSIC: |
| 7201 | copy = new (this, GT_INTRINSIC) |
| 7202 | GenTreeIntrinsic(tree->TypeGet(), tree->gtOp.gtOp1, tree->gtOp.gtOp2, |
| 7203 | tree->gtIntrinsic.gtIntrinsicId, tree->gtIntrinsic.gtMethodHandle); |
| 7204 | #ifdef FEATURE_READYTORUN_COMPILER |
| 7205 | copy->gtIntrinsic.gtEntryPoint = tree->gtIntrinsic.gtEntryPoint; |
| 7206 | #endif |
| 7207 | break; |
| 7208 | |
| 7209 | case GT_LEA: |
| 7210 | { |
| 7211 | GenTreeAddrMode* addrModeOp = tree->AsAddrMode(); |
| 7212 | copy = new (this, GT_LEA) |
| 7213 | GenTreeAddrMode(addrModeOp->TypeGet(), addrModeOp->Base(), addrModeOp->Index(), addrModeOp->gtScale, |
| 7214 | static_cast<unsigned>(addrModeOp->Offset())); |
| 7215 | } |
| 7216 | break; |
| 7217 | |
| 7218 | case GT_COPY: |
| 7219 | case GT_RELOAD: |
| 7220 | { |
| 7221 | copy = new (this, oper) GenTreeCopyOrReload(oper, tree->TypeGet(), tree->gtGetOp1()); |
| 7222 | } |
| 7223 | break; |
| 7224 | |
| 7225 | #ifdef FEATURE_SIMD |
| 7226 | case GT_SIMD: |
| 7227 | { |
| 7228 | GenTreeSIMD* simdOp = tree->AsSIMD(); |
| 7229 | copy = gtNewSIMDNode(simdOp->TypeGet(), simdOp->gtGetOp1(), simdOp->gtGetOp2IfPresent(), |
| 7230 | simdOp->gtSIMDIntrinsicID, simdOp->gtSIMDBaseType, simdOp->gtSIMDSize); |
| 7231 | } |
| 7232 | break; |
| 7233 | #endif |
| 7234 | |
| 7235 | #ifdef FEATURE_HW_INTRINSICS |
| 7236 | case GT_HWIntrinsic: |
| 7237 | { |
| 7238 | GenTreeHWIntrinsic* hwintrinsicOp = tree->AsHWIntrinsic(); |
| 7239 | copy = new (this, GT_HWIntrinsic) |
| 7240 | GenTreeHWIntrinsic(hwintrinsicOp->TypeGet(), hwintrinsicOp->gtGetOp1(), |
| 7241 | hwintrinsicOp->gtGetOp2IfPresent(), hwintrinsicOp->gtHWIntrinsicId, |
| 7242 | hwintrinsicOp->gtSIMDBaseType, hwintrinsicOp->gtSIMDSize); |
| 7243 | copy->AsHWIntrinsic()->gtIndexBaseType = hwintrinsicOp->gtIndexBaseType; |
| 7244 | } |
| 7245 | break; |
| 7246 | #endif |
| 7247 | |
| 7248 | default: |
| 7249 | assert(!GenTree::IsExOp(tree->OperKind()) && tree->OperIsSimple()); |
| 7250 | // We're in the SimpleOp case, so it's always unary or binary. |
| 7251 | if (GenTree::OperIsUnary(tree->OperGet())) |
| 7252 | { |
| 7253 | copy = gtNewOperNode(oper, tree->TypeGet(), tree->gtOp.gtOp1, /*doSimplifications*/ false); |
| 7254 | } |
| 7255 | else |
| 7256 | { |
| 7257 | assert(GenTree::OperIsBinary(tree->OperGet())); |
| 7258 | copy = gtNewOperNode(oper, tree->TypeGet(), tree->gtOp.gtOp1, tree->gtOp.gtOp2); |
| 7259 | } |
| 7260 | break; |
| 7261 | } |
| 7262 | #else |
| 7263 | // We're in the SimpleOp case, so it's always unary or binary. |
| 7264 | copy = gtNewOperNode(oper, tree->TypeGet(), tree->gtOp.gtOp1, tree->gtOp.gtOp2); |
| 7265 | #endif |
| 7266 | |
| 7267 | // Some flags are conceptually part of the gtOper, and should be copied immediately. |
| 7268 | if (tree->gtOverflowEx()) |
| 7269 | { |
| 7270 | copy->gtFlags |= GTF_OVERFLOW; |
| 7271 | } |
| 7272 | |
| 7273 | if (tree->gtOp.gtOp1) |
| 7274 | { |
| 7275 | if (tree->gtOper == GT_ASG) |
| 7276 | { |
| 7277 | // Don't replace varNum if it appears as the LHS of an assign. |
| 7278 | copy->gtOp.gtOp1 = gtCloneExpr(tree->gtOp.gtOp1, addFlags, -1, 0, deepVarNum, deepVarVal); |
| 7279 | } |
| 7280 | else |
| 7281 | { |
| 7282 | copy->gtOp.gtOp1 = gtCloneExpr(tree->gtOp.gtOp1, addFlags, deepVarNum, deepVarVal); |
| 7283 | } |
| 7284 | } |
| 7285 | |
| 7286 | if (tree->gtGetOp2IfPresent()) |
| 7287 | { |
| 7288 | copy->gtOp.gtOp2 = gtCloneExpr(tree->gtOp.gtOp2, addFlags, deepVarNum, deepVarVal); |
| 7289 | } |
| 7290 | |
| 7291 | /* Flags */ |
| 7292 | addFlags |= tree->gtFlags; |
| 7293 | |
| 7294 | // Copy any node annotations, if necessary. |
| 7295 | switch (tree->gtOper) |
| 7296 | { |
| 7297 | case GT_STOREIND: |
| 7298 | case GT_IND: |
| 7299 | case GT_OBJ: |
| 7300 | case GT_STORE_OBJ: |
| 7301 | { |
| 7302 | ArrayInfo arrInfo; |
| 7303 | if (!tree->AsIndir()->gtOp1->OperIs(GT_INDEX_ADDR) && TryGetArrayInfo(tree->AsIndir(), &arrInfo)) |
| 7304 | { |
| 7305 | GetArrayInfoMap()->Set(copy, arrInfo); |
| 7306 | } |
| 7307 | } |
| 7308 | break; |
| 7309 | |
| 7310 | default: |
| 7311 | break; |
| 7312 | } |
| 7313 | |
| 7314 | #ifdef DEBUG |
| 7315 | /* GTF_NODE_MASK should not be propagated from 'tree' to 'copy' */ |
| 7316 | addFlags &= ~GTF_NODE_MASK; |
| 7317 | #endif |
| 7318 | |
| 7319 | // Effects flags propagate upwards. |
| 7320 | if (copy->gtOp.gtOp1 != nullptr) |
| 7321 | { |
| 7322 | copy->gtFlags |= (copy->gtOp.gtOp1->gtFlags & GTF_ALL_EFFECT); |
| 7323 | } |
| 7324 | if (copy->gtGetOp2IfPresent() != nullptr) |
| 7325 | { |
| 7326 | copy->gtFlags |= (copy->gtGetOp2()->gtFlags & GTF_ALL_EFFECT); |
| 7327 | } |
| 7328 | |
| 7329 | goto DONE; |
| 7330 | } |
| 7331 | |
| 7332 | /* See what kind of a special operator we have here */ |
| 7333 | |
| 7334 | switch (oper) |
| 7335 | { |
| 7336 | case GT_STMT: |
| 7337 | copy = gtCloneExpr(tree->gtStmt.gtStmtExpr, addFlags, deepVarNum, deepVarVal); |
| 7338 | copy = gtNewStmt(copy, tree->gtStmt.gtStmtILoffsx); |
| 7339 | goto DONE; |
| 7340 | |
| 7341 | case GT_CALL: |
| 7342 | |
| 7343 | // We can't safely clone calls that have GT_RET_EXPRs via gtCloneExpr. |
| 7344 | // You must use gtCloneCandidateCall for these calls (and then do appropriate other fixup) |
| 7345 | if (tree->gtCall.IsInlineCandidate() || tree->gtCall.IsGuardedDevirtualizationCandidate()) |
| 7346 | { |
| 7347 | NO_WAY("Cloning of calls with associated GT_RET_EXPR nodes is not supported" ); |
| 7348 | } |
| 7349 | |
| 7350 | copy = gtCloneExprCallHelper(tree->AsCall(), addFlags, deepVarNum, deepVarVal); |
| 7351 | break; |
| 7352 | |
| 7353 | case GT_FIELD: |
| 7354 | |
| 7355 | copy = gtNewFieldRef(tree->TypeGet(), tree->gtField.gtFldHnd, nullptr, tree->gtField.gtFldOffset); |
| 7356 | |
| 7357 | copy->gtField.gtFldObj = tree->gtField.gtFldObj |
| 7358 | ? gtCloneExpr(tree->gtField.gtFldObj, addFlags, deepVarNum, deepVarVal) |
| 7359 | : nullptr; |
| 7360 | copy->gtField.gtFldMayOverlap = tree->gtField.gtFldMayOverlap; |
| 7361 | #ifdef FEATURE_READYTORUN_COMPILER |
| 7362 | copy->gtField.gtFieldLookup = tree->gtField.gtFieldLookup; |
| 7363 | #endif |
| 7364 | |
| 7365 | break; |
| 7366 | |
| 7367 | case GT_ARR_ELEM: |
| 7368 | { |
| 7369 | GenTree* inds[GT_ARR_MAX_RANK]; |
| 7370 | for (unsigned dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
| 7371 | { |
| 7372 | inds[dim] = gtCloneExpr(tree->gtArrElem.gtArrInds[dim], addFlags, deepVarNum, deepVarVal); |
| 7373 | } |
| 7374 | copy = new (this, GT_ARR_ELEM) |
| 7375 | GenTreeArrElem(tree->TypeGet(), gtCloneExpr(tree->gtArrElem.gtArrObj, addFlags, deepVarNum, deepVarVal), |
| 7376 | tree->gtArrElem.gtArrRank, tree->gtArrElem.gtArrElemSize, tree->gtArrElem.gtArrElemType, |
| 7377 | &inds[0]); |
| 7378 | } |
| 7379 | break; |
| 7380 | |
| 7381 | case GT_ARR_OFFSET: |
| 7382 | { |
| 7383 | copy = new (this, GT_ARR_OFFSET) |
| 7384 | GenTreeArrOffs(tree->TypeGet(), gtCloneExpr(tree->gtArrOffs.gtOffset, addFlags, deepVarNum, deepVarVal), |
| 7385 | gtCloneExpr(tree->gtArrOffs.gtIndex, addFlags, deepVarNum, deepVarVal), |
| 7386 | gtCloneExpr(tree->gtArrOffs.gtArrObj, addFlags, deepVarNum, deepVarVal), |
| 7387 | tree->gtArrOffs.gtCurrDim, tree->gtArrOffs.gtArrRank, tree->gtArrOffs.gtArrElemType); |
| 7388 | } |
| 7389 | break; |
| 7390 | |
| 7391 | case GT_CMPXCHG: |
| 7392 | copy = new (this, GT_CMPXCHG) |
| 7393 | GenTreeCmpXchg(tree->TypeGet(), |
| 7394 | gtCloneExpr(tree->gtCmpXchg.gtOpLocation, addFlags, deepVarNum, deepVarVal), |
| 7395 | gtCloneExpr(tree->gtCmpXchg.gtOpValue, addFlags, deepVarNum, deepVarVal), |
| 7396 | gtCloneExpr(tree->gtCmpXchg.gtOpComparand, addFlags, deepVarNum, deepVarVal)); |
| 7397 | break; |
| 7398 | |
| 7399 | case GT_ARR_BOUNDS_CHECK: |
| 7400 | #ifdef FEATURE_SIMD |
| 7401 | case GT_SIMD_CHK: |
| 7402 | #endif // FEATURE_SIMD |
| 7403 | #ifdef FEATURE_HW_INTRINSICS |
| 7404 | case GT_HW_INTRINSIC_CHK: |
| 7405 | #endif // FEATURE_HW_INTRINSICS |
| 7406 | copy = new (this, oper) |
| 7407 | GenTreeBoundsChk(oper, tree->TypeGet(), |
| 7408 | gtCloneExpr(tree->gtBoundsChk.gtIndex, addFlags, deepVarNum, deepVarVal), |
| 7409 | gtCloneExpr(tree->gtBoundsChk.gtArrLen, addFlags, deepVarNum, deepVarVal), |
| 7410 | tree->gtBoundsChk.gtThrowKind); |
| 7411 | copy->gtBoundsChk.gtIndRngFailBB = tree->gtBoundsChk.gtIndRngFailBB; |
| 7412 | break; |
| 7413 | |
| 7414 | case GT_STORE_DYN_BLK: |
| 7415 | case GT_DYN_BLK: |
| 7416 | copy = new (this, oper) |
| 7417 | GenTreeDynBlk(gtCloneExpr(tree->gtDynBlk.Addr(), addFlags, deepVarNum, deepVarVal), |
| 7418 | gtCloneExpr(tree->gtDynBlk.gtDynamicSize, addFlags, deepVarNum, deepVarVal)); |
| 7419 | break; |
| 7420 | |
| 7421 | default: |
| 7422 | #ifdef DEBUG |
| 7423 | gtDispTree(tree); |
| 7424 | #endif |
| 7425 | NO_WAY("unexpected operator" ); |
| 7426 | } |
| 7427 | |
| 7428 | DONE: |
| 7429 | |
| 7430 | // If it has a zero-offset field seq, copy annotation. |
| 7431 | if (tree->TypeGet() == TYP_BYREF) |
| 7432 | { |
| 7433 | FieldSeqNode* fldSeq = nullptr; |
| 7434 | if (GetZeroOffsetFieldMap()->Lookup(tree, &fldSeq)) |
| 7435 | { |
| 7436 | GetZeroOffsetFieldMap()->Set(copy, fldSeq); |
| 7437 | } |
| 7438 | } |
| 7439 | |
| 7440 | copy->gtVNPair = tree->gtVNPair; // A cloned tree gets the orginal's Value number pair |
| 7441 | |
| 7442 | /* Compute the flags for the copied node. Note that we can do this only |
| 7443 | if we didnt gtFoldExpr(copy) */ |
| 7444 | |
| 7445 | if (copy->gtOper == oper) |
| 7446 | { |
| 7447 | addFlags |= tree->gtFlags; |
| 7448 | |
| 7449 | #ifdef DEBUG |
| 7450 | /* GTF_NODE_MASK should not be propagated from 'tree' to 'copy' */ |
| 7451 | addFlags &= ~GTF_NODE_MASK; |
| 7452 | #endif |
| 7453 | // Some other flags depend on the context of the expression, and should not be preserved. |
| 7454 | // For example, GTF_RELOP_QMARK: |
| 7455 | if (copy->OperKind() & GTK_RELOP) |
| 7456 | { |
| 7457 | addFlags &= ~GTF_RELOP_QMARK; |
| 7458 | } |
| 7459 | // On the other hand, if we're creating such a context, restore this flag. |
| 7460 | if (copy->OperGet() == GT_QMARK) |
| 7461 | { |
| 7462 | copy->gtOp.gtOp1->gtFlags |= GTF_RELOP_QMARK; |
| 7463 | } |
| 7464 | |
| 7465 | copy->gtFlags |= addFlags; |
| 7466 | |
| 7467 | // Update side effect flags since they may be different from the source side effect flags. |
| 7468 | // For example, we may have replaced some locals with constants and made indirections non-throwing. |
| 7469 | gtUpdateNodeSideEffects(copy); |
| 7470 | } |
| 7471 | |
| 7472 | /* GTF_COLON_COND should be propagated from 'tree' to 'copy' */ |
| 7473 | copy->gtFlags |= (tree->gtFlags & GTF_COLON_COND); |
| 7474 | |
| 7475 | #if defined(DEBUG) |
| 7476 | // Non-node debug flags should be propagated from 'tree' to 'copy' |
| 7477 | copy->gtDebugFlags |= (tree->gtDebugFlags & ~GTF_DEBUG_NODE_MASK); |
| 7478 | #endif |
| 7479 | |
| 7480 | /* Make sure to copy back fields that may have been initialized */ |
| 7481 | |
| 7482 | copy->CopyRawCosts(tree); |
| 7483 | copy->gtRsvdRegs = tree->gtRsvdRegs; |
| 7484 | copy->CopyReg(tree); |
| 7485 | return copy; |
| 7486 | } |
| 7487 | |
| 7488 | //------------------------------------------------------------------------ |
| 7489 | // gtCloneExprCallHelper: clone a call tree |
| 7490 | // |
| 7491 | // Notes: |
| 7492 | // Do not invoke this method directly, instead call either gtCloneExpr |
| 7493 | // or gtCloneCandidateCall, as appropriate. |
| 7494 | // |
| 7495 | // Arguments: |
| 7496 | // tree - the call to clone |
| 7497 | // addFlags - GTF_* flags to add to the copied tree nodes |
| 7498 | // deepVarNum - lclNum to replace uses of beyond the root, or BAD_VAR_NUM for no replacement |
| 7499 | // deepVarVal - If replacing beyond root, replace `deepVarNum` with IntCns `deepVarVal` |
| 7500 | // |
| 7501 | // Returns: |
| 7502 | // Cloned copy of call and all subtrees. |
| 7503 | |
| 7504 | GenTreeCall* Compiler::gtCloneExprCallHelper(GenTreeCall* tree, unsigned addFlags, unsigned deepVarNum, int deepVarVal) |
| 7505 | { |
| 7506 | GenTreeCall* copy = new (this, GT_CALL) GenTreeCall(tree->TypeGet()); |
| 7507 | |
| 7508 | copy->gtCallObjp = tree->gtCallObjp ? gtCloneExpr(tree->gtCallObjp, addFlags, deepVarNum, deepVarVal) : nullptr; |
| 7509 | copy->gtCallArgs = |
| 7510 | tree->gtCallArgs ? gtCloneExpr(tree->gtCallArgs, addFlags, deepVarNum, deepVarVal)->AsArgList() : nullptr; |
| 7511 | copy->gtCallMoreFlags = tree->gtCallMoreFlags; |
| 7512 | copy->gtCallLateArgs = tree->gtCallLateArgs |
| 7513 | ? gtCloneExpr(tree->gtCallLateArgs, addFlags, deepVarNum, deepVarVal)->AsArgList() |
| 7514 | : nullptr; |
| 7515 | |
| 7516 | #if !FEATURE_FIXED_OUT_ARGS |
| 7517 | copy->regArgList = tree->regArgList; |
| 7518 | copy->regArgListCount = tree->regArgListCount; |
| 7519 | #endif |
| 7520 | |
| 7521 | // The call sig comes from the EE and doesn't change throughout the compilation process, meaning |
| 7522 | // we only really need one physical copy of it. Therefore a shallow pointer copy will suffice. |
| 7523 | // (Note that this still holds even if the tree we are cloning was created by an inlinee compiler, |
| 7524 | // because the inlinee still uses the inliner's memory allocator anyway.) |
| 7525 | copy->callSig = tree->callSig; |
| 7526 | |
| 7527 | copy->gtCallType = tree->gtCallType; |
| 7528 | copy->gtReturnType = tree->gtReturnType; |
| 7529 | copy->gtControlExpr = tree->gtControlExpr; |
| 7530 | |
| 7531 | /* Copy the union */ |
| 7532 | if (tree->gtCallType == CT_INDIRECT) |
| 7533 | { |
| 7534 | copy->gtCallCookie = |
| 7535 | tree->gtCallCookie ? gtCloneExpr(tree->gtCallCookie, addFlags, deepVarNum, deepVarVal) : nullptr; |
| 7536 | copy->gtCallAddr = tree->gtCallAddr ? gtCloneExpr(tree->gtCallAddr, addFlags, deepVarNum, deepVarVal) : nullptr; |
| 7537 | } |
| 7538 | else if (tree->IsVirtualStub()) |
| 7539 | { |
| 7540 | copy->gtCallMethHnd = tree->gtCallMethHnd; |
| 7541 | copy->gtStubCallStubAddr = tree->gtStubCallStubAddr; |
| 7542 | } |
| 7543 | else |
| 7544 | { |
| 7545 | copy->gtCallMethHnd = tree->gtCallMethHnd; |
| 7546 | copy->gtInlineCandidateInfo = nullptr; |
| 7547 | } |
| 7548 | |
| 7549 | if (tree->fgArgInfo) |
| 7550 | { |
| 7551 | // Create and initialize the fgArgInfo for our copy of the call tree |
| 7552 | copy->fgArgInfo = new (this, CMK_Unknown) fgArgInfo(copy, tree); |
| 7553 | } |
| 7554 | else |
| 7555 | { |
| 7556 | copy->fgArgInfo = nullptr; |
| 7557 | } |
| 7558 | |
| 7559 | copy->gtRetClsHnd = tree->gtRetClsHnd; |
| 7560 | |
| 7561 | #if FEATURE_MULTIREG_RET |
| 7562 | copy->gtReturnTypeDesc = tree->gtReturnTypeDesc; |
| 7563 | #endif |
| 7564 | |
| 7565 | #ifdef FEATURE_READYTORUN_COMPILER |
| 7566 | copy->setEntryPoint(tree->gtEntryPoint); |
| 7567 | #endif |
| 7568 | |
| 7569 | #if defined(DEBUG) || defined(INLINE_DATA) |
| 7570 | copy->gtInlineObservation = tree->gtInlineObservation; |
| 7571 | copy->gtRawILOffset = tree->gtCall.gtRawILOffset; |
| 7572 | #endif |
| 7573 | |
| 7574 | copy->CopyOtherRegFlags(tree); |
| 7575 | |
| 7576 | return copy; |
| 7577 | } |
| 7578 | |
| 7579 | //------------------------------------------------------------------------ |
| 7580 | // gtCloneCandidateCall: clone a call that is an inline or guarded |
| 7581 | // devirtualization candidate (~ any call that can have a GT_RET_EXPR) |
| 7582 | // |
| 7583 | // Notes: |
| 7584 | // If the call really is a candidate, the caller must take additional steps |
| 7585 | // after cloning to re-establish candidate info and the relationship between |
| 7586 | // the candidate and any associated GT_RET_EXPR. |
| 7587 | // |
| 7588 | // Arguments: |
| 7589 | // call - the call to clone |
| 7590 | // |
| 7591 | // Returns: |
| 7592 | // Cloned copy of call and all subtrees. |
| 7593 | |
| 7594 | GenTreeCall* Compiler::gtCloneCandidateCall(GenTreeCall* call) |
| 7595 | { |
| 7596 | assert(call->IsInlineCandidate() || call->IsGuardedDevirtualizationCandidate()); |
| 7597 | |
| 7598 | GenTreeCall* result = gtCloneExprCallHelper(call); |
| 7599 | |
| 7600 | // There is some common post-processing in gtCloneExpr that we reproduce |
| 7601 | // here, for the fields that make sense for candidate calls. |
| 7602 | result->gtFlags |= call->gtFlags; |
| 7603 | |
| 7604 | #if defined(DEBUG) |
| 7605 | result->gtDebugFlags |= (call->gtDebugFlags & ~GTF_DEBUG_NODE_MASK); |
| 7606 | #endif |
| 7607 | |
| 7608 | result->CopyReg(call); |
| 7609 | |
| 7610 | return result; |
| 7611 | } |
| 7612 | |
| 7613 | //------------------------------------------------------------------------ |
| 7614 | // gtReplaceTree: Replace a tree with a new tree. |
| 7615 | // |
| 7616 | // Arguments: |
| 7617 | // stmt - The top-level root stmt of the tree being replaced. |
| 7618 | // Must not be null. |
| 7619 | // tree - The tree being replaced. Must not be null. |
| 7620 | // replacementTree - The replacement tree. Must not be null. |
| 7621 | // |
| 7622 | // Return Value: |
| 7623 | // The tree node that replaces the old tree. |
| 7624 | // |
| 7625 | // Assumptions: |
| 7626 | // The sequencing of the stmt has been done. |
| 7627 | // |
| 7628 | // Notes: |
| 7629 | // The caller must ensure that the original statement has been sequenced, |
| 7630 | // and the side effect flags are updated on the statement nodes, |
| 7631 | // but this method will sequence 'replacementTree', and insert it into the |
| 7632 | // proper place in the statement sequence. |
| 7633 | |
| 7634 | GenTree* Compiler::gtReplaceTree(GenTree* stmt, GenTree* tree, GenTree* replacementTree) |
| 7635 | { |
| 7636 | assert(fgStmtListThreaded); |
| 7637 | assert(tree != nullptr); |
| 7638 | assert(stmt != nullptr); |
| 7639 | assert(replacementTree != nullptr); |
| 7640 | |
| 7641 | GenTree** treePtr = nullptr; |
| 7642 | GenTree* treeParent = tree->gtGetParent(&treePtr); |
| 7643 | |
| 7644 | assert(treeParent != nullptr || tree == stmt->gtStmt.gtStmtExpr); |
| 7645 | |
| 7646 | if (treePtr == nullptr) |
| 7647 | { |
| 7648 | // Replace the stmt expr and rebuild the linear order for "stmt". |
| 7649 | assert(treeParent == nullptr); |
| 7650 | assert(fgOrder != FGOrderLinear); |
| 7651 | stmt->gtStmt.gtStmtExpr = tree; |
| 7652 | fgSetStmtSeq(stmt); |
| 7653 | } |
| 7654 | else |
| 7655 | { |
| 7656 | assert(treeParent != nullptr); |
| 7657 | |
| 7658 | // Check to see if the node to be replaced is a call argument and if so, |
| 7659 | // set `treeParent` to the call node. |
| 7660 | GenTree* cursor = treeParent; |
| 7661 | while ((cursor != nullptr) && (cursor->OperGet() == GT_LIST)) |
| 7662 | { |
| 7663 | cursor = cursor->gtNext; |
| 7664 | } |
| 7665 | |
| 7666 | if ((cursor != nullptr) && (cursor->OperGet() == GT_CALL)) |
| 7667 | { |
| 7668 | treeParent = cursor; |
| 7669 | } |
| 7670 | |
| 7671 | #ifdef DEBUG |
| 7672 | GenTree** useEdge; |
| 7673 | assert(treeParent->TryGetUse(tree, &useEdge)); |
| 7674 | assert(useEdge == treePtr); |
| 7675 | #endif // DEBUG |
| 7676 | |
| 7677 | GenTree* treeFirstNode = fgGetFirstNode(tree); |
| 7678 | GenTree* treeLastNode = tree; |
| 7679 | GenTree* treePrevNode = treeFirstNode->gtPrev; |
| 7680 | GenTree* treeNextNode = treeLastNode->gtNext; |
| 7681 | |
| 7682 | treeParent->ReplaceOperand(treePtr, replacementTree); |
| 7683 | |
| 7684 | // Build the linear order for "replacementTree". |
| 7685 | fgSetTreeSeq(replacementTree, treePrevNode); |
| 7686 | |
| 7687 | // Restore linear-order Prev and Next for "replacementTree". |
| 7688 | if (treePrevNode != nullptr) |
| 7689 | { |
| 7690 | treeFirstNode = fgGetFirstNode(replacementTree); |
| 7691 | treeFirstNode->gtPrev = treePrevNode; |
| 7692 | treePrevNode->gtNext = treeFirstNode; |
| 7693 | } |
| 7694 | else |
| 7695 | { |
| 7696 | // Update the linear oder start of "stmt" if treeFirstNode |
| 7697 | // appears to have replaced the original first node. |
| 7698 | assert(treeFirstNode == stmt->gtStmt.gtStmtList); |
| 7699 | stmt->gtStmt.gtStmtList = fgGetFirstNode(replacementTree); |
| 7700 | } |
| 7701 | |
| 7702 | if (treeNextNode != nullptr) |
| 7703 | { |
| 7704 | treeLastNode = replacementTree; |
| 7705 | treeLastNode->gtNext = treeNextNode; |
| 7706 | treeNextNode->gtPrev = treeLastNode; |
| 7707 | } |
| 7708 | } |
| 7709 | |
| 7710 | return replacementTree; |
| 7711 | } |
| 7712 | |
| 7713 | //------------------------------------------------------------------------ |
| 7714 | // gtUpdateSideEffects: Update the side effects of a tree and its ancestors |
| 7715 | // |
| 7716 | // Arguments: |
| 7717 | // stmt - The tree's statement |
| 7718 | // tree - Tree to update the side effects for |
| 7719 | // |
| 7720 | // Note: If tree's order hasn't been established, the method updates side effect |
| 7721 | // flags on all statement's nodes. |
| 7722 | |
| 7723 | void Compiler::gtUpdateSideEffects(GenTree* stmt, GenTree* tree) |
| 7724 | { |
| 7725 | if (fgStmtListThreaded) |
| 7726 | { |
| 7727 | gtUpdateTreeAncestorsSideEffects(tree); |
| 7728 | } |
| 7729 | else |
| 7730 | { |
| 7731 | gtUpdateStmtSideEffects(stmt); |
| 7732 | } |
| 7733 | } |
| 7734 | |
| 7735 | //------------------------------------------------------------------------ |
| 7736 | // gtUpdateTreeAncestorsSideEffects: Update the side effects of a tree and its ancestors |
| 7737 | // when statement order has been established. |
| 7738 | // |
| 7739 | // Arguments: |
| 7740 | // tree - Tree to update the side effects for |
| 7741 | |
| 7742 | void Compiler::(GenTree* tree) |
| 7743 | { |
| 7744 | assert(fgStmtListThreaded); |
| 7745 | while (tree != nullptr) |
| 7746 | { |
| 7747 | gtUpdateNodeSideEffects(tree); |
| 7748 | tree = tree->gtGetParent(nullptr); |
| 7749 | } |
| 7750 | } |
| 7751 | |
| 7752 | //------------------------------------------------------------------------ |
| 7753 | // gtUpdateStmtSideEffects: Update the side effects for statement tree nodes. |
| 7754 | // |
| 7755 | // Arguments: |
| 7756 | // stmt - The statement to update side effects on |
| 7757 | |
| 7758 | void Compiler::gtUpdateStmtSideEffects(GenTree* stmt) |
| 7759 | { |
| 7760 | fgWalkTree(&stmt->gtStmt.gtStmtExpr, fgUpdateSideEffectsPre, fgUpdateSideEffectsPost); |
| 7761 | } |
| 7762 | |
| 7763 | //------------------------------------------------------------------------ |
| 7764 | // gtUpdateNodeOperSideEffects: Update the side effects based on the node operation. |
| 7765 | // |
| 7766 | // Arguments: |
| 7767 | // tree - Tree to update the side effects on |
| 7768 | // |
| 7769 | // Notes: |
| 7770 | // This method currently only updates GTF_EXCEPT, GTF_ASG, and GTF_CALL flags. |
| 7771 | // The other side effect flags may remain unnecessarily (conservatively) set. |
| 7772 | // The caller of this method is expected to update the flags based on the children's flags. |
| 7773 | |
| 7774 | void Compiler::gtUpdateNodeOperSideEffects(GenTree* tree) |
| 7775 | { |
| 7776 | if (tree->OperMayThrow(this)) |
| 7777 | { |
| 7778 | tree->gtFlags |= GTF_EXCEPT; |
| 7779 | } |
| 7780 | else |
| 7781 | { |
| 7782 | tree->gtFlags &= ~GTF_EXCEPT; |
| 7783 | if (tree->OperIsIndirOrArrLength()) |
| 7784 | { |
| 7785 | tree->gtFlags |= GTF_IND_NONFAULTING; |
| 7786 | } |
| 7787 | } |
| 7788 | |
| 7789 | if (tree->OperRequiresAsgFlag()) |
| 7790 | { |
| 7791 | tree->gtFlags |= GTF_ASG; |
| 7792 | } |
| 7793 | else |
| 7794 | { |
| 7795 | tree->gtFlags &= ~GTF_ASG; |
| 7796 | } |
| 7797 | |
| 7798 | if (tree->OperRequiresCallFlag(this)) |
| 7799 | { |
| 7800 | tree->gtFlags |= GTF_CALL; |
| 7801 | } |
| 7802 | else |
| 7803 | { |
| 7804 | tree->gtFlags &= ~GTF_CALL; |
| 7805 | } |
| 7806 | } |
| 7807 | |
| 7808 | //------------------------------------------------------------------------ |
| 7809 | // gtUpdateNodeSideEffects: Update the side effects based on the node operation and |
| 7810 | // children's side efects. |
| 7811 | // |
| 7812 | // Arguments: |
| 7813 | // tree - Tree to update the side effects on |
| 7814 | // |
| 7815 | // Notes: |
| 7816 | // This method currently only updates GTF_EXCEPT and GTF_ASG flags. The other side effect |
| 7817 | // flags may remain unnecessarily (conservatively) set. |
| 7818 | |
| 7819 | void Compiler::gtUpdateNodeSideEffects(GenTree* tree) |
| 7820 | { |
| 7821 | gtUpdateNodeOperSideEffects(tree); |
| 7822 | unsigned nChildren = tree->NumChildren(); |
| 7823 | for (unsigned childNum = 0; childNum < nChildren; childNum++) |
| 7824 | { |
| 7825 | GenTree* child = tree->GetChild(childNum); |
| 7826 | if (child != nullptr) |
| 7827 | { |
| 7828 | tree->gtFlags |= (child->gtFlags & GTF_ALL_EFFECT); |
| 7829 | } |
| 7830 | } |
| 7831 | } |
| 7832 | |
| 7833 | //------------------------------------------------------------------------ |
| 7834 | // fgUpdateSideEffectsPre: Update the side effects based on the tree operation. |
| 7835 | // |
| 7836 | // Arguments: |
| 7837 | // pTree - Pointer to the tree to update the side effects |
| 7838 | // fgWalkPre - Walk data |
| 7839 | // |
| 7840 | // Notes: |
| 7841 | // This method currently only updates GTF_EXCEPT and GTF_ASG flags. The other side effect |
| 7842 | // flags may remain unnecessarily (conservatively) set. |
| 7843 | |
| 7844 | Compiler::fgWalkResult Compiler::fgUpdateSideEffectsPre(GenTree** pTree, fgWalkData* fgWalkPre) |
| 7845 | { |
| 7846 | fgWalkPre->compiler->gtUpdateNodeOperSideEffects(*pTree); |
| 7847 | |
| 7848 | return WALK_CONTINUE; |
| 7849 | } |
| 7850 | |
| 7851 | //------------------------------------------------------------------------ |
| 7852 | // fgUpdateSideEffectsPost: Update the side effects of the parent based on the tree's flags. |
| 7853 | // |
| 7854 | // Arguments: |
| 7855 | // pTree - Pointer to the tree |
| 7856 | // fgWalkPost - Walk data |
| 7857 | // |
| 7858 | // Notes: |
| 7859 | // The routine is used for updating the stale side effect flags for ancestor |
| 7860 | // nodes starting from treeParent up to the top-level stmt expr. |
| 7861 | |
| 7862 | Compiler::fgWalkResult Compiler::fgUpdateSideEffectsPost(GenTree** pTree, fgWalkData* fgWalkPost) |
| 7863 | { |
| 7864 | GenTree* tree = *pTree; |
| 7865 | GenTree* parent = fgWalkPost->parent; |
| 7866 | if (parent != nullptr) |
| 7867 | { |
| 7868 | parent->gtFlags |= (tree->gtFlags & GTF_ALL_EFFECT); |
| 7869 | } |
| 7870 | return WALK_CONTINUE; |
| 7871 | } |
| 7872 | |
| 7873 | /***************************************************************************** |
| 7874 | * |
| 7875 | * Compares two trees and returns true when both trees are the same. |
| 7876 | * Instead of fully comparing the two trees this method can just return false. |
| 7877 | * Thus callers should not assume that the trees are different when false is returned. |
| 7878 | * Only when true is returned can the caller perform code optimizations. |
| 7879 | * The current implementation only compares a limited set of LEAF/CONST node |
| 7880 | * and returns false for all othere trees. |
| 7881 | */ |
| 7882 | bool Compiler::gtCompareTree(GenTree* op1, GenTree* op2) |
| 7883 | { |
| 7884 | /* Make sure that both trees are of the same GT node kind */ |
| 7885 | if (op1->OperGet() != op2->OperGet()) |
| 7886 | { |
| 7887 | return false; |
| 7888 | } |
| 7889 | |
| 7890 | /* Make sure that both trees are returning the same type */ |
| 7891 | if (op1->gtType != op2->gtType) |
| 7892 | { |
| 7893 | return false; |
| 7894 | } |
| 7895 | |
| 7896 | /* Figure out what kind of a node we have */ |
| 7897 | |
| 7898 | genTreeOps oper = op1->OperGet(); |
| 7899 | unsigned kind = op1->OperKind(); |
| 7900 | |
| 7901 | /* Is this a constant or leaf node? */ |
| 7902 | |
| 7903 | if (kind & (GTK_CONST | GTK_LEAF)) |
| 7904 | { |
| 7905 | switch (oper) |
| 7906 | { |
| 7907 | case GT_CNS_INT: |
| 7908 | if ((op1->gtIntCon.gtIconVal == op2->gtIntCon.gtIconVal) && GenTree::SameIconHandleFlag(op1, op2)) |
| 7909 | { |
| 7910 | return true; |
| 7911 | } |
| 7912 | break; |
| 7913 | |
| 7914 | case GT_CNS_LNG: |
| 7915 | if (op1->gtLngCon.gtLconVal == op2->gtLngCon.gtLconVal) |
| 7916 | { |
| 7917 | return true; |
| 7918 | } |
| 7919 | break; |
| 7920 | |
| 7921 | case GT_CNS_STR: |
| 7922 | if (op1->gtStrCon.gtSconCPX == op2->gtStrCon.gtSconCPX) |
| 7923 | { |
| 7924 | return true; |
| 7925 | } |
| 7926 | break; |
| 7927 | |
| 7928 | case GT_LCL_VAR: |
| 7929 | if (op1->gtLclVarCommon.gtLclNum == op2->gtLclVarCommon.gtLclNum) |
| 7930 | { |
| 7931 | return true; |
| 7932 | } |
| 7933 | break; |
| 7934 | |
| 7935 | case GT_CLS_VAR: |
| 7936 | if (op1->gtClsVar.gtClsVarHnd == op2->gtClsVar.gtClsVarHnd) |
| 7937 | { |
| 7938 | return true; |
| 7939 | } |
| 7940 | break; |
| 7941 | |
| 7942 | default: |
| 7943 | // we return false for these unhandled 'oper' kinds |
| 7944 | break; |
| 7945 | } |
| 7946 | } |
| 7947 | return false; |
| 7948 | } |
| 7949 | |
| 7950 | GenTree* Compiler::gtGetThisArg(GenTreeCall* call) |
| 7951 | { |
| 7952 | if (call->gtCallObjp != nullptr) |
| 7953 | { |
| 7954 | if (call->gtCallObjp->gtOper != GT_NOP && call->gtCallObjp->gtOper != GT_ASG) |
| 7955 | { |
| 7956 | if (!(call->gtCallObjp->gtFlags & GTF_LATE_ARG)) |
| 7957 | { |
| 7958 | return call->gtCallObjp; |
| 7959 | } |
| 7960 | } |
| 7961 | |
| 7962 | if (call->gtCallLateArgs) |
| 7963 | { |
| 7964 | regNumber thisReg = REG_ARG_0; |
| 7965 | unsigned argNum = 0; |
| 7966 | fgArgTabEntry* thisArgTabEntry = gtArgEntryByArgNum(call, argNum); |
| 7967 | GenTree* result = thisArgTabEntry->node; |
| 7968 | |
| 7969 | #if !FEATURE_FIXED_OUT_ARGS |
| 7970 | GenTree* lateArgs = call->gtCallLateArgs; |
| 7971 | regList list = call->regArgList; |
| 7972 | int index = 0; |
| 7973 | while (lateArgs != NULL) |
| 7974 | { |
| 7975 | assert(lateArgs->gtOper == GT_LIST); |
| 7976 | assert(index < call->regArgListCount); |
| 7977 | regNumber curArgReg = list[index]; |
| 7978 | if (curArgReg == thisReg) |
| 7979 | { |
| 7980 | if (optAssertionPropagatedCurrentStmt) |
| 7981 | result = lateArgs->gtOp.gtOp1; |
| 7982 | |
| 7983 | assert(result == lateArgs->gtOp.gtOp1); |
| 7984 | } |
| 7985 | |
| 7986 | lateArgs = lateArgs->gtOp.gtOp2; |
| 7987 | index++; |
| 7988 | } |
| 7989 | #endif |
| 7990 | return result; |
| 7991 | } |
| 7992 | } |
| 7993 | return nullptr; |
| 7994 | } |
| 7995 | |
| 7996 | bool GenTree::gtSetFlags() const |
| 7997 | { |
| 7998 | // |
| 7999 | // When FEATURE_SET_FLAGS (_TARGET_ARM_) is active the method returns true |
| 8000 | // when the gtFlags has the flag GTF_SET_FLAGS set |
| 8001 | // otherwise the architecture will be have instructions that typically set |
| 8002 | // the flags and this method will return true. |
| 8003 | // |
| 8004 | // Exceptions: GT_IND (load/store) is not allowed to set the flags |
| 8005 | // and on XARCH the GT_MUL/GT_DIV and all overflow instructions |
| 8006 | // do not set the condition flags |
| 8007 | // |
| 8008 | // Precondition we have a GTK_SMPOP |
| 8009 | // |
| 8010 | if (!varTypeIsIntegralOrI(TypeGet()) && (TypeGet() != TYP_VOID)) |
| 8011 | { |
| 8012 | return false; |
| 8013 | } |
| 8014 | |
| 8015 | if (((gtFlags & GTF_SET_FLAGS) != 0) && (gtOper != GT_IND)) |
| 8016 | { |
| 8017 | // GTF_SET_FLAGS is not valid on GT_IND and is overlaid with GTF_NONFAULTING_IND |
| 8018 | return true; |
| 8019 | } |
| 8020 | else |
| 8021 | { |
| 8022 | return false; |
| 8023 | } |
| 8024 | } |
| 8025 | |
| 8026 | bool GenTree::gtRequestSetFlags() |
| 8027 | { |
| 8028 | bool result = false; |
| 8029 | |
| 8030 | #if FEATURE_SET_FLAGS |
| 8031 | // This method is a Nop unless FEATURE_SET_FLAGS is defined |
| 8032 | |
| 8033 | // In order to set GTF_SET_FLAGS |
| 8034 | // we must have a GTK_SMPOP |
| 8035 | // and we have a integer or machine size type (not floating point or TYP_LONG on 32-bit) |
| 8036 | // |
| 8037 | if (!OperIsSimple()) |
| 8038 | return false; |
| 8039 | |
| 8040 | if (!varTypeIsIntegralOrI(TypeGet())) |
| 8041 | return false; |
| 8042 | |
| 8043 | switch (gtOper) |
| 8044 | { |
| 8045 | case GT_IND: |
| 8046 | case GT_ARR_LENGTH: |
| 8047 | // These will turn into simple load from memory instructions |
| 8048 | // and we can't force the setting of the flags on load from memory |
| 8049 | break; |
| 8050 | |
| 8051 | case GT_MUL: |
| 8052 | case GT_DIV: |
| 8053 | // These instructions don't set the flags (on x86/x64) |
| 8054 | // |
| 8055 | break; |
| 8056 | |
| 8057 | default: |
| 8058 | // Otherwise we can set the flags for this gtOper |
| 8059 | // and codegen must set the condition flags. |
| 8060 | // |
| 8061 | gtFlags |= GTF_SET_FLAGS; |
| 8062 | result = true; |
| 8063 | break; |
| 8064 | } |
| 8065 | #endif // FEATURE_SET_FLAGS |
| 8066 | |
| 8067 | // Codegen for this tree must set the condition flags if |
| 8068 | // this method returns true. |
| 8069 | // |
| 8070 | return result; |
| 8071 | } |
| 8072 | |
| 8073 | unsigned GenTree::NumChildren() |
| 8074 | { |
| 8075 | if (OperIsConst() || OperIsLeaf()) |
| 8076 | { |
| 8077 | return 0; |
| 8078 | } |
| 8079 | else if (OperIsUnary()) |
| 8080 | { |
| 8081 | if (OperGet() == GT_NOP || OperGet() == GT_RETURN || OperGet() == GT_RETFILT) |
| 8082 | { |
| 8083 | if (gtOp.gtOp1 == nullptr) |
| 8084 | { |
| 8085 | return 0; |
| 8086 | } |
| 8087 | else |
| 8088 | { |
| 8089 | return 1; |
| 8090 | } |
| 8091 | } |
| 8092 | else |
| 8093 | { |
| 8094 | return 1; |
| 8095 | } |
| 8096 | } |
| 8097 | else if (OperIsBinary()) |
| 8098 | { |
| 8099 | // All binary operators except LEA have at least one arg; the second arg may sometimes be null, however. |
| 8100 | if (OperGet() == GT_LEA) |
| 8101 | { |
| 8102 | unsigned childCount = 0; |
| 8103 | if (gtOp.gtOp1 != nullptr) |
| 8104 | { |
| 8105 | childCount++; |
| 8106 | } |
| 8107 | if (gtOp.gtOp2 != nullptr) |
| 8108 | { |
| 8109 | childCount++; |
| 8110 | } |
| 8111 | return childCount; |
| 8112 | } |
| 8113 | #ifdef FEATURE_HW_INTRINSICS |
| 8114 | // GT_HWIntrinsic require special handling |
| 8115 | if (OperGet() == GT_HWIntrinsic) |
| 8116 | { |
| 8117 | if (gtOp.gtOp1 == nullptr) |
| 8118 | { |
| 8119 | return 0; |
| 8120 | } |
| 8121 | } |
| 8122 | #endif |
| 8123 | assert(gtOp.gtOp1 != nullptr); |
| 8124 | if (gtOp.gtOp2 == nullptr) |
| 8125 | { |
| 8126 | return 1; |
| 8127 | } |
| 8128 | else |
| 8129 | { |
| 8130 | return 2; |
| 8131 | } |
| 8132 | } |
| 8133 | else |
| 8134 | { |
| 8135 | // Special |
| 8136 | switch (OperGet()) |
| 8137 | { |
| 8138 | case GT_CMPXCHG: |
| 8139 | return 3; |
| 8140 | |
| 8141 | case GT_ARR_BOUNDS_CHECK: |
| 8142 | #ifdef FEATURE_SIMD |
| 8143 | case GT_SIMD_CHK: |
| 8144 | #endif // FEATURE_SIMD |
| 8145 | #ifdef FEATURE_HW_INTRINSICS |
| 8146 | case GT_HW_INTRINSIC_CHK: |
| 8147 | #endif // FEATURE_HW_INTRINSICS |
| 8148 | return 2; |
| 8149 | |
| 8150 | case GT_FIELD: |
| 8151 | case GT_STMT: |
| 8152 | return 1; |
| 8153 | |
| 8154 | case GT_ARR_ELEM: |
| 8155 | return 1 + AsArrElem()->gtArrRank; |
| 8156 | |
| 8157 | case GT_DYN_BLK: |
| 8158 | return 2; |
| 8159 | |
| 8160 | case GT_ARR_OFFSET: |
| 8161 | case GT_STORE_DYN_BLK: |
| 8162 | return 3; |
| 8163 | |
| 8164 | case GT_CALL: |
| 8165 | { |
| 8166 | GenTreeCall* call = AsCall(); |
| 8167 | unsigned res = 0; // arg list(s) (including late args). |
| 8168 | if (call->gtCallObjp != nullptr) |
| 8169 | { |
| 8170 | res++; // Add objp? |
| 8171 | } |
| 8172 | if (call->gtCallArgs != nullptr) |
| 8173 | { |
| 8174 | res++; // Add args? |
| 8175 | } |
| 8176 | if (call->gtCallLateArgs != nullptr) |
| 8177 | { |
| 8178 | res++; // Add late args? |
| 8179 | } |
| 8180 | if (call->gtControlExpr != nullptr) |
| 8181 | { |
| 8182 | res++; |
| 8183 | } |
| 8184 | |
| 8185 | if (call->gtCallType == CT_INDIRECT) |
| 8186 | { |
| 8187 | if (call->gtCallCookie != nullptr) |
| 8188 | { |
| 8189 | res++; |
| 8190 | } |
| 8191 | if (call->gtCallAddr != nullptr) |
| 8192 | { |
| 8193 | res++; |
| 8194 | } |
| 8195 | } |
| 8196 | return res; |
| 8197 | } |
| 8198 | case GT_NONE: |
| 8199 | return 0; |
| 8200 | default: |
| 8201 | unreached(); |
| 8202 | } |
| 8203 | } |
| 8204 | } |
| 8205 | |
| 8206 | GenTree* GenTree::GetChild(unsigned childNum) |
| 8207 | { |
| 8208 | assert(childNum < NumChildren()); // Precondition. |
| 8209 | assert(NumChildren() <= MAX_CHILDREN); |
| 8210 | assert(!(OperIsConst() || OperIsLeaf())); |
| 8211 | if (OperIsUnary()) |
| 8212 | { |
| 8213 | return AsUnOp()->gtOp1; |
| 8214 | } |
| 8215 | // Special case for assignment of dynamic block. |
| 8216 | // This code is here to duplicate the former case where the size may be evaluated prior to the |
| 8217 | // source and destination addresses. In order to do this, we treat the size as a child of the |
| 8218 | // assignment. |
| 8219 | // TODO-1stClassStructs: Revisit the need to duplicate former behavior, so that we can remove |
| 8220 | // these special cases. |
| 8221 | if ((OperGet() == GT_ASG) && (gtOp.gtOp1->OperGet() == GT_DYN_BLK) && (childNum == 2)) |
| 8222 | { |
| 8223 | return gtOp.gtOp1->AsDynBlk()->gtDynamicSize; |
| 8224 | } |
| 8225 | else if (OperIsBinary()) |
| 8226 | { |
| 8227 | if (OperIsAddrMode()) |
| 8228 | { |
| 8229 | // If this is the first (0th) child, only return op1 if it is non-null |
| 8230 | // Otherwise, we return gtOp2. |
| 8231 | if (childNum == 0 && AsOp()->gtOp1 != nullptr) |
| 8232 | { |
| 8233 | return AsOp()->gtOp1; |
| 8234 | } |
| 8235 | return AsOp()->gtOp2; |
| 8236 | } |
| 8237 | // TODO-Cleanup: Consider handling ReverseOps here, and then we wouldn't have to handle it in |
| 8238 | // fgGetFirstNode(). However, it seems that it causes loop hoisting behavior to change. |
| 8239 | if (childNum == 0) |
| 8240 | { |
| 8241 | return AsOp()->gtOp1; |
| 8242 | } |
| 8243 | else |
| 8244 | { |
| 8245 | return AsOp()->gtOp2; |
| 8246 | } |
| 8247 | } |
| 8248 | else |
| 8249 | { |
| 8250 | // Special |
| 8251 | switch (OperGet()) |
| 8252 | { |
| 8253 | case GT_CMPXCHG: |
| 8254 | switch (childNum) |
| 8255 | { |
| 8256 | case 0: |
| 8257 | return AsCmpXchg()->gtOpLocation; |
| 8258 | case 1: |
| 8259 | return AsCmpXchg()->gtOpValue; |
| 8260 | case 2: |
| 8261 | return AsCmpXchg()->gtOpComparand; |
| 8262 | default: |
| 8263 | unreached(); |
| 8264 | } |
| 8265 | case GT_ARR_BOUNDS_CHECK: |
| 8266 | #ifdef FEATURE_SIMD |
| 8267 | case GT_SIMD_CHK: |
| 8268 | #endif // FEATURE_SIMD |
| 8269 | #ifdef FEATURE_HW_INTRINSICS |
| 8270 | case GT_HW_INTRINSIC_CHK: |
| 8271 | #endif // FEATURE_HW_INTRINSICS |
| 8272 | switch (childNum) |
| 8273 | { |
| 8274 | case 0: |
| 8275 | return AsBoundsChk()->gtIndex; |
| 8276 | case 1: |
| 8277 | return AsBoundsChk()->gtArrLen; |
| 8278 | default: |
| 8279 | unreached(); |
| 8280 | } |
| 8281 | |
| 8282 | case GT_STORE_DYN_BLK: |
| 8283 | switch (childNum) |
| 8284 | { |
| 8285 | case 0: |
| 8286 | return AsDynBlk()->Addr(); |
| 8287 | case 1: |
| 8288 | return AsDynBlk()->Data(); |
| 8289 | case 2: |
| 8290 | return AsDynBlk()->gtDynamicSize; |
| 8291 | default: |
| 8292 | unreached(); |
| 8293 | } |
| 8294 | case GT_DYN_BLK: |
| 8295 | switch (childNum) |
| 8296 | { |
| 8297 | case 0: |
| 8298 | return AsDynBlk()->gtEvalSizeFirst ? AsDynBlk()->gtDynamicSize : AsDynBlk()->Addr(); |
| 8299 | case 1: |
| 8300 | return AsDynBlk()->gtEvalSizeFirst ? AsDynBlk()->Addr() : AsDynBlk()->gtDynamicSize; |
| 8301 | default: |
| 8302 | unreached(); |
| 8303 | } |
| 8304 | |
| 8305 | case GT_FIELD: |
| 8306 | return AsField()->gtFldObj; |
| 8307 | |
| 8308 | case GT_STMT: |
| 8309 | return AsStmt()->gtStmtExpr; |
| 8310 | |
| 8311 | case GT_ARR_ELEM: |
| 8312 | if (childNum == 0) |
| 8313 | { |
| 8314 | return AsArrElem()->gtArrObj; |
| 8315 | } |
| 8316 | else |
| 8317 | { |
| 8318 | return AsArrElem()->gtArrInds[childNum - 1]; |
| 8319 | } |
| 8320 | |
| 8321 | case GT_ARR_OFFSET: |
| 8322 | switch (childNum) |
| 8323 | { |
| 8324 | case 0: |
| 8325 | return AsArrOffs()->gtOffset; |
| 8326 | case 1: |
| 8327 | return AsArrOffs()->gtIndex; |
| 8328 | case 2: |
| 8329 | return AsArrOffs()->gtArrObj; |
| 8330 | default: |
| 8331 | unreached(); |
| 8332 | } |
| 8333 | |
| 8334 | case GT_CALL: |
| 8335 | { |
| 8336 | // The if chain below assumes that all possible children are non-null. |
| 8337 | // If some are null, "virtually skip them." |
| 8338 | // If there isn't "virtually skip it." |
| 8339 | GenTreeCall* call = AsCall(); |
| 8340 | |
| 8341 | if (call->gtCallObjp == nullptr) |
| 8342 | { |
| 8343 | childNum++; |
| 8344 | } |
| 8345 | if (childNum >= 1 && call->gtCallArgs == nullptr) |
| 8346 | { |
| 8347 | childNum++; |
| 8348 | } |
| 8349 | if (childNum >= 2 && call->gtCallLateArgs == nullptr) |
| 8350 | { |
| 8351 | childNum++; |
| 8352 | } |
| 8353 | if (childNum >= 3 && call->gtControlExpr == nullptr) |
| 8354 | { |
| 8355 | childNum++; |
| 8356 | } |
| 8357 | if (call->gtCallType == CT_INDIRECT) |
| 8358 | { |
| 8359 | if (childNum >= 4 && call->gtCallCookie == nullptr) |
| 8360 | { |
| 8361 | childNum++; |
| 8362 | } |
| 8363 | } |
| 8364 | |
| 8365 | if (childNum == 0) |
| 8366 | { |
| 8367 | return call->gtCallObjp; |
| 8368 | } |
| 8369 | else if (childNum == 1) |
| 8370 | { |
| 8371 | return call->gtCallArgs; |
| 8372 | } |
| 8373 | else if (childNum == 2) |
| 8374 | { |
| 8375 | return call->gtCallLateArgs; |
| 8376 | } |
| 8377 | else if (childNum == 3) |
| 8378 | { |
| 8379 | return call->gtControlExpr; |
| 8380 | } |
| 8381 | else |
| 8382 | { |
| 8383 | assert(call->gtCallType == CT_INDIRECT); |
| 8384 | if (childNum == 4) |
| 8385 | { |
| 8386 | return call->gtCallCookie; |
| 8387 | } |
| 8388 | else |
| 8389 | { |
| 8390 | assert(childNum == 5); |
| 8391 | return call->gtCallAddr; |
| 8392 | } |
| 8393 | } |
| 8394 | } |
| 8395 | case GT_NONE: |
| 8396 | unreached(); |
| 8397 | default: |
| 8398 | unreached(); |
| 8399 | } |
| 8400 | } |
| 8401 | } |
| 8402 | |
| 8403 | GenTreeUseEdgeIterator::GenTreeUseEdgeIterator() |
| 8404 | : m_advance(nullptr), m_node(nullptr), m_edge(nullptr), m_argList(nullptr), m_state(-1) |
| 8405 | { |
| 8406 | } |
| 8407 | |
| 8408 | GenTreeUseEdgeIterator::GenTreeUseEdgeIterator(GenTree* node) |
| 8409 | : m_advance(nullptr), m_node(node), m_edge(nullptr), m_argList(nullptr), m_state(0) |
| 8410 | { |
| 8411 | assert(m_node != nullptr); |
| 8412 | |
| 8413 | // NOTE: the switch statement below must be updated when introducing new nodes. |
| 8414 | |
| 8415 | switch (m_node->OperGet()) |
| 8416 | { |
| 8417 | // Leaf nodes |
| 8418 | case GT_LCL_VAR: |
| 8419 | case GT_LCL_FLD: |
| 8420 | case GT_LCL_VAR_ADDR: |
| 8421 | case GT_LCL_FLD_ADDR: |
| 8422 | case GT_CATCH_ARG: |
| 8423 | case GT_LABEL: |
| 8424 | case GT_FTN_ADDR: |
| 8425 | case GT_RET_EXPR: |
| 8426 | case GT_CNS_INT: |
| 8427 | case GT_CNS_LNG: |
| 8428 | case GT_CNS_DBL: |
| 8429 | case GT_CNS_STR: |
| 8430 | case GT_MEMORYBARRIER: |
| 8431 | case GT_JMP: |
| 8432 | case GT_JCC: |
| 8433 | case GT_SETCC: |
| 8434 | case GT_NO_OP: |
| 8435 | case GT_START_NONGC: |
| 8436 | case GT_PROF_HOOK: |
| 8437 | #if !FEATURE_EH_FUNCLETS |
| 8438 | case GT_END_LFIN: |
| 8439 | #endif // !FEATURE_EH_FUNCLETS |
| 8440 | case GT_PHI_ARG: |
| 8441 | case GT_JMPTABLE: |
| 8442 | case GT_CLS_VAR: |
| 8443 | case GT_CLS_VAR_ADDR: |
| 8444 | case GT_ARGPLACE: |
| 8445 | case GT_PHYSREG: |
| 8446 | case GT_EMITNOP: |
| 8447 | case GT_PINVOKE_PROLOG: |
| 8448 | case GT_PINVOKE_EPILOG: |
| 8449 | case GT_IL_OFFSET: |
| 8450 | m_state = -1; |
| 8451 | return; |
| 8452 | |
| 8453 | // Standard unary operators |
| 8454 | case GT_STORE_LCL_VAR: |
| 8455 | case GT_STORE_LCL_FLD: |
| 8456 | case GT_NOT: |
| 8457 | case GT_NEG: |
| 8458 | case GT_COPY: |
| 8459 | case GT_RELOAD: |
| 8460 | case GT_ARR_LENGTH: |
| 8461 | case GT_CAST: |
| 8462 | case GT_BITCAST: |
| 8463 | case GT_CKFINITE: |
| 8464 | case GT_LCLHEAP: |
| 8465 | case GT_ADDR: |
| 8466 | case GT_IND: |
| 8467 | case GT_OBJ: |
| 8468 | case GT_BLK: |
| 8469 | case GT_BOX: |
| 8470 | case GT_ALLOCOBJ: |
| 8471 | case GT_RUNTIMELOOKUP: |
| 8472 | case GT_INIT_VAL: |
| 8473 | case GT_JTRUE: |
| 8474 | case GT_SWITCH: |
| 8475 | case GT_NULLCHECK: |
| 8476 | case GT_PUTARG_REG: |
| 8477 | case GT_PUTARG_STK: |
| 8478 | case GT_BSWAP: |
| 8479 | case GT_BSWAP16: |
| 8480 | #if FEATURE_ARG_SPLIT |
| 8481 | case GT_PUTARG_SPLIT: |
| 8482 | #endif // FEATURE_ARG_SPLIT |
| 8483 | case GT_RETURNTRAP: |
| 8484 | m_edge = &m_node->AsUnOp()->gtOp1; |
| 8485 | assert(*m_edge != nullptr); |
| 8486 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8487 | return; |
| 8488 | |
| 8489 | // Unary operators with an optional operand |
| 8490 | case GT_NOP: |
| 8491 | case GT_RETURN: |
| 8492 | case GT_RETFILT: |
| 8493 | if (m_node->AsUnOp()->gtOp1 == nullptr) |
| 8494 | { |
| 8495 | assert(m_node->NullOp1Legal()); |
| 8496 | m_state = -1; |
| 8497 | } |
| 8498 | else |
| 8499 | { |
| 8500 | m_edge = &m_node->AsUnOp()->gtOp1; |
| 8501 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8502 | } |
| 8503 | return; |
| 8504 | |
| 8505 | // Variadic nodes |
| 8506 | case GT_PHI: |
| 8507 | SetEntryStateForList(m_node->AsUnOp()->gtOp1); |
| 8508 | return; |
| 8509 | |
| 8510 | case GT_FIELD_LIST: |
| 8511 | SetEntryStateForList(m_node); |
| 8512 | return; |
| 8513 | |
| 8514 | #ifdef FEATURE_SIMD |
| 8515 | case GT_SIMD: |
| 8516 | if (m_node->AsSIMD()->gtSIMDIntrinsicID == SIMDIntrinsicInitN) |
| 8517 | { |
| 8518 | SetEntryStateForList(m_node->AsSIMD()->gtOp1); |
| 8519 | } |
| 8520 | else |
| 8521 | { |
| 8522 | SetEntryStateForBinOp(); |
| 8523 | } |
| 8524 | return; |
| 8525 | #endif // FEATURE_SIMD |
| 8526 | |
| 8527 | #ifdef FEATURE_HW_INTRINSICS |
| 8528 | case GT_HWIntrinsic: |
| 8529 | if (m_node->AsHWIntrinsic()->gtOp1 == nullptr) |
| 8530 | { |
| 8531 | assert(m_node->NullOp1Legal()); |
| 8532 | m_state = -1; |
| 8533 | } |
| 8534 | else if (m_node->AsHWIntrinsic()->gtOp1->OperIsList()) |
| 8535 | { |
| 8536 | SetEntryStateForList(m_node->AsHWIntrinsic()->gtOp1); |
| 8537 | } |
| 8538 | else |
| 8539 | { |
| 8540 | SetEntryStateForBinOp(); |
| 8541 | } |
| 8542 | return; |
| 8543 | #endif // FEATURE_HW_INTRINSICS |
| 8544 | |
| 8545 | // LEA, which may have no first operand |
| 8546 | case GT_LEA: |
| 8547 | if (m_node->AsAddrMode()->gtOp1 == nullptr) |
| 8548 | { |
| 8549 | m_edge = &m_node->AsAddrMode()->gtOp2; |
| 8550 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8551 | } |
| 8552 | else |
| 8553 | { |
| 8554 | SetEntryStateForBinOp(); |
| 8555 | } |
| 8556 | return; |
| 8557 | |
| 8558 | // Special nodes |
| 8559 | case GT_CMPXCHG: |
| 8560 | m_edge = &m_node->AsCmpXchg()->gtOpLocation; |
| 8561 | assert(*m_edge != nullptr); |
| 8562 | m_advance = &GenTreeUseEdgeIterator::AdvanceCmpXchg; |
| 8563 | return; |
| 8564 | |
| 8565 | case GT_ARR_BOUNDS_CHECK: |
| 8566 | #ifdef FEATURE_SIMD |
| 8567 | case GT_SIMD_CHK: |
| 8568 | #endif // FEATURE_SIMD |
| 8569 | #ifdef FEATURE_HW_INTRINSICS |
| 8570 | case GT_HW_INTRINSIC_CHK: |
| 8571 | #endif // FEATURE_HW_INTRINSICS |
| 8572 | m_edge = &m_node->AsBoundsChk()->gtIndex; |
| 8573 | assert(*m_edge != nullptr); |
| 8574 | m_advance = &GenTreeUseEdgeIterator::AdvanceBoundsChk; |
| 8575 | return; |
| 8576 | |
| 8577 | case GT_FIELD: |
| 8578 | if (m_node->AsField()->gtFldObj == nullptr) |
| 8579 | { |
| 8580 | m_state = -1; |
| 8581 | } |
| 8582 | else |
| 8583 | { |
| 8584 | m_edge = &m_node->AsField()->gtFldObj; |
| 8585 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8586 | } |
| 8587 | return; |
| 8588 | |
| 8589 | case GT_STMT: |
| 8590 | if (m_node->AsStmt()->gtStmtExpr == nullptr) |
| 8591 | { |
| 8592 | m_state = -1; |
| 8593 | } |
| 8594 | else |
| 8595 | { |
| 8596 | m_edge = &m_node->AsStmt()->gtStmtExpr; |
| 8597 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8598 | } |
| 8599 | return; |
| 8600 | |
| 8601 | case GT_ARR_ELEM: |
| 8602 | m_edge = &m_node->AsArrElem()->gtArrObj; |
| 8603 | assert(*m_edge != nullptr); |
| 8604 | m_advance = &GenTreeUseEdgeIterator::AdvanceArrElem; |
| 8605 | return; |
| 8606 | |
| 8607 | case GT_ARR_OFFSET: |
| 8608 | m_edge = &m_node->AsArrOffs()->gtOffset; |
| 8609 | assert(*m_edge != nullptr); |
| 8610 | m_advance = &GenTreeUseEdgeIterator::AdvanceArrOffset; |
| 8611 | return; |
| 8612 | |
| 8613 | case GT_DYN_BLK: |
| 8614 | { |
| 8615 | GenTreeDynBlk* const dynBlock = m_node->AsDynBlk(); |
| 8616 | m_edge = dynBlock->gtEvalSizeFirst ? &dynBlock->gtDynamicSize : &dynBlock->gtOp1; |
| 8617 | assert(*m_edge != nullptr); |
| 8618 | m_advance = &GenTreeUseEdgeIterator::AdvanceDynBlk; |
| 8619 | } |
| 8620 | return; |
| 8621 | |
| 8622 | case GT_STORE_DYN_BLK: |
| 8623 | { |
| 8624 | GenTreeDynBlk* const dynBlock = m_node->AsDynBlk(); |
| 8625 | if (dynBlock->gtEvalSizeFirst) |
| 8626 | { |
| 8627 | m_edge = &dynBlock->gtDynamicSize; |
| 8628 | } |
| 8629 | else |
| 8630 | { |
| 8631 | m_edge = dynBlock->IsReverseOp() ? &dynBlock->gtOp2 : &dynBlock->gtOp1; |
| 8632 | } |
| 8633 | assert(*m_edge != nullptr); |
| 8634 | |
| 8635 | m_advance = &GenTreeUseEdgeIterator::AdvanceStoreDynBlk; |
| 8636 | } |
| 8637 | return; |
| 8638 | |
| 8639 | case GT_CALL: |
| 8640 | AdvanceCall<CALL_INSTANCE>(); |
| 8641 | return; |
| 8642 | |
| 8643 | // Binary nodes |
| 8644 | default: |
| 8645 | assert(m_node->OperIsBinary()); |
| 8646 | SetEntryStateForBinOp(); |
| 8647 | return; |
| 8648 | } |
| 8649 | } |
| 8650 | |
| 8651 | //------------------------------------------------------------------------ |
| 8652 | // GenTreeUseEdgeIterator::AdvanceCmpXchg: produces the next operand of a CmpXchg node and advances the state. |
| 8653 | // |
| 8654 | void GenTreeUseEdgeIterator::AdvanceCmpXchg() |
| 8655 | { |
| 8656 | switch (m_state) |
| 8657 | { |
| 8658 | case 0: |
| 8659 | m_edge = &m_node->AsCmpXchg()->gtOpValue; |
| 8660 | m_state = 1; |
| 8661 | break; |
| 8662 | case 1: |
| 8663 | m_edge = &m_node->AsCmpXchg()->gtOpComparand; |
| 8664 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8665 | break; |
| 8666 | default: |
| 8667 | unreached(); |
| 8668 | } |
| 8669 | |
