1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XX XX |
8 | XX OptCSE XX |
9 | XX XX |
10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
12 | */ |
13 | |
14 | #include "jitpch.h" |
15 | #ifdef _MSC_VER |
16 | #pragma hdrstop |
17 | #endif |
18 | |
19 | /*****************************************************************************/ |
20 | #if FEATURE_ANYCSE |
21 | /*****************************************************************************/ |
22 | |
23 | /* static */ |
24 | const size_t Compiler::s_optCSEhashSize = EXPSET_SZ * 2; |
25 | |
26 | /***************************************************************************** |
27 | * |
28 | * We've found all the candidates, build the index for easy access. |
29 | */ |
30 | |
31 | void Compiler::optCSEstop() |
32 | { |
33 | if (optCSECandidateCount == 0) |
34 | { |
35 | return; |
36 | } |
37 | |
38 | CSEdsc* dsc; |
39 | CSEdsc** ptr; |
40 | unsigned cnt; |
41 | |
42 | optCSEtab = new (this, CMK_CSE) CSEdsc*[optCSECandidateCount](); |
43 | |
44 | for (cnt = s_optCSEhashSize, ptr = optCSEhash; cnt; cnt--, ptr++) |
45 | { |
46 | for (dsc = *ptr; dsc; dsc = dsc->csdNextInBucket) |
47 | { |
48 | if (dsc->csdIndex) |
49 | { |
50 | noway_assert((unsigned)dsc->csdIndex <= optCSECandidateCount); |
51 | if (optCSEtab[dsc->csdIndex - 1] == nullptr) |
52 | { |
53 | optCSEtab[dsc->csdIndex - 1] = dsc; |
54 | } |
55 | } |
56 | } |
57 | } |
58 | |
59 | #ifdef DEBUG |
60 | for (cnt = 0; cnt < optCSECandidateCount; cnt++) |
61 | { |
62 | noway_assert(optCSEtab[cnt] != nullptr); |
63 | } |
64 | #endif |
65 | } |
66 | |
67 | /***************************************************************************** |
68 | * |
69 | * Return the descriptor for the CSE with the given index. |
70 | */ |
71 | |
72 | inline Compiler::CSEdsc* Compiler::optCSEfindDsc(unsigned index) |
73 | { |
74 | noway_assert(index); |
75 | noway_assert(index <= optCSECandidateCount); |
76 | noway_assert(optCSEtab[index - 1]); |
77 | |
78 | return optCSEtab[index - 1]; |
79 | } |
80 | |
81 | //------------------------------------------------------------------------ |
82 | // Compiler::optUnmarkCSE |
83 | // |
84 | // Arguments: |
85 | // tree - A sub tree that originally was part of a CSE use |
86 | // that we are currently in the process of removing. |
87 | // |
88 | // Return Value: |
89 | // Returns true if we can safely remove the 'tree' node. |
90 | // Returns false if the node is a CSE def that the caller |
91 | // needs to extract and preserve. |
92 | // |
93 | // Notes: |
94 | // If 'tree' is a CSE use then we perform an unmark CSE operation |
95 | // so that the CSE used counts and weight are updated properly. |
96 | // The only caller for this method is optUnmarkCSEs which is a |
97 | // tree walker vistor function. When we return false this method |
98 | // returns WALK_SKIP_SUBTREES so that we don't visit the remaining |
99 | // nodes of the CSE def. |
100 | // |
101 | bool Compiler::optUnmarkCSE(GenTree* tree) |
102 | { |
103 | if (!IS_CSE_INDEX(tree->gtCSEnum)) |
104 | { |
105 | // If this node isn't a CSE use or def we can safely remove this node. |
106 | // |
107 | return true; |
108 | } |
109 | |
110 | // make sure it's been initialized |
111 | noway_assert(optCSEweight <= BB_MAX_WEIGHT); |
112 | |
113 | // Is this a CSE use? |
114 | if (IS_CSE_USE(tree->gtCSEnum)) |
115 | { |
116 | unsigned CSEnum = GET_CSE_INDEX(tree->gtCSEnum); |
117 | CSEdsc* desc = optCSEfindDsc(CSEnum); |
118 | |
119 | #ifdef DEBUG |
120 | if (verbose) |
121 | { |
122 | printf("Unmark CSE use #%02d at " , CSEnum); |
123 | printTreeID(tree); |
124 | printf(": %3d -> %3d\n" , desc->csdUseCount, desc->csdUseCount - 1); |
125 | } |
126 | #endif // DEBUG |
127 | |
128 | // Perform an unmark CSE operation |
129 | |
130 | // 1. Reduce the nested CSE's 'use' count |
131 | |
132 | noway_assert(desc->csdUseCount > 0); |
133 | |
134 | if (desc->csdUseCount > 0) |
135 | { |
136 | desc->csdUseCount -= 1; |
137 | |
138 | if (desc->csdUseWtCnt < optCSEweight) |
139 | { |
140 | desc->csdUseWtCnt = 0; |
141 | } |
142 | else |
143 | { |
144 | desc->csdUseWtCnt -= optCSEweight; |
145 | } |
146 | } |
147 | |
148 | // 2. Unmark the CSE infomation in the node |
149 | |
150 | tree->gtCSEnum = NO_CSE; |
151 | return true; |
152 | } |
153 | else |
154 | { |
155 | // It is not safe to remove this node, so we will return false |
156 | // and the caller must add this node to the side effect list |
157 | // |
158 | return false; |
159 | } |
160 | } |
161 | |
162 | Compiler::fgWalkResult Compiler::optCSE_MaskHelper(GenTree** pTree, fgWalkData* walkData) |
163 | { |
164 | GenTree* tree = *pTree; |
165 | Compiler* comp = walkData->compiler; |
166 | optCSE_MaskData* pUserData = (optCSE_MaskData*)(walkData->pCallbackData); |
167 | |
168 | if (IS_CSE_INDEX(tree->gtCSEnum)) |
169 | { |
170 | unsigned cseIndex = GET_CSE_INDEX(tree->gtCSEnum); |
171 | unsigned cseBit = genCSEnum2bit(cseIndex); |
172 | if (IS_CSE_DEF(tree->gtCSEnum)) |
173 | { |
174 | BitVecOps::AddElemD(comp->cseTraits, pUserData->CSE_defMask, cseBit); |
175 | } |
176 | else |
177 | { |
178 | BitVecOps::AddElemD(comp->cseTraits, pUserData->CSE_useMask, cseBit); |
179 | } |
180 | } |
181 | |
182 | return WALK_CONTINUE; |
183 | } |
184 | |
185 | // This functions walks all the node for an given tree |
186 | // and return the mask of CSE defs and uses for the tree |
187 | // |
188 | void Compiler::optCSE_GetMaskData(GenTree* tree, optCSE_MaskData* pMaskData) |
189 | { |
190 | pMaskData->CSE_defMask = BitVecOps::MakeEmpty(cseTraits); |
191 | pMaskData->CSE_useMask = BitVecOps::MakeEmpty(cseTraits); |
192 | fgWalkTreePre(&tree, optCSE_MaskHelper, (void*)pMaskData); |
193 | } |
194 | |
195 | //------------------------------------------------------------------------ |
196 | // optCSE_canSwap: Determine if the execution order of two nodes can be swapped. |
197 | // |
198 | // Arguments: |
199 | // op1 - The first node |
200 | // op2 - The second node |
201 | // |
202 | // Return Value: |
203 | // Return true iff it safe to swap the execution order of 'op1' and 'op2', |
204 | // considering only the locations of the CSE defs and uses. |
205 | // |
206 | // Assumptions: |
207 | // 'op1' currently occurse before 'op2' in the execution order. |
208 | // |
209 | bool Compiler::optCSE_canSwap(GenTree* op1, GenTree* op2) |
210 | { |
211 | // op1 and op2 must be non-null. |
212 | assert(op1 != nullptr); |
213 | assert(op2 != nullptr); |
214 | |
215 | bool canSwap = true; // the default result unless proven otherwise. |
216 | |
217 | optCSE_MaskData op1MaskData; |
218 | optCSE_MaskData op2MaskData; |
219 | |
220 | optCSE_GetMaskData(op1, &op1MaskData); |
221 | optCSE_GetMaskData(op2, &op2MaskData); |
222 | |
223 | // We cannot swap if op1 contains a CSE def that is used by op2 |
224 | if (!BitVecOps::IsEmptyIntersection(cseTraits, op1MaskData.CSE_defMask, op2MaskData.CSE_useMask)) |
225 | { |
226 | canSwap = false; |
227 | } |
228 | else |
229 | { |
230 | // We also cannot swap if op2 contains a CSE def that is used by op1. |
231 | if (!BitVecOps::IsEmptyIntersection(cseTraits, op2MaskData.CSE_defMask, op1MaskData.CSE_useMask)) |
232 | { |
233 | canSwap = false; |
234 | } |
235 | } |
236 | |
237 | return canSwap; |
238 | } |
239 | |
240 | //------------------------------------------------------------------------ |
241 | // optCSE_canSwap: Determine if the execution order of a node's operands can be swapped. |
242 | // |
243 | // Arguments: |
244 | // tree - The node of interest |
245 | // |
246 | // Return Value: |
247 | // Return true iff it safe to swap the execution order of the operands of 'tree', |
248 | // considering only the locations of the CSE defs and uses. |
249 | // |
250 | bool Compiler::optCSE_canSwap(GenTree* tree) |
251 | { |
252 | // We must have a binary treenode with non-null op1 and op2 |
253 | assert((tree->OperKind() & GTK_SMPOP) != 0); |
254 | |
255 | GenTree* op1 = tree->gtOp.gtOp1; |
256 | GenTree* op2 = tree->gtGetOp2(); |
257 | |
258 | return optCSE_canSwap(op1, op2); |
259 | } |
260 | |
261 | /***************************************************************************** |
262 | * |
263 | * Compare function passed to qsort() by CSE_Heuristic::SortCandidates |
264 | * when (CodeOptKind() != Compiler::SMALL_CODE) |
265 | */ |
266 | |
267 | /* static */ |
268 | int __cdecl Compiler::optCSEcostCmpEx(const void* op1, const void* op2) |
269 | { |
270 | CSEdsc* dsc1 = *(CSEdsc**)op1; |
271 | CSEdsc* dsc2 = *(CSEdsc**)op2; |
272 | |
273 | GenTree* exp1 = dsc1->csdTree; |
274 | GenTree* exp2 = dsc2->csdTree; |
275 | |
276 | int diff; |
277 | |
278 | diff = (int)(exp2->gtCostEx - exp1->gtCostEx); |
279 | |
280 | if (diff != 0) |
281 | { |
282 | return diff; |
283 | } |
284 | |
285 | // Sort the higher Use Counts toward the top |
286 | diff = (int)(dsc2->csdUseWtCnt - dsc1->csdUseWtCnt); |
287 | |
288 | if (diff != 0) |
289 | { |
290 | return diff; |
291 | } |
292 | |
293 | // With the same use count, Sort the lower Def Counts toward the top |
294 | diff = (int)(dsc1->csdDefWtCnt - dsc2->csdDefWtCnt); |
295 | |
296 | if (diff != 0) |
297 | { |
298 | return diff; |
299 | } |
300 | |
301 | // In order to ensure that we have a stable sort, we break ties using the csdIndex |
302 | return (int)(dsc1->csdIndex - dsc2->csdIndex); |
303 | } |
304 | |
305 | /***************************************************************************** |
306 | * |
307 | * Compare function passed to qsort() by CSE_Heuristic::SortCandidates |
308 | * when (CodeOptKind() == Compiler::SMALL_CODE) |
309 | */ |
310 | |
311 | /* static */ |
312 | int __cdecl Compiler::optCSEcostCmpSz(const void* op1, const void* op2) |
313 | { |
314 | CSEdsc* dsc1 = *(CSEdsc**)op1; |
315 | CSEdsc* dsc2 = *(CSEdsc**)op2; |
316 | |
317 | GenTree* exp1 = dsc1->csdTree; |
318 | GenTree* exp2 = dsc2->csdTree; |
319 | |
320 | int diff; |
321 | |
322 | diff = (int)(exp2->gtCostSz - exp1->gtCostSz); |
323 | |
324 | if (diff != 0) |
325 | { |
326 | return diff; |
327 | } |
328 | |
329 | // Sort the higher Use Counts toward the top |
330 | diff = (int)(dsc2->csdUseCount - dsc1->csdUseCount); |
331 | |
332 | if (diff != 0) |
333 | { |
334 | return diff; |
335 | } |
336 | |
337 | // With the same use count, Sort the lower Def Counts toward the top |
338 | diff = (int)(dsc1->csdDefCount - dsc2->csdDefCount); |
339 | |
340 | if (diff != 0) |
341 | { |
342 | return diff; |
343 | } |
344 | |
345 | // In order to ensure that we have a stable sort, we break ties using the csdIndex |
346 | return (int)(dsc1->csdIndex - dsc2->csdIndex); |
347 | } |
348 | |
349 | /*****************************************************************************/ |
350 | #if FEATURE_VALNUM_CSE |
351 | /*****************************************************************************/ |
352 | |
353 | /***************************************************************************** |
354 | * |
355 | * Initialize the Value Number CSE tracking logic. |
356 | */ |
357 | |
358 | void Compiler::optValnumCSE_Init() |
359 | { |
360 | #ifdef DEBUG |
361 | optCSEtab = nullptr; |
362 | #endif |
363 | |
364 | // Init traits and full/empty bitvectors. This will be used to track the |
365 | // individual cse indexes. |
366 | cseTraits = new (getAllocator()) BitVecTraits(EXPSET_SZ, this); |
367 | cseFull = BitVecOps::MakeFull(cseTraits); |
368 | |
369 | /* Allocate and clear the hash bucket table */ |
370 | |
371 | optCSEhash = new (this, CMK_CSE) CSEdsc*[s_optCSEhashSize](); |
372 | |
373 | optCSECandidateCount = 0; |
374 | optDoCSE = false; // Stays false until we find duplicate CSE tree |
375 | |
376 | // optCseCheckedBoundMap is unused in most functions, allocated only when used |
377 | optCseCheckedBoundMap = nullptr; |
378 | } |
379 | |
380 | //--------------------------------------------------------------------------- |
381 | // optValnumCSE_Index: |
382 | // - Returns the CSE index to use for this tree, |
383 | // or zero if this expression is not currently a CSE. |
384 | // |
385 | // Arguments: |
386 | // tree - The current candidate CSE expression |
387 | // stmt - The current statement that contains tree |
388 | // |
389 | // |
390 | // Notes: We build a hash table that contains all of the expressions that |
