1 | /* |
2 | * Copyright 2019 Google LLC. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/tessellate/GrTessellationPathRenderer.h" |
9 | |
10 | #include "include/pathops/SkPathOps.h" |
11 | #include "src/core/SkIPoint16.h" |
12 | #include "src/core/SkPathPriv.h" |
13 | #include "src/gpu/GrClip.h" |
14 | #include "src/gpu/GrMemoryPool.h" |
15 | #include "src/gpu/GrRecordingContextPriv.h" |
16 | #include "src/gpu/GrRenderTargetContext.h" |
17 | #include "src/gpu/GrSurfaceContextPriv.h" |
18 | #include "src/gpu/geometry/GrStyledShape.h" |
19 | #include "src/gpu/ops/GrFillRectOp.h" |
20 | #include "src/gpu/tessellate/GrDrawAtlasPathOp.h" |
21 | #include "src/gpu/tessellate/GrPathTessellateOp.h" |
22 | #include "src/gpu/tessellate/GrStrokeTessellateOp.h" |
23 | #include "src/gpu/tessellate/GrWangsFormula.h" |
24 | |
25 | constexpr static SkISize kAtlasInitialSize{512, 512}; |
26 | constexpr static int kMaxAtlasSize = 2048; |
27 | |
28 | constexpr static auto kAtlasAlpha8Type = GrColorType::kAlpha_8; |
29 | |
30 | // The atlas is only used for small-area paths, which means at least one dimension of every path is |
31 | // guaranteed to be quite small. So if we transpose tall paths, then every path will have a small |
32 | // height, which lends very well to efficient pow2 atlas packing. |
33 | constexpr static auto kAtlasAlgorithm = GrDynamicAtlas::RectanizerAlgorithm::kPow2; |
34 | |
35 | // Ensure every path in the atlas falls in or below the 128px high rectanizer band. |
36 | constexpr static int kMaxAtlasPathHeight = 128; |
37 | |
38 | bool GrTessellationPathRenderer::IsSupported(const GrCaps& caps) { |
39 | return caps.drawInstancedSupport() && caps.shaderCaps()->vertexIDSupport(); |
40 | } |
41 | |
42 | GrTessellationPathRenderer::GrTessellationPathRenderer(const GrCaps& caps) |
43 | : fAtlas(kAtlasAlpha8Type, GrDynamicAtlas::InternalMultisample::kYes, kAtlasInitialSize, |
44 | std::min(kMaxAtlasSize, caps.maxPreferredRenderTargetSize()), |
45 | caps, kAtlasAlgorithm) { |
46 | this->initAtlasFlags(caps); |
47 | } |
48 | |
49 | void GrTessellationPathRenderer::initAtlasFlags(const GrCaps& caps) { |
50 | fStencilAtlasFlags = OpFlags::kStencilOnly | OpFlags::kDisableHWTessellation; |
51 | fMaxAtlasPathWidth = fAtlas.maxAtlasSize() / 2; |
52 | |
53 | auto atlasFormat = caps.getDefaultBackendFormat(kAtlasAlpha8Type, GrRenderable::kYes); |
54 | if (caps.internalMultisampleCount(atlasFormat) <= 1) { |
55 | // MSAA is not supported on kAlpha8. Disable the atlas. |
56 | fMaxAtlasPathWidth = 0; |
57 | return; |
58 | } |
59 | |
60 | // The atlas usually does better with hardware tessellation. If hardware tessellation is |
61 | // supported, we will next choose a max atlas path width that is guaranteed to never require |
62 | // more tessellation segments than are supported by the hardware. |
63 | if (!caps.shaderCaps()->tessellationSupport()) { |
64 | return; |
65 | } |
66 | |
67 | // Since we limit the area of paths in the atlas to kMaxAtlasPathHeight^2, taller paths can't |
68 | // get very wide anyway. Find the tallest path whose width is limited by |
69 | // GrWangsFormula::worst_case_cubic() rather than the max area constraint, and use that for our |
70 | // max atlas path width. |
71 | // |
72 | // Solve the following equation for w: |
73 | // |
74 | // GrWangsFormula::worst_case_cubic(kLinearizationIntolerance, w, kMaxAtlasPathHeight^2 / w) |
