1 | /**************************************************************************/ |
2 | /* godot_body_pair_2d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "godot_body_pair_2d.h" |
32 | |
33 | #include "godot_collision_solver_2d.h" |
34 | #include "godot_space_2d.h" |
35 | |
36 | #define ACCUMULATE_IMPULSES |
37 | |
38 | #define MIN_VELOCITY 0.001 |
39 | #define MAX_BIAS_ROTATION (Math_PI / 8) |
40 | |
41 | void GodotBodyPair2D::_add_contact(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_self) { |
42 | GodotBodyPair2D *self = static_cast<GodotBodyPair2D *>(p_self); |
43 | |
44 | self->_contact_added_callback(p_point_A, p_point_B); |
45 | } |
46 | |
47 | void GodotBodyPair2D::_contact_added_callback(const Vector2 &p_point_A, const Vector2 &p_point_B) { |
48 | Vector2 local_A = A->get_inv_transform().basis_xform(p_point_A); |
49 | Vector2 local_B = B->get_inv_transform().basis_xform(p_point_B - offset_B); |
50 | |
51 | int new_index = contact_count; |
52 | |
53 | ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1)); |
54 | |
55 | Contact contact; |
56 | contact.local_A = local_A; |
57 | contact.local_B = local_B; |
58 | contact.normal = (p_point_A - p_point_B).normalized(); |
59 | contact.used = true; |
60 | |
61 | // Attempt to determine if the contact will be reused. |
62 | real_t recycle_radius_2 = space->get_contact_recycle_radius() * space->get_contact_recycle_radius(); |
63 | |
64 | for (int i = 0; i < contact_count; i++) { |
65 | Contact &c = contacts[i]; |
66 | if (c.local_A.distance_squared_to(local_A) < (recycle_radius_2) && |
67 | c.local_B.distance_squared_to(local_B) < (recycle_radius_2)) { |
68 | contact.acc_normal_impulse = c.acc_normal_impulse; |
69 | contact.acc_tangent_impulse = c.acc_tangent_impulse; |
70 | contact.acc_bias_impulse = c.acc_bias_impulse; |
71 | contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; |
72 | c = contact; |
73 | return; |
74 | } |
75 | } |
76 | |
77 | // Figure out if the contact amount must be reduced to fit the new contact. |
78 | if (new_index == MAX_CONTACTS) { |
79 | // Remove the contact with the minimum depth. |
80 | |
81 | const Transform2D &transform_A = A->get_transform(); |
82 | const Transform2D &transform_B = B->get_transform(); |
83 | |
84 | int least_deep = -1; |
85 | real_t min_depth; |
86 | |
87 | // Start with depth for new contact. |
88 | { |
89 | Vector2 global_A = transform_A.basis_xform(contact.local_A); |
90 | Vector2 global_B = transform_B.basis_xform(contact.local_B) + offset_B; |
91 | |
92 | Vector2 axis = global_A - global_B; |
93 | min_depth = axis.dot(contact.normal); |
94 | } |
95 | |
96 | for (int i = 0; i < contact_count; i++) { |
97 | const Contact &c = contacts[i]; |
98 | Vector2 global_A = transform_A.basis_xform(c.local_A); |
99 | Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B; |
100 | |
101 | Vector2 axis = global_A - global_B; |
102 | real_t depth = axis.dot(c.normal); |
103 | |
104 | if (depth < min_depth) { |
105 | min_depth = depth; |
106 | least_deep = i; |
107 | } |
108 | } |
109 | |
110 | if (least_deep > -1) { |
111 | // Replace the least deep contact by the new one. |
112 | contacts[least_deep] = contact; |
113 | } |
114 | |
115 | return; |
116 | } |
117 | |
118 | contacts[new_index] = contact; |
119 | contact_count++; |
120 | } |
121 | |
122 | void GodotBodyPair2D::_validate_contacts() { |
123 | // Make sure to erase contacts that are no longer valid. |
124 | real_t max_separation = space->get_contact_max_separation(); |
125 | real_t max_separation2 = max_separation * max_separation; |
126 | |
127 | const Transform2D &transform_A = A->get_transform(); |
128 | const Transform2D &transform_B = B->get_transform(); |
129 | |
130 | for (int i = 0; i < contact_count; i++) { |
131 | Contact &c = contacts[i]; |
132 | |
133 | bool erase = false; |
134 | if (!c.used) { |
135 | // Was left behind in previous frame. |
136 | erase = true; |
137 | } else { |
138 | c.used = false; |
139 | |
140 | Vector2 global_A = transform_A.basis_xform(c.local_A); |
141 | Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B; |
142 | Vector2 axis = global_A - global_B; |
143 | real_t depth = axis.dot(c.normal); |
144 | |
145 | if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { |
146 | erase = true; |
