1 | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
2 | * and Bodo Moeller for the OpenSSL project. */ |
3 | /* ==================================================================== |
4 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions |
8 | * are met: |
9 | * |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * |
13 | * 2. Redistributions in binary form must reproduce the above copyright |
14 | * notice, this list of conditions and the following disclaimer in |
15 | * the documentation and/or other materials provided with the |
16 | * distribution. |
17 | * |
18 | * 3. All advertising materials mentioning features or use of this |
19 | * software must display the following acknowledgment: |
20 | * "This product includes software developed by the OpenSSL Project |
21 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
22 | * |
23 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
24 | * endorse or promote products derived from this software without |
25 | * prior written permission. For written permission, please contact |
26 | * openssl-core@openssl.org. |
27 | * |
28 | * 5. Products derived from this software may not be called "OpenSSL" |
29 | * nor may "OpenSSL" appear in their names without prior written |
30 | * permission of the OpenSSL Project. |
31 | * |
32 | * 6. Redistributions of any form whatsoever must retain the following |
33 | * acknowledgment: |
34 | * "This product includes software developed by the OpenSSL Project |
35 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
36 | * |
37 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
38 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
39 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
40 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
41 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
42 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
43 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
44 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
45 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
46 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
47 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
48 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
49 | * ==================================================================== |
50 | * |
51 | * This product includes cryptographic software written by Eric Young |
52 | * (eay@cryptsoft.com). This product includes software written by Tim |
53 | * Hudson (tjh@cryptsoft.com). */ |
54 | |
55 | #include <openssl/bn.h> |
56 | |
57 | #include <openssl/err.h> |
58 | |
59 | #include "internal.h" |
60 | |
61 | |
62 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { |
63 | // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm |
64 | // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory", |
65 | // algorithm 1.5.1). |p| is assumed to be a prime. |
66 | |
67 | BIGNUM *ret = in; |
68 | int err = 1; |
69 | int r; |
70 | BIGNUM *A, *b, *q, *t, *x, *y; |
71 | int e, i, j; |
72 | |
73 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
74 | if (BN_abs_is_word(p, 2)) { |
75 | if (ret == NULL) { |
76 | ret = BN_new(); |
77 | } |
78 | if (ret == NULL) { |
79 | goto end; |
80 | } |
81 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
82 | if (ret != in) { |
83 | BN_free(ret); |
84 | } |
85 | return NULL; |
86 | } |
87 | return ret; |
88 | } |
89 | |
90 | OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); |
91 | return (NULL); |
92 | } |
93 | |
94 | if (BN_is_zero(a) || BN_is_one(a)) { |
95 | if (ret == NULL) { |
