| 1 | /* | 
|---|
| 2 | * Copyright 2017 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "src/gpu/ccpr/GrCCCoverageProcessor.h" | 
|---|
| 9 |  | 
|---|
| 10 | #include "src/gpu/GrOpFlushState.h" | 
|---|
| 11 | #include "src/gpu/GrOpsRenderPass.h" | 
|---|
| 12 | #include "src/gpu/GrProgramInfo.h" | 
|---|
| 13 | #include "src/gpu/ccpr/GrCCConicShader.h" | 
|---|
| 14 | #include "src/gpu/ccpr/GrCCCubicShader.h" | 
|---|
| 15 | #include "src/gpu/ccpr/GrCCQuadraticShader.h" | 
|---|
| 16 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" | 
|---|
| 17 | #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" | 
|---|
| 18 | #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" | 
|---|
| 19 |  | 
|---|
| 20 | class GrCCCoverageProcessor::TriangleShader : public GrCCCoverageProcessor::Shader { | 
|---|
| 21 | void onEmitVaryings( | 
|---|
| 22 | GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code, | 
|---|
| 23 | const char* position, const char* coverage, const char* cornerCoverage, | 
|---|
| 24 | const char* /*wind*/) override { | 
|---|
| 25 | if (!cornerCoverage) { | 
|---|
| 26 | fCoverages.reset(kHalf_GrSLType, scope); | 
|---|
| 27 | varyingHandler->addVarying( "coverage", &fCoverages); | 
|---|
| 28 | code->appendf( "%s = %s;", OutName(fCoverages), coverage); | 
|---|
| 29 | } else { | 
|---|
| 30 | fCoverages.reset(kHalf3_GrSLType, scope); | 
|---|
| 31 | varyingHandler->addVarying( "coverages", &fCoverages); | 
|---|
| 32 | code->appendf( "%s = half3(%s, %s);", OutName(fCoverages), coverage, cornerCoverage); | 
|---|
| 33 | } | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | void emitFragmentCoverageCode( | 
|---|
| 37 | GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override { | 
|---|
| 38 | if (kHalf_GrSLType == fCoverages.type()) { | 
|---|
| 39 | f->codeAppendf( "%s = %s;", outputCoverage, fCoverages.fsIn()); | 
|---|
| 40 | } else { | 
|---|
| 41 | f->codeAppendf( "%s = %s.z * %s.y + %s.x;", | 
|---|
| 42 | outputCoverage, fCoverages.fsIn(), fCoverages.fsIn(), fCoverages.fsIn()); | 
|---|
| 43 | } | 
|---|
| 44 | } | 
|---|
| 45 |  | 
|---|
| 46 | void emitSampleMaskCode(GrGLSLFPFragmentBuilder*) const override { return; } | 
|---|
| 47 |  | 
|---|
| 48 | GrGLSLVarying fCoverages; | 
|---|
| 49 | }; | 
|---|
| 50 |  | 
|---|
| 51 | void GrCCCoverageProcessor::Shader::CalcWind(const GrCCCoverageProcessor& proc, | 
|---|
| 52 | GrGLSLVertexGeoBuilder* s, const char* pts, | 
|---|
| 53 | const char* outputWind) { | 
|---|
| 54 | if (3 == proc.numInputPoints()) { | 
|---|
| 55 | s->codeAppendf( "float2 a = %s[0] - %s[1], " | 
|---|
| 56 | "b = %s[0] - %s[2];", pts, pts, pts, pts); | 
|---|
| 57 | } else { | 
|---|
| 58 | // All inputs are convex, so it's sufficient to just average the middle two input points. | 
|---|
| 59 | SkASSERT(4 == proc.numInputPoints()); | 
|---|
| 60 | s->codeAppendf( "float2 p12 = (%s[1] + %s[2]) * .5;", pts, pts); | 
|---|
| 61 | s->codeAppendf( "float2 a = %s[0] - p12, " | 
|---|
| 62 | "b = %s[0] - %s[3];", pts, pts, pts); | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 | s->codeAppend ( "float area_x2 = determinant(float2x2(a, b));"); | 
|---|
| 66 | if (proc.isTriangles()) { | 
|---|
| 67 | // We cull extremely thin triangles by zeroing wind. When a triangle gets too thin it's | 
|---|
| 68 | // possible for FP round-off error to actually give us the wrong winding direction, causing | 
|---|
| 69 | // rendering artifacts. The criteria we choose is "height <~ 1/1024". So we drop a triangle | 
|---|
| 70 | // if the max effect it can have on any single pixel is <~ 1/1024, or 1/4 of a bit in 8888. | 
|---|
| 71 | s->codeAppend ( "float2 bbox_size = max(abs(a), abs(b));"); | 
|---|
| 72 | s->codeAppend ( "float basewidth = max(bbox_size.x + bbox_size.y, 1);"); | 
|---|
| 73 | s->codeAppendf( "%s = (abs(area_x2 * 1024) > basewidth) ? sign(half(area_x2)) : 0;", | 
|---|
| 74 | outputWind); | 
|---|