147 | } |
148 | } |
149 | |
150 | if (erase) { |
151 | // Contact no longer needed, remove. |
152 | |
153 | if ((i + 1) < contact_count) { |
154 | // Swap with the last one. |
155 | SWAP(contacts[i], contacts[contact_count - 1]); |
156 | } |
157 | |
158 | i--; |
159 | contact_count--; |
160 | } |
161 | } |
162 | } |
163 | |
164 | // _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap) |
165 | // Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce! |
166 | // Process: only proceed if body A's motion is high relative to its size. |
167 | // cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does. |
168 | // adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it. |
169 | bool GodotBodyPair2D::_test_ccd(real_t p_step, GodotBody2D *p_A, int p_shape_A, const Transform2D &p_xform_A, GodotBody2D *p_B, int p_shape_B, const Transform2D &p_xform_B) { |
170 | Vector2 motion = p_A->get_linear_velocity() * p_step; |
171 | real_t mlen = motion.length(); |
172 | if (mlen < CMP_EPSILON) { |
173 | return false; |
174 | } |
175 | |
176 | Vector2 mnormal = motion / mlen; |
177 | |
178 | real_t min = 0.0, max = 0.0; |
179 | p_A->get_shape(p_shape_A)->project_rangev(mnormal, p_xform_A, min, max); |
180 | |
181 | // Did it move enough in this direction to even attempt raycast? |
182 | // Let's say it should move more than 1/3 the size of the object in that axis. |
183 | bool fast_object = mlen > (max - min) * 0.3; |
184 | if (!fast_object) { |
185 | return false; |
186 | } |
187 | |
188 | // A is moving fast enough that tunneling might occur. See if it's really about to collide. |
189 | |
190 | // Roughly predict body B's position in the next frame (ignoring collisions). |
191 | Transform2D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step); |
192 | |
193 | // Cast a segment from support in motion normal, in the same direction of motion by motion length. |
194 | // Support point will the farthest forward collision point along the movement vector. |
195 | // i.e. the point that should hit B first if any collision does occur. |
196 | |
197 | // convert mnormal into body A's local xform because get_support requires (and returns) local coordinates. |
198 | int a; |
199 | Vector2 s[2]; |
200 | p_A->get_shape(p_shape_A)->get_supports(p_xform_A.basis_xform_inv(mnormal).normalized(), s, a); |
201 | Vector2 from = p_xform_A.xform(s[0]); |
202 | // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast. |
203 | // This should ensure the calculated new velocity will really cause a bit of overlap instead of just getting us very close. |
204 | Vector2 to = from + motion; |
205 | |
206 | Transform2D from_inv = predicted_xform_B.affine_inverse(); |
207 | |
208 | // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast. |
209 | // At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. But it still works out. |
210 | Vector2 local_from = from_inv.xform(from - motion * 0.1); |
211 | Vector2 local_to = from_inv.xform(to); |
212 | |
213 | Vector2 rpos, rnorm; |
214 | if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) { |
215 | // there was no hit. Since the segment is the length of per-frame motion, this means the bodies will not |
216 | // actually collide yet on next frame. We'll probably check again next frame once they're closer. |
217 | return false; |
218 | } |
219 | |
220 | // Check one-way collision based on motion direction. |
221 | if (p_A->get_shape(p_shape_A)->allows_one_way_collision() && p_B->is_shape_set_as_one_way_collision(p_shape_B)) { |
222 | Vector2 direction = predicted_xform_B.columns[1].normalized(); |
223 | if (direction.dot(mnormal) < CMP_EPSILON) { |
224 | collided = false; |
225 | oneway_disabled = true; |
226 | return false; |
227 | } |
228 | } |
229 | |
230 | // Shorten the linear velocity so it does not hit, but gets close enough, |
231 | // next frame will hit softly or soft enough. |
232 | Vector2 hitpos = predicted_xform_B.xform(rpos); |
233 | |
234 | real_t newlen = hitpos.distance_to(from) + (max - min) * 0.01; // adding 1% of body length to the distance between collision and support point should cause body A's support point to arrive just within B's collider next frame. |
235 | p_A->set_linear_velocity(mnormal * (newlen / p_step)); |
236 | |
237 | return true; |
