| 1 | /**************************************************************************/ |
| 2 | /* gjk_epa.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "gjk_epa.h" |
| 32 | |
| 33 | /* Disabling formatting for thirdparty code snippet */ |
| 34 | /* clang-format off */ |
| 35 | |
| 36 | /*************** Bullet's GJK-EPA2 IMPLEMENTATION *******************/ |
| 37 | |
| 38 | /* |
| 39 | Bullet Continuous Collision Detection and Physics Library |
| 40 | Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/ |
| 41 | |
| 42 | This software is provided 'as-is', without any express or implied warranty. |
| 43 | In no event will the authors be held liable for any damages arising from the |
| 44 | use of this software. |
| 45 | Permission is granted to anyone to use this software for any purpose, |
| 46 | including commercial applications, and to alter it and redistribute it |
| 47 | freely, |
| 48 | subject to the following restrictions: |
| 49 | |
| 50 | 1. The origin of this software must not be misrepresented; you must not |
| 51 | claim that you wrote the original software. If you use this software in a |
| 52 | product, an acknowledgment in the product documentation would be appreciated |
| 53 | but is not required. |
| 54 | 2. Altered source versions must be plainly marked as such, and must not be |
| 55 | misrepresented as being the original software. |
| 56 | 3. This notice may not be removed or altered from any source distribution. |
| 57 | */ |
| 58 | |
| 59 | /* |
| 60 | GJK-EPA collision solver by Nathanael Presson, 2008 |
| 61 | */ |
| 62 | |
| 63 | // Config |
| 64 | |
| 65 | /* GJK */ |
| 66 | #define GJK_MAX_ITERATIONS 128 |
| 67 | #define GJK_ACCURACY ((real_t)0.0001) |
| 68 | #define GJK_MIN_DISTANCE ((real_t)0.0001) |
| 69 | #define GJK_DUPLICATED_EPS ((real_t)0.0001) |
| 70 | #define GJK_SIMPLEX2_EPS ((real_t)0.0) |
| 71 | #define GJK_SIMPLEX3_EPS ((real_t)0.0) |
| 72 | #define GJK_SIMPLEX4_EPS ((real_t)0.0) |
| 73 | |
| 74 | /* EPA */ |
| 75 | #define EPA_MAX_VERTICES 128 |
| 76 | #define EPA_MAX_FACES (EPA_MAX_VERTICES*2) |
| 77 | #define EPA_MAX_ITERATIONS 255 |
| 78 | // -- GODOT start -- |
| 79 | //#define EPA_ACCURACY ((real_t)0.0001) |
| 80 | #define EPA_ACCURACY ((real_t)0.00001) |
| 81 | // -- GODOT end -- |
| 82 | #define EPA_FALLBACK (10*EPA_ACCURACY) |
| 83 | #define EPA_PLANE_EPS ((real_t)0.00001) |
| 84 | #define EPA_INSIDE_EPS ((real_t)0.01) |
| 85 | |
| 86 | namespace GjkEpa2 { |
| 87 | |
| 88 | |
| 89 | struct sResults { |
| 90 | enum eStatus { |
| 91 | Separated, /* Shapes doesn't penetrate */ |
| 92 | Penetrating, /* Shapes are penetrating */ |
| 93 | GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */ |
| 94 | EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */ |
| 95 | } status; |
| 96 | |