| 8670 | assert(*m_edge != nullptr); |
| 8671 | } |
| 8672 | |
| 8673 | //------------------------------------------------------------------------ |
| 8674 | // GenTreeUseEdgeIterator::AdvanceBoundsChk: produces the next operand of a BoundsChk node and advances the state. |
| 8675 | // |
| 8676 | void GenTreeUseEdgeIterator::AdvanceBoundsChk() |
| 8677 | { |
| 8678 | m_edge = &m_node->AsBoundsChk()->gtArrLen; |
| 8679 | assert(*m_edge != nullptr); |
| 8680 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8681 | } |
| 8682 | |
| 8683 | //------------------------------------------------------------------------ |
| 8684 | // GenTreeUseEdgeIterator::AdvanceArrElem: produces the next operand of a ArrElem node and advances the state. |
| 8685 | // |
| 8686 | // Because these nodes are variadic, this function uses `m_state` to index into the list of array indices. |
| 8687 | // |
| 8688 | void GenTreeUseEdgeIterator::AdvanceArrElem() |
| 8689 | { |
| 8690 | if (m_state < m_node->AsArrElem()->gtArrRank) |
| 8691 | { |
| 8692 | m_edge = &m_node->AsArrElem()->gtArrInds[m_state]; |
| 8693 | assert(*m_edge != nullptr); |
| 8694 | m_state++; |
| 8695 | } |
| 8696 | else |
| 8697 | { |
| 8698 | m_state = -1; |
| 8699 | } |
| 8700 | } |
| 8701 | |
| 8702 | //------------------------------------------------------------------------ |
| 8703 | // GenTreeUseEdgeIterator::AdvanceArrOffset: produces the next operand of a ArrOffset node and advances the state. |
| 8704 | // |
| 8705 | void GenTreeUseEdgeIterator::AdvanceArrOffset() |
| 8706 | { |
| 8707 | switch (m_state) |
| 8708 | { |
| 8709 | case 0: |
| 8710 | m_edge = &m_node->AsArrOffs()->gtIndex; |
| 8711 | m_state = 1; |
| 8712 | break; |
| 8713 | case 1: |
| 8714 | m_edge = &m_node->AsArrOffs()->gtArrObj; |
| 8715 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8716 | break; |
| 8717 | default: |
| 8718 | unreached(); |
| 8719 | } |
| 8720 | |
| 8721 | assert(*m_edge != nullptr); |
| 8722 | } |
| 8723 | |
| 8724 | //------------------------------------------------------------------------ |
| 8725 | // GenTreeUseEdgeIterator::AdvanceDynBlk: produces the next operand of a DynBlk node and advances the state. |
| 8726 | // |
| 8727 | void GenTreeUseEdgeIterator::AdvanceDynBlk() |
| 8728 | { |
| 8729 | GenTreeDynBlk* const dynBlock = m_node->AsDynBlk(); |
| 8730 | |
| 8731 | m_edge = dynBlock->gtEvalSizeFirst ? &dynBlock->gtOp1 : &dynBlock->gtDynamicSize; |
| 8732 | assert(*m_edge != nullptr); |
| 8733 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8734 | } |
| 8735 | |
| 8736 | //------------------------------------------------------------------------ |
| 8737 | // GenTreeUseEdgeIterator::AdvanceStoreDynBlk: produces the next operand of a StoreDynBlk node and advances the state. |
| 8738 | // |
| 8739 | // These nodes are moderately complicated but rare enough that templating this function is probably not |
| 8740 | // worth the extra complexity. |
| 8741 | // |
| 8742 | void GenTreeUseEdgeIterator::AdvanceStoreDynBlk() |
| 8743 | { |
| 8744 | GenTreeDynBlk* const dynBlock = m_node->AsDynBlk(); |
| 8745 | if (dynBlock->gtEvalSizeFirst) |
| 8746 | { |
| 8747 | switch (m_state) |
| 8748 | { |
| 8749 | case 0: |
| 8750 | m_edge = dynBlock->IsReverseOp() ? &dynBlock->gtOp2 : &dynBlock->gtOp1; |
| 8751 | m_state = 1; |
| 8752 | break; |
| 8753 | case 1: |
| 8754 | m_edge = dynBlock->IsReverseOp() ? &dynBlock->gtOp1 : &dynBlock->gtOp2; |
| 8755 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8756 | break; |
| 8757 | default: |
| 8758 | unreached(); |
| 8759 | } |
| 8760 | } |
| 8761 | else |
| 8762 | { |
| 8763 | switch (m_state) |
| 8764 | { |
| 8765 | case 0: |
| 8766 | m_edge = dynBlock->IsReverseOp() ? &dynBlock->gtOp1 : &dynBlock->gtOp2; |
| 8767 | m_state = 1; |
| 8768 | break; |
| 8769 | case 1: |
| 8770 | m_edge = &dynBlock->gtDynamicSize; |
| 8771 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8772 | break; |
| 8773 | default: |
| 8774 | unreached(); |
| 8775 | } |
| 8776 | } |
| 8777 | |
| 8778 | assert(*m_edge != nullptr); |
| 8779 | } |
| 8780 | |
| 8781 | //------------------------------------------------------------------------ |
| 8782 | // GenTreeUseEdgeIterator::AdvanceBinOp: produces the next operand of a binary node and advances the state. |
| 8783 | // |
| 8784 | // This function must be instantiated s.t. `ReverseOperands` is `true` iff the node is marked with the |
| 8785 | // `GTF_REVERSE_OPS` flag. |
| 8786 | // |
| 8787 | template <bool ReverseOperands> |
| 8788 | void GenTreeUseEdgeIterator::AdvanceBinOp() |
| 8789 | { |
| 8790 | assert(ReverseOperands == ((m_node->gtFlags & GTF_REVERSE_OPS) != 0)); |
| 8791 | |
| 8792 | m_edge = !ReverseOperands ? &m_node->AsOp()->gtOp2 : &m_node->AsOp()->gtOp1; |
| 8793 | assert(*m_edge != nullptr); |
| 8794 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8795 | } |
| 8796 | |
| 8797 | //------------------------------------------------------------------------ |
| 8798 | // GenTreeUseEdgeIterator::SetEntryStateForBinOp: produces the first operand of a binary node and chooses |
| 8799 | // the appropriate advance function. |
| 8800 | // |
| 8801 | void GenTreeUseEdgeIterator::SetEntryStateForBinOp() |
| 8802 | { |
| 8803 | assert(m_node != nullptr); |
| 8804 | assert(m_node->OperIsBinary()); |
| 8805 | |
| 8806 | GenTreeOp* const node = m_node->AsOp(); |
| 8807 | |
| 8808 | if (node->gtOp2 == nullptr) |
| 8809 | { |
| 8810 | assert(node->gtOp1 != nullptr); |
| 8811 | assert(node->NullOp2Legal()); |
| 8812 | m_edge = &node->gtOp1; |
| 8813 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8814 | } |
| 8815 | else if ((node->gtFlags & GTF_REVERSE_OPS) != 0) |
| 8816 | { |
| 8817 | m_edge = &m_node->AsOp()->gtOp2; |
| 8818 | m_advance = &GenTreeUseEdgeIterator::AdvanceBinOp<true>; |
| 8819 | } |
| 8820 | else |
| 8821 | { |
| 8822 | m_edge = &m_node->AsOp()->gtOp1; |
| 8823 | m_advance = &GenTreeUseEdgeIterator::AdvanceBinOp<false>; |
| 8824 | } |
| 8825 | } |
| 8826 | |
| 8827 | //------------------------------------------------------------------------ |
| 8828 | // GenTreeUseEdgeIterator::AdvanceList: produces the next operand of a variadic node and advances the state. |
| 8829 | // |
| 8830 | // This function does not use `m_state` for anything meaningful; it simply walks the `m_argList` until |
| 8831 | // there are no further entries. |
| 8832 | // |
| 8833 | void GenTreeUseEdgeIterator::AdvanceList() |
| 8834 | { |
| 8835 | assert(m_state == 0); |
| 8836 | |
| 8837 | if (m_argList == nullptr) |
| 8838 | { |
| 8839 | m_state = -1; |
| 8840 | } |
| 8841 | else |
| 8842 | { |
| 8843 | GenTreeArgList* listNode = m_argList->AsArgList(); |
| 8844 | m_edge = &listNode->gtOp1; |
| 8845 | m_argList = listNode->Rest(); |
| 8846 | } |
| 8847 | } |
| 8848 | |
| 8849 | //------------------------------------------------------------------------ |
| 8850 | // GenTreeUseEdgeIterator::SetEntryStateForList: produces the first operand of a list node. |
| 8851 | // |
| 8852 | void GenTreeUseEdgeIterator::SetEntryStateForList(GenTree* list) |
| 8853 | { |
| 8854 | m_argList = list; |
| 8855 | m_advance = &GenTreeUseEdgeIterator::AdvanceList; |
| 8856 | AdvanceList(); |
| 8857 | } |
| 8858 | |
| 8859 | //------------------------------------------------------------------------ |
| 8860 | // GenTreeUseEdgeIterator::AdvanceCall: produces the next operand of a call node and advances the state. |
| 8861 | // |
| 8862 | // This function is a bit tricky: in order to avoid doing unnecessary work, it is instantiated with the |
| 8863 | // state number the iterator will be in when it is called. For example, `AdvanceCall<CALL_INSTANCE>` |
| 8864 | // is the instantiation used when the iterator is at the `CALL_INSTANCE` state (i.e. the entry state). |
| 8865 | // This sort of templating allows each state to avoid processing earlier states without unnecessary |
| 8866 | // duplication of code. |
| 8867 | // |
| 8868 | // Note that this method expands the argument lists (`gtCallArgs` and `gtCallLateArgs`) into their |
| 8869 | // component operands. |
| 8870 | // |
| 8871 | template <int state> |
| 8872 | void GenTreeUseEdgeIterator::AdvanceCall() |
| 8873 | { |
| 8874 | GenTreeCall* const call = m_node->AsCall(); |
| 8875 | |
| 8876 | switch (state) |
| 8877 | { |
| 8878 | case CALL_INSTANCE: |
| 8879 | m_argList = call->gtCallArgs; |
| 8880 | m_advance = &GenTreeUseEdgeIterator::AdvanceCall<CALL_ARGS>; |
| 8881 | if (call->gtCallObjp != nullptr) |
| 8882 | { |
| 8883 | m_edge = &call->gtCallObjp; |
| 8884 | return; |
| 8885 | } |
| 8886 | __fallthrough; |
| 8887 | |
| 8888 | case CALL_ARGS: |
| 8889 | if (m_argList != nullptr) |
| 8890 | { |
| 8891 | GenTreeArgList* argNode = m_argList->AsArgList(); |
| 8892 | m_edge = &argNode->gtOp1; |
| 8893 | m_argList = argNode->Rest(); |
| 8894 | return; |
| 8895 | } |
| 8896 | m_argList = call->gtCallLateArgs; |
| 8897 | m_advance = &GenTreeUseEdgeIterator::AdvanceCall<CALL_LATE_ARGS>; |
| 8898 | __fallthrough; |
| 8899 | |
| 8900 | case CALL_LATE_ARGS: |
| 8901 | if (m_argList != nullptr) |
| 8902 | { |
| 8903 | GenTreeArgList* argNode = m_argList->AsArgList(); |
| 8904 | m_edge = &argNode->gtOp1; |
| 8905 | m_argList = argNode->Rest(); |
| 8906 | return; |
| 8907 | } |
| 8908 | m_advance = &GenTreeUseEdgeIterator::AdvanceCall<CALL_CONTROL_EXPR>; |
| 8909 | __fallthrough; |
| 8910 | |
| 8911 | case CALL_CONTROL_EXPR: |
| 8912 | if (call->gtControlExpr != nullptr) |
| 8913 | { |
| 8914 | if (call->gtCallType == CT_INDIRECT) |
| 8915 | { |
| 8916 | m_advance = &GenTreeUseEdgeIterator::AdvanceCall<CALL_COOKIE>; |
| 8917 | } |
| 8918 | else |
| 8919 | { |
| 8920 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8921 | } |
| 8922 | m_edge = &call->gtControlExpr; |
| 8923 | return; |
| 8924 | } |
| 8925 | else if (call->gtCallType != CT_INDIRECT) |
| 8926 | { |
| 8927 | m_state = -1; |
| 8928 | return; |
| 8929 | } |
| 8930 | __fallthrough; |
| 8931 | |
| 8932 | case CALL_COOKIE: |
| 8933 | assert(call->gtCallType == CT_INDIRECT); |
| 8934 | |
| 8935 | m_advance = &GenTreeUseEdgeIterator::AdvanceCall<CALL_ADDRESS>; |
| 8936 | if (call->gtCallCookie != nullptr) |
| 8937 | { |
| 8938 | m_edge = &call->gtCallCookie; |
| 8939 | return; |
| 8940 | } |
| 8941 | __fallthrough; |
| 8942 | |
| 8943 | case CALL_ADDRESS: |
| 8944 | assert(call->gtCallType == CT_INDIRECT); |
| 8945 | |
| 8946 | m_advance = &GenTreeUseEdgeIterator::Terminate; |
| 8947 | if (call->gtCallAddr != nullptr) |
| 8948 | { |
| 8949 | m_edge = &call->gtCallAddr; |
| 8950 | } |
| 8951 | return; |
| 8952 | |
| 8953 | default: |
| 8954 | unreached(); |
| 8955 | } |
| 8956 | } |
| 8957 | |
| 8958 | //------------------------------------------------------------------------ |
| 8959 | // GenTreeUseEdgeIterator::Terminate: advances the iterator to the terminal state. |
| 8960 | // |
| 8961 | void GenTreeUseEdgeIterator::Terminate() |
| 8962 | { |
| 8963 | m_state = -1; |
| 8964 | } |
| 8965 | |
| 8966 | //------------------------------------------------------------------------ |
| 8967 | // GenTreeUseEdgeIterator::operator++: advances the iterator to the next operand. |
| 8968 | // |
| 8969 | GenTreeUseEdgeIterator& GenTreeUseEdgeIterator::operator++() |
| 8970 | { |
| 8971 | // If we've reached the terminal state, do nothing. |
| 8972 | if (m_state != -1) |
| 8973 | { |
| 8974 | (this->*m_advance)(); |
| 8975 | } |
| 8976 | |
| 8977 | return *this; |
| 8978 | } |
| 8979 | |
| 8980 | GenTreeUseEdgeIterator GenTree::UseEdgesBegin() |
| 8981 | { |
| 8982 | return GenTreeUseEdgeIterator(this); |
| 8983 | } |
| 8984 | |
| 8985 | GenTreeUseEdgeIterator GenTree::UseEdgesEnd() |
| 8986 | { |
| 8987 | return GenTreeUseEdgeIterator(); |
| 8988 | } |
| 8989 | |
| 8990 | IteratorPair<GenTreeUseEdgeIterator> GenTree::UseEdges() |
| 8991 | { |
| 8992 | return MakeIteratorPair(UseEdgesBegin(), UseEdgesEnd()); |
| 8993 | } |
| 8994 | |
| 8995 | GenTreeOperandIterator GenTree::OperandsBegin() |
| 8996 | { |
| 8997 | return GenTreeOperandIterator(this); |
| 8998 | } |
| 8999 | |
| 9000 | GenTreeOperandIterator GenTree::OperandsEnd() |
| 9001 | { |
| 9002 | return GenTreeOperandIterator(); |
| 9003 | } |
| 9004 | |
| 9005 | IteratorPair<GenTreeOperandIterator> GenTree::Operands() |
| 9006 | { |
| 9007 | return MakeIteratorPair(OperandsBegin(), OperandsEnd()); |
| 9008 | } |
| 9009 | |
| 9010 | bool GenTree::Precedes(GenTree* other) |
| 9011 | { |
| 9012 | assert(other != nullptr); |
| 9013 | |
| 9014 | for (GenTree* node = gtNext; node != nullptr; node = node->gtNext) |
| 9015 | { |
| 9016 | if (node == other) |
| 9017 | { |
| 9018 | return true; |
| 9019 | } |
| 9020 | } |
| 9021 | |
| 9022 | return false; |
| 9023 | } |
| 9024 | |
| 9025 | #ifdef DEBUG |
| 9026 | |
| 9027 | /* static */ int GenTree::gtDispFlags(unsigned flags, unsigned debugFlags) |
| 9028 | { |
| 9029 | int charsDisplayed = 11; // 11 is the "baseline" number of flag characters displayed |
| 9030 | |
| 9031 | printf("%c" , (flags & GTF_ASG) ? 'A' : (IsContained(flags) ? 'c' : '-')); |
| 9032 | printf("%c" , (flags & GTF_CALL) ? 'C' : '-'); |
| 9033 | printf("%c" , (flags & GTF_EXCEPT) ? 'X' : '-'); |
| 9034 | printf("%c" , (flags & GTF_GLOB_REF) ? 'G' : '-'); |
| 9035 | printf("%c" , (debugFlags & GTF_DEBUG_NODE_MORPHED) ? '+' : // First print '+' if GTF_DEBUG_NODE_MORPHED is set |
| 9036 | (flags & GTF_ORDER_SIDEEFF) ? 'O' : '-'); // otherwise print 'O' or '-' |
| 9037 | printf("%c" , (flags & GTF_COLON_COND) ? '?' : '-'); |
| 9038 | printf("%c" , (flags & GTF_DONT_CSE) ? 'N' : // N is for No cse |
| 9039 | (flags & GTF_MAKE_CSE) ? 'H' : '-'); // H is for Hoist this expr |
| 9040 | printf("%c" , (flags & GTF_REVERSE_OPS) ? 'R' : '-'); |
| 9041 | printf("%c" , (flags & GTF_UNSIGNED) ? 'U' : (flags & GTF_BOOLEAN) ? 'B' : '-'); |
| 9042 | #if FEATURE_SET_FLAGS |
| 9043 | printf("%c" , (flags & GTF_SET_FLAGS) ? 'S' : '-'); |
| 9044 | ++charsDisplayed; |
| 9045 | #endif |
| 9046 | printf("%c" , (flags & GTF_LATE_ARG) ? 'L' : '-'); |
| 9047 | printf("%c" , (flags & GTF_SPILLED) ? 'z' : (flags & GTF_SPILL) ? 'Z' : '-'); |
| 9048 | |
| 9049 | return charsDisplayed; |
| 9050 | } |
| 9051 | |
| 9052 | /*****************************************************************************/ |
| 9053 | |
| 9054 | void Compiler::gtDispNodeName(GenTree* tree) |
| 9055 | { |
| 9056 | /* print the node name */ |
| 9057 | |
| 9058 | const char* name; |
| 9059 | |
| 9060 | assert(tree); |
| 9061 | if (tree->gtOper < GT_COUNT) |
| 9062 | { |
| 9063 | name = GenTree::OpName(tree->OperGet()); |
| 9064 | } |
| 9065 | else |
| 9066 | { |
| 9067 | name = "<ERROR>" ; |
| 9068 | } |
| 9069 | char buf[32]; |
| 9070 | char* bufp = &buf[0]; |
| 9071 | |
| 9072 | if ((tree->gtOper == GT_CNS_INT) && tree->IsIconHandle()) |
| 9073 | { |
| 9074 | sprintf_s(bufp, sizeof(buf), " %s(h)%c" , name, 0); |
| 9075 | } |
| 9076 | else if (tree->gtOper == GT_PUTARG_STK) |
| 9077 | { |
| 9078 | sprintf_s(bufp, sizeof(buf), " %s [+0x%02x]%c" , name, tree->AsPutArgStk()->getArgOffset(), 0); |
| 9079 | } |
| 9080 | else if (tree->gtOper == GT_CALL) |
| 9081 | { |
| 9082 | const char* callType = "CALL" ; |
| 9083 | const char* gtfType = "" ; |
| 9084 | const char* ctType = "" ; |
| 9085 | char gtfTypeBuf[100]; |
| 9086 | |
| 9087 | if (tree->gtCall.gtCallType == CT_USER_FUNC) |
| 9088 | { |
| 9089 | if (tree->gtCall.IsVirtual()) |
| 9090 | { |
| 9091 | callType = "CALLV" ; |
| 9092 | } |
| 9093 | } |
| 9094 | else if (tree->gtCall.gtCallType == CT_HELPER) |
| 9095 | { |
| 9096 | ctType = " help" ; |
| 9097 | } |
| 9098 | else if (tree->gtCall.gtCallType == CT_INDIRECT) |
| 9099 | { |
| 9100 | ctType = " ind" ; |
| 9101 | } |
| 9102 | else |
| 9103 | { |
| 9104 | assert(!"Unknown gtCallType" ); |
| 9105 | } |
| 9106 | |
| 9107 | if (tree->gtFlags & GTF_CALL_NULLCHECK) |
| 9108 | { |
| 9109 | gtfType = " nullcheck" ; |
| 9110 | } |
| 9111 | if (tree->gtCall.IsVirtualVtable()) |
| 9112 | { |
| 9113 | gtfType = " ind" ; |
| 9114 | } |
| 9115 | else if (tree->gtCall.IsVirtualStub()) |
| 9116 | { |
| 9117 | gtfType = " stub" ; |
| 9118 | } |
| 9119 | #ifdef FEATURE_READYTORUN_COMPILER |
| 9120 | else if (tree->gtCall.IsR2RRelativeIndir()) |
| 9121 | { |
| 9122 | gtfType = " r2r_ind" ; |
| 9123 | } |
| 9124 | #endif // FEATURE_READYTORUN_COMPILER |
| 9125 | else if (tree->gtFlags & GTF_CALL_UNMANAGED) |
| 9126 | { |
| 9127 | char* gtfTypeBufWalk = gtfTypeBuf; |
| 9128 | gtfTypeBufWalk += SimpleSprintf_s(gtfTypeBufWalk, gtfTypeBuf, sizeof(gtfTypeBuf), " unman" ); |
| 9129 | if (tree->gtFlags & GTF_CALL_POP_ARGS) |
| 9130 | { |
| 9131 | gtfTypeBufWalk += SimpleSprintf_s(gtfTypeBufWalk, gtfTypeBuf, sizeof(gtfTypeBuf), " popargs" ); |
| 9132 | } |
| 9133 | if (tree->gtCall.gtCallMoreFlags & GTF_CALL_M_UNMGD_THISCALL) |
| 9134 | { |
| 9135 | gtfTypeBufWalk += SimpleSprintf_s(gtfTypeBufWalk, gtfTypeBuf, sizeof(gtfTypeBuf), " thiscall" ); |
| 9136 | } |
| 9137 | gtfType = gtfTypeBuf; |
| 9138 | } |
| 9139 | |
| 9140 | sprintf_s(bufp, sizeof(buf), " %s%s%s%c" , callType, ctType, gtfType, 0); |
| 9141 | } |
| 9142 | else if (tree->gtOper == GT_ARR_ELEM) |
| 9143 | { |
| 9144 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), " %s[" , name); |
| 9145 | for (unsigned rank = tree->gtArrElem.gtArrRank - 1; rank; rank--) |
| 9146 | { |
| 9147 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), "," ); |
| 9148 | } |
| 9149 | SimpleSprintf_s(bufp, buf, sizeof(buf), "]" ); |
| 9150 | } |
| 9151 | else if (tree->gtOper == GT_ARR_OFFSET || tree->gtOper == GT_ARR_INDEX) |
| 9152 | { |
| 9153 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), " %s[" , name); |
| 9154 | unsigned char currDim; |
| 9155 | unsigned char rank; |
| 9156 | if (tree->gtOper == GT_ARR_OFFSET) |
| 9157 | { |
| 9158 | currDim = tree->gtArrOffs.gtCurrDim; |
| 9159 | rank = tree->gtArrOffs.gtArrRank; |
| 9160 | } |
| 9161 | else |
| 9162 | { |
| 9163 | currDim = tree->gtArrIndex.gtCurrDim; |
| 9164 | rank = tree->gtArrIndex.gtArrRank; |
| 9165 | } |
| 9166 | |
| 9167 | for (unsigned char dim = 0; dim < rank; dim++) |
| 9168 | { |
| 9169 | // Use a defacto standard i,j,k for the dimensions. |
| 9170 | // Note that we only support up to rank 3 arrays with these nodes, so we won't run out of characters. |
| 9171 | char dimChar = '*'; |
| 9172 | if (dim == currDim) |
| 9173 | { |
| 9174 | dimChar = 'i' + dim; |
| 9175 | } |
| 9176 | else if (dim > currDim) |
| 9177 | { |
| 9178 | dimChar = ' '; |
| 9179 | } |
| 9180 | |
| 9181 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), "%c" , dimChar); |
| 9182 | if (dim != rank - 1) |
| 9183 | { |
| 9184 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), "," ); |
| 9185 | } |
| 9186 | } |
| 9187 | SimpleSprintf_s(bufp, buf, sizeof(buf), "]" ); |
| 9188 | } |
| 9189 | else if (tree->gtOper == GT_LEA) |
| 9190 | { |
| 9191 | GenTreeAddrMode* lea = tree->AsAddrMode(); |
| 9192 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), " %s(" , name); |
| 9193 | if (lea->Base() != nullptr) |
| 9194 | { |
| 9195 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), "b+" ); |
| 9196 | } |
| 9197 | if (lea->Index() != nullptr) |
| 9198 | { |
| 9199 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), "(i*%d)+" , lea->gtScale); |
| 9200 | } |
| 9201 | bufp += SimpleSprintf_s(bufp, buf, sizeof(buf), "%d)" , lea->Offset()); |
| 9202 | } |
| 9203 | else if (tree->gtOper == GT_ARR_BOUNDS_CHECK) |
| 9204 | { |
| 9205 | switch (tree->gtBoundsChk.gtThrowKind) |
| 9206 | { |
| 9207 | case SCK_RNGCHK_FAIL: |
| 9208 | sprintf_s(bufp, sizeof(buf), " %s_Rng" , name); |
| 9209 | break; |
| 9210 | case SCK_ARG_EXCPN: |
| 9211 | sprintf_s(bufp, sizeof(buf), " %s_Arg" , name); |
| 9212 | break; |
| 9213 | case SCK_ARG_RNG_EXCPN: |
| 9214 | sprintf_s(bufp, sizeof(buf), " %s_ArgRng" , name); |
| 9215 | break; |
| 9216 | default: |
| 9217 | unreached(); |
| 9218 | } |
| 9219 | } |
| 9220 | else if (tree->gtOverflowEx()) |
| 9221 | { |
| 9222 | sprintf_s(bufp, sizeof(buf), " %s_ovfl%c" , name, 0); |
| 9223 | } |
| 9224 | else if (tree->OperIsBlk() && !tree->OperIsDynBlk()) |
| 9225 | { |
| 9226 | sprintf_s(bufp, sizeof(buf), " %s(%d)" , name, tree->AsBlk()->gtBlkSize); |
| 9227 | } |
| 9228 | else |
| 9229 | { |
| 9230 | sprintf_s(bufp, sizeof(buf), " %s%c" , name, 0); |
| 9231 | } |
| 9232 | |
| 9233 | if (strlen(buf) < 10) |
| 9234 | { |
| 9235 | printf(" %-10s" , buf); |
| 9236 | } |
| 9237 | else |
| 9238 | { |
| 9239 | printf(" %s" , buf); |
| 9240 | } |
| 9241 | } |
| 9242 | |
| 9243 | void Compiler::gtDispVN(GenTree* tree) |
| 9244 | { |
| 9245 | if (tree->gtVNPair.GetLiberal() != ValueNumStore::NoVN) |
| 9246 | { |
| 9247 | assert(tree->gtVNPair.GetConservative() != ValueNumStore::NoVN); |
| 9248 | printf(" " ); |
| 9249 | vnpPrint(tree->gtVNPair, 0); |
| 9250 | } |
| 9251 | } |
| 9252 | |
| 9253 | //------------------------------------------------------------------------ |
| 9254 | // gtDispNode: Print a tree to jitstdout. |
| 9255 | // |
| 9256 | // Arguments: |
| 9257 | // tree - the tree to be printed |
| 9258 | // indentStack - the specification for the current level of indentation & arcs |
| 9259 | // msg - a contextual method (i.e. from the parent) to print |
| 9260 | // |
| 9261 | // Return Value: |
| 9262 | // None. |
| 9263 | // |
| 9264 | // Notes: |
| 9265 | // 'indentStack' may be null, in which case no indentation or arcs are printed |
| 9266 | // 'msg' may be null |
| 9267 | |
| 9268 | void Compiler::gtDispNode(GenTree* tree, IndentStack* indentStack, __in __in_z __in_opt const char* msg, bool isLIR) |
| 9269 | { |
| 9270 | bool printPointer = true; // always true.. |
| 9271 | bool printFlags = true; // always true.. |
| 9272 | bool printCost = true; // always true.. |
| 9273 | |
| 9274 | int msgLength = 25; |
| 9275 | |
| 9276 | GenTree* prev; |
| 9277 | |
| 9278 | if (tree->gtSeqNum) |
| 9279 | { |
| 9280 | printf("N%03u " , tree->gtSeqNum); |
| 9281 | if (tree->gtCostsInitialized) |
| 9282 | { |
| 9283 | printf("(%3u,%3u) " , tree->gtCostEx, tree->gtCostSz); |
| 9284 | } |
| 9285 | else |
| 9286 | { |
| 9287 | printf("(???" |
| 9288 | ",???" |
| 9289 | ") " ); // This probably indicates a bug: the node has a sequence number, but not costs. |
| 9290 | } |
| 9291 | } |
| 9292 | else |
| 9293 | { |
| 9294 | if (tree->gtOper == GT_STMT) |
| 9295 | { |
| 9296 | prev = tree->gtStmt.gtStmtExpr; |
| 9297 | } |
| 9298 | else |
| 9299 | { |
| 9300 | prev = tree; |
| 9301 | } |
| 9302 | |
| 9303 | bool hasSeqNum = true; |
| 9304 | unsigned dotNum = 0; |
| 9305 | do |
| 9306 | { |
| 9307 | dotNum++; |
| 9308 | prev = prev->gtPrev; |
| 9309 | |
| 9310 | if ((prev == nullptr) || (prev == tree)) |
| 9311 | { |
| 9312 | hasSeqNum = false; |
| 9313 | break; |
| 9314 | } |
| 9315 | |
| 9316 | assert(prev); |
| 9317 | } while (prev->gtSeqNum == 0); |
| 9318 | |
| 9319 | // If we have an indent stack, don't add additional characters, |
| 9320 | // as it will mess up the alignment. |
| 9321 | bool displayDotNum = tree->gtOper != GT_STMT && hasSeqNum && (indentStack == nullptr); |
| 9322 | if (displayDotNum) |
| 9323 | { |
| 9324 | printf("N%03u.%02u " , prev->gtSeqNum, dotNum); |
| 9325 | } |
| 9326 | else |
| 9327 | { |
| 9328 | printf(" " ); |
| 9329 | } |
| 9330 | |
| 9331 | if (tree->gtCostsInitialized) |
| 9332 | { |
| 9333 | printf("(%3u,%3u) " , tree->gtCostEx, tree->gtCostSz); |
| 9334 | } |
| 9335 | else |
| 9336 | { |
| 9337 | if (displayDotNum) |
| 9338 | { |
| 9339 | // Do better alignment in this case |
| 9340 | printf(" " ); |
| 9341 | } |
| 9342 | else |
| 9343 | { |
| 9344 | printf(" " ); |
| 9345 | } |
| 9346 | } |
| 9347 | } |
| 9348 | |
| 9349 | if (optValnumCSE_phase) |
| 9350 | { |
| 9351 | if (IS_CSE_INDEX(tree->gtCSEnum)) |
| 9352 | { |
| 9353 | printf("CSE #%02d (%s)" , GET_CSE_INDEX(tree->gtCSEnum), (IS_CSE_USE(tree->gtCSEnum) ? "use" : "def" )); |
| 9354 | } |
| 9355 | else |
| 9356 | { |
| 9357 | printf(" " ); |
| 9358 | } |
| 9359 | } |
| 9360 | |
| 9361 | /* Print the node ID */ |
| 9362 | printTreeID(tree); |
| 9363 | printf(" " ); |
| 9364 | |
| 9365 | if (tree->gtOper >= GT_COUNT) |
| 9366 | { |
| 9367 | printf(" **** ILLEGAL NODE ****" ); |
| 9368 | return; |
| 9369 | } |
| 9370 | |
| 9371 | if (printFlags) |
| 9372 | { |
| 9373 | /* First print the flags associated with the node */ |
| 9374 | switch (tree->gtOper) |
| 9375 | { |
| 9376 | case GT_LEA: |
| 9377 | case GT_BLK: |
| 9378 | case GT_OBJ: |
| 9379 | case GT_DYN_BLK: |
| 9380 | case GT_STORE_BLK: |
| 9381 | case GT_STORE_OBJ: |
| 9382 | case GT_STORE_DYN_BLK: |
| 9383 | |
| 9384 | case GT_IND: |
| 9385 | // We prefer printing V or U |
| 9386 | if ((tree->gtFlags & (GTF_IND_VOLATILE | GTF_IND_UNALIGNED)) == 0) |
| 9387 | { |
| 9388 | if (tree->gtFlags & GTF_IND_TGTANYWHERE) |
| 9389 | { |
| 9390 | printf("*" ); |
| 9391 | --msgLength; |
| 9392 | break; |
| 9393 | } |
| 9394 | if (tree->gtFlags & GTF_IND_INVARIANT) |
| 9395 | { |
| 9396 | printf("#" ); |
| 9397 | --msgLength; |
| 9398 | break; |
| 9399 | } |
| 9400 | if (tree->gtFlags & GTF_IND_ARR_INDEX) |
| 9401 | { |
| 9402 | printf("a" ); |
| 9403 | --msgLength; |
| 9404 | break; |
| 9405 | } |
| 9406 | if (tree->gtFlags & GTF_IND_NONFAULTING) |
| 9407 | { |
| 9408 | printf("n" ); // print a n for non-faulting |
| 9409 | --msgLength; |
| 9410 | break; |
| 9411 | } |
| 9412 | if (tree->gtFlags & GTF_IND_ASG_LHS) |
| 9413 | { |
| 9414 | printf("D" ); // print a D for definition |
| 9415 | --msgLength; |
| 9416 | break; |
| 9417 | } |
| 9418 | } |
| 9419 | __fallthrough; |
| 9420 | |
| 9421 | case GT_INDEX: |
| 9422 | case GT_INDEX_ADDR: |
| 9423 | |
| 9424 | if ((tree->gtFlags & (GTF_IND_VOLATILE | GTF_IND_UNALIGNED)) == 0) // We prefer printing V or U over R |
| 9425 | { |
| 9426 | if (tree->gtFlags & GTF_INX_REFARR_LAYOUT) |
| 9427 | { |
| 9428 | printf("R" ); |
| 9429 | --msgLength; |
| 9430 | break; |
| 9431 | } // R means RefArray |
| 9432 | } |
| 9433 | __fallthrough; |
| 9434 | |
| 9435 | case GT_FIELD: |
| 9436 | case GT_CLS_VAR: |
| 9437 | if (tree->gtFlags & GTF_IND_VOLATILE) |
| 9438 | { |
| 9439 | printf("V" ); |
| 9440 | --msgLength; |
| 9441 | break; |
| 9442 | } |
| 9443 | if (tree->gtFlags & GTF_IND_UNALIGNED) |
| 9444 | { |
| 9445 | printf("U" ); |
| 9446 | --msgLength; |
| 9447 | break; |
| 9448 | } |
| 9449 | goto DASH; |
| 9450 | |
| 9451 | case GT_ASG: |
| 9452 | if (tree->OperIsInitBlkOp()) |
| 9453 | { |
| 9454 | printf("I" ); |
| 9455 | --msgLength; |
| 9456 | break; |
| 9457 | } |
| 9458 | goto DASH; |
| 9459 | |
| 9460 | case GT_CALL: |
| 9461 | if (tree->gtCall.IsInlineCandidate()) |
| 9462 | { |
| 9463 | if (tree->gtCall.IsGuardedDevirtualizationCandidate()) |
| 9464 | { |
| 9465 | printf("&" ); |
| 9466 | } |
| 9467 | else |
| 9468 | { |
| 9469 | printf("I" ); |
| 9470 | } |
| 9471 | --msgLength; |
| 9472 | break; |
| 9473 | } |
| 9474 | else if (tree->gtCall.IsGuardedDevirtualizationCandidate()) |
| 9475 | { |
| 9476 | printf("G" ); |
| 9477 | --msgLength; |
| 9478 | break; |
| 9479 | } |
| 9480 | if (tree->gtCall.gtCallMoreFlags & GTF_CALL_M_RETBUFFARG) |
| 9481 | { |
| 9482 | printf("S" ); |
| 9483 | --msgLength; |
| 9484 | break; |
| 9485 | } |
| 9486 | if (tree->gtFlags & GTF_CALL_HOISTABLE) |
| 9487 | { |
| 9488 | printf("H" ); |
| 9489 | --msgLength; |
| 9490 | break; |
| 9491 | } |
| 9492 | |
| 9493 | goto DASH; |
| 9494 | |
| 9495 | case GT_MUL: |
| 9496 | #if !defined(_TARGET_64BIT_) |
| 9497 | case GT_MUL_LONG: |
| 9498 | #endif |
| 9499 | if (tree->gtFlags & GTF_MUL_64RSLT) |
| 9500 | { |
| 9501 | printf("L" ); |
| 9502 | --msgLength; |
| 9503 | break; |
| 9504 | } |
| 9505 | goto DASH; |
| 9506 | |
| 9507 | case GT_ADDR: |
| 9508 | if (tree->gtFlags & GTF_ADDR_ONSTACK) |
| 9509 | { |
| 9510 | printf("L" ); |
| 9511 | --msgLength; |
| 9512 | break; |
| 9513 | } // L means LclVar |
| 9514 | goto DASH; |
| 9515 | |
| 9516 | case GT_LCL_FLD: |
| 9517 | case GT_LCL_VAR: |
| 9518 | case GT_LCL_VAR_ADDR: |
| 9519 | case GT_LCL_FLD_ADDR: |
| 9520 | case GT_STORE_LCL_FLD: |
| 9521 | case GT_STORE_LCL_VAR: |
| 9522 | if (tree->gtFlags & GTF_VAR_USEASG) |
| 9523 | { |
| 9524 | printf("U" ); |
| 9525 | --msgLength; |
| 9526 | break; |
| 9527 | } |
| 9528 | if (tree->gtFlags & GTF_VAR_DEF) |
| 9529 | { |
| 9530 | printf("D" ); |
| 9531 | --msgLength; |
| 9532 | break; |
| 9533 | } |
| 9534 | if (tree->gtFlags & GTF_VAR_CAST) |
| 9535 | { |
| 9536 | printf("C" ); |
| 9537 | --msgLength; |
| 9538 | break; |
| 9539 | } |
| 9540 | if (tree->gtFlags & GTF_VAR_ARR_INDEX) |
| 9541 | { |
| 9542 | printf("i" ); |
| 9543 | --msgLength; |
| 9544 | break; |
| 9545 | } |
| 9546 | goto DASH; |
| 9547 | |
| 9548 | case GT_EQ: |
| 9549 | case GT_NE: |
| 9550 | case GT_LT: |
| 9551 | case GT_LE: |
| 9552 | case GT_GE: |
| 9553 | case GT_GT: |
| 9554 | case GT_TEST_EQ: |
| 9555 | case GT_TEST_NE: |
| 9556 | if (tree->gtFlags & GTF_RELOP_NAN_UN) |
| 9557 | { |
| 9558 | printf("N" ); |
| 9559 | --msgLength; |
| 9560 | break; |
| 9561 | } |
| 9562 | if (tree->gtFlags & GTF_RELOP_JMP_USED) |
| 9563 | { |
| 9564 | printf("J" ); |
| 9565 | --msgLength; |
| 9566 | break; |
| 9567 | } |
| 9568 | if (tree->gtFlags & GTF_RELOP_QMARK) |
| 9569 | { |
| 9570 | printf("Q" ); |
| 9571 | --msgLength; |
| 9572 | break; |
| 9573 | } |
| 9574 | goto DASH; |
| 9575 | |
| 9576 | case GT_JCMP: |
| 9577 | printf((tree->gtFlags & GTF_JCMP_TST) ? "T" : "C" ); |
| 9578 | printf((tree->gtFlags & GTF_JCMP_EQ) ? "EQ" : "NE" ); |
| 9579 | goto DASH; |
| 9580 | |
| 9581 | case GT_FIELD_LIST: |
| 9582 | if (tree->gtFlags & GTF_FIELD_LIST_HEAD) |
| 9583 | { |
| 9584 | printf("H" ); |
| 9585 | --msgLength; |
| 9586 | break; |
| 9587 | } |
| 9588 | goto DASH; |
| 9589 | |
| 9590 | default: |
| 9591 | DASH: |
| 9592 | printf("-" ); |
| 9593 | --msgLength; |
| 9594 | break; |
| 9595 | } |
| 9596 | |
| 9597 | /* Then print the general purpose flags */ |
| 9598 | unsigned flags = tree->gtFlags; |
| 9599 | |
| 9600 | if (tree->OperIsBinary()) |
| 9601 | { |
| 9602 | genTreeOps oper = tree->OperGet(); |
| 9603 | |
| 9604 | // Check for GTF_ADDRMODE_NO_CSE flag on add/mul/shl Binary Operators |
| 9605 | if ((oper == GT_ADD) || (oper == GT_MUL) || (oper == GT_LSH)) |
| 9606 | { |
| 9607 | if ((tree->gtFlags & GTF_ADDRMODE_NO_CSE) != 0) |
| 9608 | { |
| 9609 | flags |= GTF_DONT_CSE; // Force the GTF_ADDRMODE_NO_CSE flag to print out like GTF_DONT_CSE |
| 9610 | } |
| 9611 | } |
| 9612 | } |
| 9613 | else // !tree->OperIsBinary() |
| 9614 | { |
| 9615 | // the GTF_REVERSE flag only applies to binary operations |
| 9616 | flags &= ~GTF_REVERSE_OPS; // we use this value for GTF_VAR_ARR_INDEX above |
| 9617 | } |
| 9618 | |
| 9619 | msgLength -= GenTree::gtDispFlags(flags, tree->gtDebugFlags); |
| 9620 | /* |
| 9621 | printf("%c", (flags & GTF_ASG ) ? 'A' : '-'); |
| 9622 | printf("%c", (flags & GTF_CALL ) ? 'C' : '-'); |
| 9623 | printf("%c", (flags & GTF_EXCEPT ) ? 'X' : '-'); |
| 9624 | printf("%c", (flags & GTF_GLOB_REF ) ? 'G' : '-'); |
| 9625 | printf("%c", (flags & GTF_ORDER_SIDEEFF ) ? 'O' : '-'); |
| 9626 | printf("%c", (flags & GTF_COLON_COND ) ? '?' : '-'); |
| 9627 | printf("%c", (flags & GTF_DONT_CSE ) ? 'N' : // N is for No cse |
| 9628 | (flags & GTF_MAKE_CSE ) ? 'H' : '-'); // H is for Hoist this expr |
| 9629 | printf("%c", (flags & GTF_REVERSE_OPS ) ? 'R' : '-'); |
| 9630 | printf("%c", (flags & GTF_UNSIGNED ) ? 'U' : |
| 9631 | (flags & GTF_BOOLEAN ) ? 'B' : '-'); |
| 9632 | printf("%c", (flags & GTF_SET_FLAGS ) ? 'S' : '-'); |
| 9633 | printf("%c", (flags & GTF_SPILLED ) ? 'z' : '-'); |
| 9634 | printf("%c", (flags & GTF_SPILL ) ? 'Z' : '-'); |
| 9635 | */ |
| 9636 | } |
| 9637 | |
| 9638 | // If we're printing a node for LIR, we use the space normally associated with the message |
| 9639 | // to display the node's temp name (if any) |
| 9640 | const bool hasOperands = tree->OperandsBegin() != tree->OperandsEnd(); |
| 9641 | if (isLIR) |
| 9642 | { |
| 9643 | assert(msg == nullptr); |
| 9644 | |
| 9645 | // If the tree does not have any operands, we do not display the indent stack. This gives us |
| 9646 | // two additional characters for alignment. |
| 9647 | if (!hasOperands) |
| 9648 | { |
| 9649 | msgLength += 1; |
| 9650 | } |
| 9651 | |
| 9652 | if (tree->IsValue()) |
| 9653 | { |
| 9654 | const size_t bufLength = msgLength - 1; |
| 9655 | msg = reinterpret_cast<char*>(alloca(bufLength * sizeof(char))); |
| 9656 | sprintf_s(const_cast<char*>(msg), bufLength, "t%d = %s" , tree->gtTreeID, hasOperands ? "" : " " ); |
| 9657 | } |
| 9658 | } |
| 9659 | |
| 9660 | /* print the msg associated with the node */ |
| 9661 | |
| 9662 | if (msg == nullptr) |
| 9663 | { |
| 9664 | msg = "" ; |
| 9665 | } |
| 9666 | if (msgLength < 0) |
| 9667 | { |
| 9668 | msgLength = 0; |
| 9669 | } |
| 9670 | |
| 9671 | printf(isLIR ? " %+*s" : " %-*s" , msgLength, msg); |
| 9672 | |
| 9673 | /* Indent the node accordingly */ |
| 9674 | if (!isLIR || hasOperands) |
| 9675 | { |
| 9676 | printIndent(indentStack); |
| 9677 | } |
| 9678 | |
| 9679 | gtDispNodeName(tree); |
| 9680 | |
| 9681 | assert(tree == nullptr || tree->gtOper < GT_COUNT); |
| 9682 | |
| 9683 | if (tree) |
| 9684 | { |
| 9685 | /* print the type of the node */ |
| 9686 | if (tree->gtOper != GT_CAST) |
| 9687 | { |
| 9688 | printf(" %-6s" , varTypeName(tree->TypeGet())); |
| 9689 | if (tree->gtOper == GT_LCL_VAR || tree->gtOper == GT_STORE_LCL_VAR) |
| 9690 | { |
| 9691 | LclVarDsc* varDsc = &lvaTable[tree->gtLclVarCommon.gtLclNum]; |
| 9692 | if (varDsc->lvAddrExposed) |
| 9693 | { |
| 9694 | printf("(AX)" ); // Variable has address exposed. |
| 9695 | } |
| 9696 | |
| 9697 | if (varDsc->lvUnusedStruct) |
| 9698 | { |
| 9699 | assert(varDsc->lvPromoted); |
| 9700 | printf("(U)" ); // Unused struct |
| 9701 | } |
| 9702 | else if (varDsc->lvPromoted) |
| 9703 | { |
| 9704 | if (varTypeIsPromotable(varDsc)) |
| 9705 | { |
| 9706 | printf("(P)" ); // Promoted struct |
| 9707 | } |
| 9708 | else |
| 9709 | { |
| 9710 | // Promoted implicit by-refs can have this state during |
| 9711 | // global morph while they are being rewritten |
| 9712 | assert(fgGlobalMorph); |
| 9713 | printf("(P?!)" ); // Promoted struct |
| 9714 | } |
| 9715 | } |
| 9716 | } |
| 9717 | |
| 9718 | if (tree->gtOper == GT_STMT) |
| 9719 | { |
| 9720 | if (opts.compDbgInfo) |
| 9721 | { |
| 9722 | IL_OFFSET endIL = tree->gtStmt.gtStmtLastILoffs; |
| 9723 | |
| 9724 | printf("(IL " ); |
| 9725 | if (tree->gtStmt.gtStmtILoffsx == BAD_IL_OFFSET) |
| 9726 | { |
| 9727 | printf(" ???" ); |
| 9728 | } |
| 9729 | else |
| 9730 | { |
| 9731 | printf("0x%03X" , jitGetILoffs(tree->gtStmt.gtStmtILoffsx)); |
| 9732 | } |
| 9733 | printf("..." ); |
| 9734 | if (endIL == BAD_IL_OFFSET) |
| 9735 | { |
| 9736 | printf(" ???" ); |
| 9737 | } |
| 9738 | else |
| 9739 | { |
| 9740 | printf("0x%03X" , endIL); |
| 9741 | } |
| 9742 | printf(")" ); |
| 9743 | } |
| 9744 | } |
| 9745 | |
| 9746 | if (tree->IsArgPlaceHolderNode() && (tree->gtArgPlace.gtArgPlaceClsHnd != nullptr)) |
| 9747 | { |
| 9748 | printf(" => [clsHnd=%08X]" , dspPtr(tree->gtArgPlace.gtArgPlaceClsHnd)); |
| 9749 | } |
| 9750 | |
| 9751 | if (tree->gtOper == GT_RUNTIMELOOKUP) |
| 9752 | { |
| 9753 | #ifdef _TARGET_64BIT_ |
| 9754 | printf(" 0x%llx" , dspPtr(tree->gtRuntimeLookup.gtHnd)); |
| 9755 | #else |
| 9756 | printf(" 0x%x" , dspPtr(tree->gtRuntimeLookup.gtHnd)); |
| 9757 | #endif |
| 9758 | |
| 9759 | switch (tree->gtRuntimeLookup.gtHndType) |
| 9760 | { |
| 9761 | case CORINFO_HANDLETYPE_CLASS: |
| 9762 | printf(" class" ); |
| 9763 | break; |
| 9764 | case CORINFO_HANDLETYPE_METHOD: |
| 9765 | printf(" method" ); |
| 9766 | break; |
| 9767 | case CORINFO_HANDLETYPE_FIELD: |
| 9768 | printf(" field" ); |
| 9769 | break; |
| 9770 | default: |
| 9771 | printf(" unknown" ); |
| 9772 | break; |
| 9773 | } |
| 9774 | } |
| 9775 | } |
| 9776 | |
| 9777 | // for tracking down problems in reguse prediction or liveness tracking |
| 9778 | |
| 9779 | if (verbose && 0) |
| 9780 | { |
| 9781 | printf(" RR=" ); |
| 9782 | dspRegMask(tree->gtRsvdRegs); |
| 9783 | printf("\n" ); |
| 9784 | } |
| 9785 | } |
| 9786 | } |
| 9787 | |
| 9788 | void Compiler::gtDispRegVal(GenTree* tree) |
| 9789 | { |
| 9790 | switch (tree->GetRegTag()) |
| 9791 | { |
| 9792 | // Don't display NOREG; the absence of this tag will imply this state |
| 9793 | // case GenTree::GT_REGTAG_NONE: printf(" NOREG"); break; |
| 9794 | |
| 9795 | case GenTree::GT_REGTAG_REG: |
| 9796 | printf(" REG %s" , compRegVarName(tree->gtRegNum)); |
| 9797 | break; |
| 9798 | |
| 9799 | default: |
| 9800 | break; |
| 9801 | } |
| 9802 | |
| 9803 | if (tree->IsMultiRegCall()) |
| 9804 | { |
| 9805 | // 0th reg is gtRegNum, which is already printed above. |
| 9806 | // Print the remaining regs of a multi-reg call node. |
| 9807 | GenTreeCall* call = tree->AsCall(); |
| 9808 | unsigned regCount = call->GetReturnTypeDesc()->TryGetReturnRegCount(); |
| 9809 | for (unsigned i = 1; i < regCount; ++i) |
| 9810 | { |
| 9811 | printf(",%s" , compRegVarName(call->GetRegNumByIdx(i))); |
| 9812 | } |
| 9813 | } |
| 9814 | else if (tree->IsCopyOrReloadOfMultiRegCall()) |
| 9815 | { |
| 9816 | GenTreeCopyOrReload* copyOrReload = tree->AsCopyOrReload(); |
| 9817 | GenTreeCall* call = tree->gtGetOp1()->AsCall(); |
| 9818 | unsigned regCount = call->GetReturnTypeDesc()->TryGetReturnRegCount(); |
| 9819 | for (unsigned i = 1; i < regCount; ++i) |
| 9820 | { |
| 9821 | printf(",%s" , compRegVarName(copyOrReload->GetRegNumByIdx(i))); |
| 9822 | } |
| 9823 | } |
| 9824 | |
| 9825 | #if FEATURE_MULTIREG_RET |
| 9826 | if (tree->IsCopyOrReload()) |
| 9827 | { |
| 9828 | for (int i = 1; i < MAX_RET_REG_COUNT; i++) |
| 9829 | { |
| 9830 | regNumber reg = (regNumber)tree->AsCopyOrReload()->GetRegNumByIdx(i); |
| 9831 | if (reg == REG_NA) |
| 9832 | { |
| 9833 | break; |
| 9834 | } |
| 9835 | printf(",%s" , compRegVarName(reg)); |
| 9836 | } |
| 9837 | } |
| 9838 | #endif |
| 9839 | |
| 9840 | #if defined(_TARGET_ARM_) |
| 9841 | if (tree->OperIsMultiRegOp() && (tree->AsMultiRegOp()->gtOtherReg != REG_NA)) |
| 9842 | { |
| 9843 | printf(",%s" , compRegVarName(tree->AsMultiRegOp()->gtOtherReg)); |
| 9844 | } |
| 9845 | #endif |
| 9846 | } |
| 9847 | |
| 9848 | // We usually/commonly don't expect to print anything longer than this string, |
| 9849 | #define LONGEST_COMMON_LCL_VAR_DISPLAY "V99 PInvokeFrame" |
| 9850 | #define LONGEST_COMMON_LCL_VAR_DISPLAY_LENGTH (sizeof(LONGEST_COMMON_LCL_VAR_DISPLAY)) |
| 9851 | #define BUF_SIZE (LONGEST_COMMON_LCL_VAR_DISPLAY_LENGTH * 2) |
| 9852 | |
| 9853 | void Compiler::gtGetLclVarNameInfo(unsigned lclNum, const char** ilKindOut, const char** ilNameOut, unsigned* ilNumOut) |
| 9854 | { |
| 9855 | const char* ilKind = nullptr; |
| 9856 | const char* ilName = nullptr; |
| 9857 | |
| 9858 | unsigned ilNum = compMap2ILvarNum(lclNum); |
| 9859 | |
| 9860 | if (ilNum == (unsigned)ICorDebugInfo::RETBUF_ILNUM) |
| 9861 | { |
| 9862 | ilName = "RetBuf" ; |
| 9863 | } |
| 9864 | else if (ilNum == (unsigned)ICorDebugInfo::VARARGS_HND_ILNUM) |
| 9865 | { |
| 9866 | ilName = "VarArgHandle" ; |
| 9867 | } |
| 9868 | else if (ilNum == (unsigned)ICorDebugInfo::TYPECTXT_ILNUM) |
| 9869 | { |
| 9870 | ilName = "TypeCtx" ; |
| 9871 | } |
| 9872 | else if (ilNum == (unsigned)ICorDebugInfo::UNKNOWN_ILNUM) |
| 9873 | { |
| 9874 | #if FEATURE_ANYCSE |
| 9875 | if (lclNumIsTrueCSE(lclNum)) |
| 9876 | { |
| 9877 | ilKind = "cse" ; |
| 9878 | ilNum = lclNum - optCSEstart; |
| 9879 | } |
| 9880 | else if (lclNum >= optCSEstart) |
| 9881 | { |
| 9882 | // Currently any new LclVar's introduced after the CSE phase |
| 9883 | // are believed to be created by the "rationalizer" that is what is meant by the "rat" prefix. |
| 9884 | ilKind = "rat" ; |
| 9885 | ilNum = lclNum - (optCSEstart + optCSEcount); |
| 9886 | } |
| 9887 | else |
| 9888 | #endif // FEATURE_ANYCSE |
| 9889 | { |
| 9890 | if (lclNum == info.compLvFrameListRoot) |
| 9891 | { |
| 9892 | ilName = "FramesRoot" ; |
| 9893 | } |
| 9894 | else if (lclNum == lvaInlinedPInvokeFrameVar) |
| 9895 | { |
| 9896 | ilName = "PInvokeFrame" ; |
| 9897 | } |
| 9898 | else if (lclNum == lvaGSSecurityCookie) |
| 9899 | { |
| 9900 | ilName = "GsCookie" ; |
| 9901 | } |
| 9902 | #if FEATURE_FIXED_OUT_ARGS |
| 9903 | else if (lclNum == lvaPInvokeFrameRegSaveVar) |
| 9904 | { |
| 9905 | ilName = "PInvokeFrameRegSave" ; |
| 9906 | } |
| 9907 | else if (lclNum == lvaOutgoingArgSpaceVar) |
| 9908 | { |
| 9909 | ilName = "OutArgs" ; |
| 9910 | } |
| 9911 | #endif // FEATURE_FIXED_OUT_ARGS |
| 9912 | #ifdef _TARGET_ARM_ |
| 9913 | else if (lclNum == lvaPromotedStructAssemblyScratchVar) |
| 9914 | { |
| 9915 | ilName = "PromotedStructScratch" ; |
| 9916 | } |
| 9917 | #endif // _TARGET_ARM_ |
| 9918 | #if !FEATURE_EH_FUNCLETS |
| 9919 | else if (lclNum == lvaShadowSPslotsVar) |
| 9920 | { |
| 9921 | ilName = "EHSlots" ; |
| 9922 | } |
| 9923 | #endif // !FEATURE_EH_FUNCLETS |
| 9924 | #ifdef JIT32_GCENCODER |
| 9925 | else if (lclNum == lvaLocAllocSPvar) |
| 9926 | { |
| 9927 | ilName = "LocAllocSP" ; |
| 9928 | } |
| 9929 | #endif // JIT32_GCENCODER |
| 9930 | #if FEATURE_EH_FUNCLETS |
| 9931 | else if (lclNum == lvaPSPSym) |
| 9932 | { |
| 9933 | ilName = "PSPSym" ; |
| 9934 | } |
| 9935 | #endif // FEATURE_EH_FUNCLETS |
| 9936 | else |
| 9937 | { |
| 9938 | ilKind = "tmp" ; |
| 9939 | if (compIsForInlining()) |
| 9940 | { |
| 9941 | ilNum = lclNum - impInlineInfo->InlinerCompiler->info.compLocalsCount; |
| 9942 | } |
| 9943 | else |
| 9944 | { |
| 9945 | ilNum = lclNum - info.compLocalsCount; |
| 9946 | } |
| 9947 | } |
| 9948 | } |
| 9949 | } |
| 9950 | else if (lclNum < (compIsForInlining() ? impInlineInfo->InlinerCompiler->info.compArgsCount : info.compArgsCount)) |
| 9951 | { |
| 9952 | if (ilNum == 0 && !info.compIsStatic) |
| 9953 | { |
| 9954 | ilName = "this" ; |
| 9955 | } |
| 9956 | else |
| 9957 | { |
| 9958 | ilKind = "arg" ; |
| 9959 | } |
| 9960 | } |
| 9961 | else |
| 9962 | { |
| 9963 | if (!lvaTable[lclNum].lvIsStructField) |
| 9964 | { |
| 9965 | ilKind = "loc" ; |
| 9966 | } |
| 9967 | if (compIsForInlining()) |
| 9968 | { |
| 9969 | ilNum -= impInlineInfo->InlinerCompiler->info.compILargsCount; |
| 9970 | } |
| 9971 | else |
| 9972 | { |
| 9973 | ilNum -= info.compILargsCount; |
| 9974 | } |
| 9975 | } |
| 9976 | |
| 9977 | *ilKindOut = ilKind; |
| 9978 | *ilNameOut = ilName; |
| 9979 | *ilNumOut = ilNum; |
| 9980 | } |
| 9981 | |
| 9982 | /*****************************************************************************/ |
| 9983 | int Compiler::gtGetLclVarName(unsigned lclNum, char* buf, unsigned buf_remaining) |
| 9984 | { |
| 9985 | char* bufp_next = buf; |
| 9986 | unsigned charsPrinted = 0; |
| 9987 | int sprintf_result; |
| 9988 | |
| 9989 | sprintf_result = sprintf_s(bufp_next, buf_remaining, "V%02u" , lclNum); |
| 9990 | |
| 9991 | if (sprintf_result < 0) |
| 9992 | { |
| 9993 | return sprintf_result; |
| 9994 | } |
| 9995 | |
| 9996 | charsPrinted += sprintf_result; |
| 9997 | bufp_next += sprintf_result; |
| 9998 | buf_remaining -= sprintf_result; |
| 9999 | |
| 10000 | const char* ilKind = nullptr; |
| 10001 | const char* ilName = nullptr; |
| 10002 | unsigned ilNum = 0; |
| 10003 | |
| 10004 | gtGetLclVarNameInfo(lclNum, &ilKind, &ilName, &ilNum); |
| 10005 | |
| 10006 | if (ilName != nullptr) |
| 10007 | { |
| 10008 | sprintf_result = sprintf_s(bufp_next, buf_remaining, " %s" , ilName); |
| 10009 | if (sprintf_result < 0) |
| 10010 | { |
| 10011 | return sprintf_result; |
| 10012 | } |
| 10013 | charsPrinted += sprintf_result; |
| 10014 | bufp_next += sprintf_result; |
| 10015 | buf_remaining -= sprintf_result; |
| 10016 | } |
| 10017 | else if (ilKind != nullptr) |
| 10018 | { |
| 10019 | sprintf_result = sprintf_s(bufp_next, buf_remaining, " %s%d" , ilKind, ilNum); |
| 10020 | if (sprintf_result < 0) |
| 10021 | { |
| 10022 | return sprintf_result; |
| 10023 | } |
| 10024 | charsPrinted += sprintf_result; |
| 10025 | bufp_next += sprintf_result; |
| 10026 | buf_remaining -= sprintf_result; |
| 10027 | } |
| 10028 | |
| 10029 | assert(charsPrinted > 0); |
| 10030 | assert(buf_remaining > 0); |
| 10031 | |
| 10032 | return (int)charsPrinted; |
| 10033 | } |
| 10034 | |
| 10035 | /***************************************************************************** |
| 10036 | * Get the local var name, and create a copy of the string that can be used in debug output. |
| 10037 | */ |
| 10038 | char* Compiler::gtGetLclVarName(unsigned lclNum) |
| 10039 | { |
| 10040 | char buf[BUF_SIZE]; |
| 10041 | int charsPrinted = gtGetLclVarName(lclNum, buf, _countof(buf)); |
| 10042 | if (charsPrinted < 0) |
| 10043 | { |
| 10044 | return nullptr; |
| 10045 | } |
| 10046 | |
| 10047 | char* retBuf = new (this, CMK_DebugOnly) char[charsPrinted + 1]; |
| 10048 | strcpy_s(retBuf, charsPrinted + 1, buf); |
| 10049 | return retBuf; |
| 10050 | } |
| 10051 | |
| 10052 | /*****************************************************************************/ |
| 10053 | void Compiler::gtDispLclVar(unsigned lclNum, bool padForBiggestDisp) |
| 10054 | { |
| 10055 | char buf[BUF_SIZE]; |
| 10056 | int charsPrinted = gtGetLclVarName(lclNum, buf, _countof(buf)); |
| 10057 | |
| 10058 | if (charsPrinted < 0) |
| 10059 | { |
| 10060 | return; |
| 10061 | } |
| 10062 | |
| 10063 | printf("%s" , buf); |
| 10064 | |
| 10065 | if (padForBiggestDisp && (charsPrinted < LONGEST_COMMON_LCL_VAR_DISPLAY_LENGTH)) |
| 10066 | { |
| 10067 | printf("%*c" , LONGEST_COMMON_LCL_VAR_DISPLAY_LENGTH - charsPrinted, ' '); |
| 10068 | } |
| 10069 | } |
| 10070 | |
| 10071 | /*****************************************************************************/ |
| 10072 | void Compiler::gtDispConst(GenTree* tree) |
| 10073 | { |
| 10074 | assert(tree->OperKind() & GTK_CONST); |
| 10075 | |
| 10076 | switch (tree->gtOper) |
| 10077 | { |
| 10078 | case GT_CNS_INT: |
| 10079 | if (tree->IsIconHandle(GTF_ICON_STR_HDL)) |
| 10080 | { |
| 10081 | const wchar_t* str = eeGetCPString(tree->gtIntCon.gtIconVal); |
| 10082 | if (str != nullptr) |
| 10083 | { |
| 10084 | printf(" 0x%X \"%S\"" , dspPtr(tree->gtIntCon.gtIconVal), str); |
| 10085 | } |
| 10086 | else |
| 10087 | { |
| 10088 | // Note that eGetCPString isn't currently implemented on Linux/ARM |
| 10089 | // and instead always returns nullptr |
| 10090 | printf(" 0x%X [ICON_STR_HDL]" , dspPtr(tree->gtIntCon.gtIconVal)); |
| 10091 | } |
| 10092 | } |
| 10093 | else |
| 10094 | { |
| 10095 | ssize_t dspIconVal = tree->IsIconHandle() ? dspPtr(tree->gtIntCon.gtIconVal) : tree->gtIntCon.gtIconVal; |
| 10096 | |
| 10097 | if (tree->TypeGet() == TYP_REF) |
| 10098 | { |
| 10099 | assert(tree->gtIntCon.gtIconVal == 0); |
| 10100 | printf(" null" ); |
| 10101 | } |
| 10102 | else if ((tree->gtIntCon.gtIconVal > -1000) && (tree->gtIntCon.gtIconVal < 1000)) |
| 10103 | { |
| 10104 | printf(" %ld" , dspIconVal); |
| 10105 | #ifdef _TARGET_64BIT_ |
| 10106 | } |
| 10107 | else if ((tree->gtIntCon.gtIconVal & 0xFFFFFFFF00000000LL) != 0) |
| 10108 | { |
| 10109 | printf(" 0x%llx" , dspIconVal); |
| 10110 | #endif |
| 10111 | } |
| 10112 | else |
| 10113 | { |
| 10114 | printf(" 0x%X" , dspIconVal); |
| 10115 | } |
| 10116 | |
| 10117 | if (tree->IsIconHandle()) |
| 10118 | { |
| 10119 | switch (tree->GetIconHandleFlag()) |
| 10120 | { |
| 10121 | case GTF_ICON_SCOPE_HDL: |
| 10122 | printf(" scope" ); |
| 10123 | break; |
| 10124 | case GTF_ICON_CLASS_HDL: |
| 10125 | printf(" class" ); |
| 10126 | break; |
| 10127 | case GTF_ICON_METHOD_HDL: |
| 10128 | printf(" method" ); |
| 10129 | break; |
| 10130 | case GTF_ICON_FIELD_HDL: |
| 10131 | printf(" field" ); |
| 10132 | break; |
| 10133 | case GTF_ICON_STATIC_HDL: |
| 10134 | printf(" static" ); |
| 10135 | break; |
| 10136 | case GTF_ICON_STR_HDL: |
| 10137 | unreached(); // This case is handled above |
| 10138 | break; |
| 10139 | case GTF_ICON_PSTR_HDL: |
| 10140 | printf(" pstr" ); |
| 10141 | break; |
| 10142 | case GTF_ICON_PTR_HDL: |
| 10143 | printf(" ptr" ); |
| 10144 | break; |
| 10145 | case GTF_ICON_VARG_HDL: |
| 10146 | printf(" vararg" ); |
| 10147 | break; |
| 10148 | case GTF_ICON_PINVKI_HDL: |
| 10149 | printf(" pinvoke" ); |
| 10150 | break; |
| 10151 | case GTF_ICON_TOKEN_HDL: |
| 10152 | printf(" token" ); |
| 10153 | break; |
| 10154 | case GTF_ICON_TLS_HDL: |
| 10155 | printf(" tls" ); |
| 10156 | break; |
| 10157 | case GTF_ICON_FTN_ADDR: |
| 10158 | printf(" ftn" ); |
| 10159 | break; |
| 10160 | case GTF_ICON_CIDMID_HDL: |
| 10161 | printf(" cid/mid" ); |
| 10162 | break; |
| 10163 | case GTF_ICON_BBC_PTR: |
| 10164 | printf(" bbc" ); |
| 10165 | break; |
| 10166 | default: |
| 10167 | printf(" UNKNOWN" ); |
| 10168 | break; |
| 10169 | } |
| 10170 | } |
| 10171 | |
| 10172 | if ((tree->gtFlags & GTF_ICON_FIELD_OFF) != 0) |
| 10173 | { |
| 10174 | printf(" field offset" ); |
| 10175 | } |
| 10176 | |
| 10177 | #ifdef FEATURE_SIMD |
| 10178 | if ((tree->gtFlags & GTF_ICON_SIMD_COUNT) != 0) |
| 10179 | { |
| 10180 | printf(" Vector<T>.Count" ); |
| 10181 | } |
| 10182 | #endif |
| 10183 | |
| 10184 | if ((tree->IsReuseRegVal()) != 0) |
| 10185 | { |
| 10186 | printf(" reuse reg val" ); |
| 10187 | } |
| 10188 | } |
| 10189 | |
| 10190 | gtDispFieldSeq(tree->gtIntCon.gtFieldSeq); |
| 10191 | |
| 10192 | break; |
| 10193 | |
| 10194 | case GT_CNS_LNG: |
| 10195 | printf(" 0x%016I64x" , tree->gtLngCon.gtLconVal); |
| 10196 | break; |
| 10197 | |
| 10198 | case GT_CNS_DBL: |
| 10199 | if (*((__int64*)&tree->gtDblCon.gtDconVal) == (__int64)I64(0x8000000000000000)) |
| 10200 | { |
| 10201 | printf(" -0.00000" ); |
| 10202 | } |
| 10203 | else |
| 10204 | { |
| 10205 | printf(" %#.17g" , tree->gtDblCon.gtDconVal); |
| 10206 | } |
| 10207 | break; |
| 10208 | case GT_CNS_STR: |
| 10209 | printf("<string constant>" ); |
| 10210 | break; |
