| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] |
| 56 | */ |
| 57 | /* ==================================================================== |
| 58 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| 59 | * |
| 60 | * Redistribution and use in source and binary forms, with or without |
| 61 | * modification, are permitted provided that the following conditions |
| 62 | * are met: |
| 63 | * |
| 64 | * 1. Redistributions of source code must retain the above copyright |
| 65 | * notice, this list of conditions and the following disclaimer. |
| 66 | * |
| 67 | * 2. Redistributions in binary form must reproduce the above copyright |
| 68 | * notice, this list of conditions and the following disclaimer in |
| 69 | * the documentation and/or other materials provided with the |
| 70 | * distribution. |
| 71 | * |
| 72 | * 3. All advertising materials mentioning features or use of this |
| 73 | * software must display the following acknowledgment: |
| 74 | * "This product includes software developed by the OpenSSL Project |
| 75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 76 | * |
| 77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 78 | * endorse or promote products derived from this software without |
| 79 | * prior written permission. For written permission, please contact |
| 80 | * openssl-core@openssl.org. |
| 81 | * |
| 82 | * 5. Products derived from this software may not be called "OpenSSL" |
| 83 | * nor may "OpenSSL" appear in their names without prior written |
| 84 | * permission of the OpenSSL Project. |
| 85 | * |
| 86 | * 6. Redistributions of any form whatsoever must retain the following |
| 87 | * acknowledgment: |
| 88 | * "This product includes software developed by the OpenSSL Project |
| 89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 90 | * |
| 91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 103 | * ==================================================================== |
| 104 | * |
| 105 | * This product includes cryptographic software written by Eric Young |
| 106 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 107 | * Hudson (tjh@cryptsoft.com). */ |
| 108 | |
| 109 | #include <openssl/bn.h> |
| 110 | |
| 111 | #include <assert.h> |
| 112 | #include <stdlib.h> |
| 113 | #include <string.h> |
| 114 | |
| 115 | #include <openssl/cpu.h> |
| 116 | #include <openssl/err.h> |
| 117 | #include <openssl/mem.h> |
| 118 | |
| 119 | #include "internal.h" |
| 120 | #include "rsaz_exp.h" |
| 121 | |
| 122 | |
| 123 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { |
| 124 | int i, bits, ret = 0; |
| 125 | BIGNUM *v, *rr; |
| 126 | |
| 127 | BN_CTX_start(ctx); |
| 128 | if (r == a || r == p) { |
| 129 | rr = BN_CTX_get(ctx); |
| 130 | } else { |
| 131 | rr = r; |
| 132 | } |
| 133 | |
| 134 | v = BN_CTX_get(ctx); |
| 135 | if (rr == NULL || v == NULL) { |
| 136 | goto err; |
| 137 | } |
| 138 | |
| 139 | if (BN_copy(v, a) == NULL) { |
| 140 | goto err; |
| 141 | } |
| 142 | bits = BN_num_bits(p); |
| 143 | |
| 144 | if (BN_is_odd(p)) { |
| 145 | if (BN_copy(rr, a) == NULL) { |
| 146 | goto err; |
| 147 | } |
| 148 | } else { |
| 149 | if (!BN_one(rr)) { |
| 150 | goto err; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | for (i = 1; i < bits; i++) { |
| 155 | if (!BN_sqr(v, v, ctx)) { |
| 156 | goto err; |
| 157 | } |
| 158 | if (BN_is_bit_set(p, i)) { |
| 159 | if (!BN_mul(rr, rr, v, ctx)) { |
| 160 | goto err; |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | if (r != rr && !BN_copy(r, rr)) { |
| 166 | goto err; |
| 167 | } |
| 168 | ret = 1; |
| 169 | |
| 170 | err: |
| 171 | BN_CTX_end(ctx); |
| 172 | return ret; |
| 173 | } |
| 174 | |
| 175 | typedef struct bn_recp_ctx_st { |
| 176 | BIGNUM N; // the divisor |
| 177 | BIGNUM Nr; // the reciprocal |
| 178 | int num_bits; |
| 179 | int shift; |
| 180 | int flags; |
| 181 | } BN_RECP_CTX; |
| 182 | |
| 183 | static void BN_RECP_CTX_init(BN_RECP_CTX *recp) { |
| 184 | BN_init(&recp->N); |
| 185 | BN_init(&recp->Nr); |
| 186 | recp->num_bits = 0; |
| 187 | recp->shift = 0; |
| 188 | recp->flags = 0; |
| 189 | } |
| 190 | |
| 191 | static void BN_RECP_CTX_free(BN_RECP_CTX *recp) { |
| 192 | if (recp == NULL) { |
| 193 | return; |
| 194 | } |
| 195 | |
| 196 | BN_free(&recp->N); |
| 197 | BN_free(&recp->Nr); |
| 198 | } |
| 199 | |
| 200 | static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) { |
| 201 | if (!BN_copy(&(recp->N), d)) { |
| 202 | return 0; |
| 203 | } |
| 204 | BN_zero(&recp->Nr); |
| 205 | recp->num_bits = BN_num_bits(d); |
| 206 | recp->shift = 0; |
| 207 | |
| 208 | return 1; |
| 209 | } |
| 210 | |
| 211 | // len is the expected size of the result We actually calculate with an extra |
| 212 | // word of precision, so we can do faster division if the remainder is not |
| 213 | // required. |
| 214 | // r := 2^len / m |
| 215 | static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) { |
| 216 | int ret = -1; |
| 217 | BIGNUM *t; |
| 218 | |
| 219 | BN_CTX_start(ctx); |
| 220 | t = BN_CTX_get(ctx); |
| 221 | if (t == NULL) { |
| 222 | goto err; |