96 | ret = BN_new(); |
97 | } |
98 | if (ret == NULL) { |
99 | goto end; |
100 | } |
101 | if (!BN_set_word(ret, BN_is_one(a))) { |
102 | if (ret != in) { |
103 | BN_free(ret); |
104 | } |
105 | return NULL; |
106 | } |
107 | return ret; |
108 | } |
109 | |
110 | BN_CTX_start(ctx); |
111 | A = BN_CTX_get(ctx); |
112 | b = BN_CTX_get(ctx); |
113 | q = BN_CTX_get(ctx); |
114 | t = BN_CTX_get(ctx); |
115 | x = BN_CTX_get(ctx); |
116 | y = BN_CTX_get(ctx); |
117 | if (y == NULL) { |
118 | goto end; |
119 | } |
120 | |
121 | if (ret == NULL) { |
122 | ret = BN_new(); |
123 | } |
124 | if (ret == NULL) { |
125 | goto end; |
126 | } |
127 | |
128 | // A = a mod p |
129 | if (!BN_nnmod(A, a, p, ctx)) { |
130 | goto end; |
131 | } |
132 | |
133 | // now write |p| - 1 as 2^e*q where q is odd |
134 | e = 1; |
135 | while (!BN_is_bit_set(p, e)) { |
136 | e++; |
137 | } |
138 | // we'll set q later (if needed) |
139 | |
140 | if (e == 1) { |
141 | // The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
142 | // modulo (|p|-1)/2, and square roots can be computed |
143 | // directly by modular exponentiation. |
144 | // We have |
145 | // 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
146 | // so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
147 | if (!BN_rshift(q, p, 2)) { |
148 | goto end; |
149 | } |
150 | q->neg = 0; |
151 | if (!BN_add_word(q, 1) || |
152 | !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) { |
153 | goto end; |
154 | } |
155 | err = 0; |
156 | goto vrfy; |
157 | } |
158 | |
159 | if (e == 2) { |
160 | // |p| == 5 (mod 8) |
161 | // |
162 | // In this case 2 is always a non-square since |
163 | // Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. |
164 | // So if a really is a square, then 2*a is a non-square. |
165 | // Thus for |
166 | // b := (2*a)^((|p|-5)/8), |
167 | // i := (2*a)*b^2 |
168 | // we have |
169 | // i^2 = (2*a)^((1 + (|p|-5)/4)*2) |
170 | // = (2*a)^((p-1)/2) |
171 | // = -1; |
172 | // so if we set |
173 | // x := a*b*(i-1), |
174 | // then |
175 | // x^2 = a^2 * b^2 * (i^2 - 2*i + 1) |
176 | // = a^2 * b^2 * (-2*i) |
177 | // = a*(-i)*(2*a*b^2) |
178 | // = a*(-i)*i |
179 | // = a. |
180 | // |
181 | // (This is due to A.O.L. Atkin, |
182 | // <URL: |
183 | //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
184 | // November 1992.) |
185 | |
186 | // t := 2*a |
187 | if (!bn_mod_lshift1_consttime(t, A, p, ctx)) { |
188 | goto end; |
189 | } |
190 | |
191 | // b := (2*a)^((|p|-5)/8) |
192 | if (!BN_rshift(q, p, 3)) { |
193 | goto end; |
194 | } |
195 | q->neg = 0; |
196 | if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) { |
197 | goto end; |
198 | } |
199 | |
200 | // y := b^2 |
201 | if (!BN_mod_sqr(y, b, p, ctx)) { |
202 | goto end; |
203 | } |
204 | |
205 | // t := (2*a)*b^2 - 1 |
206 | if (!BN_mod_mul(t, t, y, p, ctx) || |
207 | !BN_sub_word(t, 1)) { |
208 | goto end; |
209 | } |
210 | |
211 | // x = a*b*t |
212 | if (!BN_mod_mul(x, A, b, p, ctx) || |
213 | !BN_mod_mul(x, x, t, p, ctx)) { |
214 | goto end; |
215 | } |
216 | |
217 | if (!BN_copy(ret, x)) { |
218 | goto end; |
219 | } |
220 | err = 0; |
221 | goto vrfy; |
222 | } |
223 | |
224 | // e > 2, so we really have to use the Tonelli/Shanks algorithm. |
225 | // First, find some y that is not a square. |
226 | if (!BN_copy(q, p)) { |
227 | goto end; // use 'q' as temp |
228 | } |
229 | q->neg = 0; |
230 | i = 2; |
231 | do { |
232 | // For efficiency, try small numbers first; |
233 | // if this fails, try random numbers. |
234 | if (i < 22) { |
235 | if (!BN_set_word(y, i)) { |