| 10211 | default: |
| 10212 | assert(!"unexpected constant node" ); |
| 10213 | } |
| 10214 | |
| 10215 | gtDispRegVal(tree); |
| 10216 | } |
| 10217 | |
| 10218 | void Compiler::gtDispFieldSeq(FieldSeqNode* pfsn) |
| 10219 | { |
| 10220 | if (pfsn == FieldSeqStore::NotAField() || (pfsn == nullptr)) |
| 10221 | { |
| 10222 | return; |
| 10223 | } |
| 10224 | |
| 10225 | // Otherwise... |
| 10226 | printf(" Fseq[" ); |
| 10227 | while (pfsn != nullptr) |
| 10228 | { |
| 10229 | assert(pfsn != FieldSeqStore::NotAField()); // Can't exist in a field sequence list except alone |
| 10230 | CORINFO_FIELD_HANDLE fldHnd = pfsn->m_fieldHnd; |
| 10231 | // First check the "pseudo" field handles... |
| 10232 | if (fldHnd == FieldSeqStore::FirstElemPseudoField) |
| 10233 | { |
| 10234 | printf("#FirstElem" ); |
| 10235 | } |
| 10236 | else if (fldHnd == FieldSeqStore::ConstantIndexPseudoField) |
| 10237 | { |
| 10238 | printf("#ConstantIndex" ); |
| 10239 | } |
| 10240 | else |
| 10241 | { |
| 10242 | printf("%s" , eeGetFieldName(fldHnd)); |
| 10243 | } |
| 10244 | pfsn = pfsn->m_next; |
| 10245 | if (pfsn != nullptr) |
| 10246 | { |
| 10247 | printf(", " ); |
| 10248 | } |
| 10249 | } |
| 10250 | printf("]" ); |
| 10251 | } |
| 10252 | |
| 10253 | //------------------------------------------------------------------------ |
| 10254 | // gtDispLeaf: Print a single leaf node to jitstdout. |
| 10255 | // |
| 10256 | // Arguments: |
| 10257 | // tree - the tree to be printed |
| 10258 | // indentStack - the specification for the current level of indentation & arcs |
| 10259 | // |
| 10260 | // Return Value: |
| 10261 | // None. |
| 10262 | // |
| 10263 | // Notes: |
| 10264 | // 'indentStack' may be null, in which case no indentation or arcs are printed |
| 10265 | |
| 10266 | void Compiler::gtDispLeaf(GenTree* tree, IndentStack* indentStack) |
| 10267 | { |
| 10268 | if (tree->OperKind() & GTK_CONST) |
| 10269 | { |
| 10270 | gtDispConst(tree); |
| 10271 | return; |
| 10272 | } |
| 10273 | |
| 10274 | bool isLclFld = false; |
| 10275 | |
| 10276 | switch (tree->gtOper) |
| 10277 | { |
| 10278 | unsigned varNum; |
| 10279 | LclVarDsc* varDsc; |
| 10280 | |
| 10281 | case GT_LCL_FLD: |
| 10282 | case GT_LCL_FLD_ADDR: |
| 10283 | case GT_STORE_LCL_FLD: |
| 10284 | isLclFld = true; |
| 10285 | __fallthrough; |
| 10286 | |
| 10287 | case GT_PHI_ARG: |
| 10288 | case GT_LCL_VAR: |
| 10289 | case GT_LCL_VAR_ADDR: |
| 10290 | case GT_STORE_LCL_VAR: |
| 10291 | printf(" " ); |
| 10292 | varNum = tree->gtLclVarCommon.gtLclNum; |
| 10293 | varDsc = &lvaTable[varNum]; |
| 10294 | gtDispLclVar(varNum); |
| 10295 | if (tree->gtLclVarCommon.HasSsaName()) |
| 10296 | { |
| 10297 | if (tree->gtFlags & GTF_VAR_USEASG) |
| 10298 | { |
| 10299 | assert(tree->gtFlags & GTF_VAR_DEF); |
| 10300 | printf("ud:%d->%d" , tree->gtLclVarCommon.gtSsaNum, GetSsaNumForLocalVarDef(tree)); |
| 10301 | } |
| 10302 | else |
| 10303 | { |
| 10304 | printf("%s:%d" , (tree->gtFlags & GTF_VAR_DEF) ? "d" : "u" , tree->gtLclVarCommon.gtSsaNum); |
| 10305 | } |
| 10306 | } |
| 10307 | |
| 10308 | if (isLclFld) |
| 10309 | { |
| 10310 | printf("[+%u]" , tree->gtLclFld.gtLclOffs); |
| 10311 | gtDispFieldSeq(tree->gtLclFld.gtFieldSeq); |
| 10312 | } |
| 10313 | |
| 10314 | if (varDsc->lvRegister) |
| 10315 | { |
| 10316 | printf(" " ); |
| 10317 | varDsc->PrintVarReg(); |
| 10318 | } |
| 10319 | else if (tree->InReg()) |
| 10320 | { |
| 10321 | printf(" %s" , compRegVarName(tree->gtRegNum)); |
| 10322 | } |
| 10323 | |
| 10324 | if (varDsc->lvPromoted) |
| 10325 | { |
| 10326 | if (!varTypeIsPromotable(varDsc) && !varDsc->lvUnusedStruct) |
| 10327 | { |
| 10328 | // Promoted implicit byrefs can get in this state while they are being rewritten |
| 10329 | // in global morph. |
| 10330 | assert(fgGlobalMorph); |
| 10331 | } |
| 10332 | else |
| 10333 | { |
| 10334 | CORINFO_CLASS_HANDLE typeHnd = varDsc->lvVerTypeInfo.GetClassHandle(); |
| 10335 | CORINFO_FIELD_HANDLE fldHnd; |
| 10336 | |
| 10337 | for (unsigned i = varDsc->lvFieldLclStart; i < varDsc->lvFieldLclStart + varDsc->lvFieldCnt; ++i) |
| 10338 | { |
| 10339 | LclVarDsc* fieldVarDsc = &lvaTable[i]; |
| 10340 | const char* fieldName; |
| 10341 | #if !defined(_TARGET_64BIT_) |
| 10342 | if (varTypeIsLong(varDsc)) |
| 10343 | { |
| 10344 | fieldName = (i == 0) ? "lo" : "hi" ; |
| 10345 | } |
| 10346 | else |
| 10347 | #endif // !defined(_TARGET_64BIT_) |
| 10348 | { |
| 10349 | fldHnd = info.compCompHnd->getFieldInClass(typeHnd, fieldVarDsc->lvFldOrdinal); |
| 10350 | fieldName = eeGetFieldName(fldHnd); |
| 10351 | } |
| 10352 | |
| 10353 | printf("\n" ); |
| 10354 | printf(" " ); |
| 10355 | printIndent(indentStack); |
| 10356 | printf(" %-6s V%02u.%s (offs=0x%02x) -> " , varTypeName(fieldVarDsc->TypeGet()), |
| 10357 | tree->gtLclVarCommon.gtLclNum, fieldName, fieldVarDsc->lvFldOffset); |
| 10358 | gtDispLclVar(i); |
| 10359 | |
| 10360 | if (fieldVarDsc->lvRegister) |
| 10361 | { |
| 10362 | printf(" " ); |
| 10363 | fieldVarDsc->PrintVarReg(); |
| 10364 | } |
| 10365 | |
| 10366 | if (fieldVarDsc->lvTracked && fgLocalVarLivenessDone && // Includes local variable liveness |
| 10367 | ((tree->gtFlags & GTF_VAR_DEATH) != 0)) |
| 10368 | { |
| 10369 | printf(" (last use)" ); |
| 10370 | } |
| 10371 | } |
| 10372 | } |
| 10373 | } |
| 10374 | else // a normal not-promoted lclvar |
| 10375 | { |
| 10376 | if (varDsc->lvTracked && fgLocalVarLivenessDone && ((tree->gtFlags & GTF_VAR_DEATH) != 0)) |
| 10377 | { |
| 10378 | printf(" (last use)" ); |
| 10379 | } |
| 10380 | } |
| 10381 | break; |
| 10382 | |
| 10383 | case GT_JMP: |
| 10384 | { |
| 10385 | const char* methodName; |
| 10386 | const char* className; |
| 10387 | |
| 10388 | methodName = eeGetMethodName((CORINFO_METHOD_HANDLE)tree->gtVal.gtVal1, &className); |
| 10389 | printf(" %s.%s\n" , className, methodName); |
| 10390 | } |
| 10391 | break; |
| 10392 | |
| 10393 | case GT_CLS_VAR: |
| 10394 | printf(" Hnd=%#x" , dspPtr(tree->gtClsVar.gtClsVarHnd)); |
| 10395 | gtDispFieldSeq(tree->gtClsVar.gtFieldSeq); |
| 10396 | break; |
| 10397 | |
| 10398 | case GT_CLS_VAR_ADDR: |
| 10399 | printf(" Hnd=%#x" , dspPtr(tree->gtClsVar.gtClsVarHnd)); |
| 10400 | break; |
| 10401 | |
| 10402 | case GT_LABEL: |
| 10403 | if (tree->gtLabel.gtLabBB) |
| 10404 | { |
| 10405 | printf(" dst=" FMT_BB, tree->gtLabel.gtLabBB->bbNum); |
| 10406 | } |
| 10407 | else |
| 10408 | { |
| 10409 | printf(" dst=<null>" ); |
| 10410 | } |
| 10411 | |
| 10412 | break; |
| 10413 | |
| 10414 | case GT_FTN_ADDR: |
| 10415 | { |
| 10416 | const char* methodName; |
| 10417 | const char* className; |
| 10418 | |
| 10419 | methodName = eeGetMethodName((CORINFO_METHOD_HANDLE)tree->gtFptrVal.gtFptrMethod, &className); |
| 10420 | printf(" %s.%s\n" , className, methodName); |
| 10421 | } |
| 10422 | break; |
| 10423 | |
| 10424 | #if !FEATURE_EH_FUNCLETS |
| 10425 | case GT_END_LFIN: |
| 10426 | printf(" endNstLvl=%d" , tree->gtVal.gtVal1); |
| 10427 | break; |
| 10428 | #endif // !FEATURE_EH_FUNCLETS |
| 10429 | |
| 10430 | // Vanilla leaves. No qualifying information available. So do nothing |
| 10431 | |
| 10432 | case GT_NO_OP: |
| 10433 | case GT_START_NONGC: |
| 10434 | case GT_PROF_HOOK: |
| 10435 | case GT_CATCH_ARG: |
| 10436 | case GT_MEMORYBARRIER: |
| 10437 | case GT_ARGPLACE: |
| 10438 | case GT_PINVOKE_PROLOG: |
| 10439 | case GT_JMPTABLE: |
| 10440 | break; |
| 10441 | |
| 10442 | case GT_RET_EXPR: |
| 10443 | printf("(inl return from call " ); |
| 10444 | printTreeID(tree->gtRetExpr.gtInlineCandidate); |
| 10445 | printf(")" ); |
| 10446 | break; |
| 10447 | |
| 10448 | case GT_PHYSREG: |
| 10449 | printf(" %s" , getRegName(tree->gtPhysReg.gtSrcReg, varTypeIsFloating(tree))); |
| 10450 | break; |
| 10451 | |
| 10452 | case GT_IL_OFFSET: |
| 10453 | printf(" IL offset: " ); |
| 10454 | if (tree->gtStmt.gtStmtILoffsx == BAD_IL_OFFSET) |
| 10455 | { |
| 10456 | printf("???" ); |
| 10457 | } |
| 10458 | else |
| 10459 | { |
| 10460 | printf("0x%x" , jitGetILoffs(tree->gtStmt.gtStmtILoffsx)); |
| 10461 | } |
| 10462 | break; |
| 10463 | |
| 10464 | case GT_JCC: |
| 10465 | case GT_SETCC: |
| 10466 | printf(" cond=%s" , GenTree::OpName(tree->AsCC()->gtCondition)); |
| 10467 | break; |
| 10468 | case GT_JCMP: |
| 10469 | printf(" cond=%s%s" , (tree->gtFlags & GTF_JCMP_TST) ? "TEST_" : "" , |
| 10470 | (tree->gtFlags & GTF_JCMP_EQ) ? "EQ" : "NE" ); |
| 10471 | |
| 10472 | default: |
| 10473 | assert(!"don't know how to display tree leaf node" ); |
| 10474 | } |
| 10475 | |
| 10476 | gtDispRegVal(tree); |
| 10477 | } |
| 10478 | |
| 10479 | //------------------------------------------------------------------------ |
| 10480 | // gtDispLeaf: Print a child node to jitstdout. |
| 10481 | // |
| 10482 | // Arguments: |
| 10483 | // tree - the tree to be printed |
| 10484 | // indentStack - the specification for the current level of indentation & arcs |
| 10485 | // arcType - the type of arc to use for this child |
| 10486 | // msg - a contextual method (i.e. from the parent) to print |
| 10487 | // topOnly - a boolean indicating whether to print the children, or just the top node |
| 10488 | // |
| 10489 | // Return Value: |
| 10490 | // None. |
| 10491 | // |
| 10492 | // Notes: |
| 10493 | // 'indentStack' may be null, in which case no indentation or arcs are printed |
| 10494 | // 'msg' has a default value of null |
| 10495 | // 'topOnly' is an optional argument that defaults to false |
| 10496 | |
| 10497 | void Compiler::gtDispChild(GenTree* child, |
| 10498 | IndentStack* indentStack, |
| 10499 | IndentInfo arcType, |
| 10500 | __in_opt const char* msg, /* = nullptr */ |
| 10501 | bool topOnly) /* = false */ |
| 10502 | { |
| 10503 | indentStack->Push(arcType); |
| 10504 | gtDispTree(child, indentStack, msg, topOnly); |
| 10505 | indentStack->Pop(); |
| 10506 | } |
| 10507 | |
| 10508 | #ifdef FEATURE_SIMD |
| 10509 | // Intrinsic Id to name map |
| 10510 | extern const char* const simdIntrinsicNames[] = { |
| 10511 | #define SIMD_INTRINSIC(mname, inst, id, name, r, ac, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) name, |
| 10512 | #include "simdintrinsiclist.h" |
| 10513 | }; |
| 10514 | #endif // FEATURE_SIMD |
| 10515 | |
| 10516 | /*****************************************************************************/ |
| 10517 | |
| 10518 | void Compiler::gtDispTree(GenTree* tree, |
| 10519 | IndentStack* indentStack, /* = nullptr */ |
| 10520 | __in __in_z __in_opt const char* msg, /* = nullptr */ |
| 10521 | bool topOnly, /* = false */ |
| 10522 | bool isLIR) /* = false */ |
| 10523 | { |
| 10524 | if (tree == nullptr) |
| 10525 | { |
| 10526 | printf(" [%08X] <NULL>\n" , tree); |
| 10527 | printf("" ); // null string means flush |
| 10528 | return; |
| 10529 | } |
| 10530 | |
| 10531 | if (indentStack == nullptr) |
| 10532 | { |
| 10533 | indentStack = new (this, CMK_DebugOnly) IndentStack(this); |
| 10534 | } |
| 10535 | |
| 10536 | if (IsUninitialized(tree)) |
| 10537 | { |
| 10538 | /* Value used to initalize nodes */ |
| 10539 | printf("Uninitialized tree node!" ); |
| 10540 | return; |
| 10541 | } |
| 10542 | |
| 10543 | if (tree->gtOper >= GT_COUNT) |
| 10544 | { |
| 10545 | gtDispNode(tree, indentStack, msg, isLIR); |
| 10546 | printf("Bogus operator!" ); |
| 10547 | return; |
| 10548 | } |
| 10549 | |
| 10550 | /* Is tree a leaf node? */ |
| 10551 | |
| 10552 | if (tree->OperIsLeaf() || tree->OperIsLocalStore()) // local stores used to be leaves |
| 10553 | { |
| 10554 | gtDispNode(tree, indentStack, msg, isLIR); |
| 10555 | gtDispLeaf(tree, indentStack); |
| 10556 | gtDispVN(tree); |
| 10557 | printf("\n" ); |
| 10558 | if (tree->OperIsLocalStore() && !topOnly) |
| 10559 | { |
| 10560 | gtDispChild(tree->gtOp.gtOp1, indentStack, IINone); |
| 10561 | } |
| 10562 | return; |
| 10563 | } |
| 10564 | |
| 10565 | // Determine what kind of arc to propagate. |
| 10566 | IndentInfo myArc = IINone; |
| 10567 | IndentInfo lowerArc = IINone; |
| 10568 | if (indentStack->Depth() > 0) |
| 10569 | { |
| 10570 | myArc = indentStack->Pop(); |
| 10571 | switch (myArc) |
| 10572 | { |
| 10573 | case IIArcBottom: |
| 10574 | indentStack->Push(IIArc); |
| 10575 | lowerArc = IINone; |
| 10576 | break; |
| 10577 | case IIArc: |
| 10578 | indentStack->Push(IIArc); |
| 10579 | lowerArc = IIArc; |
| 10580 | break; |
| 10581 | case IIArcTop: |
| 10582 | indentStack->Push(IINone); |
| 10583 | lowerArc = IIArc; |
| 10584 | break; |
| 10585 | case IIEmbedded: |
| 10586 | indentStack->Push(IIEmbedded); |
| 10587 | lowerArc = IIEmbedded; |
| 10588 | break; |
| 10589 | case IINone: |
| 10590 | indentStack->Push(IINone); |
| 10591 | lowerArc = IINone; |
| 10592 | break; |
| 10593 | default: |
| 10594 | unreached(); |
| 10595 | break; |
| 10596 | } |
| 10597 | } |
| 10598 | |
| 10599 | // Special case formatting for PHI nodes -- arg lists like calls. |
| 10600 | |
| 10601 | if (tree->OperGet() == GT_PHI) |
| 10602 | { |
| 10603 | gtDispNode(tree, indentStack, msg, isLIR); |
| 10604 | gtDispVN(tree); |
| 10605 | printf("\n" ); |
| 10606 | |
| 10607 | if (!topOnly) |
| 10608 | { |
| 10609 | if (tree->gtOp.gtOp1 != nullptr) |
| 10610 | { |
| 10611 | IndentInfo arcType = IIArcTop; |
| 10612 | for (GenTreeArgList* args = tree->gtOp.gtOp1->AsArgList(); args != nullptr; args = args->Rest()) |
| 10613 | { |
| 10614 | if (args->Rest() == nullptr) |
| 10615 | { |
| 10616 | arcType = IIArcBottom; |
| 10617 | } |
| 10618 | gtDispChild(args->Current(), indentStack, arcType); |
| 10619 | arcType = IIArc; |
| 10620 | } |
| 10621 | } |
| 10622 | } |
| 10623 | return; |
| 10624 | } |
| 10625 | |
| 10626 | /* Is it a 'simple' unary/binary operator? */ |
| 10627 | |
| 10628 | const char* childMsg = nullptr; |
| 10629 | |
| 10630 | if (tree->OperIsSimple()) |
| 10631 | { |
| 10632 | if (!topOnly) |
| 10633 | { |
| 10634 | if (tree->gtGetOp2IfPresent()) |
| 10635 | { |
| 10636 | // Label the childMsgs of the GT_COLON operator |
| 10637 | // op2 is the then part |
| 10638 | |
| 10639 | if (tree->gtOper == GT_COLON) |
| 10640 | { |
| 10641 | childMsg = "then" ; |
| 10642 | } |
| 10643 | gtDispChild(tree->gtOp.gtOp2, indentStack, IIArcTop, childMsg, topOnly); |
| 10644 | } |
| 10645 | } |
| 10646 | |
| 10647 | // Now, get the right type of arc for this node |
| 10648 | if (myArc != IINone) |
| 10649 | { |
| 10650 | indentStack->Pop(); |
| 10651 | indentStack->Push(myArc); |
| 10652 | } |
| 10653 | |
| 10654 | gtDispNode(tree, indentStack, msg, isLIR); |
| 10655 | |
| 10656 | // Propagate lowerArc to the lower children. |
| 10657 | if (indentStack->Depth() > 0) |
| 10658 | { |
| 10659 | (void)indentStack->Pop(); |
| 10660 | indentStack->Push(lowerArc); |
| 10661 | } |
| 10662 | |
| 10663 | if (tree->gtOper == GT_CAST) |
| 10664 | { |
| 10665 | /* Format a message that explains the effect of this GT_CAST */ |
| 10666 | |
| 10667 | var_types fromType = genActualType(tree->gtCast.CastOp()->TypeGet()); |
| 10668 | var_types toType = tree->CastToType(); |
| 10669 | var_types finalType = tree->TypeGet(); |
| 10670 | |
| 10671 | /* if GTF_UNSIGNED is set then force fromType to an unsigned type */ |
| 10672 | if (tree->gtFlags & GTF_UNSIGNED) |
| 10673 | { |
| 10674 | fromType = genUnsignedType(fromType); |
| 10675 | } |
| 10676 | |
| 10677 | if (finalType != toType) |
| 10678 | { |
| 10679 | printf(" %s <-" , varTypeName(finalType)); |
| 10680 | } |
| 10681 | |
| 10682 | printf(" %s <- %s" , varTypeName(toType), varTypeName(fromType)); |
| 10683 | } |
| 10684 | |
| 10685 | if (tree->gtOper == GT_OBJ && (tree->gtFlags & GTF_VAR_DEATH)) |
| 10686 | { |
| 10687 | printf(" (last use)" ); |
| 10688 | } |
| 10689 | if (tree->OperIsBlkOp()) |
| 10690 | { |
| 10691 | if (tree->OperIsCopyBlkOp()) |
| 10692 | { |
| 10693 | printf(" (copy)" ); |
| 10694 | } |
| 10695 | else if (tree->OperIsInitBlkOp()) |
| 10696 | { |
| 10697 | printf(" (init)" ); |
| 10698 | } |
| 10699 | if (tree->OperIsStoreBlk() && (tree->AsBlk()->gtBlkOpKind != GenTreeBlk::BlkOpKindInvalid)) |
| 10700 | { |
| 10701 | switch (tree->AsBlk()->gtBlkOpKind) |
| 10702 | { |
| 10703 | case GenTreeBlk::BlkOpKindRepInstr: |
| 10704 | printf(" (RepInstr)" ); |
| 10705 | break; |
| 10706 | case GenTreeBlk::BlkOpKindUnroll: |
| 10707 | printf(" (Unroll)" ); |
| 10708 | break; |
| 10709 | case GenTreeBlk::BlkOpKindHelper: |
| 10710 | printf(" (Helper)" ); |
| 10711 | break; |
| 10712 | default: |
| 10713 | unreached(); |
| 10714 | } |
| 10715 | } |
| 10716 | } |
| 10717 | else if (tree->OperIsFieldList()) |
| 10718 | { |
| 10719 | printf(" %s at offset %d" , varTypeName(tree->AsFieldList()->gtFieldType), |
| 10720 | tree->AsFieldList()->gtFieldOffset); |
| 10721 | } |
| 10722 | #if FEATURE_PUT_STRUCT_ARG_STK |
| 10723 | else if (tree->OperGet() == GT_PUTARG_STK) |
| 10724 | { |
| 10725 | printf(" (%d slots)" , tree->AsPutArgStk()->gtNumSlots); |
| 10726 | if (tree->AsPutArgStk()->gtPutArgStkKind != GenTreePutArgStk::Kind::Invalid) |
| 10727 | { |
| 10728 | switch (tree->AsPutArgStk()->gtPutArgStkKind) |
| 10729 | { |
| 10730 | case GenTreePutArgStk::Kind::RepInstr: |
| 10731 | printf(" (RepInstr)" ); |
| 10732 | break; |
| 10733 | case GenTreePutArgStk::Kind::Unroll: |
| 10734 | printf(" (Unroll)" ); |
| 10735 | break; |
| 10736 | case GenTreePutArgStk::Kind::Push: |
| 10737 | printf(" (Push)" ); |
| 10738 | break; |
| 10739 | case GenTreePutArgStk::Kind::PushAllSlots: |
| 10740 | printf(" (PushAllSlots)" ); |
| 10741 | break; |
| 10742 | default: |
| 10743 | unreached(); |
| 10744 | } |
| 10745 | } |
| 10746 | } |
| 10747 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 10748 | |
| 10749 | if (tree->gtOper == GT_INTRINSIC) |
| 10750 | { |
| 10751 | switch (tree->gtIntrinsic.gtIntrinsicId) |
| 10752 | { |
| 10753 | case CORINFO_INTRINSIC_Sin: |
| 10754 | printf(" sin" ); |
| 10755 | break; |
| 10756 | case CORINFO_INTRINSIC_Cos: |
| 10757 | printf(" cos" ); |
| 10758 | break; |
| 10759 | case CORINFO_INTRINSIC_Cbrt: |
| 10760 | printf(" cbrt" ); |
| 10761 | break; |
| 10762 | case CORINFO_INTRINSIC_Sqrt: |
| 10763 | printf(" sqrt" ); |
| 10764 | break; |
| 10765 | case CORINFO_INTRINSIC_Abs: |
| 10766 | printf(" abs" ); |
| 10767 | break; |
| 10768 | case CORINFO_INTRINSIC_Round: |
| 10769 | printf(" round" ); |
| 10770 | break; |
| 10771 | case CORINFO_INTRINSIC_Cosh: |
| 10772 | printf(" cosh" ); |
| 10773 | break; |
| 10774 | case CORINFO_INTRINSIC_Sinh: |
| 10775 | printf(" sinh" ); |
| 10776 | break; |
| 10777 | case CORINFO_INTRINSIC_Tan: |
| 10778 | printf(" tan" ); |
| 10779 | break; |
| 10780 | case CORINFO_INTRINSIC_Tanh: |
| 10781 | printf(" tanh" ); |
| 10782 | break; |
| 10783 | case CORINFO_INTRINSIC_Asin: |
| 10784 | printf(" asin" ); |
| 10785 | break; |
| 10786 | case CORINFO_INTRINSIC_Asinh: |
| 10787 | printf(" asinh" ); |
| 10788 | break; |
| 10789 | case CORINFO_INTRINSIC_Acos: |
| 10790 | printf(" acos" ); |
| 10791 | break; |
| 10792 | case CORINFO_INTRINSIC_Acosh: |
| 10793 | printf(" acosh" ); |
| 10794 | break; |
| 10795 | case CORINFO_INTRINSIC_Atan: |
| 10796 | printf(" atan" ); |
| 10797 | break; |
| 10798 | case CORINFO_INTRINSIC_Atan2: |
| 10799 | printf(" atan2" ); |
| 10800 | break; |
| 10801 | case CORINFO_INTRINSIC_Atanh: |
| 10802 | printf(" atanh" ); |
| 10803 | break; |
| 10804 | case CORINFO_INTRINSIC_Log10: |
| 10805 | printf(" log10" ); |
| 10806 | break; |
| 10807 | case CORINFO_INTRINSIC_Pow: |
| 10808 | printf(" pow" ); |
| 10809 | break; |
| 10810 | case CORINFO_INTRINSIC_Exp: |
| 10811 | printf(" exp" ); |
| 10812 | break; |
| 10813 | case CORINFO_INTRINSIC_Ceiling: |
| 10814 | printf(" ceiling" ); |
| 10815 | break; |
| 10816 | case CORINFO_INTRINSIC_Floor: |
| 10817 | printf(" floor" ); |
| 10818 | break; |
| 10819 | case CORINFO_INTRINSIC_Object_GetType: |
| 10820 | printf(" objGetType" ); |
| 10821 | break; |
| 10822 | |
| 10823 | default: |
| 10824 | unreached(); |
| 10825 | } |
| 10826 | } |
| 10827 | |
| 10828 | #ifdef FEATURE_SIMD |
| 10829 | if (tree->gtOper == GT_SIMD) |
| 10830 | { |
| 10831 | printf(" %s %s" , varTypeName(tree->gtSIMD.gtSIMDBaseType), |
| 10832 | simdIntrinsicNames[tree->gtSIMD.gtSIMDIntrinsicID]); |
| 10833 | } |
| 10834 | #endif // FEATURE_SIMD |
| 10835 | |
| 10836 | #ifdef FEATURE_HW_INTRINSICS |
| 10837 | if (tree->gtOper == GT_HWIntrinsic) |
| 10838 | { |
| 10839 | printf(" %s %s" , |
| 10840 | tree->gtHWIntrinsic.gtSIMDBaseType == TYP_UNKNOWN ? "" |
| 10841 | : varTypeName(tree->gtHWIntrinsic.gtSIMDBaseType), |
| 10842 | HWIntrinsicInfo::lookupName(tree->gtHWIntrinsic.gtHWIntrinsicId)); |
| 10843 | } |
| 10844 | #endif // FEATURE_HW_INTRINSICS |
| 10845 | |
| 10846 | gtDispRegVal(tree); |
| 10847 | gtDispVN(tree); |
| 10848 | printf("\n" ); |
| 10849 | |
| 10850 | if (!topOnly && tree->gtOp.gtOp1) |
| 10851 | { |
| 10852 | |
| 10853 | // Label the child of the GT_COLON operator |
| 10854 | // op1 is the else part |
| 10855 | |
| 10856 | if (tree->gtOper == GT_COLON) |
| 10857 | { |
| 10858 | childMsg = "else" ; |
| 10859 | } |
| 10860 | else if (tree->gtOper == GT_QMARK) |
| 10861 | { |
| 10862 | childMsg = " if" ; |
| 10863 | } |
| 10864 | gtDispChild(tree->gtOp.gtOp1, indentStack, IIArcBottom, childMsg, topOnly); |
| 10865 | } |
| 10866 | |
| 10867 | return; |
| 10868 | } |
| 10869 | |
| 10870 | // Now, get the right type of arc for this node |
| 10871 | if (myArc != IINone) |
| 10872 | { |
| 10873 | indentStack->Pop(); |
| 10874 | indentStack->Push(myArc); |
| 10875 | } |
| 10876 | gtDispNode(tree, indentStack, msg, isLIR); |
| 10877 | |
| 10878 | // Propagate lowerArc to the lower children. |
| 10879 | if (indentStack->Depth() > 0) |
| 10880 | { |
| 10881 | (void)indentStack->Pop(); |
| 10882 | indentStack->Push(lowerArc); |
| 10883 | } |
| 10884 | |
| 10885 | // See what kind of a special operator we have here, and handle its special children. |
| 10886 | |
| 10887 | switch (tree->gtOper) |
| 10888 | { |
| 10889 | case GT_FIELD: |
| 10890 | if (FieldSeqStore::IsPseudoField(tree->gtField.gtFldHnd)) |
| 10891 | { |
| 10892 | printf(" #PseudoField:0x%x" , tree->gtField.gtFldOffset); |
| 10893 | } |
| 10894 | else |
| 10895 | { |
| 10896 | printf(" %s" , eeGetFieldName(tree->gtField.gtFldHnd), 0); |
| 10897 | } |
| 10898 | |
| 10899 | if (tree->gtField.gtFldObj && !topOnly) |
| 10900 | { |
| 10901 | gtDispVN(tree); |
| 10902 | printf("\n" ); |
| 10903 | gtDispChild(tree->gtField.gtFldObj, indentStack, IIArcBottom); |
| 10904 | } |
| 10905 | else |
| 10906 | { |
| 10907 | gtDispRegVal(tree); |
| 10908 | gtDispVN(tree); |
| 10909 | printf("\n" ); |
| 10910 | } |
| 10911 | break; |
| 10912 | |
| 10913 | case GT_CALL: |
| 10914 | { |
| 10915 | GenTreeCall* call = tree->AsCall(); |
| 10916 | assert(call->gtFlags & GTF_CALL); |
| 10917 | unsigned numChildren = call->NumChildren(); |
| 10918 | GenTree* lastChild = nullptr; |
| 10919 | if (numChildren != 0) |
| 10920 | { |
| 10921 | lastChild = call->GetChild(numChildren - 1); |
| 10922 | } |
| 10923 | |
| 10924 | if (call->gtCallType != CT_INDIRECT) |
| 10925 | { |
| 10926 | const char* methodName; |
| 10927 | const char* className; |
| 10928 | |
| 10929 | methodName = eeGetMethodName(call->gtCallMethHnd, &className); |
| 10930 | |
| 10931 | printf(" %s.%s" , className, methodName); |
| 10932 | } |
| 10933 | |
| 10934 | if ((call->gtFlags & GTF_CALL_UNMANAGED) && (call->gtCallMoreFlags & GTF_CALL_M_FRAME_VAR_DEATH)) |
| 10935 | { |
| 10936 | printf(" (FramesRoot last use)" ); |
| 10937 | } |
| 10938 | |
| 10939 | if (((call->gtFlags & GTF_CALL_INLINE_CANDIDATE) != 0) && (call->gtInlineCandidateInfo != nullptr) && |
| 10940 | (call->gtInlineCandidateInfo->exactContextHnd != nullptr)) |
| 10941 | { |
| 10942 | printf(" (exactContextHnd=0x%p)" , dspPtr(call->gtInlineCandidateInfo->exactContextHnd)); |
| 10943 | } |
| 10944 | |
| 10945 | gtDispVN(call); |
| 10946 | if (call->IsMultiRegCall()) |
| 10947 | { |
| 10948 | gtDispRegVal(call); |
| 10949 | } |
| 10950 | printf("\n" ); |
| 10951 | |
| 10952 | if (!topOnly) |
| 10953 | { |
| 10954 | char buf[64]; |
| 10955 | char* bufp; |
| 10956 | |
| 10957 | bufp = &buf[0]; |
| 10958 | |
| 10959 | if ((call->gtCallObjp != nullptr) && (call->gtCallObjp->gtOper != GT_NOP) && |
| 10960 | (!call->gtCallObjp->IsArgPlaceHolderNode())) |
| 10961 | { |
| 10962 | if (call->gtCallObjp->gtOper == GT_ASG) |
| 10963 | { |
| 10964 | sprintf_s(bufp, sizeof(buf), "this SETUP%c" , 0); |
| 10965 | } |
| 10966 | else |
| 10967 | { |
| 10968 | sprintf_s(bufp, sizeof(buf), "this in %s%c" , compRegVarName(REG_ARG_0), 0); |
| 10969 | } |
| 10970 | gtDispChild(call->gtCallObjp, indentStack, (call->gtCallObjp == lastChild) ? IIArcBottom : IIArc, |
| 10971 | bufp, topOnly); |
| 10972 | } |
| 10973 | |
| 10974 | if (call->gtCallArgs) |
| 10975 | { |
| 10976 | gtDispArgList(call, indentStack); |
| 10977 | } |
| 10978 | |
| 10979 | if (call->gtCallType == CT_INDIRECT) |
| 10980 | { |
| 10981 | gtDispChild(call->gtCallAddr, indentStack, (call->gtCallAddr == lastChild) ? IIArcBottom : IIArc, |
| 10982 | "calli tgt" , topOnly); |
| 10983 | } |
| 10984 | |
| 10985 | if (call->gtControlExpr != nullptr) |
| 10986 | { |
| 10987 | gtDispChild(call->gtControlExpr, indentStack, |
| 10988 | (call->gtControlExpr == lastChild) ? IIArcBottom : IIArc, "control expr" , topOnly); |
| 10989 | } |
| 10990 | |
| 10991 | #if !FEATURE_FIXED_OUT_ARGS |
| 10992 | regList list = call->regArgList; |
| 10993 | #endif |
| 10994 | /* process the late argument list */ |
| 10995 | int lateArgIndex = 0; |
| 10996 | for (GenTreeArgList* lateArgs = call->gtCallLateArgs; lateArgs; |
| 10997 | (lateArgIndex++, lateArgs = lateArgs->Rest())) |
| 10998 | { |
| 10999 | GenTree* argx; |
| 11000 | |
| 11001 | argx = lateArgs->Current(); |
| 11002 | |
| 11003 | IndentInfo arcType = (lateArgs->Rest() == nullptr) ? IIArcBottom : IIArc; |
| 11004 | gtGetLateArgMsg(call, argx, lateArgIndex, -1, bufp, sizeof(buf)); |
| 11005 | gtDispChild(argx, indentStack, arcType, bufp, topOnly); |
| 11006 | } |
| 11007 | } |
| 11008 | } |
| 11009 | break; |
| 11010 | |
| 11011 | case GT_STMT: |
| 11012 | printf("\n" ); |
| 11013 | |
| 11014 | if (!topOnly) |
| 11015 | { |
| 11016 | gtDispChild(tree->gtStmt.gtStmtExpr, indentStack, IIArcBottom); |
| 11017 | } |
| 11018 | break; |
| 11019 | |
| 11020 | case GT_ARR_ELEM: |
| 11021 | gtDispVN(tree); |
| 11022 | printf("\n" ); |
| 11023 | |
| 11024 | if (!topOnly) |
| 11025 | { |
| 11026 | gtDispChild(tree->gtArrElem.gtArrObj, indentStack, IIArc, nullptr, topOnly); |
| 11027 | |
| 11028 | unsigned dim; |
| 11029 | for (dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
| 11030 | { |
| 11031 | IndentInfo arcType = ((dim + 1) == tree->gtArrElem.gtArrRank) ? IIArcBottom : IIArc; |
| 11032 | gtDispChild(tree->gtArrElem.gtArrInds[dim], indentStack, arcType, nullptr, topOnly); |
| 11033 | } |
| 11034 | } |
| 11035 | break; |
| 11036 | |
| 11037 | case GT_ARR_OFFSET: |
| 11038 | gtDispVN(tree); |
| 11039 | printf("\n" ); |
| 11040 | if (!topOnly) |
| 11041 | { |
| 11042 | gtDispChild(tree->gtArrOffs.gtOffset, indentStack, IIArc, nullptr, topOnly); |
| 11043 | gtDispChild(tree->gtArrOffs.gtIndex, indentStack, IIArc, nullptr, topOnly); |
| 11044 | gtDispChild(tree->gtArrOffs.gtArrObj, indentStack, IIArcBottom, nullptr, topOnly); |
| 11045 | } |
| 11046 | break; |
| 11047 | |
| 11048 | case GT_CMPXCHG: |
| 11049 | gtDispVN(tree); |
| 11050 | printf("\n" ); |
| 11051 | if (!topOnly) |
| 11052 | { |
| 11053 | gtDispChild(tree->gtCmpXchg.gtOpLocation, indentStack, IIArc, nullptr, topOnly); |
| 11054 | gtDispChild(tree->gtCmpXchg.gtOpValue, indentStack, IIArc, nullptr, topOnly); |
| 11055 | gtDispChild(tree->gtCmpXchg.gtOpComparand, indentStack, IIArcBottom, nullptr, topOnly); |
| 11056 | } |
| 11057 | break; |
| 11058 | |
| 11059 | case GT_ARR_BOUNDS_CHECK: |
| 11060 | #ifdef FEATURE_SIMD |
| 11061 | case GT_SIMD_CHK: |
| 11062 | #endif // FEATURE_SIMD |
| 11063 | #ifdef FEATURE_HW_INTRINSICS |
| 11064 | case GT_HW_INTRINSIC_CHK: |
| 11065 | #endif // FEATURE_HW_INTRINSICS |
| 11066 | gtDispVN(tree); |
| 11067 | printf("\n" ); |
| 11068 | if (!topOnly) |
| 11069 | { |
| 11070 | gtDispChild(tree->gtBoundsChk.gtIndex, indentStack, IIArc, nullptr, topOnly); |
| 11071 | gtDispChild(tree->gtBoundsChk.gtArrLen, indentStack, IIArcBottom, nullptr, topOnly); |
| 11072 | } |
| 11073 | break; |
| 11074 | |
| 11075 | case GT_STORE_DYN_BLK: |
| 11076 | case GT_DYN_BLK: |
| 11077 | if (tree->OperIsCopyBlkOp()) |
| 11078 | { |
| 11079 | printf(" (copy)" ); |
| 11080 | } |
| 11081 | else if (tree->OperIsInitBlkOp()) |
| 11082 | { |
| 11083 | printf(" (init)" ); |
| 11084 | } |
| 11085 | gtDispVN(tree); |
| 11086 | printf("\n" ); |
| 11087 | if (!topOnly) |
| 11088 | { |
| 11089 | if (tree->gtDynBlk.Data() != nullptr) |
| 11090 | { |
| 11091 | gtDispChild(tree->gtDynBlk.Data(), indentStack, IIArc, nullptr, topOnly); |
| 11092 | } |
| 11093 | gtDispChild(tree->gtDynBlk.Addr(), indentStack, IIArc, nullptr, topOnly); |
| 11094 | gtDispChild(tree->gtDynBlk.gtDynamicSize, indentStack, IIArcBottom, nullptr, topOnly); |
| 11095 | } |
| 11096 | break; |
| 11097 | |
| 11098 | default: |
| 11099 | printf("<DON'T KNOW HOW TO DISPLAY THIS NODE> :" ); |
| 11100 | printf("" ); // null string means flush |
| 11101 | break; |
| 11102 | } |
| 11103 | } |
| 11104 | |
| 11105 | //------------------------------------------------------------------------ |
| 11106 | // gtGetArgMsg: Construct a message about the given argument |
| 11107 | // |
| 11108 | // Arguments: |
| 11109 | // call - The call for which 'arg' is an argument |
| 11110 | // arg - The argument for which a message should be constructed |
| 11111 | // argNum - The ordinal number of the arg in the argument list |
| 11112 | // listCount - When printing in LIR form this is the count for a GT_FIELD_LIST |
| 11113 | // or -1 if we are not printing in LIR form |
| 11114 | // bufp - A pointer to the buffer into which the message is written |
| 11115 | // bufLength - The length of the buffer pointed to by bufp |
| 11116 | // |
| 11117 | // Return Value: |
| 11118 | // No return value, but bufp is written. |
| 11119 | // |
| 11120 | // Assumptions: |
| 11121 | // 'call' must be a call node |
| 11122 | // 'arg' must be an argument to 'call' (else gtArgEntryByNode will assert) |
| 11123 | |
| 11124 | void Compiler::gtGetArgMsg( |
| 11125 | GenTreeCall* call, GenTree* arg, unsigned argNum, int listCount, char* bufp, unsigned bufLength) |
| 11126 | { |
| 11127 | if (call->gtCallLateArgs != nullptr) |
| 11128 | { |
| 11129 | fgArgTabEntry* curArgTabEntry = gtArgEntryByArgNum(call, argNum); |
| 11130 | assert(curArgTabEntry); |
| 11131 | |
| 11132 | if (arg->gtFlags & GTF_LATE_ARG) |
| 11133 | { |
| 11134 | sprintf_s(bufp, bufLength, "arg%d SETUP%c" , argNum, 0); |
| 11135 | } |
| 11136 | else |
| 11137 | { |
| 11138 | #ifdef _TARGET_ARM_ |
| 11139 | if (curArgTabEntry->isSplit) |
| 11140 | { |
| 11141 | regNumber firstReg = curArgTabEntry->regNum; |
| 11142 | if (listCount == -1) |
| 11143 | { |
| 11144 | if (curArgTabEntry->numRegs == 1) |
| 11145 | { |
| 11146 | sprintf_s(bufp, bufLength, "arg%d %s out+%02x%c" , argNum, compRegVarName(firstReg), |
| 11147 | (curArgTabEntry->slotNum) * TARGET_POINTER_SIZE, 0); |
| 11148 | } |
| 11149 | else |
| 11150 | { |
| 11151 | regNumber lastReg = REG_STK; |
| 11152 | char separator = (curArgTabEntry->numRegs == 2) ? ',' : '-'; |
| 11153 | if (curArgTabEntry->isHfaRegArg) |
| 11154 | { |
| 11155 | unsigned lastRegNum = genMapFloatRegNumToRegArgNum(firstReg) + curArgTabEntry->numRegs - 1; |
| 11156 | lastReg = genMapFloatRegArgNumToRegNum(lastRegNum); |
| 11157 | } |
| 11158 | else |
| 11159 | { |
| 11160 | unsigned lastRegNum = genMapIntRegNumToRegArgNum(firstReg) + curArgTabEntry->numRegs - 1; |
| 11161 | lastReg = genMapIntRegArgNumToRegNum(lastRegNum); |
| 11162 | } |
| 11163 | sprintf_s(bufp, bufLength, "arg%d %s%c%s out+%02x%c" , argNum, compRegVarName(firstReg), |
| 11164 | separator, compRegVarName(lastReg), (curArgTabEntry->slotNum) * TARGET_POINTER_SIZE, |
| 11165 | 0); |
| 11166 | } |
| 11167 | } |
| 11168 | else |
| 11169 | { |
| 11170 | unsigned curArgNum = BAD_VAR_NUM; |
| 11171 | bool isFloat = curArgTabEntry->isHfaRegArg; |
| 11172 | if (isFloat) |
| 11173 | { |
| 11174 | curArgNum = genMapFloatRegNumToRegArgNum(firstReg) + listCount; |
| 11175 | } |
| 11176 | else |
| 11177 | { |
| 11178 | curArgNum = genMapIntRegNumToRegArgNum(firstReg) + listCount; |
| 11179 | } |
| 11180 | |
| 11181 | if (!isFloat && curArgNum < MAX_REG_ARG) |
| 11182 | { |
| 11183 | regNumber curReg = genMapIntRegArgNumToRegNum(curArgNum); |
| 11184 | sprintf_s(bufp, bufLength, "arg%d m%d %s%c" , argNum, listCount, compRegVarName(curReg), 0); |
| 11185 | } |
| 11186 | else if (isFloat && curArgNum < MAX_FLOAT_REG_ARG) |
| 11187 | { |
| 11188 | regNumber curReg = genMapFloatRegArgNumToRegNum(curArgNum); |
| 11189 | sprintf_s(bufp, bufLength, "arg%d m%d %s%c" , argNum, listCount, compRegVarName(curReg), 0); |
| 11190 | } |
| 11191 | else |
| 11192 | { |
| 11193 | unsigned stackSlot = listCount - curArgTabEntry->numRegs; |
| 11194 | sprintf_s(bufp, bufLength, "arg%d m%d out+%02x%c" , argNum, listCount, |
| 11195 | stackSlot * TARGET_POINTER_SIZE, 0); |
| 11196 | } |
| 11197 | } |
| 11198 | return; |
| 11199 | } |
| 11200 | #endif // _TARGET_ARM_ |
| 11201 | #if FEATURE_FIXED_OUT_ARGS |
| 11202 | if (listCount == -1) |
| 11203 | { |
| 11204 | sprintf_s(bufp, bufLength, "arg%d out+%02x%c" , argNum, curArgTabEntry->slotNum * TARGET_POINTER_SIZE, |
| 11205 | 0); |
| 11206 | } |
| 11207 | else // listCount is 0,1,2 or 3 |
| 11208 | { |
| 11209 | assert(listCount <= MAX_ARG_REG_COUNT); |
| 11210 | sprintf_s(bufp, bufLength, "arg%d out+%02x%c" , argNum, |
| 11211 | (curArgTabEntry->slotNum + listCount) * TARGET_POINTER_SIZE, 0); |
| 11212 | } |
| 11213 | #else |
| 11214 | sprintf_s(bufp, bufLength, "arg%d on STK%c" , argNum, 0); |
| 11215 | #endif |
| 11216 | } |
| 11217 | } |
| 11218 | else |
| 11219 | { |
| 11220 | sprintf_s(bufp, bufLength, "arg%d%c" , argNum, 0); |
| 11221 | } |
| 11222 | } |
| 11223 | |
| 11224 | //------------------------------------------------------------------------ |
| 11225 | // gtGetLateArgMsg: Construct a message about the given argument |
| 11226 | // |
| 11227 | // Arguments: |
| 11228 | // call - The call for which 'arg' is an argument |
| 11229 | // argx - The argument for which a message should be constructed |
| 11230 | // lateArgIndex - The ordinal number of the arg in the lastArg list |
| 11231 | // listCount - When printing in LIR form this is the count for a multireg GT_FIELD_LIST |
| 11232 | // or -1 if we are not printing in LIR form |
| 11233 | // bufp - A pointer to the buffer into which the message is written |
| 11234 | // bufLength - The length of the buffer pointed to by bufp |
| 11235 | // |
| 11236 | // Return Value: |
| 11237 | // No return value, but bufp is written. |
| 11238 | // |
| 11239 | // Assumptions: |
| 11240 | // 'call' must be a call node |
| 11241 | // 'arg' must be an argument to 'call' (else gtArgEntryByNode will assert) |
| 11242 | |
| 11243 | void Compiler::gtGetLateArgMsg( |
| 11244 | GenTreeCall* call, GenTree* argx, int lateArgIndex, int listCount, char* bufp, unsigned bufLength) |
| 11245 | { |
| 11246 | assert(!argx->IsArgPlaceHolderNode()); // No place holders nodes are in gtCallLateArgs; |
| 11247 | |
| 11248 | fgArgTabEntry* curArgTabEntry = gtArgEntryByLateArgIndex(call, lateArgIndex); |
| 11249 | assert(curArgTabEntry); |
| 11250 | regNumber argReg = curArgTabEntry->regNum; |
| 11251 | |
| 11252 | #if !FEATURE_FIXED_OUT_ARGS |
| 11253 | assert(lateArgIndex < call->regArgListCount); |
| 11254 | assert(argReg == call->regArgList[lateArgIndex]); |
| 11255 | #else |
| 11256 | if (argReg == REG_STK) |
| 11257 | { |
| 11258 | sprintf_s(bufp, bufLength, "arg%d in out+%02x%c" , curArgTabEntry->argNum, |
| 11259 | curArgTabEntry->slotNum * TARGET_POINTER_SIZE, 0); |
| 11260 | } |
| 11261 | else |
| 11262 | #endif |
| 11263 | { |
| 11264 | if (gtArgIsThisPtr(curArgTabEntry)) |
| 11265 | { |
| 11266 | sprintf_s(bufp, bufLength, "this in %s%c" , compRegVarName(argReg), 0); |
| 11267 | } |
| 11268 | #ifdef _TARGET_ARM_ |
| 11269 | else if (curArgTabEntry->isSplit) |
| 11270 | { |
| 11271 | regNumber firstReg = curArgTabEntry->regNum; |
| 11272 | unsigned argNum = curArgTabEntry->argNum; |
| 11273 | if (listCount == -1) |
| 11274 | { |
| 11275 | if (curArgTabEntry->numRegs == 1) |
| 11276 | { |
| 11277 | sprintf_s(bufp, bufLength, "arg%d %s out+%02x%c" , argNum, compRegVarName(firstReg), |
| 11278 | (curArgTabEntry->slotNum) * TARGET_POINTER_SIZE, 0); |
| 11279 | } |
| 11280 | else |
| 11281 | { |
| 11282 | regNumber lastReg = REG_STK; |
| 11283 | char separator = (curArgTabEntry->numRegs == 2) ? ',' : '-'; |
| 11284 | if (curArgTabEntry->isHfaRegArg) |
| 11285 | { |
| 11286 | unsigned lastRegNum = genMapFloatRegNumToRegArgNum(firstReg) + curArgTabEntry->numRegs - 1; |
| 11287 | lastReg = genMapFloatRegArgNumToRegNum(lastRegNum); |
| 11288 | } |
| 11289 | else |
| 11290 | { |
| 11291 | unsigned lastRegNum = genMapIntRegNumToRegArgNum(firstReg) + curArgTabEntry->numRegs - 1; |
| 11292 | lastReg = genMapIntRegArgNumToRegNum(lastRegNum); |
| 11293 | } |
| 11294 | sprintf_s(bufp, bufLength, "arg%d %s%c%s out+%02x%c" , argNum, compRegVarName(firstReg), separator, |
| 11295 | compRegVarName(lastReg), (curArgTabEntry->slotNum) * TARGET_POINTER_SIZE, 0); |
| 11296 | } |
| 11297 | } |
| 11298 | else |
| 11299 | { |
| 11300 | unsigned curArgNum = BAD_VAR_NUM; |
| 11301 | bool isFloat = curArgTabEntry->isHfaRegArg; |
| 11302 | if (isFloat) |
| 11303 | { |
| 11304 | curArgNum = genMapFloatRegNumToRegArgNum(firstReg) + listCount; |
| 11305 | } |
| 11306 | else |
| 11307 | { |
| 11308 | curArgNum = genMapIntRegNumToRegArgNum(firstReg) + listCount; |
| 11309 | } |
| 11310 | |
| 11311 | if (!isFloat && curArgNum < MAX_REG_ARG) |
| 11312 | { |
| 11313 | regNumber curReg = genMapIntRegArgNumToRegNum(curArgNum); |
| 11314 | sprintf_s(bufp, bufLength, "arg%d m%d %s%c" , argNum, listCount, compRegVarName(curReg), 0); |
| 11315 | } |
| 11316 | else if (isFloat && curArgNum < MAX_FLOAT_REG_ARG) |
| 11317 | { |
| 11318 | regNumber curReg = genMapFloatRegArgNumToRegNum(curArgNum); |
| 11319 | sprintf_s(bufp, bufLength, "arg%d m%d %s%c" , argNum, listCount, compRegVarName(curReg), 0); |
| 11320 | } |
| 11321 | else |
| 11322 | { |
| 11323 | unsigned stackSlot = listCount - curArgTabEntry->numRegs; |
| 11324 | sprintf_s(bufp, bufLength, "arg%d m%d out+%02x%c" , argNum, listCount, |
| 11325 | stackSlot * TARGET_POINTER_SIZE, 0); |
| 11326 | } |
| 11327 | } |
| 11328 | return; |
| 11329 | } |
| 11330 | #endif // _TARGET_ARM_ |
| 11331 | else |
| 11332 | { |
| 11333 | #if FEATURE_MULTIREG_ARGS |
| 11334 | if (curArgTabEntry->numRegs >= 2) |
| 11335 | { |
| 11336 | // listCount could be -1 but it is signed, so this comparison is OK. |
| 11337 | assert(listCount <= MAX_ARG_REG_COUNT); |
| 11338 | char separator = (curArgTabEntry->numRegs == 2) ? ',' : '-'; |
| 11339 | sprintf_s(bufp, bufLength, "arg%d %s%c%s%c" , curArgTabEntry->argNum, compRegVarName(argReg), separator, |
| 11340 | compRegVarName(curArgTabEntry->getRegNum(curArgTabEntry->numRegs - 1)), 0); |
| 11341 | } |
| 11342 | else |
| 11343 | #endif |
| 11344 | { |
| 11345 | sprintf_s(bufp, bufLength, "arg%d in %s%c" , curArgTabEntry->argNum, compRegVarName(argReg), 0); |
| 11346 | } |
| 11347 | } |
| 11348 | } |
| 11349 | } |
| 11350 | |
| 11351 | //------------------------------------------------------------------------ |
| 11352 | // gtDispArgList: Dump the tree for a call arg list |
| 11353 | // |
| 11354 | // Arguments: |
| 11355 | // call - The call to dump arguments for |
| 11356 | // indentStack - the specification for the current level of indentation & arcs |
| 11357 | // |
| 11358 | // Return Value: |
| 11359 | // None. |
| 11360 | // |
| 11361 | void Compiler::gtDispArgList(GenTreeCall* call, IndentStack* indentStack) |
| 11362 | { |
| 11363 | GenTree* args = call->gtCallArgs; |
| 11364 | unsigned argnum = 0; |
| 11365 | const int BufLength = 256; |
| 11366 | char buf[BufLength]; |
| 11367 | char* bufp = &buf[0]; |
| 11368 | unsigned numChildren = call->NumChildren(); |
| 11369 | assert(numChildren != 0); |
| 11370 | bool argListIsLastChild = (args == call->GetChild(numChildren - 1)); |
| 11371 | |
| 11372 | IndentInfo arcType = IIArc; |
| 11373 | if (call->gtCallObjp != nullptr) |
| 11374 | { |
| 11375 | argnum++; |
| 11376 | } |
| 11377 | |
| 11378 | while (args != nullptr) |
| 11379 | { |
| 11380 | assert(args->gtOper == GT_LIST); |
| 11381 | GenTree* arg = args->gtOp.gtOp1; |
| 11382 | if (!arg->IsNothingNode() && !arg->IsArgPlaceHolderNode()) |
| 11383 | { |
| 11384 | gtGetArgMsg(call, arg, argnum, -1, bufp, BufLength); |
| 11385 | if (argListIsLastChild && (args->gtOp.gtOp2 == nullptr)) |
| 11386 | { |
| 11387 | arcType = IIArcBottom; |
| 11388 | } |
| 11389 | gtDispChild(arg, indentStack, arcType, bufp, false); |
| 11390 | } |
| 11391 | args = args->gtOp.gtOp2; |
| 11392 | argnum++; |
| 11393 | } |
| 11394 | } |
| 11395 | |
| 11396 | //------------------------------------------------------------------------ |
| 11397 | // gtDispArgList: Dump the tree for a call arg list |
| 11398 | // |
| 11399 | // Arguments: |
| 11400 | // tree - The call for which 'arg' is an argument |
| 11401 | // indentStack - the specification for the current level of indentation & arcs |
| 11402 | // |
| 11403 | // Return Value: |
| 11404 | // None. |
| 11405 | // |
| 11406 | // Assumptions: |
| 11407 | // 'tree' must be a GT_LIST node |
| 11408 | |
| 11409 | void Compiler::gtDispTreeList(GenTree* tree, IndentStack* indentStack /* = nullptr */) |
| 11410 | { |
| 11411 | for (/*--*/; tree != nullptr; tree = tree->gtNext) |
| 11412 | { |
| 11413 | gtDispTree(tree, indentStack); |
| 11414 | printf("\n" ); |
| 11415 | } |
| 11416 | } |
| 11417 | |
| 11418 | //------------------------------------------------------------------------ |
| 11419 | // Compiler::gtDispRange: dumps a range of LIR. |
| 11420 | // |
| 11421 | // Arguments: |
| 11422 | // range - the range of LIR to display. |
| 11423 | // |
| 11424 | void Compiler::gtDispRange(LIR::ReadOnlyRange const& range) |
| 11425 | { |
| 11426 | for (GenTree* node : range) |
| 11427 | { |
| 11428 | gtDispLIRNode(node); |
| 11429 | } |
| 11430 | } |
| 11431 | |
| 11432 | //------------------------------------------------------------------------ |
| 11433 | // Compiler::gtDispTreeRange: dumps the LIR range that contains all of the |
| 11434 | // nodes in the dataflow tree rooted at a given |
| 11435 | // node. |
| 11436 | // |
| 11437 | // Arguments: |
| 11438 | // containingRange - the LIR range that contains the root node. |
| 11439 | // tree - the root of the dataflow tree. |
| 11440 | // |
| 11441 | void Compiler::gtDispTreeRange(LIR::Range& containingRange, GenTree* tree) |
| 11442 | { |
| 11443 | bool unused; |
| 11444 | gtDispRange(containingRange.GetTreeRange(tree, &unused)); |
| 11445 | } |
| 11446 | |
| 11447 | //------------------------------------------------------------------------ |
| 11448 | // Compiler::gtDispLIRNode: dumps a single LIR node. |
| 11449 | // |
| 11450 | // Arguments: |
| 11451 | // node - the LIR node to dump. |
| 11452 | // prefixMsg - an optional prefix for each line of output. |
| 11453 | // |
| 11454 | void Compiler::gtDispLIRNode(GenTree* node, const char* prefixMsg /* = nullptr */) |
| 11455 | { |
| 11456 | auto displayOperand = [](GenTree* operand, const char* message, IndentInfo operandArc, IndentStack& indentStack, |
| 11457 | size_t prefixIndent) { |
| 11458 | assert(operand != nullptr); |
| 11459 | assert(message != nullptr); |
| 11460 | |
| 11461 | if (prefixIndent != 0) |
| 11462 | { |
| 11463 | printf("%*s" , (int)prefixIndent, "" ); |
| 11464 | } |
| 11465 | |
| 11466 | // 49 spaces for alignment |
| 11467 | printf("%-49s" , "" ); |
| 11468 | #if FEATURE_SET_FLAGS |
| 11469 | // additional flag enlarges the flag field by one character |
| 11470 | printf(" " ); |
| 11471 | #endif |
| 11472 | |
| 11473 | indentStack.Push(operandArc); |
| 11474 | indentStack.print(); |
| 11475 | indentStack.Pop(); |
| 11476 | operandArc = IIArc; |
| 11477 | |
| 11478 | printf(" t%-5d %-6s %s\n" , operand->gtTreeID, varTypeName(operand->TypeGet()), message); |
| 11479 | }; |
| 11480 | |
| 11481 | IndentStack indentStack(this); |
| 11482 | |
| 11483 | size_t prefixIndent = 0; |
| 11484 | if (prefixMsg != nullptr) |
| 11485 | { |
| 11486 | prefixIndent = strlen(prefixMsg); |
| 11487 | } |
| 11488 | |
| 11489 | const int bufLength = 256; |
| 11490 | char buf[bufLength]; |
| 11491 | |
| 11492 | const bool nodeIsCall = node->IsCall(); |
| 11493 | |
| 11494 | // Visit operands |
| 11495 | IndentInfo operandArc = IIArcTop; |
| 11496 | for (GenTree* operand : node->Operands()) |
| 11497 | { |
| 11498 | if (operand->IsArgPlaceHolderNode() || !operand->IsValue()) |
| 11499 | { |
| 11500 | // Either of these situations may happen with calls. |
| 11501 | continue; |
| 11502 | } |
| 11503 | |
| 11504 | if (nodeIsCall) |
| 11505 | { |
| 11506 | GenTreeCall* call = node->AsCall(); |
| 11507 | if (operand == call->gtCallObjp) |
| 11508 | { |
| 11509 | sprintf_s(buf, sizeof(buf), "this in %s" , compRegVarName(REG_ARG_0)); |
| 11510 | displayOperand(operand, buf, operandArc, indentStack, prefixIndent); |
| 11511 | } |
| 11512 | else if (operand == call->gtCallAddr) |
| 11513 | { |
| 11514 | displayOperand(operand, "calli tgt" , operandArc, indentStack, prefixIndent); |
| 11515 | } |
| 11516 | else if (operand == call->gtControlExpr) |
| 11517 | { |
| 11518 | displayOperand(operand, "control expr" , operandArc, indentStack, prefixIndent); |
| 11519 | } |
| 11520 | else if (operand == call->gtCallCookie) |
| 11521 | { |
| 11522 | displayOperand(operand, "cookie" , operandArc, indentStack, prefixIndent); |
| 11523 | } |
| 11524 | else |
| 11525 | { |
| 11526 | fgArgTabEntry* curArgTabEntry = gtArgEntryByNode(call, operand); |
| 11527 | assert(curArgTabEntry); |
| 11528 | |
| 11529 | if (operand->OperGet() == GT_LIST) |
| 11530 | { |
| 11531 | int listIndex = 0; |
| 11532 | for (GenTreeArgList* element = operand->AsArgList(); element != nullptr; element = element->Rest()) |
| 11533 | { |
| 11534 | operand = element->Current(); |
| 11535 | if (curArgTabEntry->lateArgInx == (unsigned)-1) |
| 11536 | { |
| 11537 | gtGetArgMsg(call, operand, curArgTabEntry->argNum, listIndex, buf, sizeof(buf)); |
| 11538 | } |
| 11539 | else |
| 11540 | { |
| 11541 | gtGetLateArgMsg(call, operand, curArgTabEntry->lateArgInx, listIndex, buf, sizeof(buf)); |
| 11542 | } |
| 11543 | |
| 11544 | displayOperand(operand, buf, operandArc, indentStack, prefixIndent); |
| 11545 | operandArc = IIArc; |
| 11546 | } |
| 11547 | } |
| 11548 | else |
| 11549 | { |
| 11550 | if (!curArgTabEntry->isLateArg()) |
| 11551 | { |
| 11552 | gtGetArgMsg(call, operand, curArgTabEntry->argNum, -1, buf, sizeof(buf)); |
| 11553 | } |
| 11554 | else |
| 11555 | { |
| 11556 | gtGetLateArgMsg(call, operand, curArgTabEntry->lateArgInx, -1, buf, sizeof(buf)); |
| 11557 | } |
| 11558 | |
| 11559 | displayOperand(operand, buf, operandArc, indentStack, prefixIndent); |
| 11560 | } |
| 11561 | } |
| 11562 | } |
| 11563 | else if (node->OperIsDynBlkOp()) |
| 11564 | { |
| 11565 | if (operand == node->AsBlk()->Addr()) |
| 11566 | { |
| 11567 | displayOperand(operand, "lhs" , operandArc, indentStack, prefixIndent); |
| 11568 | } |
| 11569 | else if (operand == node->AsBlk()->Data()) |
| 11570 | { |
| 11571 | displayOperand(operand, "rhs" , operandArc, indentStack, prefixIndent); |
| 11572 | } |
| 11573 | else |
| 11574 | { |
| 11575 | assert(operand == node->AsDynBlk()->gtDynamicSize); |
| 11576 | displayOperand(operand, "size" , operandArc, indentStack, prefixIndent); |
| 11577 | } |
| 11578 | } |
| 11579 | else if (node->OperGet() == GT_DYN_BLK) |
| 11580 | { |
| 11581 | if (operand == node->AsBlk()->Addr()) |
| 11582 | { |
| 11583 | displayOperand(operand, "lhs" , operandArc, indentStack, prefixIndent); |
| 11584 | } |
| 11585 | else |
| 11586 | { |
| 11587 | assert(operand == node->AsDynBlk()->gtDynamicSize); |
| 11588 | displayOperand(operand, "size" , operandArc, indentStack, prefixIndent); |
| 11589 | } |
| 11590 | } |
| 11591 | else if (node->OperIs(GT_ASG)) |
| 11592 | { |
| 11593 | if (operand == node->gtGetOp1()) |
| 11594 | { |
| 11595 | displayOperand(operand, "lhs" , operandArc, indentStack, prefixIndent); |
| 11596 | } |
| 11597 | else |
| 11598 | { |
| 11599 | displayOperand(operand, "rhs" , operandArc, indentStack, prefixIndent); |
| 11600 | } |
| 11601 | } |
| 11602 | else |
| 11603 | { |
| 11604 | displayOperand(operand, "" , operandArc, indentStack, prefixIndent); |
| 11605 | } |
| 11606 | |
| 11607 | operandArc = IIArc; |
| 11608 | } |
| 11609 | |
| 11610 | // Visit the operator |
| 11611 | |
| 11612 | if (prefixMsg != nullptr) |
| 11613 | { |
| 11614 | printf("%s" , prefixMsg); |
| 11615 | } |
| 11616 | |
| 11617 | const bool topOnly = true; |
| 11618 | const bool isLIR = true; |
| 11619 | gtDispTree(node, &indentStack, nullptr, topOnly, isLIR); |
| 11620 | } |
| 11621 | |
| 11622 | /*****************************************************************************/ |
| 11623 | #endif // DEBUG |
| 11624 | |
| 11625 | /***************************************************************************** |
| 11626 | * |
| 11627 | * Check if the given node can be folded, |
| 11628 | * and call the methods to perform the folding |
| 11629 | */ |
| 11630 | |
| 11631 | GenTree* Compiler::gtFoldExpr(GenTree* tree) |
| 11632 | { |
| 11633 | unsigned kind = tree->OperKind(); |
| 11634 | |
| 11635 | /* We must have a simple operation to fold */ |
| 11636 | |