75 | // == maxTessellationSegments |
76 | // |
77 | float k = GrWangsFormula::cubic_k(kLinearizationIntolerance); |
78 | float h = kMaxAtlasPathHeight; |
79 | float s = caps.shaderCaps()->maxTessellationSegments(); |
80 | // Quadratic formula from Numerical Recipes in C: |
81 | // |
82 | // q = -1/2 [b + sign(b) sqrt(b*b - 4*a*c)] |
83 | // x1 = q/a |
84 | // x2 = c/q |
85 | // |
86 | // float a = 1; // 'a' is always 1 in our specific equation. |
87 | float b = -s*s*s*s / (4*k*k); // Always negative. |
88 | float c = h*h*h*h; // Always positive. |
89 | float det = b*b - 4*1*c; |
90 | if (det <= 0) { |
91 | // maxTessellationSegments is too small for any path whose area == kMaxAtlasPathHeight^2. |
92 | // (This is unexpected because the GL spec mandates a minimum of 64 segments.) |
93 | SkDebugf("WARNING: maxTessellationSegments seems too low. (%i)\n" , |
94 | caps.shaderCaps()->maxTessellationSegments()); |
95 | return; |
96 | } |
97 | float q = -.5f * (b - std::sqrt(det)); // Always positive. |
98 | // The two roots represent the width^2 and height^2 of the tallest rectangle that is limited by |
99 | // GrWangsFormula::worst_case_cubic(). |
100 | float r0 = q; // Always positive. |
101 | float r1 = c/q; // Always positive. |
102 | float worstCaseWidth = std::sqrt(std::max(r0, r1)); |
103 | #ifdef SK_DEBUG |
104 | float worstCaseHeight = std::sqrt(std::min(r0, r1)); |
105 | // Verify the above equation worked as expected. It should have found a width and height whose |
106 | // area == kMaxAtlasPathHeight^2. |
107 | SkASSERT(SkScalarNearlyEqual(worstCaseHeight * worstCaseWidth, h*h, 1)); |
108 | // Verify GrWangsFormula::worst_case_cubic() still works as we expect. The worst case number of |
109 | // segments for this bounding box should be maxTessellationSegments. |
110 | SkASSERT(SkScalarNearlyEqual(GrWangsFormula::worst_case_cubic( |
111 | kLinearizationIntolerance, worstCaseWidth, worstCaseHeight), s, 1)); |
112 | #endif |
113 | fStencilAtlasFlags &= ~OpFlags::kDisableHWTessellation; |
114 | fMaxAtlasPathWidth = std::min(fMaxAtlasPathWidth, (int)worstCaseWidth); |
115 | } |
116 | |
117 | GrPathRenderer::CanDrawPath GrTessellationPathRenderer::onCanDrawPath( |
118 | const CanDrawPathArgs& args) const { |
119 | const GrStyledShape& shape = *args.fShape; |
120 | if (shape.inverseFilled() || shape.style().hasPathEffect() || |
121 | args.fViewMatrix->hasPerspective()) { |
122 | return CanDrawPath::kNo; |
123 | } |
124 | |
125 | if (GrAAType::kCoverage == args.fAAType) { |
126 | SkASSERT(1 == args.fProxy->numSamples()); |
127 | if (!args.fProxy->canUseMixedSamples(*args.fCaps)) { |
128 | return CanDrawPath::kNo; |
129 | } |
130 | } |
131 | |
132 | SkPath path; |
133 | shape.asPath(&path); |
134 | if (SkPathPriv::ConicWeightCnt(path)) { |
135 | return CanDrawPath::kNo; |
136 | } |
137 | |
138 | if (!shape.style().isSimpleFill()) { |
139 | SkPMColor4f constantColor; |
140 | // These are only temporary restrictions while we bootstrap tessellated stroking. Every one |
141 | // of them will eventually go away. |
142 | if (shape.style().strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style || |
143 | !args.fCaps->shaderCaps()->tessellationSupport() || |
144 | GrAAType::kCoverage == args.fAAType || |
145 | !args.fPaint->isConstantBlendedColor(&constantColor) || |
146 | args.fPaint->hasCoverageFragmentProcessor()) { |