391 | // are presented to this method. Whenever we see a duplicate expression |
392 | // we have a CSE candidate. If it is the first time seeing the duplicate |
393 | // we allocate a new CSE index. If we have already allocated a CSE index |
394 | // we return that index. There currently is a limit on the number of CSEs |
395 | // that we can have of MAX_CSE_CNT (64) |
396 | // |
397 | unsigned Compiler::optValnumCSE_Index(GenTree* tree, GenTree* stmt) |
398 | { |
399 | unsigned key; |
400 | unsigned hash; |
401 | unsigned hval; |
402 | CSEdsc* hashDsc; |
403 | |
404 | // We use the liberal Value numbers when building the set of CSE |
405 | ValueNum vnLib = tree->GetVN(VNK_Liberal); |
406 | ValueNum vnLibNorm = vnStore->VNNormalValue(vnLib); |
407 | |
408 | // We use the normal value number because we want the CSE candidate to |
409 | // represent all expressions that produce the same normal value number |
410 | // We will handle the case where we have different exception sets when |
411 | // promoting the candidates. |
412 | // |
413 | // We do this because a GT_IND will usually have a NullPtrExc entry in its |
414 | // exc set, but we may have cleared the GTF_EXCEPT flag and if so, it won't |
415 | // have an NullPtrExc, or we may have assigned the value of an GT_IND |
416 | // into a LCL_VAR and then read it back later. |
417 | // |
418 | // When we are promoting the CSE candidates we insure that any CSE |
419 | // uses that we promote have an exc set that is the same as the CSE defs |
420 | // or have an empty set. And that all of the CSE defs produced the required |
421 | // set of exceptions for the CSE uses. |
422 | // |
423 | |
424 | // We assign either vnLib or vnLibNorm as the hash key |
425 | // |
426 | // The only exception to using the normal value is for the GT_COMMA nodes. |
427 | // Here we check to see if we have a GT_COMMA with a different value number |
428 | // than the one from its op2. For this case we want to create two different |
429 | // CSE candidates. This allows us to CSE the GT_COMMA separately from its value. |
430 | // |
431 | if (tree->OperGet() == GT_COMMA) |
432 | { |
433 | // op2 is the value produced by a GT_COMMA |
434 | GenTree* op2 = tree->gtOp.gtOp2; |
435 | ValueNum vnOp2Lib = op2->GetVN(VNK_Liberal); |
436 | |
437 | // If the value number for op2 and tree are different, then some new |
438 | // exceptions were produced by op1. For that case we will NOT use the |
439 | // normal value. This allows us to CSE commas with an op1 that is |
440 | // an ARR_BOUNDS_CHECK. |
441 | // |
442 | if (vnOp2Lib != vnLib) |
443 | { |
444 | key = (unsigned)vnLib; // include the exc set in the hash key |
445 | } |
446 | else |
447 | { |
448 | key = (unsigned)vnLibNorm; |
449 | } |
450 | |
451 | // If we didn't do the above we would have op1 as the CSE def |
452 | // and the parent comma as the CSE use (but with a different exc set) |
453 | // This would prevent us from making any CSE with the comma |
454 | // |
455 | assert(vnLibNorm == vnStore->VNNormalValue(vnOp2Lib)); |
456 | } |
457 | else // Not a GT_COMMA |
458 | { |
459 | key = (unsigned)vnLibNorm; |
460 | } |
461 | |
462 | // Compute the hash value for the expression |
463 | |
464 | hash = key; |
465 | hash *= (unsigned)(s_optCSEhashSize + 1); |
466 | hash >>= 7; |
467 | |
468 | hval = hash % s_optCSEhashSize; |
469 | |
470 | /* Look for a matching index in the hash table */ |
471 | |
472 | bool newCSE = false; |
473 | |
474 | for (hashDsc = optCSEhash[hval]; hashDsc; hashDsc = hashDsc->csdNextInBucket) |
475 | { |
476 | if (hashDsc->csdHashKey == key) |
477 | { |
478 | treeStmtLst* newElem; |
479 | |
480 | /* Have we started the list of matching nodes? */ |
481 | |
482 | if (hashDsc->csdTreeList == nullptr) |
483 | { |
484 | // Create the new element based upon the matching hashDsc element. |
485 | |
486 | newElem = new (this, CMK_TreeStatementList) treeStmtLst; |
487 | |
488 | newElem->tslTree = hashDsc->csdTree; |
489 | newElem->tslStmt = hashDsc->csdStmt; |
490 | newElem->tslBlock = hashDsc->csdBlock; |
491 | newElem->tslNext = nullptr; |
492 | |
493 | /* Start the list with the first CSE candidate recorded */ |
494 | |
495 | hashDsc->csdTreeList = newElem; |
496 | hashDsc->csdTreeLast = newElem; |
497 | } |
498 | |
499 | noway_assert(hashDsc->csdTreeList); |
500 | |
501 | /* Append this expression to the end of the list */ |
502 | |
503 | newElem = new (this, CMK_TreeStatementList) treeStmtLst; |
504 | |
505 | newElem->tslTree = tree; |
506 | newElem->tslStmt = stmt; |
507 | newElem->tslBlock = compCurBB; |
508 | newElem->tslNext = nullptr; |
509 | |
510 | hashDsc->csdTreeLast->tslNext = newElem; |
511 | hashDsc->csdTreeLast = newElem; |
512 | |
513 | optDoCSE = true; // Found a duplicate CSE tree |
514 | |
515 | /* Have we assigned a CSE index? */ |
516 | if (hashDsc->csdIndex == 0) |
517 | { |
518 | newCSE = true; |
519 | break; |
520 | } |
521 | |
522 | assert(FitsIn<signed char>(hashDsc->csdIndex)); |
523 | tree->gtCSEnum = ((signed char)hashDsc->csdIndex); |
524 | return hashDsc->csdIndex; |
525 | } |
526 | } |
527 | |
528 | if (!newCSE) |
529 | { |
530 | /* Not found, create a new entry (unless we have too many already) */ |
531 | |
532 | if (optCSECandidateCount < MAX_CSE_CNT) |
533 | { |
534 | hashDsc = new (this, CMK_CSE) CSEdsc; |
535 | |
536 | hashDsc->csdHashKey = key; |
537 | hashDsc->csdIndex = 0; |
538 | hashDsc->csdLiveAcrossCall = 0; |
539 | hashDsc->csdDefCount = 0; |
540 | hashDsc->csdUseCount = 0; |
541 | hashDsc->csdDefWtCnt = 0; |
542 | hashDsc->csdUseWtCnt = 0; |
543 | hashDsc->defExcSetPromise = vnStore->VNForEmptyExcSet(); |
544 | hashDsc->defExcSetCurrent = vnStore->VNForNull(); // uninit value |
545 | hashDsc->defConservNormVN = vnStore->VNForNull(); // uninit value |
546 | |
547 | hashDsc->csdTree = tree; |
548 | hashDsc->csdStmt = stmt; |
549 | hashDsc->csdBlock = compCurBB; |
550 | hashDsc->csdTreeList = nullptr; |
551 | |
552 | /* Append the entry to the hash bucket */ |
553 | |
554 | hashDsc->csdNextInBucket = optCSEhash[hval]; |
555 | optCSEhash[hval] = hashDsc; |
556 | } |
557 | return 0; |
558 | } |
559 | else // newCSE is true |
560 | { |
561 | /* We get here only after finding a matching CSE */ |
562 | |
563 | /* Create a new CSE (unless we have the maximum already) */ |
564 | |
565 | if (optCSECandidateCount == MAX_CSE_CNT) |
566 | { |
567 | return 0; |
568 | } |
569 | |
570 | C_ASSERT((signed char)MAX_CSE_CNT == MAX_CSE_CNT); |
571 | |
572 | unsigned CSEindex = ++optCSECandidateCount; |
573 | // EXPSET_TP CSEmask = genCSEnum2bit(CSEindex); |
574 | |
575 | /* Record the new CSE index in the hashDsc */ |
576 | hashDsc->csdIndex = CSEindex; |
577 | |
578 | /* Update the gtCSEnum field in the original tree */ |
579 | noway_assert(hashDsc->csdTreeList->tslTree->gtCSEnum == 0); |
580 | assert(FitsIn<signed char>(CSEindex)); |
581 | |
582 | hashDsc->csdTreeList->tslTree->gtCSEnum = ((signed char)CSEindex); |
583 | noway_assert(((unsigned)hashDsc->csdTreeList->tslTree->gtCSEnum) == CSEindex); |
584 | |
585 | tree->gtCSEnum = ((signed char)CSEindex); |
586 | |
587 | #ifdef DEBUG |
588 | if (verbose) |
589 | { |
590 | EXPSET_TP tempMask = BitVecOps::MakeSingleton(cseTraits, genCSEnum2bit(CSEindex)); |
591 | printf("\nCSE candidate #%02u, vn=" , CSEindex); |
592 | vnPrint(key, 0); |
593 | printf(" cseMask=%s in " FMT_BB ", [cost=%2u, size=%2u]: \n" , genES2str(cseTraits, tempMask), |
594 | compCurBB->bbNum, tree->gtCostEx, tree->gtCostSz); |
595 | gtDispTree(tree); |
596 | } |
597 | #endif // DEBUG |
598 | |
599 | return CSEindex; |
600 | } |
601 | } |
602 | |
603 | /***************************************************************************** |
604 | * |
605 | * Locate CSE candidates and assign indices to them |
606 | * return 0 if no CSE candidates were found |
607 | * Also initialize bbCseIn, bbCseout and bbCseGen sets for all blocks |
608 | */ |
609 | |
610 | unsigned Compiler::optValnumCSE_Locate() |
611 | { |
612 | // Locate CSE candidates and assign them indices |
613 | |
614 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
615 | { |
616 | GenTree* stmt; |
617 | GenTree* tree; |
618 | |
619 | /* Make the block publicly available */ |
620 | |
621 | compCurBB = block; |
622 | |
623 | /* Ensure that the BBF_VISITED and BBF_MARKED flag are clear */ |
624 | /* Everyone who uses these flags are required to clear afterwards */ |
625 | noway_assert((block->bbFlags & (BBF_VISITED | BBF_MARKED)) == 0); |
626 | |
627 | /* Walk the statement trees in this basic block */ |
628 | for (stmt = block->FirstNonPhiDef(); stmt; stmt = stmt->gtNext) |
629 | { |
630 | noway_assert(stmt->gtOper == GT_STMT); |
631 | |
632 | /* We walk the tree in the forwards direction (bottom up) */ |
633 | bool stmtHasArrLenCandidate = false; |
634 | for (tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
635 | { |
636 | if (tree->OperIsCompare() && stmtHasArrLenCandidate) |
637 | { |
638 | // Check if this compare is a function of (one of) the checked |
639 | // bound candidate(s); we may want to update its value number. |
640 | // if the array length gets CSEd |
641 | optCseUpdateCheckedBoundMap(tree); |
642 | } |
643 | |
644 | if (!optIsCSEcandidate(tree)) |
645 | { |
646 | continue; |
647 | } |
648 | |
649 | if (ValueNumStore::isReservedVN(tree->GetVN(VNK_Liberal))) |
650 | { |
651 | continue; |
652 | } |
653 | |
654 | // Don't CSE constant values, instead let the Value Number |
655 | // based Assertion Prop phase handle them. Here, unlike |
656 | // the rest of optCSE, we use the conservative value number |
657 | // rather than the liberal one, since the conservative one |
658 | // is what the Value Number based Assertion Prop will use |
659 | // and the point is to avoid optimizing cases that it will |
660 | // handle. |
661 | // |
662 | if (vnStore->IsVNConstant(vnStore->VNConservativeNormalValue(tree->gtVNPair))) |
663 | { |
664 | continue; |
665 | } |
666 | |
667 | /* Assign an index to this expression */ |
668 | |
669 | unsigned CSEindex = optValnumCSE_Index(tree, stmt); |
670 | |
671 | if (CSEindex != 0) |
672 | { |
673 | noway_assert(((unsigned)tree->gtCSEnum) == CSEindex); |
674 | } |
675 | |
676 | if (IS_CSE_INDEX(CSEindex) && (tree->OperGet() == GT_ARR_LENGTH)) |
677 | { |
678 | stmtHasArrLenCandidate = true; |
679 | } |
680 | } |
681 | } |
682 | } |
683 | |
684 | /* We're done if there were no interesting expressions */ |
685 | |
686 | if (!optDoCSE) |
687 | { |
688 | return 0; |
689 | } |
690 | |
691 | /* We're finished building the expression lookup table */ |
692 | |
693 | optCSEstop(); |
694 | |
695 | return 1; |
696 | } |
697 | |
698 | //------------------------------------------------------------------------ |
699 | // optCseUpdateCheckedBoundMap: Check if this compare is a tractable function of |
700 | // a checked bound that is a CSE candidate, and insert |
701 | // an entry in the optCseCheckedBoundMap if so. This facilitates |
702 | // subsequently updating the compare's value number if |
703 | // the bound gets CSEd. |
704 | // |
705 | // Arguments: |
706 | // compare - The compare node to check |
707 | |
708 | void Compiler::optCseUpdateCheckedBoundMap(GenTree* compare) |
709 | { |
710 | assert(compare->OperIsCompare()); |
711 | |
712 | ValueNum compareVN = compare->gtVNPair.GetConservative(); |
713 | VNFuncApp cmpVNFuncApp; |
714 | |
715 | if (!vnStore->GetVNFunc(compareVN, &cmpVNFuncApp) || (cmpVNFuncApp.m_func != GetVNFuncForNode(compare))) |
716 | { |
717 | // Value numbering inferred this compare as something other |
718 | // than its own operator; leave its value number alone. |
719 | return; |
720 | } |
721 | |
722 | // Now look for a checked bound feeding the compare |
723 | ValueNumStore::CompareCheckedBoundArithInfo info; |
724 | |
725 | GenTree* boundParent = nullptr; |
726 | |
727 | if (vnStore->IsVNCompareCheckedBound(compareVN)) |
728 | { |
729 | // Simple compare of an bound against something else. |
730 | |
731 | vnStore->GetCompareCheckedBound(compareVN, &info); |
732 | boundParent = compare; |
733 | } |
734 | else if (vnStore->IsVNCompareCheckedBoundArith(compareVN)) |
735 | { |
736 | // Compare of a bound +/- some offset to something else. |
737 | |
738 | GenTree* op1 = compare->gtGetOp1(); |
739 | GenTree* op2 = compare->gtGetOp2(); |
740 | |