| 223 | } |
| 224 | |
| 225 | if (!BN_set_bit(t, len)) { |
| 226 | goto err; |
| 227 | } |
| 228 | |
| 229 | if (!BN_div(r, NULL, t, m, ctx)) { |
| 230 | goto err; |
| 231 | } |
| 232 | |
| 233 | ret = len; |
| 234 | |
| 235 | err: |
| 236 | BN_CTX_end(ctx); |
| 237 | return ret; |
| 238 | } |
| 239 | |
| 240 | static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
| 241 | BN_RECP_CTX *recp, BN_CTX *ctx) { |
| 242 | int i, j, ret = 0; |
| 243 | BIGNUM *a, *b, *d, *r; |
| 244 | |
| 245 | BN_CTX_start(ctx); |
| 246 | a = BN_CTX_get(ctx); |
| 247 | b = BN_CTX_get(ctx); |
| 248 | if (dv != NULL) { |
| 249 | d = dv; |
| 250 | } else { |
| 251 | d = BN_CTX_get(ctx); |
| 252 | } |
| 253 | |
| 254 | if (rem != NULL) { |
| 255 | r = rem; |
| 256 | } else { |
| 257 | r = BN_CTX_get(ctx); |
| 258 | } |
| 259 | |
| 260 | if (a == NULL || b == NULL || d == NULL || r == NULL) { |
| 261 | goto err; |
| 262 | } |
| 263 | |
| 264 | if (BN_ucmp(m, &recp->N) < 0) { |
| 265 | BN_zero(d); |
| 266 | if (!BN_copy(r, m)) { |
| 267 | goto err; |
| 268 | } |
| 269 | BN_CTX_end(ctx); |
| 270 | return 1; |
| 271 | } |
| 272 | |
| 273 | // We want the remainder |
| 274 | // Given input of ABCDEF / ab |
| 275 | // we need multiply ABCDEF by 3 digests of the reciprocal of ab |
| 276 | |
| 277 | // i := max(BN_num_bits(m), 2*BN_num_bits(N)) |
| 278 | i = BN_num_bits(m); |
| 279 | j = recp->num_bits << 1; |
| 280 | if (j > i) { |
| 281 | i = j; |
| 282 | } |
| 283 | |
| 284 | // Nr := round(2^i / N) |
| 285 | if (i != recp->shift) { |
| 286 | recp->shift = |
| 287 | BN_reciprocal(&(recp->Nr), &(recp->N), i, |
| 288 | ctx); // BN_reciprocal returns i, or -1 for an error |
| 289 | } |
| 290 | |
| 291 | if (recp->shift == -1) { |
| 292 | goto err; |
| 293 | } |
| 294 | |
| 295 | // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - |
| 296 | // BN_num_bits(N)))| |
| 297 | // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - |
| 298 | // BN_num_bits(N)))| |
| 299 | // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| |
| 300 | // = |m/N| |
| 301 | if (!BN_rshift(a, m, recp->num_bits)) { |
| 302 | goto err; |
| 303 | } |
| 304 | if (!BN_mul(b, a, &(recp->Nr), ctx)) { |
| 305 | goto err; |
| 306 | } |
| 307 | if (!BN_rshift(d, b, i - recp->num_bits)) { |
| 308 | goto err; |
| 309 | } |
| 310 | d->neg = 0; |
| 311 | |
| 312 | if (!BN_mul(b, &(recp->N), d, ctx)) { |
| 313 | goto err; |
| 314 | } |
| 315 | if (!BN_usub(r, m, b)) { |
| 316 | goto err; |
| 317 | } |
| 318 | r->neg = 0; |
| 319 | |
| 320 | j = 0; |
| 321 | while (BN_ucmp(r, &(recp->N)) >= 0) { |
| 322 | if (j++ > 2) { |
| 323 | OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL); |
| 324 | goto err; |
| 325 | } |
| 326 | if (!BN_usub(r, r, &(recp->N))) { |
| 327 | goto err; |
| 328 | } |
| 329 | if (!BN_add_word(d, 1)) { |
| 330 | goto err; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | r->neg = BN_is_zero(r) ? 0 : m->neg; |
| 335 | d->neg = m->neg ^ recp->N.neg; |
| 336 | ret = 1; |
| 337 | |
| 338 | err: |
| 339 | BN_CTX_end(ctx); |
| 340 | return ret; |
| 341 | } |
| 342 | |
| 343 | static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
| 344 | BN_RECP_CTX *recp, BN_CTX *ctx) { |
| 345 | int ret = 0; |
| 346 | BIGNUM *a; |
| 347 | const BIGNUM *ca; |
| 348 | |
| 349 | BN_CTX_start(ctx); |
| 350 | a = BN_CTX_get(ctx); |
| 351 | if (a == NULL) { |
| 352 | goto err; |
| 353 | } |
| 354 | |
| 355 | if (y != NULL) { |
| 356 | if (x == y) { |
| 357 | if (!BN_sqr(a, x, ctx)) { |
| 358 | goto err; |
| 359 | } |
| 360 | } else { |
| 361 | if (!BN_mul(a, x, y, ctx)) { |
| 362 | goto err; |
| 363 | } |
| 364 | } |
| 365 | ca = a; |
| 366 | } else { |
| 367 | ca = x; // Just do the mod |
| 368 | } |
| 369 | |
| 370 | ret = BN_div_recp(NULL, r, ca, recp, ctx); |
| 371 | |
| 372 | err: |
| 373 | BN_CTX_end(ctx); |
| 374 | return ret; |
| 375 | } |
| 376 | |
| 377 | // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with |
| 378 | // a |b| bit exponent. |
| 379 | // |
| 380 | // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of |
| 381 | // multiplications is a constant plus on average |
| 382 | // |
| 383 | // 2^(w-1) + (b-w)/(w+1); |
| 384 | // |
| 385 | // here 2^(w-1) is for precomputing the table (we actually need entries only |
| 386 | // for windows that have the lowest bit set), and (b-w)/(w+1) is an |
| 387 | // approximation for the expected number of w-bit windows, not counting the |
| 388 | // first one. |
| 389 | // |
| 390 | // Thus we should use |
| 391 | // |
| 392 | // w >= 6 if b > 671 |
| 393 | // w = 5 if 671 > b > 239 |
| 394 | // w = 4 if 239 > b > 79 |
| 395 | // w = 3 if 79 > b > 23 |
| 396 | // w <= 2 if 23 > b |
| 397 | // |
| 398 | // (with draws in between). Very small exponents are often selected |
| 399 | // with low Hamming weight, so we use w = 1 for b <= 23. |
| 400 | static int BN_window_bits_for_exponent_size(int b) { |
| 401 | if (b > 671) { |
| 402 | return 6; |
| 403 | } |
| 404 | if (b > 239) { |
| 405 | return 5; |
| 406 | } |
| 407 | if (b > 79) { |
| 408 | return 4; |
| 409 | } |
| 410 | if (b > 23) { |