236 | goto end; |
237 | } |
238 | } else { |
239 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) { |
240 | goto end; |
241 | } |
242 | if (BN_ucmp(y, p) >= 0) { |
243 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) { |
244 | goto end; |
245 | } |
246 | } |
247 | // now 0 <= y < |p| |
248 | if (BN_is_zero(y)) { |
249 | if (!BN_set_word(y, i)) { |
250 | goto end; |
251 | } |
252 | } |
253 | } |
254 | |
255 | r = bn_jacobi(y, q, ctx); // here 'q' is |p| |
256 | if (r < -1) { |
257 | goto end; |
258 | } |
259 | if (r == 0) { |
260 | // m divides p |
261 | OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); |
262 | goto end; |
263 | } |
264 | } while (r == 1 && ++i < 82); |
265 | |
266 | if (r != -1) { |
267 | // Many rounds and still no non-square -- this is more likely |
268 | // a bug than just bad luck. |
269 | // Even if p is not prime, we should have found some y |
270 | // such that r == -1. |
271 | OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS); |
272 | goto end; |
273 | } |
274 | |
275 | // Here's our actual 'q': |
276 | if (!BN_rshift(q, q, e)) { |
277 | goto end; |
278 | } |
279 | |
280 | // Now that we have some non-square, we can find an element |
281 | // of order 2^e by computing its q'th power. |
282 | if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) { |
283 | goto end; |
284 | } |
285 | if (BN_is_one(y)) { |
286 | OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); |
287 | goto end; |
288 | } |
289 | |
290 | // Now we know that (if p is indeed prime) there is an integer |
291 | // k, 0 <= k < 2^e, such that |
292 | // |
293 | // a^q * y^k == 1 (mod p). |
294 | // |
295 | // As a^q is a square and y is not, k must be even. |
296 | // q+1 is even, too, so there is an element |
297 | // |
298 | // X := a^((q+1)/2) * y^(k/2), |
299 | // |
300 | // and it satisfies |
301 | // |
302 | // X^2 = a^q * a * y^k |
303 | // = a, |
304 | // |
305 | // so it is the square root that we are looking for. |
306 | |
307 | // t := (q-1)/2 (note that q is odd) |
308 | if (!BN_rshift1(t, q)) { |
309 | goto end; |
310 | } |
311 | |
312 | // x := a^((q-1)/2) |
313 | if (BN_is_zero(t)) // special case: p = 2^e + 1 |
314 | { |
315 | if (!BN_nnmod(t, A, p, ctx)) { |
316 | goto end; |
317 | } |
318 | if (BN_is_zero(t)) { |
319 | // special case: a == 0 (mod p) |
320 | BN_zero(ret); |
321 | err = 0; |
322 | goto end; |
323 | } else if (!BN_one(x)) { |
324 | goto end; |
325 | } |
326 | } else { |
327 | if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) { |
328 | goto end; |
329 | } |
330 | if (BN_is_zero(x)) { |
331 | // special case: a == 0 (mod p) |
332 | BN_zero(ret); |
333 | err = 0; |
334 | goto end; |
335 | } |
336 | } |
337 | |
338 | // b := a*x^2 (= a^q) |
339 | if (!BN_mod_sqr(b, x, p, ctx) || |
340 | !BN_mod_mul(b, b, A, p, ctx)) { |
341 | goto end; |
342 | } |
343 | |
344 | // x := a*x (= a^((q+1)/2)) |
345 | if (!BN_mod_mul(x, x, A, p, ctx)) { |
346 | goto end; |
347 | } |
348 | |
349 | while (1) { |
350 | // Now b is a^q * y^k for some even k (0 <= k < 2^E |
351 | // where E refers to the original value of e, which we |
352 | // don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
353 | // |
354 | // We have a*b = x^2, |
355 | // y^2^(e-1) = -1, |
356 | // b^2^(e-1) = 1. |
357 | |
358 | if (BN_is_one(b)) { |
359 | if (!BN_copy(ret, x)) { |
360 | goto end; |
361 | } |
362 | err = 0; |
363 | goto vrfy; |
364 | } |
365 | |
366 | |
367 | // find smallest i such that b^(2^i) = 1 |
368 | i = 1; |
369 | if (!BN_mod_sqr(t, b, p, ctx)) { |
370 | goto end; |
371 | } |