741 | vnStore->GetCompareCheckedBoundArithInfo(compareVN, &info); |
742 | if (GetVNFuncForNode(op1) == (VNFunc)info.arrOper) |
743 | { |
744 | // The arithmetic node is the bound's parent. |
745 | boundParent = op1; |
746 | } |
747 | else if (GetVNFuncForNode(op2) == (VNFunc)info.arrOper) |
748 | { |
749 | // The arithmetic node is the bound's parent. |
750 | boundParent = op2; |
751 | } |
752 | } |
753 | |
754 | if (boundParent != nullptr) |
755 | { |
756 | GenTree* bound = nullptr; |
757 | |
758 | // Find which child of boundParent is the bound. Abort if neither |
759 | // conservative value number matches the one from the compare VN. |
760 | |
761 | GenTree* child1 = boundParent->gtGetOp1(); |
762 | if ((info.vnBound == child1->gtVNPair.GetConservative()) && IS_CSE_INDEX(child1->gtCSEnum)) |
763 | { |
764 | bound = child1; |
765 | } |
766 | else |
767 | { |
768 | GenTree* child2 = boundParent->gtGetOp2(); |
769 | if ((info.vnBound == child2->gtVNPair.GetConservative()) && IS_CSE_INDEX(child2->gtCSEnum)) |
770 | { |
771 | bound = child2; |
772 | } |
773 | } |
774 | |
775 | if (bound != nullptr) |
776 | { |
777 | // Found a checked bound feeding a compare that is a tractable function of it; |
778 | // record this in the map so we can update the compare VN if the bound |
779 | // node gets CSEd. |
780 | |
781 | if (optCseCheckedBoundMap == nullptr) |
782 | { |
783 | // Allocate map on first use. |
784 | optCseCheckedBoundMap = new (getAllocator()) NodeToNodeMap(getAllocator()); |
785 | } |
786 | |
787 | optCseCheckedBoundMap->Set(bound, compare); |
788 | } |
789 | } |
790 | } |
791 | |
792 | /***************************************************************************** |
793 | * |
794 | * Compute each blocks bbCseGen |
795 | * This is the bitset that represents the CSEs that are generated within the block |
796 | */ |
797 | void Compiler::optValnumCSE_InitDataFlow() |
798 | { |
799 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
800 | { |
801 | /* Initialize the blocks's bbCseIn set */ |
802 | |
803 | bool init_to_zero = false; |
804 | |
805 | if (block == fgFirstBB) |
806 | { |
807 | /* Clear bbCseIn for the entry block */ |
808 | init_to_zero = true; |
809 | } |
810 | #if !CSE_INTO_HANDLERS |
811 | else |
812 | { |
813 | if (bbIsHandlerBeg(block)) |
814 | { |
815 | /* Clear everything on entry to filters or handlers */ |
816 | init_to_zero = true; |
817 | } |
818 | } |
819 | #endif |
820 | if (init_to_zero) |
821 | { |
822 | /* Initialize to {ZERO} prior to dataflow */ |
823 | block->bbCseIn = BitVecOps::MakeEmpty(cseTraits); |
824 | } |
825 | else |
826 | { |
827 | /* Initialize to {ALL} prior to dataflow */ |
828 | block->bbCseIn = BitVecOps::MakeCopy(cseTraits, cseFull); |
829 | } |
830 | |
831 | block->bbCseOut = BitVecOps::MakeCopy(cseTraits, cseFull); |
832 | |
833 | /* Initialize to {ZERO} prior to locating the CSE candidates */ |
834 | block->bbCseGen = BitVecOps::MakeEmpty(cseTraits); |
835 | } |
836 | |
837 | // We walk the set of CSE candidates and set the bit corresponsing to the CSEindex |
838 | // in the block's bbCseGen bitset |
839 | // |
840 | for (unsigned cnt = 0; cnt < optCSECandidateCount; cnt++) |
841 | { |
842 | CSEdsc* dsc = optCSEtab[cnt]; |
843 | unsigned CSEindex = dsc->csdIndex; |
844 | treeStmtLst* lst = dsc->csdTreeList; |
845 | noway_assert(lst); |
846 | |
847 | while (lst != nullptr) |
848 | { |
849 | BasicBlock* block = lst->tslBlock; |
850 | BitVecOps::AddElemD(cseTraits, block->bbCseGen, genCSEnum2bit(CSEindex)); |
851 | lst = lst->tslNext; |
852 | } |
853 | } |
854 | |
855 | #ifdef DEBUG |
856 | // Dump out the bbCseGen information that we just created |
857 | // |
858 | if (verbose) |
859 | { |
860 | bool = false; |
861 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
862 | { |
863 | if (block->bbCseGen != nullptr) |
864 | { |
865 | if (!headerPrinted) |
866 | { |
867 | printf("\nBlocks that generate CSE def/uses\n" ); |
868 | headerPrinted = true; |
869 | } |
870 | printf(FMT_BB, block->bbNum); |
871 | printf(" cseGen = %s\n" , genES2str(cseTraits, block->bbCseGen)); |
872 | } |
873 | } |
874 | } |
875 | |
876 | fgDebugCheckLinks(); |
877 | |
878 | #endif // DEBUG |
879 | } |
880 | |
881 | /***************************************************************************** |
882 | * |
883 | * CSE Dataflow, so that all helper methods for dataflow are in a single place |
884 | * |
885 | */ |
886 | class CSE_DataFlow |
887 | { |
888 | BitVecTraits* m_pBitVecTraits; |
889 | EXPSET_TP m_preMergeOut; |
890 | |
891 | public: |
892 | CSE_DataFlow(Compiler* pCompiler) : m_pBitVecTraits(pCompiler->cseTraits), m_preMergeOut(BitVecOps::UninitVal()) |
893 | { |
894 | } |
895 | |
896 | // At the start of the merge function of the dataflow equations, initialize premerge state (to detect changes.) |
897 | void StartMerge(BasicBlock* block) |
898 | { |
899 | BitVecOps::Assign(m_pBitVecTraits, m_preMergeOut, block->bbCseOut); |
900 | } |
901 | |
902 | // During merge, perform the actual merging of the predecessor's (since this is a forward analysis) dataflow flags. |
903 | void Merge(BasicBlock* block, BasicBlock* predBlock, flowList* preds) |
904 | { |
905 | BitVecOps::IntersectionD(m_pBitVecTraits, block->bbCseIn, predBlock->bbCseOut); |
906 | } |
907 | |
908 | // At the end of the merge store results of the dataflow equations, in a postmerge state. |
909 | bool EndMerge(BasicBlock* block) |
910 | { |
911 | BitVecOps::DataFlowD(m_pBitVecTraits, block->bbCseOut, block->bbCseGen, block->bbCseIn); |
912 | return !BitVecOps::Equal(m_pBitVecTraits, block->bbCseOut, m_preMergeOut); |
913 | } |
914 | }; |
915 | |
916 | /***************************************************************************** |
917 | * |
918 | * Perform a DataFlow forward analysis using the block CSE bitsets: |
919 | * Inputs: |
920 | * bbCseGen - Exact CSEs that are become available within the block |
921 | * bbCseIn - Maximal estimate of CSEs that are/could be available at input to the block |
922 | * bbCseOut - Maximal estimate of CSEs that are/could be available at exit to the block |
923 | * |
924 | * Outputs: |
925 | * bbCseIn - Computed CSEs that are available at input to the block |
926 | * bbCseOut - Computed CSEs that are available at exit to the block |
927 | */ |
928 | |
929 | void Compiler::optValnumCSE_DataFlow() |
930 | { |
931 | CSE_DataFlow cse(this); |
932 | |
933 | // Modified dataflow algorithm for available expressions. |
934 | DataFlow cse_flow(this); |
935 | |
936 | cse_flow.ForwardAnalysis(cse); |
937 | |
938 | #ifdef DEBUG |
939 | if (verbose) |
940 | { |
941 | printf("\nAfter performing DataFlow for ValnumCSE's\n" ); |
942 | |
943 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
944 | { |
945 | printf(FMT_BB, block->bbNum); |
946 | printf(" cseIn = %s" , genES2str(cseTraits, block->bbCseIn)); |
947 | printf(" cseOut = %s" , genES2str(cseTraits, block->bbCseOut)); |
948 | printf("\n" ); |
949 | } |
950 | |
951 | printf("\n" ); |
952 | } |
953 | #endif // DEBUG |
954 | } |
955 | |
956 | //--------------------------------------------------------------------------- |
957 | // optValnumCSE_Availablity: |
958 | // |
959 | // Using the information computed by CSE_DataFlow determine for each |
960 | // CSE whether the CSE is a definition (if the CSE was not available) |
961 | // or if the CSE is a use (if the CSE was previously made available) |
962 | // The implementation iterates of all blocks setting 'available_cses' |
963 | // to the CSEs that are available at input to the block. |
964 | // When a CSE expression is encountered it is classified as either |
965 | // as a definition (if the CSE is not in the 'available_cses' set) or |
966 | // as a use (if the CSE is in the 'available_cses' set). If the CSE |
967 | // is a definition then it is added to the 'available_cses' set. |
968 | // |
969 | // This algorithm uncovers the defs and uses gradually and as it does |
970 | // so it also builds the exception set that all defs make: 'defExcSetCurrent' |
971 | // and the exception set that the uses we have seen depend upon: 'defExcSetPromise' |
972 | // |
973 | // Typically expressions with the same normal ValueNum generate exactly the |
974 | // same exception sets. There are two way that we can get different exception |
975 | // sets with the same Normal value number. |
976 | // |
977 | // 1. We used an arithmetic identiity: |
978 | // e.g. (p.a + q.b) * 0 :: The normal value for the expression is zero |
979 | // and we have NullPtrExc(p) and NullPtrExc(q) |
980 | // e.g. (p.a - p.a) :: The normal value for the expression is zero |
981 | // and we have NullPtrExc(p) |
982 | // 2. We stored an expression into a LclVar or into Memory and read it later |
983 | // e.g. t = p.a; |
984 | // e1 = (t + q.b) :: e1 has one NullPtrExc and e2 has two. |
985 | // e2 = (p.a + q.b) but both compute the same normal value// |
986 | // e.g. m.a = p.a; |
987 | // e1 = (m.a + q.b) :: e1 and e2 have different exception sets. |
988 | // e2 = (p.a + q.b) but both compute the same normal value |
989 | // |
990 | // |
991 | void Compiler::optValnumCSE_Availablity() |
992 | { |
993 | #ifdef DEBUG |
994 | if (verbose) |
995 | { |
996 | printf("Labeling the CSEs with Use/Def information\n" ); |
997 | } |
998 | #endif |
999 | EXPSET_TP available_cses = BitVecOps::MakeEmpty(cseTraits); |
1000 | |
1001 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
1002 | { |
1003 | GenTree* stmt; |
1004 | GenTree* tree; |
1005 | |
1006 | // Make the block publicly available |
1007 | |
1008 | compCurBB = block; |
1009 | |
1010 | // Retrieve the available CSE's at the start of this block |
1011 | |
1012 | BitVecOps::Assign(cseTraits, available_cses, block->bbCseIn); |
1013 | |
1014 | optCSEweight = block->getBBWeight(this); |
1015 | |
1016 | // Walk the statement trees in this basic block |
1017 | |
1018 | for (stmt = block->FirstNonPhiDef(); stmt; stmt = stmt->gtNext) |
1019 | { |
1020 | noway_assert(stmt->gtOper == GT_STMT); |
1021 | |
1022 | // We walk the tree in the forwards direction (bottom up) |
1023 | |
1024 | for (tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
1025 | { |
1026 | if (IS_CSE_INDEX(tree->gtCSEnum)) |
1027 | { |
1028 | unsigned CSEnum = GET_CSE_INDEX(tree->gtCSEnum); |
1029 | unsigned int cseBit = genCSEnum2bit(CSEnum); |
1030 | CSEdsc* desc = optCSEfindDsc(CSEnum); |
1031 | unsigned stmw = block->getBBWeight(this); |
1032 | bool isUse = BitVecOps::IsMember(cseTraits, available_cses, cseBit); |
1033 | bool isDef = !isUse; // If is isn't a CSE use, it is a CSE def |
1034 | #ifdef DEBUG |
1035 | VNFuncApp excSeq; |
1036 | |
1037 | if (verbose) |
1038 | { |
1039 | printf("BB%02u " , block->bbNum); |
1040 | printTreeID(tree); |
1041 | |
1042 | printf(" %s of CSE #%02u [weight=%s]\n" , isUse ? "Use" : "Def" , CSEnum, refCntWtd2str(stmw)); |
1043 | } |
1044 | #endif |
1045 | // Have we decided to abandon work on this CSE? |
1046 | if (desc->defExcSetPromise == ValueNumStore::NoVN) |
1047 | { |
1048 | // This candidate had defs with differing liberal exc set VNs |
1049 | // We have abandoned CSE promotion for this candidate |
1050 | |
1051 | // Clear the CSE flag |
1052 | tree->gtCSEnum = NO_CSE; |
1053 | |
1054 | JITDUMP(" Abandoned - CSE candidate has defs with different exception sets!\n" ); |
1055 | continue; |
1056 | } |
1057 | |
1058 | // Record the exception set for tree's liberal value number |
1059 | // |
1060 | ValueNum theLiberalExcSet = vnStore->VNExceptionSet(tree->gtVNPair.GetLiberal()); |
1061 | |
1062 | // Is this a CSE use or a def? |
1063 | |
1064 | if (isDef) |
1065 | { |
1066 | // @ToDo - Remove this block as it no longer applies |
1067 | if (tree->gtFlags & GTF_COLON_COND) |
1068 | { |
1069 | // We can't create CSE definitions inside QMARK-COLON trees |
1070 | tree->gtCSEnum = NO_CSE; |
1071 | |
1072 | JITDUMP(" NO_CSE - This CSE def occurs in a GTF_COLON_COND!\n" ); |
1073 | continue; |
1074 | } |
1075 | |
1076 | // This is a CSE def |
1077 | |
1078 | // Is defExcSetCurrent still set to the uninit marker value of VNForNull() ? |
1079 | if (desc->defExcSetCurrent == vnStore->VNForNull()) |
1080 | { |
1081 | // This is the first time visited, so record this defs exeception set |
1082 | desc->defExcSetCurrent = theLiberalExcSet; |
1083 | } |
1084 | |