| 11637 | // If we're in CSE, it's not safe to perform tree |
| 11638 | // folding given that it can will potentially |
| 11639 | // change considered CSE candidates. |
| 11640 | if (optValnumCSE_phase) |
| 11641 | { |
| 11642 | return tree; |
| 11643 | } |
| 11644 | |
| 11645 | if (!(kind & GTK_SMPOP)) |
| 11646 | { |
| 11647 | return tree; |
| 11648 | } |
| 11649 | |
| 11650 | GenTree* op1 = tree->gtOp.gtOp1; |
| 11651 | |
| 11652 | /* Filter out non-foldable trees that can have constant children */ |
| 11653 | |
| 11654 | assert(kind & (GTK_UNOP | GTK_BINOP)); |
| 11655 | switch (tree->gtOper) |
| 11656 | { |
| 11657 | case GT_RETFILT: |
| 11658 | case GT_RETURN: |
| 11659 | case GT_IND: |
| 11660 | return tree; |
| 11661 | default: |
| 11662 | break; |
| 11663 | } |
| 11664 | |
| 11665 | /* try to fold the current node */ |
| 11666 | |
| 11667 | if ((kind & GTK_UNOP) && op1) |
| 11668 | { |
| 11669 | if (op1->OperKind() & GTK_CONST) |
| 11670 | { |
| 11671 | return gtFoldExprConst(tree); |
| 11672 | } |
| 11673 | } |
| 11674 | else if ((kind & GTK_BINOP) && op1 && tree->gtOp.gtOp2 && |
| 11675 | // Don't take out conditionals for debugging |
| 11676 | (opts.OptimizationEnabled() || !tree->OperIsCompare())) |
| 11677 | { |
| 11678 | GenTree* op2 = tree->gtOp.gtOp2; |
| 11679 | |
| 11680 | // The atomic operations are exempted here because they are never computable statically; |
| 11681 | // one of their arguments is an address. |
| 11682 | if (((op1->OperKind() & op2->OperKind()) & GTK_CONST) && !tree->OperIsAtomicOp()) |
| 11683 | { |
| 11684 | /* both nodes are constants - fold the expression */ |
| 11685 | return gtFoldExprConst(tree); |
| 11686 | } |
| 11687 | else if ((op1->OperKind() | op2->OperKind()) & GTK_CONST) |
| 11688 | { |
| 11689 | /* at least one is a constant - see if we have a |
| 11690 | * special operator that can use only one constant |
| 11691 | * to fold - e.g. booleans */ |
| 11692 | |
| 11693 | return gtFoldExprSpecial(tree); |
| 11694 | } |
| 11695 | else if (tree->OperIsCompare()) |
| 11696 | { |
| 11697 | /* comparisons of two local variables can sometimes be folded */ |
| 11698 | |
| 11699 | return gtFoldExprCompare(tree); |
| 11700 | } |
| 11701 | else if (op2->OperGet() == GT_COLON) |
| 11702 | { |
| 11703 | assert(tree->OperGet() == GT_QMARK); |
| 11704 | |
| 11705 | GenTree* colon_op1 = op2->gtOp.gtOp1; |
| 11706 | GenTree* colon_op2 = op2->gtOp.gtOp2; |
| 11707 | |
| 11708 | if (gtCompareTree(colon_op1, colon_op2)) |
| 11709 | { |
| 11710 | // Both sides of the GT_COLON are the same tree |
| 11711 | |
| 11712 | GenTree* sideEffList = nullptr; |
| 11713 | gtExtractSideEffList(op1, &sideEffList); |
| 11714 | |
| 11715 | // Clear colon flags only if the qmark itself is not conditionaly executed |
| 11716 | if ((tree->gtFlags & GTF_COLON_COND) == 0) |
| 11717 | { |
| 11718 | fgWalkTreePre(&colon_op2, gtClearColonCond); |
| 11719 | } |
| 11720 | |
| 11721 | if (sideEffList == nullptr) |
| 11722 | { |
| 11723 | // No side-effects, just return colon_op2 |
| 11724 | return colon_op2; |
| 11725 | } |
| 11726 | else |
| 11727 | { |
| 11728 | #ifdef DEBUG |
| 11729 | if (verbose) |
| 11730 | { |
| 11731 | printf("\nIdentical GT_COLON trees with side effects! Extracting side effects...\n" ); |
| 11732 | gtDispTree(sideEffList); |
| 11733 | printf("\n" ); |
| 11734 | } |
| 11735 | #endif |
| 11736 | // Change the GT_COLON into a GT_COMMA node with the side-effects |
| 11737 | op2->ChangeOper(GT_COMMA); |
| 11738 | op2->gtFlags |= (sideEffList->gtFlags & GTF_ALL_EFFECT); |
| 11739 | op2->gtOp.gtOp1 = sideEffList; |
| 11740 | return op2; |
| 11741 | } |
| 11742 | } |
| 11743 | } |
| 11744 | } |
| 11745 | |
| 11746 | /* Return the original node (folded/bashed or not) */ |
| 11747 | |
| 11748 | return tree; |
| 11749 | } |
| 11750 | |
| 11751 | //------------------------------------------------------------------------ |
| 11752 | // gtFoldExprCall: see if a call is foldable |
| 11753 | // |
| 11754 | // Arguments: |
| 11755 | // call - call to examine |
| 11756 | // |
| 11757 | // Returns: |
| 11758 | // The original call if no folding happened. |
| 11759 | // An alternative tree if folding happens. |
| 11760 | // |
| 11761 | // Notes: |
| 11762 | // Checks for calls to Type.op_Equality, Type.op_Inequality, and |
| 11763 | // Enum.HasFlag, and if the call is to one of these, |
| 11764 | // attempts to optimize. |
| 11765 | |
| 11766 | GenTree* Compiler::gtFoldExprCall(GenTreeCall* call) |
| 11767 | { |
| 11768 | // Can only fold calls to special intrinsics. |
| 11769 | if ((call->gtCallMoreFlags & GTF_CALL_M_SPECIAL_INTRINSIC) == 0) |
| 11770 | { |
| 11771 | return call; |
| 11772 | } |
| 11773 | |
| 11774 | // Defer folding if not optimizing. |
| 11775 | if (opts.OptimizationDisabled()) |
| 11776 | { |
| 11777 | return call; |
| 11778 | } |
| 11779 | |
| 11780 | // Fetch id of the intrinsic. |
| 11781 | const CorInfoIntrinsics methodID = info.compCompHnd->getIntrinsicID(call->gtCallMethHnd); |
| 11782 | |
| 11783 | switch (methodID) |
| 11784 | { |
| 11785 | case CORINFO_INTRINSIC_TypeEQ: |
| 11786 | case CORINFO_INTRINSIC_TypeNEQ: |
| 11787 | { |
| 11788 | noway_assert(call->TypeGet() == TYP_INT); |
| 11789 | GenTree* op1 = call->gtCallArgs->gtOp.gtOp1; |
| 11790 | GenTree* op2 = call->gtCallArgs->gtOp.gtOp2->gtOp.gtOp1; |
| 11791 | |
| 11792 | // If either operand is known to be a RuntimeType, this can be folded |
| 11793 | GenTree* result = gtFoldTypeEqualityCall(methodID, op1, op2); |
| 11794 | if (result != nullptr) |
| 11795 | { |
| 11796 | return result; |
| 11797 | } |
| 11798 | break; |
| 11799 | } |
| 11800 | |
| 11801 | default: |
| 11802 | break; |
| 11803 | } |
| 11804 | |
| 11805 | // Check for a new-style jit intrinsic. |
| 11806 | const NamedIntrinsic ni = lookupNamedIntrinsic(call->gtCallMethHnd); |
| 11807 | |
| 11808 | if (ni == NI_System_Enum_HasFlag) |
| 11809 | { |
| 11810 | GenTree* thisOp = call->gtCallObjp; |
| 11811 | GenTree* flagOp = call->gtCallArgs->gtOp.gtOp1; |
| 11812 | GenTree* result = gtOptimizeEnumHasFlag(thisOp, flagOp); |
| 11813 | |
| 11814 | if (result != nullptr) |
| 11815 | { |
| 11816 | return result; |
| 11817 | } |
| 11818 | } |
| 11819 | |
| 11820 | return call; |
| 11821 | } |
| 11822 | |
| 11823 | //------------------------------------------------------------------------ |
| 11824 | // gtFoldTypeEqualityCall: see if a (potential) type equality call is foldable |
| 11825 | // |
| 11826 | // Arguments: |
| 11827 | // methodID -- type equality intrinsic ID |
| 11828 | // op1 -- first argument to call |
| 11829 | // op2 -- second argument to call |
| 11830 | // |
| 11831 | // Returns: |
| 11832 | // nulltpr if no folding happened. |
| 11833 | // An alternative tree if folding happens. |
| 11834 | // |
| 11835 | // Notes: |
| 11836 | // If either operand is known to be a a RuntimeType, then the type |
| 11837 | // equality methods will simply check object identity and so we can |
| 11838 | // fold the call into a simple compare of the call's operands. |
| 11839 | |
| 11840 | GenTree* Compiler::gtFoldTypeEqualityCall(CorInfoIntrinsics methodID, GenTree* op1, GenTree* op2) |
| 11841 | { |
| 11842 | // The method must be be a type equality intrinsic |
| 11843 | assert(methodID == CORINFO_INTRINSIC_TypeEQ || methodID == CORINFO_INTRINSIC_TypeNEQ); |
| 11844 | |
| 11845 | if ((gtGetTypeProducerKind(op1) == TPK_Unknown) && (gtGetTypeProducerKind(op2) == TPK_Unknown)) |
| 11846 | { |
| 11847 | return nullptr; |
| 11848 | } |
| 11849 | |
| 11850 | const genTreeOps simpleOp = (methodID == CORINFO_INTRINSIC_TypeEQ) ? GT_EQ : GT_NE; |
| 11851 | |
| 11852 | JITDUMP("\nFolding call to Type:op_%s to a simple compare via %s\n" , |
| 11853 | methodID == CORINFO_INTRINSIC_TypeEQ ? "Equality" : "Inequality" , GenTree::OpName(simpleOp)); |
| 11854 | |
| 11855 | GenTree* compare = gtNewOperNode(simpleOp, TYP_INT, op1, op2); |
| 11856 | |
| 11857 | return compare; |
| 11858 | } |
| 11859 | |
| 11860 | /***************************************************************************** |
| 11861 | * |
| 11862 | * Some comparisons can be folded: |
| 11863 | * |
| 11864 | * locA == locA |
| 11865 | * classVarA == classVarA |
| 11866 | * locA + locB == locB + locA |
| 11867 | * |
| 11868 | */ |
| 11869 | |
| 11870 | GenTree* Compiler::gtFoldExprCompare(GenTree* tree) |
| 11871 | { |
| 11872 | GenTree* op1 = tree->gtOp.gtOp1; |
| 11873 | GenTree* op2 = tree->gtOp.gtOp2; |
| 11874 | |
| 11875 | assert(tree->OperIsCompare()); |
| 11876 | |
| 11877 | /* Filter out cases that cannot be folded here */ |
| 11878 | |
| 11879 | /* Do not fold floats or doubles (e.g. NaN != Nan) */ |
| 11880 | |
| 11881 | if (varTypeIsFloating(op1->TypeGet())) |
| 11882 | { |
| 11883 | return tree; |
| 11884 | } |
| 11885 | |
| 11886 | /* Currently we can only fold when the two subtrees exactly match */ |
| 11887 | |
| 11888 | if ((tree->gtFlags & GTF_SIDE_EFFECT) || GenTree::Compare(op1, op2, true) == false) |
| 11889 | { |
| 11890 | return tree; /* return unfolded tree */ |
| 11891 | } |
| 11892 | |
| 11893 | GenTree* cons; |
| 11894 | |
| 11895 | switch (tree->gtOper) |
| 11896 | { |
| 11897 | case GT_EQ: |
| 11898 | case GT_LE: |
| 11899 | case GT_GE: |
| 11900 | cons = gtNewIconNode(true); /* Folds to GT_CNS_INT(true) */ |
| 11901 | break; |
| 11902 | |
| 11903 | case GT_NE: |
| 11904 | case GT_LT: |
| 11905 | case GT_GT: |
| 11906 | cons = gtNewIconNode(false); /* Folds to GT_CNS_INT(false) */ |
| 11907 | break; |
| 11908 | |
| 11909 | default: |
| 11910 | assert(!"Unexpected relOp" ); |
| 11911 | return tree; |
| 11912 | } |
| 11913 | |
| 11914 | /* The node has beeen folded into 'cons' */ |
| 11915 | |
| 11916 | if (fgGlobalMorph) |
| 11917 | { |
| 11918 | fgMorphTreeDone(cons); |
| 11919 | } |
| 11920 | else |
| 11921 | { |
| 11922 | cons->gtNext = tree->gtNext; |
| 11923 | cons->gtPrev = tree->gtPrev; |
| 11924 | } |
| 11925 | |
| 11926 | return cons; |
| 11927 | } |
| 11928 | |
| 11929 | //------------------------------------------------------------------------ |
| 11930 | // gtCreateHandleCompare: generate a type handle comparison |
| 11931 | // |
| 11932 | // Arguments: |
| 11933 | // oper -- comparison operation (equal/not equal) |
| 11934 | // op1 -- first operand |
| 11935 | // op2 -- second operand |
| 11936 | // typeCheckInliningResult -- indicates how the comparison should happen |
| 11937 | // |
| 11938 | // Returns: |
| 11939 | // Type comparison tree |
| 11940 | // |
| 11941 | |
| 11942 | GenTree* Compiler::gtCreateHandleCompare(genTreeOps oper, |
| 11943 | GenTree* op1, |
| 11944 | GenTree* op2, |
| 11945 | CorInfoInlineTypeCheck typeCheckInliningResult) |
| 11946 | { |
| 11947 | // If we can compare pointers directly, just emit the binary operation |
| 11948 | if (typeCheckInliningResult == CORINFO_INLINE_TYPECHECK_PASS) |
| 11949 | { |
| 11950 | return gtNewOperNode(oper, TYP_INT, op1, op2); |
| 11951 | } |
| 11952 | |
| 11953 | assert(typeCheckInliningResult == CORINFO_INLINE_TYPECHECK_USE_HELPER); |
| 11954 | |
| 11955 | // Emit a call to a runtime helper |
| 11956 | GenTreeArgList* helperArgs = gtNewArgList(op1, op2); |
| 11957 | GenTree* ret = gtNewHelperCallNode(CORINFO_HELP_ARE_TYPES_EQUIVALENT, TYP_INT, helperArgs); |
| 11958 | if (oper == GT_EQ) |
| 11959 | { |
| 11960 | ret = gtNewOperNode(GT_NE, TYP_INT, ret, gtNewIconNode(0, TYP_INT)); |
| 11961 | } |
| 11962 | else |
| 11963 | { |
| 11964 | assert(oper == GT_NE); |
| 11965 | ret = gtNewOperNode(GT_EQ, TYP_INT, ret, gtNewIconNode(0, TYP_INT)); |
| 11966 | } |
| 11967 | |
| 11968 | return ret; |
| 11969 | } |
| 11970 | |
| 11971 | //------------------------------------------------------------------------ |
| 11972 | // gtFoldTypeCompare: see if a type comparison can be further simplified |
| 11973 | // |
| 11974 | // Arguments: |
| 11975 | // tree -- tree possibly comparing types |
| 11976 | // |
| 11977 | // Returns: |
| 11978 | // An alternative tree if folding happens. |
| 11979 | // Original tree otherwise. |
| 11980 | // |
| 11981 | // Notes: |
| 11982 | // Checks for |
| 11983 | // typeof(...) == obj.GetType() |
| 11984 | // typeof(...) == typeof(...) |
| 11985 | // |
| 11986 | // And potentially optimizes away the need to obtain actual |
| 11987 | // RuntimeType objects to do the comparison. |
| 11988 | |
| 11989 | GenTree* Compiler::gtFoldTypeCompare(GenTree* tree) |
| 11990 | { |
| 11991 | // Only handle EQ and NE |
| 11992 | // (maybe relop vs null someday) |
| 11993 | const genTreeOps oper = tree->OperGet(); |
| 11994 | if ((oper != GT_EQ) && (oper != GT_NE)) |
| 11995 | { |
| 11996 | return tree; |
| 11997 | } |
| 11998 | |
| 11999 | // Screen for the right kinds of operands |
| 12000 | GenTree* const op1 = tree->gtOp.gtOp1; |
| 12001 | const TypeProducerKind op1Kind = gtGetTypeProducerKind(op1); |
| 12002 | if (op1Kind == TPK_Unknown) |
| 12003 | { |
| 12004 | return tree; |
| 12005 | } |
| 12006 | |
| 12007 | GenTree* const op2 = tree->gtOp.gtOp2; |
| 12008 | const TypeProducerKind op2Kind = gtGetTypeProducerKind(op2); |
| 12009 | if (op2Kind == TPK_Unknown) |
| 12010 | { |
| 12011 | return tree; |
| 12012 | } |
| 12013 | |
| 12014 | // We must have a handle on one side or the other here to optimize, |
| 12015 | // otherwise we can't be sure that optimizing is sound. |
| 12016 | const bool op1IsFromHandle = (op1Kind == TPK_Handle); |
| 12017 | const bool op2IsFromHandle = (op2Kind == TPK_Handle); |
| 12018 | |
| 12019 | if (!(op1IsFromHandle || op2IsFromHandle)) |
| 12020 | { |
| 12021 | return tree; |
| 12022 | } |
| 12023 | |
| 12024 | // If both types are created via handles, we can simply compare |
| 12025 | // handles (or the indirection cells for handles) instead of the |
| 12026 | // types that they'd create. |
| 12027 | if (op1IsFromHandle && op2IsFromHandle) |
| 12028 | { |
| 12029 | JITDUMP("Optimizing compare of types-from-handles to instead compare handles\n" ); |
| 12030 | GenTree* op1ClassFromHandle = tree->gtOp.gtOp1->gtCall.gtCallArgs->gtOp.gtOp1; |
| 12031 | GenTree* op2ClassFromHandle = tree->gtOp.gtOp2->gtCall.gtCallArgs->gtOp.gtOp1; |
| 12032 | GenTree* op1TunneledHandle = nullptr; |
| 12033 | GenTree* op2TunneledHandle = nullptr; |
| 12034 | CORINFO_CLASS_HANDLE cls1Hnd = NO_CLASS_HANDLE; |
| 12035 | CORINFO_CLASS_HANDLE cls2Hnd = NO_CLASS_HANDLE; |
| 12036 | unsigned runtimeLookupCount = 0; |
| 12037 | |
| 12038 | // Try and find class handles from op1 and op2 |
| 12039 | cls1Hnd = gtGetHelperArgClassHandle(op1ClassFromHandle, &runtimeLookupCount, &op1TunneledHandle); |
| 12040 | cls2Hnd = gtGetHelperArgClassHandle(op2ClassFromHandle, &runtimeLookupCount, &op2TunneledHandle); |
| 12041 | |
| 12042 | // If we have both class handles, try and resolve the type equality test completely. |
| 12043 | bool resolveFailed = false; |
| 12044 | |
| 12045 | if ((cls1Hnd != NO_CLASS_HANDLE) && (cls2Hnd != NO_CLASS_HANDLE)) |
| 12046 | { |
| 12047 | JITDUMP("Asking runtime to compare %p (%s) and %p (%s) for equality\n" , dspPtr(cls1Hnd), |
| 12048 | info.compCompHnd->getClassName(cls1Hnd), dspPtr(cls2Hnd), info.compCompHnd->getClassName(cls2Hnd)); |
| 12049 | TypeCompareState s = info.compCompHnd->compareTypesForEquality(cls1Hnd, cls2Hnd); |
| 12050 | |
| 12051 | if (s != TypeCompareState::May) |
| 12052 | { |
| 12053 | // Type comparison result is known. |
| 12054 | const bool typesAreEqual = (s == TypeCompareState::Must); |
| 12055 | const bool operatorIsEQ = (oper == GT_EQ); |
| 12056 | const int compareResult = operatorIsEQ ^ typesAreEqual ? 0 : 1; |
| 12057 | JITDUMP("Runtime reports comparison is known at jit time: %u\n" , compareResult); |
| 12058 | GenTree* result = gtNewIconNode(compareResult); |
| 12059 | |
| 12060 | // Any runtime lookups that fed into this compare are |
| 12061 | // now dead code, so they no longer require the runtime context. |
| 12062 | assert(lvaGenericsContextUseCount >= runtimeLookupCount); |
| 12063 | lvaGenericsContextUseCount -= runtimeLookupCount; |
| 12064 | return result; |
| 12065 | } |
| 12066 | else |
| 12067 | { |
| 12068 | resolveFailed = true; |
| 12069 | } |
| 12070 | } |
| 12071 | |
| 12072 | if (resolveFailed) |
| 12073 | { |
| 12074 | JITDUMP("Runtime reports comparison is NOT known at jit time\n" ); |
| 12075 | } |
| 12076 | else |
| 12077 | { |
| 12078 | JITDUMP("Could not find handle for %s%s\n" , (cls1Hnd == NO_CLASS_HANDLE) ? " cls1" : "" , |
| 12079 | (cls2Hnd == NO_CLASS_HANDLE) ? " cls2" : "" ); |
| 12080 | } |
| 12081 | |
| 12082 | // We can't answer the equality comparison definitively at jit |
| 12083 | // time, but can still simplfy the comparison. |
| 12084 | // |
| 12085 | // Find out how we can compare the two handles. |
| 12086 | // NOTE: We're potentially passing NO_CLASS_HANDLE, but the runtime knows what to do with it here. |
| 12087 | CorInfoInlineTypeCheck inliningKind = |
| 12088 | info.compCompHnd->canInlineTypeCheck(cls1Hnd, CORINFO_INLINE_TYPECHECK_SOURCE_TOKEN); |
| 12089 | |
| 12090 | // If the first type needs helper, check the other type: it might be okay with a simple compare. |
| 12091 | if (inliningKind == CORINFO_INLINE_TYPECHECK_USE_HELPER) |
| 12092 | { |
| 12093 | inliningKind = info.compCompHnd->canInlineTypeCheck(cls2Hnd, CORINFO_INLINE_TYPECHECK_SOURCE_TOKEN); |
| 12094 | } |
| 12095 | |
| 12096 | assert(inliningKind == CORINFO_INLINE_TYPECHECK_PASS || inliningKind == CORINFO_INLINE_TYPECHECK_USE_HELPER); |
| 12097 | |
| 12098 | // If we successfully tunneled through both operands, compare |
| 12099 | // the tunneled values, otherwise compare the original values. |
| 12100 | GenTree* compare; |
| 12101 | if ((op1TunneledHandle != nullptr) && (op2TunneledHandle != nullptr)) |
| 12102 | { |
| 12103 | compare = gtCreateHandleCompare(oper, op1TunneledHandle, op2TunneledHandle, inliningKind); |
| 12104 | } |
| 12105 | else |
| 12106 | { |
| 12107 | compare = gtCreateHandleCompare(oper, op1ClassFromHandle, op2ClassFromHandle, inliningKind); |
| 12108 | } |
| 12109 | |
| 12110 | // Drop any now-irrelvant flags |
| 12111 | compare->gtFlags |= tree->gtFlags & (GTF_RELOP_JMP_USED | GTF_RELOP_QMARK | GTF_DONT_CSE); |
| 12112 | |
| 12113 | return compare; |
| 12114 | } |
| 12115 | |
| 12116 | // Just one operand creates a type from a handle. |
| 12117 | // |
| 12118 | // If the other operand is fetching the type from an object, |
| 12119 | // we can sometimes optimize the type compare into a simpler |
| 12120 | // method table comparison. |
| 12121 | // |
| 12122 | // TODO: if other operand is null... |
| 12123 | if ((op1Kind != TPK_GetType) && (op2Kind != TPK_GetType)) |
| 12124 | { |
| 12125 | return tree; |
| 12126 | } |
| 12127 | |
| 12128 | GenTree* const opHandle = op1IsFromHandle ? op1 : op2; |
| 12129 | GenTree* const opOther = op1IsFromHandle ? op2 : op1; |
| 12130 | |
| 12131 | // Tunnel through the handle operand to get at the class handle involved. |
| 12132 | GenTree* const opHandleArgument = opHandle->gtCall.gtCallArgs->gtOp.gtOp1; |
| 12133 | CORINFO_CLASS_HANDLE clsHnd = gtGetHelperArgClassHandle(opHandleArgument); |
| 12134 | |
| 12135 | // If we couldn't find the class handle, give up. |
| 12136 | if (clsHnd == NO_CLASS_HANDLE) |
| 12137 | { |
| 12138 | return tree; |
| 12139 | } |
| 12140 | |
| 12141 | // Ask the VM if this type can be equality tested by a simple method |
| 12142 | // table comparison. |
| 12143 | CorInfoInlineTypeCheck typeCheckInliningResult = |
| 12144 | info.compCompHnd->canInlineTypeCheck(clsHnd, CORINFO_INLINE_TYPECHECK_SOURCE_VTABLE); |
| 12145 | if (typeCheckInliningResult == CORINFO_INLINE_TYPECHECK_NONE) |
| 12146 | { |
| 12147 | return tree; |
| 12148 | } |
| 12149 | |
| 12150 | // We're good to go. |
| 12151 | JITDUMP("Optimizing compare of obj.GetType()" |
| 12152 | " and type-from-handle to compare method table pointer\n" ); |
| 12153 | |
| 12154 | // opHandleArgument is the method table we're looking for. |
| 12155 | GenTree* const knownMT = opHandleArgument; |
| 12156 | |
| 12157 | // Fetch object method table from the object itself. |
| 12158 | GenTree* objOp = nullptr; |
| 12159 | |
| 12160 | // Note we may see intrinsified or regular calls to GetType |
| 12161 | if (opOther->OperGet() == GT_INTRINSIC) |
| 12162 | { |
| 12163 | objOp = opOther->gtUnOp.gtOp1; |
| 12164 | } |
| 12165 | else |
| 12166 | { |
| 12167 | assert(opOther->OperGet() == GT_CALL); |
| 12168 | objOp = opOther->gtCall.gtCallObjp; |
| 12169 | } |
| 12170 | |
| 12171 | GenTree* const objMT = gtNewOperNode(GT_IND, TYP_I_IMPL, objOp); |
| 12172 | |
| 12173 | // Update various flags |
| 12174 | objMT->gtFlags |= GTF_EXCEPT; |
| 12175 | compCurBB->bbFlags |= BBF_HAS_VTABREF; |
| 12176 | optMethodFlags |= OMF_HAS_VTABLEREF; |
| 12177 | |
| 12178 | // Compare the two method tables |
| 12179 | GenTree* const compare = gtCreateHandleCompare(oper, objMT, knownMT, typeCheckInliningResult); |
| 12180 | |
| 12181 | // Drop any now irrelevant flags |
| 12182 | compare->gtFlags |= tree->gtFlags & (GTF_RELOP_JMP_USED | GTF_RELOP_QMARK | GTF_DONT_CSE); |
| 12183 | |
| 12184 | // And we're done |
| 12185 | return compare; |
| 12186 | } |
| 12187 | |
| 12188 | //------------------------------------------------------------------------ |
| 12189 | // gtGetHelperArgClassHandle: find the compile time class handle from |
| 12190 | // a helper call argument tree |
| 12191 | // |
| 12192 | // Arguments: |
| 12193 | // tree - tree that passes the handle to the helper |
| 12194 | // runtimeLookupCount [optional, in/out] - incremented if tree was a runtime lookup |
| 12195 | // handleTree [optional, out] - set to the literal operand tree for indirect handles |
| 12196 | // |
| 12197 | // Returns: |
| 12198 | // The compile time class handle if known. |
| 12199 | // |
| 12200 | CORINFO_CLASS_HANDLE Compiler::gtGetHelperArgClassHandle(GenTree* tree, |
| 12201 | unsigned* runtimeLookupCount, |
| 12202 | GenTree** handleTree) |
| 12203 | { |
| 12204 | CORINFO_CLASS_HANDLE result = NO_CLASS_HANDLE; |
| 12205 | |
| 12206 | // Walk through any wrapping nop. |
| 12207 | if ((tree->gtOper == GT_NOP) && (tree->gtType == TYP_I_IMPL)) |
| 12208 | { |
| 12209 | tree = tree->gtOp.gtOp1; |
| 12210 | } |
| 12211 | |
| 12212 | // The handle could be a literal constant |
| 12213 | if ((tree->OperGet() == GT_CNS_INT) && (tree->TypeGet() == TYP_I_IMPL)) |
| 12214 | { |
| 12215 | assert(tree->IsIconHandle(GTF_ICON_CLASS_HDL)); |
| 12216 | result = (CORINFO_CLASS_HANDLE)tree->gtIntCon.gtCompileTimeHandle; |
| 12217 | } |
| 12218 | // Or the result of a runtime lookup |
| 12219 | else if (tree->OperGet() == GT_RUNTIMELOOKUP) |
| 12220 | { |
| 12221 | result = tree->AsRuntimeLookup()->GetClassHandle(); |
| 12222 | |
| 12223 | if (runtimeLookupCount != nullptr) |
| 12224 | { |
| 12225 | *runtimeLookupCount = *runtimeLookupCount + 1; |
| 12226 | } |
| 12227 | } |
| 12228 | // Or something reached indirectly |
| 12229 | else if (tree->gtOper == GT_IND) |
| 12230 | { |
| 12231 | // The handle indirs we are looking for will be marked as non-faulting. |
| 12232 | // Certain others (eg from refanytype) may not be. |
| 12233 | if (tree->gtFlags & GTF_IND_NONFAULTING) |
| 12234 | { |
| 12235 | GenTree* handleTreeInternal = tree->gtOp.gtOp1; |
| 12236 | |
| 12237 | if ((handleTreeInternal->OperGet() == GT_CNS_INT) && (handleTreeInternal->TypeGet() == TYP_I_IMPL)) |
| 12238 | { |
| 12239 | // These handle constants should be class handles. |
| 12240 | assert(handleTreeInternal->IsIconHandle(GTF_ICON_CLASS_HDL)); |
| 12241 | result = (CORINFO_CLASS_HANDLE)handleTreeInternal->gtIntCon.gtCompileTimeHandle; |
| 12242 | |
| 12243 | if (handleTree != nullptr) |
| 12244 | { |
| 12245 | *handleTree = handleTreeInternal; |
| 12246 | } |
| 12247 | } |
| 12248 | } |
| 12249 | } |
| 12250 | |
| 12251 | return result; |
| 12252 | } |
| 12253 | |
| 12254 | /***************************************************************************** |
| 12255 | * |
| 12256 | * Some binary operators can be folded even if they have only one |
| 12257 | * operand constant - e.g. boolean operators, add with 0 |
| 12258 | * multiply with 1, etc |
| 12259 | */ |
| 12260 | |
| 12261 | GenTree* Compiler::gtFoldExprSpecial(GenTree* tree) |
| 12262 | { |
| 12263 | GenTree* op1 = tree->gtOp.gtOp1; |
| 12264 | GenTree* op2 = tree->gtOp.gtOp2; |
| 12265 | genTreeOps oper = tree->OperGet(); |
| 12266 | |
| 12267 | GenTree* op; |
| 12268 | GenTree* cons; |
| 12269 | ssize_t val; |
| 12270 | |
| 12271 | assert(tree->OperKind() & GTK_BINOP); |
| 12272 | |
| 12273 | /* Filter out operators that cannot be folded here */ |
| 12274 | if (oper == GT_CAST) |
| 12275 | { |
| 12276 | return tree; |
| 12277 | } |
| 12278 | |
| 12279 | /* We only consider TYP_INT for folding |
| 12280 | * Do not fold pointer arithmetic (e.g. addressing modes!) */ |
| 12281 | |
| 12282 | if (oper != GT_QMARK && !varTypeIsIntOrI(tree->gtType)) |
| 12283 | { |
| 12284 | return tree; |
| 12285 | } |
| 12286 | |
| 12287 | /* Find out which is the constant node */ |
| 12288 | |
| 12289 | if (op1->IsCnsIntOrI()) |
| 12290 | { |
| 12291 | op = op2; |
| 12292 | cons = op1; |
| 12293 | } |
| 12294 | else if (op2->IsCnsIntOrI()) |
| 12295 | { |
| 12296 | op = op1; |
| 12297 | cons = op2; |
| 12298 | } |
| 12299 | else |
| 12300 | { |
| 12301 | return tree; |
| 12302 | } |
| 12303 | |
| 12304 | /* Get the constant value */ |
| 12305 | |
| 12306 | val = cons->gtIntConCommon.IconValue(); |
| 12307 | |
| 12308 | /* Here op is the non-constant operand, val is the constant, |
| 12309 | first is true if the constant is op1 */ |
| 12310 | |
| 12311 | switch (oper) |
| 12312 | { |
| 12313 | case GT_EQ: |
| 12314 | case GT_NE: |
| 12315 | case GT_GT: |
| 12316 | |
| 12317 | // Optimize boxed value classes; these are always false. This IL is |
| 12318 | // generated when a generic value is tested against null: |
| 12319 | // <T> ... foo(T x) { ... if ((object)x == null) ... |
| 12320 | if (val == 0 && op->IsBoxedValue()) |
| 12321 | { |
| 12322 | JITDUMP("\nAttempting to optimize BOX(valueType) %s null [%06u]\n" , GenTree::OpName(oper), |
| 12323 | dspTreeID(tree)); |
| 12324 | |
| 12325 | // We don't expect GT_GT with signed compares, and we |
| 12326 | // can't predict the result if we do see it, since the |
| 12327 | // boxed object addr could have its high bit set. |
| 12328 | if ((oper == GT_GT) && !tree->IsUnsigned()) |
| 12329 | { |
| 12330 | JITDUMP(" bailing; unexpected signed compare via GT_GT\n" ); |
| 12331 | } |
| 12332 | else |
| 12333 | { |
| 12334 | // The tree under the box must be side effect free |
| 12335 | // since we will drop it if we optimize. |
| 12336 | assert(!gtTreeHasSideEffects(op->gtBox.gtOp.gtOp1, GTF_SIDE_EFFECT)); |
| 12337 | |
| 12338 | // See if we can optimize away the box and related statements. |
| 12339 | GenTree* boxSourceTree = gtTryRemoveBoxUpstreamEffects(op); |
| 12340 | bool didOptimize = (boxSourceTree != nullptr); |
| 12341 | |
| 12342 | // If optimization succeeded, remove the box. |
| 12343 | if (didOptimize) |
| 12344 | { |
| 12345 | // Set up the result of the compare. |
| 12346 | int compareResult = 0; |
| 12347 | if (oper == GT_GT) |
| 12348 | { |
| 12349 | // GT_GT(null, box) == false |
| 12350 | // GT_GT(box, null) == true |
| 12351 | compareResult = (op1 == op); |
| 12352 | } |
| 12353 | else if (oper == GT_EQ) |
| 12354 | { |
| 12355 | // GT_EQ(box, null) == false |
| 12356 | // GT_EQ(null, box) == false |
| 12357 | compareResult = 0; |
| 12358 | } |
| 12359 | else |
| 12360 | { |
| 12361 | assert(oper == GT_NE); |
| 12362 | // GT_NE(box, null) == true |
| 12363 | // GT_NE(null, box) == true |
| 12364 | compareResult = 1; |
| 12365 | } |
| 12366 | |
| 12367 | JITDUMP("\nSuccess: replacing BOX(valueType) %s null with %d\n" , GenTree::OpName(oper), |
| 12368 | compareResult); |
| 12369 | |
| 12370 | op = gtNewIconNode(compareResult); |
| 12371 | |
| 12372 | if (fgGlobalMorph) |
| 12373 | { |
| 12374 | fgMorphTreeDone(op); |
| 12375 | } |
| 12376 | else |
| 12377 | { |
| 12378 | op->gtNext = tree->gtNext; |
| 12379 | op->gtPrev = tree->gtPrev; |
| 12380 | } |
| 12381 | |
| 12382 | return op; |
| 12383 | } |
| 12384 | } |
| 12385 | } |
| 12386 | |
| 12387 | break; |
| 12388 | |
| 12389 | case GT_ADD: |
| 12390 | if (val == 0) |
| 12391 | { |
| 12392 | goto DONE_FOLD; |
| 12393 | } |
| 12394 | break; |
| 12395 | |
| 12396 | case GT_MUL: |
| 12397 | if (val == 1) |
| 12398 | { |
| 12399 | goto DONE_FOLD; |
| 12400 | } |
| 12401 | else if (val == 0) |
| 12402 | { |
| 12403 | /* Multiply by zero - return the 'zero' node, but not if side effects */ |
| 12404 | if (!(op->gtFlags & GTF_SIDE_EFFECT)) |
| 12405 | { |
| 12406 | op = cons; |
| 12407 | goto DONE_FOLD; |
| 12408 | } |
| 12409 | } |
| 12410 | break; |
| 12411 | |
| 12412 | case GT_DIV: |
| 12413 | case GT_UDIV: |
| 12414 | if ((op2 == cons) && (val == 1) && !(op1->OperKind() & GTK_CONST)) |
| 12415 | { |
| 12416 | goto DONE_FOLD; |
| 12417 | } |
| 12418 | break; |
| 12419 | |
| 12420 | case GT_SUB: |
| 12421 | if ((op2 == cons) && (val == 0) && !(op1->OperKind() & GTK_CONST)) |
| 12422 | { |
| 12423 | goto DONE_FOLD; |
| 12424 | } |
| 12425 | break; |
| 12426 | |
| 12427 | case GT_AND: |
| 12428 | if (val == 0) |
| 12429 | { |
| 12430 | /* AND with zero - return the 'zero' node, but not if side effects */ |
| 12431 | |
| 12432 | if (!(op->gtFlags & GTF_SIDE_EFFECT)) |
| 12433 | { |
| 12434 | op = cons; |
| 12435 | goto DONE_FOLD; |
| 12436 | } |
| 12437 | } |
| 12438 | else |
| 12439 | { |
| 12440 | /* The GTF_BOOLEAN flag is set for nodes that are part |
| 12441 | * of a boolean expression, thus all their children |
| 12442 | * are known to evaluate to only 0 or 1 */ |
| 12443 | |
| 12444 | if (tree->gtFlags & GTF_BOOLEAN) |
| 12445 | { |
| 12446 | |
| 12447 | /* The constant value must be 1 |
| 12448 | * AND with 1 stays the same */ |
| 12449 | assert(val == 1); |
| 12450 | goto DONE_FOLD; |
| 12451 | } |
| 12452 | } |
| 12453 | break; |
| 12454 | |
| 12455 | case GT_OR: |
| 12456 | if (val == 0) |
| 12457 | { |
| 12458 | goto DONE_FOLD; |
| 12459 | } |
| 12460 | else if (tree->gtFlags & GTF_BOOLEAN) |
| 12461 | { |
| 12462 | /* The constant value must be 1 - OR with 1 is 1 */ |
| 12463 | |
| 12464 | assert(val == 1); |
| 12465 | |
| 12466 | /* OR with one - return the 'one' node, but not if side effects */ |
| 12467 | |
| 12468 | if (!(op->gtFlags & GTF_SIDE_EFFECT)) |
| 12469 | { |
| 12470 | op = cons; |
| 12471 | goto DONE_FOLD; |
| 12472 | } |
| 12473 | } |
| 12474 | break; |
| 12475 | |
| 12476 | case GT_LSH: |
| 12477 | case GT_RSH: |
| 12478 | case GT_RSZ: |
| 12479 | case GT_ROL: |
| 12480 | case GT_ROR: |
| 12481 | if (val == 0) |
| 12482 | { |
| 12483 | if (op2 == cons) |
| 12484 | { |
| 12485 | goto DONE_FOLD; |
| 12486 | } |
| 12487 | else if (!(op->gtFlags & GTF_SIDE_EFFECT)) |
| 12488 | { |
| 12489 | op = cons; |
| 12490 | goto DONE_FOLD; |
| 12491 | } |
| 12492 | } |
| 12493 | break; |
| 12494 | |
| 12495 | case GT_QMARK: |
| 12496 | { |
| 12497 | assert(op1 == cons && op2 == op && op2->gtOper == GT_COLON); |
| 12498 | assert(op2->gtOp.gtOp1 && op2->gtOp.gtOp2); |
| 12499 | |
| 12500 | assert(val == 0 || val == 1); |
| 12501 | |
| 12502 | GenTree* opToDelete; |
| 12503 | if (val) |
| 12504 | { |
| 12505 | op = op2->AsColon()->ThenNode(); |
| 12506 | opToDelete = op2->AsColon()->ElseNode(); |
| 12507 | } |
| 12508 | else |
| 12509 | { |
| 12510 | op = op2->AsColon()->ElseNode(); |
| 12511 | opToDelete = op2->AsColon()->ThenNode(); |
| 12512 | } |
| 12513 | |
| 12514 | // Clear colon flags only if the qmark itself is not conditionaly executed |
| 12515 | if ((tree->gtFlags & GTF_COLON_COND) == 0) |
| 12516 | { |
| 12517 | fgWalkTreePre(&op, gtClearColonCond); |
| 12518 | } |
| 12519 | } |
| 12520 | |
| 12521 | goto DONE_FOLD; |
| 12522 | |
| 12523 | default: |
| 12524 | break; |
| 12525 | } |
| 12526 | |
| 12527 | /* The node is not foldable */ |
| 12528 | |
| 12529 | return tree; |
| 12530 | |
| 12531 | DONE_FOLD: |
| 12532 | |
| 12533 | /* The node has beeen folded into 'op' */ |
| 12534 | |
| 12535 | // If there was an assigment update, we just morphed it into |
| 12536 | // a use, update the flags appropriately |
| 12537 | if (op->gtOper == GT_LCL_VAR) |
| 12538 | { |
| 12539 | assert(tree->OperIs(GT_ASG) || (op->gtFlags & (GTF_VAR_USEASG | GTF_VAR_DEF)) == 0); |
| 12540 | |
| 12541 | op->gtFlags &= ~(GTF_VAR_USEASG | GTF_VAR_DEF); |
| 12542 | } |
| 12543 | |
| 12544 | op->gtNext = tree->gtNext; |
| 12545 | op->gtPrev = tree->gtPrev; |
| 12546 | |
| 12547 | return op; |
| 12548 | } |
| 12549 | |
| 12550 | //------------------------------------------------------------------------ |
| 12551 | // gtTryRemoveBoxUpstreamEffects: given an unused value type box, |
| 12552 | // try and remove the upstream allocation and unnecessary parts of |
| 12553 | // the copy. |
| 12554 | // |
| 12555 | // Arguments: |
| 12556 | // op - the box node to optimize |
| 12557 | // options - controls whether and how trees are modified |
| 12558 | // (see notes) |
| 12559 | // |
| 12560 | // Return Value: |
| 12561 | // A tree representing the original value to box, if removal |
| 12562 | // is successful/possible (but see note). nullptr if removal fails. |
| 12563 | // |
| 12564 | // Notes: |
| 12565 | // Value typed box gets special treatment because it has associated |
| 12566 | // side effects that can be removed if the box result is not used. |
| 12567 | // |
| 12568 | // By default (options == BR_REMOVE_AND_NARROW) this method will |
| 12569 | // try and remove unnecessary trees and will try and reduce remaning |
| 12570 | // operations to the minimal set, possibly narrowing the width of |
| 12571 | // loads from the box source if it is a struct. |
| 12572 | // |
| 12573 | // To perform a trial removal, pass BR_DONT_REMOVE. This can be |
| 12574 | // useful to determine if this optimization should only be |
| 12575 | // performed if some other conditions hold true. |
| 12576 | // |
| 12577 | // To remove but not alter the access to the box source, pass |
| 12578 | // BR_REMOVE_BUT_NOT_NARROW. |
| 12579 | // |
| 12580 | // To remove and return the tree for the type handle used for |
| 12581 | // the boxed newobj, pass BR_REMOVE_BUT_NOT_NARROW_WANT_TYPE_HANDLE. |
| 12582 | // This can be useful when the only part of the box that is "live" |
| 12583 | // is its type. |
| 12584 | // |
| 12585 | // If removal fails, is is possible that a subsequent pass may be |
| 12586 | // able to optimize. Blocking side effects may now be minimized |
| 12587 | // (null or bounds checks might have been removed) or might be |
| 12588 | // better known (inline return placeholder updated with the actual |
| 12589 | // return expression). So the box is perhaps best left as is to |
| 12590 | // help trigger this re-examination. |
| 12591 | |
| 12592 | GenTree* Compiler::gtTryRemoveBoxUpstreamEffects(GenTree* op, BoxRemovalOptions options) |
| 12593 | { |
| 12594 | assert(op->IsBoxedValue()); |
| 12595 | |
| 12596 | // grab related parts for the optimization |
| 12597 | GenTreeBox* box = op->AsBox(); |
| 12598 | GenTree* asgStmt = box->gtAsgStmtWhenInlinedBoxValue; |
| 12599 | GenTree* copyStmt = box->gtCopyStmtWhenInlinedBoxValue; |
| 12600 | |
| 12601 | assert(asgStmt->gtOper == GT_STMT); |
| 12602 | assert(copyStmt->gtOper == GT_STMT); |
| 12603 | |
| 12604 | JITDUMP("gtTryRemoveBoxUpstreamEffects: %s to %s of BOX (valuetype)" |
| 12605 | " [%06u] (assign/newobj [%06u] copy [%06u])\n" , |
| 12606 | (options == BR_DONT_REMOVE) ? "checking if it is possible" : "attempting" , |
| 12607 | (options == BR_MAKE_LOCAL_COPY) ? "make local unboxed version" : "remove side effects" , dspTreeID(op), |
| 12608 | dspTreeID(asgStmt), dspTreeID(copyStmt)); |
| 12609 | |
| 12610 | // If we don't recognize the form of the assign, bail. |
| 12611 | GenTree* asg = asgStmt->gtStmt.gtStmtExpr; |
| 12612 | if (asg->gtOper != GT_ASG) |
| 12613 | { |
| 12614 | JITDUMP(" bailing; unexpected assignment op %s\n" , GenTree::OpName(asg->gtOper)); |
| 12615 | return nullptr; |
| 12616 | } |
| 12617 | |
| 12618 | // If we're eventually going to return the type handle, remember it now. |
| 12619 | GenTree* boxTypeHandle = nullptr; |
| 12620 | if ((options == BR_REMOVE_AND_NARROW_WANT_TYPE_HANDLE) || (options == BR_DONT_REMOVE_WANT_TYPE_HANDLE)) |
| 12621 | { |
| 12622 | GenTree* asgSrc = asg->gtOp.gtOp2; |
| 12623 | genTreeOps asgSrcOper = asgSrc->OperGet(); |
| 12624 | |
| 12625 | // Allocation may be via AllocObj or via helper call, depending |
| 12626 | // on when this is invoked and whether the jit is using AllocObj |
| 12627 | // for R2R allocations. |
| 12628 | if (asgSrcOper == GT_ALLOCOBJ) |
| 12629 | { |
| 12630 | GenTreeAllocObj* allocObj = asgSrc->AsAllocObj(); |
| 12631 | boxTypeHandle = allocObj->gtOp.gtOp1; |
| 12632 | } |
| 12633 | else if (asgSrcOper == GT_CALL) |
| 12634 | { |
| 12635 | GenTreeCall* newobjCall = asgSrc->AsCall(); |
| 12636 | GenTree* newobjArgs = newobjCall->gtCallArgs; |
| 12637 | |
| 12638 | // In R2R expansions the handle may not be an explicit operand to the helper, |
| 12639 | // so we can't remove the box. |
| 12640 | if (newobjArgs == nullptr) |
| 12641 | { |
| 12642 | assert(newobjCall->IsHelperCall(this, CORINFO_HELP_READYTORUN_NEW)); |
| 12643 | JITDUMP(" bailing; newobj via R2R helper\n" ); |
| 12644 | return nullptr; |
| 12645 | } |
| 12646 | |
| 12647 | boxTypeHandle = newobjArgs->AsArgList()->Current(); |
| 12648 | } |
| 12649 | else |
| 12650 | { |
| 12651 | unreached(); |
| 12652 | } |
| 12653 | |
| 12654 | assert(boxTypeHandle != nullptr); |
| 12655 | } |
| 12656 | |
| 12657 | // If we don't recognize the form of the copy, bail. |
| 12658 | GenTree* copy = copyStmt->gtStmt.gtStmtExpr; |
| 12659 | if (copy->gtOper != GT_ASG) |
| 12660 | { |
| 12661 | // GT_RET_EXPR is a tolerable temporary failure. |
| 12662 | // The jit will revisit this optimization after |
| 12663 | // inlining is done. |
| 12664 | if (copy->gtOper == GT_RET_EXPR) |
| 12665 | { |
| 12666 | JITDUMP(" bailing; must wait for replacement of copy %s\n" , GenTree::OpName(copy->gtOper)); |
| 12667 | } |
| 12668 | else |
| 12669 | { |
| 12670 | // Anything else is a missed case we should |
| 12671 | // figure out how to handle. One known case |
| 12672 | // is GT_COMMAs enclosing the GT_ASG we are |
| 12673 | // looking for. |
| 12674 | JITDUMP(" bailing; unexpected copy op %s\n" , GenTree::OpName(copy->gtOper)); |
| 12675 | } |
| 12676 | return nullptr; |
| 12677 | } |
| 12678 | |
| 12679 | // Handle case where we are optimizing the box into a local copy |
| 12680 | if (options == BR_MAKE_LOCAL_COPY) |
| 12681 | { |
| 12682 | // Drill into the box to get at the box temp local and the box type |
| 12683 | GenTree* boxTemp = box->BoxOp(); |
| 12684 | assert(boxTemp->IsLocal()); |
| 12685 | const unsigned boxTempLcl = boxTemp->AsLclVar()->GetLclNum(); |
| 12686 | assert(lvaTable[boxTempLcl].lvType == TYP_REF); |
| 12687 | CORINFO_CLASS_HANDLE boxClass = lvaTable[boxTempLcl].lvClassHnd; |
| 12688 | assert(boxClass != nullptr); |
| 12689 | |
| 12690 | // Verify that the copyDst has the expected shape |
| 12691 | // (blk|obj|ind (add (boxTempLcl, ptr-size))) |
| 12692 | // |
| 12693 | // The shape here is constrained to the patterns we produce |
| 12694 | // over in impImportAndPushBox for the inlined box case. |
| 12695 | GenTree* copyDst = copy->gtOp.gtOp1; |
| 12696 | |
| 12697 | if (!copyDst->OperIs(GT_BLK, GT_IND, GT_OBJ)) |
| 12698 | { |
| 12699 | JITDUMP("Unexpected copy dest operator %s\n" , GenTree::OpName(copyDst->gtOper)); |
| 12700 | return nullptr; |
| 12701 | } |
| 12702 | |
| 12703 | GenTree* copyDstAddr = copyDst->gtOp.gtOp1; |
| 12704 | if (copyDstAddr->OperGet() != GT_ADD) |
| 12705 | { |
| 12706 | JITDUMP("Unexpected copy dest address tree\n" ); |
| 12707 | return nullptr; |
| 12708 | } |
| 12709 | |
| 12710 | GenTree* copyDstAddrOp1 = copyDstAddr->gtOp.gtOp1; |
| 12711 | if ((copyDstAddrOp1->OperGet() != GT_LCL_VAR) || (copyDstAddrOp1->gtLclVarCommon.gtLclNum != boxTempLcl)) |
| 12712 | { |
| 12713 | JITDUMP("Unexpected copy dest address 1st addend\n" ); |
| 12714 | return nullptr; |
| 12715 | } |
| 12716 | |
| 12717 | GenTree* copyDstAddrOp2 = copyDstAddr->gtOp.gtOp2; |
| 12718 | if (!copyDstAddrOp2->IsIntegralConst(TARGET_POINTER_SIZE)) |
| 12719 | { |
| 12720 | JITDUMP("Unexpected copy dest address 2nd addend\n" ); |
| 12721 | return nullptr; |
| 12722 | } |
| 12723 | |
| 12724 | // Screening checks have all passed. Do the transformation. |
| 12725 | // |
| 12726 | // Retype the box temp to be a struct |
| 12727 | JITDUMP("Retyping box temp V%02u to struct %s\n" , boxTempLcl, eeGetClassName(boxClass)); |
| 12728 | lvaTable[boxTempLcl].lvType = TYP_UNDEF; |
| 12729 | const bool isUnsafeValueClass = false; |
| 12730 | lvaSetStruct(boxTempLcl, boxClass, isUnsafeValueClass); |
| 12731 | var_types boxTempType = lvaTable[boxTempLcl].lvType; |
| 12732 | |
| 12733 | // Remove the newobj and assigment to box temp |
| 12734 | JITDUMP("Bashing NEWOBJ [%06u] to NOP\n" , dspTreeID(asg)); |
| 12735 | asg->gtBashToNOP(); |
| 12736 | |
| 12737 | // Update the copy from the value to be boxed to the box temp |
| 12738 | GenTree* newDst = gtNewOperNode(GT_ADDR, TYP_BYREF, gtNewLclvNode(boxTempLcl, boxTempType)); |
| 12739 | copyDst->gtOp.gtOp1 = newDst; |
| 12740 | |
| 12741 | // Return the address of the now-struct typed box temp |
| 12742 | GenTree* retValue = gtNewOperNode(GT_ADDR, TYP_BYREF, gtNewLclvNode(boxTempLcl, boxTempType)); |
| 12743 | |
| 12744 | return retValue; |
| 12745 | } |
| 12746 | |
| 12747 | // If the copy is a struct copy, make sure we know how to isolate |
| 12748 | // any source side effects. |
| 12749 | GenTree* copySrc = copy->gtOp.gtOp2; |
| 12750 | |
| 12751 | // If the copy source is from a pending inline, wait for it to resolve. |
| 12752 | if (copySrc->gtOper == GT_RET_EXPR) |
| 12753 | { |
| 12754 | JITDUMP(" bailing; must wait for replacement of copy source %s\n" , GenTree::OpName(copySrc->gtOper)); |
| 12755 | return nullptr; |
| 12756 | } |
| 12757 | |
| 12758 | bool hasSrcSideEffect = false; |
| 12759 | bool isStructCopy = false; |
| 12760 | |
| 12761 | if (gtTreeHasSideEffects(copySrc, GTF_SIDE_EFFECT)) |
| 12762 | { |
| 12763 | hasSrcSideEffect = true; |
| 12764 | |
| 12765 | if (varTypeIsStruct(copySrc->gtType)) |
| 12766 | { |
| 12767 | isStructCopy = true; |
| 12768 | |
| 12769 | if ((copySrc->gtOper != GT_OBJ) && (copySrc->gtOper != GT_IND) && (copySrc->gtOper != GT_FIELD)) |
| 12770 | { |
| 12771 | // We don't know how to handle other cases, yet. |
| 12772 | JITDUMP(" bailing; unexpected copy source struct op with side effect %s\n" , |
| 12773 | GenTree::OpName(copySrc->gtOper)); |
| 12774 | return nullptr; |
| 12775 | } |
| 12776 | } |
| 12777 | } |
| 12778 | |
| 12779 | // If this was a trial removal, we're done. |
| 12780 | if (options == BR_DONT_REMOVE) |
| 12781 | { |
| 12782 | return copySrc; |
| 12783 | } |
| 12784 | |
| 12785 | if (options == BR_DONT_REMOVE_WANT_TYPE_HANDLE) |
| 12786 | { |
| 12787 | return boxTypeHandle; |
| 12788 | } |
| 12789 | |
| 12790 | // Otherwise, proceed with the optimization. |
| 12791 | // |
| 12792 | // Change the assignment expression to a NOP. |
| 12793 | JITDUMP("\nBashing NEWOBJ [%06u] to NOP\n" , dspTreeID(asg)); |
| 12794 | asg->gtBashToNOP(); |
| 12795 | |
| 12796 | // Change the copy expression so it preserves key |
| 12797 | // source side effects. |
| 12798 | JITDUMP("\nBashing COPY [%06u]" , dspTreeID(copy)); |
| 12799 | |
| 12800 | if (!hasSrcSideEffect) |
| 12801 | { |
| 12802 | // If there were no copy source side effects just bash |
| 12803 | // the copy to a NOP. |
| 12804 | copy->gtBashToNOP(); |
| 12805 | JITDUMP(" to NOP; no source side effects.\n" ); |
| 12806 | } |
| 12807 | else if (!isStructCopy) |
| 12808 | { |
| 12809 | // For scalar types, go ahead and produce the |
| 12810 | // value as the copy is fairly cheap and likely |
| 12811 | // the optimizer can trim things down to just the |
| 12812 | // minimal side effect parts. |
| 12813 | copyStmt->gtStmt.gtStmtExpr = copySrc; |
| 12814 | JITDUMP(" to scalar read via [%06u]\n" , dspTreeID(copySrc)); |
| 12815 | } |
| 12816 | else |
| 12817 | { |
| 12818 | // For struct types read the first byte of the |
| 12819 | // source struct; there's no need to read the |
| 12820 | // entire thing, and no place to put it. |
| 12821 | assert(copySrc->gtOper == GT_OBJ || copySrc->gtOper == GT_IND || copySrc->gtOper == GT_FIELD); |
| 12822 | copyStmt->gtStmt.gtStmtExpr = copySrc; |
| 12823 | |
| 12824 | if (options == BR_REMOVE_AND_NARROW || options == BR_REMOVE_AND_NARROW_WANT_TYPE_HANDLE) |
| 12825 | { |
| 12826 | JITDUMP(" to read first byte of struct via modified [%06u]\n" , dspTreeID(copySrc)); |
| 12827 | copySrc->ChangeOper(GT_IND); |
| 12828 | copySrc->gtType = TYP_BYTE; |
| 12829 | } |
| 12830 | else |
| 12831 | { |
| 12832 | JITDUMP(" to read entire struct via modified [%06u]\n" , dspTreeID(copySrc)); |
| 12833 | } |
| 12834 | } |
| 12835 | |
| 12836 | if (fgStmtListThreaded) |
| 12837 | { |
| 12838 | fgSetStmtSeq(asgStmt); |
| 12839 | fgSetStmtSeq(copyStmt); |
| 12840 | } |
| 12841 | |
| 12842 | // Box effects were successfully optimized. |
| 12843 | |
| 12844 | if (options == BR_REMOVE_AND_NARROW_WANT_TYPE_HANDLE) |
| 12845 | { |
| 12846 | return boxTypeHandle; |
| 12847 | } |
| 12848 | else |
| 12849 | { |
| 12850 | return copySrc; |
| 12851 | } |
| 12852 | } |
| 12853 | |
| 12854 | //------------------------------------------------------------------------ |
| 12855 | // gtOptimizeEnumHasFlag: given the operands for a call to Enum.HasFlag, |
| 12856 | // try and optimize the call to a simple and/compare tree. |
| 12857 | // |
| 12858 | // Arguments: |
| 12859 | // thisOp - first argument to the call |
| 12860 | // flagOp - second argument to the call |
| 12861 | // |
| 12862 | // Return Value: |
| 12863 | // A new cmp/amd tree if successful. nullptr on failure. |
| 12864 | // |
| 12865 | // Notes: |
| 12866 | // If successful, may allocate new temps and modify connected |
| 12867 | // statements. |
| 12868 | |
| 12869 | GenTree* Compiler::gtOptimizeEnumHasFlag(GenTree* thisOp, GenTree* flagOp) |
| 12870 | { |
| 12871 | JITDUMP("Considering optimizing call to Enum.HasFlag....\n" ); |
| 12872 | |
| 12873 | // Operands must be boxes |
| 12874 | if (!thisOp->IsBoxedValue() || !flagOp->IsBoxedValue()) |
| 12875 | { |
| 12876 | JITDUMP("bailing, need both inputs to be BOXes\n" ); |
| 12877 | return nullptr; |
| 12878 | } |
| 12879 | |
| 12880 | // Operands must have same type |
| 12881 | bool isExactThis = false; |
| 12882 | bool isNonNullThis = false; |
| 12883 | CORINFO_CLASS_HANDLE thisHnd = gtGetClassHandle(thisOp, &isExactThis, &isNonNullThis); |
| 12884 | |
| 12885 | if (thisHnd == nullptr) |
| 12886 | { |
| 12887 | JITDUMP("bailing, can't find type for 'this' operand\n" ); |
| 12888 | return nullptr; |
| 12889 | } |
| 12890 | |
| 12891 | // A boxed thisOp should have exact type and non-null instance |
| 12892 | assert(isExactThis); |
| 12893 | assert(isNonNullThis); |
| 12894 | |
| 12895 | bool isExactFlag = false; |
| 12896 | bool isNonNullFlag = false; |
| 12897 | CORINFO_CLASS_HANDLE flagHnd = gtGetClassHandle(flagOp, &isExactFlag, &isNonNullFlag); |
| 12898 | |
| 12899 | if (flagHnd == nullptr) |
| 12900 | { |
| 12901 | JITDUMP("bailing, can't find type for 'flag' operand\n" ); |
| 12902 | return nullptr; |
| 12903 | } |
| 12904 | |
| 12905 | // A boxed flagOp should have exact type and non-null instance |
| 12906 | assert(isExactFlag); |
| 12907 | assert(isNonNullFlag); |
| 12908 | |
| 12909 | if (flagHnd != thisHnd) |
| 12910 | { |
| 12911 | JITDUMP("bailing, operand types differ\n" ); |
| 12912 | return nullptr; |
| 12913 | } |
| 12914 | |
| 12915 | // If we have a shared type instance we can't safely check type |
| 12916 | // equality, so bail. |
| 12917 | DWORD classAttribs = info.compCompHnd->getClassAttribs(thisHnd); |
| 12918 | if (classAttribs & CORINFO_FLG_SHAREDINST) |
| 12919 | { |
| 12920 | JITDUMP("bailing, have shared instance type\n" ); |
| 12921 | return nullptr; |
| 12922 | } |
| 12923 | |
| 12924 | // Simulate removing the box for thisOP. We need to know that it can |
| 12925 | // be safely removed before we can optimize. |
| 12926 | GenTree* thisVal = gtTryRemoveBoxUpstreamEffects(thisOp, BR_DONT_REMOVE); |
| 12927 | if (thisVal == nullptr) |
| 12928 | { |
| 12929 | // Note we may fail here if the this operand comes from |
| 12930 | // a call. We should be able to retry this post-inlining. |
| 12931 | JITDUMP("bailing, can't undo box of 'this' operand\n" ); |
| 12932 | return nullptr; |
| 12933 | } |
| 12934 | |
| 12935 | GenTree* flagVal = gtTryRemoveBoxUpstreamEffects(flagOp, BR_REMOVE_BUT_NOT_NARROW); |
| 12936 | if (flagVal == nullptr) |
| 12937 | { |
| 12938 | // Note we may fail here if the flag operand comes from |
| 12939 | // a call. We should be able to retry this post-inlining. |
| 12940 | JITDUMP("bailing, can't undo box of 'flag' operand\n" ); |
| 12941 | return nullptr; |
| 12942 | } |
| 12943 | |
| 12944 | // Yes, both boxes can be cleaned up. Optimize. |
| 12945 | JITDUMP("Optimizing call to Enum.HasFlag\n" ); |
| 12946 | |
| 12947 | // Undo the boxing of thisOp and prepare to operate directly |
| 12948 | // on the original enum values. |
| 12949 | thisVal = gtTryRemoveBoxUpstreamEffects(thisOp, BR_REMOVE_BUT_NOT_NARROW); |
| 12950 | |
| 12951 | // Our trial removal above should guarantee successful removal here. |
| 12952 | assert(thisVal != nullptr); |
| 12953 | |
| 12954 | // We should have a consistent view of the type |
| 12955 | var_types type = thisVal->TypeGet(); |
| 12956 | assert(type == flagVal->TypeGet()); |
| 12957 | |
| 12958 | // The thisVal and flagVal trees come from earlier statements. |