| 97 | Vector3 witnesses[2]; |
| 98 | Vector3 normal; |
| 99 | real_t distance = 0.0; |
| 100 | }; |
| 101 | |
| 102 | // Shorthands |
| 103 | typedef unsigned int U; |
| 104 | typedef unsigned char U1; |
| 105 | |
| 106 | // MinkowskiDiff |
| 107 | struct MinkowskiDiff { |
| 108 | const GodotShape3D* m_shapes[2]; |
| 109 | |
| 110 | Transform3D transform_A; |
| 111 | Transform3D transform_B; |
| 112 | |
| 113 | real_t margin_A = 0.0; |
| 114 | real_t margin_B = 0.0; |
| 115 | |
| 116 | Vector3 (*get_support)(const GodotShape3D*, const Vector3&, real_t) = nullptr; |
| 117 | |
| 118 | void Initialize(const GodotShape3D* shape0, const Transform3D& wtrs0, const real_t margin0, |
| 119 | const GodotShape3D* shape1, const Transform3D& wtrs1, const real_t margin1) { |
| 120 | m_shapes[0] = shape0; |
| 121 | m_shapes[1] = shape1; |
| 122 | transform_A = wtrs0; |
| 123 | transform_B = wtrs1; |
| 124 | margin_A = margin0; |
| 125 | margin_B = margin1; |
| 126 | |
| 127 | if ((margin0 > 0.0) || (margin1 > 0.0)) { |
| 128 | get_support = get_support_with_margin; |
| 129 | } else { |
| 130 | get_support = get_support_without_margin; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | static Vector3 get_support_without_margin(const GodotShape3D* p_shape, const Vector3& p_dir, real_t p_margin) { |
| 135 | return p_shape->get_support(p_dir.normalized()); |
| 136 | } |
| 137 | |
| 138 | static Vector3 get_support_with_margin(const GodotShape3D* p_shape, const Vector3& p_dir, real_t p_margin) { |
| 139 | Vector3 local_dir_norm = p_dir; |
| 140 | if (local_dir_norm.length_squared() < CMP_EPSILON2) { |
| 141 | local_dir_norm = Vector3(-1.0, -1.0, -1.0); |
| 142 | } |
| 143 | local_dir_norm.normalize(); |
| 144 | |
| 145 | return p_shape->get_support(local_dir_norm) + p_margin * local_dir_norm; |
| 146 | } |
| 147 | |
| 148 | // i wonder how this could be sped up... if it can |
| 149 | _FORCE_INLINE_ Vector3 Support0(const Vector3& d) const { |
| 150 | return transform_A.xform(get_support(m_shapes[0], transform_A.basis.xform_inv(d), margin_A)); |
| 151 | } |
| 152 | |
| 153 | _FORCE_INLINE_ Vector3 Support1(const Vector3& d) const { |
| 154 | return transform_B.xform(get_support(m_shapes[1], transform_B.basis.xform_inv(d), margin_B)); |
| 155 | } |
| 156 | |
| 157 | _FORCE_INLINE_ Vector3 Support (const Vector3& d) const { |
| 158 | return (Support0(d) - Support1(-d)); |
| 159 | } |
| 160 | |
| 161 | _FORCE_INLINE_ Vector3 Support(const Vector3& d, U index) const { |
| 162 | if (index) { |
| 163 | return Support1(d); |
| 164 | } else { |
| 165 | return Support0(d); |
| 166 | } |
| 167 | } |
| 168 | }; |
| 169 | |
| 170 | typedef MinkowskiDiff tShape; |
| 171 | |
| 172 | |
| 173 | // GJK |
| 174 | struct GJK |
| 175 | { |
| 176 | /* Types */ |
| 177 | struct sSV |