1085 | // Have we seen a CSE use and made a promise of an exception set? |
1086 | // |
1087 | if (desc->defExcSetPromise != vnStore->VNForEmptyExcSet()) |
1088 | { |
1089 | // The exeception set held in desc->defExcSetPromise must be a subset of theLiberalExcSet |
1090 | // |
1091 | if (vnStore->VNExcIsSubset(theLiberalExcSet, desc->defExcSetPromise)) |
1092 | { |
1093 | // This new def still satisfies any promise made to all the CSE uses that we have |
1094 | // encountered |
1095 | // |
1096 | |
1097 | // no update is needed when these are the same VN |
1098 | if (desc->defExcSetCurrent != theLiberalExcSet) |
1099 | { |
1100 | // We will change the value of desc->defExcSetCurrent to be the intersection of |
1101 | // these two sets. |
1102 | // This is the set of exceptions that all CSE defs have (that we have visted so far) |
1103 | // |
1104 | ValueNum intersectionExcSet = |
1105 | vnStore->VNExcSetIntersection(desc->defExcSetCurrent, theLiberalExcSet); |
1106 | #ifdef DEBUG |
1107 | if (this->verbose) |
1108 | { |
1109 | vnStore->GetVNFunc(desc->defExcSetCurrent, &excSeq); |
1110 | printf(">>> defExcSetCurrent is " ); |
1111 | vnStore->vnDumpExcSeq(this, &excSeq, true); |
1112 | printf("\n" ); |
1113 | |
1114 | vnStore->GetVNFunc(theLiberalExcSet, &excSeq); |
1115 | printf(">>> theLiberalExcSet is " ); |
1116 | vnStore->vnDumpExcSeq(this, &excSeq, true); |
1117 | printf("\n" ); |
1118 | |
1119 | if (intersectionExcSet == vnStore->VNForEmptyExcSet()) |
1120 | { |
1121 | printf(">>> the intersectionExcSet is the EmptyExcSet\n" ); |
1122 | } |
1123 | else |
1124 | { |
1125 | vnStore->GetVNFunc(intersectionExcSet, &excSeq); |
1126 | printf(">>> the intersectionExcSet is " ); |
1127 | vnStore->vnDumpExcSeq(this, &excSeq, true); |
1128 | printf("\n" ); |
1129 | } |
1130 | } |
1131 | #endif // DEBUG |
1132 | // Change the defExcSetCurrent to be a subset of its prior value |
1133 | // |
1134 | assert(vnStore->VNExcIsSubset(desc->defExcSetCurrent, intersectionExcSet)); |
1135 | desc->defExcSetCurrent = intersectionExcSet; |
1136 | } |
1137 | } |
1138 | else // This CSE def doesn't satisfy one of the exceptions already promised to a CSE use |
1139 | { |
1140 | // So, we will abandon all CSE promotions for this candidate |
1141 | // |
1142 | // We use the marker value of NoVN to indicate that we |
1143 | // should abandon this CSE candidate |
1144 | // |
1145 | desc->defExcSetPromise = ValueNumStore::NoVN; |
1146 | tree->gtCSEnum = NO_CSE; |
1147 | |
1148 | JITDUMP(" Abandon - CSE candidate has defs with exception sets that do not satisfy " |
1149 | "some CSE use\n" ); |
1150 | continue; |
1151 | } |
1152 | } |
1153 | |
1154 | // Record or update the value of desc->defConservNormVN |
1155 | // |
1156 | ValueNum theConservNormVN = vnStore->VNConservativeNormalValue(tree->gtVNPair); |
1157 | |
1158 | // Is defConservNormVN still set to the uninit marker value of VNForNull() ? |
1159 | if (desc->defConservNormVN == vnStore->VNForNull()) |
1160 | { |
1161 | // This is the first def that we have visited, set defConservNormVN |
1162 | desc->defConservNormVN = theConservNormVN; |
1163 | } |
1164 | else |
1165 | { |
1166 | // Check to see if all defs have the same conservative normal VN |
1167 | if (theConservNormVN != desc->defConservNormVN) |
1168 | { |
1169 | // This candidate has defs with differing conservative normal VNs, mark it with NoVN |
1170 | desc->defConservNormVN = ValueNumStore::NoVN; // record the marker for differing VNs |
1171 | } |
1172 | } |
1173 | |
1174 | // If we get here we have accepted this node as a valid CSE def |
1175 | |
1176 | desc->csdDefCount += 1; |
1177 | desc->csdDefWtCnt += stmw; |
1178 | |
1179 | // Mark the node as a CSE definition |
1180 | |
1181 | tree->gtCSEnum = TO_CSE_DEF(tree->gtCSEnum); |
1182 | |
1183 | // This CSE becomes available after this def |
1184 | BitVecOps::AddElemD(cseTraits, available_cses, cseBit); |
1185 | } |
1186 | else // We are visiting a CSE use |
1187 | { |
1188 | assert(isUse); |
1189 | |
1190 | // If the CSE use has no requirements for an exception set then we don't have to do anything |
1191 | // here |
1192 | // |
1193 | if (theLiberalExcSet != vnStore->VNForEmptyExcSet()) |
1194 | { |
1195 | // Are we visiting a use first, before visiting any defs of this CSE? |
1196 | // This is an atypical case that can occur with a bottom tested loop. |
1197 | // |
1198 | // Is defExcSetCurrent still set to the uninit marker value of VNForNull() ? |
1199 | if (desc->defExcSetCurrent == vnStore->VNForNull()) |
1200 | { |
1201 | // Update defExcSetPromise, this is our required exception set for all CSE defs |
1202 | // that we encounter later. |
1203 | // |
1204 | // We could see multiple uses before a def, so we require the Union of all exception |
1205 | // sets |
1206 | // |
1207 | desc->defExcSetPromise = |
1208 | vnStore->VNExcSetUnion(desc->defExcSetPromise, theLiberalExcSet); |
1209 | } |
1210 | else // we have already seen a def for this CSE and defExcSetCurrent is setup |
1211 | { |
1212 | if (vnStore->VNExcIsSubset(desc->defExcSetCurrent, theLiberalExcSet)) |
1213 | { |
1214 | // The current set of exceptions produced by all CSE defs have (that we have visted |
1215 | // so far) |
1216 | // meets our requirement |
1217 | // |
1218 | // Add any exception items to the defExcSetPromise set |
1219 | // |
1220 | desc->defExcSetPromise = |
1221 | vnStore->VNExcSetUnion(desc->defExcSetPromise, theLiberalExcSet); |
1222 | } |
1223 | } |
1224 | |
1225 | // At this point defExcSetPromise contains all of the exception items that we can promise |
1226 | // here. |
1227 | // |
1228 | if (!vnStore->VNExcIsSubset(desc->defExcSetPromise, theLiberalExcSet)) |
1229 | { |
1230 | // We can't safely make this into a CSE use, because this |
1231 | // CSE use has an exeception set item that is not promised |
1232 | // by all of our CSE defs. |
1233 | // |
1234 | // We will omit this CSE use from the graph and proceed, |
1235 | // the other uses and defs can still participate in the CSE optimization. |
1236 | |
1237 | // So this can't be a CSE use |
1238 | tree->gtCSEnum = NO_CSE; |
1239 | |
1240 | JITDUMP( |
1241 | " NO_CSE - This use has an exception set item that isn't contained in the defs!\n" ); |
1242 | continue; |
1243 | } |
1244 | } |
1245 | |
1246 | // When we get here we have accepted this node as a valid CSE use |
1247 | |
1248 | desc->csdUseCount += 1; |
1249 | desc->csdUseWtCnt += stmw; |
1250 | } |
1251 | } |
1252 | } |
1253 | } |
1254 | } |
1255 | } |
1256 | |
1257 | // The following class handles the CSE heuristics |
1258 | // we use a complex set of heuristic rules |
1259 | // to determine if it is likely to be profitable to perform this CSE |
1260 | // |
1261 | class CSE_Heuristic |
1262 | { |
1263 | Compiler* m_pCompiler; |
1264 | unsigned m_addCSEcount; |
1265 | |
1266 | unsigned aggressiveRefCnt; |
1267 | unsigned moderateRefCnt; |
1268 | unsigned enregCount; // count of the number of enregisterable variables |
1269 | bool largeFrame; |
1270 | bool hugeFrame; |
1271 | Compiler::codeOptimize codeOptKind; |
1272 | Compiler::CSEdsc** sortTab; |
1273 | size_t sortSiz; |
1274 | #ifdef DEBUG |
1275 | CLRRandom m_cseRNG; |
1276 | unsigned m_bias; |
1277 | #endif |
1278 | |
1279 | public: |
1280 | CSE_Heuristic(Compiler* pCompiler) : m_pCompiler(pCompiler) |
1281 | { |
1282 | codeOptKind = m_pCompiler->compCodeOpt(); |
1283 | } |
1284 | |
1285 | Compiler::codeOptimize CodeOptKind() |
1286 | { |
1287 | return codeOptKind; |
1288 | } |
1289 | |
1290 | // Perform the Initialization step for our CSE Heuristics |
1291 | // determine the various cut off values to use for |
1292 | // the aggressive, moderate and conservative CSE promotions |
1293 | // count the number of enregisterable variables |
1294 | // determine if the method has a large or huge stack frame. |
1295 | // |
1296 | void Initialize() |
1297 | { |
1298 | m_addCSEcount = 0; /* Count of the number of LclVars for CSEs that we added */ |
1299 | |
1300 | // Record the weighted ref count of the last "for sure" callee saved LclVar |
1301 | aggressiveRefCnt = 0; |
1302 | moderateRefCnt = 0; |
1303 | enregCount = 0; |
1304 | largeFrame = false; |
1305 | hugeFrame = false; |
1306 | sortTab = nullptr; |
1307 | sortSiz = 0; |
1308 | |
1309 | #ifdef _TARGET_XARCH_ |
1310 | if (m_pCompiler->compLongUsed) |
1311 | { |
1312 | enregCount++; |
1313 | } |
1314 | #endif |
1315 | |
1316 | unsigned frameSize = 0; |
1317 | unsigned regAvailEstimate = ((CNT_CALLEE_ENREG * 3) + (CNT_CALLEE_TRASH * 2) + 1); |
1318 | unsigned lclNum; |
1319 | LclVarDsc* varDsc; |
1320 | |
1321 | for (lclNum = 0, varDsc = m_pCompiler->lvaTable; lclNum < m_pCompiler->lvaCount; lclNum++, varDsc++) |
1322 | { |
1323 | if (varDsc->lvRefCnt() == 0) |
1324 | { |
1325 | continue; |
1326 | } |
1327 | |
1328 | #if FEATURE_FIXED_OUT_ARGS |
1329 | // Skip the OutgoingArgArea in computing frame size, since |
1330 | // its size is not yet known and it doesn't affect local |
1331 | // offsets from the frame pointer (though it may affect |
1332 | // them from the stack pointer). |
1333 | noway_assert(m_pCompiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM); |
1334 | if (lclNum == m_pCompiler->lvaOutgoingArgSpaceVar) |
1335 | { |
1336 | continue; |
1337 | } |
1338 | #endif // FEATURE_FIXED_OUT_ARGS |
1339 | |
1340 | bool onStack = (regAvailEstimate == 0); // true when it is likely that this LclVar will have a stack home |
1341 | |
1342 | // Some LclVars always have stack homes |
1343 | if ((varDsc->lvDoNotEnregister) || (varDsc->lvType == TYP_LCLBLK)) |
1344 | { |
1345 | onStack = true; |
1346 | } |
1347 | |
1348 | #ifdef _TARGET_X86_ |
1349 | // Treat floating point and 64 bit integers as always on the stack |
1350 | if (varTypeIsFloating(varDsc->TypeGet()) || varTypeIsLong(varDsc->TypeGet())) |
1351 | onStack = true; |
1352 | #endif |
1353 | |
1354 | if (onStack) |
1355 | { |
1356 | frameSize += m_pCompiler->lvaLclSize(lclNum); |
1357 | } |
1358 | else |
1359 | { |
1360 | // For the purposes of estimating the frameSize we |
1361 | // will consider this LclVar as being enregistered. |
1362 | // Now we reduce the remaining regAvailEstimate by |
1363 | // an appropriate amount. |
1364 | if (varDsc->lvRefCnt() <= 2) |
1365 | { |
1366 | // a single use single def LclVar only uses 1 |
1367 | regAvailEstimate -= 1; |
1368 | } |
1369 | else |
1370 | { |
1371 | // a LclVar with multiple uses and defs uses 2 |
1372 | if (regAvailEstimate >= 2) |
1373 | { |
1374 | regAvailEstimate -= 2; |
1375 | } |
1376 | else |
1377 | { |
1378 | // Don't try to subtract when regAvailEstimate is 1 |
1379 | regAvailEstimate = 0; |
1380 | } |
1381 | } |
1382 | } |
1383 | #ifdef _TARGET_XARCH_ |
1384 | if (frameSize > 0x080) |
1385 | { |
1386 | // We likely have a large stack frame. |
1387 | // Thus we might need to use large displacements when loading or storing |
1388 | // to CSE LclVars that are not enregistered |
1389 | largeFrame = true; |
1390 | break; // early out, we don't need to keep increasing frameSize |
1391 | } |
1392 | #else // _TARGET_ARM_ |
1393 | if (frameSize > 0x0400) |
1394 | { |
1395 | largeFrame = true; |
1396 | } |
1397 | if (frameSize > 0x10000) |
1398 | { |
1399 | hugeFrame = true; |
1400 | break; |
1401 | } |
1402 | #endif |
1403 | } |
1404 | |
1405 | unsigned sortNum = 0; |
1406 | while (sortNum < m_pCompiler->lvaTrackedCount) |
1407 | { |
1408 | LclVarDsc* varDsc = m_pCompiler->lvaRefSorted[sortNum++]; |
1409 | var_types varTyp = varDsc->TypeGet(); |
1410 | |
1411 | if (varDsc->lvDoNotEnregister) |
1412 | { |
1413 | continue; |
1414 | } |
1415 | |
1416 | if (!varTypeIsFloating(varTyp)) |
1417 | { |
1418 | // TODO-1stClassStructs: Remove this; it is here to duplicate previous behavior. |
1419 | // Note that this makes genTypeStSz return 1. |
1420 | if (varTypeIsStruct(varTyp)) |
1421 | { |
1422 | varTyp = TYP_STRUCT; |
1423 | } |
1424 | enregCount += genTypeStSz(varTyp); |
1425 | } |
1426 | |
1427 | if ((aggressiveRefCnt == 0) && (enregCount > (CNT_CALLEE_ENREG * 3 / 2))) |
1428 | { |
1429 | if (CodeOptKind() == Compiler::SMALL_CODE) |
1430 | { |
1431 | aggressiveRefCnt = varDsc->lvRefCnt() + BB_UNITY_WEIGHT; |
1432 | } |
1433 | else |
1434 | { |
1435 | aggressiveRefCnt = varDsc->lvRefCntWtd() + BB_UNITY_WEIGHT; |
1436 | } |
1437 | } |