| 411 | return 3; |
| 412 | } |
| 413 | return 1; |
| 414 | } |
| 415 | |
| 416 | // TABLE_SIZE is the maximum precomputation table size for *variable* sliding |
| 417 | // windows. This must be 2^(max_window - 1), where max_window is the largest |
| 418 | // value returned from |BN_window_bits_for_exponent_size|. |
| 419 | #define TABLE_SIZE 32 |
| 420 | |
| 421 | // TABLE_BITS_SMALL is the smallest value returned from |
| 422 | // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| * |
| 423 | // |BN_SMALL_MAX_WORDS| words. |
| 424 | #define TABLE_BITS_SMALL 5 |
| 425 | |
| 426 | // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most |
| 427 | // |BN_BITS2| * |BN_SMALL_MAX_WORDS|. |
| 428 | #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1)) |
| 429 | |
| 430 | static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 431 | const BIGNUM *m, BN_CTX *ctx) { |
| 432 | int i, j, ret = 0, wstart, window; |
| 433 | int start = 1; |
| 434 | BIGNUM *aa; |
| 435 | // Table of variables obtained from 'ctx' |
| 436 | BIGNUM *val[TABLE_SIZE]; |
| 437 | BN_RECP_CTX recp; |
| 438 | |
| 439 | // This function is only called on even moduli. |
| 440 | assert(!BN_is_odd(m)); |
| 441 | |
| 442 | int bits = BN_num_bits(p); |
| 443 | if (bits == 0) { |
| 444 | return BN_one(r); |
| 445 | } |
| 446 | |
| 447 | BN_CTX_start(ctx); |
| 448 | aa = BN_CTX_get(ctx); |
| 449 | val[0] = BN_CTX_get(ctx); |
| 450 | if (!aa || !val[0]) { |
| 451 | goto err; |
| 452 | } |
| 453 | |
| 454 | BN_RECP_CTX_init(&recp); |
| 455 | if (m->neg) { |
| 456 | // ignore sign of 'm' |
| 457 | if (!BN_copy(aa, m)) { |
| 458 | goto err; |
| 459 | } |
| 460 | aa->neg = 0; |
| 461 | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) { |
| 462 | goto err; |
| 463 | } |
| 464 | } else { |
| 465 | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) { |
| 466 | goto err; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | if (!BN_nnmod(val[0], a, m, ctx)) { |
| 471 | goto err; // 1 |
| 472 | } |
| 473 | if (BN_is_zero(val[0])) { |
| 474 | BN_zero(r); |
| 475 | ret = 1; |
| 476 | goto err; |
| 477 | } |
| 478 | |
| 479 | window = BN_window_bits_for_exponent_size(bits); |
| 480 | if (window > 1) { |
| 481 | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) { |
| 482 | goto err; // 2 |
| 483 | } |
| 484 | j = 1 << (window - 1); |
| 485 | for (i = 1; i < j; i++) { |
| 486 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
| 487 | !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) { |
| 488 | goto err; |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | start = 1; // This is used to avoid multiplication etc |
| 494 | // when there is only the value '1' in the |
| 495 | // buffer. |
| 496 | wstart = bits - 1; // The top bit of the window |
| 497 | |
| 498 | if (!BN_one(r)) { |
| 499 | goto err; |
| 500 | } |
| 501 | |
| 502 | for (;;) { |
| 503 | int wvalue; // The 'value' of the window |
| 504 | int wend; // The bottom bit of the window |
| 505 | |
| 506 | if (!BN_is_bit_set(p, wstart)) { |
| 507 | if (!start) { |
| 508 | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
| 509 | goto err; |
| 510 | } |
| 511 | } |
| 512 | if (wstart == 0) { |
| 513 | break; |
| 514 | } |
| 515 | wstart--; |
| 516 | continue; |
| 517 | } |
| 518 | |
| 519 | // We now have wstart on a 'set' bit, we now need to work out |
| 520 | // how bit a window to do. To do this we need to scan |
| 521 | // forward until the last set bit before the end of the |
| 522 | // window |
| 523 | wvalue = 1; |
| 524 | wend = 0; |
| 525 | for (i = 1; i < window; i++) { |
| 526 | if (wstart - i < 0) { |
| 527 | break; |
| 528 | } |
| 529 | if (BN_is_bit_set(p, wstart - i)) { |
| 530 | wvalue <<= (i - wend); |
| 531 | wvalue |= 1; |
| 532 | wend = i; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | // wend is the size of the current window |
| 537 | j = wend + 1; |
| 538 | // add the 'bytes above' |
| 539 | if (!start) { |
| 540 | for (i = 0; i < j; i++) { |
| 541 | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
| 542 | goto err; |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | // wvalue will be an odd number < 2^window |
| 548 | if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) { |
| 549 | goto err; |
| 550 | } |
| 551 | |
| 552 | // move the 'window' down further |
| 553 | wstart -= wend + 1; |
| 554 | start = 0; |
| 555 | if (wstart < 0) { |
| 556 | break; |
| 557 | } |
| 558 | } |
| 559 | ret = 1; |
| 560 | |
| 561 | err: |
| 562 | BN_CTX_end(ctx); |
| 563 | BN_RECP_CTX_free(&recp); |
| 564 | return ret; |
| 565 | } |
| 566 | |
| 567 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 568 | BN_CTX *ctx) { |
| 569 | if (m->neg) { |
| 570 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 571 | return 0; |
| 572 | } |
| 573 | if (a->neg || BN_ucmp(a, m) >= 0) { |
| 574 | if (!BN_nnmod(r, a, m, ctx)) { |
| 575 | return 0; |
| 576 | } |
| 577 | a = r; |
| 578 | } |
| 579 | |
| 580 | if (BN_is_odd(m)) { |
| 581 | return BN_mod_exp_mont(r, a, p, m, ctx, NULL); |
| 582 | } |
| 583 | |
| 584 | return mod_exp_recp(r, a, p, m, ctx); |