372 | while (!BN_is_one(t)) { |
373 | i++; |
374 | if (i == e) { |
375 | OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); |
376 | goto end; |
377 | } |
378 | if (!BN_mod_mul(t, t, t, p, ctx)) { |
379 | goto end; |
380 | } |
381 | } |
382 | |
383 | |
384 | // t := y^2^(e - i - 1) |
385 | if (!BN_copy(t, y)) { |
386 | goto end; |
387 | } |
388 | for (j = e - i - 1; j > 0; j--) { |
389 | if (!BN_mod_sqr(t, t, p, ctx)) { |
390 | goto end; |
391 | } |
392 | } |
393 | if (!BN_mod_mul(y, t, t, p, ctx) || |
394 | !BN_mod_mul(x, x, t, p, ctx) || |
395 | !BN_mod_mul(b, b, y, p, ctx)) { |
396 | goto end; |
397 | } |
398 | e = i; |
399 | } |
400 | |
401 | vrfy: |
402 | if (!err) { |
403 | // verify the result -- the input might have been not a square |
404 | // (test added in 0.9.8) |
405 | |
406 | if (!BN_mod_sqr(x, ret, p, ctx)) { |
407 | err = 1; |
408 | } |
409 | |
410 | if (!err && 0 != BN_cmp(x, A)) { |
411 | OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); |
412 | err = 1; |
413 | } |
414 | } |
415 | |
416 | end: |
417 | if (err) { |
418 | if (ret != in) { |
419 | BN_clear_free(ret); |
420 | } |
421 | ret = NULL; |
422 | } |
423 | BN_CTX_end(ctx); |
424 | return ret; |
425 | } |
426 | |
427 | int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) { |
428 | BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2; |
429 | int ok = 0, last_delta_valid = 0; |
430 | |
431 | if (in->neg) { |
432 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
433 | return 0; |
434 | } |
435 | if (BN_is_zero(in)) { |
436 | BN_zero(out_sqrt); |
437 | return 1; |
438 | } |
439 | |
440 | BN_CTX_start(ctx); |
441 | if (out_sqrt == in) { |
442 | estimate = BN_CTX_get(ctx); |
443 | } else { |
444 | estimate = out_sqrt; |
445 | } |
446 | tmp = BN_CTX_get(ctx); |
447 | last_delta = BN_CTX_get(ctx); |
448 | delta = BN_CTX_get(ctx); |
449 | if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) { |
450 | OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
451 | goto err; |
452 | } |
453 | |
454 | // We estimate that the square root of an n-bit number is 2^{n/2}. |
455 | if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) { |
456 | goto err; |
457 | } |
458 | |
459 | // This is Newton's method for finding a root of the equation |estimate|^2 - |
460 | // |in| = 0. |
461 | for (;;) { |
462 | // |estimate| = 1/2 * (|estimate| + |in|/|estimate|) |
463 | if (!BN_div(tmp, NULL, in, estimate, ctx) || |
464 | !BN_add(tmp, tmp, estimate) || |
465 | !BN_rshift1(estimate, tmp) || |
466 | // |tmp| = |estimate|^2 |
467 | !BN_sqr(tmp, estimate, ctx) || |
468 | // |delta| = |in| - |tmp| |
469 | !BN_sub(delta, in, tmp)) { |
470 | OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); |
471 | goto err; |
472 | } |
473 | |
474 | delta->neg = 0; |
475 | // The difference between |in| and |estimate| squared is required to always |
476 | // decrease. This ensures that the loop always terminates, but I don't have |
477 | // a proof that it always finds the square root for a given square. |
478 | if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) { |
479 | break; |
480 | } |
481 | |
482 | last_delta_valid = 1; |
483 | |
484 | tmp2 = last_delta; |
485 | last_delta = delta; |
486 | delta = tmp2; |
487 | } |
488 | |
489 | if (BN_cmp(tmp, in) != 0) { |
490 | OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); |
491 | goto err; |
492 | } |
493 | |
494 | ok = 1; |
495 | |
496 | err: |
497 | if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) { |
498 | ok = 0; |
499 | } |
500 | BN_CTX_end(ctx); |
501 | return ok; |
502 | } |
503 | |