1438 | if ((moderateRefCnt == 0) && (enregCount > ((CNT_CALLEE_ENREG * 3) + (CNT_CALLEE_TRASH * 2)))) |
1439 | { |
1440 | if (CodeOptKind() == Compiler::SMALL_CODE) |
1441 | { |
1442 | moderateRefCnt = varDsc->lvRefCnt(); |
1443 | } |
1444 | else |
1445 | { |
1446 | moderateRefCnt = varDsc->lvRefCntWtd(); |
1447 | } |
1448 | } |
1449 | } |
1450 | unsigned mult = 3; |
1451 | // use smaller value for mult when enregCount is in [0..4] |
1452 | if (enregCount <= 4) |
1453 | { |
1454 | mult = (enregCount <= 2) ? 1 : 2; |
1455 | } |
1456 | |
1457 | aggressiveRefCnt = max(BB_UNITY_WEIGHT * mult, aggressiveRefCnt); |
1458 | moderateRefCnt = max((BB_UNITY_WEIGHT * mult) / 2, moderateRefCnt); |
1459 | |
1460 | #ifdef DEBUG |
1461 | if (m_pCompiler->verbose) |
1462 | { |
1463 | printf("\n" ); |
1464 | printf("Aggressive CSE Promotion cutoff is %u\n" , aggressiveRefCnt); |
1465 | printf("Moderate CSE Promotion cutoff is %u\n" , moderateRefCnt); |
1466 | printf("Framesize estimate is 0x%04X\n" , frameSize); |
1467 | printf("We have a %s frame\n" , hugeFrame ? "huge" : (largeFrame ? "large" : "small" )); |
1468 | } |
1469 | #endif |
1470 | } |
1471 | |
1472 | void SortCandidates() |
1473 | { |
1474 | /* Create an expression table sorted by decreasing cost */ |
1475 | sortTab = new (m_pCompiler, CMK_CSE) Compiler::CSEdsc*[m_pCompiler->optCSECandidateCount]; |
1476 | |
1477 | sortSiz = m_pCompiler->optCSECandidateCount * sizeof(*sortTab); |
1478 | memcpy(sortTab, m_pCompiler->optCSEtab, sortSiz); |
1479 | |
1480 | if (CodeOptKind() == Compiler::SMALL_CODE) |
1481 | { |
1482 | qsort(sortTab, m_pCompiler->optCSECandidateCount, sizeof(*sortTab), m_pCompiler->optCSEcostCmpSz); |
1483 | } |
1484 | else |
1485 | { |
1486 | qsort(sortTab, m_pCompiler->optCSECandidateCount, sizeof(*sortTab), m_pCompiler->optCSEcostCmpEx); |
1487 | } |
1488 | |
1489 | #ifdef DEBUG |
1490 | if (m_pCompiler->verbose) |
1491 | { |
1492 | printf("\nSorted CSE candidates:\n" ); |
1493 | /* Print out the CSE candidates */ |
1494 | EXPSET_TP tempMask; |
1495 | for (unsigned cnt = 0; cnt < m_pCompiler->optCSECandidateCount; cnt++) |
1496 | { |
1497 | Compiler::CSEdsc* dsc = sortTab[cnt]; |
1498 | GenTree* expr = dsc->csdTree; |
1499 | |
1500 | unsigned def; |
1501 | unsigned use; |
1502 | |
1503 | if (CodeOptKind() == Compiler::SMALL_CODE) |
1504 | { |
1505 | def = dsc->csdDefCount; // def count |
1506 | use = dsc->csdUseCount; // use count (excluding the implicit uses at defs) |
1507 | } |
1508 | else |
1509 | { |
1510 | def = dsc->csdDefWtCnt; // weighted def count |
1511 | use = dsc->csdUseWtCnt; // weighted use count (excluding the implicit uses at defs) |
1512 | } |
1513 | |
1514 | tempMask = BitVecOps::MakeSingleton(m_pCompiler->cseTraits, genCSEnum2bit(dsc->csdIndex)); |
1515 | printf("CSE #%02u, {$%-3x, $%-3x} cseMask=%s,useCnt=%d: [def=%3u, use=%3u" , dsc->csdIndex, |
1516 | dsc->csdHashKey, dsc->defExcSetPromise, genES2str(m_pCompiler->cseTraits, tempMask), |
1517 | dsc->csdUseCount, def, use); |
1518 | printf("] :: " ); |
1519 | m_pCompiler->gtDispTree(expr, nullptr, nullptr, true); |
1520 | } |
1521 | printf("\n" ); |
1522 | } |
1523 | #endif // DEBUG |
1524 | } |
1525 | |
1526 | // The following class nested within CSE_Heuristic encapsulates the information |
1527 | // about the current CSE candidate that is under consideration |
1528 | // |
1529 | // TODO-Cleanup: This is still very much based upon the old Lexical CSE implementation |
1530 | // and needs to be reworked for the Value Number based implementation |
1531 | // |
1532 | class CSE_Candidate |
1533 | { |
1534 | CSE_Heuristic* m_context; |
1535 | Compiler::CSEdsc* m_CseDsc; |
1536 | |
1537 | unsigned m_cseIndex; |
1538 | |
1539 | unsigned m_defCount; |
1540 | unsigned m_useCount; |
1541 | |
1542 | unsigned m_Cost; |
1543 | unsigned m_Size; |
1544 | |
1545 | public: |
1546 | CSE_Candidate(CSE_Heuristic* context, Compiler::CSEdsc* cseDsc) : m_context(context), m_CseDsc(cseDsc) |
1547 | { |
1548 | m_cseIndex = m_CseDsc->csdIndex; |
1549 | } |
1550 | |
1551 | Compiler::CSEdsc* CseDsc() |
1552 | { |
1553 | return m_CseDsc; |
1554 | } |
1555 | unsigned CseIndex() |
1556 | { |
1557 | return m_cseIndex; |
1558 | } |
1559 | unsigned DefCount() |
1560 | { |
1561 | return m_defCount; |
1562 | } |
1563 | unsigned UseCount() |
1564 | { |
1565 | return m_useCount; |
1566 | } |
1567 | // TODO-CQ: With ValNum CSE's the Expr and its cost can vary. |
1568 | GenTree* Expr() |
1569 | { |
1570 | return m_CseDsc->csdTree; |
1571 | } |
1572 | unsigned Cost() |
1573 | { |
1574 | return m_Cost; |
1575 | } |
1576 | unsigned Size() |
1577 | { |
1578 | return m_Size; |
1579 | } |
1580 | |
1581 | bool LiveAcrossCall() |
1582 | { |
1583 | return (m_CseDsc->csdLiveAcrossCall != 0); |
1584 | } |
1585 | |
1586 | void InitializeCounts() |
1587 | { |
1588 | if (m_context->CodeOptKind() == Compiler::SMALL_CODE) |
1589 | { |
1590 | m_Cost = Expr()->gtCostSz; // the estimated code size |
1591 | m_Size = Expr()->gtCostSz; // always the gtCostSz |
1592 | m_defCount = m_CseDsc->csdDefCount; // def count |
1593 | m_useCount = m_CseDsc->csdUseCount; // use count (excluding the implicit uses at defs) |
1594 | } |
1595 | else |
1596 | { |
1597 | m_Cost = Expr()->gtCostEx; // the estimated execution cost |
1598 | m_Size = Expr()->gtCostSz; // always the gtCostSz |
1599 | m_defCount = m_CseDsc->csdDefWtCnt; // weighted def count |
1600 | m_useCount = m_CseDsc->csdUseWtCnt; // weighted use count (excluding the implicit uses at defs) |
1601 | } |
1602 | } |
1603 | }; |
1604 | |
1605 | #ifdef DEBUG |
1606 | //------------------------------------------------------------------------ |
1607 | // optConfigBiasedCSE: |
1608 | // Stress mode to shuffle the decision to CSE or not using environment |
1609 | // variable COMPlus_JitStressBiasedCSE (= 0 to 100%). When the bias value |
1610 | // is not specified but COMPlus_JitStress is ON, generate a random bias. |
1611 | // |
1612 | // Return Value: |
1613 | // 0 -- This method is indifferent about this CSE (no bias specified and no stress) |
1614 | // 1 -- This CSE must be performed to maintain specified/generated bias. |
1615 | // -1 -- This CSE mustn't be performed to maintain specified/generated bias. |
1616 | // |
1617 | // Operation: |
1618 | // A debug stress only method that returns "1" with probability (P) |
1619 | // defined by: |
1620 | // |
1621 | // P = (COMPlus_JitStressBiasedCSE / 100) (or) |
1622 | // P = (random(100) / 100) when COMPlus_JitStress is specified and |
1623 | // COMPlus_JitStressBiasedCSE is unspecified. |
1624 | // |
1625 | // When specified, the bias is reinterpreted as a decimal number between 0 |
1626 | // to 100. |
1627 | // When bias is not specified, a bias is randomly generated if COMPlus_JitStress |
1628 | // is non-zero. |
1629 | // |
1630 | // Callers are supposed to call this method for each CSE promotion decision |
1631 | // and ignore the call if return value is 0 and honor the 1 with a CSE and |
1632 | // -1 with a no-CSE to maintain the specified/generated bias. |
1633 | // |
1634 | int optConfigBiasedCSE() |
1635 | { |
1636 | // Seed the PRNG, if never done before. |
1637 | if (!m_cseRNG.IsInitialized()) |
1638 | { |
1639 | m_cseRNG.Init(m_pCompiler->info.compMethodHash()); |
1640 | m_bias = m_cseRNG.Next(100); |
1641 | } |
1642 | |
1643 | // Obtain the bias value and reinterpret as decimal. |
1644 | unsigned bias = ReinterpretHexAsDecimal(JitConfig.JitStressBiasedCSE()); |
1645 | |
1646 | // Invalid value, check if JitStress is ON. |
1647 | if (bias > 100) |
1648 | { |
1649 | if (!m_pCompiler->compStressCompile(Compiler::STRESS_MAKE_CSE, MAX_STRESS_WEIGHT)) |
1650 | { |
1651 | // JitStress is OFF for CSE, nothing to do. |
1652 | return 0; |
1653 | } |
1654 | bias = m_bias; |
1655 | JITDUMP("JitStressBiasedCSE is OFF, but JitStress is ON: generated bias=%d.\n" , bias); |
1656 | } |
1657 | |
1658 | // Generate a number between (0, 99) and if the generated |
1659 | // number is smaller than bias, then perform CSE. |
1660 | unsigned gen = m_cseRNG.Next(100); |
1661 | int ret = (gen < bias) ? 1 : -1; |
1662 | |
1663 | if (m_pCompiler->verbose) |
1664 | { |
1665 | if (ret < 0) |
1666 | { |
1667 | printf("No CSE because gen=%d >= bias=%d\n" , gen, bias); |
1668 | } |
1669 | else |
1670 | { |
1671 | printf("Promoting CSE because gen=%d < bias=%d\n" , gen, bias); |
1672 | } |
1673 | } |
1674 | |
1675 | // Indicate whether to perform CSE or not. |
1676 | return ret; |
1677 | } |
1678 | #endif |
1679 | |
1680 | // Given a CSE candidate decide whether it passes or fails the profitability heuristic |
1681 | // return true if we believe that it is profitable to promote this candidate to a CSE |
1682 | // |
1683 | bool PromotionCheck(CSE_Candidate* candidate) |
1684 | { |
1685 | bool result = false; |
1686 | |
1687 | #ifdef DEBUG |
1688 | int stressResult = optConfigBiasedCSE(); |
1689 | if (stressResult != 0) |
1690 | { |
1691 | // Stress is enabled. Check whether to perform CSE or not. |
1692 | return (stressResult > 0); |
1693 | } |
1694 | |
1695 | if (m_pCompiler->optConfigDisableCSE2()) |
1696 | { |
1697 | return false; // skip this CSE |
1698 | } |
1699 | #endif |
1700 | |
1701 | /* |
1702 | Our calculation is based on the following cost estimate formula |
1703 | |
1704 | Existing costs are: |
1705 | |
1706 | (def + use) * cost |
1707 | |
1708 | If we introduce a CSE temp are each definition and |
1709 | replace the use with a CSE temp then our cost is: |
1710 | |
1711 | (def * (cost + cse-def-cost)) + (use * cse-use-cost) |
1712 | |
1713 | We must estimate the values to use for cse-def-cost and cse-use-cost |
1714 | |
1715 | If we are able to enregister the CSE then the cse-use-cost is one |
1716 | and cse-def-cost is either zero or one. Zero in the case where |
1717 | we needed to evaluate the def into a register and we can use that |
1718 | register as the CSE temp as well. |
1719 | |
1720 | If we are unable to enregister the CSE then the cse-use-cost is IND_COST |
1721 | and the cse-def-cost is also IND_COST. |
1722 | |
1723 | If we want to be conservative we use IND_COST as the the value |
1724 | for both cse-def-cost and cse-use-cost and then we never introduce |
1725 | a CSE that could pessimize the execution time of the method. |
1726 | |
1727 | If we want to be more moderate we use (IND_COST_EX + 1) / 2 as the |
1728 | values for both cse-def-cost and cse-use-cost. |
1729 | |
1730 | If we want to be aggressive we use 1 as the values for both |
1731 | cse-def-cost and cse-use-cost. |
1732 | |
1733 | If we believe that the CSE very valuable in terms of weighted ref counts |
1734 | such that it would always be enregistered by the register allocator we choose |
1735 | the aggressive use def costs. |
1736 | |
1737 | If we believe that the CSE is somewhat valuable in terms of weighted ref counts |
1738 | such that it could be likely be enregistered by the register allocator we choose |
1739 | the moderate use def costs. |
1740 | |
1741 | otherwise we choose the conservative use def costs. |
1742 | |
1743 | */ |
1744 | |
1745 | unsigned cse_def_cost; |
1746 | unsigned cse_use_cost; |
1747 | |
1748 | unsigned no_cse_cost = 0; |
1749 | unsigned yes_cse_cost = 0; |
1750 | unsigned = 0; |
1751 | unsigned = 0; |
1752 | |
1753 | // The 'cseRefCnt' is the RefCnt that we will have if we promote this CSE into a new LclVar |
1754 | // Each CSE Def will contain two Refs and each CSE Use will have one Ref of this new LclVar |
1755 | unsigned cseRefCnt = (candidate->DefCount() * 2) + candidate->UseCount(); |
1756 | |
1757 | if (CodeOptKind() == Compiler::SMALL_CODE) |
1758 | { |
1759 | if (cseRefCnt >= aggressiveRefCnt) |
1760 | { |
1761 | #ifdef DEBUG |
1762 | if (m_pCompiler->verbose) |
1763 | { |
1764 | printf("Aggressive CSE Promotion (%u >= %u)\n" , cseRefCnt, aggressiveRefCnt); |
1765 | } |
1766 | #endif |
1767 | cse_def_cost = 1; |
1768 | cse_use_cost = 1; |
1769 | |
1770 | if (candidate->LiveAcrossCall() != 0) |
1771 | { |
1772 | if (largeFrame) |
1773 | { |
1774 | cse_def_cost++; |
1775 | cse_use_cost++; |
1776 | } |
1777 | if (hugeFrame) |
1778 | { |
1779 | cse_def_cost++; |
1780 | cse_use_cost++; |
1781 | } |
1782 | } |
1783 | } |
1784 | else if (largeFrame) |
1785 | { |
1786 | #ifdef DEBUG |
1787 | if (m_pCompiler->verbose) |