| 585 | } |
| 586 | |
| 587 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| 588 | const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { |
| 589 | if (!BN_is_odd(m)) { |
| 590 | OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| 591 | return 0; |
| 592 | } |
| 593 | if (m->neg) { |
| 594 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 595 | return 0; |
| 596 | } |
| 597 | if (a->neg || BN_ucmp(a, m) >= 0) { |
| 598 | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| 599 | return 0; |
| 600 | } |
| 601 | |
| 602 | int bits = BN_num_bits(p); |
| 603 | if (bits == 0) { |
| 604 | // x**0 mod 1 is still zero. |
| 605 | if (BN_abs_is_word(m, 1)) { |
| 606 | BN_zero(rr); |
| 607 | return 1; |
| 608 | } |
| 609 | return BN_one(rr); |
| 610 | } |
| 611 | |
| 612 | int ret = 0; |
| 613 | BIGNUM *val[TABLE_SIZE]; |
| 614 | BN_MONT_CTX *new_mont = NULL; |
| 615 | |
| 616 | BN_CTX_start(ctx); |
| 617 | BIGNUM *r = BN_CTX_get(ctx); |
| 618 | val[0] = BN_CTX_get(ctx); |
| 619 | if (r == NULL || val[0] == NULL) { |
| 620 | goto err; |
| 621 | } |
| 622 | |
| 623 | // Allocate a montgomery context if it was not supplied by the caller. |
| 624 | if (mont == NULL) { |
| 625 | new_mont = BN_MONT_CTX_new_consttime(m, ctx); |
| 626 | if (new_mont == NULL) { |
| 627 | goto err; |
| 628 | } |
| 629 | mont = new_mont; |
| 630 | } |
| 631 | |
| 632 | // We exponentiate by looking at sliding windows of the exponent and |
| 633 | // precomputing powers of |a|. Windows may be shifted so they always end on a |
| 634 | // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) |
| 635 | // for i = 0 to 2^(window-1), all in Montgomery form. |
| 636 | int window = BN_window_bits_for_exponent_size(bits); |
| 637 | if (!BN_to_montgomery(val[0], a, mont, ctx)) { |
| 638 | goto err; |
| 639 | } |
| 640 | if (window > 1) { |
| 641 | BIGNUM *d = BN_CTX_get(ctx); |
| 642 | if (d == NULL || |
| 643 | !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) { |
| 644 | goto err; |
| 645 | } |
| 646 | for (int i = 1; i < 1 << (window - 1); i++) { |
| 647 | val[i] = BN_CTX_get(ctx); |
| 648 | if (val[i] == NULL || |
| 649 | !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) { |
| 650 | goto err; |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | // |p| is non-zero, so at least one window is non-zero. To save some |
| 656 | // multiplications, defer initializing |r| until then. |
| 657 | int r_is_one = 1; |
| 658 | int wstart = bits - 1; // The top bit of the window. |
| 659 | for (;;) { |
| 660 | if (!BN_is_bit_set(p, wstart)) { |
| 661 | if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
| 662 | goto err; |
| 663 | } |
| 664 | if (wstart == 0) { |
| 665 | break; |
| 666 | } |
| 667 | wstart--; |
| 668 | continue; |
| 669 | } |
| 670 | |
| 671 | // We now have wstart on a set bit. Find the largest window we can use. |
| 672 | int wvalue = 1; |
| 673 | int wsize = 0; |
| 674 | for (int i = 1; i < window && i <= wstart; i++) { |
| 675 | if (BN_is_bit_set(p, wstart - i)) { |
| 676 | wvalue <<= (i - wsize); |
| 677 | wvalue |= 1; |
| 678 | wsize = i; |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | // Shift |r| to the end of the window. |
| 683 | if (!r_is_one) { |
| 684 | for (int i = 0; i < wsize + 1; i++) { |
| 685 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
| 686 | goto err; |
| 687 | } |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | assert(wvalue & 1); |
| 692 | assert(wvalue < (1 << window)); |
| 693 | if (r_is_one) { |
| 694 | if (!BN_copy(r, val[wvalue >> 1])) { |
| 695 | goto err; |
| 696 | } |
| 697 | } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) { |
| 698 | goto err; |
| 699 | } |
| 700 | |
| 701 | r_is_one = 0; |
| 702 | if (wstart == wsize) { |
| 703 | break; |
| 704 | } |
| 705 | wstart -= wsize + 1; |
| 706 | } |
| 707 | |
| 708 | // |p| is non-zero, so |r_is_one| must be cleared at some point. |
| 709 | assert(!r_is_one); |
| 710 | |
| 711 | if (!BN_from_montgomery(rr, r, mont, ctx)) { |
| 712 | goto err; |
| 713 | } |
| 714 | ret = 1; |
| 715 | |
| 716 | err: |
| 717 | BN_MONT_CTX_free(new_mont); |
| 718 | BN_CTX_end(ctx); |
| 719 | return ret; |
| 720 | } |
| 721 | |
| 722 | void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 723 | const BN_ULONG *p, size_t num_p, |
| 724 | const BN_MONT_CTX *mont) { |
| 725 | if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
| 726 | abort(); |
| 727 | } |
| 728 | assert(BN_is_odd(&mont->N)); |
| 729 | |
| 730 | // Count the number of bits in |p|. Note this function treats |p| as public. |
| 731 | while (num_p != 0 && p[num_p - 1] == 0) { |
| 732 | num_p--; |
| 733 | } |
| 734 | if (num_p == 0) { |
| 735 | bn_from_montgomery_small(r, mont->RR.d, num, mont); |
| 736 | return; |
| 737 | } |
| 738 | unsigned bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2; |
| 739 | assert(bits != 0); |
| 740 | |
| 741 | // We exponentiate by looking at sliding windows of the exponent and |
| 742 | // precomputing powers of |a|. Windows may be shifted so they always end on a |