147 | return CanDrawPath::kNo; |
148 | } |
149 | } |
150 | |
151 | return CanDrawPath::kYes; |
152 | } |
153 | |
154 | bool GrTessellationPathRenderer::onDrawPath(const DrawPathArgs& args) { |
155 | GrRenderTargetContext* renderTargetContext = args.fRenderTargetContext; |
156 | GrOpMemoryPool* pool = args.fContext->priv().opMemoryPool(); |
157 | const GrShaderCaps& shaderCaps = *args.fContext->priv().caps()->shaderCaps(); |
158 | |
159 | SkPath path; |
160 | args.fShape->asPath(&path); |
161 | |
162 | SkRect devBounds; |
163 | args.fViewMatrix->mapRect(&devBounds, path.getBounds()); |
164 | |
165 | // See if the path is small and simple enough to atlas instead of drawing directly. |
166 | // |
167 | // NOTE: The atlas uses alpha8 coverage even for msaa render targets. We could theoretically |
168 | // render the sample mask to an integer texture, but such a scheme would probably require |
169 | // GL_EXT_post_depth_coverage, which appears to have low adoption. |
170 | SkIRect devIBounds; |
171 | SkIPoint16 locationInAtlas; |
172 | bool transposedInAtlas; |
173 | if (args.fShape->style().isSimpleFill() && |
174 | this->tryAddPathToAtlas(*args.fContext->priv().caps(), *args.fViewMatrix, path, devBounds, |
175 | args.fAAType, &devIBounds, &locationInAtlas, &transposedInAtlas)) { |
176 | #ifdef SK_DEBUG |
177 | // If using hardware tessellation in the atlas, make sure the max number of segments is |
178 | // sufficient for this path. fMaxAtlasPathWidth should have been tuned for this to always be |
179 | // the case. |
180 | if (!(fStencilAtlasFlags & OpFlags::kDisableHWTessellation)) { |
181 | int worstCaseNumSegments = GrWangsFormula::worst_case_cubic(kLinearizationIntolerance, |
182 | devIBounds.width(), |
183 | devIBounds.height()); |
184 | SkASSERT(worstCaseNumSegments <= shaderCaps.maxTessellationSegments()); |
185 | } |
186 | #endif |
187 | auto op = pool->allocate<GrDrawAtlasPathOp>( |
188 | renderTargetContext->numSamples(), sk_ref_sp(fAtlas.textureProxy()), |
189 | devIBounds, locationInAtlas, transposedInAtlas, *args.fViewMatrix, |
190 | std::move(args.fPaint)); |
191 | renderTargetContext->addDrawOp(args.fClip, std::move(op)); |
192 | return true; |
193 | } |
194 | |
195 | // Find the worst-case log2 number of line segments that a curve in this path might need to be |
196 | // divided into. |
197 | int worstCaseResolveLevel = GrWangsFormula::worst_case_cubic_log2(kLinearizationIntolerance, |
198 | devBounds.width(), |
199 | devBounds.height()); |
200 | if (worstCaseResolveLevel > kMaxResolveLevel) { |
201 | // The path is too large for our internal indirect draw shaders. Crop it to the viewport. |
202 | auto viewport = SkRect::MakeIWH(renderTargetContext->width(), |
203 | renderTargetContext->height()); |
204 | float inflationRadius = 1; |
205 | const SkStrokeRec& stroke = args.fShape->style().strokeRec(); |
206 | if (stroke.getStyle() == SkStrokeRec::kHairline_Style) { |
207 | inflationRadius += SkStrokeRec::GetInflationRadius(stroke.getJoin(), stroke.getMiter(), |
208 | stroke.getCap(), 1); |
209 | } else if (stroke.getStyle() != SkStrokeRec::kFill_Style) { |
210 | inflationRadius += stroke.getInflationRadius() * args.fViewMatrix->getMaxScale(); |
211 | } |
212 | viewport.outset(inflationRadius, inflationRadius); |
213 | |
214 | SkPath viewportPath; |
215 | viewportPath.addRect(viewport); |