1788 | { |
1789 | printf("Codesize CSE Promotion (large frame)\n" ); |
1790 | } |
1791 | #endif |
1792 | #ifdef _TARGET_XARCH_ |
1793 | /* The following formula is good choice when optimizing CSE for SMALL_CODE */ |
1794 | cse_def_cost = 6; // mov [EBP-0x00001FC],reg |
1795 | cse_use_cost = 5; // [EBP-0x00001FC] |
1796 | #else // _TARGET_ARM_ |
1797 | if (hugeFrame) |
1798 | { |
1799 | cse_def_cost = 12; // movw/movt r10 and str reg,[sp+r10] |
1800 | cse_use_cost = 12; |
1801 | } |
1802 | else |
1803 | { |
1804 | cse_def_cost = 8; // movw r10 and str reg,[sp+r10] |
1805 | cse_use_cost = 8; |
1806 | } |
1807 | #endif |
1808 | } |
1809 | else // small frame |
1810 | { |
1811 | #ifdef DEBUG |
1812 | if (m_pCompiler->verbose) |
1813 | { |
1814 | printf("Codesize CSE Promotion (small frame)\n" ); |
1815 | } |
1816 | #endif |
1817 | #ifdef _TARGET_XARCH_ |
1818 | /* The following formula is good choice when optimizing CSE for SMALL_CODE */ |
1819 | cse_def_cost = 3; // mov [EBP-1C],reg |
1820 | cse_use_cost = 2; // [EBP-1C] |
1821 | #else // _TARGET_ARM_ |
1822 | cse_def_cost = 2; // str reg,[sp+0x9c] |
1823 | cse_use_cost = 2; // ldr reg,[sp+0x9c] |
1824 | #endif |
1825 | } |
1826 | } |
1827 | else // not SMALL_CODE ... |
1828 | { |
1829 | if (cseRefCnt >= aggressiveRefCnt) |
1830 | { |
1831 | #ifdef DEBUG |
1832 | if (m_pCompiler->verbose) |
1833 | { |
1834 | printf("Aggressive CSE Promotion (%u >= %u)\n" , cseRefCnt, aggressiveRefCnt); |
1835 | } |
1836 | #endif |
1837 | cse_def_cost = 1; |
1838 | cse_use_cost = 1; |
1839 | } |
1840 | else if (cseRefCnt >= moderateRefCnt) |
1841 | { |
1842 | |
1843 | if (candidate->LiveAcrossCall() == 0) |
1844 | { |
1845 | #ifdef DEBUG |
1846 | if (m_pCompiler->verbose) |
1847 | { |
1848 | printf("Moderate CSE Promotion (CSE never live at call) (%u >= %u)\n" , cseRefCnt, |
1849 | moderateRefCnt); |
1850 | } |
1851 | #endif |
1852 | cse_def_cost = 2; |
1853 | cse_use_cost = 1; |
1854 | } |
1855 | else // candidate is live across call |
1856 | { |
1857 | #ifdef DEBUG |
1858 | if (m_pCompiler->verbose) |
1859 | { |
1860 | printf("Moderate CSE Promotion (%u >= %u)\n" , cseRefCnt, moderateRefCnt); |
1861 | } |
1862 | #endif |
1863 | cse_def_cost = 2; |
1864 | cse_use_cost = 2; |
1865 | extra_yes_cost = BB_UNITY_WEIGHT * 2; // Extra cost in case we have to spill/restore a caller |
1866 | // saved register |
1867 | } |
1868 | } |
1869 | else // Conservative CSE promotion |
1870 | { |
1871 | if (candidate->LiveAcrossCall() == 0) |
1872 | { |
1873 | #ifdef DEBUG |
1874 | if (m_pCompiler->verbose) |
1875 | { |
1876 | printf("Conservative CSE Promotion (CSE never live at call) (%u < %u)\n" , cseRefCnt, |
1877 | moderateRefCnt); |
1878 | } |
1879 | #endif |
1880 | cse_def_cost = 2; |
1881 | cse_use_cost = 2; |
1882 | } |
1883 | else // candidate is live across call |
1884 | { |
1885 | #ifdef DEBUG |
1886 | if (m_pCompiler->verbose) |
1887 | { |
1888 | printf("Conservative CSE Promotion (%u < %u)\n" , cseRefCnt, moderateRefCnt); |
1889 | } |
1890 | #endif |
1891 | cse_def_cost = 3; |
1892 | cse_use_cost = 3; |
1893 | extra_yes_cost = BB_UNITY_WEIGHT * 4; // Extra cost in case we have to spill/restore a caller |
1894 | // saved register |
1895 | } |
1896 | |
1897 | // If we have maxed out lvaTrackedCount then this CSE may end up as an untracked variable |
1898 | if (m_pCompiler->lvaTrackedCount == lclMAX_TRACKED) |
1899 | { |
1900 | cse_def_cost++; |
1901 | cse_use_cost++; |
1902 | } |
1903 | } |
1904 | |
1905 | if (largeFrame) |
1906 | { |
1907 | cse_def_cost++; |
1908 | cse_use_cost++; |
1909 | } |
1910 | if (hugeFrame) |
1911 | { |
1912 | cse_def_cost++; |
1913 | cse_use_cost++; |
1914 | } |
1915 | } |
1916 | |
1917 | // estimate the cost from lost codesize reduction if we do not perform the CSE |
1918 | if (candidate->Size() > cse_use_cost) |
1919 | { |
1920 | Compiler::CSEdsc* dsc = candidate->CseDsc(); // We need to retrieve the actual use count, not the |
1921 | // weighted count |
1922 | extra_no_cost = candidate->Size() - cse_use_cost; |
1923 | extra_no_cost = extra_no_cost * dsc->csdUseCount * 2; |
1924 | } |
1925 | |
1926 | /* no_cse_cost is the cost estimate when we decide not to make a CSE */ |
1927 | /* yes_cse_cost is the cost estimate when we decide to make a CSE */ |
1928 | |
1929 | no_cse_cost = candidate->UseCount() * candidate->Cost(); |
1930 | yes_cse_cost = (candidate->DefCount() * cse_def_cost) + (candidate->UseCount() * cse_use_cost); |
1931 | |
1932 | no_cse_cost += extra_no_cost; |
1933 | yes_cse_cost += extra_yes_cost; |
1934 | |
1935 | #ifdef DEBUG |
1936 | if (m_pCompiler->verbose) |
1937 | { |
1938 | printf("cseRefCnt=%d, aggressiveRefCnt=%d, moderateRefCnt=%d\n" , cseRefCnt, aggressiveRefCnt, |
1939 | moderateRefCnt); |
1940 | printf("defCnt=%d, useCnt=%d, cost=%d, size=%d\n" , candidate->DefCount(), candidate->UseCount(), |
1941 | candidate->Cost(), candidate->Size()); |
1942 | printf("def_cost=%d, use_cost=%d, extra_no_cost=%d, extra_yes_cost=%d\n" , cse_def_cost, cse_use_cost, |
1943 | extra_no_cost, extra_yes_cost); |
1944 | |
1945 | printf("CSE cost savings check (%u >= %u) %s\n" , no_cse_cost, yes_cse_cost, |
1946 | (no_cse_cost >= yes_cse_cost) ? "passes" : "fails" ); |
1947 | } |
1948 | #endif |
1949 | |
1950 | // Should we make this candidate into a CSE? |
1951 | // Is the yes cost less than the no cost |
1952 | // |
1953 | if (yes_cse_cost <= no_cse_cost) |
1954 | { |
1955 | result = true; // Yes make this a CSE |
1956 | } |
1957 | else |
1958 | { |
1959 | /* In stress mode we will make some extra CSEs */ |
1960 | if (no_cse_cost > 0) |
1961 | { |
1962 | int percentage = (no_cse_cost * 100) / yes_cse_cost; |
1963 | |
1964 | if (m_pCompiler->compStressCompile(Compiler::STRESS_MAKE_CSE, percentage)) |
1965 | { |
1966 | result = true; // Yes make this a CSE |
1967 | } |
1968 | } |
1969 | } |
1970 | |
1971 | return result; |
1972 | } |
1973 | |
1974 | // PerformCSE() takes a successful candidate and performs the appropriate replacements: |
1975 | // |
1976 | // It will replace all of the CSE defs with assignments to a new "cse0" LclVar |
1977 | // and will replace all of the CSE uses with reads of the "cse0" LclVar |
1978 | // |
1979 | void PerformCSE(CSE_Candidate* successfulCandidate) |
1980 | { |
1981 | unsigned cseRefCnt = (successfulCandidate->DefCount() * 2) + successfulCandidate->UseCount(); |
1982 | |
1983 | if (successfulCandidate->LiveAcrossCall() != 0) |
1984 | { |
1985 | // As we introduce new LclVars for these CSE we slightly |
1986 | // increase the cutoffs for aggressive and moderate CSE's |
1987 | // |
1988 | int incr = BB_UNITY_WEIGHT; |
1989 | |
1990 | if (cseRefCnt > aggressiveRefCnt) |
1991 | { |
1992 | aggressiveRefCnt += incr; |
1993 | } |
1994 | |
1995 | if (cseRefCnt > moderateRefCnt) |
1996 | { |
1997 | moderateRefCnt += (incr / 2); |
1998 | } |
1999 | } |
2000 | |
2001 | /* Introduce a new temp for the CSE */ |
2002 | |
2003 | // we will create a long lifetime temp for the new cse LclVar |
2004 | unsigned cseLclVarNum = m_pCompiler->lvaGrabTemp(false DEBUGARG("ValNumCSE" )); |
2005 | var_types cseLclVarTyp = genActualType(successfulCandidate->Expr()->TypeGet()); |
2006 | if (varTypeIsStruct(cseLclVarTyp)) |
2007 | { |
2008 | m_pCompiler->lvaSetStruct(cseLclVarNum, m_pCompiler->gtGetStructHandle(successfulCandidate->Expr()), false); |
2009 | } |
2010 | m_pCompiler->lvaTable[cseLclVarNum].lvType = cseLclVarTyp; |
2011 | m_pCompiler->lvaTable[cseLclVarNum].lvIsCSE = true; |
2012 | |
2013 | // Record that we created a new LclVar for use as a CSE temp |
2014 | m_addCSEcount++; |
2015 | m_pCompiler->optCSEcount++; |
2016 | |
2017 | // Walk all references to this CSE, adding an assignment |
2018 | // to the CSE temp to all defs and changing all refs to |
2019 | // a simple use of the CSE temp. |
2020 | // |
2021 | // Later we will unmark any nested CSE's for the CSE uses. |
2022 | // |
2023 | Compiler::CSEdsc* dsc = successfulCandidate->CseDsc(); |
2024 | Compiler::treeStmtLst* lst; |
2025 | |
2026 | #ifdef DEBUG |
2027 | // Verify that all of the ValueNumbers in this list are correct as |
2028 | // Morph will change them when it performs a mutating operation. |
2029 | // |
2030 | ValueNum firstVN = ValueNumStore::NoVN; |
2031 | ValueNum currVN; |
2032 | bool allSame = true; |
2033 | |
2034 | lst = dsc->csdTreeList; |
2035 | while (lst != nullptr) |
2036 | { |
2037 | // Ignore this node if the gtCSEnum value has been cleared |
2038 | if (IS_CSE_INDEX(lst->tslTree->gtCSEnum)) |
2039 | { |
2040 | // We used the liberal Value numbers when building the set of CSE |
2041 | currVN = m_pCompiler->vnStore->VNLiberalNormalValue(lst->tslTree->gtVNPair); |
2042 | assert(currVN != ValueNumStore::NoVN); |
2043 | |
2044 | if (firstVN == ValueNumStore::NoVN) |
2045 | { |
2046 | firstVN = currVN; |
2047 | } |
2048 | else if (currVN != firstVN) |
2049 | { |
2050 | allSame = false; |
2051 | break; |
2052 | } |
2053 | } |
2054 | lst = lst->tslNext; |
2055 | } |
2056 | if (!allSame) |
2057 | { |
2058 | lst = dsc->csdTreeList; |
2059 | GenTree* firstTree = lst->tslTree; |
2060 | printf("In %s, CSE (oper = %s, type = %s) has differing VNs: " , m_pCompiler->info.compFullName, |
2061 | GenTree::OpName(firstTree->OperGet()), varTypeName(firstTree->TypeGet())); |
2062 | while (lst != nullptr) |
2063 | { |
2064 | if (IS_CSE_INDEX(lst->tslTree->gtCSEnum)) |
2065 | { |
2066 | currVN = m_pCompiler->vnStore->VNLiberalNormalValue(lst->tslTree->gtVNPair); |
2067 | printf("0x%x(%s " FMT_VN ") " , lst->tslTree, IS_CSE_USE(lst->tslTree->gtCSEnum) ? "use" : "def" , |
2068 | currVN); |
2069 | } |
2070 | lst = lst->tslNext; |
2071 | } |
2072 | printf("\n" ); |
2073 | } |
2074 | #endif // DEBUG |
2075 | |
2076 | // Setup 'lst' to point at the start of this candidate list |
2077 | lst = dsc->csdTreeList; |
2078 | noway_assert(lst); |
2079 | |
2080 | do |
2081 | { |
2082 | /* Process the next node in the list */ |
2083 | GenTree* exp = lst->tslTree; |
2084 | GenTree* stm = lst->tslStmt; |
2085 | noway_assert(stm->gtOper == GT_STMT); |
2086 | BasicBlock* blk = lst->tslBlock; |
2087 | |
2088 | /* Advance to the next node in the list */ |
2089 | lst = lst->tslNext; |
2090 | |
2091 | // We may have cleared this CSE in optValuenumCSE_Availablity |
2092 | // due to different exception sets. |
2093 | // |
2094 | // Ignore this node if the gtCSEnum value has been cleared |
2095 | if (!IS_CSE_INDEX(exp->gtCSEnum)) |
2096 | { |
2097 | continue; |
2098 | } |
2099 | |
2100 | // Assert if we used DEBUG_DESTROY_NODE on this CSE exp |
2101 | assert(exp->gtOper != GT_COUNT); |
2102 | |
2103 | /* Make sure we update the weighted ref count correctly */ |
2104 | m_pCompiler->optCSEweight = blk->getBBWeight(m_pCompiler); |
2105 | |
2106 | /* Figure out the actual type of the value */ |
2107 | var_types expTyp = genActualType(exp->TypeGet()); |
2108 | noway_assert(expTyp == cseLclVarTyp); |
2109 | |
2110 | // This will contain the replacement tree for exp |
2111 | // It will either be the CSE def or CSE ref |
2112 | // |
2113 | GenTree* cse = nullptr; |
2114 | bool isDef; |
2115 | FieldSeqNode* fldSeq = nullptr; |
2116 | bool hasZeroMapAnnotation = m_pCompiler->GetZeroOffsetFieldMap()->Lookup(exp, &fldSeq); |
2117 | |
2118 | if (IS_CSE_USE(exp->gtCSEnum)) |
2119 | { |
2120 | /* This is a use of the CSE */ |
2121 | isDef = false; |
2122 | #ifdef DEBUG |
2123 | if (m_pCompiler->verbose) |
2124 | { |
2125 | printf("\nWorking on the replacement of the CSE #%02u use at " , exp->gtCSEnum); |
2126 | Compiler::printTreeID(exp); |
2127 | printf(" in " FMT_BB "\n" , blk->bbNum); |
2128 | } |
2129 | #endif // DEBUG |
2130 | |
2131 | // We will replace the CSE ref with a new tree |
2132 | // this is typically just a simple use of the new CSE LclVar |
2133 | // |
2134 | ValueNumStore* vnStore = m_pCompiler->vnStore; |
2135 | cse = m_pCompiler->gtNewLclvNode(cseLclVarNum, cseLclVarTyp); |
2136 | |
2137 | // assign the proper ValueNumber, A CSE use discards any exceptions |
2138 | cse->gtVNPair = vnStore->VNPNormalPair(exp->gtVNPair); |
2139 | |
2140 | ValueNum theConservativeVN = successfulCandidate->CseDsc()->defConservNormVN; |
2141 | |
2142 | if (theConservativeVN != ValueNumStore::NoVN) |
2143 | { |
2144 | // All defs of this CSE share the same normal conservative VN, and we are rewriting this |