| 12959 | // |
| 12960 | // Unless they are invariant values, we need to evaluate them both |
| 12961 | // to temps at those points to safely transmit the values here. |
| 12962 | // |
| 12963 | // Also we need to use the flag twice, so we need two trees for it. |
| 12964 | GenTree* thisValOpt = nullptr; |
| 12965 | GenTree* flagValOpt = nullptr; |
| 12966 | GenTree* flagValOptCopy = nullptr; |
| 12967 | |
| 12968 | if (thisVal->IsIntegralConst()) |
| 12969 | { |
| 12970 | thisValOpt = gtClone(thisVal); |
| 12971 | assert(thisValOpt != nullptr); |
| 12972 | } |
| 12973 | else |
| 12974 | { |
| 12975 | const unsigned thisTmp = lvaGrabTemp(true DEBUGARG("Enum:HasFlag this temp" )); |
| 12976 | GenTree* thisAsg = gtNewTempAssign(thisTmp, thisVal); |
| 12977 | GenTree* thisAsgStmt = thisOp->AsBox()->gtCopyStmtWhenInlinedBoxValue; |
| 12978 | thisAsgStmt->gtStmt.gtStmtExpr = thisAsg; |
| 12979 | thisValOpt = gtNewLclvNode(thisTmp, type); |
| 12980 | } |
| 12981 | |
| 12982 | if (flagVal->IsIntegralConst()) |
| 12983 | { |
| 12984 | flagValOpt = gtClone(flagVal); |
| 12985 | assert(flagValOpt != nullptr); |
| 12986 | flagValOptCopy = gtClone(flagVal); |
| 12987 | assert(flagValOptCopy != nullptr); |
| 12988 | } |
| 12989 | else |
| 12990 | { |
| 12991 | const unsigned flagTmp = lvaGrabTemp(true DEBUGARG("Enum:HasFlag flag temp" )); |
| 12992 | GenTree* flagAsg = gtNewTempAssign(flagTmp, flagVal); |
| 12993 | GenTree* flagAsgStmt = flagOp->AsBox()->gtCopyStmtWhenInlinedBoxValue; |
| 12994 | flagAsgStmt->gtStmt.gtStmtExpr = flagAsg; |
| 12995 | flagValOpt = gtNewLclvNode(flagTmp, type); |
| 12996 | flagValOptCopy = gtNewLclvNode(flagTmp, type); |
| 12997 | } |
| 12998 | |
| 12999 | // Turn the call into (thisValTmp & flagTmp) == flagTmp. |
| 13000 | GenTree* andTree = gtNewOperNode(GT_AND, type, thisValOpt, flagValOpt); |
| 13001 | GenTree* cmpTree = gtNewOperNode(GT_EQ, TYP_INT, andTree, flagValOptCopy); |
| 13002 | |
| 13003 | JITDUMP("Optimized call to Enum.HasFlag\n" ); |
| 13004 | |
| 13005 | return cmpTree; |
| 13006 | } |
| 13007 | |
| 13008 | /***************************************************************************** |
| 13009 | * |
| 13010 | * Fold the given constant tree. |
| 13011 | */ |
| 13012 | |
| 13013 | #ifdef _PREFAST_ |
| 13014 | #pragma warning(push) |
| 13015 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
| 13016 | #endif |
| 13017 | GenTree* Compiler::gtFoldExprConst(GenTree* tree) |
| 13018 | { |
| 13019 | unsigned kind = tree->OperKind(); |
| 13020 | |
| 13021 | SSIZE_T i1, i2, itemp; |
| 13022 | INT64 lval1, lval2, ltemp; |
| 13023 | float f1, f2; |
| 13024 | double d1, d2; |
| 13025 | var_types switchType; |
| 13026 | FieldSeqNode* fieldSeq = FieldSeqStore::NotAField(); // default unless we override it when folding |
| 13027 | |
| 13028 | assert(kind & (GTK_UNOP | GTK_BINOP)); |
| 13029 | |
| 13030 | GenTree* op1 = tree->gtOp.gtOp1; |
| 13031 | GenTree* op2 = tree->gtGetOp2IfPresent(); |
| 13032 | |
| 13033 | if (!opts.OptEnabled(CLFLG_CONSTANTFOLD)) |
| 13034 | { |
| 13035 | return tree; |
| 13036 | } |
| 13037 | |
| 13038 | if (tree->OperGet() == GT_NOP) |
| 13039 | { |
| 13040 | return tree; |
| 13041 | } |
| 13042 | |
| 13043 | #ifdef FEATURE_SIMD |
| 13044 | if (tree->OperGet() == GT_SIMD) |
| 13045 | { |
| 13046 | return tree; |
| 13047 | } |
| 13048 | #endif // FEATURE_SIMD |
| 13049 | |
| 13050 | if (tree->gtOper == GT_ALLOCOBJ) |
| 13051 | { |
| 13052 | return tree; |
| 13053 | } |
| 13054 | |
| 13055 | if (tree->gtOper == GT_RUNTIMELOOKUP) |
| 13056 | { |
| 13057 | return tree; |
| 13058 | } |
| 13059 | |
| 13060 | if (kind & GTK_UNOP) |
| 13061 | { |
| 13062 | assert(op1->OperKind() & GTK_CONST); |
| 13063 | |
| 13064 | switch (op1->gtType) |
| 13065 | { |
| 13066 | case TYP_INT: |
| 13067 | |
| 13068 | /* Fold constant INT unary operator */ |
| 13069 | |
| 13070 | if (!op1->gtIntCon.ImmedValCanBeFolded(this, tree->OperGet())) |
| 13071 | { |
| 13072 | return tree; |
| 13073 | } |
| 13074 | |
| 13075 | i1 = (int)op1->gtIntCon.gtIconVal; |
| 13076 | |
| 13077 | // If we fold a unary oper, then the folded constant |
| 13078 | // is considered a ConstantIndexField if op1 was one |
| 13079 | // |
| 13080 | |
| 13081 | if ((op1->gtIntCon.gtFieldSeq != nullptr) && op1->gtIntCon.gtFieldSeq->IsConstantIndexFieldSeq()) |
| 13082 | { |
| 13083 | fieldSeq = op1->gtIntCon.gtFieldSeq; |
| 13084 | } |
| 13085 | |
| 13086 | switch (tree->gtOper) |
| 13087 | { |
| 13088 | case GT_NOT: |
| 13089 | i1 = ~i1; |
| 13090 | break; |
| 13091 | |
| 13092 | case GT_NEG: |
| 13093 | i1 = -i1; |
| 13094 | break; |
| 13095 | |
| 13096 | case GT_BSWAP: |
| 13097 | i1 = ((i1 >> 24) & 0xFF) | ((i1 >> 8) & 0xFF00) | ((i1 << 8) & 0xFF0000) | |
| 13098 | ((i1 << 24) & 0xFF000000); |
| 13099 | break; |
| 13100 | |
| 13101 | case GT_BSWAP16: |
| 13102 | i1 = ((i1 >> 8) & 0xFF) | ((i1 << 8) & 0xFF00); |
| 13103 | break; |
| 13104 | |
| 13105 | case GT_CAST: |
| 13106 | // assert (genActualType(tree->CastToType()) == tree->gtType); |
| 13107 | switch (tree->CastToType()) |
| 13108 | { |
| 13109 | case TYP_BYTE: |
| 13110 | itemp = INT32(INT8(i1)); |
| 13111 | goto CHK_OVF; |
| 13112 | |
| 13113 | case TYP_SHORT: |
| 13114 | itemp = INT32(INT16(i1)); |
| 13115 | CHK_OVF: |
| 13116 | if (tree->gtOverflow() && ((itemp != i1) || ((tree->gtFlags & GTF_UNSIGNED) && i1 < 0))) |
| 13117 | { |
| 13118 | goto INT_OVF; |
| 13119 | } |
| 13120 | i1 = itemp; |
| 13121 | goto CNS_INT; |
| 13122 | |
| 13123 | case TYP_USHORT: |
| 13124 | itemp = INT32(UINT16(i1)); |
| 13125 | if (tree->gtOverflow()) |
| 13126 | { |
| 13127 | if (itemp != i1) |
| 13128 | { |
| 13129 | goto INT_OVF; |
| 13130 | } |
| 13131 | } |
| 13132 | i1 = itemp; |
| 13133 | goto CNS_INT; |
| 13134 | |
| 13135 | case TYP_BOOL: |
| 13136 | case TYP_UBYTE: |
| 13137 | itemp = INT32(UINT8(i1)); |
| 13138 | if (tree->gtOverflow()) |
| 13139 | { |
| 13140 | if (itemp != i1) |
| 13141 | { |
| 13142 | goto INT_OVF; |
| 13143 | } |
| 13144 | } |
| 13145 | i1 = itemp; |
| 13146 | goto CNS_INT; |
| 13147 | |
| 13148 | case TYP_UINT: |
| 13149 | if (!(tree->gtFlags & GTF_UNSIGNED) && tree->gtOverflow() && i1 < 0) |
| 13150 | { |
| 13151 | goto INT_OVF; |
| 13152 | } |
| 13153 | goto CNS_INT; |
| 13154 | |
| 13155 | case TYP_INT: |
| 13156 | if ((tree->gtFlags & GTF_UNSIGNED) && tree->gtOverflow() && i1 < 0) |
| 13157 | { |
| 13158 | goto INT_OVF; |
| 13159 | } |
| 13160 | goto CNS_INT; |
| 13161 | |
| 13162 | case TYP_ULONG: |
| 13163 | if (tree->IsUnsigned()) |
| 13164 | { |
| 13165 | lval1 = UINT64(UINT32(i1)); |
| 13166 | } |
| 13167 | else |
| 13168 | { |
| 13169 | if (tree->gtOverflow() && (i1 < 0)) |
| 13170 | { |
| 13171 | goto LNG_OVF; |
| 13172 | } |
| 13173 | lval1 = UINT64(INT32(i1)); |
| 13174 | } |
| 13175 | goto CNS_LONG; |
| 13176 | |
| 13177 | case TYP_LONG: |
| 13178 | if (tree->IsUnsigned()) |
| 13179 | { |
| 13180 | lval1 = INT64(UINT32(i1)); |
| 13181 | } |
| 13182 | else |
| 13183 | { |
| 13184 | lval1 = INT64(INT32(i1)); |
| 13185 | } |
| 13186 | goto CNS_LONG; |
| 13187 | |
| 13188 | case TYP_FLOAT: |
| 13189 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13190 | { |
| 13191 | f1 = forceCastToFloat(UINT32(i1)); |
| 13192 | } |
| 13193 | else |
| 13194 | { |
| 13195 | f1 = forceCastToFloat(INT32(i1)); |
| 13196 | } |
| 13197 | d1 = f1; |
| 13198 | goto CNS_DOUBLE; |
| 13199 | |
| 13200 | case TYP_DOUBLE: |
| 13201 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13202 | { |
| 13203 | d1 = (double)UINT32(i1); |
| 13204 | } |
| 13205 | else |
| 13206 | { |
| 13207 | d1 = (double)INT32(i1); |
| 13208 | } |
| 13209 | goto CNS_DOUBLE; |
| 13210 | |
| 13211 | default: |
| 13212 | assert(!"BAD_TYP" ); |
| 13213 | break; |
| 13214 | } |
| 13215 | return tree; |
| 13216 | |
| 13217 | default: |
| 13218 | return tree; |
| 13219 | } |
| 13220 | |
| 13221 | goto CNS_INT; |
| 13222 | |
| 13223 | case TYP_LONG: |
| 13224 | |
| 13225 | /* Fold constant LONG unary operator */ |
| 13226 | |
| 13227 | if (!op1->gtIntConCommon.ImmedValCanBeFolded(this, tree->OperGet())) |
| 13228 | { |
| 13229 | return tree; |
| 13230 | } |
| 13231 | |
| 13232 | lval1 = op1->gtIntConCommon.LngValue(); |
| 13233 | |
| 13234 | switch (tree->gtOper) |
| 13235 | { |
| 13236 | case GT_NOT: |
| 13237 | lval1 = ~lval1; |
| 13238 | break; |
| 13239 | |
| 13240 | case GT_NEG: |
| 13241 | lval1 = -lval1; |
| 13242 | break; |
| 13243 | |
| 13244 | case GT_BSWAP: |
| 13245 | lval1 = ((lval1 >> 56) & 0xFF) | ((lval1 >> 40) & 0xFF00) | ((lval1 >> 24) & 0xFF0000) | |
| 13246 | ((lval1 >> 8) & 0xFF000000) | ((lval1 << 8) & 0xFF00000000) | |
| 13247 | ((lval1 << 24) & 0xFF0000000000) | ((lval1 << 40) & 0xFF000000000000) | |
| 13248 | ((lval1 << 56) & 0xFF00000000000000); |
| 13249 | break; |
| 13250 | |
| 13251 | case GT_CAST: |
| 13252 | assert(genActualType(tree->CastToType()) == tree->gtType); |
| 13253 | switch (tree->CastToType()) |
| 13254 | { |
| 13255 | case TYP_BYTE: |
| 13256 | i1 = INT32(INT8(lval1)); |
| 13257 | goto CHECK_INT_OVERFLOW; |
| 13258 | |
| 13259 | case TYP_SHORT: |
| 13260 | i1 = INT32(INT16(lval1)); |
| 13261 | goto CHECK_INT_OVERFLOW; |
| 13262 | |
| 13263 | case TYP_USHORT: |
| 13264 | i1 = INT32(UINT16(lval1)); |
| 13265 | goto CHECK_UINT_OVERFLOW; |
| 13266 | |
| 13267 | case TYP_UBYTE: |
| 13268 | i1 = INT32(UINT8(lval1)); |
| 13269 | goto CHECK_UINT_OVERFLOW; |
| 13270 | |
| 13271 | case TYP_INT: |
| 13272 | i1 = INT32(lval1); |
| 13273 | |
| 13274 | CHECK_INT_OVERFLOW: |
| 13275 | if (tree->gtOverflow()) |
| 13276 | { |
| 13277 | if (i1 != lval1) |
| 13278 | { |
| 13279 | goto INT_OVF; |
| 13280 | } |
| 13281 | if ((tree->gtFlags & GTF_UNSIGNED) && i1 < 0) |
| 13282 | { |
| 13283 | goto INT_OVF; |
| 13284 | } |
| 13285 | } |
| 13286 | goto CNS_INT; |
| 13287 | |
| 13288 | case TYP_UINT: |
| 13289 | i1 = UINT32(lval1); |
| 13290 | |
| 13291 | CHECK_UINT_OVERFLOW: |
| 13292 | if (tree->gtOverflow() && UINT32(i1) != lval1) |
| 13293 | { |
| 13294 | goto INT_OVF; |
| 13295 | } |
| 13296 | goto CNS_INT; |
| 13297 | |
| 13298 | case TYP_ULONG: |
| 13299 | if (!(tree->gtFlags & GTF_UNSIGNED) && tree->gtOverflow() && lval1 < 0) |
| 13300 | { |
| 13301 | goto LNG_OVF; |
| 13302 | } |
| 13303 | goto CNS_LONG; |
| 13304 | |
| 13305 | case TYP_LONG: |
| 13306 | if ((tree->gtFlags & GTF_UNSIGNED) && tree->gtOverflow() && lval1 < 0) |
| 13307 | { |
| 13308 | goto LNG_OVF; |
| 13309 | } |
| 13310 | goto CNS_LONG; |
| 13311 | |
| 13312 | case TYP_FLOAT: |
| 13313 | case TYP_DOUBLE: |
| 13314 | if ((tree->gtFlags & GTF_UNSIGNED) && lval1 < 0) |
| 13315 | { |
| 13316 | d1 = FloatingPointUtils::convertUInt64ToDouble((unsigned __int64)lval1); |
| 13317 | } |
| 13318 | else |
| 13319 | { |
| 13320 | d1 = (double)lval1; |
| 13321 | } |
| 13322 | |
| 13323 | if (tree->CastToType() == TYP_FLOAT) |
| 13324 | { |
| 13325 | f1 = forceCastToFloat(d1); // truncate precision |
| 13326 | d1 = f1; |
| 13327 | } |
| 13328 | goto CNS_DOUBLE; |
| 13329 | default: |
| 13330 | assert(!"BAD_TYP" ); |
| 13331 | break; |
| 13332 | } |
| 13333 | return tree; |
| 13334 | |
| 13335 | default: |
| 13336 | return tree; |
| 13337 | } |
| 13338 | |
| 13339 | goto CNS_LONG; |
| 13340 | |
| 13341 | case TYP_FLOAT: |
| 13342 | case TYP_DOUBLE: |
| 13343 | assert(op1->gtOper == GT_CNS_DBL); |
| 13344 | |
| 13345 | /* Fold constant DOUBLE unary operator */ |
| 13346 | |
| 13347 | d1 = op1->gtDblCon.gtDconVal; |
| 13348 | |
| 13349 | switch (tree->gtOper) |
| 13350 | { |
| 13351 | case GT_NEG: |
| 13352 | d1 = -d1; |
| 13353 | break; |
| 13354 | |
| 13355 | case GT_CAST: |
| 13356 | |
| 13357 | if (tree->gtOverflowEx()) |
| 13358 | { |
| 13359 | return tree; |
| 13360 | } |
| 13361 | |
| 13362 | assert(genActualType(tree->CastToType()) == tree->gtType); |
| 13363 | |
| 13364 | if ((op1->gtType == TYP_FLOAT && !_finite(forceCastToFloat(d1))) || |
| 13365 | (op1->gtType == TYP_DOUBLE && !_finite(d1))) |
| 13366 | { |
| 13367 | // The floating point constant is not finite. The ECMA spec says, in |
| 13368 | // III 3.27, that "...if overflow occurs converting a floating point type |
| 13369 | // to an integer, ..., the value returned is unspecified." However, it would |
| 13370 | // at least be desirable to have the same value returned for casting an overflowing |
| 13371 | // constant to an int as would obtained by passing that constant as a parameter |
| 13372 | // then casting that parameter to an int type. We will assume that the C compiler's |
| 13373 | // cast logic will yield the desired result (and trust testing to tell otherwise). |
| 13374 | // Cross-compilation is an issue here; if that becomes an important scenario, we should |
| 13375 | // capture the target-specific values of overflow casts to the various integral types as |
| 13376 | // constants in a target-specific function. |
| 13377 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 13378 | |
| 13379 | // Don't fold conversions of +inf/-inf to integral value on all platforms |
| 13380 | // as the value returned by JIT helper doesn't match with the C compiler's cast result. |
| 13381 | // We want the behavior to be same with or without folding. |
| 13382 | return tree; |
| 13383 | } |
| 13384 | |
| 13385 | if (d1 <= -1.0 && varTypeIsUnsigned(tree->CastToType())) |
| 13386 | { |
| 13387 | // Don't fold conversions of these cases becasue the result is unspecified per ECMA spec |
| 13388 | // and the native math doing the fold doesn't match the run-time computation on all |
| 13389 | // platforms. |
| 13390 | // We want the behavior to be same with or without folding. |
| 13391 | return tree; |
| 13392 | } |
| 13393 | |
| 13394 | switch (tree->CastToType()) |
| 13395 | { |
| 13396 | case TYP_BYTE: |
| 13397 | i1 = INT32(INT8(d1)); |
| 13398 | goto CNS_INT; |
| 13399 | |
| 13400 | case TYP_SHORT: |
| 13401 | i1 = INT32(INT16(d1)); |
| 13402 | goto CNS_INT; |
| 13403 | |
| 13404 | case TYP_USHORT: |
| 13405 | i1 = INT32(UINT16(d1)); |
| 13406 | goto CNS_INT; |
| 13407 | |
| 13408 | case TYP_UBYTE: |
| 13409 | i1 = INT32(UINT8(d1)); |
| 13410 | goto CNS_INT; |
| 13411 | |
| 13412 | case TYP_INT: |
| 13413 | i1 = INT32(d1); |
| 13414 | goto CNS_INT; |
| 13415 | |
| 13416 | case TYP_UINT: |
| 13417 | i1 = forceCastToUInt32(d1); |
| 13418 | goto CNS_INT; |
| 13419 | |
| 13420 | case TYP_LONG: |
| 13421 | lval1 = INT64(d1); |
| 13422 | goto CNS_LONG; |
| 13423 | |
| 13424 | case TYP_ULONG: |
| 13425 | lval1 = FloatingPointUtils::convertDoubleToUInt64(d1); |
| 13426 | goto CNS_LONG; |
| 13427 | |
| 13428 | case TYP_FLOAT: |
| 13429 | d1 = forceCastToFloat(d1); |
| 13430 | goto CNS_DOUBLE; |
| 13431 | |
| 13432 | case TYP_DOUBLE: |
| 13433 | if (op1->gtType == TYP_FLOAT) |
| 13434 | { |
| 13435 | d1 = forceCastToFloat(d1); // truncate precision |
| 13436 | } |
| 13437 | goto CNS_DOUBLE; // redundant cast |
| 13438 | |
| 13439 | default: |
| 13440 | assert(!"BAD_TYP" ); |
| 13441 | break; |
| 13442 | } |
| 13443 | return tree; |
| 13444 | |
| 13445 | default: |
| 13446 | return tree; |
| 13447 | } |
| 13448 | goto CNS_DOUBLE; |
| 13449 | |
| 13450 | default: |
| 13451 | /* not a foldable typ - e.g. RET const */ |
| 13452 | return tree; |
| 13453 | } |
| 13454 | } |
| 13455 | |
| 13456 | /* We have a binary operator */ |
| 13457 | |
| 13458 | assert(kind & GTK_BINOP); |
| 13459 | assert(op2); |
| 13460 | assert(op1->OperKind() & GTK_CONST); |
| 13461 | assert(op2->OperKind() & GTK_CONST); |
| 13462 | |
| 13463 | if (tree->gtOper == GT_COMMA) |
| 13464 | { |
| 13465 | return op2; |
| 13466 | } |
| 13467 | |
| 13468 | if (tree->OperIsAnyList()) |
| 13469 | { |
| 13470 | return tree; |
| 13471 | } |
| 13472 | |
| 13473 | switchType = op1->gtType; |
| 13474 | |
| 13475 | // Normally we will just switch on op1 types, but for the case where |
| 13476 | // only op2 is a GC type and op1 is not a GC type, we use the op2 type. |
| 13477 | // This makes us handle this as a case of folding for GC type. |
| 13478 | // |
| 13479 | if (varTypeIsGC(op2->gtType) && !varTypeIsGC(op1->gtType)) |
| 13480 | { |
| 13481 | switchType = op2->gtType; |
| 13482 | } |
| 13483 | |
| 13484 | switch (switchType) |
| 13485 | { |
| 13486 | |
| 13487 | /*------------------------------------------------------------------------- |
| 13488 | * Fold constant REF of BYREF binary operator |
| 13489 | * These can only be comparisons or null pointers |
| 13490 | */ |
| 13491 | |
| 13492 | case TYP_REF: |
| 13493 | |
| 13494 | /* String nodes are an RVA at this point */ |
| 13495 | |
| 13496 | if (op1->gtOper == GT_CNS_STR || op2->gtOper == GT_CNS_STR) |
| 13497 | { |
| 13498 | return tree; |
| 13499 | } |
| 13500 | |
| 13501 | __fallthrough; |
| 13502 | |
| 13503 | case TYP_BYREF: |
| 13504 | |
| 13505 | i1 = op1->gtIntConCommon.IconValue(); |
| 13506 | i2 = op2->gtIntConCommon.IconValue(); |
| 13507 | |
| 13508 | switch (tree->gtOper) |
| 13509 | { |
| 13510 | case GT_EQ: |
| 13511 | i1 = (i1 == i2); |
| 13512 | goto FOLD_COND; |
| 13513 | |
| 13514 | case GT_NE: |
| 13515 | i1 = (i1 != i2); |
| 13516 | goto FOLD_COND; |
| 13517 | |
| 13518 | case GT_ADD: |
| 13519 | noway_assert(tree->gtType != TYP_REF); |
| 13520 | // We only fold a GT_ADD that involves a null reference. |
| 13521 | if (((op1->TypeGet() == TYP_REF) && (i1 == 0)) || ((op2->TypeGet() == TYP_REF) && (i2 == 0))) |
| 13522 | { |
| 13523 | #ifdef DEBUG |
| 13524 | if (verbose) |
| 13525 | { |
| 13526 | printf("\nFolding operator with constant nodes into a constant:\n" ); |
| 13527 | gtDispTree(tree); |
| 13528 | } |
| 13529 | #endif |
| 13530 | // Fold into GT_IND of null byref |
| 13531 | tree->ChangeOperConst(GT_CNS_INT); |
| 13532 | tree->gtType = TYP_BYREF; |
| 13533 | tree->gtIntCon.gtIconVal = 0; |
| 13534 | tree->gtIntCon.gtFieldSeq = FieldSeqStore::NotAField(); |
| 13535 | if (vnStore != nullptr) |
| 13536 | { |
| 13537 | fgValueNumberTreeConst(tree); |
| 13538 | } |
| 13539 | #ifdef DEBUG |
| 13540 | if (verbose) |
| 13541 | { |
| 13542 | printf("\nFolded to null byref:\n" ); |
| 13543 | gtDispTree(tree); |
| 13544 | } |
| 13545 | #endif |
| 13546 | goto DONE; |
| 13547 | } |
| 13548 | |
| 13549 | default: |
| 13550 | break; |
| 13551 | } |
| 13552 | |
| 13553 | return tree; |
| 13554 | |
| 13555 | /*------------------------------------------------------------------------- |
| 13556 | * Fold constant INT binary operator |
| 13557 | */ |
| 13558 | |
| 13559 | case TYP_INT: |
| 13560 | |
| 13561 | if (tree->OperIsCompare() && (tree->gtType == TYP_BYTE)) |
| 13562 | { |
| 13563 | tree->gtType = TYP_INT; |
| 13564 | } |
| 13565 | |
| 13566 | assert(tree->gtType == TYP_INT || varTypeIsGC(tree->TypeGet()) || tree->gtOper == GT_MKREFANY); |
| 13567 | |
| 13568 | // No GC pointer types should be folded here... |
| 13569 | // |
| 13570 | assert(!varTypeIsGC(op1->gtType) && !varTypeIsGC(op2->gtType)); |
| 13571 | |
| 13572 | if (!op1->gtIntConCommon.ImmedValCanBeFolded(this, tree->OperGet())) |
| 13573 | { |
| 13574 | return tree; |
| 13575 | } |
| 13576 | |
| 13577 | if (!op2->gtIntConCommon.ImmedValCanBeFolded(this, tree->OperGet())) |
| 13578 | { |
| 13579 | return tree; |
| 13580 | } |
| 13581 | |
| 13582 | i1 = op1->gtIntConCommon.IconValue(); |
| 13583 | i2 = op2->gtIntConCommon.IconValue(); |
| 13584 | |
| 13585 | switch (tree->gtOper) |
| 13586 | { |
| 13587 | case GT_EQ: |
| 13588 | i1 = (INT32(i1) == INT32(i2)); |
| 13589 | break; |
| 13590 | case GT_NE: |
| 13591 | i1 = (INT32(i1) != INT32(i2)); |
| 13592 | break; |
| 13593 | |
| 13594 | case GT_LT: |
| 13595 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13596 | { |
| 13597 | i1 = (UINT32(i1) < UINT32(i2)); |
| 13598 | } |
| 13599 | else |
| 13600 | { |
| 13601 | i1 = (INT32(i1) < INT32(i2)); |
| 13602 | } |
| 13603 | break; |
| 13604 | |
| 13605 | case GT_LE: |
| 13606 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13607 | { |
| 13608 | i1 = (UINT32(i1) <= UINT32(i2)); |
| 13609 | } |
| 13610 | else |
| 13611 | { |
| 13612 | i1 = (INT32(i1) <= INT32(i2)); |
| 13613 | } |
| 13614 | break; |
| 13615 | |
| 13616 | case GT_GE: |
| 13617 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13618 | { |
| 13619 | i1 = (UINT32(i1) >= UINT32(i2)); |
| 13620 | } |
| 13621 | else |
| 13622 | { |
| 13623 | i1 = (INT32(i1) >= INT32(i2)); |
| 13624 | } |
| 13625 | break; |
| 13626 | |
| 13627 | case GT_GT: |
| 13628 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13629 | { |
| 13630 | i1 = (UINT32(i1) > UINT32(i2)); |
| 13631 | } |
| 13632 | else |
| 13633 | { |
| 13634 | i1 = (INT32(i1) > INT32(i2)); |
| 13635 | } |
| 13636 | break; |
| 13637 | |
| 13638 | case GT_ADD: |
| 13639 | itemp = i1 + i2; |
| 13640 | if (tree->gtOverflow()) |
| 13641 | { |
| 13642 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13643 | { |
| 13644 | if (INT64(UINT32(itemp)) != INT64(UINT32(i1)) + INT64(UINT32(i2))) |
| 13645 | { |
| 13646 | goto INT_OVF; |
| 13647 | } |
| 13648 | } |
| 13649 | else |
| 13650 | { |
| 13651 | if (INT64(INT32(itemp)) != INT64(INT32(i1)) + INT64(INT32(i2))) |
| 13652 | { |
| 13653 | goto INT_OVF; |
| 13654 | } |
| 13655 | } |
| 13656 | } |
| 13657 | i1 = itemp; |
| 13658 | fieldSeq = GetFieldSeqStore()->Append(op1->gtIntCon.gtFieldSeq, op2->gtIntCon.gtFieldSeq); |
| 13659 | break; |
| 13660 | case GT_SUB: |
| 13661 | itemp = i1 - i2; |
| 13662 | if (tree->gtOverflow()) |
| 13663 | { |
| 13664 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13665 | { |
| 13666 | if (INT64(UINT32(itemp)) != ((INT64)((UINT32)i1) - (INT64)((UINT32)i2))) |
| 13667 | { |
| 13668 | goto INT_OVF; |
| 13669 | } |
| 13670 | } |
| 13671 | else |
| 13672 | { |
| 13673 | if (INT64(INT32(itemp)) != INT64(INT32(i1)) - INT64(INT32(i2))) |
| 13674 | { |
| 13675 | goto INT_OVF; |
| 13676 | } |
| 13677 | } |
| 13678 | } |
| 13679 | i1 = itemp; |
| 13680 | break; |
| 13681 | case GT_MUL: |
| 13682 | itemp = i1 * i2; |
| 13683 | if (tree->gtOverflow()) |
| 13684 | { |
| 13685 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13686 | { |
| 13687 | if (INT64(UINT32(itemp)) != ((INT64)((UINT32)i1) * (INT64)((UINT32)i2))) |
| 13688 | { |
| 13689 | goto INT_OVF; |
| 13690 | } |
| 13691 | } |
| 13692 | else |
| 13693 | { |
| 13694 | if (INT64(INT32(itemp)) != INT64(INT32(i1)) * INT64(INT32(i2))) |
| 13695 | { |
| 13696 | goto INT_OVF; |
| 13697 | } |
| 13698 | } |
| 13699 | } |
| 13700 | // For the very particular case of the "constant array index" pseudo-field, we |
| 13701 | // assume that multiplication is by the field width, and preserves that field. |
| 13702 | // This could obviously be made more robust by a more complicated set of annotations... |
| 13703 | if ((op1->gtIntCon.gtFieldSeq != nullptr) && op1->gtIntCon.gtFieldSeq->IsConstantIndexFieldSeq()) |
| 13704 | { |
| 13705 | assert(op2->gtIntCon.gtFieldSeq == FieldSeqStore::NotAField()); |
| 13706 | fieldSeq = op1->gtIntCon.gtFieldSeq; |
| 13707 | } |
| 13708 | else if ((op2->gtIntCon.gtFieldSeq != nullptr) && |
| 13709 | op2->gtIntCon.gtFieldSeq->IsConstantIndexFieldSeq()) |
| 13710 | { |
| 13711 | assert(op1->gtIntCon.gtFieldSeq == FieldSeqStore::NotAField()); |
| 13712 | fieldSeq = op2->gtIntCon.gtFieldSeq; |
| 13713 | } |
| 13714 | i1 = itemp; |
| 13715 | break; |
| 13716 | |
| 13717 | case GT_OR: |
| 13718 | i1 |= i2; |
| 13719 | break; |
| 13720 | case GT_XOR: |
| 13721 | i1 ^= i2; |
| 13722 | break; |
| 13723 | case GT_AND: |
| 13724 | i1 &= i2; |
| 13725 | break; |
| 13726 | |
| 13727 | case GT_LSH: |
| 13728 | i1 <<= (i2 & 0x1f); |
| 13729 | break; |
| 13730 | case GT_RSH: |
| 13731 | i1 >>= (i2 & 0x1f); |
| 13732 | break; |
| 13733 | case GT_RSZ: |
| 13734 | /* logical shift -> make it unsigned to not propagate the sign bit */ |
| 13735 | i1 = UINT32(i1) >> (i2 & 0x1f); |
| 13736 | break; |
| 13737 | case GT_ROL: |
| 13738 | i1 = (i1 << (i2 & 0x1f)) | (UINT32(i1) >> ((32 - i2) & 0x1f)); |
| 13739 | break; |
| 13740 | case GT_ROR: |
| 13741 | i1 = (i1 << ((32 - i2) & 0x1f)) | (UINT32(i1) >> (i2 & 0x1f)); |
| 13742 | break; |
| 13743 | |
| 13744 | /* DIV and MOD can generate an INT 0 - if division by 0 |
| 13745 | * or overflow - when dividing MIN by -1 */ |
| 13746 | |
| 13747 | case GT_DIV: |
| 13748 | case GT_MOD: |
| 13749 | case GT_UDIV: |
| 13750 | case GT_UMOD: |
| 13751 | if (INT32(i2) == 0) |
| 13752 | { |
| 13753 | // Division by zero: |
| 13754 | // We have to evaluate this expression and throw an exception |
| 13755 | return tree; |
| 13756 | } |
| 13757 | else if ((INT32(i2) == -1) && (UINT32(i1) == 0x80000000)) |
| 13758 | { |
| 13759 | // Overflow Division: |
| 13760 | // We have to evaluate this expression and throw an exception |
| 13761 | return tree; |
| 13762 | } |
| 13763 | |
| 13764 | if (tree->gtOper == GT_DIV) |
| 13765 | { |
| 13766 | i1 = INT32(i1) / INT32(i2); |
| 13767 | } |
| 13768 | else if (tree->gtOper == GT_MOD) |
| 13769 | { |
| 13770 | i1 = INT32(i1) % INT32(i2); |
| 13771 | } |
| 13772 | else if (tree->gtOper == GT_UDIV) |
| 13773 | { |
| 13774 | i1 = UINT32(i1) / UINT32(i2); |
| 13775 | } |
| 13776 | else |
| 13777 | { |
| 13778 | assert(tree->gtOper == GT_UMOD); |
| 13779 | i1 = UINT32(i1) % UINT32(i2); |
| 13780 | } |
| 13781 | break; |
| 13782 | |
| 13783 | default: |
| 13784 | return tree; |
| 13785 | } |
| 13786 | |
| 13787 | /* We get here after folding to a GT_CNS_INT type |
| 13788 | * change the node to the new type / value and make sure the node sizes are OK */ |
| 13789 | CNS_INT: |
| 13790 | FOLD_COND: |
| 13791 | |
| 13792 | #ifdef DEBUG |
| 13793 | if (verbose) |
| 13794 | { |
| 13795 | printf("\nFolding operator with constant nodes into a constant:\n" ); |
| 13796 | gtDispTree(tree); |
| 13797 | } |
| 13798 | #endif |
| 13799 | |
| 13800 | #ifdef _TARGET_64BIT_ |
| 13801 | // Some operations are performed as 64 bit instead of 32 bit so the upper 32 bits |
| 13802 | // need to be discarded. Since constant values are stored as ssize_t and the node |
| 13803 | // has TYP_INT the result needs to be sign extended rather than zero extended. |
| 13804 | i1 = INT32(i1); |
| 13805 | #endif // _TARGET_64BIT_ |
| 13806 | |
| 13807 | /* Also all conditional folding jumps here since the node hanging from |
| 13808 | * GT_JTRUE has to be a GT_CNS_INT - value 0 or 1 */ |
| 13809 | |
| 13810 | tree->ChangeOperConst(GT_CNS_INT); |
| 13811 | tree->gtType = TYP_INT; |
| 13812 | tree->gtIntCon.gtIconVal = i1; |
| 13813 | tree->gtIntCon.gtFieldSeq = fieldSeq; |
| 13814 | if (vnStore != nullptr) |
| 13815 | { |
| 13816 | fgValueNumberTreeConst(tree); |
| 13817 | } |
| 13818 | #ifdef DEBUG |
| 13819 | if (verbose) |
| 13820 | { |
| 13821 | printf("Bashed to int constant:\n" ); |
| 13822 | gtDispTree(tree); |
| 13823 | } |
| 13824 | #endif |
| 13825 | goto DONE; |
| 13826 | |
| 13827 | /* This operation is going to cause an overflow exception. Morph into |
| 13828 | an overflow helper. Put a dummy constant value for code generation. |
| 13829 | |
| 13830 | We could remove all subsequent trees in the current basic block, |
| 13831 | unless this node is a child of GT_COLON |
| 13832 | |
| 13833 | NOTE: Since the folded value is not constant we should not change the |
| 13834 | "tree" node - otherwise we confuse the logic that checks if the folding |
| 13835 | was successful - instead use one of the operands, e.g. op1 |
| 13836 | */ |
| 13837 | |
| 13838 | LNG_OVF: |
| 13839 | // Don't fold overflow operations if not global morph phase. |
| 13840 | // The reason for this is that this optimization is replacing a gentree node |
| 13841 | // with another new gentree node. Say a GT_CALL(arglist) has one 'arg' |
| 13842 | // involving overflow arithmetic. During assertion prop, it is possible |
| 13843 | // that the 'arg' could be constant folded and the result could lead to an |
| 13844 | // overflow. In such a case 'arg' will get replaced with GT_COMMA node |
| 13845 | // but fgMorphArgs() - see the logic around "if(lateArgsComputed)" - doesn't |
| 13846 | // update args table. For this reason this optimization is enabled only |
| 13847 | // for global morphing phase. |
| 13848 | // |
| 13849 | // TODO-CQ: Once fgMorphArgs() is fixed this restriction could be removed. |
| 13850 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 13851 | |
| 13852 | if (!fgGlobalMorph) |
| 13853 | { |
| 13854 | assert(tree->gtOverflow()); |
| 13855 | return tree; |
| 13856 | } |
| 13857 | |
| 13858 | op1 = gtNewLconNode(0); |
| 13859 | if (vnStore != nullptr) |
| 13860 | { |
| 13861 | op1->gtVNPair.SetBoth(vnStore->VNZeroForType(TYP_LONG)); |
| 13862 | } |
| 13863 | goto OVF; |
| 13864 | |
| 13865 | INT_OVF: |
| 13866 | // Don't fold overflow operations if not global morph phase. |
| 13867 | // The reason for this is that this optimization is replacing a gentree node |
| 13868 | // with another new gentree node. Say a GT_CALL(arglist) has one 'arg' |
| 13869 | // involving overflow arithmetic. During assertion prop, it is possible |
| 13870 | // that the 'arg' could be constant folded and the result could lead to an |
| 13871 | // overflow. In such a case 'arg' will get replaced with GT_COMMA node |
| 13872 | // but fgMorphArgs() - see the logic around "if(lateArgsComputed)" - doesn't |
| 13873 | // update args table. For this reason this optimization is enabled only |
| 13874 | // for global morphing phase. |
| 13875 | // |
| 13876 | // TODO-CQ: Once fgMorphArgs() is fixed this restriction could be removed. |
| 13877 | |
| 13878 | if (!fgGlobalMorph) |
| 13879 | { |
| 13880 | assert(tree->gtOverflow()); |
| 13881 | return tree; |
| 13882 | } |
| 13883 | |
| 13884 | op1 = gtNewIconNode(0); |
| 13885 | if (vnStore != nullptr) |
| 13886 | { |
| 13887 | op1->gtVNPair.SetBoth(vnStore->VNZeroForType(TYP_INT)); |
| 13888 | } |
| 13889 | goto OVF; |
| 13890 | |
| 13891 | OVF: |
| 13892 | #ifdef DEBUG |
| 13893 | if (verbose) |
| 13894 | { |
| 13895 | printf("\nFolding binary operator with constant nodes into a comma throw:\n" ); |
| 13896 | gtDispTree(tree); |
| 13897 | } |
| 13898 | #endif |
| 13899 | /* We will change the cast to a GT_COMMA and attach the exception helper as gtOp.gtOp1. |
| 13900 | * The constant expression zero becomes op2. */ |
| 13901 | |
| 13902 | assert(tree->gtOverflow()); |
| 13903 | assert(tree->gtOper == GT_ADD || tree->gtOper == GT_SUB || tree->gtOper == GT_CAST || |
| 13904 | tree->gtOper == GT_MUL); |
| 13905 | assert(op1); |
| 13906 | |
| 13907 | op2 = op1; |
| 13908 | op1 = gtNewHelperCallNode(CORINFO_HELP_OVERFLOW, TYP_VOID, |
| 13909 | gtNewArgList(gtNewIconNode(compCurBB->bbTryIndex))); |
| 13910 | |
| 13911 | // op1 is a call to the JIT helper that throws an Overflow exception |
| 13912 | // attach the ExcSet for VNF_OverflowExc(Void) to this call |
| 13913 | |
| 13914 | if (vnStore != nullptr) |
| 13915 | { |
| 13916 | op1->gtVNPair = |
| 13917 | vnStore->VNPWithExc(ValueNumPair(ValueNumStore::VNForVoid(), ValueNumStore::VNForVoid()), |
| 13918 | vnStore->VNPExcSetSingleton( |
| 13919 | vnStore->VNPairForFunc(TYP_REF, VNF_OverflowExc, vnStore->VNPForVoid()))); |
| 13920 | } |
| 13921 | |
| 13922 | tree = gtNewOperNode(GT_COMMA, tree->gtType, op1, op2); |
| 13923 | |
| 13924 | return tree; |
| 13925 | |
| 13926 | /*------------------------------------------------------------------------- |
| 13927 | * Fold constant LONG binary operator |
| 13928 | */ |
| 13929 | |
| 13930 | case TYP_LONG: |
| 13931 | |
| 13932 | // No GC pointer types should be folded here... |
| 13933 | // |
| 13934 | assert(!varTypeIsGC(op1->gtType) && !varTypeIsGC(op2->gtType)); |
| 13935 | |
| 13936 | // op1 is known to be a TYP_LONG, op2 is normally a TYP_LONG, unless we have a shift operator in which case |
| 13937 | // it is a TYP_INT |
| 13938 | // |
| 13939 | assert((op2->gtType == TYP_LONG) || (op2->gtType == TYP_INT)); |
| 13940 | |
| 13941 | if (!op1->gtIntConCommon.ImmedValCanBeFolded(this, tree->OperGet())) |
| 13942 | { |
| 13943 | return tree; |
| 13944 | } |
| 13945 | |
| 13946 | if (!op2->gtIntConCommon.ImmedValCanBeFolded(this, tree->OperGet())) |
| 13947 | { |
| 13948 | return tree; |
| 13949 | } |
| 13950 | |
| 13951 | lval1 = op1->gtIntConCommon.LngValue(); |
| 13952 | |
| 13953 | // For the shift operators we can have a op2 that is a TYP_INT and thus will be GT_CNS_INT |
| 13954 | if (op2->OperGet() == GT_CNS_INT) |
| 13955 | { |
| 13956 | lval2 = op2->gtIntConCommon.IconValue(); |
| 13957 | } |
| 13958 | else |
| 13959 | { |
| 13960 | lval2 = op2->gtIntConCommon.LngValue(); |
| 13961 | } |
| 13962 | |
| 13963 | switch (tree->gtOper) |
| 13964 | { |
| 13965 | case GT_EQ: |
| 13966 | i1 = (lval1 == lval2); |
| 13967 | goto FOLD_COND; |
| 13968 | case GT_NE: |
| 13969 | i1 = (lval1 != lval2); |
| 13970 | goto FOLD_COND; |
| 13971 | |
| 13972 | case GT_LT: |
| 13973 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13974 | { |
| 13975 | i1 = (UINT64(lval1) < UINT64(lval2)); |
| 13976 | } |
| 13977 | else |
| 13978 | { |
| 13979 | i1 = (lval1 < lval2); |
| 13980 | } |
| 13981 | goto FOLD_COND; |
| 13982 | |
| 13983 | case GT_LE: |
| 13984 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13985 | { |
| 13986 | i1 = (UINT64(lval1) <= UINT64(lval2)); |
| 13987 | } |
| 13988 | else |
| 13989 | { |
| 13990 | i1 = (lval1 <= lval2); |
| 13991 | } |
| 13992 | goto FOLD_COND; |
| 13993 | |
| 13994 | case GT_GE: |
| 13995 | if (tree->gtFlags & GTF_UNSIGNED) |
| 13996 | { |
| 13997 | i1 = (UINT64(lval1) >= UINT64(lval2)); |
| 13998 | } |
| 13999 | else |
| 14000 | { |
| 14001 | i1 = (lval1 >= lval2); |
| 14002 | } |
| 14003 | goto FOLD_COND; |
| 14004 | |
| 14005 | case GT_GT: |
| 14006 | if (tree->gtFlags & GTF_UNSIGNED) |
| 14007 | { |
| 14008 | i1 = (UINT64(lval1) > UINT64(lval2)); |
| 14009 | } |
| 14010 | else |
| 14011 | { |
| 14012 | i1 = (lval1 > lval2); |
| 14013 | } |
| 14014 | goto FOLD_COND; |
| 14015 | |
| 14016 | case GT_ADD: |
| 14017 | ltemp = lval1 + lval2; |
| 14018 | |
| 14019 | LNG_ADD_CHKOVF: |
| 14020 | /* For the SIGNED case - If there is one positive and one negative operand, there can be no overflow |
| 14021 | * If both are positive, the result has to be positive, and similary for negatives. |
| 14022 | * |
| 14023 | * For the UNSIGNED case - If a UINT32 operand is bigger than the result then OVF */ |
| 14024 | |
| 14025 | if (tree->gtOverflow()) |
| 14026 | { |
| 14027 | if (tree->gtFlags & GTF_UNSIGNED) |
| 14028 | { |
| 14029 | if ((UINT64(lval1) > UINT64(ltemp)) || (UINT64(lval2) > UINT64(ltemp))) |
| 14030 | { |
| 14031 | goto LNG_OVF; |
| 14032 | } |
| 14033 | } |
| 14034 | else if (((lval1 < 0) == (lval2 < 0)) && ((lval1 < 0) != (ltemp < 0))) |
| 14035 | { |
| 14036 | goto LNG_OVF; |
| 14037 | } |
| 14038 | } |
| 14039 | lval1 = ltemp; |
| 14040 | break; |
| 14041 | |
| 14042 | case GT_SUB: |
| 14043 | ltemp = lval1 - lval2; |
| 14044 | if (tree->gtOverflow()) |
| 14045 | { |
| 14046 | if (tree->gtFlags & GTF_UNSIGNED) |
| 14047 | { |
| 14048 | if (UINT64(lval2) > UINT64(lval1)) |
| 14049 | { |
| 14050 | goto LNG_OVF; |
| 14051 | } |
| 14052 | } |
| 14053 | else |
| 14054 | { |
| 14055 | /* If both operands are +ve or both are -ve, there can be no |
| 14056 | overflow. Else use the logic for : lval1 + (-lval2) */ |
| 14057 | |
| 14058 | if ((lval1 < 0) != (lval2 < 0)) |
| 14059 | { |
| 14060 | if (lval2 == INT64_MIN) |
| 14061 | { |
| 14062 | goto LNG_OVF; |
| 14063 | } |
| 14064 | lval2 = -lval2; |
| 14065 | goto LNG_ADD_CHKOVF; |
| 14066 | } |
| 14067 | } |
| 14068 | } |
| 14069 | lval1 = ltemp; |
| 14070 | break; |
| 14071 | |
| 14072 | case GT_MUL: |
| 14073 | ltemp = lval1 * lval2; |
| 14074 | |
| 14075 | if (tree->gtOverflow() && lval2 != 0) |
| 14076 | { |
| 14077 | |
| 14078 | if (tree->gtFlags & GTF_UNSIGNED) |
| 14079 | { |
| 14080 | UINT64 ultemp = ltemp; |
| 14081 | UINT64 ulval1 = lval1; |
| 14082 | UINT64 ulval2 = lval2; |
| 14083 | if ((ultemp / ulval2) != ulval1) |
| 14084 | { |
| 14085 | goto LNG_OVF; |
| 14086 | } |
| 14087 | } |
| 14088 | else |
| 14089 | { |
| 14090 | // This does a multiply and then reverses it. This test works great except for MIN_INT * |
| 14091 | //-1. In that case we mess up the sign on ltmp. Make sure to double check the sign. |
| 14092 | // if either is 0, then no overflow |
| 14093 | if (lval1 != 0) // lval2 checked above. |
| 14094 | { |
| 14095 | if (((lval1 < 0) == (lval2 < 0)) && (ltemp < 0)) |
| 14096 | { |
| 14097 | goto LNG_OVF; |
| 14098 | } |
| 14099 | if (((lval1 < 0) != (lval2 < 0)) && (ltemp > 0)) |
| 14100 | { |
| 14101 | goto LNG_OVF; |
| 14102 | } |
| 14103 | |
| 14104 | // TODO-Amd64-Unix: Remove the code that disables optimizations for this method when the |
| 14105 | // clang |
| 14106 | // optimizer is fixed and/or the method implementation is refactored in a simpler code. |
| 14107 | // There is a bug in the clang-3.5 optimizer. The issue is that in release build the |
| 14108 | // optimizer is mistyping (or just wrongly decides to use 32 bit operation for a corner |
| 14109 | // case of MIN_LONG) the args of the (ltemp / lval2) to int (it does a 32 bit div |
| 14110 | // operation instead of 64 bit.). For the case of lval1 and lval2 equal to MIN_LONG |
| 14111 | // (0x8000000000000000) this results in raising a SIGFPE. |
| 14112 | // Optimizations disabled for now. See compiler.h. |
| 14113 | if ((ltemp / lval2) != lval1) |
| 14114 | { |
| 14115 | goto LNG_OVF; |
| 14116 | } |
| 14117 | } |
| 14118 | } |
| 14119 | } |
| 14120 | |
| 14121 | lval1 = ltemp; |
| 14122 | break; |
| 14123 | |
| 14124 | case GT_OR: |
| 14125 | lval1 |= lval2; |
| 14126 | break; |
| 14127 | case GT_XOR: |
| 14128 | lval1 ^= lval2; |
| 14129 | break; |
| 14130 | case GT_AND: |
| 14131 | lval1 &= lval2; |
| 14132 | break; |
| 14133 | |
| 14134 | case GT_LSH: |
| 14135 | lval1 <<= (lval2 & 0x3f); |
| 14136 | break; |
| 14137 | case GT_RSH: |
| 14138 | lval1 >>= (lval2 & 0x3f); |
| 14139 | break; |
| 14140 | case GT_RSZ: |
| 14141 | /* logical shift -> make it unsigned to not propagate the sign bit */ |
| 14142 | lval1 = UINT64(lval1) >> (lval2 & 0x3f); |
| 14143 | break; |
| 14144 | case GT_ROL: |
| 14145 | lval1 = (lval1 << (lval2 & 0x3f)) | (UINT64(lval1) >> ((64 - lval2) & 0x3f)); |
| 14146 | break; |
| 14147 | case GT_ROR: |
| 14148 | lval1 = (lval1 << ((64 - lval2) & 0x3f)) | (UINT64(lval1) >> (lval2 & 0x3f)); |
| 14149 | break; |
| 14150 | |
| 14151 | // Both DIV and IDIV on x86 raise an exception for min_int (and min_long) / -1. So we preserve |
| 14152 | // that behavior here. |
| 14153 | case GT_DIV: |
| 14154 | if (!lval2) |
| 14155 | { |
| 14156 | return tree; |
| 14157 | } |
| 14158 | |
| 14159 | if (UINT64(lval1) == UI64(0x8000000000000000) && lval2 == INT64(-1)) |
| 14160 | { |
| 14161 | return tree; |
| 14162 | } |
| 14163 | lval1 /= lval2; |
| 14164 | break; |
| 14165 | |
| 14166 | case GT_MOD: |
| 14167 | if (!lval2) |
| 14168 | { |
| 14169 | return tree; |
| 14170 | } |
| 14171 | if (UINT64(lval1) == UI64(0x8000000000000000) && lval2 == INT64(-1)) |
| 14172 | { |
| 14173 | return tree; |
| 14174 | } |
| 14175 | lval1 %= lval2; |
| 14176 | break; |
| 14177 | |
| 14178 | case GT_UDIV: |
| 14179 | if (!lval2) |
| 14180 | { |
| 14181 | return tree; |
| 14182 | } |
| 14183 | if (UINT64(lval1) == UI64(0x8000000000000000) && lval2 == INT64(-1)) |
| 14184 | { |
| 14185 | return tree; |
| 14186 | } |
| 14187 | lval1 = UINT64(lval1) / UINT64(lval2); |
| 14188 | break; |
| 14189 | |
| 14190 | case GT_UMOD: |
| 14191 | if (!lval2) |
| 14192 | { |
| 14193 | return tree; |
| 14194 | } |
| 14195 | if (UINT64(lval1) == UI64(0x8000000000000000) && lval2 == INT64(-1)) |
| 14196 | { |
| 14197 | return tree; |
| 14198 | } |
| 14199 | lval1 = UINT64(lval1) % UINT64(lval2); |
| 14200 | break; |
| 14201 | default: |
| 14202 | return tree; |
| 14203 | } |
| 14204 | |
| 14205 | CNS_LONG: |
| 14206 | |
| 14207 | if (fieldSeq != FieldSeqStore::NotAField()) |
| 14208 | { |
| 14209 | return tree; |
| 14210 | } |
| 14211 | |
| 14212 | #ifdef DEBUG |
| 14213 | if (verbose) |
| 14214 | { |
| 14215 | printf("\nFolding long operator with constant nodes into a constant:\n" ); |
| 14216 | gtDispTree(tree); |
| 14217 | } |
| 14218 | #endif |
| 14219 | assert((GenTree::s_gtNodeSizes[GT_CNS_NATIVELONG] == TREE_NODE_SZ_SMALL) || |
| 14220 | (tree->gtDebugFlags & GTF_DEBUG_NODE_LARGE)); |
| 14221 | |
| 14222 | tree->ChangeOperConst(GT_CNS_NATIVELONG); |
| 14223 | tree->gtIntConCommon.SetLngValue(lval1); |
| 14224 | if (vnStore != nullptr) |
| 14225 | { |
| 14226 | fgValueNumberTreeConst(tree); |
| 14227 | } |
| 14228 | |
| 14229 | #ifdef DEBUG |
| 14230 | if (verbose) |
| 14231 | { |
| 14232 | printf("Bashed to long constant:\n" ); |
| 14233 | gtDispTree(tree); |
| 14234 | } |
| 14235 | #endif |
| 14236 | goto DONE; |
| 14237 | |
| 14238 | /*------------------------------------------------------------------------- |
| 14239 | * Fold constant FLOAT or DOUBLE binary operator |
| 14240 | */ |
| 14241 | |
| 14242 | case TYP_FLOAT: |
| 14243 | case TYP_DOUBLE: |
| 14244 | |
| 14245 | if (tree->gtOverflowEx()) |
| 14246 | { |
| 14247 | return tree; |
| 14248 | } |
| 14249 | |
| 14250 | assert(op1->gtOper == GT_CNS_DBL); |
| 14251 | d1 = op1->gtDblCon.gtDconVal; |
| 14252 | |
| 14253 | assert(varTypeIsFloating(op2->gtType)); |
| 14254 | assert(op2->gtOper == GT_CNS_DBL); |
| 14255 | d2 = op2->gtDblCon.gtDconVal; |
| 14256 | |
| 14257 | /* Special case - check if we have NaN operands. |
| 14258 | * For comparisons if not an unordered operation always return 0. |
| 14259 | * For unordered operations (i.e. the GTF_RELOP_NAN_UN flag is set) |
| 14260 | * the result is always true - return 1. */ |
| 14261 | |
| 14262 | if (_isnan(d1) || _isnan(d2)) |
| 14263 | { |
| 14264 | #ifdef DEBUG |
| 14265 | if (verbose) |
| 14266 | { |
| 14267 | printf("Double operator(s) is NaN\n" ); |
| 14268 | } |
| 14269 | #endif |
| 14270 | if (tree->OperKind() & GTK_RELOP) |
| 14271 | { |
| 14272 | if (tree->gtFlags & GTF_RELOP_NAN_UN) |
| 14273 | { |
| 14274 | /* Unordered comparison with NaN always succeeds */ |
| 14275 | i1 = 1; |
| 14276 | goto FOLD_COND; |
| 14277 | } |
| 14278 | else |
| 14279 | { |
| 14280 | /* Normal comparison with NaN always fails */ |
| 14281 | i1 = 0; |
| 14282 | goto FOLD_COND; |
| 14283 | } |
| 14284 | } |
| 14285 | } |
| 14286 | |
| 14287 | switch (tree->gtOper) |
| 14288 | { |
| 14289 | case GT_EQ: |
| 14290 | i1 = (d1 == d2); |
| 14291 | goto FOLD_COND; |
| 14292 | case GT_NE: |
| 14293 | i1 = (d1 != d2); |
| 14294 | goto FOLD_COND; |
| 14295 | |
| 14296 | case GT_LT: |
| 14297 | i1 = (d1 < d2); |
| 14298 | goto FOLD_COND; |
| 14299 | case GT_LE: |
| 14300 | i1 = (d1 <= d2); |
| 14301 | goto FOLD_COND; |
| 14302 | case GT_GE: |
| 14303 | i1 = (d1 >= d2); |
| 14304 | goto FOLD_COND; |
| 14305 | case GT_GT: |
| 14306 | i1 = (d1 > d2); |
| 14307 | goto FOLD_COND; |
| 14308 | |
| 14309 | // Floating point arithmetic should be done in declared |
| 14310 | // precision while doing constant folding. For this reason though TYP_FLOAT |
| 14311 | // constants are stored as double constants, while performing float arithmetic, |
| 14312 | // double constants should be converted to float. Here is an example case |
| 14313 | // where performing arithmetic in double precision would lead to incorrect |
| 14314 | // results. |
| 14315 | // |
| 14316 | // Example: |
| 14317 | // float a = float.MaxValue; |
| 14318 | // float b = a*a; This will produce +inf in single precision and 1.1579207543382391e+077 in double |
| 14319 | // precision. |
| 14320 | // flaot c = b/b; This will produce NaN in single precision and 1 in double precision. |
| 14321 | case GT_ADD: |
| 14322 | if (op1->TypeGet() == TYP_FLOAT) |
| 14323 | { |
| 14324 | f1 = forceCastToFloat(d1); |
| 14325 | f2 = forceCastToFloat(d2); |
| 14326 | d1 = forceCastToFloat(f1 + f2); |
| 14327 | } |
| 14328 | else |
| 14329 | { |
| 14330 | d1 += d2; |
| 14331 | } |
| 14332 | break; |
| 14333 | |
| 14334 | case GT_SUB: |
| 14335 | if (op1->TypeGet() == TYP_FLOAT) |
| 14336 | { |
| 14337 | f1 = forceCastToFloat(d1); |
| 14338 | f2 = forceCastToFloat(d2); |
| 14339 | d1 = forceCastToFloat(f1 - f2); |
| 14340 | } |
| 14341 | else |
| 14342 | { |
| 14343 | d1 -= d2; |
| 14344 | } |
| 14345 | break; |
| 14346 | |
| 14347 | case GT_MUL: |
| 14348 | if (op1->TypeGet() == TYP_FLOAT) |
| 14349 | { |
| 14350 | f1 = forceCastToFloat(d1); |
| 14351 | f2 = forceCastToFloat(d2); |
| 14352 | d1 = forceCastToFloat(f1 * f2); |
| 14353 | } |
| 14354 | else |
| 14355 | { |
| 14356 | d1 *= d2; |
| 14357 | } |
| 14358 | break; |
| 14359 | |
| 14360 | case GT_DIV: |
| 14361 | if (!d2) |
| 14362 | { |
| 14363 | return tree; |
| 14364 | } |
| 14365 | if (op1->TypeGet() == TYP_FLOAT) |
| 14366 | { |
| 14367 | f1 = forceCastToFloat(d1); |
| 14368 | f2 = forceCastToFloat(d2); |
| 14369 | d1 = forceCastToFloat(f1 / f2); |
| 14370 | } |
| 14371 | else |
| 14372 | { |
| 14373 | d1 /= d2; |
| 14374 | } |
| 14375 | break; |
| 14376 | |
| 14377 | default: |
| 14378 | return tree; |
| 14379 | } |
| 14380 | |
| 14381 | CNS_DOUBLE: |
| 14382 | |
| 14383 | #ifdef DEBUG |
| 14384 | if (verbose) |
| 14385 | { |
| 14386 | printf("\nFolding fp operator with constant nodes into a fp constant:\n" ); |
| 14387 | gtDispTree(tree); |
| 14388 | } |
| 14389 | #endif |
| 14390 | |
| 14391 | assert((GenTree::s_gtNodeSizes[GT_CNS_DBL] == TREE_NODE_SZ_SMALL) || |
| 14392 | (tree->gtDebugFlags & GTF_DEBUG_NODE_LARGE)); |
| 14393 | |
| 14394 | tree->ChangeOperConst(GT_CNS_DBL); |
| 14395 | tree->gtDblCon.gtDconVal = d1; |
| 14396 | if (vnStore != nullptr) |
| 14397 | { |
| 14398 | fgValueNumberTreeConst(tree); |
| 14399 | } |
| 14400 | #ifdef DEBUG |
| 14401 | if (verbose) |
| 14402 | { |
| 14403 | printf("Bashed to fp constant:\n" ); |
| 14404 | gtDispTree(tree); |
| 14405 | } |
| 14406 | #endif |
| 14407 | goto DONE; |
| 14408 | |
| 14409 | default: |
| 14410 | /* not a foldable typ */ |
| 14411 | return tree; |
| 14412 | } |
| 14413 | |
| 14414 | //------------------------------------------------------------------------- |
| 14415 | |
| 14416 | DONE: |
| 14417 | |
| 14418 | /* Make sure no side effect flags are set on this constant node */ |
| 14419 | |
| 14420 | tree->gtFlags &= ~GTF_ALL_EFFECT; |
| 14421 | |
| 14422 | return tree; |
| 14423 | } |
| 14424 | #ifdef _PREFAST_ |
| 14425 | #pragma warning(pop) |
| 14426 | #endif |
| 14427 | |
| 14428 | //------------------------------------------------------------------------ |
| 14429 | // gtNewTempAssign: Create an assignment of the given value to a temp. |
| 14430 | // |
| 14431 | // Arguments: |
| 14432 | // tmp - local number for a compiler temp |
| 14433 | // val - value to assign to the temp |
| 14434 | // pAfterStmt - statement to insert any additional statements after |
| 14435 | // ilOffset - il offset for new statements |
| 14436 | // block - block to insert any additional statements in |
| 14437 | // |
| 14438 | // Return Value: |
| 14439 | // Normally a new assignment node. |
| 14440 | // However may return a nop node if val is simply a reference to the temp. |
| 14441 | // |
| 14442 | // Notes: |
| 14443 | // Self-assignments may be represented via NOPs. |
| 14444 | // |
| 14445 | // May update the type of the temp, if it was previously unknown. |
| 14446 | // |
| 14447 | // May set compFloatingPointUsed. |
| 14448 | |
| 14449 | GenTree* Compiler::gtNewTempAssign( |
| 14450 | unsigned tmp, GenTree* val, GenTree** pAfterStmt, IL_OFFSETX ilOffset, BasicBlock* block) |
| 14451 | { |
| 14452 | // Self-assignment is a nop. |
| 14453 | if (val->OperGet() == GT_LCL_VAR && val->gtLclVarCommon.gtLclNum == tmp) |
| 14454 | { |
| 14455 | return gtNewNothingNode(); |
| 14456 | } |
| 14457 | |
| 14458 | LclVarDsc* varDsc = lvaTable + tmp; |
| 14459 | |
| 14460 | if (varDsc->TypeGet() == TYP_I_IMPL && val->TypeGet() == TYP_BYREF) |
| 14461 | { |
| 14462 | impBashVarAddrsToI(val); |
| 14463 | } |
| 14464 | |
| 14465 | var_types valTyp = val->TypeGet(); |
| 14466 | if (val->OperGet() == GT_LCL_VAR && lvaTable[val->gtLclVar.gtLclNum].lvNormalizeOnLoad()) |
| 14467 | { |
| 14468 | valTyp = lvaGetRealType(val->gtLclVar.gtLclNum); |
| 14469 | val->gtType = valTyp; |
| 14470 | } |
| 14471 | var_types dstTyp = varDsc->TypeGet(); |
| 14472 | |
| 14473 | /* If the variable's lvType is not yet set then set it here */ |
| 14474 | if (dstTyp == TYP_UNDEF) |
| 14475 | { |
| 14476 | varDsc->lvType = dstTyp = genActualType(valTyp); |
| 14477 | if (varTypeIsGC(dstTyp)) |
| 14478 | { |
| 14479 | varDsc->lvStructGcCount = 1; |
| 14480 | } |
| 14481 | #if FEATURE_SIMD |
| 14482 | else if (varTypeIsSIMD(dstTyp)) |
| 14483 | { |
| 14484 | varDsc->lvSIMDType = 1; |
| 14485 | } |
| 14486 | #endif |
| 14487 | } |
| 14488 | |
| 14489 | #ifdef DEBUG |
| 14490 | /* Make sure the actual types match */ |
| 14491 | if (genActualType(valTyp) != genActualType(dstTyp)) |
| 14492 | { |
| 14493 | // Plus some other exceptions that are apparently legal: |
| 14494 | // 1) TYP_REF or BYREF = TYP_I_IMPL |
| 14495 | bool ok = false; |
| 14496 | if (varTypeIsGC(dstTyp) && (valTyp == TYP_I_IMPL)) |
| 14497 | { |
| 14498 | ok = true; |
| 14499 | } |
| 14500 | // 2) TYP_DOUBLE = TYP_FLOAT or TYP_FLOAT = TYP_DOUBLE |
| 14501 | else if (varTypeIsFloating(dstTyp) && varTypeIsFloating(valTyp)) |
| 14502 | { |
| 14503 | ok = true; |
| 14504 | } |
| 14505 | |
| 14506 | if (!ok) |
| 14507 | { |
| 14508 | gtDispTree(val); |
| 14509 | assert(!"Incompatible types for gtNewTempAssign" ); |
| 14510 | } |
| 14511 | } |
| 14512 | #endif |
| 14513 | |
| 14514 | // Floating Point assignments can be created during inlining |
| 14515 | // see "Zero init inlinee locals:" in fgInlinePrependStatements |
| 14516 | // thus we may need to set compFloatingPointUsed to true here. |
| 14517 | // |
| 14518 | if (varTypeIsFloating(dstTyp) && (compFloatingPointUsed == false)) |
| 14519 | { |
| 14520 | compFloatingPointUsed = true; |
| 14521 | } |
| 14522 | |
| 14523 | /* Create the assignment node */ |