216 | // Perform the crop in device space so it's a simple rect-path intersection. |
217 | path.transform(*args.fViewMatrix); |
218 | if (!Op(viewportPath, path, kIntersect_SkPathOp, &path)) { |
219 | // The crop can fail if the PathOps encounter NaN or infinities. Return true |
220 | // because drawing nothing is acceptable behavior for FP overflow. |
221 | return true; |
222 | } |
223 | |
224 | // Transform the path back to its own local space. |
225 | SkMatrix inverse; |
226 | if (!args.fViewMatrix->invert(&inverse)) { |
227 | return true; // Singular view matrix. Nothing would have drawn anyway. Return true. |
228 | } |
229 | path.transform(inverse); |
230 | path.setIsVolatile(true); |
231 | args.fViewMatrix->mapRect(&devBounds, path.getBounds()); |
232 | worstCaseResolveLevel = GrWangsFormula::worst_case_cubic_log2(kLinearizationIntolerance, |
233 | devBounds.width(), |
234 | devBounds.height()); |
235 | // kMaxResolveLevel should be large enough to tessellate paths the size of any screen we |
236 | // might encounter. |
237 | SkASSERT(worstCaseResolveLevel <= kMaxResolveLevel); |
238 | } |
239 | |
240 | if (args.fShape->style().isSimpleHairline()) { |
241 | // Pre-transform the path into device space and use a stroke width of 1. |
242 | #ifdef SK_DEBUG |
243 | // Since we will be transforming the path, just double check that we are still in a position |
244 | // where the paint will not use local coordinates. |
245 | SkPMColor4f constantColor; |
246 | SkASSERT(args.fPaint.isConstantBlendedColor(&constantColor)); |
247 | #endif |
248 | SkPath devPath; |
249 | path.transform(*args.fViewMatrix, &devPath); |
250 | SkStrokeRec devStroke = args.fShape->style().strokeRec(); |
251 | devStroke.setStrokeStyle(1); |
252 | auto op = pool->allocate<GrStrokeTessellateOp>(args.fAAType, SkMatrix::I(), devPath, |
253 | devStroke, std::move(args.fPaint)); |
254 | renderTargetContext->addDrawOp(args.fClip, std::move(op)); |
255 | return true; |
256 | } |
257 | |
258 | if (!args.fShape->style().isSimpleFill()) { |
259 | const SkStrokeRec& stroke = args.fShape->style().strokeRec(); |
260 | SkASSERT(stroke.getStyle() == SkStrokeRec::kStroke_Style); |
261 | auto op = pool->allocate<GrStrokeTessellateOp>(args.fAAType, *args.fViewMatrix, path, |
262 | stroke, std::move(args.fPaint)); |
263 | renderTargetContext->addDrawOp(args.fClip, std::move(op)); |
264 | return true; |
265 | } |
266 | |
267 | auto drawPathFlags = OpFlags::kNone; |
268 | if ((1 << worstCaseResolveLevel) > shaderCaps.maxTessellationSegments()) { |
269 | // The path is too large for hardware tessellation; a curve in this bounding box could |
270 | // potentially require more segments than are supported by the hardware. Fall back on |
271 | // indirect draws. |
272 | drawPathFlags |= OpFlags::kDisableHWTessellation; |
273 | } |
274 | |
275 | auto op = pool->allocate<GrPathTessellateOp>(*args.fViewMatrix, path, std::move(args.fPaint), |
276 | args.fAAType, drawPathFlags); |
277 | renderTargetContext->addDrawOp(args.fClip, std::move(op)); |
278 | return true; |
279 | } |
280 | |
281 | bool GrTessellationPathRenderer::tryAddPathToAtlas( |
282 | const GrCaps& caps, const SkMatrix& viewMatrix, const SkPath& path, const SkRect& devBounds, |
283 | GrAAType aaType, SkIRect* devIBounds, SkIPoint16* locationInAtlas, |
284 | bool* transposedInAtlas) { |
285 | if (!fMaxAtlasPathWidth) { |
286 | return false; |