238 | } |
239 | |
240 | real_t combine_bounce(GodotBody2D *A, GodotBody2D *B) { |
241 | return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1); |
242 | } |
243 | |
244 | real_t combine_friction(GodotBody2D *A, GodotBody2D *B) { |
245 | return ABS(MIN(A->get_friction(), B->get_friction())); |
246 | } |
247 | |
248 | bool GodotBodyPair2D::setup(real_t p_step) { |
249 | check_ccd = false; |
250 | |
251 | if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) { |
252 | collided = false; |
253 | return false; |
254 | } |
255 | |
256 | collide_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && A->collides_with(B); |
257 | collide_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && B->collides_with(A); |
258 | |
259 | report_contacts_only = false; |
260 | if (!collide_A && !collide_B) { |
261 | if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) { |
262 | report_contacts_only = true; |
263 | } else { |
264 | collided = false; |
265 | return false; |
266 | } |
267 | } |
268 | |
269 | //use local A coordinates to avoid numerical issues on collision detection |
270 | offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); |
271 | |
272 | _validate_contacts(); |
273 | |
274 | const Vector2 &offset_A = A->get_transform().get_origin(); |
275 | Transform2D xform_Au = A->get_transform().untranslated(); |
276 | Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A); |
277 | |
278 | Transform2D xform_Bu = B->get_transform(); |
279 | xform_Bu.columns[2] -= offset_A; |
280 | Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B); |
281 | |
282 | GodotShape2D *shape_A_ptr = A->get_shape(shape_A); |
283 | GodotShape2D *shape_B_ptr = B->get_shape(shape_B); |
284 | |
285 | Vector2 motion_A, motion_B; |
286 | |
287 | if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) { |
288 | motion_A = A->get_motion(); |
289 | } |
290 | if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) { |
291 | motion_B = B->get_motion(); |
292 | } |
293 | |
294 | bool prev_collided = collided; |
295 | |
296 | collided = GodotCollisionSolver2D::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis); |
297 | if (!collided) { |
298 | oneway_disabled = false; |
299 | |
300 | if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) { |
301 | check_ccd = true; |
302 | return true; |
303 | } |
304 | |
305 | if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) { |
306 | check_ccd = true; |
307 | return true; |
308 | } |
309 | |
310 | return false; |
311 | } |
312 | |
313 | if (oneway_disabled) { |
314 | return false; |
315 | } |
316 | |
317 | if (!prev_collided) { |
318 | if (shape_B_ptr->allows_one_way_collision() && A->is_shape_set_as_one_way_collision(shape_A)) { |
319 | Vector2 direction = xform_A.columns[1].normalized(); |
320 | bool valid = false; |
321 | for (int i = 0; i < contact_count; i++) { |
322 | Contact &c = contacts[i]; |
323 | if (c.normal.dot(direction) > -CMP_EPSILON) { // Greater (normal inverted). |
324 | continue; |
325 | } |
326 | valid = true; |
327 | break; |
328 | } |
329 | if (!valid) { |
330 | collided = false; |
331 | oneway_disabled = true; |
332 | return false; |
333 | } |
334 | } |
335 | |
336 | if (shape_A_ptr->allows_one_way_collision() && B->is_shape_set_as_one_way_collision(shape_B)) { |
337 | Vector2 direction = xform_B.columns[1].normalized(); |
338 | bool valid = false; |
339 | for (int i = 0; i < contact_count; i++) { |
340 | Contact &c = contacts[i]; |
341 | if (c.normal.dot(direction) < CMP_EPSILON) { // Less (normal ok). |
342 | continue; |
343 | } |
344 | valid = true; |
345 | break; |
346 | } |
347 | if (!valid) { |
348 | collided = false; |
349 | oneway_disabled = true; |
350 | return false; |
351 | } |
352 | } |
353 | } |
354 | |
355 | return true; |
356 | } |
357 | |
358 | bool GodotBodyPair2D::pre_solve(real_t p_step) { |
359 | if (oneway_disabled) { |
360 | return false; |
361 | } |
362 | |
363 | if (!collided) { |
364 | if (check_ccd) { |
365 | const Vector2 &offset_A = A->get_transform().get_origin(); |
366 | Transform2D xform_Au = A->get_transform().untranslated(); |
367 | Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A); |
368 | |
369 | Transform2D xform_Bu = B->get_transform(); |
370 | xform_Bu.columns[2] -= offset_A; |