| 743 | // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for |
| 744 | // i = 0 to 2^(window-1), all in Montgomery form. |
| 745 | unsigned window = BN_window_bits_for_exponent_size(bits); |
| 746 | if (window > TABLE_BITS_SMALL) { |
| 747 | window = TABLE_BITS_SMALL; // Tolerate excessively large |p|. |
| 748 | } |
| 749 | BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS]; |
| 750 | OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG)); |
| 751 | if (window > 1) { |
| 752 | BN_ULONG d[BN_SMALL_MAX_WORDS]; |
| 753 | bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont); |
| 754 | for (unsigned i = 1; i < 1u << (window - 1); i++) { |
| 755 | bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | // |p| is non-zero, so at least one window is non-zero. To save some |
| 760 | // multiplications, defer initializing |r| until then. |
| 761 | int r_is_one = 1; |
| 762 | unsigned wstart = bits - 1; // The top bit of the window. |
| 763 | for (;;) { |
| 764 | if (!bn_is_bit_set_words(p, num_p, wstart)) { |
| 765 | if (!r_is_one) { |
| 766 | bn_mod_mul_montgomery_small(r, r, r, num, mont); |
| 767 | } |
| 768 | if (wstart == 0) { |
| 769 | break; |
| 770 | } |
| 771 | wstart--; |
| 772 | continue; |
| 773 | } |
| 774 | |
| 775 | // We now have wstart on a set bit. Find the largest window we can use. |
| 776 | unsigned wvalue = 1; |
| 777 | unsigned wsize = 0; |
| 778 | for (unsigned i = 1; i < window && i <= wstart; i++) { |
| 779 | if (bn_is_bit_set_words(p, num_p, wstart - i)) { |
| 780 | wvalue <<= (i - wsize); |
| 781 | wvalue |= 1; |
| 782 | wsize = i; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | // Shift |r| to the end of the window. |
| 787 | if (!r_is_one) { |
| 788 | for (unsigned i = 0; i < wsize + 1; i++) { |
| 789 | bn_mod_mul_montgomery_small(r, r, r, num, mont); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | assert(wvalue & 1); |
| 794 | assert(wvalue < (1u << window)); |
| 795 | if (r_is_one) { |
| 796 | OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG)); |
| 797 | } else { |
| 798 | bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont); |
| 799 | } |
| 800 | r_is_one = 0; |
| 801 | if (wstart == wsize) { |
| 802 | break; |
| 803 | } |
| 804 | wstart -= wsize + 1; |
| 805 | } |
| 806 | |
| 807 | // |p| is non-zero, so |r_is_one| must be cleared at some point. |
| 808 | assert(!r_is_one); |
| 809 | OPENSSL_cleanse(val, sizeof(val)); |
| 810 | } |
| 811 | |
| 812 | void bn_mod_inverse_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 813 | const BN_MONT_CTX *mont) { |
| 814 | if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
| 815 | abort(); |
| 816 | } |
| 817 | |
| 818 | // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime. |
| 819 | BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS]; |
| 820 | const BN_ULONG *p = mont->N.d; |
| 821 | OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG)); |
| 822 | if (p_minus_two[0] >= 2) { |
| 823 | p_minus_two[0] -= 2; |
| 824 | } else { |
| 825 | p_minus_two[0] -= 2; |
| 826 | for (size_t i = 1; i < num; i++) { |
| 827 | if (p_minus_two[i]-- != 0) { |
| 828 | break; |
| 829 | } |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont); |
| 834 | } |
| 835 | |
| 836 | static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx, |
| 837 | int window) { |
| 838 | int ret = bn_copy_words(table + idx * top, top, b); |
| 839 | assert(ret); // |b| is guaranteed to fit. |
| 840 | (void)ret; |
| 841 | } |
| 842 | |
| 843 | static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx, |
| 844 | int window) { |
| 845 | if (!bn_wexpand(b, top)) { |
| 846 | return 0; |
| 847 | } |
| 848 | |
| 849 | OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top); |
| 850 | const int width = 1 << window; |
| 851 | for (int i = 0; i < width; i++, table += top) { |
| 852 | BN_ULONG mask = constant_time_eq_int(i, idx); |
| 853 | for (int j = 0; j < top; j++) { |
| 854 | b->d[j] |= table[j] & mask; |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | b->width = top; |
| 859 | return 1; |
| 860 | } |
| 861 | |
| 862 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \ |
| 863 | (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
| 864 | |
| 865 | // Window sizes optimized for fixed window size modular exponentiation |
| 866 | // algorithm (BN_mod_exp_mont_consttime). |
| 867 | // |
| 868 | // To achieve the security goals of BN_mode_exp_mont_consttime, the maximum |
| 869 | // size of the window must not exceed |
| 870 | // log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). |
| 871 | // |
| 872 | // Window size thresholds are defined for cache line sizes of 32 and 64, cache |
| 873 | // line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of |
| 874 | // 7 should only be used on processors that have a 128 byte or greater cache |
| 875 | // line size. |
| 876 | #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
| 877 | |
| 878 | #define BN_window_bits_for_ctime_exponent_size(b) \ |
| 879 | ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
| 880 | #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