| 14524 | |
| 14525 | GenTree* asg; |
| 14526 | GenTree* dest = gtNewLclvNode(tmp, dstTyp); |
| 14527 | dest->gtFlags |= GTF_VAR_DEF; |
| 14528 | |
| 14529 | // With first-class structs, we should be propagating the class handle on all non-primitive |
| 14530 | // struct types. We don't have a convenient way to do that for all SIMD temps, since some |
| 14531 | // internal trees use SIMD types that are not used by the input IL. In this case, we allow |
| 14532 | // a null type handle and derive the necessary information about the type from its varType. |
| 14533 | CORINFO_CLASS_HANDLE structHnd = gtGetStructHandleIfPresent(val); |
| 14534 | if (varTypeIsStruct(valTyp) && ((structHnd != NO_CLASS_HANDLE) || (varTypeIsSIMD(valTyp)))) |
| 14535 | { |
| 14536 | // The struct value may be be a child of a GT_COMMA. |
| 14537 | GenTree* valx = val->gtEffectiveVal(/*commaOnly*/ true); |
| 14538 | |
| 14539 | if (structHnd != NO_CLASS_HANDLE) |
| 14540 | { |
| 14541 | lvaSetStruct(tmp, structHnd, false); |
| 14542 | } |
| 14543 | else |
| 14544 | { |
| 14545 | assert(valx->gtOper != GT_OBJ); |
| 14546 | } |
| 14547 | dest->gtFlags |= GTF_DONT_CSE; |
| 14548 | valx->gtFlags |= GTF_DONT_CSE; |
| 14549 | asg = impAssignStruct(dest, val, structHnd, (unsigned)CHECK_SPILL_NONE, pAfterStmt, ilOffset, block); |
| 14550 | } |
| 14551 | else |
| 14552 | { |
| 14553 | asg = gtNewAssignNode(dest, val); |
| 14554 | } |
| 14555 | |
| 14556 | if (compRationalIRForm) |
| 14557 | { |
| 14558 | Rationalizer::RewriteAssignmentIntoStoreLcl(asg->AsOp()); |
| 14559 | } |
| 14560 | |
| 14561 | return asg; |
| 14562 | } |
| 14563 | |
| 14564 | /***************************************************************************** |
| 14565 | * |
| 14566 | * Create a helper call to access a COM field (iff 'assg' is non-zero this is |
| 14567 | * an assignment and 'assg' is the new value). |
| 14568 | */ |
| 14569 | |
| 14570 | GenTree* Compiler::gtNewRefCOMfield(GenTree* objPtr, |
| 14571 | CORINFO_RESOLVED_TOKEN* pResolvedToken, |
| 14572 | CORINFO_ACCESS_FLAGS access, |
| 14573 | CORINFO_FIELD_INFO* pFieldInfo, |
| 14574 | var_types lclTyp, |
| 14575 | CORINFO_CLASS_HANDLE structType, |
| 14576 | GenTree* assg) |
| 14577 | { |
| 14578 | assert(pFieldInfo->fieldAccessor == CORINFO_FIELD_INSTANCE_HELPER || |
| 14579 | pFieldInfo->fieldAccessor == CORINFO_FIELD_INSTANCE_ADDR_HELPER || |
| 14580 | pFieldInfo->fieldAccessor == CORINFO_FIELD_STATIC_ADDR_HELPER); |
| 14581 | |
| 14582 | /* If we can't access it directly, we need to call a helper function */ |
| 14583 | GenTreeArgList* args = nullptr; |
| 14584 | var_types helperType = TYP_BYREF; |
| 14585 | |
| 14586 | if (pFieldInfo->fieldAccessor == CORINFO_FIELD_INSTANCE_HELPER) |
| 14587 | { |
| 14588 | if (access & CORINFO_ACCESS_SET) |
| 14589 | { |
| 14590 | assert(assg != nullptr); |
| 14591 | // helper needs pointer to struct, not struct itself |
| 14592 | if (pFieldInfo->helper == CORINFO_HELP_SETFIELDSTRUCT) |
| 14593 | { |
| 14594 | assert(structType != nullptr); |
| 14595 | assg = impGetStructAddr(assg, structType, (unsigned)CHECK_SPILL_ALL, true); |
| 14596 | } |
| 14597 | else if (lclTyp == TYP_DOUBLE && assg->TypeGet() == TYP_FLOAT) |
| 14598 | { |
| 14599 | assg = gtNewCastNode(TYP_DOUBLE, assg, false, TYP_DOUBLE); |
| 14600 | } |
| 14601 | else if (lclTyp == TYP_FLOAT && assg->TypeGet() == TYP_DOUBLE) |
| 14602 | { |
| 14603 | assg = gtNewCastNode(TYP_FLOAT, assg, false, TYP_FLOAT); |
| 14604 | } |
| 14605 | |
| 14606 | args = gtNewArgList(assg); |
| 14607 | helperType = TYP_VOID; |
| 14608 | } |
| 14609 | else if (access & CORINFO_ACCESS_GET) |
| 14610 | { |
| 14611 | helperType = lclTyp; |
| 14612 | |
| 14613 | // The calling convention for the helper does not take into |
| 14614 | // account optimization of primitive structs. |
| 14615 | if ((pFieldInfo->helper == CORINFO_HELP_GETFIELDSTRUCT) && !varTypeIsStruct(lclTyp)) |
| 14616 | { |
| 14617 | helperType = TYP_STRUCT; |
| 14618 | } |
| 14619 | } |
| 14620 | } |
| 14621 | |
| 14622 | if (pFieldInfo->helper == CORINFO_HELP_GETFIELDSTRUCT || pFieldInfo->helper == CORINFO_HELP_SETFIELDSTRUCT) |
| 14623 | { |
| 14624 | assert(pFieldInfo->structType != nullptr); |
| 14625 | args = gtNewListNode(gtNewIconEmbClsHndNode(pFieldInfo->structType), args); |
| 14626 | } |
| 14627 | |
| 14628 | GenTree* fieldHnd = impTokenToHandle(pResolvedToken); |
| 14629 | if (fieldHnd == nullptr) |
| 14630 | { // compDonotInline() |
| 14631 | return nullptr; |
| 14632 | } |
| 14633 | |
| 14634 | args = gtNewListNode(fieldHnd, args); |
| 14635 | |
| 14636 | // If it's a static field, we shouldn't have an object node |
| 14637 | // If it's an instance field, we have an object node |
| 14638 | assert((pFieldInfo->fieldAccessor != CORINFO_FIELD_STATIC_ADDR_HELPER) ^ (objPtr == nullptr)); |
| 14639 | |
| 14640 | if (objPtr != nullptr) |
| 14641 | { |
| 14642 | args = gtNewListNode(objPtr, args); |
| 14643 | } |
| 14644 | |
| 14645 | GenTreeCall* call = gtNewHelperCallNode(pFieldInfo->helper, genActualType(helperType), args); |
| 14646 | |
| 14647 | #if FEATURE_MULTIREG_RET |
| 14648 | if (varTypeIsStruct(call)) |
| 14649 | { |
| 14650 | // Initialize Return type descriptor of call node. |
| 14651 | ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc(); |
| 14652 | retTypeDesc->InitializeStructReturnType(this, structType); |
| 14653 | } |
| 14654 | #endif // FEATURE_MULTIREG_RET |
| 14655 | |
| 14656 | GenTree* result = call; |
| 14657 | |
| 14658 | if (pFieldInfo->fieldAccessor == CORINFO_FIELD_INSTANCE_HELPER) |
| 14659 | { |
| 14660 | if (access & CORINFO_ACCESS_GET) |
| 14661 | { |
| 14662 | if (pFieldInfo->helper == CORINFO_HELP_GETFIELDSTRUCT) |
| 14663 | { |
| 14664 | if (!varTypeIsStruct(lclTyp)) |
| 14665 | { |
| 14666 | // get the result as primitive type |
| 14667 | result = impGetStructAddr(result, structType, (unsigned)CHECK_SPILL_ALL, true); |
| 14668 | result = gtNewOperNode(GT_IND, lclTyp, result); |
| 14669 | } |
| 14670 | } |
| 14671 | else if (varTypeIsIntegral(lclTyp) && genTypeSize(lclTyp) < genTypeSize(TYP_INT)) |
| 14672 | { |
| 14673 | // The helper does not extend the small return types. |
| 14674 | result = gtNewCastNode(genActualType(lclTyp), result, false, lclTyp); |
| 14675 | } |
| 14676 | } |
| 14677 | } |
| 14678 | else |
| 14679 | { |
| 14680 | // OK, now do the indirection |
| 14681 | if (access & CORINFO_ACCESS_GET) |
| 14682 | { |
| 14683 | if (varTypeIsStruct(lclTyp)) |
| 14684 | { |
| 14685 | result = gtNewObjNode(structType, result); |
| 14686 | } |
| 14687 | else |
| 14688 | { |
| 14689 | result = gtNewOperNode(GT_IND, lclTyp, result); |
| 14690 | } |
| 14691 | result->gtFlags |= (GTF_EXCEPT | GTF_GLOB_REF); |
| 14692 | } |
| 14693 | else if (access & CORINFO_ACCESS_SET) |
| 14694 | { |
| 14695 | if (varTypeIsStruct(lclTyp)) |
| 14696 | { |
| 14697 | result = impAssignStructPtr(result, assg, structType, (unsigned)CHECK_SPILL_ALL); |
| 14698 | } |
| 14699 | else |
| 14700 | { |
| 14701 | result = gtNewOperNode(GT_IND, lclTyp, result); |
| 14702 | result->gtFlags |= (GTF_EXCEPT | GTF_GLOB_REF | GTF_IND_TGTANYWHERE); |
| 14703 | result = gtNewAssignNode(result, assg); |
| 14704 | } |
| 14705 | } |
| 14706 | } |
| 14707 | |
| 14708 | return result; |
| 14709 | } |
| 14710 | |
| 14711 | /***************************************************************************** |
| 14712 | * |
| 14713 | * Return true if the given node (excluding children trees) contains side effects. |
| 14714 | * Note that it does not recurse, and children need to be handled separately. |
| 14715 | * It may return false even if the node has GTF_SIDE_EFFECT (because of its children). |
| 14716 | * |
| 14717 | * Similar to OperMayThrow() (but handles GT_CALLs specially), but considers |
| 14718 | * assignments too. |
| 14719 | */ |
| 14720 | |
| 14721 | bool Compiler::gtNodeHasSideEffects(GenTree* tree, unsigned flags) |
| 14722 | { |
| 14723 | if (flags & GTF_ASG) |
| 14724 | { |
| 14725 | // TODO-Cleanup: This only checks for GT_ASG but according to OperRequiresAsgFlag there |
| 14726 | // are many more opers that are considered to have an assignment side effect: atomic ops |
| 14727 | // (GT_CMPXCHG & co.), GT_MEMORYBARRIER (not classified as an atomic op) and HW intrinsic |
| 14728 | // memory stores. Atomic ops have special handling in gtExtractSideEffList but the others |
| 14729 | // will simply be dropped is they are ever subject to an "extract side effects" operation. |
| 14730 | // It is possible that the reason no bugs have yet been observed in this area is that the |
| 14731 | // other nodes are likely to always be tree roots. |
| 14732 | if (tree->OperIs(GT_ASG)) |
| 14733 | { |
| 14734 | return true; |
| 14735 | } |
| 14736 | } |
| 14737 | |
| 14738 | // Are there only GTF_CALL side effects remaining? (and no other side effect kinds) |
| 14739 | if (flags & GTF_CALL) |
| 14740 | { |
| 14741 | if (tree->OperGet() == GT_CALL) |
| 14742 | { |
| 14743 | GenTreeCall* const call = tree->AsCall(); |
| 14744 | const bool ignoreExceptions = (flags & GTF_EXCEPT) == 0; |
| 14745 | const bool ignoreCctors = (flags & GTF_IS_IN_CSE) != 0; // We can CSE helpers that run cctors. |
| 14746 | if (!call->HasSideEffects(this, ignoreExceptions, ignoreCctors)) |
| 14747 | { |
| 14748 | // If this call is otherwise side effect free, check its arguments. |
| 14749 | for (GenTreeArgList* args = call->gtCallArgs; args != nullptr; args = args->Rest()) |
| 14750 | { |
| 14751 | if (gtTreeHasSideEffects(args->Current(), flags)) |
| 14752 | { |
| 14753 | return true; |
| 14754 | } |
| 14755 | } |
| 14756 | // I'm a little worried that args that assign to temps that are late args will look like |
| 14757 | // side effects...but better to be conservative for now. |
| 14758 | for (GenTreeArgList* args = call->gtCallLateArgs; args != nullptr; args = args->Rest()) |
| 14759 | { |
| 14760 | if (gtTreeHasSideEffects(args->Current(), flags)) |
| 14761 | { |
| 14762 | return true; |
| 14763 | } |
| 14764 | } |
| 14765 | |
| 14766 | // Otherwise: |
| 14767 | return false; |
| 14768 | } |
| 14769 | |
| 14770 | // Otherwise the GT_CALL is considered to have side-effects. |
| 14771 | return true; |
| 14772 | } |
| 14773 | } |
| 14774 | |
| 14775 | if (flags & GTF_EXCEPT) |
| 14776 | { |
| 14777 | if (tree->OperMayThrow(this)) |
| 14778 | { |
| 14779 | return true; |
| 14780 | } |
| 14781 | } |
| 14782 | |
| 14783 | // Expressions declared as CSE by (e.g.) hoisting code are considered to have relevant side |
| 14784 | // effects (if we care about GTF_MAKE_CSE). |
| 14785 | if ((flags & GTF_MAKE_CSE) && (tree->gtFlags & GTF_MAKE_CSE)) |
| 14786 | { |
| 14787 | return true; |
| 14788 | } |
| 14789 | |
| 14790 | return false; |
| 14791 | } |
| 14792 | |
| 14793 | /***************************************************************************** |
| 14794 | * Returns true if the expr tree has any side effects. |
| 14795 | */ |
| 14796 | |
| 14797 | bool Compiler::gtTreeHasSideEffects(GenTree* tree, unsigned flags /* = GTF_SIDE_EFFECT*/) |
| 14798 | { |
| 14799 | // These are the side effect flags that we care about for this tree |
| 14800 | unsigned sideEffectFlags = tree->gtFlags & flags; |
| 14801 | |
| 14802 | // Does this tree have any Side-effect flags set that we care about? |
| 14803 | if (sideEffectFlags == 0) |
| 14804 | { |
| 14805 | // no it doesn't.. |
| 14806 | return false; |
| 14807 | } |
| 14808 | |
| 14809 | if (sideEffectFlags == GTF_CALL) |
| 14810 | { |
| 14811 | if (tree->OperGet() == GT_CALL) |
| 14812 | { |
| 14813 | // Generally all trees that contain GT_CALL nodes are considered to have side-effects. |
| 14814 | // |
| 14815 | if (tree->gtCall.gtCallType == CT_HELPER) |
| 14816 | { |
| 14817 | // If this node is a helper call we may not care about the side-effects. |
| 14818 | // Note that gtNodeHasSideEffects checks the side effects of the helper itself |
| 14819 | // as well as the side effects of its arguments. |
| 14820 | return gtNodeHasSideEffects(tree, flags); |
| 14821 | } |
| 14822 | } |
| 14823 | else if (tree->OperGet() == GT_INTRINSIC) |
| 14824 | { |
| 14825 | if (gtNodeHasSideEffects(tree, flags)) |
| 14826 | { |
| 14827 | return true; |
| 14828 | } |
| 14829 | |
| 14830 | if (gtNodeHasSideEffects(tree->gtOp.gtOp1, flags)) |
| 14831 | { |
| 14832 | return true; |
| 14833 | } |
| 14834 | |
| 14835 | if ((tree->gtOp.gtOp2 != nullptr) && gtNodeHasSideEffects(tree->gtOp.gtOp2, flags)) |
| 14836 | { |
| 14837 | return true; |
| 14838 | } |
| 14839 | |
| 14840 | return false; |
| 14841 | } |
| 14842 | } |
| 14843 | |
| 14844 | return true; |
| 14845 | } |
| 14846 | |
| 14847 | GenTree* Compiler::gtBuildCommaList(GenTree* list, GenTree* expr) |
| 14848 | { |
| 14849 | // 'list' starts off as null, |
| 14850 | // and when it is null we haven't started the list yet. |
| 14851 | // |
| 14852 | if (list != nullptr) |
| 14853 | { |
| 14854 | // Create a GT_COMMA that appends 'expr' in front of the remaining set of expressions in (*list) |
| 14855 | GenTree* result = gtNewOperNode(GT_COMMA, TYP_VOID, expr, list); |
| 14856 | |
| 14857 | // Set the flags in the comma node |
| 14858 | result->gtFlags |= (list->gtFlags & GTF_ALL_EFFECT); |
| 14859 | result->gtFlags |= (expr->gtFlags & GTF_ALL_EFFECT); |
| 14860 | |
| 14861 | // 'list' and 'expr' should have valuenumbers defined for both or for neither one (unless we are remorphing, |
| 14862 | // in which case a prior transform involving either node may have discarded or otherwise invalidated the value |
| 14863 | // numbers). |
| 14864 | assert((list->gtVNPair.BothDefined() == expr->gtVNPair.BothDefined()) || !fgGlobalMorph); |
| 14865 | |
| 14866 | // Set the ValueNumber 'gtVNPair' for the new GT_COMMA node |
| 14867 | // |
| 14868 | if (list->gtVNPair.BothDefined() && expr->gtVNPair.BothDefined()) |
| 14869 | { |
| 14870 | // The result of a GT_COMMA node is op2, the normal value number is op2vnp |
| 14871 | // But we also need to include the union of side effects from op1 and op2. |
| 14872 | // we compute this value into exceptions_vnp. |
| 14873 | ValueNumPair op1vnp; |
| 14874 | ValueNumPair op1Xvnp = ValueNumStore::VNPForEmptyExcSet(); |
| 14875 | ValueNumPair op2vnp; |
| 14876 | ValueNumPair op2Xvnp = ValueNumStore::VNPForEmptyExcSet(); |
| 14877 | |
| 14878 | vnStore->VNPUnpackExc(expr->gtVNPair, &op1vnp, &op1Xvnp); |
| 14879 | vnStore->VNPUnpackExc(list->gtVNPair, &op2vnp, &op2Xvnp); |
| 14880 | |
| 14881 | ValueNumPair exceptions_vnp = ValueNumStore::VNPForEmptyExcSet(); |
| 14882 | |
| 14883 | exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op1Xvnp); |
| 14884 | exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op2Xvnp); |
| 14885 | |
| 14886 | result->gtVNPair = vnStore->VNPWithExc(op2vnp, exceptions_vnp); |
| 14887 | } |
| 14888 | |
| 14889 | return result; |
| 14890 | } |
| 14891 | else |
| 14892 | { |
| 14893 | // The 'expr' will start the list of expressions |
| 14894 | return expr; |
| 14895 | } |
| 14896 | } |
| 14897 | |
| 14898 | //------------------------------------------------------------------------ |
| 14899 | // gtExtractSideEffList: Extracts side effects from the given expression. |
| 14900 | // |
| 14901 | // Arguments: |
| 14902 | // expr - the expression tree to extract side effects from |
| 14903 | // pList - pointer to a (possibly null) GT_COMMA list that |
| 14904 | // will contain the extracted side effects |
| 14905 | // flags - side effect flags to be considered |
| 14906 | // ignoreRoot - ignore side effects on the expression root node |
| 14907 | // |
| 14908 | // Notes: |
| 14909 | // Side effects are prepended to the GT_COMMA list such that op1 of |
| 14910 | // each comma node holds the side effect tree and op2 points to the |
| 14911 | // next comma node. The original side effect execution order is preserved. |
| 14912 | // |
| 14913 | void Compiler::(GenTree* expr, |
| 14914 | GenTree** pList, |
| 14915 | unsigned flags /* = GTF_SIDE_EFFECT*/, |
| 14916 | bool ignoreRoot /* = false */) |
| 14917 | { |
| 14918 | class final : public GenTreeVisitor<SideEffectExtractor> |
| 14919 | { |
| 14920 | public: |
| 14921 | const unsigned m_flags; |
| 14922 | ArrayStack<GenTree*> m_sideEffects; |
| 14923 | |
| 14924 | enum |
| 14925 | { |
| 14926 | DoPreOrder = true, |
| 14927 | UseExecutionOrder = true |
| 14928 | }; |
| 14929 | |
| 14930 | SideEffectExtractor(Compiler* compiler, unsigned flags) |
| 14931 | : GenTreeVisitor(compiler), m_flags(flags), m_sideEffects(compiler->getAllocator(CMK_SideEffects)) |
| 14932 | { |
| 14933 | } |
| 14934 | |
| 14935 | fgWalkResult PreOrderVisit(GenTree** use, GenTree* user) |
| 14936 | { |
| 14937 | GenTree* node = *use; |
| 14938 | |
| 14939 | bool treeHasSideEffects = m_compiler->gtTreeHasSideEffects(node, m_flags); |
| 14940 | |
| 14941 | if (treeHasSideEffects) |
| 14942 | { |
| 14943 | if (m_compiler->gtNodeHasSideEffects(node, m_flags)) |
| 14944 | { |
| 14945 | m_sideEffects.Push(node); |
| 14946 | return Compiler::WALK_SKIP_SUBTREES; |
| 14947 | } |
| 14948 | |
| 14949 | // TODO-Cleanup: These have GTF_ASG set but for some reason gtNodeHasSideEffects ignores |
| 14950 | // them. See the related gtNodeHasSideEffects comment as well. |
| 14951 | // Also, these nodes must always be preserved, no matter what side effect flags are passed |
| 14952 | // in. But then it should never be the case that gtExtractSideEffList gets called without |
| 14953 | // specifying GTF_ASG so there doesn't seem to be any reason to be inconsistent with |
| 14954 | // gtNodeHasSideEffects and make this check unconditionally. |
| 14955 | if (node->OperIsAtomicOp()) |
| 14956 | { |
| 14957 | m_sideEffects.Push(node); |
| 14958 | return Compiler::WALK_SKIP_SUBTREES; |
| 14959 | } |
| 14960 | |
| 14961 | if ((m_flags & GTF_EXCEPT) != 0) |
| 14962 | { |
| 14963 | // Special case - GT_ADDR of GT_IND nodes of TYP_STRUCT have to be kept together. |
| 14964 | if (node->OperIs(GT_ADDR) && node->gtGetOp1()->OperIsIndir() && |
| 14965 | (node->gtGetOp1()->TypeGet() == TYP_STRUCT)) |
| 14966 | { |
| 14967 | #ifdef DEBUG |
| 14968 | if (m_compiler->verbose) |
| 14969 | { |
| 14970 | printf("Keep the GT_ADDR and GT_IND together:\n" ); |
| 14971 | } |
| 14972 | #endif |
| 14973 | m_sideEffects.Push(node); |
| 14974 | return Compiler::WALK_SKIP_SUBTREES; |
| 14975 | } |
| 14976 | } |
| 14977 | |
| 14978 | // Generally all GT_CALL nodes are considered to have side-effects. |
| 14979 | // So if we get here it must be a helper call that we decided it does |
| 14980 | // not have side effects that we needed to keep. |
| 14981 | assert(!node->OperIs(GT_CALL) || (node->AsCall()->gtCallType == CT_HELPER)); |
| 14982 | } |
| 14983 | |
| 14984 | if ((m_flags & GTF_IS_IN_CSE) != 0) |
| 14985 | { |
| 14986 | // If we're doing CSE then we also need to unmark CSE nodes. This will fail for CSE defs, |
| 14987 | // those need to be extracted as if they're side effects. |
| 14988 | if (!UnmarkCSE(node)) |
| 14989 | { |
| 14990 | m_sideEffects.Push(node); |
| 14991 | return Compiler::WALK_SKIP_SUBTREES; |
| 14992 | } |
| 14993 | |
| 14994 | // The existence of CSE defs and uses is not propagated up the tree like side |
| 14995 | // effects are. We need to continue visiting the tree as if it has side effects. |
| 14996 | treeHasSideEffects = true; |
| 14997 | } |
| 14998 | |
| 14999 | return treeHasSideEffects ? Compiler::WALK_CONTINUE : Compiler::WALK_SKIP_SUBTREES; |
| 15000 | } |
| 15001 | |
| 15002 | private: |
| 15003 | bool UnmarkCSE(GenTree* node) |
| 15004 | { |
| 15005 | assert(m_compiler->optValnumCSE_phase); |
| 15006 | |
| 15007 | if (m_compiler->optUnmarkCSE(node)) |
| 15008 | { |
| 15009 | // The call to optUnmarkCSE(node) should have cleared any CSE info. |
| 15010 | assert(!IS_CSE_INDEX(node->gtCSEnum)); |
| 15011 | return true; |
| 15012 | } |
| 15013 | else |
| 15014 | { |
| 15015 | assert(IS_CSE_DEF(node->gtCSEnum)); |
| 15016 | #ifdef DEBUG |
| 15017 | if (m_compiler->verbose) |
| 15018 | { |
| 15019 | printf("Preserving the CSE def #%02d at " , GET_CSE_INDEX(node->gtCSEnum)); |
| 15020 | m_compiler->printTreeID(node); |
| 15021 | } |
| 15022 | #endif |
| 15023 | return false; |
| 15024 | } |
| 15025 | } |
| 15026 | }; |
| 15027 | |
| 15028 | assert(!expr->OperIs(GT_STMT)); |
| 15029 | |
| 15030 | SideEffectExtractor (this, flags); |
| 15031 | |
| 15032 | if (ignoreRoot) |
| 15033 | { |
| 15034 | for (GenTree* op : expr->Operands()) |
| 15035 | { |
| 15036 | extractor.WalkTree(&op, nullptr); |
| 15037 | } |
| 15038 | } |
| 15039 | else |
| 15040 | { |
| 15041 | extractor.WalkTree(&expr, nullptr); |
| 15042 | } |
| 15043 | |
| 15044 | GenTree* list = *pList; |
| 15045 | |
| 15046 | // The extractor returns side effects in execution order but gtBuildCommaList prepends |
| 15047 | // to the comma-based side effect list so we have to build the list in reverse order. |
| 15048 | // This is also why the list cannot be built while traversing the tree. |
| 15049 | // The number of side effects is usually small (<= 4), less than the ArrayStack's |
| 15050 | // built-in size, so memory allocation is avoided. |
| 15051 | while (!extractor.m_sideEffects.Empty()) |
| 15052 | { |
| 15053 | list = gtBuildCommaList(list, extractor.m_sideEffects.Pop()); |
| 15054 | } |
| 15055 | |
| 15056 | *pList = list; |
| 15057 | } |
| 15058 | |
| 15059 | /***************************************************************************** |
| 15060 | * |
| 15061 | * For debugging only - displays a tree node list and makes sure all the |
| 15062 | * links are correctly set. |
| 15063 | */ |
| 15064 | |
| 15065 | #ifdef DEBUG |
| 15066 | |
| 15067 | void dispNodeList(GenTree* list, bool verbose) |
| 15068 | { |
| 15069 | GenTree* last = nullptr; |
| 15070 | GenTree* next; |
| 15071 | |
| 15072 | if (!list) |
| 15073 | { |
| 15074 | return; |
| 15075 | } |
| 15076 | |
| 15077 | for (;;) |
| 15078 | { |
| 15079 | next = list->gtNext; |
| 15080 | |
| 15081 | if (verbose) |
| 15082 | { |
| 15083 | printf("%08X -> %08X -> %08X\n" , last, list, next); |
| 15084 | } |
| 15085 | |
| 15086 | assert(!last || last->gtNext == list); |
| 15087 | |
| 15088 | assert(next == nullptr || next->gtPrev == list); |
| 15089 | |
| 15090 | if (!next) |
| 15091 | { |
| 15092 | break; |
| 15093 | } |
| 15094 | |
| 15095 | last = list; |
| 15096 | list = next; |
| 15097 | } |
| 15098 | printf("" ); // null string means flush |
| 15099 | } |
| 15100 | |
| 15101 | /***************************************************************************** |
| 15102 | * Callback to assert that the nodes of a qmark-colon subtree are marked |
| 15103 | */ |
| 15104 | |
| 15105 | /* static */ |
| 15106 | Compiler::fgWalkResult Compiler::gtAssertColonCond(GenTree** pTree, fgWalkData* data) |
| 15107 | { |
| 15108 | assert(data->pCallbackData == nullptr); |
| 15109 | |
| 15110 | assert((*pTree)->gtFlags & GTF_COLON_COND); |
| 15111 | |
| 15112 | return WALK_CONTINUE; |
| 15113 | } |
| 15114 | #endif // DEBUG |
| 15115 | |
| 15116 | /***************************************************************************** |
| 15117 | * Callback to mark the nodes of a qmark-colon subtree that are conditionally |
| 15118 | * executed. |
| 15119 | */ |
| 15120 | |
| 15121 | /* static */ |
| 15122 | Compiler::fgWalkResult Compiler::gtMarkColonCond(GenTree** pTree, fgWalkData* data) |
| 15123 | { |
| 15124 | assert(data->pCallbackData == nullptr); |
| 15125 | |
| 15126 | (*pTree)->gtFlags |= GTF_COLON_COND; |
| 15127 | |
| 15128 | return WALK_CONTINUE; |
| 15129 | } |
| 15130 | |
| 15131 | /***************************************************************************** |
| 15132 | * Callback to clear the conditionally executed flags of nodes that no longer |
| 15133 | will be conditionally executed. Note that when we find another colon we must |
| 15134 | stop, as the nodes below this one WILL be conditionally executed. This callback |
| 15135 | is called when folding a qmark condition (ie the condition is constant). |
| 15136 | */ |
| 15137 | |
| 15138 | /* static */ |
| 15139 | Compiler::fgWalkResult Compiler::gtClearColonCond(GenTree** pTree, fgWalkData* data) |
| 15140 | { |
| 15141 | GenTree* tree = *pTree; |
| 15142 | |
| 15143 | assert(data->pCallbackData == nullptr); |
| 15144 | |
| 15145 | if (tree->OperGet() == GT_COLON) |
| 15146 | { |
| 15147 | // Nodes below this will be conditionally executed. |
| 15148 | return WALK_SKIP_SUBTREES; |
| 15149 | } |
| 15150 | |
| 15151 | tree->gtFlags &= ~GTF_COLON_COND; |
| 15152 | return WALK_CONTINUE; |
| 15153 | } |
| 15154 | |
| 15155 | struct FindLinkData |
| 15156 | { |
| 15157 | GenTree* nodeToFind; |
| 15158 | GenTree** result; |
| 15159 | }; |
| 15160 | |
| 15161 | /***************************************************************************** |
| 15162 | * |
| 15163 | * Callback used by the tree walker to implement fgFindLink() |
| 15164 | */ |
| 15165 | static Compiler::fgWalkResult gtFindLinkCB(GenTree** pTree, Compiler::fgWalkData* cbData) |
| 15166 | { |
| 15167 | FindLinkData* data = (FindLinkData*)cbData->pCallbackData; |
| 15168 | if (*pTree == data->nodeToFind) |
| 15169 | { |
| 15170 | data->result = pTree; |
| 15171 | return Compiler::WALK_ABORT; |
| 15172 | } |
| 15173 | |
| 15174 | return Compiler::WALK_CONTINUE; |
| 15175 | } |
| 15176 | |
| 15177 | GenTree** Compiler::gtFindLink(GenTree* stmt, GenTree* node) |
| 15178 | { |
| 15179 | assert(stmt->gtOper == GT_STMT); |
| 15180 | |
| 15181 | FindLinkData data = {node, nullptr}; |
| 15182 | |
| 15183 | fgWalkResult result = fgWalkTreePre(&stmt->gtStmt.gtStmtExpr, gtFindLinkCB, &data); |
| 15184 | |
| 15185 | if (result == WALK_ABORT) |
| 15186 | { |
| 15187 | assert(data.nodeToFind == *data.result); |
| 15188 | return data.result; |
| 15189 | } |
| 15190 | else |
| 15191 | { |
| 15192 | return nullptr; |
| 15193 | } |
| 15194 | } |
| 15195 | |
| 15196 | /***************************************************************************** |
| 15197 | * |
| 15198 | * Callback that checks if a tree node has oper type GT_CATCH_ARG |
| 15199 | */ |
| 15200 | |
| 15201 | static Compiler::fgWalkResult gtFindCatchArg(GenTree** pTree, Compiler::fgWalkData* /* data */) |
| 15202 | { |
| 15203 | return ((*pTree)->OperGet() == GT_CATCH_ARG) ? Compiler::WALK_ABORT : Compiler::WALK_CONTINUE; |
| 15204 | } |
| 15205 | |
| 15206 | /*****************************************************************************/ |
| 15207 | bool Compiler::gtHasCatchArg(GenTree* tree) |
| 15208 | { |
| 15209 | if (((tree->gtFlags & GTF_ORDER_SIDEEFF) != 0) && (fgWalkTreePre(&tree, gtFindCatchArg) == WALK_ABORT)) |
| 15210 | { |
| 15211 | return true; |
| 15212 | } |
| 15213 | return false; |
| 15214 | } |
| 15215 | |
| 15216 | //------------------------------------------------------------------------ |
| 15217 | // gtHasCallOnStack: |
| 15218 | // |
| 15219 | // Arguments: |
| 15220 | // parentStack: a context (stack of parent nodes) |
| 15221 | // |
| 15222 | // Return Value: |
| 15223 | // returns true if any of the parent nodes are a GT_CALL |
| 15224 | // |
| 15225 | // Assumptions: |
| 15226 | // We have a stack of parent nodes. This generally requires that |
| 15227 | // we are performing a recursive tree walk using struct fgWalkData |
| 15228 | // |
| 15229 | //------------------------------------------------------------------------ |
| 15230 | /* static */ bool Compiler::gtHasCallOnStack(GenTreeStack* parentStack) |
| 15231 | { |
| 15232 | for (int i = 0; i < parentStack->Height(); i++) |
| 15233 | { |
| 15234 | GenTree* node = parentStack->Index(i); |
| 15235 | if (node->OperGet() == GT_CALL) |
| 15236 | { |
| 15237 | return true; |
| 15238 | } |
| 15239 | } |
| 15240 | return false; |
| 15241 | } |
| 15242 | |
| 15243 | //------------------------------------------------------------------------ |
| 15244 | // gtGetTypeProducerKind: determine if a tree produces a runtime type, and |
| 15245 | // if so, how. |
| 15246 | // |
| 15247 | // Arguments: |
| 15248 | // tree - tree to examine |
| 15249 | // |
| 15250 | // Return Value: |
| 15251 | // TypeProducerKind for the tree. |
| 15252 | // |
| 15253 | // Notes: |
| 15254 | // Checks to see if this tree returns a RuntimeType value, and if so, |
| 15255 | // how that value is determined. |
| 15256 | // |
| 15257 | // Currently handles these cases |
| 15258 | // 1) The result of Object::GetType |
| 15259 | // 2) The result of typeof(...) |
| 15260 | // 3) A null reference |
| 15261 | // 4) Tree is otherwise known to have type RuntimeType |
| 15262 | // |
| 15263 | // The null reference case is surprisingly common because operator |
| 15264 | // overloading turns the otherwise innocuous |
| 15265 | // |
| 15266 | // Type t = ....; |
| 15267 | // if (t == null) |
| 15268 | // |
| 15269 | // into a method call. |
| 15270 | |
| 15271 | Compiler::TypeProducerKind Compiler::gtGetTypeProducerKind(GenTree* tree) |
| 15272 | { |
| 15273 | if (tree->gtOper == GT_CALL) |
| 15274 | { |
| 15275 | if (tree->gtCall.gtCallType == CT_HELPER) |
| 15276 | { |
| 15277 | if (gtIsTypeHandleToRuntimeTypeHelper(tree->AsCall())) |
| 15278 | { |
| 15279 | return TPK_Handle; |
| 15280 | } |
| 15281 | } |
| 15282 | else if (tree->gtCall.gtCallMoreFlags & GTF_CALL_M_SPECIAL_INTRINSIC) |
| 15283 | { |
| 15284 | if (info.compCompHnd->getIntrinsicID(tree->gtCall.gtCallMethHnd) == CORINFO_INTRINSIC_Object_GetType) |
| 15285 | { |
| 15286 | return TPK_GetType; |
| 15287 | } |
| 15288 | } |
| 15289 | } |
| 15290 | else if ((tree->gtOper == GT_INTRINSIC) && (tree->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Object_GetType)) |
| 15291 | { |
| 15292 | return TPK_GetType; |
| 15293 | } |
| 15294 | else if ((tree->gtOper == GT_CNS_INT) && (tree->gtIntCon.gtIconVal == 0)) |
| 15295 | { |
| 15296 | return TPK_Null; |
| 15297 | } |
| 15298 | else |
| 15299 | { |
| 15300 | bool isExact = false; |
| 15301 | bool isNonNull = false; |
| 15302 | CORINFO_CLASS_HANDLE clsHnd = gtGetClassHandle(tree, &isExact, &isNonNull); |
| 15303 | |
| 15304 | if (clsHnd != NO_CLASS_HANDLE && clsHnd == info.compCompHnd->getBuiltinClass(CLASSID_RUNTIME_TYPE)) |
| 15305 | { |
| 15306 | return TPK_Other; |
| 15307 | } |
| 15308 | } |
| 15309 | return TPK_Unknown; |
| 15310 | } |
| 15311 | |
| 15312 | //------------------------------------------------------------------------ |
| 15313 | // gtIsTypeHandleToRuntimeTypeHelperCall -- see if tree is constructing |
| 15314 | // a RuntimeType from a handle |
| 15315 | // |
| 15316 | // Arguments: |
| 15317 | // tree - tree to examine |
| 15318 | // |
| 15319 | // Return Value: |
| 15320 | // True if so |
| 15321 | |
| 15322 | bool Compiler::gtIsTypeHandleToRuntimeTypeHelper(GenTreeCall* call) |
| 15323 | { |
| 15324 | return call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE) || |
| 15325 | call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE_MAYBENULL); |
| 15326 | } |
| 15327 | |
| 15328 | //------------------------------------------------------------------------ |
| 15329 | // gtIsTypeHandleToRuntimeTypeHandleHelperCall -- see if tree is constructing |
| 15330 | // a RuntimeTypeHandle from a handle |
| 15331 | // |
| 15332 | // Arguments: |
| 15333 | // tree - tree to examine |
| 15334 | // pHelper - optional pointer to a variable that receives the type of the helper |
| 15335 | // |
| 15336 | // Return Value: |
| 15337 | // True if so |
| 15338 | |
| 15339 | bool Compiler::gtIsTypeHandleToRuntimeTypeHandleHelper(GenTreeCall* call, CorInfoHelpFunc* pHelper) |
| 15340 | { |
| 15341 | CorInfoHelpFunc helper = CORINFO_HELP_UNDEF; |
| 15342 | |
| 15343 | if (call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPEHANDLE)) |
| 15344 | { |
| 15345 | helper = CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPEHANDLE; |
| 15346 | } |
| 15347 | else if (call->gtCallMethHnd == eeFindHelper(CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPEHANDLE_MAYBENULL)) |
| 15348 | { |
| 15349 | helper = CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPEHANDLE_MAYBENULL; |
| 15350 | } |
| 15351 | |
| 15352 | if (pHelper != nullptr) |
| 15353 | { |
| 15354 | *pHelper = helper; |
| 15355 | } |
| 15356 | |
| 15357 | return helper != CORINFO_HELP_UNDEF; |
| 15358 | } |
| 15359 | |
| 15360 | bool Compiler::gtIsActiveCSE_Candidate(GenTree* tree) |
| 15361 | { |
| 15362 | return (optValnumCSE_phase && IS_CSE_INDEX(tree->gtCSEnum)); |
| 15363 | } |
| 15364 | |
| 15365 | /*****************************************************************************/ |
| 15366 | |
| 15367 | struct ComplexityStruct |
| 15368 | { |
| 15369 | unsigned m_numNodes; |
| 15370 | unsigned m_nodeLimit; |
| 15371 | ComplexityStruct(unsigned nodeLimit) : m_numNodes(0), m_nodeLimit(nodeLimit) |
| 15372 | { |
| 15373 | } |
| 15374 | }; |
| 15375 | |
| 15376 | static Compiler::fgWalkResult ComplexityExceedsWalker(GenTree** pTree, Compiler::fgWalkData* data) |
| 15377 | { |
| 15378 | ComplexityStruct* pComplexity = (ComplexityStruct*)data->pCallbackData; |
| 15379 | if (++pComplexity->m_numNodes > pComplexity->m_nodeLimit) |
| 15380 | { |
| 15381 | return Compiler::WALK_ABORT; |
| 15382 | } |
| 15383 | else |
| 15384 | { |
| 15385 | return Compiler::WALK_CONTINUE; |
| 15386 | } |
| 15387 | } |
| 15388 | |
| 15389 | bool Compiler::gtComplexityExceeds(GenTree** tree, unsigned limit) |
| 15390 | { |
| 15391 | ComplexityStruct complexity(limit); |
| 15392 | if (fgWalkTreePre(tree, &ComplexityExceedsWalker, &complexity) == WALK_ABORT) |
| 15393 | { |
| 15394 | return true; |
| 15395 | } |
| 15396 | else |
| 15397 | { |
| 15398 | return false; |
| 15399 | } |
| 15400 | } |
| 15401 | |
| 15402 | bool GenTree::IsPhiNode() |
| 15403 | { |
| 15404 | return (OperGet() == GT_PHI_ARG) || (OperGet() == GT_PHI) || IsPhiDefn(); |
| 15405 | } |
| 15406 | |
| 15407 | bool GenTree::IsPhiDefn() |
| 15408 | { |
| 15409 | bool res = ((OperGet() == GT_ASG) && (gtOp.gtOp2 != nullptr) && (gtOp.gtOp2->OperGet() == GT_PHI)) || |
| 15410 | ((OperGet() == GT_STORE_LCL_VAR) && (gtOp.gtOp1 != nullptr) && (gtOp.gtOp1->OperGet() == GT_PHI)); |
| 15411 | assert(!res || OperGet() == GT_STORE_LCL_VAR || gtOp.gtOp1->OperGet() == GT_LCL_VAR); |
| 15412 | return res; |
| 15413 | } |
| 15414 | |
| 15415 | bool GenTree::IsPhiDefnStmt() |
| 15416 | { |
| 15417 | if (OperGet() != GT_STMT) |
| 15418 | { |
| 15419 | return false; |
| 15420 | } |
| 15421 | GenTree* asg = gtStmt.gtStmtExpr; |
| 15422 | return asg->IsPhiDefn(); |
| 15423 | } |
| 15424 | |
| 15425 | // IsPartialLclFld: Check for a GT_LCL_FLD whose type is a different size than the lclVar. |
| 15426 | // |
| 15427 | // Arguments: |
| 15428 | // comp - the Compiler object. |
| 15429 | // |
| 15430 | // Return Value: |
| 15431 | // Returns "true" iff 'this' is a GT_LCL_FLD or GT_STORE_LCL_FLD on which the type |
| 15432 | // is not the same size as the type of the GT_LCL_VAR |
| 15433 | |
| 15434 | bool GenTree::IsPartialLclFld(Compiler* comp) |
| 15435 | { |
| 15436 | return ((gtOper == GT_LCL_FLD) && |
| 15437 | (comp->lvaTable[this->gtLclVarCommon.gtLclNum].lvExactSize != genTypeSize(gtType))); |
| 15438 | } |
| 15439 | |
| 15440 | bool GenTree::DefinesLocal(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, bool* pIsEntire) |
| 15441 | { |
| 15442 | GenTreeBlk* blkNode = nullptr; |
| 15443 | if (OperIs(GT_ASG)) |
| 15444 | { |
| 15445 | if (gtOp.gtOp1->IsLocal()) |
| 15446 | { |
| 15447 | GenTreeLclVarCommon* lclVarTree = gtOp.gtOp1->AsLclVarCommon(); |
| 15448 | *pLclVarTree = lclVarTree; |
| 15449 | if (pIsEntire != nullptr) |
| 15450 | { |
| 15451 | if (lclVarTree->IsPartialLclFld(comp)) |
| 15452 | { |
| 15453 | *pIsEntire = false; |
| 15454 | } |
| 15455 | else |
| 15456 | { |
| 15457 | *pIsEntire = true; |
| 15458 | } |
| 15459 | } |
| 15460 | return true; |
| 15461 | } |
| 15462 | else if (gtOp.gtOp1->OperGet() == GT_IND) |
| 15463 | { |
| 15464 | GenTree* indArg = gtOp.gtOp1->gtOp.gtOp1; |
| 15465 | return indArg->DefinesLocalAddr(comp, genTypeSize(gtOp.gtOp1->TypeGet()), pLclVarTree, pIsEntire); |
| 15466 | } |
| 15467 | else if (gtOp.gtOp1->OperIsBlk()) |
| 15468 | { |
| 15469 | blkNode = gtOp.gtOp1->AsBlk(); |
| 15470 | } |
| 15471 | } |
| 15472 | else if (OperIsBlk()) |
| 15473 | { |
| 15474 | blkNode = this->AsBlk(); |
| 15475 | } |
| 15476 | if (blkNode != nullptr) |
| 15477 | { |
| 15478 | GenTree* destAddr = blkNode->Addr(); |
| 15479 | unsigned width = blkNode->gtBlkSize; |
| 15480 | // Do we care about whether this assigns the entire variable? |
| 15481 | if (pIsEntire != nullptr && width == 0) |
| 15482 | { |
| 15483 | assert(blkNode->gtOper == GT_DYN_BLK); |
| 15484 | GenTree* blockWidth = blkNode->AsDynBlk()->gtDynamicSize; |
| 15485 | if (blockWidth->IsCnsIntOrI()) |
| 15486 | { |
| 15487 | if (blockWidth->IsIconHandle()) |
| 15488 | { |
| 15489 | // If it's a handle, it must be a class handle. We only create such block operations |
| 15490 | // for initialization of struct types, so the type of the argument(s) will match this |
| 15491 | // type, by construction, and be "entire". |
| 15492 | assert(blockWidth->IsIconHandle(GTF_ICON_CLASS_HDL)); |
| 15493 | width = comp->info.compCompHnd->getClassSize( |
| 15494 | CORINFO_CLASS_HANDLE(blockWidth->gtIntConCommon.IconValue())); |
| 15495 | } |
| 15496 | else |
| 15497 | { |
| 15498 | ssize_t swidth = blockWidth->AsIntConCommon()->IconValue(); |
| 15499 | assert(swidth >= 0); |
| 15500 | // cpblk of size zero exists in the wild (in yacc-generated code in SQL) and is valid IL. |
| 15501 | if (swidth == 0) |
| 15502 | { |
| 15503 | return false; |
| 15504 | } |
| 15505 | width = unsigned(swidth); |
| 15506 | } |
| 15507 | } |
| 15508 | } |
| 15509 | return destAddr->DefinesLocalAddr(comp, width, pLclVarTree, pIsEntire); |
| 15510 | } |
| 15511 | // Otherwise... |
| 15512 | return false; |
| 15513 | } |
| 15514 | |
| 15515 | // Returns true if this GenTree defines a result which is based on the address of a local. |
| 15516 | bool GenTree::DefinesLocalAddr(Compiler* comp, unsigned width, GenTreeLclVarCommon** pLclVarTree, bool* pIsEntire) |
| 15517 | { |
| 15518 | if (OperGet() == GT_ADDR || OperGet() == GT_LCL_VAR_ADDR) |
| 15519 | { |
| 15520 | GenTree* addrArg = this; |
| 15521 | if (OperGet() == GT_ADDR) |
| 15522 | { |
| 15523 | addrArg = gtOp.gtOp1; |
| 15524 | } |
| 15525 | |
| 15526 | if (addrArg->IsLocal() || addrArg->OperIsLocalAddr()) |
| 15527 | { |
| 15528 | GenTreeLclVarCommon* addrArgLcl = addrArg->AsLclVarCommon(); |
| 15529 | *pLclVarTree = addrArgLcl; |
| 15530 | if (pIsEntire != nullptr) |
| 15531 | { |
| 15532 | unsigned lclOffset = 0; |
| 15533 | if (addrArg->OperIsLocalField()) |
| 15534 | { |
| 15535 | lclOffset = addrArg->gtLclFld.gtLclOffs; |
| 15536 | } |
| 15537 | |
| 15538 | if (lclOffset != 0) |
| 15539 | { |
| 15540 | // We aren't updating the bytes at [0..lclOffset-1] so *pIsEntire should be set to false |
| 15541 | *pIsEntire = false; |
| 15542 | } |
| 15543 | else |
| 15544 | { |
| 15545 | unsigned lclNum = addrArgLcl->GetLclNum(); |
| 15546 | unsigned varWidth = comp->lvaLclExactSize(lclNum); |
| 15547 | if (comp->lvaTable[lclNum].lvNormalizeOnStore()) |
| 15548 | { |
| 15549 | // It's normalize on store, so use the full storage width -- writing to low bytes won't |
| 15550 | // necessarily yield a normalized value. |
| 15551 | varWidth = genTypeStSz(var_types(comp->lvaTable[lclNum].lvType)) * sizeof(int); |
| 15552 | } |
| 15553 | *pIsEntire = (varWidth == width); |
| 15554 | } |
| 15555 | } |
| 15556 | return true; |
| 15557 | } |
| 15558 | else if (addrArg->OperGet() == GT_IND) |
| 15559 | { |
| 15560 | // A GT_ADDR of a GT_IND can both be optimized away, recurse using the child of the GT_IND |
| 15561 | return addrArg->gtOp.gtOp1->DefinesLocalAddr(comp, width, pLclVarTree, pIsEntire); |
| 15562 | } |
| 15563 | } |
| 15564 | else if (OperGet() == GT_ADD) |
| 15565 | { |
| 15566 | if (gtOp.gtOp1->IsCnsIntOrI()) |
| 15567 | { |
| 15568 | // If we just adding a zero then we allow an IsEntire match against width |
| 15569 | // otherwise we change width to zero to disallow an IsEntire Match |
| 15570 | return gtOp.gtOp2->DefinesLocalAddr(comp, gtOp.gtOp1->IsIntegralConst(0) ? width : 0, pLclVarTree, |
| 15571 | pIsEntire); |
| 15572 | } |
| 15573 | else if (gtOp.gtOp2->IsCnsIntOrI()) |
| 15574 | { |
| 15575 | // If we just adding a zero then we allow an IsEntire match against width |
| 15576 | // otherwise we change width to zero to disallow an IsEntire Match |
| 15577 | return gtOp.gtOp1->DefinesLocalAddr(comp, gtOp.gtOp2->IsIntegralConst(0) ? width : 0, pLclVarTree, |
| 15578 | pIsEntire); |
| 15579 | } |
| 15580 | } |
| 15581 | // Post rationalization we could have GT_IND(GT_LEA(..)) trees. |
| 15582 | else if (OperGet() == GT_LEA) |
| 15583 | { |
| 15584 | // This method gets invoked during liveness computation and therefore it is critical |
| 15585 | // that we don't miss 'use' of any local. The below logic is making the assumption |
| 15586 | // that in case of LEA(base, index, offset) - only base can be a GT_LCL_VAR_ADDR |
| 15587 | // and index is not. |
| 15588 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 15589 | |
| 15590 | #ifdef DEBUG |
| 15591 | GenTree* index = gtOp.gtOp2; |
| 15592 | if (index != nullptr) |
| 15593 | { |
| 15594 | assert(!index->DefinesLocalAddr(comp, width, pLclVarTree, pIsEntire)); |
| 15595 | } |
| 15596 | #endif // DEBUG |
| 15597 | |
| 15598 | // base |
| 15599 | GenTree* base = gtOp.gtOp1; |
| 15600 | if (base != nullptr) |
| 15601 | { |
| 15602 | // Lea could have an Indir as its base. |
| 15603 | if (base->OperGet() == GT_IND) |
| 15604 | { |
| 15605 | base = base->gtOp.gtOp1->gtEffectiveVal(/*commas only*/ true); |
| 15606 | } |
| 15607 | return base->DefinesLocalAddr(comp, width, pLclVarTree, pIsEntire); |
| 15608 | } |
| 15609 | } |
| 15610 | // Otherwise... |
| 15611 | return false; |
| 15612 | } |
| 15613 | |
| 15614 | //------------------------------------------------------------------------ |
| 15615 | // IsLocalExpr: Determine if this is a LclVarCommon node and return some |
| 15616 | // additional info about it in the two out parameters. |
| 15617 | // |
| 15618 | // Arguments: |
| 15619 | // comp - The Compiler instance |
| 15620 | // pLclVarTree - An "out" argument that returns the local tree as a |
| 15621 | // LclVarCommon, if it is indeed local. |
| 15622 | // pFldSeq - An "out" argument that returns the value numbering field |
| 15623 | // sequence for the node, if any. |
| 15624 | // |
| 15625 | // Return Value: |
| 15626 | // Returns true, and sets the out arguments accordingly, if this is |
| 15627 | // a LclVarCommon node. |
| 15628 | |
| 15629 | bool GenTree::IsLocalExpr(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, FieldSeqNode** pFldSeq) |
| 15630 | { |
| 15631 | if (IsLocal()) // Note that this covers "GT_LCL_FLD." |
| 15632 | { |
| 15633 | *pLclVarTree = AsLclVarCommon(); |
| 15634 | if (OperGet() == GT_LCL_FLD) |
| 15635 | { |
| 15636 | // Otherwise, prepend this field to whatever we've already accumulated outside in. |
| 15637 | *pFldSeq = comp->GetFieldSeqStore()->Append(AsLclFld()->gtFieldSeq, *pFldSeq); |
| 15638 | } |
| 15639 | return true; |
| 15640 | } |
| 15641 | else |
| 15642 | { |
| 15643 | return false; |
| 15644 | } |
| 15645 | } |
| 15646 | |
| 15647 | // If this tree evaluates some sum of a local address and some constants, |
| 15648 | // return the node for the local being addressed |
| 15649 | |
| 15650 | GenTreeLclVarCommon* GenTree::IsLocalAddrExpr() |
| 15651 | { |
| 15652 | if (OperGet() == GT_ADDR) |
| 15653 | { |
| 15654 | return gtOp.gtOp1->IsLocal() ? gtOp.gtOp1->AsLclVarCommon() : nullptr; |
| 15655 | } |
| 15656 | else if (OperIsLocalAddr()) |
| 15657 | { |
| 15658 | return this->AsLclVarCommon(); |
| 15659 | } |
| 15660 | else if (OperGet() == GT_ADD) |
| 15661 | { |
| 15662 | if (gtOp.gtOp1->OperGet() == GT_CNS_INT) |
| 15663 | { |
| 15664 | return gtOp.gtOp2->IsLocalAddrExpr(); |
| 15665 | } |
| 15666 | else if (gtOp.gtOp2->OperGet() == GT_CNS_INT) |
| 15667 | { |
| 15668 | return gtOp.gtOp1->IsLocalAddrExpr(); |
| 15669 | } |
| 15670 | } |
| 15671 | // Otherwise... |
| 15672 | return nullptr; |
| 15673 | } |
| 15674 | |
| 15675 | bool GenTree::IsLocalAddrExpr(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, FieldSeqNode** pFldSeq) |
| 15676 | { |
| 15677 | if (OperGet() == GT_ADDR) |
| 15678 | { |
| 15679 | assert(!comp->compRationalIRForm); |
| 15680 | GenTree* addrArg = gtOp.gtOp1; |
| 15681 | if (addrArg->IsLocal()) // Note that this covers "GT_LCL_FLD." |
| 15682 | { |
| 15683 | *pLclVarTree = addrArg->AsLclVarCommon(); |
| 15684 | if (addrArg->OperGet() == GT_LCL_FLD) |
| 15685 | { |
| 15686 | // Otherwise, prepend this field to whatever we've already accumulated outside in. |
| 15687 | *pFldSeq = comp->GetFieldSeqStore()->Append(addrArg->AsLclFld()->gtFieldSeq, *pFldSeq); |
| 15688 | } |
| 15689 | return true; |
| 15690 | } |
| 15691 | else |
| 15692 | { |
| 15693 | return false; |
| 15694 | } |
| 15695 | } |
| 15696 | else if (OperIsLocalAddr()) |
| 15697 | { |
| 15698 | *pLclVarTree = this->AsLclVarCommon(); |
| 15699 | if (this->OperGet() == GT_LCL_FLD_ADDR) |
| 15700 | { |
| 15701 | *pFldSeq = comp->GetFieldSeqStore()->Append(this->AsLclFld()->gtFieldSeq, *pFldSeq); |
| 15702 | } |
| 15703 | return true; |
| 15704 | } |
| 15705 | else if (OperGet() == GT_ADD) |
| 15706 | { |
| 15707 | if (gtOp.gtOp1->OperGet() == GT_CNS_INT) |
| 15708 | { |
| 15709 | if (gtOp.gtOp1->AsIntCon()->gtFieldSeq == nullptr) |
| 15710 | { |
| 15711 | return false; |
| 15712 | } |
| 15713 | // Otherwise, prepend this field to whatever we've already accumulated outside in. |
| 15714 | *pFldSeq = comp->GetFieldSeqStore()->Append(gtOp.gtOp1->AsIntCon()->gtFieldSeq, *pFldSeq); |
| 15715 | return gtOp.gtOp2->IsLocalAddrExpr(comp, pLclVarTree, pFldSeq); |
| 15716 | } |
| 15717 | else if (gtOp.gtOp2->OperGet() == GT_CNS_INT) |
| 15718 | { |
| 15719 | if (gtOp.gtOp2->AsIntCon()->gtFieldSeq == nullptr) |
| 15720 | { |
| 15721 | return false; |
| 15722 | } |
| 15723 | // Otherwise, prepend this field to whatever we've already accumulated outside in. |
| 15724 | *pFldSeq = comp->GetFieldSeqStore()->Append(gtOp.gtOp2->AsIntCon()->gtFieldSeq, *pFldSeq); |
| 15725 | return gtOp.gtOp1->IsLocalAddrExpr(comp, pLclVarTree, pFldSeq); |
| 15726 | } |
| 15727 | } |
| 15728 | // Otherwise... |
| 15729 | return false; |
| 15730 | } |
| 15731 | |
| 15732 | //------------------------------------------------------------------------ |
| 15733 | // IsLclVarUpdateTree: Determine whether this is an assignment tree of the |
| 15734 | // form Vn = Vn 'oper' 'otherTree' where Vn is a lclVar |
| 15735 | // |
| 15736 | // Arguments: |
| 15737 | // pOtherTree - An "out" argument in which 'otherTree' will be returned. |
| 15738 | // pOper - An "out" argument in which 'oper' will be returned. |
| 15739 | // |
| 15740 | // Return Value: |
| 15741 | // If the tree is of the above form, the lclNum of the variable being |
| 15742 | // updated is returned, and 'pOtherTree' and 'pOper' are set. |
| 15743 | // Otherwise, returns BAD_VAR_NUM. |
| 15744 | // |
| 15745 | // Notes: |
| 15746 | // 'otherTree' can have any shape. |
| 15747 | // We avoid worrying about whether the op is commutative by only considering the |
| 15748 | // first operand of the rhs. It is expected that most trees of this form will |
| 15749 | // already have the lclVar on the lhs. |
| 15750 | // TODO-CQ: Evaluate whether there are missed opportunities due to this, or |
| 15751 | // whether gtSetEvalOrder will already have put the lclVar on the lhs in |
| 15752 | // the cases of interest. |
| 15753 | |
| 15754 | unsigned GenTree::IsLclVarUpdateTree(GenTree** pOtherTree, genTreeOps* pOper) |
| 15755 | { |
| 15756 | unsigned lclNum = BAD_VAR_NUM; |
| 15757 | if (OperIs(GT_ASG)) |
| 15758 | { |
| 15759 | GenTree* lhs = gtOp.gtOp1; |
| 15760 | if (lhs->OperGet() == GT_LCL_VAR) |
| 15761 | { |
| 15762 | unsigned lhsLclNum = lhs->AsLclVarCommon()->gtLclNum; |
| 15763 | GenTree* rhs = gtOp.gtOp2; |
| 15764 | if (rhs->OperIsBinary() && (rhs->gtOp.gtOp1->gtOper == GT_LCL_VAR) && |
| 15765 | (rhs->gtOp.gtOp1->AsLclVarCommon()->gtLclNum == lhsLclNum)) |
| 15766 | { |
| 15767 | lclNum = lhsLclNum; |
| 15768 | *pOtherTree = rhs->gtOp.gtOp2; |
| 15769 | *pOper = rhs->gtOper; |
| 15770 | } |
| 15771 | } |
| 15772 | } |
| 15773 | return lclNum; |
| 15774 | } |
| 15775 | |
| 15776 | //------------------------------------------------------------------------ |
| 15777 | // canBeContained: check whether this tree node may be a subcomponent of its parent for purposes |
| 15778 | // of code generation. |
| 15779 | // |
| 15780 | // Return value: returns true if it is possible to contain this node and false otherwise. |
| 15781 | bool GenTree::canBeContained() const |
| 15782 | { |
| 15783 | assert(IsLIR()); |
| 15784 | |
| 15785 | if (gtHasReg()) |
| 15786 | { |
| 15787 | return false; |
| 15788 | } |
| 15789 | |
| 15790 | // It is not possible for nodes that do not produce values or that are not containable values |
| 15791 | // to be contained. |
| 15792 | if (((OperKind() & (GTK_NOVALUE | GTK_NOCONTAIN)) != 0) || (OperIsHWIntrinsic() && !isContainableHWIntrinsic())) |
| 15793 | { |
| 15794 | return false; |
| 15795 | } |
| 15796 | |
| 15797 | return true; |
| 15798 | } |
| 15799 | |
| 15800 | //------------------------------------------------------------------------ |
| 15801 | // isContained: check whether this tree node is a subcomponent of its parent for codegen purposes |
| 15802 | // |
| 15803 | // Return Value: |
| 15804 | // Returns true if there is no code generated explicitly for this node. |
| 15805 | // Essentially, it will be rolled into the code generation for the parent. |
| 15806 | // |
| 15807 | // Assumptions: |