| 178 | { |
| 179 | Vector3 d,w; |
| 180 | }; |
| 181 | struct sSimplex |
| 182 | { |
| 183 | sSV* c[4]; |
| 184 | real_t p[4]; |
| 185 | U rank; |
| 186 | }; |
| 187 | struct eStatus { enum _ { |
| 188 | Valid, |
| 189 | Inside, |
| 190 | Failed };}; |
| 191 | /* Fields */ |
| 192 | tShape m_shape; |
| 193 | Vector3 m_ray; |
| 194 | real_t m_distance = 0.0f; |
| 195 | sSimplex m_simplices[2]; |
| 196 | sSV m_store[4]; |
| 197 | sSV* m_free[4]; |
| 198 | U m_nfree = 0; |
| 199 | U m_current = 0; |
| 200 | sSimplex* m_simplex = nullptr; |
| 201 | eStatus::_ m_status; |
| 202 | /* Methods */ |
| 203 | GJK() |
| 204 | { |
| 205 | Initialize(); |
| 206 | } |
| 207 | void Initialize() |
| 208 | { |
| 209 | m_ray = Vector3(0,0,0); |
| 210 | m_nfree = 0; |
| 211 | m_status = eStatus::Failed; |
| 212 | m_current = 0; |
| 213 | m_distance = 0; |
| 214 | } |
| 215 | eStatus::_ Evaluate(const tShape& shapearg,const Vector3& guess) |
| 216 | { |
| 217 | U iterations=0; |
| 218 | real_t sqdist=0; |
| 219 | real_t alpha=0; |
| 220 | Vector3 lastw[4]; |
| 221 | U clastw=0; |
| 222 | /* Initialize solver */ |
| 223 | m_free[0] = &m_store[0]; |
| 224 | m_free[1] = &m_store[1]; |
| 225 | m_free[2] = &m_store[2]; |
| 226 | m_free[3] = &m_store[3]; |
| 227 | m_nfree = 4; |
| 228 | m_current = 0; |
| 229 | m_status = eStatus::Valid; |
| 230 | m_shape = shapearg; |
| 231 | m_distance = 0; |
| 232 | /* Initialize simplex */ |
| 233 | m_simplices[0].rank = 0; |
| 234 | m_ray = guess; |
| 235 | const real_t sqrl= m_ray.length_squared(); |
| 236 | appendvertice(m_simplices[0],sqrl>0?-m_ray:Vector3(1,0,0)); |
| 237 | m_simplices[0].p[0] = 1; |
| 238 | m_ray = m_simplices[0].c[0]->w; |
| 239 | sqdist = sqrl; |
| 240 | lastw[0] = |
| 241 | lastw[1] = |
| 242 | lastw[2] = |
| 243 | lastw[3] = m_ray; |
| 244 | /* Loop */ |
| 245 | do { |
| 246 | const U next=1-m_current; |
| 247 | sSimplex& cs=m_simplices[m_current]; |
| 248 | sSimplex& ns=m_simplices[next]; |
| 249 | /* Check zero */ |
| 250 | const real_t rl=m_ray.length(); |
| 251 | if(rl<GJK_MIN_DISTANCE) |
| 252 | {/* Touching or inside */ |
| 253 | m_status=eStatus::Inside; |
| 254 | break; |
| 255 | } |
| 256 | /* Append new vertice in -'v' direction */ |
| 257 | appendvertice(cs,-m_ray); |
| 258 | const Vector3& w=cs.c[cs.rank-1]->w; |
| 259 | bool found=false; |
| 260 | for(U i=0;i<4;++i) |
| 261 | { |
| 262 | if((w-lastw[i]).length_squared()<GJK_DUPLICATED_EPS) |
| 263 | { found=true;break; } |
| 264 | } |
| 265 | if(found) |
| 266 | {/* Return old simplex */ |
| 267 | removevertice(m_simplices[m_current]); |
| 268 | break; |
| 269 | } |
| 270 | else |
| 271 | {/* Update lastw */ |
| 272 | lastw[clastw=(clastw+1)&3]=w; |
| 273 | } |
| 274 | /* Check for termination */ |
| 275 | const real_t omega=vec3_dot(m_ray,w)/rl; |