2145 | // use to fetch the same value with no reload, so we can safely propagate that |
2146 | // conservative VN to this use. This can help range check elimination later on. |
2147 | cse->gtVNPair.SetConservative(theConservativeVN); |
2148 | |
2149 | // If the old VN was flagged as a checked bound, propagate that to the new VN |
2150 | // to make sure assertion prop will pay attention to this VN. |
2151 | ValueNum oldVN = exp->gtVNPair.GetConservative(); |
2152 | if (!vnStore->IsVNConstant(theConservativeVN) && vnStore->IsVNCheckedBound(oldVN)) |
2153 | { |
2154 | vnStore->SetVNIsCheckedBound(theConservativeVN); |
2155 | } |
2156 | |
2157 | GenTree* cmp; |
2158 | if ((m_pCompiler->optCseCheckedBoundMap != nullptr) && |
2159 | (m_pCompiler->optCseCheckedBoundMap->Lookup(exp, &cmp))) |
2160 | { |
2161 | // Propagate the new value number to this compare node as well, since |
2162 | // subsequent range check elimination will try to correlate it with |
2163 | // the other appearances that are getting CSEd. |
2164 | |
2165 | ValueNum oldCmpVN = cmp->gtVNPair.GetConservative(); |
2166 | ValueNum newCmpArgVN; |
2167 | |
2168 | ValueNumStore::CompareCheckedBoundArithInfo info; |
2169 | if (vnStore->IsVNCompareCheckedBound(oldCmpVN)) |
2170 | { |
2171 | // Comparison is against the bound directly. |
2172 | |
2173 | newCmpArgVN = theConservativeVN; |
2174 | vnStore->GetCompareCheckedBound(oldCmpVN, &info); |
2175 | } |
2176 | else |
2177 | { |
2178 | // Comparison is against the bound +/- some offset. |
2179 | |
2180 | assert(vnStore->IsVNCompareCheckedBoundArith(oldCmpVN)); |
2181 | vnStore->GetCompareCheckedBoundArithInfo(oldCmpVN, &info); |
2182 | newCmpArgVN = vnStore->VNForFunc(vnStore->TypeOfVN(info.arrOp), (VNFunc)info.arrOper, |
2183 | info.arrOp, theConservativeVN); |
2184 | } |
2185 | ValueNum newCmpVN = vnStore->VNForFunc(vnStore->TypeOfVN(oldCmpVN), (VNFunc)info.cmpOper, |
2186 | info.cmpOp, newCmpArgVN); |
2187 | cmp->gtVNPair.SetConservative(newCmpVN); |
2188 | } |
2189 | } |
2190 | #ifdef DEBUG |
2191 | cse->gtDebugFlags |= GTF_DEBUG_VAR_CSE_REF; |
2192 | #endif // DEBUG |
2193 | |
2194 | // Now we need to unmark any nested CSE's uses that are found in 'exp' |
2195 | // As well we extract any nested CSE defs that are found in 'exp' and |
2196 | // these are appended to the sideEffList |
2197 | |
2198 | // Afterwards the set of nodes in the 'sideEffectList' are preserved and |
2199 | // all other nodes are removed and have their ref counts decremented |
2200 | // |
2201 | exp->gtCSEnum = NO_CSE; // clear the gtCSEnum field |
2202 | |
2203 | GenTree* sideEffList = nullptr; |
2204 | m_pCompiler->gtExtractSideEffList(exp, &sideEffList, GTF_PERSISTENT_SIDE_EFFECTS | GTF_IS_IN_CSE); |
2205 | |
2206 | // If we have any side effects or extracted CSE defs then we need to create a GT_COMMA tree instead |
2207 | // |
2208 | if (sideEffList != nullptr) |
2209 | { |
2210 | #ifdef DEBUG |
2211 | if (m_pCompiler->verbose) |
2212 | { |
2213 | printf("\nThis CSE use has side effects and/or nested CSE defs. The sideEffectList:\n" ); |
2214 | m_pCompiler->gtDispTree(sideEffList); |
2215 | printf("\n" ); |
2216 | } |
2217 | #endif |
2218 | |
2219 | GenTree* cseVal = cse; |
2220 | GenTree* curSideEff = sideEffList; |
2221 | ValueNumStore* vnStore = m_pCompiler->vnStore; |
2222 | ValueNumPair exceptions_vnp = ValueNumStore::VNPForEmptyExcSet(); |
2223 | |
2224 | while ((curSideEff->OperGet() == GT_COMMA) || (curSideEff->OperGet() == GT_ASG)) |
2225 | { |
2226 | GenTree* op1 = curSideEff->gtOp.gtOp1; |
2227 | GenTree* op2 = curSideEff->gtOp.gtOp2; |
2228 | |
2229 | ValueNumPair op1vnp; |
2230 | ValueNumPair op1Xvnp = ValueNumStore::VNPForEmptyExcSet(); |
2231 | vnStore->VNPUnpackExc(op1->gtVNPair, &op1vnp, &op1Xvnp); |
2232 | |
2233 | exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op1Xvnp); |
2234 | curSideEff = op2; |
2235 | } |
2236 | |
2237 | // We may have inserted a narrowing cast during a previous remorph |
2238 | // and it will not have a value number. |
2239 | if ((curSideEff->OperGet() == GT_CAST) && !curSideEff->gtVNPair.BothDefined()) |
2240 | { |
2241 | // The inserted cast will have no exceptional effects |
2242 | assert(curSideEff->gtOverflow() == false); |
2243 | // Process the exception effects from the cast's operand. |
2244 | curSideEff = curSideEff->gtOp.gtOp1; |
2245 | } |
2246 | |
2247 | ValueNumPair op2vnp; |
2248 | ValueNumPair op2Xvnp = ValueNumStore::VNPForEmptyExcSet(); |
2249 | vnStore->VNPUnpackExc(curSideEff->gtVNPair, &op2vnp, &op2Xvnp); |
2250 | exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op2Xvnp); |
2251 | |
2252 | op2Xvnp = ValueNumStore::VNPForEmptyExcSet(); |
2253 | vnStore->VNPUnpackExc(cseVal->gtVNPair, &op2vnp, &op2Xvnp); |
2254 | exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op2Xvnp); |
2255 | |
2256 | // Create a comma node with the sideEffList as op1 |
2257 | cse = m_pCompiler->gtNewOperNode(GT_COMMA, expTyp, sideEffList, cseVal); |
2258 | cse->gtVNPair = vnStore->VNPWithExc(op2vnp, exceptions_vnp); |
2259 | } |
2260 | } |
2261 | else |
2262 | { |
2263 | /* This is a def of the CSE */ |
2264 | isDef = true; |
2265 | #ifdef DEBUG |
2266 | if (m_pCompiler->verbose) |
2267 | { |
2268 | printf("\nCSE #%02u def at " , GET_CSE_INDEX(exp->gtCSEnum)); |
2269 | Compiler::printTreeID(exp); |
2270 | printf(" replaced in " FMT_BB " with def of V%02u\n" , blk->bbNum, cseLclVarNum); |
2271 | } |
2272 | #endif // DEBUG |
2273 | |
2274 | exp->gtCSEnum = NO_CSE; // clear the gtCSEnum field |
2275 | |
2276 | GenTree* val = exp; |
2277 | |
2278 | /* Create an assignment of the value to the temp */ |
2279 | GenTree* asg = m_pCompiler->gtNewTempAssign(cseLclVarNum, val); |
2280 | |
2281 | // assign the proper Value Numbers |
2282 | asg->gtVNPair.SetBoth(ValueNumStore::VNForVoid()); // The GT_ASG node itself is $VN.Void |
2283 | asg->gtOp.gtOp1->gtVNPair = val->gtVNPair; // The dest op is the same as 'val' |
2284 | |
2285 | noway_assert(asg->gtOp.gtOp1->gtOper == GT_LCL_VAR); |
2286 | noway_assert(asg->gtOp.gtOp2 == val); |
2287 | |
2288 | /* Create a reference to the CSE temp */ |
2289 | GenTree* ref = m_pCompiler->gtNewLclvNode(cseLclVarNum, cseLclVarTyp); |
2290 | ref->gtVNPair = val->gtVNPair; // The new 'ref' is the same as 'val' |
2291 | |
2292 | // If it has a zero-offset field seq, copy annotation to the ref |
2293 | if (hasZeroMapAnnotation) |
2294 | { |
2295 | m_pCompiler->GetZeroOffsetFieldMap()->Set(ref, fldSeq); |
2296 | } |
2297 | |
2298 | /* Create a comma node for the CSE assignment */ |
2299 | cse = m_pCompiler->gtNewOperNode(GT_COMMA, expTyp, asg, ref); |
2300 | cse->gtVNPair = ref->gtVNPair; // The comma's value is the same as 'val' |
2301 | // as the assignment to the CSE LclVar |
2302 | // cannot add any new exceptions |
2303 | } |
2304 | |
2305 | // Walk the statement 'stm' and find the pointer |
2306 | // in the tree is pointing to 'exp' |
2307 | // |
2308 | GenTree** link = m_pCompiler->gtFindLink(stm, exp); |
2309 | |
2310 | #ifdef DEBUG |
2311 | if (link == nullptr) |
2312 | { |
2313 | printf("\ngtFindLink failed: stm=" ); |
2314 | Compiler::printTreeID(stm); |
2315 | printf(", exp=" ); |
2316 | Compiler::printTreeID(exp); |
2317 | printf("\n" ); |
2318 | printf("stm =" ); |
2319 | m_pCompiler->gtDispTree(stm); |
2320 | printf("\n" ); |
2321 | printf("exp =" ); |
2322 | m_pCompiler->gtDispTree(exp); |
2323 | printf("\n" ); |
2324 | } |
2325 | #endif // DEBUG |
2326 | |
2327 | noway_assert(link); |
2328 | |
2329 | // Mutate this link, thus replacing the old exp with the new cse representation |
2330 | // |
2331 | *link = cse; |
2332 | |
2333 | // If it has a zero-offset field seq, copy annotation. |
2334 | if (hasZeroMapAnnotation) |
2335 | { |
2336 | m_pCompiler->GetZeroOffsetFieldMap()->Set(cse, fldSeq); |
2337 | } |
2338 | |
2339 | assert(m_pCompiler->fgRemoveRestOfBlock == false); |
2340 | |
2341 | /* re-morph the statement */ |
2342 | m_pCompiler->fgMorphBlockStmt(blk, stm->AsStmt() DEBUGARG("optValnumCSE" )); |
2343 | |
2344 | } while (lst != nullptr); |
2345 | } |
2346 | |
2347 | // Consider each of the CSE candidates and if the CSE passes |
2348 | // the PromotionCheck then transform the CSE by calling PerformCSE |
2349 | // |
2350 | void ConsiderCandidates() |
2351 | { |
2352 | /* Consider each CSE candidate, in order of decreasing cost */ |
2353 | unsigned cnt = m_pCompiler->optCSECandidateCount; |
2354 | Compiler::CSEdsc** ptr = sortTab; |
2355 | for (; (cnt > 0); cnt--, ptr++) |
2356 | { |
2357 | Compiler::CSEdsc* dsc = *ptr; |
2358 | if (dsc->defExcSetPromise == ValueNumStore::NoVN) |
2359 | { |
2360 | JITDUMP("Abandoned CSE #%02u because we had defs with different Exc sets\n" ); |
2361 | continue; |
2362 | } |
2363 | |
2364 | CSE_Candidate candidate(this, dsc); |
2365 | |
2366 | candidate.InitializeCounts(); |
2367 | |
2368 | if (candidate.UseCount() == 0) |
2369 | { |
2370 | JITDUMP("Skipped CSE #%02u because use count is 0\n" , candidate.CseIndex()); |
2371 | continue; |
2372 | } |
2373 | |
2374 | #ifdef DEBUG |
2375 | if (m_pCompiler->verbose) |
2376 | { |
2377 | printf("\nConsidering CSE #%02u {$%-3x, $%-3x} [def=%2u, use=%2u, cost=%2u] CSE Expression:\n" , |
2378 | candidate.CseIndex(), dsc->csdHashKey, dsc->defExcSetPromise, candidate.DefCount(), |
2379 | candidate.UseCount(), candidate.Cost()); |
2380 | m_pCompiler->gtDispTree(candidate.Expr()); |
2381 | printf("\n" ); |
2382 | } |
2383 | #endif |
2384 | |
2385 | if ((dsc->csdDefCount <= 0) || (dsc->csdUseCount == 0)) |
2386 | { |
2387 | // If we reach this point, then the CSE def was incorrectly marked or the |
2388 | // block with this use is unreachable. So skip and go to the next CSE. |
2389 | // Without the "continue", we'd generate bad code in retail. |
2390 | // Commented out a noway_assert(false) here due to bug: 3290124. |
2391 | // The problem is if there is sub-graph that is not reachable from the |
2392 | // entry point, the CSE flags propagated, would be incorrect for it. |
2393 | continue; |
2394 | } |
2395 | |
2396 | bool doCSE = PromotionCheck(&candidate); |
2397 | |
2398 | #ifdef DEBUG |
2399 | if (m_pCompiler->verbose) |
2400 | { |
2401 | if (doCSE) |
2402 | { |
2403 | printf("\nPromoting CSE:\n" ); |
2404 | } |
2405 | else |
2406 | { |
2407 | printf("Did Not promote this CSE\n" ); |
2408 | } |
2409 | } |
2410 | #endif // DEBUG |
2411 | |
2412 | if (doCSE) |
2413 | { |
2414 | PerformCSE(&candidate); |
2415 | } |
2416 | } |
2417 | } |
2418 | |
2419 | // Perform the necessary cleanup after our CSE heuristics have run |
2420 | // |
2421 | void Cleanup() |
2422 | { |
2423 | // Nothing to do, currently. |
2424 | } |
2425 | }; |
2426 | |
2427 | /***************************************************************************** |
2428 | * |
2429 | * Routine for performing the Value Number based CSE using our heuristics |
2430 | */ |
2431 | |
2432 | void Compiler::optValnumCSE_Heuristic() |
2433 | { |
2434 | #ifdef DEBUG |
2435 | if (verbose) |
2436 | { |
2437 | printf("\n************ Trees at start of optValnumCSE_Heuristic()\n" ); |
2438 | fgDumpTrees(fgFirstBB, nullptr); |
2439 | printf("\n" ); |
2440 | } |
2441 | #endif // DEBUG |
2442 | |
2443 | CSE_Heuristic cse_heuristic(this); |
2444 | |
2445 | cse_heuristic.Initialize(); |
2446 | cse_heuristic.SortCandidates(); |
2447 | cse_heuristic.ConsiderCandidates(); |
2448 | cse_heuristic.Cleanup(); |
2449 | } |
2450 | |
2451 | /***************************************************************************** |
2452 | * |
2453 | * Perform common sub-expression elimination. |
2454 | */ |
2455 | |
2456 | void Compiler::optOptimizeValnumCSEs() |
2457 | { |
2458 | #ifdef DEBUG |
2459 | if (verbose) |
2460 | { |
2461 | printf("\n*************** In optOptimizeValnumCSEs()\n" ); |
2462 | } |
2463 | |
2464 | if (optConfigDisableCSE()) |
2465 | { |
2466 | return; // Disabled by JitNoCSE |
2467 | } |
2468 | #endif |
2469 | |
2470 | optValnumCSE_phase = true; |
2471 | |
2472 | /* Initialize the expression tracking logic */ |
2473 | |
2474 | optValnumCSE_Init(); |
2475 | |
2476 | /* Locate interesting expressions and assign indices to them */ |
2477 | |
2478 | if (optValnumCSE_Locate() > 0) |
2479 | { |
2480 | optCSECandidateTotal += optCSECandidateCount; |