287 | } |
288 | |
289 | if (!caps.multisampleDisableSupport() && GrAAType::kNone == aaType) { |
290 | return false; |
291 | } |
292 | |
293 | // Atlas paths require their points to be transformed on the CPU and copied into an "uber path". |
294 | // Check if this path has too many points to justify this extra work. |
295 | if (path.countPoints() > 200) { |
296 | return false; |
297 | } |
298 | |
299 | // Transpose tall paths in the atlas. Since we limit ourselves to small-area paths, this |
300 | // guarantees that every atlas entry has a small height, which lends very well to efficient pow2 |
301 | // atlas packing. |
302 | devBounds.roundOut(devIBounds); |
303 | int maxDimenstion = devIBounds->width(); |
304 | int minDimension = devIBounds->height(); |
305 | *transposedInAtlas = minDimension > maxDimenstion; |
306 | if (*transposedInAtlas) { |
307 | std::swap(minDimension, maxDimenstion); |
308 | } |
309 | |
310 | // Check if the path is too large for an atlas. Since we use "minDimension" for height in the |
311 | // atlas, limiting to kMaxAtlasPathHeight^2 pixels guarantees height <= kMaxAtlasPathHeight. |
312 | if (maxDimenstion * minDimension > kMaxAtlasPathHeight * kMaxAtlasPathHeight || |
313 | maxDimenstion > fMaxAtlasPathWidth) { |
314 | return false; |
315 | } |
316 | |
317 | if (!fAtlas.addRect(maxDimenstion, minDimension, locationInAtlas)) { |
318 | return false; |
319 | } |
320 | |
321 | SkMatrix atlasMatrix = viewMatrix; |
322 | if (*transposedInAtlas) { |
323 | std::swap(atlasMatrix[0], atlasMatrix[3]); |
324 | std::swap(atlasMatrix[1], atlasMatrix[4]); |
325 | float tx=atlasMatrix.getTranslateX(), ty=atlasMatrix.getTranslateY(); |
326 | atlasMatrix.setTranslateX(ty - devIBounds->y() + locationInAtlas->x()); |
327 | atlasMatrix.setTranslateY(tx - devIBounds->x() + locationInAtlas->y()); |
328 | } else { |
329 | atlasMatrix.postTranslate(locationInAtlas->x() - devIBounds->x(), |
330 | locationInAtlas->y() - devIBounds->y()); |
331 | } |
332 | |
333 | // Concatenate this path onto our uber path that matches its fill and AA types. |
334 | SkPath* uberPath = this->getAtlasUberPath(path.getFillType(), GrAAType::kNone != aaType); |
335 | uberPath->moveTo(locationInAtlas->x(), locationInAtlas->y()); // Implicit moveTo(0,0). |
336 | uberPath->addPath(path, atlasMatrix); |
337 | return true; |
338 | } |
339 | |
340 | void GrTessellationPathRenderer::onStencilPath(const StencilPathArgs& args) { |
341 | SkPath path; |
342 | args.fShape->asPath(&path); |
343 | |
344 | GrAAType aaType = (GrAA::kYes == args.fDoStencilMSAA) ? GrAAType::kMSAA : GrAAType::kNone; |
345 | |
346 | auto op = args.fContext->priv().opMemoryPool()->allocate<GrPathTessellateOp>( |
347 | *args.fViewMatrix, path, GrPaint(), aaType, OpFlags::kStencilOnly); |
348 | args.fRenderTargetContext->addDrawOp(args.fClip, std::move(op)); |
349 | } |
350 | |
351 | void GrTessellationPathRenderer::preFlush(GrOnFlushResourceProvider* onFlushRP, |
352 | const uint32_t* opsTaskIDs, int numOpsTaskIDs) { |
353 | if (!fAtlas.drawBounds().isEmpty()) { |
354 | this->renderAtlas(onFlushRP); |
355 | fAtlas.reset(kAtlasInitialSize, *onFlushRP->caps()); |
356 | } |
357 | for (SkPath& path : fAtlasUberPaths) { |
358 | path.reset(); |
359 | } |
360 | } |
361 | |
362 | constexpr static GrUserStencilSettings kTestStencil( |
363 | GrUserStencilSettings::StaticInit< |
364 | 0x0000, |