| 276 | alpha=MAX(omega,alpha); |
| 277 | if(((rl-alpha)-(GJK_ACCURACY*rl))<=0) |
| 278 | {/* Return old simplex */ |
| 279 | removevertice(m_simplices[m_current]); |
| 280 | break; |
| 281 | } |
| 282 | /* Reduce simplex */ |
| 283 | real_t weights[4]; |
| 284 | U mask=0; |
| 285 | switch(cs.rank) |
| 286 | { |
| 287 | case 2: sqdist=projectorigin( cs.c[0]->w, |
| 288 | cs.c[1]->w, |
| 289 | weights,mask);break; |
| 290 | case 3: sqdist=projectorigin( cs.c[0]->w, |
| 291 | cs.c[1]->w, |
| 292 | cs.c[2]->w, |
| 293 | weights,mask);break; |
| 294 | case 4: sqdist=projectorigin( cs.c[0]->w, |
| 295 | cs.c[1]->w, |
| 296 | cs.c[2]->w, |
| 297 | cs.c[3]->w, |
| 298 | weights,mask);break; |
| 299 | } |
| 300 | if(sqdist>=0) |
| 301 | {/* Valid */ |
| 302 | ns.rank = 0; |
| 303 | m_ray = Vector3(0,0,0); |
| 304 | m_current = next; |
| 305 | for(U i=0,ni=cs.rank;i<ni;++i) |
| 306 | { |
| 307 | if(mask&(1<<i)) |
| 308 | { |
| 309 | ns.c[ns.rank] = cs.c[i]; |
| 310 | ns.p[ns.rank++] = weights[i]; |
| 311 | m_ray += cs.c[i]->w*weights[i]; |
| 312 | } |
| 313 | else |
| 314 | { |
| 315 | m_free[m_nfree++] = cs.c[i]; |
| 316 | } |
| 317 | } |
| 318 | if(mask==15) { m_status=eStatus::Inside; |
| 319 | } |
| 320 | } |
| 321 | else |
| 322 | {/* Return old simplex */ |
| 323 | removevertice(m_simplices[m_current]); |
| 324 | break; |
| 325 | } |
| 326 | m_status=((++iterations)<GJK_MAX_ITERATIONS)?m_status:eStatus::Failed; |
| 327 | } while(m_status==eStatus::Valid); |
| 328 | m_simplex=&m_simplices[m_current]; |
| 329 | switch(m_status) |
| 330 | { |
| 331 | case eStatus::Valid: m_distance=m_ray.length();break; |
| 332 | case eStatus::Inside: m_distance=0;break; |
| 333 | default: {} |
| 334 | } |
| 335 | return(m_status); |
| 336 | } |
| 337 | bool EncloseOrigin() |
| 338 | { |
| 339 | switch(m_simplex->rank) |
| 340 | { |
| 341 | case 1: |
| 342 | { |
| 343 | for(U i=0;i<3;++i) |
| 344 | { |
| 345 | Vector3 axis=Vector3(0,0,0); |
| 346 | axis[i]=1; |
| 347 | appendvertice(*m_simplex, axis); |
| 348 | if(EncloseOrigin()) { return(true); |
| 349 | } |
| 350 | removevertice(*m_simplex); |
| 351 | appendvertice(*m_simplex,-axis); |
| 352 | if(EncloseOrigin()) { return(true); |
| 353 | } |
| 354 | removevertice(*m_simplex); |
| 355 | } |
| 356 | } |
| 357 | break; |
| 358 | case 2: |
| 359 | { |
| 360 | const Vector3 d=m_simplex->c[1]->w-m_simplex->c[0]->w; |
| 361 | for(U i=0;i<3;++i) |
| 362 | { |
| 363 | Vector3 axis=Vector3(0,0,0); |
| 364 | axis[i]=1; |
| 365 | const Vector3 p=vec3_cross(d,axis); |
| 366 | if(p.length_squared()>0) |
| 367 | { |
| 368 | appendvertice(*m_simplex, p); |
| 369 | if(EncloseOrigin()) { return(true); |
| 370 | } |
| 371 | removevertice(*m_simplex); |
| 372 | appendvertice(*m_simplex,-p); |