| 75 | } else { | 
|---|
| 76 | // We already converted nearly-flat curves to lines on the CPU, so no need to worry about | 
|---|
| 77 | // thin curve hulls at this point. | 
|---|
| 78 | s->codeAppendf( "%s = sign(half(area_x2));", outputWind); | 
|---|
| 79 | } | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s, | 
|---|
| 83 | const char* leftPt, | 
|---|
| 84 | const char* rightPt, | 
|---|
| 85 | const char* rasterVertexDir, | 
|---|
| 86 | const char* outputCoverage) { | 
|---|
| 87 | // Here we find an edge's coverage at one corner of a conservative raster bloat box whose center | 
|---|
| 88 | // falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We | 
|---|
| 89 | // always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at | 
|---|
| 90 | // the center. Interpolated, these coverage values convert jagged conservative raster edges into | 
|---|
| 91 | // smooth antialiased edges. | 
|---|
| 92 | // | 
|---|
| 93 | // d1 == (P + sign(n) * bloat) dot n                   (Distance at the bloat box vertex whose | 
|---|
| 94 | //    == P dot n + (abs(n.x) + abs(n.y)) * bloatSize    coverage=-1, where the bloat box is | 
|---|
| 95 | //                                                      centered on P.) | 
|---|
| 96 | // | 
|---|
| 97 | // d0 == (P - sign(n) * bloat) dot n                   (Distance at the bloat box vertex whose | 
|---|
| 98 | //    == P dot n - (abs(n.x) + abs(n.y)) * bloatSize    coverage=0, where the bloat box is | 
|---|
| 99 | //                                                      centered on P.) | 
|---|
| 100 | // | 
|---|
| 101 | // d == (P + rasterVertexDir * bloatSize) dot n        (Distance at the bloat box vertex whose | 
|---|
| 102 | //   == P dot n + (rasterVertexDir dot n) * bloatSize   coverage we wish to calculate.) | 
|---|
| 103 | // | 
|---|
| 104 | // coverage == -(d - d0) / (d1 - d0)                   (coverage=-1 at d=d1; coverage=0 at d=d0) | 
|---|
| 105 | // | 
|---|
| 106 | //          == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5 | 
|---|
| 107 | // | 
|---|
| 108 | s->codeAppendf( "float2 n = float2(%s.y - %s.y, %s.x - %s.x);", | 
|---|
| 109 | rightPt, leftPt, leftPt, rightPt); | 
|---|
| 110 | s->codeAppend ( "float nwidth = abs(n.x) + abs(n.y);"); | 
|---|
| 111 | s->codeAppendf( "float t = dot(%s, n);", rasterVertexDir); | 
|---|
| 112 | // The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the | 
|---|
| 113 | // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0. | 
|---|
| 114 | s->codeAppendf( "%s = half(abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", | 
|---|
| 115 | outputCoverage); | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s, | 
|---|
| 119 | const char* leftPt, | 
|---|
| 120 | const char* rightPt, | 
|---|
| 121 | const char* bloatDir1, | 
|---|
| 122 | const char* bloatDir2, | 
|---|
| 123 | const char* outputCoverages) { | 
|---|
| 124 | // See comments in CalcEdgeCoverageAtBloatVertex. | 
|---|
| 125 | s->codeAppendf( "float2 n = float2(%s.y - %s.y, %s.x - %s.x);", | 
|---|
| 126 | rightPt, leftPt, leftPt, rightPt); | 
|---|
| 127 | s->codeAppend ( "float nwidth = abs(n.x) + abs(n.y);"); | 
|---|
| 128 | s->codeAppendf( "float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2); | 
|---|
| 129 | s->codeAppendf( "for (int i = 0; i < 2; ++i) {"); | 
|---|
| 130 | s->codeAppendf( "%s[i] = half(abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;", | 
|---|
| 131 | outputCoverages); | 
|---|
| 132 | s->codeAppendf( "}"); | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | void GrCCCoverageProcessor::Shader::CalcCornerAttenuation(GrGLSLVertexGeoBuilder* s, | 
|---|
| 136 | const char* leftDir, const char* rightDir, | 
|---|
| 137 | const char* outputAttenuation) { | 
|---|
| 138 | // obtuseness = cos(corner_angle)  if corner_angle > 90 degrees | 
|---|
| 139 | //                              0  if corner_angle <= 90 degrees | 
|---|
| 140 | // | 
|---|