| 881 | |
| 882 | #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
| 883 | |
| 884 | #define BN_window_bits_for_ctime_exponent_size(b) \ |
| 885 | ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
| 886 | #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
| 887 | |
| 888 | #endif |
| 889 | |
| 890 | // Given a pointer value, compute the next address that is a cache line |
| 891 | // multiple. |
| 892 | #define MOD_EXP_CTIME_ALIGN(x_) \ |
| 893 | ((unsigned char *)(x_) + \ |
| 894 | (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \ |
| 895 | (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) |
| 896 | |
| 897 | // This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access |
| 898 | // patterns to protect secret exponents (cf. the hyper-threading timing attacks |
| 899 | // pointed out by Colin Percival, |
| 900 | // http://www.daemonology.net/hyperthreading-considered-harmful/) |
| 901 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| 902 | const BIGNUM *m, BN_CTX *ctx, |
| 903 | const BN_MONT_CTX *mont) { |
| 904 | int i, ret = 0, window, wvalue; |
| 905 | BN_MONT_CTX *new_mont = NULL; |
| 906 | |
| 907 | int numPowers; |
| 908 | unsigned char *powerbufFree = NULL; |
| 909 | int powerbufLen = 0; |
| 910 | BN_ULONG *powerbuf = NULL; |
| 911 | BIGNUM tmp, am; |
| 912 | |
| 913 | if (!BN_is_odd(m)) { |
| 914 | OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| 915 | return 0; |
| 916 | } |
| 917 | if (m->neg) { |
| 918 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 919 | return 0; |
| 920 | } |
| 921 | if (a->neg || BN_ucmp(a, m) >= 0) { |
| 922 | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| 923 | return 0; |
| 924 | } |
| 925 | |
| 926 | // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak |
| 927 | // whether the top bits are zero. |
| 928 | int max_bits = p->width * BN_BITS2; |
| 929 | int bits = max_bits; |
| 930 | if (bits == 0) { |
| 931 | // x**0 mod 1 is still zero. |
| 932 | if (BN_abs_is_word(m, 1)) { |
| 933 | BN_zero(rr); |
| 934 | return 1; |
| 935 | } |
| 936 | return BN_one(rr); |
| 937 | } |
| 938 | |
| 939 | // Allocate a montgomery context if it was not supplied by the caller. |
| 940 | if (mont == NULL) { |
| 941 | new_mont = BN_MONT_CTX_new_consttime(m, ctx); |
| 942 | if (new_mont == NULL) { |
| 943 | goto err; |
| 944 | } |
| 945 | mont = new_mont; |
| 946 | } |
| 947 | |
| 948 | // Use the width in |mont->N|, rather than the copy in |m|. The assembly |
| 949 | // implementation assumes it can use |top| to size R. |
| 950 | int top = mont->N.width; |
| 951 | |
| 952 | #if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED) |
| 953 | // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code |
| 954 | // paths. If we were to use separate static buffers for each then there is |
| 955 | // some chance that both large buffers would be allocated on the stack, |
| 956 | // causing the stack space requirement to be truly huge (~10KB). |
| 957 | alignas(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH) BN_ULONG |
| 958 | storage[MOD_EXP_CTIME_STORAGE_LEN]; |
| 959 | #endif |
| 960 | #if defined(RSAZ_ENABLED) |
| 961 | // If the size of the operands allow it, perform the optimized RSAZ |
| 962 | // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c |
| 963 | // and accompanying assembly modules. |
| 964 | if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 && |
| 965 | rsaz_avx2_preferred()) { |
| 966 | if (!bn_wexpand(rr, 16)) { |
| 967 | goto err; |
| 968 | } |
| 969 | RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0], |
| 970 | storage); |
| 971 | rr->width = 16; |
| 972 | rr->neg = 0; |
| 973 | ret = 1; |
| 974 | goto err; |
| 975 | } |
| 976 | #endif |
| 977 | |
| 978 | // Get the window size to use with size of p. |
| 979 | window = BN_window_bits_for_ctime_exponent_size(bits); |
| 980 | #if defined(OPENSSL_BN_ASM_MONT5) |
| 981 | if (window >= 5) { |
| 982 | window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096 |
| 983 | // reserve space for mont->N.d[] copy |
| 984 | powerbufLen += top * sizeof(mont->N.d[0]); |
| 985 | } |
| 986 | #endif |
| 987 | |
| 988 | // Allocate a buffer large enough to hold all of the pre-computed |
| 989 | // powers of am, am itself and tmp. |
| 990 | numPowers = 1 << window; |
| 991 | powerbufLen += |
| 992 | sizeof(m->d[0]) * |
| 993 | (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers)); |
| 994 | |
| 995 | #if defined(OPENSSL_BN_ASM_MONT5) |
| 996 | if ((size_t)powerbufLen <= sizeof(storage)) { |
| 997 | powerbuf = storage; |
| 998 | } |
| 999 | // |storage| is more than large enough to handle 1024-bit inputs. |
| 1000 | assert(powerbuf != NULL || top * BN_BITS2 > 1024); |
| 1001 | #endif |
| 1002 | if (powerbuf == NULL) { |
| 1003 | powerbufFree = |
| 1004 | OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); |
| 1005 | if (powerbufFree == NULL) { |
| 1006 | goto err; |
| 1007 | } |
| 1008 | powerbuf = (BN_ULONG *)MOD_EXP_CTIME_ALIGN(powerbufFree); |
| 1009 | } |
| 1010 | OPENSSL_memset(powerbuf, 0, powerbufLen); |