2481 | |
2482 | optValnumCSE_InitDataFlow(); |
2483 | |
2484 | optValnumCSE_DataFlow(); |
2485 | |
2486 | optValnumCSE_Availablity(); |
2487 | |
2488 | optValnumCSE_Heuristic(); |
2489 | } |
2490 | |
2491 | optValnumCSE_phase = false; |
2492 | } |
2493 | |
2494 | #endif // FEATURE_VALNUM_CSE |
2495 | |
2496 | /***************************************************************************** |
2497 | * |
2498 | * The following determines whether the given expression is a worthy CSE |
2499 | * candidate. |
2500 | */ |
2501 | bool Compiler::optIsCSEcandidate(GenTree* tree) |
2502 | { |
2503 | /* No good if the expression contains side effects or if it was marked as DONT CSE */ |
2504 | |
2505 | if (tree->gtFlags & (GTF_ASG | GTF_DONT_CSE)) |
2506 | { |
2507 | return false; |
2508 | } |
2509 | |
2510 | /* The only reason a TYP_STRUCT tree might occur is as an argument to |
2511 | GT_ADDR. It will never be actually materialized. So ignore them. |
2512 | Also TYP_VOIDs */ |
2513 | |
2514 | var_types type = tree->TypeGet(); |
2515 | genTreeOps oper = tree->OperGet(); |
2516 | |
2517 | // TODO-1stClassStructs: Enable CSE for struct types (depends on either transforming |
2518 | // to use regular assignments, or handling copyObj. |
2519 | if (varTypeIsStruct(type) || type == TYP_VOID) |
2520 | { |
2521 | return false; |
2522 | } |
2523 | |
2524 | #ifdef _TARGET_X86_ |
2525 | if (type == TYP_FLOAT) |
2526 | { |
2527 | // TODO-X86-CQ: Revisit this |
2528 | // Don't CSE a TYP_FLOAT on x86 as we currently can only enregister doubles |
2529 | return false; |
2530 | } |
2531 | #else |
2532 | if (oper == GT_CNS_DBL) |
2533 | { |
2534 | // TODO-CQ: Revisit this |
2535 | // Don't try to CSE a GT_CNS_DBL as they can represent both float and doubles |
2536 | return false; |
2537 | } |
2538 | #endif |
2539 | |
2540 | unsigned cost; |
2541 | if (compCodeOpt() == SMALL_CODE) |
2542 | { |
2543 | cost = tree->gtCostSz; |
2544 | } |
2545 | else |
2546 | { |
2547 | cost = tree->gtCostEx; |
2548 | } |
2549 | |
2550 | /* Don't bother if the potential savings are very low */ |
2551 | if (cost < MIN_CSE_COST) |
2552 | { |
2553 | return false; |
2554 | } |
2555 | |
2556 | #if !CSE_CONSTS |
2557 | /* Don't bother with constants */ |
2558 | if (tree->OperKind() & GTK_CONST) |
2559 | return false; |
2560 | #endif |
2561 | |
2562 | /* Check for some special cases */ |
2563 | |
2564 | switch (oper) |
2565 | { |
2566 | case GT_CALL: |
2567 | |
2568 | GenTreeCall* call; |
2569 | call = tree->AsCall(); |
2570 | |
2571 | // Don't mark calls to allocation helpers as CSE candidates. |
2572 | // Marking them as CSE candidates usually blocks CSEs rather than enables them. |
2573 | // A typical case is: |
2574 | // [1] GT_IND(x) = GT_CALL ALLOC_HELPER |
2575 | // ... |
2576 | // [2] y = GT_IND(x) |
2577 | // ... |
2578 | // [3] z = GT_IND(x) |
2579 | // If we mark CALL ALLOC_HELPER as a CSE candidate, we later discover |
2580 | // that it can't be a CSE def because GT_INDs in [2] and [3] can cause |
2581 | // more exceptions (NullRef) so we abandon this CSE. |
2582 | // If we don't mark CALL ALLOC_HELPER as a CSE candidate, we are able |
2583 | // to use GT_IND(x) in [2] as a CSE def. |
2584 | if ((call->gtCallType == CT_HELPER) && |
2585 | s_helperCallProperties.IsAllocator(eeGetHelperNum(call->gtCallMethHnd))) |
2586 | { |
2587 | return false; |
2588 | } |
2589 | |
2590 | // If we have a simple helper call with no other persistent side-effects |
2591 | // then we allow this tree to be a CSE candidate |
2592 | // |
2593 | if (gtTreeHasSideEffects(tree, GTF_PERSISTENT_SIDE_EFFECTS | GTF_IS_IN_CSE) == false) |
2594 | { |
2595 | return true; |
2596 | } |
2597 | else |
2598 | { |
2599 | // Calls generally cannot be CSE-ed |
2600 | return false; |
2601 | } |
2602 | |
2603 | case GT_IND: |
2604 | // TODO-CQ: Review this... |
2605 | /* We try to cse GT_ARR_ELEM nodes instead of GT_IND(GT_ARR_ELEM). |
2606 | Doing the first allows cse to also kick in for code like |
2607 | "GT_IND(GT_ARR_ELEM) = GT_IND(GT_ARR_ELEM) + xyz", whereas doing |
2608 | the second would not allow it */ |
2609 | |
2610 | return (tree->gtOp.gtOp1->gtOper != GT_ARR_ELEM); |
2611 | |
2612 | case GT_CNS_INT: |
2613 | case GT_CNS_LNG: |
2614 | case GT_CNS_DBL: |
2615 | case GT_CNS_STR: |
2616 | return true; // We reach here only when CSE_CONSTS is enabled |
2617 | |
2618 | case GT_ARR_ELEM: |
2619 | case GT_ARR_LENGTH: |
2620 | case GT_CLS_VAR: |
2621 | case GT_LCL_FLD: |
2622 | return true; |
2623 | |
2624 | case GT_LCL_VAR: |
2625 | return false; // Can't CSE a volatile LCL_VAR |
2626 | |
2627 | case GT_NEG: |
2628 | case GT_NOT: |
2629 | case GT_BSWAP: |
2630 | case GT_BSWAP16: |
2631 | case GT_CAST: |
2632 | return true; // CSE these Unary Operators |
2633 | |
2634 | case GT_SUB: |
2635 | case GT_DIV: |
2636 | case GT_MOD: |
2637 | case GT_UDIV: |
2638 | case GT_UMOD: |
2639 | case GT_OR: |
2640 | case GT_AND: |
2641 | case GT_XOR: |
2642 | case GT_RSH: |
2643 | case GT_RSZ: |
2644 | case GT_ROL: |
2645 | case GT_ROR: |
2646 | return true; // CSE these Binary Operators |
2647 | |
2648 | case GT_ADD: // Check for ADDRMODE flag on these Binary Operators |
2649 | case GT_MUL: |
2650 | case GT_LSH: |
2651 | if ((tree->gtFlags & GTF_ADDRMODE_NO_CSE) != 0) |
2652 | { |
2653 | return false; |
2654 | } |
2655 | |
2656 | case GT_EQ: |
2657 | case GT_NE: |
2658 | case GT_LT: |
2659 | case GT_LE: |
2660 | case GT_GE: |
2661 | case GT_GT: |
2662 | return true; // Also CSE these Comparison Operators |
2663 | |
2664 | case GT_INTRINSIC: |
2665 | return true; // Intrinsics |
2666 | |
2667 | case GT_COMMA: |
2668 | return true; // Allow GT_COMMA nodes to be CSE-ed. |
2669 | |
2670 | case GT_COLON: |
2671 | case GT_QMARK: |
2672 | case GT_NOP: |
2673 | case GT_RETURN: |
2674 | return false; // Currently the only special nodes that we hit |
2675 | // that we know that we don't want to CSE |
2676 | |
2677 | default: |
2678 | break; // Any new nodes that we might add later... |
2679 | } |
2680 | |
2681 | return false; |
2682 | } |
2683 | |
2684 | #ifdef DEBUG |
2685 | // |
2686 | // A Debug only method that allows you to control whether the CSE logic is enabled for this method. |
2687 | // |
2688 | // If this method returns false then the CSE phase should be performed. |
2689 | // If the method returns true then the CSE phase should be skipped. |
2690 | // |
2691 | bool Compiler::optConfigDisableCSE() |
2692 | { |
2693 | // Next check if COMPlus_JitNoCSE is set and applies to this method |
2694 | // |
2695 | unsigned jitNoCSE = JitConfig.JitNoCSE(); |
2696 | |
2697 | if (jitNoCSE > 0) |
2698 | { |
2699 | unsigned methodCount = Compiler::jitTotalMethodCompiled; |
2700 | if ((jitNoCSE & 0xF000000) == 0xF000000) |
2701 | { |
2702 | unsigned methodCountMask = methodCount & 0xFFF; |
2703 | unsigned bitsZero = (jitNoCSE >> 12) & 0xFFF; |
2704 | unsigned bitsOne = (jitNoCSE >> 0) & 0xFFF; |
2705 | |
2706 | if (((methodCountMask & bitsOne) == bitsOne) && ((~methodCountMask & bitsZero) == bitsZero)) |
2707 | { |
2708 | if (verbose) |
2709 | { |
2710 | printf(" Disabled by JitNoCSE methodCountMask\n" ); |
2711 | } |
2712 | |
2713 | return true; // The CSE phase for this method is disabled |
2714 | } |
2715 | } |
2716 | else if (jitNoCSE <= (methodCount + 1)) |
2717 | { |
2718 | if (verbose) |
2719 | { |
2720 | printf(" Disabled by JitNoCSE > methodCount\n" ); |
2721 | } |
2722 | |
2723 | return true; // The CSE phase for this method is disabled |
2724 | } |
2725 | } |
2726 | |
2727 | return false; |
2728 | } |
2729 | |
2730 | // |
2731 | // A Debug only method that allows you to control whether the CSE logic is enabled for |
2732 | // a particular CSE in a method |
2733 | // |
2734 | // If this method returns false then the CSE should be performed. |
2735 | // If the method returns true then the CSE should be skipped. |
2736 | // |
2737 | bool Compiler::optConfigDisableCSE2() |
2738 | { |
2739 | static unsigned totalCSEcount = 0; |
2740 | |
2741 | unsigned jitNoCSE2 = JitConfig.JitNoCSE2(); |
2742 | |
2743 | totalCSEcount++; |
2744 | |
2745 | if (jitNoCSE2 > 0) |
2746 | { |
2747 | if ((jitNoCSE2 & 0xF000000) == 0xF000000) |
2748 | { |
2749 | unsigned totalCSEMask = totalCSEcount & 0xFFF; |
2750 | unsigned bitsZero = (jitNoCSE2 >> 12) & 0xFFF; |
2751 | unsigned bitsOne = (jitNoCSE2 >> 0) & 0xFFF; |
2752 | |
2753 | if (((totalCSEMask & bitsOne) == bitsOne) && ((~totalCSEMask & bitsZero) == bitsZero)) |
2754 | { |
2755 | if (verbose) |
2756 | { |
2757 | printf(" Disabled by jitNoCSE2 Ones/Zeros mask\n" ); |
2758 | } |
2759 | return true; |
2760 | } |
2761 | } |
2762 | else if ((jitNoCSE2 & 0xF000000) == 0xE000000) |
2763 | { |
2764 | unsigned totalCSEMask = totalCSEcount & 0xFFF; |
2765 | unsigned disableMask = jitNoCSE2 & 0xFFF; |
2766 | |
2767 | disableMask >>= (totalCSEMask % 12); |
2768 | |
2769 | if (disableMask & 1) |
2770 | { |
2771 | if (verbose) |
2772 | { |
2773 | printf(" Disabled by jitNoCSE2 rotating disable mask\n" ); |
2774 | } |
2775 | return true; |
2776 | } |
2777 | } |
2778 | else if (jitNoCSE2 <= totalCSEcount) |
2779 | { |
2780 | if (verbose) |
2781 | { |
2782 | printf(" Disabled by jitNoCSE2 > totalCSEcount\n" ); |
2783 | } |
2784 | return true; |
2785 | } |
2786 | } |
2787 | return false; |
2788 | } |
2789 | #endif |
2790 | |
2791 | void Compiler::optOptimizeCSEs() |
2792 | { |
2793 | #ifdef DEBUG |
2794 | if (verbose) |
2795 | { |
2796 | printf("\n*************** In optOptimizeCSEs()\n" ); |
2797 | printf("Blocks/Trees at start of optOptimizeCSE phase\n" ); |
2798 | fgDispBasicBlocks(true); |
2799 | } |
2800 | #endif // DEBUG |
2801 | |
2802 | optCSECandidateCount = 0; |
2803 | optCSEstart = lvaCount; |
2804 | |
2805 | #if FEATURE_VALNUM_CSE |
2806 | INDEBUG(optEnsureClearCSEInfo()); |
2807 | optOptimizeValnumCSEs(); |
2808 | EndPhase(PHASE_OPTIMIZE_VALNUM_CSES); |
2809 | #endif // FEATURE_VALNUM_CSE |
2810 | } |
2811 | |
2812 | /***************************************************************************** |
2813 | * |
2814 | * Cleanup after CSE to allow us to run more than once. |
2815 | */ |
2816 | |
2817 | void Compiler::optCleanupCSEs() |
2818 | { |
2819 | // We must clear the BBF_VISITED and BBF_MARKED flags |
2820 | // |
2821 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
2822 | { |
2823 | // And clear all the "visited" bits on the block |
2824 | // |
2825 | block->bbFlags &= ~(BBF_VISITED | BBF_MARKED); |
2826 | |
2827 | /* Walk the statement trees in this basic block */ |
2828 | |
2829 | GenTree* stmt; |
2830 | |
2831 | // Initialize 'stmt' to the first non-Phi statement |
2832 | stmt = block->FirstNonPhiDef(); |
2833 | |
2834 | for (; stmt; stmt = stmt->gtNext) |
2835 | { |
2836 | noway_assert(stmt->gtOper == GT_STMT); |
2837 | |
2838 | /* We must clear the gtCSEnum field */ |
2839 | for (GenTree* tree = stmt->gtStmt.gtStmtExpr; tree; tree = tree->gtPrev) |
2840 | { |
2841 | tree->gtCSEnum = NO_CSE; |
2842 | } |
2843 | } |
2844 | } |
2845 | } |
2846 | |
2847 | #ifdef DEBUG |
2848 | |
2849 | /***************************************************************************** |
2850 | * |
2851 | * Ensure that all the CSE information in the IR is initialized the way we expect it, |
2852 | * before running a CSE phase. This is basically an assert that optCleanupCSEs() is not needed. |
2853 | */ |
2854 | |
2855 | void Compiler::optEnsureClearCSEInfo() |
2856 | { |
2857 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
2858 | { |
2859 | assert((block->bbFlags & (BBF_VISITED | BBF_MARKED)) == 0); |
2860 | |
2861 | /* Walk the statement trees in this basic block */ |
2862 | |
2863 | GenTree* stmt; |
2864 | |
2865 | // Initialize 'stmt' to the first non-Phi statement |
2866 | stmt = block->FirstNonPhiDef(); |
2867 | |
2868 | for (; stmt; stmt = stmt->gtNext) |
2869 | { |
2870 | assert(stmt->gtOper == GT_STMT); |
2871 | |
2872 | for (GenTree* tree = stmt->gtStmt.gtStmtExpr; tree; tree = tree->gtPrev) |
2873 | { |
2874 | assert(tree->gtCSEnum == NO_CSE); |
2875 | } |
2876 | } |
2877 | } |
2878 | } |
2879 | |
2880 | #endif // DEBUG |
2881 | |
2882 | /*****************************************************************************/ |
2883 | #endif // FEATURE_ANYCSE |
2884 | /*****************************************************************************/ |
2885 | |