| 15808 | // This method relies upon the value of the GTF_CONTAINED flag. |
| 15809 | // Therefore this method is only valid after Lowering. |
| 15810 | // Also note that register allocation or other subsequent phases may cause |
| 15811 | // nodes to become contained (or not) and therefore this property may change. |
| 15812 | // |
| 15813 | bool GenTree::isContained() const |
| 15814 | { |
| 15815 | assert(IsLIR()); |
| 15816 | const bool isMarkedContained = ((gtFlags & GTF_CONTAINED) != 0); |
| 15817 | |
| 15818 | #ifdef DEBUG |
| 15819 | if (!canBeContained()) |
| 15820 | { |
| 15821 | assert(!isMarkedContained); |
| 15822 | } |
| 15823 | |
| 15824 | // these actually produce a register (the flags reg, we just don't model it) |
| 15825 | // and are a separate instruction from the branch that consumes the result. |
| 15826 | // They can only produce a result if the child is a SIMD equality comparison. |
| 15827 | else if (OperKind() & GTK_RELOP) |
| 15828 | { |
| 15829 | // We have to cast away const-ness since AsOp() method is non-const. |
| 15830 | GenTree* childNode = const_cast<GenTree*>(this)->AsOp()->gtOp1; |
| 15831 | assert((isMarkedContained == false) || childNode->IsSIMDEqualityOrInequality()); |
| 15832 | } |
| 15833 | |
| 15834 | // these either produce a result in register or set flags reg. |
| 15835 | else if (IsSIMDEqualityOrInequality()) |
| 15836 | { |
| 15837 | assert(!isMarkedContained); |
| 15838 | } |
| 15839 | |
| 15840 | // if it's contained it can't be unused. |
| 15841 | if (isMarkedContained) |
| 15842 | { |
| 15843 | assert(!IsUnusedValue()); |
| 15844 | } |
| 15845 | #endif // DEBUG |
| 15846 | return isMarkedContained; |
| 15847 | } |
| 15848 | |
| 15849 | // return true if node is contained and an indir |
| 15850 | bool GenTree::isContainedIndir() const |
| 15851 | { |
| 15852 | return isIndir() && isContained(); |
| 15853 | } |
| 15854 | |
| 15855 | bool GenTree::isIndirAddrMode() |
| 15856 | { |
| 15857 | return isIndir() && AsIndir()->Addr()->OperIsAddrMode() && AsIndir()->Addr()->isContained(); |
| 15858 | } |
| 15859 | |
| 15860 | bool GenTree::isIndir() const |
| 15861 | { |
| 15862 | return OperGet() == GT_IND || OperGet() == GT_STOREIND; |
| 15863 | } |
| 15864 | |
| 15865 | bool GenTreeIndir::HasBase() |
| 15866 | { |
| 15867 | return Base() != nullptr; |
| 15868 | } |
| 15869 | |
| 15870 | bool GenTreeIndir::HasIndex() |
| 15871 | { |
| 15872 | return Index() != nullptr; |
| 15873 | } |
| 15874 | |
| 15875 | GenTree* GenTreeIndir::Base() |
| 15876 | { |
| 15877 | GenTree* addr = Addr(); |
| 15878 | |
| 15879 | if (isIndirAddrMode()) |
| 15880 | { |
| 15881 | GenTree* result = addr->AsAddrMode()->Base(); |
| 15882 | if (result != nullptr) |
| 15883 | { |
| 15884 | result = result->gtEffectiveVal(); |
| 15885 | } |
| 15886 | return result; |
| 15887 | } |
| 15888 | else |
| 15889 | { |
| 15890 | return addr; // TODO: why do we return 'addr' here, but we return 'nullptr' in the equivalent Index() case? |
| 15891 | } |
| 15892 | } |
| 15893 | |
| 15894 | GenTree* GenTreeIndir::Index() |
| 15895 | { |
| 15896 | if (isIndirAddrMode()) |
| 15897 | { |
| 15898 | GenTree* result = Addr()->AsAddrMode()->Index(); |
| 15899 | if (result != nullptr) |
| 15900 | { |
| 15901 | result = result->gtEffectiveVal(); |
| 15902 | } |
| 15903 | return result; |
| 15904 | } |
| 15905 | else |
| 15906 | { |
| 15907 | return nullptr; |
| 15908 | } |
| 15909 | } |
| 15910 | |
| 15911 | unsigned GenTreeIndir::Scale() |
| 15912 | { |
| 15913 | if (HasIndex()) |
| 15914 | { |
| 15915 | return Addr()->AsAddrMode()->gtScale; |
| 15916 | } |
| 15917 | else |
| 15918 | { |
| 15919 | return 1; |
| 15920 | } |
| 15921 | } |
| 15922 | |
| 15923 | ssize_t GenTreeIndir::Offset() |
| 15924 | { |
| 15925 | if (isIndirAddrMode()) |
| 15926 | { |
| 15927 | return Addr()->AsAddrMode()->Offset(); |
| 15928 | } |
| 15929 | else if (Addr()->gtOper == GT_CLS_VAR_ADDR) |
| 15930 | { |
| 15931 | return static_cast<ssize_t>(reinterpret_cast<intptr_t>(Addr()->gtClsVar.gtClsVarHnd)); |
| 15932 | } |
| 15933 | else if (Addr()->IsCnsIntOrI() && Addr()->isContained()) |
| 15934 | { |
| 15935 | return Addr()->AsIntConCommon()->IconValue(); |
| 15936 | } |
| 15937 | else |
| 15938 | { |
| 15939 | return 0; |
| 15940 | } |
| 15941 | } |
| 15942 | |
| 15943 | //------------------------------------------------------------------------ |
| 15944 | // GenTreeIntConCommon::ImmedValNeedsReloc: does this immediate value needs recording a relocation with the VM? |
| 15945 | // |
| 15946 | // Arguments: |
| 15947 | // comp - Compiler instance |
| 15948 | // |
| 15949 | // Return Value: |
| 15950 | // True if this immediate value requires us to record a relocation for it; false otherwise. |
| 15951 | |
| 15952 | bool GenTreeIntConCommon::ImmedValNeedsReloc(Compiler* comp) |
| 15953 | { |
| 15954 | return comp->opts.compReloc && (gtOper == GT_CNS_INT) && IsIconHandle(); |
| 15955 | } |
| 15956 | |
| 15957 | //------------------------------------------------------------------------ |
| 15958 | // ImmedValCanBeFolded: can this immediate value be folded for op? |
| 15959 | // |
| 15960 | // Arguments: |
| 15961 | // comp - Compiler instance |
| 15962 | // op - Tree operator |
| 15963 | // |
| 15964 | // Return Value: |
| 15965 | // True if this immediate value can be folded for op; false otherwise. |
| 15966 | |
| 15967 | bool GenTreeIntConCommon::ImmedValCanBeFolded(Compiler* comp, genTreeOps op) |
| 15968 | { |
| 15969 | // In general, immediate values that need relocations can't be folded. |
| 15970 | // There are cases where we do want to allow folding of handle comparisons |
| 15971 | // (e.g., typeof(T) == typeof(int)). |
| 15972 | return !ImmedValNeedsReloc(comp) || (op == GT_EQ) || (op == GT_NE); |
| 15973 | } |
| 15974 | |
| 15975 | #ifdef _TARGET_AMD64_ |
| 15976 | // Returns true if this absolute address fits within the base of an addr mode. |
| 15977 | // On Amd64 this effectively means, whether an absolute indirect address can |
| 15978 | // be encoded as 32-bit offset relative to IP or zero. |
| 15979 | bool GenTreeIntConCommon::FitsInAddrBase(Compiler* comp) |
| 15980 | { |
| 15981 | #ifdef DEBUG |
| 15982 | // Early out if PC-rel encoding of absolute addr is disabled. |
| 15983 | if (!comp->opts.compEnablePCRelAddr) |
| 15984 | { |
| 15985 | return false; |
| 15986 | } |
| 15987 | #endif |
| 15988 | |
| 15989 | if (comp->opts.compReloc) |
| 15990 | { |
| 15991 | // During Ngen JIT is always asked to generate relocatable code. |
| 15992 | // Hence JIT will try to encode only icon handles as pc-relative offsets. |
| 15993 | return IsIconHandle() && (IMAGE_REL_BASED_REL32 == comp->eeGetRelocTypeHint((void*)IconValue())); |
| 15994 | } |
| 15995 | else |
| 15996 | { |
| 15997 | // During Jitting, we are allowed to generate non-relocatable code. |
| 15998 | // On Amd64 we can encode an absolute indirect addr as an offset relative to zero or RIP. |
| 15999 | // An absolute indir addr that can fit within 32-bits can ben encoded as an offset relative |
| 16000 | // to zero. All other absolute indir addr could be attempted to be encoded as RIP relative |
| 16001 | // based on reloc hint provided by VM. RIP relative encoding is preferred over relative |
| 16002 | // to zero, because the former is one byte smaller than the latter. For this reason |
| 16003 | // we check for reloc hint first and then whether addr fits in 32-bits next. |
| 16004 | // |
| 16005 | // VM starts off with an initial state to allow both data and code address to be encoded as |
| 16006 | // pc-relative offsets. Hence JIT will attempt to encode all absolute addresses as pc-relative |
| 16007 | // offsets. It is possible while jitting a method, an address could not be encoded as a |
| 16008 | // pc-relative offset. In that case VM will note the overflow and will trigger re-jitting |
| 16009 | // of the method with reloc hints turned off for all future methods. Second time around |
| 16010 | // jitting will succeed since JIT will not attempt to encode data addresses as pc-relative |
| 16011 | // offsets. Note that JIT will always attempt to relocate code addresses (.e.g call addr). |
| 16012 | // After an overflow, VM will assume any relocation recorded is for a code address and will |
| 16013 | // emit jump thunk if it cannot be encoded as pc-relative offset. |
| 16014 | return (IMAGE_REL_BASED_REL32 == comp->eeGetRelocTypeHint((void*)IconValue())) || FitsInI32(); |
| 16015 | } |
| 16016 | } |
| 16017 | |
| 16018 | // Returns true if this icon value is encoded as addr needs recording a relocation with VM |
| 16019 | bool GenTreeIntConCommon::AddrNeedsReloc(Compiler* comp) |
| 16020 | { |
| 16021 | if (comp->opts.compReloc) |
| 16022 | { |
| 16023 | // During Ngen JIT is always asked to generate relocatable code. |
| 16024 | // Hence JIT will try to encode only icon handles as pc-relative offsets. |
| 16025 | return IsIconHandle() && (IMAGE_REL_BASED_REL32 == comp->eeGetRelocTypeHint((void*)IconValue())); |
| 16026 | } |
| 16027 | else |
| 16028 | { |
| 16029 | return IMAGE_REL_BASED_REL32 == comp->eeGetRelocTypeHint((void*)IconValue()); |
| 16030 | } |
| 16031 | } |
| 16032 | |
| 16033 | #elif defined(_TARGET_X86_) |
| 16034 | // Returns true if this absolute address fits within the base of an addr mode. |
| 16035 | // On x86 all addresses are 4-bytes and can be directly encoded in an addr mode. |
| 16036 | bool GenTreeIntConCommon::FitsInAddrBase(Compiler* comp) |
| 16037 | { |
| 16038 | #ifdef DEBUG |
| 16039 | // Early out if PC-rel encoding of absolute addr is disabled. |
| 16040 | if (!comp->opts.compEnablePCRelAddr) |
| 16041 | { |
| 16042 | return false; |
| 16043 | } |
| 16044 | #endif |
| 16045 | |
| 16046 | return IsCnsIntOrI(); |
| 16047 | } |
| 16048 | |
| 16049 | // Returns true if this icon value is encoded as addr needs recording a relocation with VM |
| 16050 | bool GenTreeIntConCommon::AddrNeedsReloc(Compiler* comp) |
| 16051 | { |
| 16052 | // If generating relocatable code, icons should be reported for recording relocatons. |
| 16053 | return comp->opts.compReloc && IsIconHandle(); |
| 16054 | } |
| 16055 | #endif //_TARGET_X86_ |
| 16056 | |
| 16057 | bool GenTree::IsFieldAddr(Compiler* comp, GenTree** pObj, GenTree** pStatic, FieldSeqNode** pFldSeq) |
| 16058 | { |
| 16059 | FieldSeqNode* newFldSeq = nullptr; |
| 16060 | GenTree* baseAddr = nullptr; |
| 16061 | bool mustBeStatic = false; |
| 16062 | |
| 16063 | FieldSeqNode* statStructFldSeq = nullptr; |
| 16064 | if (TypeGet() == TYP_REF) |
| 16065 | { |
| 16066 | // Recognize struct static field patterns... |
| 16067 | if (OperGet() == GT_IND) |
| 16068 | { |
| 16069 | GenTree* addr = gtOp.gtOp1; |
| 16070 | GenTreeIntCon* icon = nullptr; |
| 16071 | if (addr->OperGet() == GT_CNS_INT) |
| 16072 | { |
| 16073 | icon = addr->AsIntCon(); |
| 16074 | } |
| 16075 | else if (addr->OperGet() == GT_ADD) |
| 16076 | { |
| 16077 | // op1 should never be a field sequence (or any other kind of handle) |
| 16078 | assert((addr->gtOp.gtOp1->gtOper != GT_CNS_INT) || !addr->gtOp.gtOp1->IsIconHandle()); |
| 16079 | if (addr->gtOp.gtOp2->OperGet() == GT_CNS_INT) |
| 16080 | { |
| 16081 | icon = addr->gtOp.gtOp2->AsIntCon(); |
| 16082 | } |
| 16083 | } |
| 16084 | if (icon != nullptr && !icon->IsIconHandle(GTF_ICON_STR_HDL) // String handles are a source of TYP_REFs. |
| 16085 | && icon->gtFieldSeq != nullptr && |
| 16086 | icon->gtFieldSeq->m_next == nullptr // A static field should be a singleton |
| 16087 | // TODO-Review: A pseudoField here indicates an issue - this requires investigation |
| 16088 | // See test case src\ddsuites\src\clr\x86\CoreMangLib\Dev\Globalization\CalendarRegressions.exe |
| 16089 | && !(FieldSeqStore::IsPseudoField(icon->gtFieldSeq->m_fieldHnd)) && |
| 16090 | icon->gtFieldSeq != FieldSeqStore::NotAField()) // Ignore non-fields. |
| 16091 | { |
| 16092 | statStructFldSeq = icon->gtFieldSeq; |
| 16093 | } |
| 16094 | else |
| 16095 | { |
| 16096 | addr = addr->gtEffectiveVal(); |
| 16097 | |
| 16098 | // Perhaps it's a direct indirection of a helper call or a cse with a zero offset annotation. |
| 16099 | if ((addr->OperGet() == GT_CALL) || (addr->OperGet() == GT_LCL_VAR)) |
| 16100 | { |
| 16101 | FieldSeqNode* zeroFieldSeq = nullptr; |
| 16102 | if (comp->GetZeroOffsetFieldMap()->Lookup(addr, &zeroFieldSeq)) |
| 16103 | { |
| 16104 | if (zeroFieldSeq->m_next == nullptr) |
| 16105 | { |
| 16106 | statStructFldSeq = zeroFieldSeq; |
| 16107 | } |
| 16108 | } |
| 16109 | } |
| 16110 | } |
| 16111 | } |
| 16112 | else if (OperGet() == GT_CLS_VAR) |
| 16113 | { |
| 16114 | GenTreeClsVar* clsVar = AsClsVar(); |
| 16115 | if (clsVar->gtFieldSeq != nullptr && clsVar->gtFieldSeq->m_next == nullptr) |
| 16116 | { |
| 16117 | statStructFldSeq = clsVar->gtFieldSeq; |
| 16118 | } |
| 16119 | } |
| 16120 | else if (OperIsLocal()) |
| 16121 | { |
| 16122 | // If we have a GT_LCL_VAR, it can be result of a CSE substitution |
| 16123 | // If it is then the CSE assignment will have a ValueNum that |
| 16124 | // describes the RHS of the CSE assignment. |
| 16125 | // |
| 16126 | // The CSE could be a pointer to a boxed struct |
| 16127 | // |
| 16128 | GenTreeLclVarCommon* lclVar = AsLclVarCommon(); |
| 16129 | ValueNum vn = gtVNPair.GetLiberal(); |
| 16130 | if (vn != ValueNumStore::NoVN) |
| 16131 | { |
| 16132 | // Is the ValueNum a MapSelect involving a SharedStatic helper? |
| 16133 | VNFuncApp funcApp1; |
| 16134 | if (comp->vnStore->GetVNFunc(vn, &funcApp1) && (funcApp1.m_func == VNF_MapSelect) && |
| 16135 | (comp->vnStore->IsSharedStatic(funcApp1.m_args[1]))) |
| 16136 | { |
| 16137 | ValueNum mapVN = funcApp1.m_args[0]; |
| 16138 | // Is this new 'mapVN' ValueNum, a MapSelect involving a handle? |
| 16139 | VNFuncApp funcApp2; |
| 16140 | if (comp->vnStore->GetVNFunc(mapVN, &funcApp2) && (funcApp2.m_func == VNF_MapSelect) && |
| 16141 | (comp->vnStore->IsVNHandle(funcApp2.m_args[1]))) |
| 16142 | { |
| 16143 | ValueNum fldHndVN = funcApp2.m_args[1]; |
| 16144 | // Is this new 'fldHndVN' VNhandle a FieldHandle? |
| 16145 | unsigned flags = comp->vnStore->GetHandleFlags(fldHndVN); |
| 16146 | if (flags == GTF_ICON_FIELD_HDL) |
| 16147 | { |
| 16148 | CORINFO_FIELD_HANDLE fieldHnd = |
| 16149 | CORINFO_FIELD_HANDLE(comp->vnStore->ConstantValue<ssize_t>(fldHndVN)); |
| 16150 | |
| 16151 | // Record this field sequence in 'statStructFldSeq' as it is likely to be a Boxed Struct |
| 16152 | // field access. |
| 16153 | statStructFldSeq = comp->GetFieldSeqStore()->CreateSingleton(fieldHnd); |
| 16154 | } |
| 16155 | } |
| 16156 | } |
| 16157 | } |
| 16158 | } |
| 16159 | |
| 16160 | if (statStructFldSeq != nullptr) |
| 16161 | { |
| 16162 | assert(statStructFldSeq->m_next == nullptr); |
| 16163 | // Is this a pointer to a boxed struct? |
| 16164 | if (comp->gtIsStaticFieldPtrToBoxedStruct(TYP_REF, statStructFldSeq->m_fieldHnd)) |
| 16165 | { |
| 16166 | *pFldSeq = comp->GetFieldSeqStore()->Append(statStructFldSeq, *pFldSeq); |
| 16167 | *pObj = nullptr; |
| 16168 | *pStatic = this; |
| 16169 | return true; |
| 16170 | } |
| 16171 | } |
| 16172 | |
| 16173 | // Otherwise... |
| 16174 | *pObj = this; |
| 16175 | *pStatic = nullptr; |
| 16176 | return true; |
| 16177 | } |
| 16178 | else if (OperGet() == GT_ADD) |
| 16179 | { |
| 16180 | // If one operator is a field sequence/handle, the other operator must not also be a field sequence/handle. |
| 16181 | if ((gtOp.gtOp1->OperGet() == GT_CNS_INT) && gtOp.gtOp1->IsIconHandle()) |
| 16182 | { |
| 16183 | assert((gtOp.gtOp2->gtOper != GT_CNS_INT) || !gtOp.gtOp2->IsIconHandle()); |
| 16184 | newFldSeq = gtOp.gtOp1->AsIntCon()->gtFieldSeq; |
| 16185 | baseAddr = gtOp.gtOp2; |
| 16186 | } |
| 16187 | else if (gtOp.gtOp2->OperGet() == GT_CNS_INT) |
| 16188 | { |
| 16189 | assert((gtOp.gtOp1->gtOper != GT_CNS_INT) || !gtOp.gtOp1->IsIconHandle()); |
| 16190 | newFldSeq = gtOp.gtOp2->AsIntCon()->gtFieldSeq; |
| 16191 | baseAddr = gtOp.gtOp1; |
| 16192 | } |
| 16193 | } |
| 16194 | else |
| 16195 | { |
| 16196 | // Check if "this" has a zero-offset annotation. |
| 16197 | if (!comp->GetZeroOffsetFieldMap()->Lookup(this, &newFldSeq)) |
| 16198 | { |
| 16199 | // If not, this is not a field address. |
| 16200 | return false; |
| 16201 | } |
| 16202 | else |
| 16203 | { |
| 16204 | baseAddr = this; |
| 16205 | mustBeStatic = true; |
| 16206 | } |
| 16207 | } |
| 16208 | |
| 16209 | // If not we don't have a field seq, it's not a field address. |
| 16210 | if (newFldSeq == nullptr || newFldSeq == FieldSeqStore::NotAField()) |
| 16211 | { |
| 16212 | return false; |
| 16213 | } |
| 16214 | |
| 16215 | // Prepend this field to whatever we've already accumulated (outside-in). |
| 16216 | *pFldSeq = comp->GetFieldSeqStore()->Append(newFldSeq, *pFldSeq); |
| 16217 | |
| 16218 | // Is it a static or instance field? |
| 16219 | if (!FieldSeqStore::IsPseudoField(newFldSeq->m_fieldHnd) && |
| 16220 | comp->info.compCompHnd->isFieldStatic(newFldSeq->m_fieldHnd)) |
| 16221 | { |
| 16222 | // It is a static field. We're done. |
| 16223 | *pObj = nullptr; |
| 16224 | *pStatic = baseAddr; |
| 16225 | return true; |
| 16226 | } |
| 16227 | else if ((baseAddr != nullptr) && !mustBeStatic) |
| 16228 | { |
| 16229 | // It's an instance field...but it must be for a struct field, since we've not yet encountered |
| 16230 | // a "TYP_REF" address. Analyze the reset of the address. |
| 16231 | return baseAddr->gtEffectiveVal()->IsFieldAddr(comp, pObj, pStatic, pFldSeq); |
| 16232 | } |
| 16233 | |
| 16234 | // Otherwise... |
| 16235 | return false; |
| 16236 | } |
| 16237 | |
| 16238 | bool Compiler::gtIsStaticFieldPtrToBoxedStruct(var_types fieldNodeType, CORINFO_FIELD_HANDLE fldHnd) |
| 16239 | { |
| 16240 | if (fieldNodeType != TYP_REF) |
| 16241 | { |
| 16242 | return false; |
| 16243 | } |
| 16244 | noway_assert(fldHnd != nullptr); |
| 16245 | CorInfoType cit = info.compCompHnd->getFieldType(fldHnd); |
| 16246 | var_types fieldTyp = JITtype2varType(cit); |
| 16247 | return fieldTyp != TYP_REF; |
| 16248 | } |
| 16249 | |
| 16250 | #ifdef FEATURE_SIMD |
| 16251 | //------------------------------------------------------------------------ |
| 16252 | // gtGetSIMDZero: Get a zero value of the appropriate SIMD type. |
| 16253 | // |
| 16254 | // Arguments: |
| 16255 | // var_types - The simdType |
| 16256 | // baseType - The base type we need |
| 16257 | // simdHandle - The handle for the SIMD type |
| 16258 | // |
| 16259 | // Return Value: |
| 16260 | // A node generating the appropriate Zero, if we are able to discern it, |
| 16261 | // otherwise null (note that this shouldn't happen, but callers should |
| 16262 | // be tolerant of this case). |
| 16263 | |
| 16264 | GenTree* Compiler::gtGetSIMDZero(var_types simdType, var_types baseType, CORINFO_CLASS_HANDLE simdHandle) |
| 16265 | { |
| 16266 | bool found = false; |
| 16267 | bool isHWSIMD = true; |
| 16268 | noway_assert(m_simdHandleCache != nullptr); |
| 16269 | |
| 16270 | // First, determine whether this is Vector<T>. |
| 16271 | if (simdType == getSIMDVectorType()) |
| 16272 | { |
| 16273 | switch (baseType) |
| 16274 | { |
| 16275 | case TYP_FLOAT: |
| 16276 | found = (simdHandle == m_simdHandleCache->SIMDFloatHandle); |
| 16277 | break; |
| 16278 | case TYP_DOUBLE: |
| 16279 | found = (simdHandle == m_simdHandleCache->SIMDDoubleHandle); |
| 16280 | break; |
| 16281 | case TYP_INT: |
| 16282 | found = (simdHandle == m_simdHandleCache->SIMDIntHandle); |
| 16283 | break; |
| 16284 | case TYP_USHORT: |
| 16285 | found = (simdHandle == m_simdHandleCache->SIMDUShortHandle); |
| 16286 | break; |
| 16287 | case TYP_UBYTE: |
| 16288 | found = (simdHandle == m_simdHandleCache->SIMDUByteHandle); |
| 16289 | break; |
| 16290 | case TYP_SHORT: |
| 16291 | found = (simdHandle == m_simdHandleCache->SIMDShortHandle); |
| 16292 | break; |
| 16293 | case TYP_BYTE: |
| 16294 | found = (simdHandle == m_simdHandleCache->SIMDByteHandle); |
| 16295 | break; |
| 16296 | case TYP_LONG: |
| 16297 | found = (simdHandle == m_simdHandleCache->SIMDLongHandle); |
| 16298 | break; |
| 16299 | case TYP_UINT: |
| 16300 | found = (simdHandle == m_simdHandleCache->SIMDUIntHandle); |
| 16301 | break; |
| 16302 | case TYP_ULONG: |
| 16303 | found = (simdHandle == m_simdHandleCache->SIMDULongHandle); |
| 16304 | break; |
| 16305 | default: |
| 16306 | break; |
| 16307 | } |
| 16308 | if (found) |
| 16309 | { |
| 16310 | isHWSIMD = false; |
| 16311 | } |
| 16312 | } |
| 16313 | |
| 16314 | if (!found) |
| 16315 | { |
| 16316 | // We must still have isHWSIMD set to true, and the only non-HW types left are the fixed types. |
| 16317 | switch (simdType) |
| 16318 | { |
| 16319 | case TYP_SIMD8: |
| 16320 | switch (baseType) |
| 16321 | { |
| 16322 | case TYP_FLOAT: |
| 16323 | if (simdHandle == m_simdHandleCache->SIMDVector2Handle) |
| 16324 | { |
| 16325 | isHWSIMD = false; |
| 16326 | } |
| 16327 | #if defined(_TARGET_ARM64_) && defined(FEATURE_HW_INTRINSICS) |
| 16328 | else |
| 16329 | { |
| 16330 | assert(simdHandle == m_simdHandleCache->Vector64FloatHandle); |
| 16331 | } |
| 16332 | break; |
| 16333 | case TYP_INT: |
| 16334 | assert(simdHandle == m_simdHandleCache->Vector64IntHandle); |
| 16335 | break; |
| 16336 | case TYP_USHORT: |
| 16337 | assert(simdHandle == m_simdHandleCache->Vector64UShortHandle); |
| 16338 | break; |
| 16339 | case TYP_UBYTE: |
| 16340 | assert(simdHandle == m_simdHandleCache->Vector64UByteHandle); |
| 16341 | break; |
| 16342 | case TYP_SHORT: |
| 16343 | assert(simdHandle == m_simdHandleCache->Vector64ShortHandle); |
| 16344 | break; |
| 16345 | case TYP_BYTE: |
| 16346 | assert(simdHandle == m_simdHandleCache->Vector64ByteHandle); |
| 16347 | break; |
| 16348 | case TYP_UINT: |
| 16349 | assert(simdHandle == m_simdHandleCache->Vector64UIntHandle); |
| 16350 | break; |
| 16351 | #endif // defined(_TARGET_ARM64_) && defined(FEATURE_HW_INTRINSICS) |
| 16352 | default: |
| 16353 | break; |
| 16354 | } |
| 16355 | break; |
| 16356 | |
| 16357 | case TYP_SIMD12: |
| 16358 | assert((baseType == TYP_FLOAT) && (simdHandle == m_simdHandleCache->SIMDVector3Handle)); |
| 16359 | isHWSIMD = false; |
| 16360 | break; |
| 16361 | |
| 16362 | case TYP_SIMD16: |
| 16363 | switch (baseType) |
| 16364 | { |
| 16365 | case TYP_FLOAT: |
| 16366 | if (simdHandle == m_simdHandleCache->SIMDVector4Handle) |
| 16367 | { |
| 16368 | isHWSIMD = false; |
| 16369 | } |
| 16370 | #if defined(FEATURE_HW_INTRINSICS) |
| 16371 | else |
| 16372 | { |
| 16373 | assert(simdHandle == m_simdHandleCache->Vector128FloatHandle); |
| 16374 | } |
| 16375 | break; |
| 16376 | case TYP_DOUBLE: |
| 16377 | assert(simdHandle == m_simdHandleCache->Vector128DoubleHandle); |
| 16378 | break; |
| 16379 | case TYP_INT: |
| 16380 | assert(simdHandle == m_simdHandleCache->Vector128IntHandle); |
| 16381 | break; |
| 16382 | case TYP_USHORT: |
| 16383 | assert(simdHandle == m_simdHandleCache->Vector128UShortHandle); |
| 16384 | break; |
| 16385 | case TYP_UBYTE: |
| 16386 | assert(simdHandle == m_simdHandleCache->Vector128UByteHandle); |
| 16387 | break; |
| 16388 | case TYP_SHORT: |
| 16389 | assert(simdHandle == m_simdHandleCache->Vector128ShortHandle); |
| 16390 | break; |
| 16391 | case TYP_BYTE: |
| 16392 | assert(simdHandle == m_simdHandleCache->Vector128ByteHandle); |
| 16393 | break; |
| 16394 | case TYP_LONG: |
| 16395 | assert(simdHandle == m_simdHandleCache->Vector128LongHandle); |
| 16396 | break; |
| 16397 | case TYP_UINT: |
| 16398 | assert(simdHandle == m_simdHandleCache->Vector128UIntHandle); |
| 16399 | break; |
| 16400 | case TYP_ULONG: |
| 16401 | assert(simdHandle == m_simdHandleCache->Vector128ULongHandle); |
| 16402 | break; |
| 16403 | #endif // defined(FEATURE_HW_INTRINSICS) |
| 16404 | |
| 16405 | default: |
| 16406 | break; |
| 16407 | } |
| 16408 | break; |
| 16409 | |
| 16410 | #if defined(_TARGET_XARCH4_) && defined(FEATURE_HW_INTRINSICS) |
| 16411 | case TYP_SIMD32: |
| 16412 | switch (baseType) |
| 16413 | { |
| 16414 | case TYP_FLOAT: |
| 16415 | assert(simdHandle == m_simdHandleCache->Vector256FloatHandle); |
| 16416 | break; |
| 16417 | case TYP_DOUBLE: |
| 16418 | assert(simdHandle == m_simdHandleCache->Vector256DoubleHandle); |
| 16419 | break; |
| 16420 | case TYP_INT: |
| 16421 | assert(simdHandle == m_simdHandleCache->Vector256IntHandle); |
| 16422 | break; |
| 16423 | case TYP_USHORT: |
| 16424 | assert(simdHandle == m_simdHandleCache->Vector256UShortHandle); |
| 16425 | break; |
| 16426 | case TYP_UBYTE: |
| 16427 | assert(simdHandle == m_simdHandleCache->Vector256UByteHandle); |
| 16428 | break; |
| 16429 | case TYP_SHORT: |
| 16430 | assert(simdHandle == m_simdHandleCache->Vector256ShortHandle); |
| 16431 | break; |
| 16432 | case TYP_BYTE: |
| 16433 | assert(simdHandle == m_simdHandleCache->Vector256ByteHandle); |
| 16434 | break; |
| 16435 | case TYP_LONG: |
| 16436 | assert(simdHandle == m_simdHandleCache->Vector256LongHandle); |
| 16437 | break; |
| 16438 | case TYP_UINT: |
| 16439 | assert(simdHandle == m_simdHandleCache->Vector256UIntHandle); |
| 16440 | break; |
| 16441 | case TYP_ULONG: |
| 16442 | assert(simdHandle == m_simdHandleCache->Vector256ULongHandle); |
| 16443 | break; |
| 16444 | default: |
| 16445 | break; |
| 16446 | } |
| 16447 | break; |
| 16448 | #endif // _TARGET_XARCH_ && FEATURE_HW_INTRINSICS |
| 16449 | default: |
| 16450 | break; |
| 16451 | } |
| 16452 | } |
| 16453 | |
| 16454 | unsigned size = genTypeSize(simdType); |
| 16455 | if (isHWSIMD) |
| 16456 | { |
| 16457 | #if defined(_TARGET_XARCH_) && defined(FEATURE_HW_INTRINSICS) |
| 16458 | switch (simdType) |
| 16459 | { |
| 16460 | case TYP_SIMD16: |
| 16461 | if (compSupports(InstructionSet_SSE)) |
| 16462 | { |
| 16463 | // We only return the HWIntrinsicNode if SSE is supported, since it is possible for |
| 16464 | // the user to disable the SSE HWIntrinsic support via the COMPlus configuration knobs |
| 16465 | // even though the hardware vector types are still available. |
| 16466 | return gtNewSimdHWIntrinsicNode(simdType, NI_Base_Vector128_Zero, baseType, size); |
| 16467 | } |
| 16468 | return nullptr; |
| 16469 | case TYP_SIMD32: |
| 16470 | if (compSupports(InstructionSet_AVX)) |
| 16471 | { |
| 16472 | // We only return the HWIntrinsicNode if AVX is supported, since it is possible for |
| 16473 | // the user to disable the AVX HWIntrinsic support via the COMPlus configuration knobs |
| 16474 | // even though the hardware vector types are still available. |
| 16475 | return gtNewSimdHWIntrinsicNode(simdType, NI_Base_Vector256_Zero, baseType, size); |
| 16476 | } |
| 16477 | return nullptr; |
| 16478 | default: |
| 16479 | break; |
| 16480 | } |
| 16481 | #endif // _TARGET_XARCH_ && FEATURE_HW_INTRINSICS |
| 16482 | JITDUMP("Coudn't find the matching SIMD type for %s<%s> in gtGetSIMDZero\n" , varTypeName(simdType), |
| 16483 | varTypeName(baseType)); |
| 16484 | } |
| 16485 | else |
| 16486 | { |
| 16487 | return gtNewSIMDVectorZero(simdType, baseType, size); |
| 16488 | } |
| 16489 | return nullptr; |
| 16490 | } |
| 16491 | #endif // FEATURE_SIMD |
| 16492 | |
| 16493 | CORINFO_CLASS_HANDLE Compiler::gtGetStructHandleIfPresent(GenTree* tree) |
| 16494 | { |
| 16495 | CORINFO_CLASS_HANDLE structHnd = NO_CLASS_HANDLE; |
| 16496 | tree = tree->gtEffectiveVal(); |
| 16497 | if (varTypeIsStruct(tree->gtType)) |
| 16498 | { |
| 16499 | switch (tree->gtOper) |
| 16500 | { |
| 16501 | default: |
| 16502 | break; |
| 16503 | case GT_MKREFANY: |
| 16504 | structHnd = impGetRefAnyClass(); |
| 16505 | break; |
| 16506 | case GT_OBJ: |
| 16507 | structHnd = tree->gtObj.gtClass; |
| 16508 | break; |
| 16509 | case GT_CALL: |
| 16510 | structHnd = tree->gtCall.gtRetClsHnd; |
| 16511 | break; |
| 16512 | case GT_RET_EXPR: |
| 16513 | structHnd = tree->gtRetExpr.gtRetClsHnd; |
| 16514 | break; |
| 16515 | case GT_ARGPLACE: |
| 16516 | structHnd = tree->gtArgPlace.gtArgPlaceClsHnd; |
| 16517 | break; |
| 16518 | case GT_INDEX: |
| 16519 | structHnd = tree->gtIndex.gtStructElemClass; |
| 16520 | break; |
| 16521 | case GT_INDEX_ADDR: |
| 16522 | structHnd = tree->AsIndexAddr()->gtStructElemClass; |
| 16523 | break; |
| 16524 | case GT_FIELD: |
| 16525 | info.compCompHnd->getFieldType(tree->gtField.gtFldHnd, &structHnd); |
| 16526 | break; |
| 16527 | case GT_ASG: |
| 16528 | structHnd = gtGetStructHandleIfPresent(tree->gtGetOp1()); |
| 16529 | break; |
| 16530 | case GT_LCL_FLD: |
| 16531 | #ifdef FEATURE_SIMD |
| 16532 | if (varTypeIsSIMD(tree)) |
| 16533 | { |
| 16534 | structHnd = gtGetStructHandleForSIMD(tree->gtType, TYP_FLOAT); |
| 16535 | } |
| 16536 | #endif |
| 16537 | break; |
| 16538 | case GT_LCL_VAR: |
| 16539 | structHnd = lvaTable[tree->AsLclVarCommon()->gtLclNum].lvVerTypeInfo.GetClassHandle(); |
| 16540 | break; |
| 16541 | case GT_RETURN: |
| 16542 | structHnd = gtGetStructHandleIfPresent(tree->gtOp.gtOp1); |
| 16543 | break; |
| 16544 | case GT_IND: |
| 16545 | #ifdef FEATURE_SIMD |
| 16546 | if (varTypeIsSIMD(tree)) |
| 16547 | { |
| 16548 | structHnd = gtGetStructHandleForSIMD(tree->gtType, TYP_FLOAT); |
| 16549 | } |
| 16550 | else |
| 16551 | #endif |
| 16552 | { |
| 16553 | ArrayInfo arrInfo; |
| 16554 | if (TryGetArrayInfo(tree->AsIndir(), &arrInfo)) |
| 16555 | { |
| 16556 | structHnd = EncodeElemType(arrInfo.m_elemType, arrInfo.m_elemStructType); |
| 16557 | } |
| 16558 | } |
| 16559 | break; |
| 16560 | #ifdef FEATURE_SIMD |
| 16561 | case GT_SIMD: |
| 16562 | structHnd = gtGetStructHandleForSIMD(tree->gtType, tree->AsSIMD()->gtSIMDBaseType); |
| 16563 | break; |
| 16564 | #endif // FEATURE_SIMD |
| 16565 | #ifdef FEATURE_HW_INTRINSICS |
| 16566 | case GT_HWIntrinsic: |
| 16567 | structHnd = gtGetStructHandleForHWSIMD(tree->gtType, tree->AsHWIntrinsic()->gtSIMDBaseType); |
| 16568 | break; |
| 16569 | #endif |
| 16570 | break; |
| 16571 | } |
| 16572 | } |
| 16573 | return structHnd; |
| 16574 | } |
| 16575 | |
| 16576 | CORINFO_CLASS_HANDLE Compiler::gtGetStructHandle(GenTree* tree) |
| 16577 | { |
| 16578 | CORINFO_CLASS_HANDLE structHnd = gtGetStructHandleIfPresent(tree); |
| 16579 | assert(structHnd != NO_CLASS_HANDLE); |
| 16580 | return structHnd; |
| 16581 | } |
| 16582 | |
| 16583 | //------------------------------------------------------------------------ |
| 16584 | // gtGetClassHandle: find class handle for a ref type |
| 16585 | // |
| 16586 | // Arguments: |
| 16587 | // tree -- tree to find handle for |
| 16588 | // pIsExact [out] -- whether handle is exact type |
| 16589 | // pIsNonNull [out] -- whether tree value is known not to be null |
| 16590 | // |
| 16591 | // Return Value: |
| 16592 | // nullptr if class handle is unknown, |
| 16593 | // otherwise the class handle. |
| 16594 | // *pIsExact set true if tree type is known to be exactly the handle type, |
| 16595 | // otherwise actual type may be a subtype. |
| 16596 | // *pIsNonNull set true if tree value is known not to be null, |
| 16597 | // otherwise a null value is possible. |
| 16598 | |
| 16599 | CORINFO_CLASS_HANDLE Compiler::gtGetClassHandle(GenTree* tree, bool* pIsExact, bool* pIsNonNull) |
| 16600 | { |
| 16601 | // Set default values for our out params. |
| 16602 | *pIsNonNull = false; |
| 16603 | *pIsExact = false; |
| 16604 | CORINFO_CLASS_HANDLE objClass = nullptr; |
| 16605 | |
| 16606 | // Bail out if we're just importing and not generating code, since |
| 16607 | // the jit uses TYP_REF for CORINFO_TYPE_VAR locals and args, but |
| 16608 | // these may not be ref types. |
| 16609 | if (compIsForImportOnly()) |
| 16610 | { |
| 16611 | return objClass; |
| 16612 | } |
| 16613 | |
| 16614 | // Bail out if the tree is not a ref type. |
| 16615 | var_types treeType = tree->TypeGet(); |
| 16616 | if (treeType != TYP_REF) |
| 16617 | { |
| 16618 | return objClass; |
| 16619 | } |
| 16620 | |
| 16621 | // Tunnel through commas. |
| 16622 | GenTree* obj = tree->gtEffectiveVal(false); |
| 16623 | const genTreeOps objOp = obj->OperGet(); |
| 16624 | |
| 16625 | switch (objOp) |
| 16626 | { |
| 16627 | case GT_COMMA: |
| 16628 | { |
| 16629 | // gtEffectiveVal above means we shouldn't see commas here. |
| 16630 | assert(!"unexpected GT_COMMA" ); |
| 16631 | break; |
| 16632 | } |
| 16633 | |
| 16634 | case GT_LCL_VAR: |
| 16635 | { |
| 16636 | // For locals, pick up type info from the local table. |
| 16637 | const unsigned objLcl = obj->AsLclVar()->GetLclNum(); |
| 16638 | |
| 16639 | objClass = lvaTable[objLcl].lvClassHnd; |
| 16640 | *pIsExact = lvaTable[objLcl].lvClassIsExact; |
| 16641 | break; |
| 16642 | } |
| 16643 | |
| 16644 | case GT_FIELD: |
| 16645 | { |
| 16646 | // For fields, get the type from the field handle. |
| 16647 | CORINFO_FIELD_HANDLE fieldHnd = obj->gtField.gtFldHnd; |
| 16648 | |
| 16649 | if (fieldHnd != nullptr) |
| 16650 | { |
| 16651 | objClass = gtGetFieldClassHandle(fieldHnd, pIsExact, pIsNonNull); |
| 16652 | } |
| 16653 | |
| 16654 | break; |
| 16655 | } |
| 16656 | |
| 16657 | case GT_RET_EXPR: |
| 16658 | { |
| 16659 | // If we see a RET_EXPR, recurse through to examine the |
| 16660 | // return value expression. |
| 16661 | GenTree* retExpr = tree->gtRetExpr.gtInlineCandidate; |
| 16662 | objClass = gtGetClassHandle(retExpr, pIsExact, pIsNonNull); |
| 16663 | break; |
| 16664 | } |
| 16665 | |
| 16666 | case GT_CALL: |
| 16667 | { |
| 16668 | GenTreeCall* call = tree->AsCall(); |
| 16669 | if (call->IsInlineCandidate()) |
| 16670 | { |
| 16671 | // For inline candidates, we've already cached the return |
| 16672 | // type class handle in the inline info. |
| 16673 | InlineCandidateInfo* inlInfo = call->gtInlineCandidateInfo; |
| 16674 | assert(inlInfo != nullptr); |
| 16675 | |
| 16676 | // Grab it as our first cut at a return type. |
| 16677 | assert(inlInfo->methInfo.args.retType == CORINFO_TYPE_CLASS); |
| 16678 | objClass = inlInfo->methInfo.args.retTypeClass; |
| 16679 | |
| 16680 | // If the method is shared, the above may not capture |
| 16681 | // the most precise return type information (that is, |
| 16682 | // it may represent a shared return type and as such, |
| 16683 | // have instances of __Canon). See if we can use the |
| 16684 | // context to get at something more definite. |
| 16685 | // |
| 16686 | // For now, we do this here on demand rather than when |
| 16687 | // processing the call, but we could/should apply |
| 16688 | // similar sharpening to the argument and local types |
| 16689 | // of the inlinee. |
| 16690 | const unsigned retClassFlags = info.compCompHnd->getClassAttribs(objClass); |
| 16691 | if (retClassFlags & CORINFO_FLG_SHAREDINST) |
| 16692 | { |
| 16693 | CORINFO_CONTEXT_HANDLE context = inlInfo->exactContextHnd; |
| 16694 | |
| 16695 | if (context != nullptr) |
| 16696 | { |
| 16697 | CORINFO_CLASS_HANDLE exactClass = nullptr; |
| 16698 | |
| 16699 | if (((size_t)context & CORINFO_CONTEXTFLAGS_MASK) == CORINFO_CONTEXTFLAGS_CLASS) |
| 16700 | { |
| 16701 | exactClass = (CORINFO_CLASS_HANDLE)((size_t)context & ~CORINFO_CONTEXTFLAGS_MASK); |
| 16702 | } |
| 16703 | else |
| 16704 | { |
| 16705 | CORINFO_METHOD_HANDLE exactMethod = |
| 16706 | (CORINFO_METHOD_HANDLE)((size_t)context & ~CORINFO_CONTEXTFLAGS_MASK); |
| 16707 | exactClass = info.compCompHnd->getMethodClass(exactMethod); |
| 16708 | } |
| 16709 | |
| 16710 | // Grab the signature in this context. |
| 16711 | CORINFO_SIG_INFO sig; |
| 16712 | eeGetMethodSig(call->gtCallMethHnd, &sig, exactClass); |
| 16713 | assert(sig.retType == CORINFO_TYPE_CLASS); |
| 16714 | objClass = sig.retTypeClass; |
| 16715 | } |
| 16716 | } |
| 16717 | } |
| 16718 | else if (call->gtCallType == CT_USER_FUNC) |
| 16719 | { |
| 16720 | // For user calls, we can fetch the approximate return |
| 16721 | // type info from the method handle. Unfortunately |
| 16722 | // we've lost the exact context, so this is the best |
| 16723 | // we can do for now. |
| 16724 | CORINFO_METHOD_HANDLE method = call->gtCallMethHnd; |
| 16725 | CORINFO_CLASS_HANDLE exactClass = nullptr; |
| 16726 | CORINFO_SIG_INFO sig; |
| 16727 | eeGetMethodSig(method, &sig, exactClass); |
| 16728 | if (sig.retType == CORINFO_TYPE_VOID) |
| 16729 | { |
| 16730 | // This is a constructor call. |
| 16731 | const unsigned methodFlags = info.compCompHnd->getMethodAttribs(method); |
| 16732 | assert((methodFlags & CORINFO_FLG_CONSTRUCTOR) != 0); |
| 16733 | objClass = info.compCompHnd->getMethodClass(method); |
| 16734 | *pIsExact = true; |
| 16735 | *pIsNonNull = true; |
| 16736 | } |
| 16737 | else |
| 16738 | { |
| 16739 | assert(sig.retType == CORINFO_TYPE_CLASS); |
| 16740 | objClass = sig.retTypeClass; |
| 16741 | } |
| 16742 | } |
| 16743 | else if (call->gtCallType == CT_HELPER) |
| 16744 | { |
| 16745 | objClass = gtGetHelperCallClassHandle(call, pIsExact, pIsNonNull); |
| 16746 | } |
| 16747 | |
| 16748 | break; |
| 16749 | } |
| 16750 | |
| 16751 | case GT_INTRINSIC: |
| 16752 | { |
| 16753 | GenTreeIntrinsic* intrinsic = obj->AsIntrinsic(); |
| 16754 | |
| 16755 | if (intrinsic->gtIntrinsicId == CORINFO_INTRINSIC_Object_GetType) |
| 16756 | { |
| 16757 | CORINFO_CLASS_HANDLE runtimeType = info.compCompHnd->getBuiltinClass(CLASSID_RUNTIME_TYPE); |
| 16758 | assert(runtimeType != NO_CLASS_HANDLE); |
| 16759 | |
| 16760 | objClass = runtimeType; |
| 16761 | *pIsExact = false; |
| 16762 | *pIsNonNull = true; |
| 16763 | } |
| 16764 | |
| 16765 | break; |
| 16766 | } |
| 16767 | |
| 16768 | case GT_CNS_STR: |
| 16769 | { |
| 16770 | // For literal strings, we know the class and that the |
| 16771 | // value is not null. |
| 16772 | objClass = impGetStringClass(); |
| 16773 | *pIsExact = true; |
| 16774 | *pIsNonNull = true; |
| 16775 | break; |
| 16776 | } |
| 16777 | |
| 16778 | case GT_IND: |
| 16779 | { |
| 16780 | GenTreeIndir* indir = obj->AsIndir(); |
| 16781 | |
| 16782 | if (indir->HasBase() && !indir->HasIndex()) |
| 16783 | { |
| 16784 | // indir(addr(lcl)) --> lcl |
| 16785 | // |
| 16786 | // This comes up during constrained callvirt on ref types. |
| 16787 | |
| 16788 | GenTree* base = indir->Base(); |
| 16789 | GenTreeLclVarCommon* lcl = base->IsLocalAddrExpr(); |
| 16790 | |
| 16791 | if ((lcl != nullptr) && (base->OperGet() != GT_ADD)) |
| 16792 | { |
| 16793 | const unsigned objLcl = lcl->GetLclNum(); |
| 16794 | objClass = lvaTable[objLcl].lvClassHnd; |
| 16795 | *pIsExact = lvaTable[objLcl].lvClassIsExact; |
| 16796 | } |
| 16797 | else if (base->OperGet() == GT_ARR_ELEM) |
| 16798 | { |
| 16799 | // indir(arr_elem(...)) -> array element type |
| 16800 | |
| 16801 | GenTree* array = base->AsArrElem()->gtArrObj; |
| 16802 | |
| 16803 | objClass = gtGetArrayElementClassHandle(array); |
| 16804 | *pIsExact = false; |
| 16805 | *pIsNonNull = false; |
| 16806 | } |
| 16807 | else if (base->OperGet() == GT_ADD) |
| 16808 | { |
| 16809 | // This could be a static field access. |
| 16810 | // |
| 16811 | // See if op1 is a static field base helper call |
| 16812 | // and if so, op2 will have the field info. |
| 16813 | GenTree* op1 = base->gtOp.gtOp1; |
| 16814 | GenTree* op2 = base->gtOp.gtOp2; |
| 16815 | |
| 16816 | const bool op1IsStaticFieldBase = gtIsStaticGCBaseHelperCall(op1); |
| 16817 | |
| 16818 | if (op1IsStaticFieldBase && (op2->OperGet() == GT_CNS_INT)) |
| 16819 | { |
| 16820 | FieldSeqNode* fieldSeq = op2->AsIntCon()->gtFieldSeq; |
| 16821 | |
| 16822 | if (fieldSeq != nullptr) |
| 16823 | { |
| 16824 | while (fieldSeq->m_next != nullptr) |
| 16825 | { |
| 16826 | fieldSeq = fieldSeq->m_next; |
| 16827 | } |
| 16828 | |
| 16829 | assert(!fieldSeq->IsPseudoField()); |
| 16830 | |
| 16831 | // No benefit to calling gtGetFieldClassHandle here, as |
| 16832 | // the exact field being accessed can vary. |
| 16833 | CORINFO_FIELD_HANDLE fieldHnd = fieldSeq->m_fieldHnd; |
| 16834 | CORINFO_CLASS_HANDLE fieldClass = nullptr; |
| 16835 | CorInfoType fieldCorType = info.compCompHnd->getFieldType(fieldHnd, &fieldClass); |
| 16836 | |
| 16837 | assert(fieldCorType == CORINFO_TYPE_CLASS); |
| 16838 | objClass = fieldClass; |
| 16839 | } |
| 16840 | } |
| 16841 | } |
| 16842 | } |
| 16843 | |
| 16844 | break; |
| 16845 | } |
| 16846 | |
| 16847 | case GT_BOX: |
| 16848 | { |
| 16849 | // Box should just wrap a local var reference which has |
| 16850 | // the type we're looking for. Also box only represents a |
| 16851 | // non-nullable value type so result cannot be null. |
| 16852 | GenTreeBox* box = obj->AsBox(); |
| 16853 | GenTree* boxTemp = box->BoxOp(); |
| 16854 | assert(boxTemp->IsLocal()); |
| 16855 | const unsigned boxTempLcl = boxTemp->AsLclVar()->GetLclNum(); |
| 16856 | objClass = lvaTable[boxTempLcl].lvClassHnd; |
| 16857 | *pIsExact = lvaTable[boxTempLcl].lvClassIsExact; |
| 16858 | *pIsNonNull = true; |
| 16859 | break; |
| 16860 | } |
| 16861 | |
| 16862 | case GT_INDEX: |
| 16863 | { |
| 16864 | GenTree* array = obj->AsIndex()->Arr(); |
| 16865 | |
| 16866 | objClass = gtGetArrayElementClassHandle(array); |
| 16867 | *pIsExact = false; |
| 16868 | *pIsNonNull = false; |
| 16869 | break; |
| 16870 | } |
| 16871 | |
| 16872 | default: |
| 16873 | { |
| 16874 | break; |
| 16875 | } |
| 16876 | } |
| 16877 | |
| 16878 | return objClass; |
| 16879 | } |
| 16880 | |
| 16881 | //------------------------------------------------------------------------ |
| 16882 | // gtGetHelperCallClassHandle: find class handle for return value of a |
| 16883 | // helper call |
| 16884 | // |
| 16885 | // Arguments: |
| 16886 | // call - helper call to examine |
| 16887 | // pIsExact - [OUT] true if type is known exactly |
| 16888 | // pIsNonNull - [OUT] true if return value is not null |
| 16889 | // |
| 16890 | // Return Value: |
| 16891 | // nullptr if helper call result is not a ref class, or the class handle |
| 16892 | // is unknown, otherwise the class handle. |
| 16893 | |
| 16894 | CORINFO_CLASS_HANDLE Compiler::gtGetHelperCallClassHandle(GenTreeCall* call, bool* pIsExact, bool* pIsNonNull) |
| 16895 | { |
| 16896 | assert(call->gtCallType == CT_HELPER); |
| 16897 | |
| 16898 | *pIsNonNull = false; |
| 16899 | *pIsExact = false; |
| 16900 | CORINFO_CLASS_HANDLE objClass = nullptr; |
| 16901 | const CorInfoHelpFunc helper = eeGetHelperNum(call->gtCallMethHnd); |
| 16902 | |
| 16903 | switch (helper) |
| 16904 | { |
| 16905 | case CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE: |
| 16906 | case CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE_MAYBENULL: |
| 16907 | { |
| 16908 | // Note for some runtimes these helpers return exact types. |
| 16909 | // |
| 16910 | // But in those cases the types are also sealed, so there's no |
| 16911 | // need to claim exactness here. |
| 16912 | const bool helperResultNonNull = (helper == CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE); |
| 16913 | CORINFO_CLASS_HANDLE runtimeType = info.compCompHnd->getBuiltinClass(CLASSID_RUNTIME_TYPE); |
| 16914 | |
| 16915 | assert(runtimeType != NO_CLASS_HANDLE); |
| 16916 | |
| 16917 | objClass = runtimeType; |
| 16918 | *pIsNonNull = helperResultNonNull; |
| 16919 | break; |
| 16920 | } |
| 16921 | |
| 16922 | case CORINFO_HELP_CHKCASTCLASS: |
| 16923 | case CORINFO_HELP_CHKCASTANY: |
| 16924 | case CORINFO_HELP_CHKCASTARRAY: |
| 16925 | case CORINFO_HELP_CHKCASTINTERFACE: |
| 16926 | case CORINFO_HELP_CHKCASTCLASS_SPECIAL: |
| 16927 | case CORINFO_HELP_ISINSTANCEOFINTERFACE: |
| 16928 | case CORINFO_HELP_ISINSTANCEOFARRAY: |
| 16929 | case CORINFO_HELP_ISINSTANCEOFCLASS: |
| 16930 | case CORINFO_HELP_ISINSTANCEOFANY: |
| 16931 | { |
| 16932 | // Fetch the class handle from the helper call arglist |
| 16933 | GenTreeArgList* args = call->gtCallArgs; |
| 16934 | GenTree* typeArg = args->Current(); |
| 16935 | CORINFO_CLASS_HANDLE castHnd = gtGetHelperArgClassHandle(typeArg); |
| 16936 | |
| 16937 | // We generally assume the type being cast to is the best type |
| 16938 | // for the result, unless it is an interface type. |
| 16939 | // |
| 16940 | // TODO-CQ: when we have default interface methods then |
| 16941 | // this might not be the best assumption. We could also |
| 16942 | // explore calling something like mergeClasses to identify |
| 16943 | // the more specific class. A similar issue arises when |
| 16944 | // typing the temp in impCastClassOrIsInstToTree, when we |
| 16945 | // expand the cast inline. |
| 16946 | if (castHnd != nullptr) |
| 16947 | { |
| 16948 | DWORD attrs = info.compCompHnd->getClassAttribs(castHnd); |
| 16949 | |
| 16950 | if ((attrs & CORINFO_FLG_INTERFACE) != 0) |
| 16951 | { |
| 16952 | castHnd = nullptr; |
| 16953 | } |
| 16954 | } |
| 16955 | |
| 16956 | // If we don't have a good estimate for the type we can use the |
| 16957 | // type from the value being cast instead. |
| 16958 | if (castHnd == nullptr) |
| 16959 | { |
| 16960 | GenTree* valueArg = args->Rest()->Current(); |
| 16961 | castHnd = gtGetClassHandle(valueArg, pIsExact, pIsNonNull); |
| 16962 | } |
| 16963 | |
| 16964 | // We don't know at jit time if the cast will succeed or fail, but if it |
| 16965 | // fails at runtime then an exception is thrown for cast helpers, or the |
| 16966 | // result is set null for instance helpers. |
| 16967 | // |
| 16968 | // So it safe to claim the result has the cast type. |
| 16969 | // Note we don't know for sure that it is exactly this type. |
| 16970 | if (castHnd != nullptr) |
| 16971 | { |
| 16972 | objClass = castHnd; |
| 16973 | } |
| 16974 | |
| 16975 | break; |
| 16976 | } |
| 16977 | |
| 16978 | default: |
| 16979 | break; |
| 16980 | } |
| 16981 | |
| 16982 | return objClass; |
| 16983 | } |
| 16984 | |
| 16985 | //------------------------------------------------------------------------ |
| 16986 | // gtGetArrayElementClassHandle: find class handle for elements of an array |
| 16987 | // of ref types |
| 16988 | // |
| 16989 | // Arguments: |
| 16990 | // array -- array to find handle for |
| 16991 | // |
| 16992 | // Return Value: |
| 16993 | // nullptr if element class handle is unknown, otherwise the class handle. |
| 16994 | |
| 16995 | CORINFO_CLASS_HANDLE Compiler::gtGetArrayElementClassHandle(GenTree* array) |
| 16996 | { |
| 16997 | bool isArrayExact = false; |
| 16998 | bool isArrayNonNull = false; |
| 16999 | CORINFO_CLASS_HANDLE arrayClassHnd = gtGetClassHandle(array, &isArrayExact, &isArrayNonNull); |
| 17000 | |
| 17001 | if (arrayClassHnd != nullptr) |
| 17002 | { |
| 17003 | // We know the class of the reference |
| 17004 | DWORD attribs = info.compCompHnd->getClassAttribs(arrayClassHnd); |
| 17005 | |
| 17006 | if ((attribs & CORINFO_FLG_ARRAY) != 0) |
| 17007 | { |
| 17008 | // We know for sure it is an array |
| 17009 | CORINFO_CLASS_HANDLE elemClassHnd = nullptr; |
| 17010 | CorInfoType arrayElemType = info.compCompHnd->getChildType(arrayClassHnd, &elemClassHnd); |
| 17011 | |
| 17012 | if (arrayElemType == CORINFO_TYPE_CLASS) |
| 17013 | { |
| 17014 | // We know it is an array of ref types |
| 17015 | return elemClassHnd; |
| 17016 | } |
| 17017 | } |
| 17018 | } |
| 17019 | |
| 17020 | return nullptr; |
| 17021 | } |
| 17022 | |
| 17023 | //------------------------------------------------------------------------ |
| 17024 | // gtGetFieldClassHandle: find class handle for a field |
| 17025 | // |
| 17026 | // Arguments: |
| 17027 | // fieldHnd - field handle for field in question |
| 17028 | // pIsExact - [OUT] true if type is known exactly |
| 17029 | // pIsNonNull - [OUT] true if field value is not null |
| 17030 | // |
| 17031 | // Return Value: |
| 17032 | // nullptr if helper call result is not a ref class, or the class handle |
| 17033 | // is unknown, otherwise the class handle. |
| 17034 | // |
| 17035 | // May examine runtime state of static field instances. |
| 17036 | |
| 17037 | CORINFO_CLASS_HANDLE Compiler::gtGetFieldClassHandle(CORINFO_FIELD_HANDLE fieldHnd, bool* pIsExact, bool* pIsNonNull) |
| 17038 | { |
| 17039 | CORINFO_CLASS_HANDLE fieldClass = nullptr; |
| 17040 | CorInfoType fieldCorType = info.compCompHnd->getFieldType(fieldHnd, &fieldClass); |
| 17041 | |
| 17042 | if (fieldCorType == CORINFO_TYPE_CLASS) |
| 17043 | { |
| 17044 | // Optionally, look at the actual type of the field's value |
| 17045 | bool queryForCurrentClass = true; |
| 17046 | INDEBUG(queryForCurrentClass = (JitConfig.JitQueryCurrentStaticFieldClass() > 0);); |
| 17047 | |
| 17048 | if (queryForCurrentClass) |
| 17049 | { |
| 17050 | |
| 17051 | #if DEBUG |
| 17052 | const char* fieldClassName = nullptr; |
| 17053 | const char* fieldName = eeGetFieldName(fieldHnd, &fieldClassName); |
| 17054 | JITDUMP("Querying runtime about current class of field %s.%s (declared as %s)\n" , fieldClassName, fieldName, |
| 17055 | eeGetClassName(fieldClass)); |
| 17056 | #endif // DEBUG |
| 17057 | |
| 17058 | // Is this a fully initialized init-only static field? |
| 17059 | // |
| 17060 | // Note we're not asking for speculative results here, yet. |
| 17061 | CORINFO_CLASS_HANDLE currentClass = info.compCompHnd->getStaticFieldCurrentClass(fieldHnd); |
| 17062 | |
| 17063 | if (currentClass != NO_CLASS_HANDLE) |
| 17064 | { |
| 17065 | // Yes! We know the class exactly and can rely on this to always be true. |
| 17066 | fieldClass = currentClass; |
| 17067 | *pIsExact = true; |
| 17068 | *pIsNonNull = true; |
| 17069 | JITDUMP("Runtime reports field is init-only and initialized and has class %s\n" , |
| 17070 | eeGetClassName(fieldClass)); |
| 17071 | } |
| 17072 | else |
| 17073 | { |
| 17074 | JITDUMP("Field's current class not available\n" ); |
| 17075 | } |
| 17076 | } |
| 17077 | } |
| 17078 | |
| 17079 | return fieldClass; |
| 17080 | } |
| 17081 | |
| 17082 | //------------------------------------------------------------------------ |
| 17083 | // gtIsGCStaticBaseHelperCall: true if tree is fetching the gc static base |
| 17084 | // for a subsequent static field access |
| 17085 | // |
| 17086 | // Arguments: |