| 1011 | |
| 1012 | // lay down tmp and am right after powers table |
| 1013 | tmp.d = powerbuf + top * numPowers; |
| 1014 | am.d = tmp.d + top; |
| 1015 | tmp.width = am.width = 0; |
| 1016 | tmp.dmax = am.dmax = top; |
| 1017 | tmp.neg = am.neg = 0; |
| 1018 | tmp.flags = am.flags = BN_FLG_STATIC_DATA; |
| 1019 | |
| 1020 | if (!bn_one_to_montgomery(&tmp, mont, ctx)) { |
| 1021 | goto err; |
| 1022 | } |
| 1023 | |
| 1024 | // prepare a^1 in Montgomery domain |
| 1025 | assert(!a->neg); |
| 1026 | assert(BN_ucmp(a, m) < 0); |
| 1027 | if (!BN_to_montgomery(&am, a, mont, ctx)) { |
| 1028 | goto err; |
| 1029 | } |
| 1030 | |
| 1031 | #if defined(OPENSSL_BN_ASM_MONT5) |
| 1032 | // This optimization uses ideas from http://eprint.iacr.org/2011/239, |
| 1033 | // specifically optimization of cache-timing attack countermeasures |
| 1034 | // and pre-computation optimization. |
| 1035 | |
| 1036 | // Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as |
| 1037 | // 512-bit RSA is hardly relevant, we omit it to spare size... |
| 1038 | if (window == 5 && top > 1) { |
| 1039 | const BN_ULONG *n0 = mont->n0; |
| 1040 | BN_ULONG *np; |
| 1041 | |
| 1042 | // BN_to_montgomery can contaminate words above .top |
| 1043 | // [in BN_DEBUG[_DEBUG] build]... |
| 1044 | for (i = am.width; i < top; i++) { |
| 1045 | am.d[i] = 0; |
| 1046 | } |
| 1047 | for (i = tmp.width; i < top; i++) { |
| 1048 | tmp.d[i] = 0; |
| 1049 | } |
| 1050 | |
| 1051 | // copy mont->N.d[] to improve cache locality |
| 1052 | for (np = am.d + top, i = 0; i < top; i++) { |
| 1053 | np[i] = mont->N.d[i]; |
| 1054 | } |
| 1055 | |
| 1056 | bn_scatter5(tmp.d, top, powerbuf, 0); |
| 1057 | bn_scatter5(am.d, am.width, powerbuf, 1); |
| 1058 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
| 1059 | bn_scatter5(tmp.d, top, powerbuf, 2); |
| 1060 | |
| 1061 | // same as above, but uses squaring for 1/2 of operations |
| 1062 | for (i = 4; i < 32; i *= 2) { |
| 1063 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1064 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 1065 | } |
| 1066 | for (i = 3; i < 8; i += 2) { |
| 1067 | int j; |
| 1068 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| 1069 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 1070 | for (j = 2 * i; j < 32; j *= 2) { |
| 1071 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1072 | bn_scatter5(tmp.d, top, powerbuf, j); |
| 1073 | } |
| 1074 | } |
| 1075 | for (; i < 16; i += 2) { |
| 1076 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| 1077 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 1078 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1079 | bn_scatter5(tmp.d, top, powerbuf, 2 * i); |
| 1080 | } |
| 1081 | for (; i < 32; i += 2) { |
| 1082 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| 1083 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 1084 | } |
| 1085 | |
| 1086 | bits--; |
| 1087 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) { |
| 1088 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 1089 | } |
| 1090 | bn_gather5(tmp.d, top, powerbuf, wvalue); |
| 1091 | |
| 1092 | // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit |
| 1093 | // that has not been read yet.) |
| 1094 | assert(bits >= -1 && (bits == -1 || bits % 5 == 4)); |
| 1095 | |
| 1096 | // Scan the exponent one window at a time starting from the most |
| 1097 | // significant bits. |
| 1098 | if (top & 7) { |
| 1099 | while (bits >= 0) { |
| 1100 | for (wvalue = 0, i = 0; i < 5; i++, bits--) { |
| 1101 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 1102 | } |
| 1103 | |
| 1104 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1105 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1106 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1107 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1108 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 1109 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| 1110 | } |
| 1111 | } else { |
| 1112 | const uint8_t *p_bytes = (const uint8_t *)p->d; |
| 1113 | assert(bits < max_bits); |
| 1114 | // |p = 0| has been handled as a special case, so |max_bits| is at least |
| 1115 | // one word. |
| 1116 | assert(max_bits >= 64); |
| 1117 | |
| 1118 | // If the first bit to be read lands in the last byte, unroll the first |
| 1119 | // iteration to avoid reading past the bounds of |p->d|. (After the first |
| 1120 | // iteration, we are guaranteed to be past the last byte.) Note |bits| |
| 1121 | // here is the top bit, inclusive. |
| 1122 | if (bits - 4 >= max_bits - 8) { |
| 1123 | // Read five bits from |bits-4| through |bits|, inclusive. |
| 1124 | wvalue = p_bytes[p->width * BN_BYTES - 1]; |
| 1125 | wvalue >>= (bits - 4) & 7; |
| 1126 | wvalue &= 0x1f; |
| 1127 | bits -= 5; |
| 1128 | bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| 1129 | } |
| 1130 | while (bits >= 0) { |
| 1131 | // Read five bits from |bits-4| through |bits|, inclusive. |
| 1132 | int first_bit = bits - 4; |
| 1133 | uint16_t val; |
| 1134 | OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val)); |