371 | Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B); |
372 | |
373 | if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) { |
374 | _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B); |
375 | } |
376 | |
377 | if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) { |
378 | _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A); |
379 | } |
380 | } |
381 | |
382 | return false; |
383 | } |
384 | |
385 | real_t max_penetration = space->get_contact_max_allowed_penetration(); |
386 | |
387 | real_t bias = space->get_contact_bias(); |
388 | |
389 | GodotShape2D *shape_A_ptr = A->get_shape(shape_A); |
390 | GodotShape2D *shape_B_ptr = B->get_shape(shape_B); |
391 | |
392 | if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { |
393 | if (shape_A_ptr->get_custom_bias() == 0) { |
394 | bias = shape_B_ptr->get_custom_bias(); |
395 | } else if (shape_B_ptr->get_custom_bias() == 0) { |
396 | bias = shape_A_ptr->get_custom_bias(); |
397 | } else { |
398 | bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5; |
399 | } |
400 | } |
401 | |
402 | real_t inv_dt = 1.0 / p_step; |
403 | |
404 | bool do_process = false; |
405 | |
406 | const Vector2 &offset_A = A->get_transform().get_origin(); |
407 | const Transform2D &transform_A = A->get_transform(); |
408 | const Transform2D &transform_B = B->get_transform(); |
409 | |
410 | real_t inv_inertia_A = collide_A ? A->get_inv_inertia() : 0.0; |
411 | real_t inv_inertia_B = collide_B ? B->get_inv_inertia() : 0.0; |
412 | |
413 | real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; |
414 | real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; |
415 | |
416 | for (int i = 0; i < contact_count; i++) { |
417 | Contact &c = contacts[i]; |
418 | c.active = false; |
419 | |
420 | Vector2 global_A = transform_A.basis_xform(c.local_A); |
421 | Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B; |
422 | |
423 | Vector2 axis = global_A - global_B; |
424 | real_t depth = axis.dot(c.normal); |
425 | |
426 | if (depth <= 0.0) { |
427 | continue; |
428 | } |
429 | |
430 | #ifdef DEBUG_ENABLED |
431 | if (space->is_debugging_contacts()) { |
432 | space->add_debug_contact(global_A + offset_A); |
433 | space->add_debug_contact(global_B + offset_A); |
434 | } |
435 | #endif |
436 | |
437 | c.rA = global_A - A->get_center_of_mass(); |
438 | c.rB = global_B - B->get_center_of_mass() - offset_B; |
439 | |
440 | // Precompute normal mass, tangent mass, and bias. |
441 | real_t rnA = c.rA.dot(c.normal); |
442 | real_t rnB = c.rB.dot(c.normal); |
443 | real_t kNormal = inv_mass_A + inv_mass_B; |
444 | kNormal += inv_inertia_A * (c.rA.dot(c.rA) - rnA * rnA) + inv_inertia_B * (c.rB.dot(c.rB) - rnB * rnB); |
445 | c.mass_normal = 1.0f / kNormal; |
446 | |
447 | Vector2 tangent = c.normal.orthogonal(); |
448 | real_t rtA = c.rA.dot(tangent); |
449 | real_t rtB = c.rB.dot(tangent); |
450 | real_t kTangent = inv_mass_A + inv_mass_B; |
451 | kTangent += inv_inertia_A * (c.rA.dot(c.rA) - rtA * rtA) + inv_inertia_B * (c.rB.dot(c.rB) - rtB * rtB); |
452 | c.mass_tangent = 1.0f / kTangent; |
453 | |
454 | c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); |
455 | c.depth = depth; |
456 | |
457 | Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent; |
458 | |
459 | c.acc_impulse -= P; |
460 | |
461 | if (A->can_report_contacts() || B->can_report_contacts()) { |
462 | Vector2 crB = Vector2(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x) + B->get_linear_velocity(); |
463 | Vector2 crA = Vector2(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x) + A->get_linear_velocity(); |
464 | if (A->can_report_contacts()) { |
465 | A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse); |
466 | } |
467 | if (B->can_report_contacts()) { |
468 | B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, c.acc_impulse); |
469 | } |
470 | } |
471 | |
472 | if (report_contacts_only) { |
473 | collided = false; |
474 | continue; |
475 | } |
476 | |
477 | #ifdef ACCUMULATE_IMPULSES |
478 | { |
479 | // Apply normal + friction impulse |
480 | if (collide_A) { |
481 | A->apply_impulse(-P, c.rA + A->get_center_of_mass()); |
482 | } |
483 | if (collide_B) { |
484 | B->apply_impulse(P, c.rB + B->get_center_of_mass()); |
485 | } |
486 | } |
487 | #endif |
488 | |