365 | GrUserStencilTest::kNotEqual, |
366 | 0xffff, |
367 | GrUserStencilOp::kKeep, |
368 | GrUserStencilOp::kKeep, |
369 | 0xffff>()); |
370 | |
371 | constexpr static GrUserStencilSettings kTestAndResetStencil( |
372 | GrUserStencilSettings::StaticInit< |
373 | 0x0000, |
374 | GrUserStencilTest::kNotEqual, |
375 | 0xffff, |
376 | GrUserStencilOp::kZero, |
377 | GrUserStencilOp::kKeep, |
378 | 0xffff>()); |
379 | |
380 | void GrTessellationPathRenderer::renderAtlas(GrOnFlushResourceProvider* onFlushRP) { |
381 | auto rtc = fAtlas.instantiate(onFlushRP); |
382 | if (!rtc) { |
383 | return; |
384 | } |
385 | |
386 | // Add ops to stencil the atlas paths. |
387 | for (auto antialias : {false, true}) { |
388 | for (auto fillType : {SkPathFillType::kWinding, SkPathFillType::kEvenOdd}) { |
389 | SkPath* uberPath = this->getAtlasUberPath(fillType, antialias); |
390 | if (uberPath->isEmpty()) { |
391 | continue; |
392 | } |
393 | uberPath->setFillType(fillType); |
394 | GrAAType aaType = (antialias) ? GrAAType::kMSAA : GrAAType::kNone; |
395 | auto op = onFlushRP->opMemoryPool()->allocate<GrPathTessellateOp>( |
396 | SkMatrix::I(), *uberPath, GrPaint(), aaType, fStencilAtlasFlags); |
397 | rtc->addDrawOp(nullptr, std::move(op)); |
398 | } |
399 | } |
400 | |
401 | // Finally, draw a fullscreen rect to convert our stencilled paths into alpha coverage masks. |
402 | auto aaType = GrAAType::kMSAA; |
403 | auto fillRectFlags = GrFillRectOp::InputFlags::kNone; |
404 | |
405 | // This will be the final op in the renderTargetContext. So if Ganesh is planning to discard the |
406 | // stencil values anyway, then we might not actually need to reset the stencil values back to 0. |
407 | bool mustResetStencil = !onFlushRP->caps()->discardStencilValuesAfterRenderPass(); |
408 | |
409 | if (rtc->numSamples() == 1) { |
410 | // We are mixed sampled. We need to either enable conservative raster (preferred) or disable |
411 | // MSAA in order to avoid double blend artifacts. (Even if we disable MSAA for the cover |
412 | // geometry, the stencil test is still multisampled and will still produce smooth results.) |
413 | if (onFlushRP->caps()->conservativeRasterSupport()) { |
414 | fillRectFlags |= GrFillRectOp::InputFlags::kConservativeRaster; |
415 | } else { |
416 | aaType = GrAAType::kNone; |
417 | } |
418 | mustResetStencil = true; |
419 | } |
420 | |
421 | SkRect coverRect = SkRect::MakeIWH(fAtlas.drawBounds().width(), fAtlas.drawBounds().height()); |
422 | const GrUserStencilSettings* stencil; |
423 | if (mustResetStencil) { |
424 | // Outset the cover rect in case there are T-junctions in the path bounds. |
425 | coverRect.outset(1, 1); |
426 | stencil = &kTestAndResetStencil; |
427 | } else { |
428 | stencil = &kTestStencil; |
429 | } |
430 | |
431 | GrQuad coverQuad(coverRect); |
432 | DrawQuad drawQuad{coverQuad, coverQuad, GrQuadAAFlags::kAll}; |
433 | |
434 | GrPaint paint; |
435 | paint.setColor4f(SK_PMColor4fWHITE); |
436 | |
437 | auto coverOp = GrFillRectOp::Make(rtc->surfPriv().getContext(), std::move(paint), aaType, |
438 | &drawQuad, stencil, fillRectFlags); |
439 | rtc->addDrawOp(nullptr, std::move(coverOp)); |
440 | |
441 | if (rtc->asSurfaceProxy()->requiresManualMSAAResolve()) { |
442 | onFlushRP->addTextureResolveTask(sk_ref_sp(rtc->asTextureProxy()), |
443 | GrSurfaceProxy::ResolveFlags::kMSAA); |
444 | } |
445 | } |
446 | |