| 373 | if(EncloseOrigin()) { return(true); |
| 374 | } |
| 375 | removevertice(*m_simplex); |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | break; |
| 380 | case 3: |
| 381 | { |
| 382 | const Vector3 n=vec3_cross(m_simplex->c[1]->w-m_simplex->c[0]->w, |
| 383 | m_simplex->c[2]->w-m_simplex->c[0]->w); |
| 384 | if(n.length_squared()>0) |
| 385 | { |
| 386 | appendvertice(*m_simplex,n); |
| 387 | if(EncloseOrigin()) { return(true); |
| 388 | } |
| 389 | removevertice(*m_simplex); |
| 390 | appendvertice(*m_simplex,-n); |
| 391 | if(EncloseOrigin()) { return(true); |
| 392 | } |
| 393 | removevertice(*m_simplex); |
| 394 | } |
| 395 | } |
| 396 | break; |
| 397 | case 4: |
| 398 | { |
| 399 | if(Math::abs(det( m_simplex->c[0]->w-m_simplex->c[3]->w, |
| 400 | m_simplex->c[1]->w-m_simplex->c[3]->w, |
| 401 | m_simplex->c[2]->w-m_simplex->c[3]->w))>0) { |
| 402 | return(true); |
| 403 | } |
| 404 | } |
| 405 | break; |
| 406 | } |
| 407 | return(false); |
| 408 | } |
| 409 | /* Internals */ |
| 410 | void getsupport(const Vector3& d,sSV& sv) const |
| 411 | { |
| 412 | sv.d = d/d.length(); |
| 413 | sv.w = m_shape.Support(sv.d); |
| 414 | } |
| 415 | void removevertice(sSimplex& simplex) |
| 416 | { |
| 417 | m_free[m_nfree++]=simplex.c[--simplex.rank]; |
| 418 | } |
| 419 | void appendvertice(sSimplex& simplex,const Vector3& v) |
| 420 | { |
| 421 | simplex.p[simplex.rank]=0; |
| 422 | simplex.c[simplex.rank]=m_free[--m_nfree]; |
| 423 | getsupport(v,*simplex.c[simplex.rank++]); |
| 424 | } |
| 425 | static real_t det(const Vector3& a,const Vector3& b,const Vector3& c) |
| 426 | { |
| 427 | return( a.y*b.z*c.x+a.z*b.x*c.y- |
| 428 | a.x*b.z*c.y-a.y*b.x*c.z+ |
| 429 | a.x*b.y*c.z-a.z*b.y*c.x); |
| 430 | } |
| 431 | static real_t projectorigin( const Vector3& a, |
| 432 | const Vector3& b, |
| 433 | real_t* w,U& m) |
| 434 | { |
| 435 | const Vector3 d=b-a; |
| 436 | const real_t l=d.length_squared(); |
| 437 | if(l>GJK_SIMPLEX2_EPS) |
| 438 | { |
| 439 | const real_t t(l>0?-vec3_dot(a,d)/l:0); |
| 440 | if(t>=1) { w[0]=0;w[1]=1;m=2;return(b.length_squared()); } |
| 441 | else if(t<=0) { w[0]=1;w[1]=0;m=1;return(a.length_squared()); } |
| 442 | else { w[0]=1-(w[1]=t);m=3;return((a+d*t).length_squared()); } |
| 443 | } |
| 444 | return(-1); |
| 445 | } |
| 446 | static real_t projectorigin( const Vector3& a, |
| 447 | const Vector3& b, |
| 448 | const Vector3& c, |
| 449 | real_t* w,U& m) |
| 450 | { |
| 451 | static const U imd3[]={1,2,0}; |
| 452 | const Vector3* vt[]={&a,&b,&c}; |
| 453 | const Vector3 dl[]={a-b,b-c,c-a}; |
| 454 | const Vector3 n=vec3_cross(dl[0],dl[1]); |
| 455 | const real_t l=n.length_squared(); |
| 456 | if(l>GJK_SIMPLEX3_EPS) |
| 457 | { |
| 458 | real_t mindist=-1; |
| 459 | real_t subw[2] = { 0 , 0}; |
| 460 | U subm = 0; |