489 | c.bounce = combine_bounce(A, B); |
490 | if (c.bounce) { |
491 | Vector2 crA(-A->get_prev_angular_velocity() * c.rA.y, A->get_prev_angular_velocity() * c.rA.x); |
492 | Vector2 crB(-B->get_prev_angular_velocity() * c.rB.y, B->get_prev_angular_velocity() * c.rB.x); |
493 | Vector2 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA; |
494 | c.bounce = c.bounce * dv.dot(c.normal); |
495 | } |
496 | |
497 | c.active = true; |
498 | do_process = true; |
499 | } |
500 | |
501 | return do_process; |
502 | } |
503 | |
504 | void GodotBodyPair2D::solve(real_t p_step) { |
505 | if (!collided || oneway_disabled) { |
506 | return; |
507 | } |
508 | |
509 | const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; |
510 | |
511 | real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; |
512 | real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; |
513 | |
514 | for (int i = 0; i < contact_count; ++i) { |
515 | Contact &c = contacts[i]; |
516 | |
517 | if (!c.active) { |
518 | continue; |
519 | } |
520 | |
521 | // Relative velocity at contact |
522 | |
523 | Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x); |
524 | Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x); |
525 | Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; |
526 | |
527 | Vector2 crbA(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x); |
528 | Vector2 crbB(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x); |
529 | Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; |
530 | |
531 | real_t vn = dv.dot(c.normal); |
532 | real_t vbn = dbv.dot(c.normal); |
533 | |
534 | Vector2 tangent = c.normal.orthogonal(); |
535 | real_t vt = dv.dot(tangent); |
536 | |
537 | real_t jbn = (c.bias - vbn) * c.mass_normal; |
538 | real_t jbnOld = c.acc_bias_impulse; |
539 | c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); |
540 | |
541 | Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld); |
542 | |
543 | if (collide_A) { |
544 | A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av); |
545 | } |
546 | if (collide_B) { |
547 | B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av); |
548 | } |
549 | |
550 | crbA = Vector2(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x); |
551 | crbB = Vector2(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x); |
552 | dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; |
553 | |
554 | vbn = dbv.dot(c.normal); |
555 | |
556 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
557 | real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B); |
558 | real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; |
559 | c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); |
560 | |
561 | Vector2 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); |
562 | |
563 | if (collide_A) { |
564 | A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f); |
565 | } |
566 | if (collide_B) { |
567 | B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f); |
568 | } |
569 | } |
570 | |
571 | real_t jn = -(c.bounce + vn) * c.mass_normal; |
572 | real_t jnOld = c.acc_normal_impulse; |
573 | c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); |
574 | |
575 | real_t friction = combine_friction(A, B); |
576 | |
577 | real_t jtMax = friction * c.acc_normal_impulse; |
578 | real_t jt = -vt * c.mass_tangent; |
579 | real_t jtOld = c.acc_tangent_impulse; |
580 | c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax); |
581 | |
582 | Vector2 j = c.normal * (c.acc_normal_impulse - jnOld) + tangent * (c.acc_tangent_impulse - jtOld); |
583 | |
584 | if (collide_A) { |
585 | A->apply_impulse(-j, c.rA + A->get_center_of_mass()); |
586 | } |
587 | if (collide_B) { |
588 | B->apply_impulse(j, c.rB + B->get_center_of_mass()); |
589 | } |
590 | c.acc_impulse -= j; |
591 | } |
592 | } |
593 | |
594 | GodotBodyPair2D::GodotBodyPair2D(GodotBody2D *p_A, int p_shape_A, GodotBody2D *p_B, int p_shape_B) : |
595 | GodotConstraint2D(_arr, 2) { |
596 | A = p_A; |
597 | B = p_B; |
598 | shape_A = p_shape_A; |
599 | shape_B = p_shape_B; |
600 | space = A->get_space(); |
601 | A->add_constraint(this, 0); |
602 | B->add_constraint(this, 1); |
603 | } |
604 | |
605 | GodotBodyPair2D::~GodotBodyPair2D() { |
606 | A->remove_constraint(this, 0); |
607 | B->remove_constraint(this, 1); |
608 | } |
609 | |