| 17087 | // tree - tree to consider |
| 17088 | // |
| 17089 | // Return Value: |
| 17090 | // true if the tree is a suitable helper call |
| 17091 | // |
| 17092 | // Notes: |
| 17093 | // Excludes R2R helpers as they specify the target field in a way |
| 17094 | // that is opaque to the jit. |
| 17095 | |
| 17096 | bool Compiler::gtIsStaticGCBaseHelperCall(GenTree* tree) |
| 17097 | { |
| 17098 | if (tree->OperGet() != GT_CALL) |
| 17099 | { |
| 17100 | return false; |
| 17101 | } |
| 17102 | |
| 17103 | GenTreeCall* call = tree->AsCall(); |
| 17104 | |
| 17105 | if (call->gtCallType != CT_HELPER) |
| 17106 | { |
| 17107 | return false; |
| 17108 | } |
| 17109 | |
| 17110 | const CorInfoHelpFunc helper = eeGetHelperNum(call->gtCallMethHnd); |
| 17111 | |
| 17112 | switch (helper) |
| 17113 | { |
| 17114 | // We are looking for a REF type so only need to check for the GC base helpers |
| 17115 | case CORINFO_HELP_GETGENERICS_GCSTATIC_BASE: |
| 17116 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE: |
| 17117 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE_NOCTOR: |
| 17118 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE_DYNAMICCLASS: |
| 17119 | case CORINFO_HELP_GETGENERICS_GCTHREADSTATIC_BASE: |
| 17120 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE: |
| 17121 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE_NOCTOR: |
| 17122 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE_DYNAMICCLASS: |
| 17123 | return true; |
| 17124 | default: |
| 17125 | break; |
| 17126 | } |
| 17127 | |
| 17128 | return false; |
| 17129 | } |
| 17130 | |
| 17131 | void GenTree::ParseArrayAddress( |
| 17132 | Compiler* comp, ArrayInfo* arrayInfo, GenTree** pArr, ValueNum* pInxVN, FieldSeqNode** pFldSeq) |
| 17133 | { |
| 17134 | *pArr = nullptr; |
| 17135 | ValueNum inxVN = ValueNumStore::NoVN; |
| 17136 | target_ssize_t offset = 0; |
| 17137 | FieldSeqNode* fldSeq = nullptr; |
| 17138 | |
| 17139 | ParseArrayAddressWork(comp, 1, pArr, &inxVN, &offset, &fldSeq); |
| 17140 | |
| 17141 | // If we didn't find an array reference (perhaps it is the constant null?) we will give up. |
| 17142 | if (*pArr == nullptr) |
| 17143 | { |
| 17144 | return; |
| 17145 | } |
| 17146 | |
| 17147 | // OK, new we have to figure out if any part of the "offset" is a constant contribution to the index. |
| 17148 | // First, sum the offsets of any fields in fldSeq. |
| 17149 | unsigned fieldOffsets = 0; |
| 17150 | FieldSeqNode* fldSeqIter = fldSeq; |
| 17151 | // Also, find the first non-pseudo field... |
| 17152 | assert(*pFldSeq == nullptr); |
| 17153 | while (fldSeqIter != nullptr) |
| 17154 | { |
| 17155 | if (fldSeqIter == FieldSeqStore::NotAField()) |
| 17156 | { |
| 17157 | // TODO-Review: A NotAField here indicates a failure to properly maintain the field sequence |
| 17158 | // See test case self_host_tests_x86\jit\regression\CLR-x86-JIT\v1-m12-beta2\ b70992\ b70992.exe |
| 17159 | // Safest thing to do here is to drop back to MinOpts |
| 17160 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 17161 | |
| 17162 | #ifdef DEBUG |
| 17163 | if (comp->opts.optRepeat) |
| 17164 | { |
| 17165 | // We don't guarantee preserving these annotations through the entire optimizer, so |
| 17166 | // just conservatively return null if under optRepeat. |
| 17167 | *pArr = nullptr; |
| 17168 | return; |
| 17169 | } |
| 17170 | #endif // DEBUG |
| 17171 | noway_assert(!"fldSeqIter is NotAField() in ParseArrayAddress" ); |
| 17172 | } |
| 17173 | |
| 17174 | if (!FieldSeqStore::IsPseudoField(fldSeqIter->m_fieldHnd)) |
| 17175 | { |
| 17176 | if (*pFldSeq == nullptr) |
| 17177 | { |
| 17178 | *pFldSeq = fldSeqIter; |
| 17179 | } |
| 17180 | CORINFO_CLASS_HANDLE fldCls = nullptr; |
| 17181 | noway_assert(fldSeqIter->m_fieldHnd != nullptr); |
| 17182 | CorInfoType cit = comp->info.compCompHnd->getFieldType(fldSeqIter->m_fieldHnd, &fldCls); |
| 17183 | fieldOffsets += comp->compGetTypeSize(cit, fldCls); |
| 17184 | } |
| 17185 | fldSeqIter = fldSeqIter->m_next; |
| 17186 | } |
| 17187 | |
| 17188 | // Is there some portion of the "offset" beyond the first-elem offset and the struct field suffix we just computed? |
| 17189 | if (!FitsIn<target_ssize_t>(fieldOffsets + arrayInfo->m_elemOffset) || |
| 17190 | !FitsIn<target_ssize_t>(arrayInfo->m_elemSize)) |
| 17191 | { |
| 17192 | // This seems unlikely, but no harm in being safe... |
| 17193 | *pInxVN = comp->GetValueNumStore()->VNForExpr(nullptr, TYP_INT); |
| 17194 | return; |
| 17195 | } |
| 17196 | // Otherwise... |
| 17197 | target_ssize_t offsetAccountedFor = static_cast<target_ssize_t>(fieldOffsets + arrayInfo->m_elemOffset); |
| 17198 | target_ssize_t elemSize = static_cast<target_ssize_t>(arrayInfo->m_elemSize); |
| 17199 | |
| 17200 | target_ssize_t constIndOffset = offset - offsetAccountedFor; |
| 17201 | // This should be divisible by the element size... |
| 17202 | assert((constIndOffset % elemSize) == 0); |
| 17203 | target_ssize_t constInd = constIndOffset / elemSize; |
| 17204 | |
| 17205 | ValueNumStore* vnStore = comp->GetValueNumStore(); |
| 17206 | |
| 17207 | if (inxVN == ValueNumStore::NoVN) |
| 17208 | { |
| 17209 | // Must be a constant index. |
| 17210 | *pInxVN = vnStore->VNForPtrSizeIntCon(constInd); |
| 17211 | } |
| 17212 | else |
| 17213 | { |
| 17214 | // |
| 17215 | // Perform ((inxVN / elemSizeVN) + vnForConstInd) |
| 17216 | // |
| 17217 | |
| 17218 | // The value associated with the index value number (inxVN) is the offset into the array, |
| 17219 | // which has been scaled by element size. We need to recover the array index from that offset |
| 17220 | if (vnStore->IsVNConstant(inxVN)) |
| 17221 | { |
| 17222 | target_ssize_t index = vnStore->CoercedConstantValue<target_ssize_t>(inxVN); |
| 17223 | noway_assert(elemSize > 0 && ((index % elemSize) == 0)); |
| 17224 | *pInxVN = vnStore->VNForPtrSizeIntCon((index / elemSize) + constInd); |
| 17225 | } |
| 17226 | else |
| 17227 | { |
| 17228 | bool canFoldDiv = false; |
| 17229 | |
| 17230 | // If the index VN is a MUL by elemSize, see if we can eliminate it instead of adding |
| 17231 | // the division by elemSize. |
| 17232 | VNFuncApp funcApp; |
| 17233 | if (vnStore->GetVNFunc(inxVN, &funcApp) && funcApp.m_func == (VNFunc)GT_MUL) |
| 17234 | { |
| 17235 | ValueNum vnForElemSize = vnStore->VNForLongCon(elemSize); |
| 17236 | |
| 17237 | // One of the multiply operand is elemSize, so the resulting |
| 17238 | // index VN should simply be the other operand. |
| 17239 | if (funcApp.m_args[1] == vnForElemSize) |
| 17240 | { |
| 17241 | *pInxVN = funcApp.m_args[0]; |
| 17242 | canFoldDiv = true; |
| 17243 | } |
| 17244 | else if (funcApp.m_args[0] == vnForElemSize) |
| 17245 | { |
| 17246 | *pInxVN = funcApp.m_args[1]; |
| 17247 | canFoldDiv = true; |
| 17248 | } |
| 17249 | } |
| 17250 | |
| 17251 | // Perform ((inxVN / elemSizeVN) + vnForConstInd) |
| 17252 | if (!canFoldDiv) |
| 17253 | { |
| 17254 | ValueNum vnForElemSize = vnStore->VNForPtrSizeIntCon(elemSize); |
| 17255 | ValueNum vnForScaledInx = |
| 17256 | vnStore->VNForFunc(TYP_I_IMPL, GetVNFuncForOper(GT_DIV, VOK_Default), inxVN, vnForElemSize); |
| 17257 | *pInxVN = vnForScaledInx; |
| 17258 | } |
| 17259 | |
| 17260 | if (constInd != 0) |
| 17261 | { |
| 17262 | ValueNum vnForConstInd = comp->GetValueNumStore()->VNForPtrSizeIntCon(constInd); |
| 17263 | VNFunc vnFunc = GetVNFuncForOper(GT_ADD, VOK_Default); |
| 17264 | |
| 17265 | *pInxVN = comp->GetValueNumStore()->VNForFunc(TYP_I_IMPL, vnFunc, *pInxVN, vnForConstInd); |
| 17266 | } |
| 17267 | } |
| 17268 | } |
| 17269 | } |
| 17270 | |
| 17271 | void GenTree::ParseArrayAddressWork(Compiler* comp, |
| 17272 | target_ssize_t inputMul, |
| 17273 | GenTree** pArr, |
| 17274 | ValueNum* pInxVN, |
| 17275 | target_ssize_t* pOffset, |
| 17276 | FieldSeqNode** pFldSeq) |
| 17277 | { |
| 17278 | if (TypeGet() == TYP_REF) |
| 17279 | { |
| 17280 | // This must be the array pointer. |
| 17281 | *pArr = this; |
| 17282 | assert(inputMul == 1); // Can't multiply the array pointer by anything. |
| 17283 | } |
| 17284 | else |
| 17285 | { |
| 17286 | switch (OperGet()) |
| 17287 | { |
| 17288 | case GT_CNS_INT: |
| 17289 | *pFldSeq = comp->GetFieldSeqStore()->Append(*pFldSeq, gtIntCon.gtFieldSeq); |
| 17290 | assert(!gtIntCon.ImmedValNeedsReloc(comp)); |
| 17291 | // TODO-CrossBitness: we wouldn't need the cast below if GenTreeIntCon::gtIconVal had target_ssize_t |
| 17292 | // type. |
| 17293 | *pOffset += (inputMul * (target_ssize_t)(gtIntCon.gtIconVal)); |
| 17294 | return; |
| 17295 | |
| 17296 | case GT_ADD: |
| 17297 | case GT_SUB: |
| 17298 | gtOp.gtOp1->ParseArrayAddressWork(comp, inputMul, pArr, pInxVN, pOffset, pFldSeq); |
| 17299 | if (OperGet() == GT_SUB) |
| 17300 | { |
| 17301 | inputMul = -inputMul; |
| 17302 | } |
| 17303 | gtOp.gtOp2->ParseArrayAddressWork(comp, inputMul, pArr, pInxVN, pOffset, pFldSeq); |
| 17304 | return; |
| 17305 | |
| 17306 | case GT_MUL: |
| 17307 | { |
| 17308 | // If one op is a constant, continue parsing down. |
| 17309 | target_ssize_t subMul = 0; |
| 17310 | GenTree* nonConst = nullptr; |
| 17311 | if (gtOp.gtOp1->IsCnsIntOrI()) |
| 17312 | { |
| 17313 | // If the other arg is an int constant, and is a "not-a-field", choose |
| 17314 | // that as the multiplier, thus preserving constant index offsets... |
| 17315 | if (gtOp.gtOp2->OperGet() == GT_CNS_INT && |
| 17316 | gtOp.gtOp2->gtIntCon.gtFieldSeq == FieldSeqStore::NotAField()) |
| 17317 | { |
| 17318 | assert(!gtOp.gtOp2->gtIntCon.ImmedValNeedsReloc(comp)); |
| 17319 | // TODO-CrossBitness: we wouldn't need the cast below if GenTreeIntConCommon::gtIconVal had |
| 17320 | // target_ssize_t type. |
| 17321 | subMul = (target_ssize_t)gtOp.gtOp2->gtIntConCommon.IconValue(); |
| 17322 | nonConst = gtOp.gtOp1; |
| 17323 | } |
| 17324 | else |
| 17325 | { |
| 17326 | assert(!gtOp.gtOp1->gtIntCon.ImmedValNeedsReloc(comp)); |
| 17327 | // TODO-CrossBitness: we wouldn't need the cast below if GenTreeIntConCommon::gtIconVal had |
| 17328 | // target_ssize_t type. |
| 17329 | subMul = (target_ssize_t)gtOp.gtOp1->gtIntConCommon.IconValue(); |
| 17330 | nonConst = gtOp.gtOp2; |
| 17331 | } |
| 17332 | } |
| 17333 | else if (gtOp.gtOp2->IsCnsIntOrI()) |
| 17334 | { |
| 17335 | assert(!gtOp.gtOp2->gtIntCon.ImmedValNeedsReloc(comp)); |
| 17336 | // TODO-CrossBitness: we wouldn't need the cast below if GenTreeIntConCommon::gtIconVal had |
| 17337 | // target_ssize_t type. |
| 17338 | subMul = (target_ssize_t)gtOp.gtOp2->gtIntConCommon.IconValue(); |
| 17339 | nonConst = gtOp.gtOp1; |
| 17340 | } |
| 17341 | if (nonConst != nullptr) |
| 17342 | { |
| 17343 | nonConst->ParseArrayAddressWork(comp, inputMul * subMul, pArr, pInxVN, pOffset, pFldSeq); |
| 17344 | return; |
| 17345 | } |
| 17346 | // Otherwise, exit the switch, treat as a contribution to the index. |
| 17347 | } |
| 17348 | break; |
| 17349 | |
| 17350 | case GT_LSH: |
| 17351 | // If one op is a constant, continue parsing down. |
| 17352 | if (gtOp.gtOp2->IsCnsIntOrI()) |
| 17353 | { |
| 17354 | assert(!gtOp.gtOp2->gtIntCon.ImmedValNeedsReloc(comp)); |
| 17355 | // TODO-CrossBitness: we wouldn't need the cast below if GenTreeIntCon::gtIconVal had target_ssize_t |
| 17356 | // type. |
| 17357 | target_ssize_t subMul = target_ssize_t{1} << (target_ssize_t)gtOp.gtOp2->gtIntConCommon.IconValue(); |
| 17358 | gtOp.gtOp1->ParseArrayAddressWork(comp, inputMul * subMul, pArr, pInxVN, pOffset, pFldSeq); |
| 17359 | return; |
| 17360 | } |
| 17361 | // Otherwise, exit the switch, treat as a contribution to the index. |
| 17362 | break; |
| 17363 | |
| 17364 | case GT_COMMA: |
| 17365 | // We don't care about exceptions for this purpose. |
| 17366 | if ((gtOp.gtOp1->OperGet() == GT_ARR_BOUNDS_CHECK) || gtOp.gtOp1->IsNothingNode()) |
| 17367 | { |
| 17368 | gtOp.gtOp2->ParseArrayAddressWork(comp, inputMul, pArr, pInxVN, pOffset, pFldSeq); |
| 17369 | return; |
| 17370 | } |
| 17371 | break; |
| 17372 | |
| 17373 | default: |
| 17374 | break; |
| 17375 | } |
| 17376 | // If we didn't return above, must be a contribution to the non-constant part of the index VN. |
| 17377 | ValueNum vn = comp->GetValueNumStore()->VNLiberalNormalValue(gtVNPair); |
| 17378 | if (inputMul != 1) |
| 17379 | { |
| 17380 | ValueNum mulVN = comp->GetValueNumStore()->VNForLongCon(inputMul); |
| 17381 | vn = comp->GetValueNumStore()->VNForFunc(TypeGet(), GetVNFuncForOper(GT_MUL, VOK_Default), mulVN, vn); |
| 17382 | } |
| 17383 | if (*pInxVN == ValueNumStore::NoVN) |
| 17384 | { |
| 17385 | *pInxVN = vn; |
| 17386 | } |
| 17387 | else |
| 17388 | { |
| 17389 | *pInxVN = |
| 17390 | comp->GetValueNumStore()->VNForFunc(TypeGet(), GetVNFuncForOper(GT_ADD, VOK_Default), *pInxVN, vn); |
| 17391 | } |
| 17392 | } |
| 17393 | } |
| 17394 | |
| 17395 | bool GenTree::ParseArrayElemForm(Compiler* comp, ArrayInfo* arrayInfo, FieldSeqNode** pFldSeq) |
| 17396 | { |
| 17397 | if (OperIsIndir()) |
| 17398 | { |
| 17399 | if (gtFlags & GTF_IND_ARR_INDEX) |
| 17400 | { |
| 17401 | bool b = comp->GetArrayInfoMap()->Lookup(this, arrayInfo); |
| 17402 | assert(b); |
| 17403 | return true; |
| 17404 | } |
| 17405 | |
| 17406 | // Otherwise... |
| 17407 | GenTree* addr = AsIndir()->Addr(); |
| 17408 | return addr->ParseArrayElemAddrForm(comp, arrayInfo, pFldSeq); |
| 17409 | } |
| 17410 | else |
| 17411 | { |
| 17412 | return false; |
| 17413 | } |
| 17414 | } |
| 17415 | |
| 17416 | bool GenTree::ParseArrayElemAddrForm(Compiler* comp, ArrayInfo* arrayInfo, FieldSeqNode** pFldSeq) |
| 17417 | { |
| 17418 | switch (OperGet()) |
| 17419 | { |
| 17420 | case GT_ADD: |
| 17421 | { |
| 17422 | GenTree* arrAddr = nullptr; |
| 17423 | GenTree* offset = nullptr; |
| 17424 | if (gtOp.gtOp1->TypeGet() == TYP_BYREF) |
| 17425 | { |
| 17426 | arrAddr = gtOp.gtOp1; |
| 17427 | offset = gtOp.gtOp2; |
| 17428 | } |
| 17429 | else if (gtOp.gtOp2->TypeGet() == TYP_BYREF) |
| 17430 | { |
| 17431 | arrAddr = gtOp.gtOp2; |
| 17432 | offset = gtOp.gtOp1; |
| 17433 | } |
| 17434 | else |
| 17435 | { |
| 17436 | return false; |
| 17437 | } |
| 17438 | if (!offset->ParseOffsetForm(comp, pFldSeq)) |
| 17439 | { |
| 17440 | return false; |
| 17441 | } |
| 17442 | return arrAddr->ParseArrayElemAddrForm(comp, arrayInfo, pFldSeq); |
| 17443 | } |
| 17444 | |
| 17445 | case GT_ADDR: |
| 17446 | { |
| 17447 | GenTree* addrArg = gtOp.gtOp1; |
| 17448 | if (addrArg->OperGet() != GT_IND) |
| 17449 | { |
| 17450 | return false; |
| 17451 | } |
| 17452 | else |
| 17453 | { |
| 17454 | // The "Addr" node might be annotated with a zero-offset field sequence. |
| 17455 | FieldSeqNode* zeroOffsetFldSeq = nullptr; |
| 17456 | if (comp->GetZeroOffsetFieldMap()->Lookup(this, &zeroOffsetFldSeq)) |
| 17457 | { |
| 17458 | *pFldSeq = comp->GetFieldSeqStore()->Append(*pFldSeq, zeroOffsetFldSeq); |
| 17459 | } |
| 17460 | return addrArg->ParseArrayElemForm(comp, arrayInfo, pFldSeq); |
| 17461 | } |
| 17462 | } |
| 17463 | |
| 17464 | default: |
| 17465 | return false; |
| 17466 | } |
| 17467 | } |
| 17468 | |
| 17469 | bool GenTree::ParseOffsetForm(Compiler* comp, FieldSeqNode** pFldSeq) |
| 17470 | { |
| 17471 | switch (OperGet()) |
| 17472 | { |
| 17473 | case GT_CNS_INT: |
| 17474 | { |
| 17475 | GenTreeIntCon* icon = AsIntCon(); |
| 17476 | *pFldSeq = comp->GetFieldSeqStore()->Append(*pFldSeq, icon->gtFieldSeq); |
| 17477 | return true; |
| 17478 | } |
| 17479 | |
| 17480 | case GT_ADD: |
| 17481 | if (!gtOp.gtOp1->ParseOffsetForm(comp, pFldSeq)) |
| 17482 | { |
| 17483 | return false; |
| 17484 | } |
| 17485 | return gtOp.gtOp2->ParseOffsetForm(comp, pFldSeq); |
| 17486 | |
| 17487 | default: |
| 17488 | return false; |
| 17489 | } |
| 17490 | } |
| 17491 | |
| 17492 | void GenTree::LabelIndex(Compiler* comp, bool isConst) |
| 17493 | { |
| 17494 | switch (OperGet()) |
| 17495 | { |
| 17496 | case GT_CNS_INT: |
| 17497 | // If we got here, this is a contribution to the constant part of the index. |
| 17498 | if (isConst) |
| 17499 | { |
| 17500 | gtIntCon.gtFieldSeq = |
| 17501 | comp->GetFieldSeqStore()->CreateSingleton(FieldSeqStore::ConstantIndexPseudoField); |
| 17502 | } |
| 17503 | return; |
| 17504 | |
| 17505 | case GT_LCL_VAR: |
| 17506 | gtFlags |= GTF_VAR_ARR_INDEX; |
| 17507 | return; |
| 17508 | |
| 17509 | case GT_ADD: |
| 17510 | case GT_SUB: |
| 17511 | gtOp.gtOp1->LabelIndex(comp, isConst); |
| 17512 | gtOp.gtOp2->LabelIndex(comp, isConst); |
| 17513 | break; |
| 17514 | |
| 17515 | case GT_CAST: |
| 17516 | gtOp.gtOp1->LabelIndex(comp, isConst); |
| 17517 | break; |
| 17518 | |
| 17519 | case GT_ARR_LENGTH: |
| 17520 | gtFlags |= GTF_ARRLEN_ARR_IDX; |
| 17521 | return; |
| 17522 | |
| 17523 | default: |
| 17524 | // For all other operators, peel off one constant; and then label the other if it's also a constant. |
| 17525 | if (OperIsArithmetic() || OperIsCompare()) |
| 17526 | { |
| 17527 | if (gtOp.gtOp2->OperGet() == GT_CNS_INT) |
| 17528 | { |
| 17529 | gtOp.gtOp1->LabelIndex(comp, isConst); |
| 17530 | break; |
| 17531 | } |
| 17532 | else if (gtOp.gtOp1->OperGet() == GT_CNS_INT) |
| 17533 | { |
| 17534 | gtOp.gtOp2->LabelIndex(comp, isConst); |
| 17535 | break; |
| 17536 | } |
| 17537 | // Otherwise continue downward on both, labeling vars. |
| 17538 | gtOp.gtOp1->LabelIndex(comp, false); |
| 17539 | gtOp.gtOp2->LabelIndex(comp, false); |
| 17540 | } |
| 17541 | break; |
| 17542 | } |
| 17543 | } |
| 17544 | |
| 17545 | // Note that the value of the below field doesn't matter; it exists only to provide a distinguished address. |
| 17546 | // |
| 17547 | // static |
| 17548 | FieldSeqNode FieldSeqStore::s_notAField(nullptr, nullptr); |
| 17549 | |
| 17550 | // FieldSeqStore methods. |
| 17551 | FieldSeqStore::FieldSeqStore(CompAllocator alloc) : m_alloc(alloc), m_canonMap(new (alloc) FieldSeqNodeCanonMap(alloc)) |
| 17552 | { |
| 17553 | } |
| 17554 | |
| 17555 | FieldSeqNode* FieldSeqStore::CreateSingleton(CORINFO_FIELD_HANDLE fieldHnd) |
| 17556 | { |
| 17557 | FieldSeqNode fsn(fieldHnd, nullptr); |
| 17558 | FieldSeqNode* res = nullptr; |
| 17559 | if (m_canonMap->Lookup(fsn, &res)) |
| 17560 | { |
| 17561 | return res; |
| 17562 | } |
| 17563 | else |
| 17564 | { |
| 17565 | res = m_alloc.allocate<FieldSeqNode>(1); |
| 17566 | *res = fsn; |
| 17567 | m_canonMap->Set(fsn, res); |
| 17568 | return res; |
| 17569 | } |
| 17570 | } |
| 17571 | |
| 17572 | FieldSeqNode* FieldSeqStore::Append(FieldSeqNode* a, FieldSeqNode* b) |
| 17573 | { |
| 17574 | if (a == nullptr) |
| 17575 | { |
| 17576 | return b; |
| 17577 | } |
| 17578 | else if (a == NotAField()) |
| 17579 | { |
| 17580 | return NotAField(); |
| 17581 | } |
| 17582 | else if (b == nullptr) |
| 17583 | { |
| 17584 | return a; |
| 17585 | } |
| 17586 | else if (b == NotAField()) |
| 17587 | { |
| 17588 | return NotAField(); |
| 17589 | // Extremely special case for ConstantIndex pseudo-fields -- appending consecutive such |
| 17590 | // together collapse to one. |
| 17591 | } |
| 17592 | else if (a->m_next == nullptr && a->m_fieldHnd == ConstantIndexPseudoField && |
| 17593 | b->m_fieldHnd == ConstantIndexPseudoField) |
| 17594 | { |
| 17595 | return b; |
| 17596 | } |
| 17597 | else |
| 17598 | { |
| 17599 | FieldSeqNode* tmp = Append(a->m_next, b); |
| 17600 | FieldSeqNode fsn(a->m_fieldHnd, tmp); |
| 17601 | FieldSeqNode* res = nullptr; |
| 17602 | if (m_canonMap->Lookup(fsn, &res)) |
| 17603 | { |
| 17604 | return res; |
| 17605 | } |
| 17606 | else |
| 17607 | { |
| 17608 | res = m_alloc.allocate<FieldSeqNode>(1); |
| 17609 | *res = fsn; |
| 17610 | m_canonMap->Set(fsn, res); |
| 17611 | return res; |
| 17612 | } |
| 17613 | } |
| 17614 | } |
| 17615 | |
| 17616 | // Static vars. |
| 17617 | int FieldSeqStore::FirstElemPseudoFieldStruct; |
| 17618 | int FieldSeqStore::ConstantIndexPseudoFieldStruct; |
| 17619 | |
| 17620 | CORINFO_FIELD_HANDLE FieldSeqStore::FirstElemPseudoField = |
| 17621 | (CORINFO_FIELD_HANDLE)&FieldSeqStore::FirstElemPseudoFieldStruct; |
| 17622 | CORINFO_FIELD_HANDLE FieldSeqStore::ConstantIndexPseudoField = |
| 17623 | (CORINFO_FIELD_HANDLE)&FieldSeqStore::ConstantIndexPseudoFieldStruct; |
| 17624 | |
| 17625 | bool FieldSeqNode::IsFirstElemFieldSeq() |
| 17626 | { |
| 17627 | // this must be non-null per ISO C++ |
| 17628 | return m_fieldHnd == FieldSeqStore::FirstElemPseudoField; |
| 17629 | } |
| 17630 | |
| 17631 | bool FieldSeqNode::IsConstantIndexFieldSeq() |
| 17632 | { |
| 17633 | // this must be non-null per ISO C++ |
| 17634 | return m_fieldHnd == FieldSeqStore::ConstantIndexPseudoField; |
| 17635 | } |
| 17636 | |
| 17637 | bool FieldSeqNode::IsPseudoField() |
| 17638 | { |
| 17639 | if (this == nullptr) |
| 17640 | { |
| 17641 | return false; |
| 17642 | } |
| 17643 | return m_fieldHnd == FieldSeqStore::FirstElemPseudoField || m_fieldHnd == FieldSeqStore::ConstantIndexPseudoField; |
| 17644 | } |
| 17645 | |
| 17646 | #ifdef FEATURE_SIMD |
| 17647 | GenTreeSIMD* Compiler::gtNewSIMDNode( |
| 17648 | var_types type, GenTree* op1, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size) |
| 17649 | { |
| 17650 | assert(op1 != nullptr); |
| 17651 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17652 | |
| 17653 | return new (this, GT_SIMD) GenTreeSIMD(type, op1, simdIntrinsicID, baseType, size); |
| 17654 | } |
| 17655 | |
| 17656 | GenTreeSIMD* Compiler::gtNewSIMDNode( |
| 17657 | var_types type, GenTree* op1, GenTree* op2, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size) |
| 17658 | { |
| 17659 | assert(op1 != nullptr); |
| 17660 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17661 | SetOpLclRelatedToSIMDIntrinsic(op2); |
| 17662 | |
| 17663 | return new (this, GT_SIMD) GenTreeSIMD(type, op1, op2, simdIntrinsicID, baseType, size); |
| 17664 | } |
| 17665 | |
| 17666 | //------------------------------------------------------------------- |
| 17667 | // SetOpLclRelatedToSIMDIntrinsic: Determine if the tree has a local var that needs to be set |
| 17668 | // as used by a SIMD intrinsic, and if so, set that local var appropriately. |
| 17669 | // |
| 17670 | // Arguments: |
| 17671 | // op - The tree, to be an operand of a new GT_SIMD node, to check. |
| 17672 | // |
| 17673 | void Compiler::SetOpLclRelatedToSIMDIntrinsic(GenTree* op) |
| 17674 | { |
| 17675 | if (op != nullptr) |
| 17676 | { |
| 17677 | if (op->OperIsLocal()) |
| 17678 | { |
| 17679 | setLclRelatedToSIMDIntrinsic(op); |
| 17680 | } |
| 17681 | else if ((op->OperGet() == GT_OBJ) && (op->gtOp.gtOp1->OperGet() == GT_ADDR) && |
| 17682 | op->gtOp.gtOp1->gtOp.gtOp1->OperIsLocal()) |
| 17683 | { |
| 17684 | setLclRelatedToSIMDIntrinsic(op->gtOp.gtOp1->gtOp.gtOp1); |
| 17685 | } |
| 17686 | } |
| 17687 | } |
| 17688 | |
| 17689 | bool GenTree::isCommutativeSIMDIntrinsic() |
| 17690 | { |
| 17691 | assert(gtOper == GT_SIMD); |
| 17692 | switch (AsSIMD()->gtSIMDIntrinsicID) |
| 17693 | { |
| 17694 | case SIMDIntrinsicAdd: |
| 17695 | case SIMDIntrinsicBitwiseAnd: |
| 17696 | case SIMDIntrinsicBitwiseOr: |
| 17697 | case SIMDIntrinsicBitwiseXor: |
| 17698 | case SIMDIntrinsicEqual: |
| 17699 | case SIMDIntrinsicMax: |
| 17700 | case SIMDIntrinsicMin: |
| 17701 | case SIMDIntrinsicMul: |
| 17702 | case SIMDIntrinsicOpEquality: |
| 17703 | case SIMDIntrinsicOpInEquality: |
| 17704 | return true; |
| 17705 | default: |
| 17706 | return false; |
| 17707 | } |
| 17708 | } |
| 17709 | #endif // FEATURE_SIMD |
| 17710 | |
| 17711 | #ifdef FEATURE_HW_INTRINSICS |
| 17712 | bool GenTree::isCommutativeHWIntrinsic() const |
| 17713 | { |
| 17714 | assert(gtOper == GT_HWIntrinsic); |
| 17715 | |
| 17716 | #ifdef _TARGET_XARCH_ |
| 17717 | return HWIntrinsicInfo::IsCommutative(AsHWIntrinsic()->gtHWIntrinsicId); |
| 17718 | #else |
| 17719 | return false; |
| 17720 | #endif // _TARGET_XARCH_ |
| 17721 | } |
| 17722 | |
| 17723 | bool GenTree::isContainableHWIntrinsic() const |
| 17724 | { |
| 17725 | assert(gtOper == GT_HWIntrinsic); |
| 17726 | |
| 17727 | #ifdef _TARGET_XARCH_ |
| 17728 | switch (AsHWIntrinsic()->gtHWIntrinsicId) |
| 17729 | { |
| 17730 | case NI_SSE_LoadAlignedVector128: |
| 17731 | case NI_SSE_LoadScalarVector128: |
| 17732 | case NI_SSE_LoadVector128: |
| 17733 | case NI_SSE2_LoadAlignedVector128: |
| 17734 | case NI_SSE2_LoadScalarVector128: |
| 17735 | case NI_SSE2_LoadVector128: |
| 17736 | case NI_AVX_LoadAlignedVector256: |
| 17737 | case NI_AVX_LoadVector256: |
| 17738 | { |
| 17739 | return true; |
| 17740 | } |
| 17741 | |
| 17742 | default: |
| 17743 | { |
| 17744 | return false; |
| 17745 | } |
| 17746 | } |
| 17747 | #else |
| 17748 | return false; |
| 17749 | #endif // _TARGET_XARCH_ |
| 17750 | } |
| 17751 | |
| 17752 | bool GenTree::isRMWHWIntrinsic(Compiler* comp) |
| 17753 | { |
| 17754 | assert(gtOper == GT_HWIntrinsic); |
| 17755 | assert(comp != nullptr); |
| 17756 | |
| 17757 | #ifdef _TARGET_XARCH_ |
| 17758 | if (!comp->canUseVexEncoding()) |
| 17759 | { |
| 17760 | return HWIntrinsicInfo::HasRMWSemantics(AsHWIntrinsic()->gtHWIntrinsicId); |
| 17761 | } |
| 17762 | |
| 17763 | switch (AsHWIntrinsic()->gtHWIntrinsicId) |
| 17764 | { |
| 17765 | // TODO-XArch-Cleanup: Move this switch block to be table driven. |
| 17766 | |
| 17767 | case NI_SSE42_Crc32: |
| 17768 | case NI_SSE42_X64_Crc32: |
| 17769 | case NI_FMA_MultiplyAdd: |
| 17770 | case NI_FMA_MultiplyAddNegated: |
| 17771 | case NI_FMA_MultiplyAddNegatedScalar: |
| 17772 | case NI_FMA_MultiplyAddScalar: |
| 17773 | case NI_FMA_MultiplyAddSubtract: |
| 17774 | case NI_FMA_MultiplySubtract: |
| 17775 | case NI_FMA_MultiplySubtractAdd: |
| 17776 | case NI_FMA_MultiplySubtractNegated: |
| 17777 | case NI_FMA_MultiplySubtractNegatedScalar: |
| 17778 | case NI_FMA_MultiplySubtractScalar: |
| 17779 | { |
| 17780 | return true; |
| 17781 | } |
| 17782 | |
| 17783 | default: |
| 17784 | { |
| 17785 | return false; |
| 17786 | } |
| 17787 | } |
| 17788 | #else |
| 17789 | return false; |
| 17790 | #endif // _TARGET_XARCH_ |
| 17791 | } |
| 17792 | |
| 17793 | GenTreeHWIntrinsic* Compiler::gtNewSimdHWIntrinsicNode(var_types type, |
| 17794 | NamedIntrinsic hwIntrinsicID, |
| 17795 | var_types baseType, |
| 17796 | unsigned size) |
| 17797 | { |
| 17798 | return new (this, GT_HWIntrinsic) GenTreeHWIntrinsic(type, hwIntrinsicID, baseType, size); |
| 17799 | } |
| 17800 | |
| 17801 | GenTreeHWIntrinsic* Compiler::gtNewSimdHWIntrinsicNode( |
| 17802 | var_types type, GenTree* op1, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned simdSize) |
| 17803 | { |
| 17804 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17805 | |
| 17806 | return new (this, GT_HWIntrinsic) GenTreeHWIntrinsic(type, op1, hwIntrinsicID, baseType, simdSize); |
| 17807 | } |
| 17808 | |
| 17809 | GenTreeHWIntrinsic* Compiler::gtNewSimdHWIntrinsicNode( |
| 17810 | var_types type, GenTree* op1, GenTree* op2, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned simdSize) |
| 17811 | { |
| 17812 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17813 | SetOpLclRelatedToSIMDIntrinsic(op2); |
| 17814 | |
| 17815 | return new (this, GT_HWIntrinsic) GenTreeHWIntrinsic(type, op1, op2, hwIntrinsicID, baseType, simdSize); |
| 17816 | } |
| 17817 | |
| 17818 | GenTreeHWIntrinsic* Compiler::gtNewSimdHWIntrinsicNode(var_types type, |
| 17819 | GenTree* op1, |
| 17820 | GenTree* op2, |
| 17821 | GenTree* op3, |
| 17822 | NamedIntrinsic hwIntrinsicID, |
| 17823 | var_types baseType, |
| 17824 | unsigned size) |
| 17825 | { |
| 17826 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17827 | SetOpLclRelatedToSIMDIntrinsic(op2); |
| 17828 | SetOpLclRelatedToSIMDIntrinsic(op3); |
| 17829 | |
| 17830 | return new (this, GT_HWIntrinsic) |
| 17831 | GenTreeHWIntrinsic(type, gtNewArgList(op1, op2, op3), hwIntrinsicID, baseType, size); |
| 17832 | } |
| 17833 | |
| 17834 | GenTreeHWIntrinsic* Compiler::gtNewSimdHWIntrinsicNode(var_types type, |
| 17835 | GenTree* op1, |
| 17836 | GenTree* op2, |
| 17837 | GenTree* op3, |
| 17838 | GenTree* op4, |
| 17839 | NamedIntrinsic hwIntrinsicID, |
| 17840 | var_types baseType, |
| 17841 | unsigned size) |
| 17842 | { |
| 17843 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17844 | SetOpLclRelatedToSIMDIntrinsic(op2); |
| 17845 | SetOpLclRelatedToSIMDIntrinsic(op3); |
| 17846 | SetOpLclRelatedToSIMDIntrinsic(op4); |
| 17847 | |
| 17848 | return new (this, GT_HWIntrinsic) |
| 17849 | GenTreeHWIntrinsic(type, gtNewArgList(op1, op2, op3, op4), hwIntrinsicID, baseType, size); |
| 17850 | } |
| 17851 | |
| 17852 | GenTreeHWIntrinsic* Compiler::gtNewScalarHWIntrinsicNode(var_types type, GenTree* op1, NamedIntrinsic hwIntrinsicID) |
| 17853 | { |
| 17854 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17855 | |
| 17856 | return new (this, GT_HWIntrinsic) GenTreeHWIntrinsic(type, op1, hwIntrinsicID, TYP_UNKNOWN, 0); |
| 17857 | } |
| 17858 | |
| 17859 | GenTreeHWIntrinsic* Compiler::gtNewScalarHWIntrinsicNode(var_types type, |
| 17860 | GenTree* op1, |
| 17861 | GenTree* op2, |
| 17862 | NamedIntrinsic hwIntrinsicID) |
| 17863 | { |
| 17864 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17865 | SetOpLclRelatedToSIMDIntrinsic(op2); |
| 17866 | |
| 17867 | return new (this, GT_HWIntrinsic) GenTreeHWIntrinsic(type, op1, op2, hwIntrinsicID, TYP_UNKNOWN, 0); |
| 17868 | } |
| 17869 | |
| 17870 | GenTreeHWIntrinsic* Compiler::gtNewScalarHWIntrinsicNode( |
| 17871 | var_types type, GenTree* op1, GenTree* op2, GenTree* op3, NamedIntrinsic hwIntrinsicID) |
| 17872 | { |
| 17873 | SetOpLclRelatedToSIMDIntrinsic(op1); |
| 17874 | SetOpLclRelatedToSIMDIntrinsic(op2); |
| 17875 | SetOpLclRelatedToSIMDIntrinsic(op3); |
| 17876 | |
| 17877 | return new (this, GT_HWIntrinsic) |
| 17878 | GenTreeHWIntrinsic(type, gtNewArgList(op1, op2, op3), hwIntrinsicID, TYP_UNKNOWN, 0); |
| 17879 | } |
| 17880 | |
| 17881 | //--------------------------------------------------------------------------------------- |
| 17882 | // gtNewMustThrowException: |
| 17883 | // create a throw node (calling into JIT helper) that must be thrown. |
| 17884 | // The result would be a comma node: COMMA(jithelperthrow(void), x) where x's type should be specified. |
| 17885 | // |
| 17886 | // Arguments |
| 17887 | // helper - JIT helper ID |
| 17888 | // type - return type of the node |
| 17889 | // |
| 17890 | // Return Value |
| 17891 | // pointer to the throw node |
| 17892 | // |
| 17893 | GenTree* Compiler::gtNewMustThrowException(unsigned helper, var_types type, CORINFO_CLASS_HANDLE clsHnd) |
| 17894 | { |
| 17895 | GenTreeCall* node = gtNewHelperCallNode(helper, TYP_VOID); |
| 17896 | node->gtCallMoreFlags |= GTF_CALL_M_DOES_NOT_RETURN; |
| 17897 | if (type != TYP_VOID) |
| 17898 | { |
| 17899 | unsigned dummyTemp = lvaGrabTemp(true DEBUGARG("dummy temp of must thrown exception" )); |
| 17900 | if (type == TYP_STRUCT) |
| 17901 | { |
| 17902 | lvaSetStruct(dummyTemp, clsHnd, false); |
| 17903 | type = lvaTable[dummyTemp].lvType; // struct type is normalized |
| 17904 | } |
| 17905 | else |
| 17906 | { |
| 17907 | lvaTable[dummyTemp].lvType = type; |
| 17908 | } |
| 17909 | GenTree* dummyNode = gtNewLclvNode(dummyTemp, type); |
| 17910 | return gtNewOperNode(GT_COMMA, type, node, dummyNode); |
| 17911 | } |
| 17912 | return node; |
| 17913 | } |
| 17914 | |
| 17915 | // Returns true for the HW Instrinsic instructions that have MemoryLoad semantics, false otherwise |
| 17916 | bool GenTreeHWIntrinsic::OperIsMemoryLoad() |
| 17917 | { |
| 17918 | #ifdef _TARGET_XARCH_ |
| 17919 | // Some xarch instructions have MemoryLoad sematics |
| 17920 | HWIntrinsicCategory category = HWIntrinsicInfo::lookupCategory(gtHWIntrinsicId); |
| 17921 | if (category == HW_Category_MemoryLoad) |
| 17922 | { |
| 17923 | return true; |
| 17924 | } |
| 17925 | else if (HWIntrinsicInfo::MaybeMemoryLoad(gtHWIntrinsicId)) |
| 17926 | { |
| 17927 | // Some AVX intrinsic (without HW_Category_MemoryLoad) also have MemoryLoad semantics |
| 17928 | if (category == HW_Category_SIMDScalar) |
| 17929 | { |
| 17930 | // Avx2.BroadcastScalarToVector128/256 have vector and pointer overloads both, e.g., |
| 17931 | // Vector128<byte> BroadcastScalarToVector128(Vector128<byte> value) |
| 17932 | // Vector128<byte> BroadcastScalarToVector128(byte* source) |
| 17933 | // So, we need to check the argument's type is memory-reference (TYP_I_IMPL) or not |
| 17934 | assert(HWIntrinsicInfo::lookupNumArgs(this) == 1); |
| 17935 | return (gtHWIntrinsicId == NI_AVX2_BroadcastScalarToVector128 || |
| 17936 | gtHWIntrinsicId == NI_AVX2_BroadcastScalarToVector256) && |
| 17937 | gtOp.gtOp1->TypeGet() == TYP_I_IMPL; |
| 17938 | } |
| 17939 | else if (category == HW_Category_IMM) |
| 17940 | { |
| 17941 | // Do we have less than 3 operands? |
| 17942 | if (HWIntrinsicInfo::lookupNumArgs(this) < 3) |
| 17943 | { |
| 17944 | return false; |
| 17945 | } |
| 17946 | else // We have 3 or more operands/args |
| 17947 | { |
| 17948 | // All the Avx2.Gather* are "load" instructions |
| 17949 | if (HWIntrinsicInfo::isAVX2GatherIntrinsic(gtHWIntrinsicId)) |
| 17950 | { |
| 17951 | return true; |
| 17952 | } |
| 17953 | |
| 17954 | GenTreeArgList* argList = gtOp.gtOp1->AsArgList(); |
| 17955 | |
| 17956 | // Avx/Avx2.InsertVector128 have vector and pointer overloads both, e.g., |
| 17957 | // Vector256<sbyte> InsertVector128(Vector256<sbyte> value, Vector128<sbyte> data, byte index) |
| 17958 | // Vector256<sbyte> InsertVector128(Vector256<sbyte> value, sbyte* address, byte index) |
| 17959 | // So, we need to check the second argument's type is memory-reference (TYP_I_IMPL) or not |
| 17960 | if ((gtHWIntrinsicId == NI_AVX_InsertVector128 || gtHWIntrinsicId == NI_AVX2_InsertVector128) && |
| 17961 | (argList->Rest()->Current()->TypeGet() == TYP_I_IMPL)) // Is the type of the second arg TYP_I_IMPL? |
| 17962 | { |
| 17963 | // This is Avx/Avx2.InsertVector128 |
| 17964 | return true; |
| 17965 | } |
| 17966 | } |
| 17967 | } |
| 17968 | } |
| 17969 | #endif // _TARGET_XARCH_ |
| 17970 | return false; |
| 17971 | } |
| 17972 | |
| 17973 | // Returns true for the HW Instrinsic instructions that have MemoryStore semantics, false otherwise |
| 17974 | bool GenTreeHWIntrinsic::OperIsMemoryStore() |
| 17975 | { |
| 17976 | #ifdef _TARGET_XARCH_ |
| 17977 | // Some xarch instructions have MemoryStore sematics |
| 17978 | HWIntrinsicCategory category = HWIntrinsicInfo::lookupCategory(gtHWIntrinsicId); |
| 17979 | if (category == HW_Category_MemoryStore) |
| 17980 | { |
| 17981 | return true; |
| 17982 | } |
| 17983 | else if (HWIntrinsicInfo::MaybeMemoryStore(gtHWIntrinsicId) && |
| 17984 | (category == HW_Category_IMM || category == HW_Category_Scalar)) |
| 17985 | { |
| 17986 | // Some AVX intrinsic (without HW_Category_MemoryStore) also have MemoryStore semantics |
| 17987 | |
| 17988 | // Avx/Avx2.InsertVector128 have vector and pointer overloads both, e.g., |
| 17989 | // Vector128<sbyte> ExtractVector128(Vector256<sbyte> value, byte index) |
| 17990 | // void ExtractVector128(sbyte* address, Vector256<sbyte> value, byte index) |
| 17991 | // Bmi2/Bmi2.X64.MultiplyNoFlags may return the lower half result by a out argument |
| 17992 | // unsafe ulong MultiplyNoFlags(ulong left, ulong right, ulong* low) |
| 17993 | // |
| 17994 | // So, the 3-argument form is MemoryStore |
| 17995 | if (HWIntrinsicInfo::lookupNumArgs(this) == 3) |
| 17996 | { |
| 17997 | switch (gtHWIntrinsicId) |
| 17998 | { |
| 17999 | case NI_AVX_ExtractVector128: |
| 18000 | case NI_AVX2_ExtractVector128: |
| 18001 | case NI_BMI2_MultiplyNoFlags: |
| 18002 | case NI_BMI2_X64_MultiplyNoFlags: |
| 18003 | return true; |
| 18004 | default: |
| 18005 | return false; |
| 18006 | } |
| 18007 | } |
| 18008 | } |
| 18009 | #endif // _TARGET_XARCH_ |
| 18010 | return false; |
| 18011 | } |
| 18012 | |
| 18013 | // Returns true for the HW Instrinsic instructions that have MemoryLoad semantics, false otherwise |
| 18014 | bool GenTreeHWIntrinsic::OperIsMemoryLoadOrStore() |
| 18015 | { |
| 18016 | #ifdef _TARGET_XARCH_ |
| 18017 | return OperIsMemoryLoad() || OperIsMemoryStore(); |
| 18018 | #endif // _TARGET_XARCH_ |
| 18019 | return false; |
| 18020 | } |
| 18021 | |
| 18022 | #endif // FEATURE_HW_INTRINSICS |
| 18023 | |
| 18024 | //--------------------------------------------------------------------------------------- |
| 18025 | // InitializeStructReturnType: |
| 18026 | // Initialize the Return Type Descriptor for a method that returns a struct type |
| 18027 | // |
| 18028 | // Arguments |
| 18029 | // comp - Compiler Instance |
| 18030 | // retClsHnd - VM handle to the struct type returned by the method |
| 18031 | // |
| 18032 | // Return Value |
| 18033 | // None |
| 18034 | // |
| 18035 | void ReturnTypeDesc::InitializeStructReturnType(Compiler* comp, CORINFO_CLASS_HANDLE retClsHnd) |
| 18036 | { |
| 18037 | assert(!m_inited); |
| 18038 | |
| 18039 | #if FEATURE_MULTIREG_RET |
| 18040 | |
| 18041 | assert(retClsHnd != NO_CLASS_HANDLE); |
| 18042 | unsigned structSize = comp->info.compCompHnd->getClassSize(retClsHnd); |
| 18043 | |
| 18044 | Compiler::structPassingKind howToReturnStruct; |
| 18045 | var_types returnType = comp->getReturnTypeForStruct(retClsHnd, &howToReturnStruct, structSize); |
| 18046 | |
| 18047 | switch (howToReturnStruct) |
| 18048 | { |
| 18049 | case Compiler::SPK_EnclosingType: |
| 18050 | m_isEnclosingType = true; |
| 18051 | __fallthrough; |
| 18052 | |
| 18053 | case Compiler::SPK_PrimitiveType: |
| 18054 | { |
| 18055 | assert(returnType != TYP_UNKNOWN); |
| 18056 | assert(!varTypeIsStruct(returnType)); |
| 18057 | m_regType[0] = returnType; |
| 18058 | break; |
| 18059 | } |
| 18060 | |
| 18061 | case Compiler::SPK_ByValueAsHfa: |
| 18062 | { |
| 18063 | assert(varTypeIsStruct(returnType)); |
| 18064 | var_types hfaType = comp->GetHfaType(retClsHnd); |
| 18065 | |
| 18066 | // We should have an hfa struct type |
| 18067 | assert(varTypeIsFloating(hfaType)); |
| 18068 | |
| 18069 | // Note that the retail build issues a warning about a potential divsion by zero without this Max function |
| 18070 | unsigned elemSize = Max((unsigned)1, EA_SIZE_IN_BYTES(emitActualTypeSize(hfaType))); |
| 18071 | |
| 18072 | // The size of this struct should be evenly divisible by elemSize |
| 18073 | assert((structSize % elemSize) == 0); |
| 18074 | |
| 18075 | unsigned hfaCount = (structSize / elemSize); |
| 18076 | for (unsigned i = 0; i < hfaCount; ++i) |
| 18077 | { |
| 18078 | m_regType[i] = hfaType; |
| 18079 | } |
| 18080 | |
| 18081 | if (comp->compFloatingPointUsed == false) |
| 18082 | { |
| 18083 | comp->compFloatingPointUsed = true; |
| 18084 | } |
| 18085 | break; |
| 18086 | } |
| 18087 | |
| 18088 | case Compiler::SPK_ByValue: |
| 18089 | { |
| 18090 | assert(varTypeIsStruct(returnType)); |
| 18091 | |
| 18092 | #ifdef UNIX_AMD64_ABI |
| 18093 | |
| 18094 | SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR structDesc; |
| 18095 | comp->eeGetSystemVAmd64PassStructInRegisterDescriptor(retClsHnd, &structDesc); |
| 18096 | |
| 18097 | assert(structDesc.passedInRegisters); |
| 18098 | for (int i = 0; i < structDesc.eightByteCount; i++) |
| 18099 | { |
| 18100 | assert(i < MAX_RET_REG_COUNT); |
| 18101 | m_regType[i] = comp->GetEightByteType(structDesc, i); |
| 18102 | } |
| 18103 | |
| 18104 | #elif defined(_TARGET_ARM64_) |
| 18105 | |
| 18106 | // a non-HFA struct returned using two registers |
| 18107 | // |
| 18108 | assert((structSize > TARGET_POINTER_SIZE) && (structSize <= (2 * TARGET_POINTER_SIZE))); |
| 18109 | |
| 18110 | BYTE gcPtrs[2] = {TYPE_GC_NONE, TYPE_GC_NONE}; |
| 18111 | comp->info.compCompHnd->getClassGClayout(retClsHnd, &gcPtrs[0]); |
| 18112 | for (unsigned i = 0; i < 2; ++i) |
| 18113 | { |
| 18114 | m_regType[i] = comp->getJitGCType(gcPtrs[i]); |
| 18115 | } |
| 18116 | |
| 18117 | #else // _TARGET_XXX_ |
| 18118 | |
| 18119 | // This target needs support here! |
| 18120 | // |
| 18121 | NYI("Unsupported TARGET returning a TYP_STRUCT in InitializeStructReturnType" ); |
| 18122 | |
| 18123 | #endif // UNIX_AMD64_ABI |
| 18124 | |
| 18125 | break; // for case SPK_ByValue |
| 18126 | } |
| 18127 | |
| 18128 | case Compiler::SPK_ByReference: |
| 18129 | |
| 18130 | // We are returning using the return buffer argument |
| 18131 | // There are no return registers |
| 18132 | break; |
| 18133 | |
| 18134 | default: |
| 18135 | |
| 18136 | unreached(); // By the contract of getReturnTypeForStruct we should never get here. |
| 18137 | |
| 18138 | } // end of switch (howToReturnStruct) |
| 18139 | |
| 18140 | #endif // FEATURE_MULTIREG_RET |
| 18141 | |
| 18142 | #ifdef DEBUG |
| 18143 | m_inited = true; |
| 18144 | #endif |
| 18145 | } |
| 18146 | |
| 18147 | //--------------------------------------------------------------------------------------- |
| 18148 | // InitializeLongReturnType: |
| 18149 | // Initialize the Return Type Descriptor for a method that returns a TYP_LONG |
| 18150 | // |
| 18151 | // Arguments |
| 18152 | // comp - Compiler Instance |
| 18153 | // |
| 18154 | // Return Value |
| 18155 | // None |
| 18156 | // |
| 18157 | void ReturnTypeDesc::InitializeLongReturnType(Compiler* comp) |
| 18158 | { |
| 18159 | #if defined(_TARGET_X86_) || defined(_TARGET_ARM_) |
| 18160 | |
| 18161 | // Setups up a ReturnTypeDesc for returning a long using two registers |
| 18162 | // |
| 18163 | assert(MAX_RET_REG_COUNT >= 2); |
| 18164 | m_regType[0] = TYP_INT; |
| 18165 | m_regType[1] = TYP_INT; |
| 18166 | |
| 18167 | #else // not (_TARGET_X86_ or _TARGET_ARM_) |
| 18168 | |
| 18169 | m_regType[0] = TYP_LONG; |
| 18170 | |
| 18171 | #endif // _TARGET_X86_ or _TARGET_ARM_ |
| 18172 | |
| 18173 | #ifdef DEBUG |
| 18174 | m_inited = true; |
| 18175 | #endif |
| 18176 | } |
| 18177 | |
| 18178 | //------------------------------------------------------------------- |
| 18179 | // GetABIReturnReg: Return ith return register as per target ABI |
| 18180 | // |
| 18181 | // Arguments: |
| 18182 | // idx - Index of the return register. |
| 18183 | // The first return register has an index of 0 and so on. |
| 18184 | // |
| 18185 | // Return Value: |
| 18186 | // Returns ith return register as per target ABI. |
| 18187 | // |
| 18188 | // Notes: |
| 18189 | // x86 and ARM return long in multiple registers. |
| 18190 | // ARM and ARM64 return HFA struct in multiple registers. |
| 18191 | // |
| 18192 | regNumber ReturnTypeDesc::GetABIReturnReg(unsigned idx) |
| 18193 | { |
| 18194 | unsigned count = GetReturnRegCount(); |
| 18195 | assert(idx < count); |
| 18196 | |
| 18197 | regNumber resultReg = REG_NA; |
| 18198 | |
| 18199 | #ifdef UNIX_AMD64_ABI |
| 18200 | var_types regType0 = GetReturnRegType(0); |
| 18201 | |
| 18202 | if (idx == 0) |
| 18203 | { |
| 18204 | if (varTypeIsIntegralOrI(regType0)) |
| 18205 | { |
| 18206 | resultReg = REG_INTRET; |
| 18207 | } |
| 18208 | else |
| 18209 | { |
| 18210 | noway_assert(varTypeIsFloating(regType0)); |
| 18211 | resultReg = REG_FLOATRET; |
| 18212 | } |
| 18213 | } |
| 18214 | else if (idx == 1) |
| 18215 | { |
| 18216 | var_types regType1 = GetReturnRegType(1); |
| 18217 | |
| 18218 | if (varTypeIsIntegralOrI(regType1)) |
| 18219 | { |
| 18220 | if (varTypeIsIntegralOrI(regType0)) |
| 18221 | { |
| 18222 | resultReg = REG_INTRET_1; |
| 18223 | } |
| 18224 | else |
| 18225 | { |
| 18226 | resultReg = REG_INTRET; |
| 18227 | } |
| 18228 | } |
| 18229 | else |
| 18230 | { |
| 18231 | noway_assert(varTypeIsFloating(regType1)); |
| 18232 | |
| 18233 | if (varTypeIsFloating(regType0)) |
| 18234 | { |
| 18235 | resultReg = REG_FLOATRET_1; |
| 18236 | } |
| 18237 | else |
| 18238 | { |
| 18239 | resultReg = REG_FLOATRET; |
| 18240 | } |
| 18241 | } |
| 18242 | } |
| 18243 | |
| 18244 | #elif defined(_TARGET_X86_) |
| 18245 | |
| 18246 | if (idx == 0) |
| 18247 | { |
| 18248 | resultReg = REG_LNGRET_LO; |
| 18249 | } |
| 18250 | else if (idx == 1) |
| 18251 | { |
| 18252 | resultReg = REG_LNGRET_HI; |
| 18253 | } |
| 18254 | |
| 18255 | #elif defined(_TARGET_ARM_) |
| 18256 | |
| 18257 | var_types regType = GetReturnRegType(idx); |
| 18258 | if (varTypeIsIntegralOrI(regType)) |
| 18259 | { |
| 18260 | // Ints are returned in one return register. |
| 18261 | // Longs are returned in two return registers. |
| 18262 | if (idx == 0) |
| 18263 | { |
| 18264 | resultReg = REG_LNGRET_LO; |
| 18265 | } |
| 18266 | else if (idx == 1) |
| 18267 | { |
| 18268 | resultReg = REG_LNGRET_HI; |
| 18269 | } |
| 18270 | } |
| 18271 | else |
| 18272 | { |
| 18273 | // Floats are returned in one return register (f0). |
| 18274 | // Doubles are returned in one return register (d0). |
| 18275 | // Structs are returned in four registers with HFAs. |
| 18276 | assert(idx < MAX_RET_REG_COUNT); // Up to 4 return registers for HFA's |
| 18277 | if (regType == TYP_DOUBLE) |
| 18278 | { |
| 18279 | resultReg = (regNumber)((unsigned)(REG_FLOATRET) + idx * 2); // d0, d1, d2 or d3 |
| 18280 | } |
| 18281 | else |
| 18282 | { |
| 18283 | resultReg = (regNumber)((unsigned)(REG_FLOATRET) + idx); // f0, f1, f2 or f3 |
| 18284 | } |
| 18285 | } |
| 18286 | |
| 18287 | #elif defined(_TARGET_ARM64_) |
| 18288 | |
| 18289 | var_types regType = GetReturnRegType(idx); |
| 18290 | if (varTypeIsIntegralOrI(regType)) |
| 18291 | { |
| 18292 | noway_assert(idx < 2); // Up to 2 return registers for 16-byte structs |
| 18293 | resultReg = (idx == 0) ? REG_INTRET : REG_INTRET_1; // X0 or X1 |
| 18294 | } |
| 18295 | else |
| 18296 | { |
| 18297 | noway_assert(idx < 4); // Up to 4 return registers for HFA's |
| 18298 | resultReg = (regNumber)((unsigned)(REG_FLOATRET) + idx); // V0, V1, V2 or V3 |
| 18299 | } |
| 18300 | |
| 18301 | #endif // TARGET_XXX |
| 18302 | |
| 18303 | assert(resultReg != REG_NA); |
| 18304 | return resultReg; |
| 18305 | } |
| 18306 | |
| 18307 | //-------------------------------------------------------------------------------- |
| 18308 | // GetABIReturnRegs: get the mask of return registers as per target arch ABI. |
| 18309 | // |
| 18310 | // Arguments: |
| 18311 | // None |
| 18312 | // |
| 18313 | // Return Value: |
| 18314 | // reg mask of return registers in which the return type is returned. |
| 18315 | // |
| 18316 | // Note: |
| 18317 | // This routine can be used when the caller is not particular about the order |
| 18318 | // of return registers and wants to know the set of return registers. |
| 18319 | // |
| 18320 | // static |
| 18321 | regMaskTP ReturnTypeDesc::GetABIReturnRegs() |
| 18322 | { |
| 18323 | regMaskTP resultMask = RBM_NONE; |
| 18324 | |
| 18325 | unsigned count = GetReturnRegCount(); |
| 18326 | for (unsigned i = 0; i < count; ++i) |
| 18327 | { |
| 18328 | resultMask |= genRegMask(GetABIReturnReg(i)); |
| 18329 | } |
| 18330 | |
| 18331 | return resultMask; |
| 18332 | } |
| 18333 | |
| 18334 | //------------------------------------------------------------------------ |
| 18335 | // The following functions manage the gtRsvdRegs set of temporary registers |
| 18336 | // created by LSRA during code generation. |
| 18337 | |
| 18338 | //------------------------------------------------------------------------ |
| 18339 | // AvailableTempRegCount: return the number of available temporary registers in the (optional) given set |
| 18340 | // (typically, RBM_ALLINT or RBM_ALLFLOAT). |
| 18341 | // |
| 18342 | // Arguments: |
| 18343 | // mask - (optional) Check for available temporary registers only in this set. |
| 18344 | // |
| 18345 | // Return Value: |
| 18346 | // Count of available temporary registers in given set. |
| 18347 | // |
| 18348 | unsigned GenTree::AvailableTempRegCount(regMaskTP mask /* = (regMaskTP)-1 */) const |
| 18349 | { |
| 18350 | return genCountBits(gtRsvdRegs & mask); |
| 18351 | } |
| 18352 | |
| 18353 | //------------------------------------------------------------------------ |
| 18354 | // GetSingleTempReg: There is expected to be exactly one available temporary register |
| 18355 | // in the given mask in the gtRsvdRegs set. Get that register. No future calls to get |
| 18356 | // a temporary register are expected. Removes the register from the set, but only in |
| 18357 | // DEBUG to avoid doing unnecessary work in non-DEBUG builds. |
| 18358 | // |
| 18359 | // Arguments: |
| 18360 | // mask - (optional) Get an available temporary register only in this set. |
| 18361 | // |
| 18362 | // Return Value: |
| 18363 | // Available temporary register in given mask. |
| 18364 | // |
| 18365 | regNumber GenTree::GetSingleTempReg(regMaskTP mask /* = (regMaskTP)-1 */) |
| 18366 | { |
| 18367 | regMaskTP availableSet = gtRsvdRegs & mask; |
| 18368 | assert(genCountBits(availableSet) == 1); |
| 18369 | regNumber tempReg = genRegNumFromMask(availableSet); |
| 18370 | INDEBUG(gtRsvdRegs &= ~availableSet;) // Remove the register from the set, so it can't be used again. |
| 18371 | return tempReg; |
| 18372 | } |
| 18373 | |
| 18374 | //------------------------------------------------------------------------ |
| 18375 | // ExtractTempReg: Find the lowest number temporary register from the gtRsvdRegs set |
| 18376 | // that is also in the optional given mask (typically, RBM_ALLINT or RBM_ALLFLOAT), |
| 18377 | // and return it. Remove this register from the temporary register set, so it won't |
| 18378 | // be returned again. |
| 18379 | // |
| 18380 | // Arguments: |
| 18381 | // mask - (optional) Extract an available temporary register only in this set. |
| 18382 | // |
| 18383 | // Return Value: |
| 18384 | // Available temporary register in given mask. |
| 18385 | // |
| 18386 | regNumber GenTree::(regMaskTP mask /* = (regMaskTP)-1 */) |
| 18387 | { |
| 18388 | regMaskTP availableSet = gtRsvdRegs & mask; |
| 18389 | assert(genCountBits(availableSet) >= 1); |
| 18390 | regMaskTP tempRegMask = genFindLowestBit(availableSet); |
| 18391 | gtRsvdRegs &= ~tempRegMask; |
| 18392 | return genRegNumFromMask(tempRegMask); |
| 18393 | } |
| 18394 | |