| 461 | for(U i=0;i<3;++i) |
| 462 | { |
| 463 | if(vec3_dot(*vt[i],vec3_cross(dl[i],n))>0) |
| 464 | { |
| 465 | const U j=imd3[i]; |
| 466 | const real_t subd(projectorigin(*vt[i],*vt[j],subw,subm)); |
| 467 | if((mindist<0)||(subd<mindist)) |
| 468 | { |
| 469 | mindist = subd; |
| 470 | m = static_cast<U>(((subm&1)?1<<i:0)+((subm&2)?1<<j:0)); |
| 471 | w[i] = subw[0]; |
| 472 | w[j] = subw[1]; |
| 473 | w[imd3[j]] = 0; |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | if(mindist<0) |
| 478 | { |
| 479 | const real_t d=vec3_dot(a,n); |
| 480 | const real_t s=Math::sqrt(l); |
| 481 | const Vector3 p=n*(d/l); |
| 482 | mindist = p.length_squared(); |
| 483 | m = 7; |
| 484 | w[0] = (vec3_cross(dl[1],b-p)).length()/s; |
| 485 | w[1] = (vec3_cross(dl[2],c-p)).length()/s; |
| 486 | w[2] = 1-(w[0]+w[1]); |
| 487 | } |
| 488 | return(mindist); |
| 489 | } |
| 490 | return(-1); |
| 491 | } |
| 492 | static real_t projectorigin( const Vector3& a, |
| 493 | const Vector3& b, |
| 494 | const Vector3& c, |
| 495 | const Vector3& d, |
| 496 | real_t* w,U& m) |
| 497 | { |
| 498 | static const U imd3[]={1,2,0}; |
| 499 | const Vector3* vt[]={&a,&b,&c,&d}; |
| 500 | const Vector3 dl[]={a-d,b-d,c-d}; |
| 501 | const real_t vl=det(dl[0],dl[1],dl[2]); |
| 502 | const bool ng=(vl*vec3_dot(a,vec3_cross(b-c,a-b)))<=0; |
| 503 | if(ng&&(Math::abs(vl)>GJK_SIMPLEX4_EPS)) |
| 504 | { |
| 505 | real_t mindist=-1; |
| 506 | real_t subw[3] = {0.f, 0.f, 0.f}; |
| 507 | U subm=0; |
| 508 | for(U i=0;i<3;++i) |
| 509 | { |
| 510 | const U j=imd3[i]; |
| 511 | const real_t s=vl*vec3_dot(d,vec3_cross(dl[i],dl[j])); |
| 512 | if(s>0) |
| 513 | { |
| 514 | const real_t subd=projectorigin(*vt[i],*vt[j],d,subw,subm); |
| 515 | if((mindist<0)||(subd<mindist)) |
| 516 | { |
| 517 | mindist = subd; |
| 518 | m = static_cast<U>((subm&1?1<<i:0)+ |
| 519 | (subm&2?1<<j:0)+ |
| 520 | (subm&4?8:0)); |
| 521 | w[i] = subw[0]; |
| 522 | w[j] = subw[1]; |
| 523 | w[imd3[j]] = 0; |
| 524 | w[3] = subw[2]; |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | if(mindist<0) |
| 529 | { |
| 530 | mindist = 0; |
| 531 | m = 15; |
| 532 | w[0] = det(c,b,d)/vl; |
| 533 | w[1] = det(a,c,d)/vl; |
| 534 | w[2] = det(b,a,d)/vl; |
| 535 | w[3] = 1-(w[0]+w[1]+w[2]); |
| 536 | } |
| 537 | return(mindist); |
| 538 | } |
| 539 | return(-1); |
| 540 | } |
| 541 | }; |
| 542 | |
| 543 | // EPA |
| 544 | struct EPA |
| 545 | { |
| 546 | /* Types */ |
| 547 | typedef GJK::sSV sSV; |
| 548 | struct sFace |
| 549 | { |
| 550 | Vector3 n; |
| 551 | real_t d = 0.0f; |
| 552 | sSV* c[3]; |
| 553 | sFace* f[3]; |
| 554 | sFace* l[2]; |
| 555 | U1 e[3]; |
| 556 | U1 pass = 0; |
| 557 | }; |
| 558 | struct sList |
| 559 | { |
| 560 | sFace* root = nullptr; |
| 561 | U count = 0; |
| 562 | sList() {} |
| 563 | }; |