| 141 | // NOTE: leftDir and rightDir are normalized and point in the same direction the path was | 
|---|
| 142 | // defined with, i.e., leftDir points into the corner and rightDir points away from the corner. | 
|---|
| 143 | s->codeAppendf( "half obtuseness = max(half(dot(%s, %s)), 0);", leftDir, rightDir); | 
|---|
| 144 |  | 
|---|
| 145 | // axis_alignedness = 1 - tan(angle_to_nearest_axis_from_corner_bisector) | 
|---|
| 146 | //                    (i.e.,  1  when the corner bisector is aligned with the x- or y-axis | 
|---|
| 147 | //                            0  when the corner bisector falls on a 45 degree angle | 
|---|
| 148 | //                         0..1  when the corner bisector falls somewhere in between | 
|---|
| 149 | s->codeAppendf( "half2 abs_bisect_maybe_transpose = abs((0 == obtuseness) ? half2(%s - %s) : " | 
|---|
| 150 | "half2(%s + %s));", | 
|---|
| 151 | leftDir, rightDir, leftDir, rightDir); | 
|---|
| 152 | s->codeAppend ( "half axis_alignedness = " | 
|---|
| 153 | "1 - min(abs_bisect_maybe_transpose.y, abs_bisect_maybe_transpose.x) / " | 
|---|
| 154 | "max(abs_bisect_maybe_transpose.x, abs_bisect_maybe_transpose.y);"); | 
|---|
| 155 |  | 
|---|
| 156 | // ninety_degreesness = sin^2(corner_angle) | 
|---|
| 157 | // sin^2 just because... it's always positive and the results looked better than plain sine... ? | 
|---|
| 158 | s->codeAppendf( "half ninety_degreesness = determinant(half2x2(%s, %s));", leftDir, rightDir); | 
|---|
| 159 | s->codeAppend ( "ninety_degreesness = ninety_degreesness * ninety_degreesness;"); | 
|---|
| 160 |  | 
|---|
| 161 | // The below formula is not smart. It was just arrived at by considering the following | 
|---|
| 162 | // observations: | 
|---|
| 163 | // | 
|---|
| 164 | // 1. 90-degree, axis-aligned corners have full attenuation along the bisector. | 
|---|
| 165 | //    (i.e. coverage = 1 - distance_to_corner^2) | 
|---|
| 166 | //    (i.e. outputAttenuation = 0) | 
|---|
| 167 | // | 
|---|
| 168 | // 2. 180-degree corners always have zero attenuation. | 
|---|
| 169 | //    (i.e. coverage = 1 - distance_to_corner) | 
|---|
| 170 | //    (i.e. outputAttenuation = 1) | 
|---|
| 171 | // | 
|---|
| 172 | // 3. 90-degree corners whose bisector falls on a 45 degree angle also do not attenuate. | 
|---|
| 173 | //    (i.e. outputAttenuation = 1) | 
|---|
| 174 | s->codeAppendf( "%s = max(obtuseness, axis_alignedness * ninety_degreesness);", | 
|---|
| 175 | outputAttenuation); | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const { | 
|---|
| 179 | std::unique_ptr<Shader> shader; | 
|---|
| 180 | switch (fPrimitiveType) { | 
|---|
| 181 | case PrimitiveType::kTriangles: | 
|---|
| 182 | case PrimitiveType::kWeightedTriangles: | 
|---|
| 183 | shader = std::make_unique<TriangleShader>(); | 
|---|
| 184 | break; | 
|---|
| 185 | case PrimitiveType::kQuadratics: | 
|---|
| 186 | shader = std::make_unique<GrCCQuadraticShader>(); | 
|---|
| 187 | break; | 
|---|
| 188 | case PrimitiveType::kCubics: | 
|---|
| 189 | shader = std::make_unique<GrCCCubicShader>(); | 
|---|
| 190 | break; | 
|---|
| 191 | case PrimitiveType::kConics: | 
|---|
| 192 | shader = std::make_unique<GrCCConicShader>(); | 
|---|
| 193 | break; | 
|---|
| 194 | } | 
|---|
| 195 | return this->onCreateGLSLInstance(std::move(shader)); | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | void GrCCCoverageProcessor::bindPipeline(GrOpFlushState* flushState, const GrPipeline& pipeline, | 
|---|
| 199 | const SkRect& drawBounds) const { | 
|---|
| 200 | GrProgramInfo programInfo(flushState->proxy()->numSamples(), | 
|---|
| 201 | flushState->proxy()->numStencilSamples(), | 
|---|
| 202 | flushState->proxy()->backendFormat(), | 
|---|
| 203 | flushState->writeView()->origin(), &pipeline, this, | 
|---|
| 204 | this->primType()); | 
|---|
| 205 | flushState->bindPipeline(programInfo, drawBounds); | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|