| 1135 | val >>= first_bit & 7; |
| 1136 | val &= 0x1f; |
| 1137 | bits -= 5; |
| 1138 | bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val); |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top); |
| 1143 | tmp.width = top; |
| 1144 | if (ret) { |
| 1145 | if (!BN_copy(rr, &tmp)) { |
| 1146 | ret = 0; |
| 1147 | } |
| 1148 | goto err; // non-zero ret means it's not error |
| 1149 | } |
| 1150 | } else |
| 1151 | #endif |
| 1152 | { |
| 1153 | copy_to_prebuf(&tmp, top, powerbuf, 0, window); |
| 1154 | copy_to_prebuf(&am, top, powerbuf, 1, window); |
| 1155 | |
| 1156 | // If the window size is greater than 1, then calculate |
| 1157 | // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) |
| 1158 | // (even powers could instead be computed as (a^(i/2))^2 |
| 1159 | // to use the slight performance advantage of sqr over mul). |
| 1160 | if (window > 1) { |
| 1161 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) { |
| 1162 | goto err; |
| 1163 | } |
| 1164 | |
| 1165 | copy_to_prebuf(&tmp, top, powerbuf, 2, window); |
| 1166 | |
| 1167 | for (i = 3; i < numPowers; i++) { |
| 1168 | // Calculate a^i = a^(i-1) * a |
| 1169 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) { |
| 1170 | goto err; |
| 1171 | } |
| 1172 | |
| 1173 | copy_to_prebuf(&tmp, top, powerbuf, i, window); |
| 1174 | } |
| 1175 | } |
| 1176 | |
| 1177 | bits--; |
| 1178 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) { |
| 1179 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 1180 | } |
| 1181 | if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) { |
| 1182 | goto err; |
| 1183 | } |
| 1184 | |
| 1185 | // Scan the exponent one window at a time starting from the most |
| 1186 | // significant bits. |
| 1187 | while (bits >= 0) { |
| 1188 | wvalue = 0; // The 'value' of the window |
| 1189 | |
| 1190 | // Scan the window, squaring the result as we go |
| 1191 | for (i = 0; i < window; i++, bits--) { |
| 1192 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) { |
| 1193 | goto err; |
| 1194 | } |
| 1195 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 1196 | } |
| 1197 | |
| 1198 | // Fetch the appropriate pre-computed value from the pre-buf |
| 1199 | if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) { |
| 1200 | goto err; |
| 1201 | } |
| 1202 | |
| 1203 | // Multiply the result into the intermediate result |
| 1204 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) { |
| 1205 | goto err; |
| 1206 | } |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | // Convert the final result from montgomery to standard format |
| 1211 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) { |
| 1212 | goto err; |
| 1213 | } |
| 1214 | ret = 1; |
| 1215 | |
| 1216 | err: |
| 1217 | BN_MONT_CTX_free(new_mont); |
| 1218 | if (powerbuf != NULL && powerbufFree == NULL) { |
| 1219 | OPENSSL_cleanse(powerbuf, powerbufLen); |
| 1220 | } |
| 1221 | OPENSSL_free(powerbufFree); |
| 1222 | return (ret); |
| 1223 | } |
| 1224 | |
| 1225 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
| 1226 | const BIGNUM *m, BN_CTX *ctx, |
| 1227 | const BN_MONT_CTX *mont) { |
| 1228 | BIGNUM a_bignum; |
| 1229 | BN_init(&a_bignum); |
| 1230 | |
| 1231 | int ret = 0; |
| 1232 | |
| 1233 | // BN_mod_exp_mont requires reduced inputs. |
| 1234 | if (bn_minimal_width(m) == 1) { |
| 1235 | a %= m->d[0]; |
| 1236 | } |
| 1237 | |
| 1238 | if (!BN_set_word(&a_bignum, a)) { |
| 1239 | OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| 1240 | goto err; |
| 1241 | } |
| 1242 | |
| 1243 | ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont); |
| 1244 | |
| 1245 | err: |
| 1246 | BN_free(&a_bignum); |
| 1247 | |
| 1248 | return ret; |
| 1249 | } |
| 1250 | |
| 1251 | #define TABLE_SIZE 32 |
| 1252 | |
| 1253 | int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, |
| 1254 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
| 1255 | BN_CTX *ctx, const BN_MONT_CTX *mont) { |
| 1256 | BIGNUM tmp; |
| 1257 | BN_init(&tmp); |
| 1258 | |
| 1259 | int ret = 0; |
| 1260 | BN_MONT_CTX *new_mont = NULL; |
| 1261 | |
| 1262 | // Allocate a montgomery context if it was not supplied by the caller. |
| 1263 | if (mont == NULL) { |
| 1264 | new_mont = BN_MONT_CTX_new_for_modulus(m, ctx); |
| 1265 | if (new_mont == NULL) { |
| 1266 | goto err; |
| 1267 | } |
| 1268 | mont = new_mont; |
| 1269 | } |
| 1270 | |
| 1271 | // BN_mod_mul_montgomery removes one Montgomery factor, so passing one |
| 1272 | // Montgomery-encoded and one non-Montgomery-encoded value gives a |
| 1273 | // non-Montgomery-encoded result. |
| 1274 | if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) || |
| 1275 | !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) || |
| 1276 | !BN_to_montgomery(rr, rr, mont, ctx) || |
| 1277 | !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) { |
| 1278 | goto err; |
| 1279 | } |
| 1280 | |
| 1281 | ret = 1; |
| 1282 | |
| 1283 | err: |
| 1284 | BN_MONT_CTX_free(new_mont); |
| 1285 | BN_free(&tmp); |
| 1286 | |
| 1287 | return ret; |
| 1288 | } |
| 1289 | |