| 564 | struct sHorizon |
| 565 | { |
| 566 | sFace* cf = nullptr; |
| 567 | sFace* ff = nullptr; |
| 568 | U nf = 0; |
| 569 | sHorizon() {} |
| 570 | }; |
| 571 | struct eStatus { enum _ { |
| 572 | Valid, |
| 573 | Touching, |
| 574 | Degenerated, |
| 575 | NonConvex, |
| 576 | InvalidHull, |
| 577 | OutOfFaces, |
| 578 | OutOfVertices, |
| 579 | AccuraryReached, |
| 580 | FallBack, |
| 581 | Failed };}; |
| 582 | /* Fields */ |
| 583 | eStatus::_ m_status; |
| 584 | GJK::sSimplex m_result; |
| 585 | Vector3 m_normal; |
| 586 | real_t m_depth = 0.0f; |
| 587 | sSV m_sv_store[EPA_MAX_VERTICES]; |
| 588 | sFace m_fc_store[EPA_MAX_FACES]; |
| 589 | U m_nextsv = 0; |
| 590 | sList m_hull; |
| 591 | sList m_stock; |
| 592 | /* Methods */ |
| 593 | EPA() |
| 594 | { |
| 595 | Initialize(); |
| 596 | } |
| 597 | |
| 598 | |
| 599 | static inline void bind(sFace* fa,U ea,sFace* fb,U eb) |
| 600 | { |
| 601 | fa->e[ea]=(U1)eb;fa->f[ea]=fb; |
| 602 | fb->e[eb]=(U1)ea;fb->f[eb]=fa; |
| 603 | } |
| 604 | static inline void append(sList& list,sFace* face) |
| 605 | { |
| 606 | face->l[0] = nullptr; |
| 607 | face->l[1] = list.root; |
| 608 | if(list.root) { list.root->l[0]=face; |
| 609 | } |
| 610 | list.root = face; |
| 611 | ++list.count; |
| 612 | } |
| 613 | static inline void remove(sList& list,sFace* face) |
| 614 | { |
| 615 | if(face->l[1]) { face->l[1]->l[0]=face->l[0]; |
| 616 | } |
| 617 | if(face->l[0]) { face->l[0]->l[1]=face->l[1]; |
| 618 | } |
| 619 | if(face==list.root) { list.root=face->l[1]; |
| 620 | } |
| 621 | --list.count; |
| 622 | } |
| 623 | |
| 624 | |
| 625 | void Initialize() |
| 626 | { |
| 627 | m_status = eStatus::Failed; |
| 628 | m_normal = Vector3(0,0,0); |
| 629 | m_depth = 0; |
| 630 | m_nextsv = 0; |
| 631 | for(U i=0;i<EPA_MAX_FACES;++i) |
| 632 | { |
| 633 | append(m_stock,&m_fc_store[EPA_MAX_FACES-i-1]); |
| 634 | } |
| 635 | } |
| 636 | eStatus::_ Evaluate(GJK& gjk,const Vector3& guess) |
| 637 | { |
| 638 | GJK::sSimplex& simplex=*gjk.m_simplex; |
| 639 | if((simplex.rank>1)&&gjk.EncloseOrigin()) |
| 640 | { |
| 641 | /* Clean up */ |
| 642 | while(m_hull.root) |
| 643 | { |
| 644 | sFace* f = m_hull.root; |
| 645 | remove(m_hull,f); |
| 646 | append(m_stock,f); |
| 647 | } |
| 648 | m_status = eStatus::Valid; |
| 649 | m_nextsv = 0; |
| 650 | /* Orient simplex */ |
| 651 | if(gjk.det( simplex.c[0]->w-simplex.c[3]->w, |
| 652 | simplex.c[1]->w-simplex.c[3]->w, |
| 653 | simplex.c[2]->w-simplex.c[3]->w)<0) |
| 654 | { |
| 655 | SWAP(simplex.c[0],simplex.c[1]); |
| 656 | SWAP(simplex.p[0],simplex.p[1]); |
| 657 | } |
| 658 | /* Build initial hull */ |
| 659 | sFace* tetra[]={newface(simplex.c[0],simplex.c[1],simplex.c[2],true), |
| 660 | newface(simplex.c[1],simplex.c[0],simplex.c[3],true), |
| 661 | newface(simplex.c[2],simplex.c[1],simplex.c[3],true), |
| 662 | newface(simplex.c[0],simplex.c[2],simplex.c[3],true)}; |
| 663 | if(m_hull.count==4) |
| 664 | { |
| 665 | sFace* best=findbest(); |
| 666 | sFace outer=*best; |
| 667 | U pass=0; |
| 668 | U iterations=0; |
| 669 | bind(tetra[0],0,tetra[1],0); |
| 670 | bind(tetra[0],1,tetra[2],0); |
| 671 | bind(tetra[0],2,tetra[3],0); |
| 672 | bind(tetra[1],1,tetra[3],2); |
| 673 | bind(tetra[1],2,tetra[2],1); |
| 674 | bind(tetra[2],2,tetra[3],1); |
| 675 | m_status=eStatus::Valid; |
| 676 | for(;iterations<EPA_MAX_ITERATIONS;++iterations) |
| 677 | { |
| 678 | if(m_nextsv<EPA_MAX_VERTICES) |
| 679 | { |
| 680 | sHorizon horizon; |
| 681 | sSV* w=&m_sv_store[m_nextsv++]; |
| 682 | bool valid=true; |
| 683 | best->pass = (U1)(++pass); |
| 684 | gjk.getsupport(best->n,*w); |
| 685 | const real_t wdist=vec3_dot(best->n,w->w)-best->d; |
| 686 | if(wdist>EPA_ACCURACY) |
| 687 | { |
| 688 | for(U j=0;(j<3)&&valid;++j) |
| 689 | { |
| 690 | valid&=expand( pass,w, |
| 691 | best->f[j],best->e[j], |
| 692 | horizon); |
| 693 | } |
| 694 | if(valid&&(horizon.nf>=3)) |
| 695 | { |
| 696 | bind(horizon.cf,1,horizon.ff,2); |
| 697 | remove(m_hull,best); |
| 698 | append(m_stock,best); |
| 699 | best=findbest(); |
| 700 | outer=*best; |
| 701 | } else { m_status=eStatus::InvalidHull;break; } |
| 702 | } else { m_status=eStatus::AccuraryReached;break; } |
| 703 | } else { m_status=eStatus::OutOfVertices;break; } |
| 704 | } |
| 705 | const Vector3 projection=outer.n*outer.d; |
| 706 | m_normal = outer.n; |
| 707 | m_depth = outer.d; |
| 708 | m_result.rank = 3; |
| 709 | m_result.c[0] = outer.c[0]; |
| 710 | m_result.c[1] = outer.c[1]; |
| 711 | m_result.c[2] = outer.c[2]; |
| 712 | m_result.p[0] = vec3_cross( outer.c[1]->w-projection, |
| 713 | outer.c[2]->w-projection).length(); |
| 714 | m_result.p[1] = vec3_cross( outer.c[2]->w-projection, |
| 715 | outer.c[0]->w-projection).length(); |
| 716 | m_result.p[2] = vec3_cross( outer.c[0]->w-projection, |
| 717 | outer.c[1]->w-projection).length(); |
| 718 | const real_t sum=m_result.p[0]+m_result.p[1]+m_result.p[2]; |
| 719 | m_result.p[0] /= sum; |
| 720 | m_result.p[1] /= sum; |
| 721 | m_result.p[2] /= sum; |
| 722 | return(m_status); |
| 723 | } |
| 724 | } |
| 725 | /* Fallback */ |
| 726 | m_status = eStatus::FallBack; |
| 727 | m_normal = -guess; |
| 728 | const real_t nl = m_normal.length(); |
| 729 | if (nl > 0) { |
| 730 | m_normal = m_normal/nl; |
| 731 | } else { |
| 732 | m_normal = Vector3(1,0,0); |
| 733 | } |
| 734 | m_depth = 0; |
| 735 | m_result.rank=1; |
| 736 | m_result.c[0]=simplex.c[0]; |
| 737 | m_result.p[0]=1; |
| 738 | return(m_status); |
| 739 | } |
| 740 | |
| 741 | bool getedgedist(sFace* face, sSV* a, sSV* b, real_t& dist) |
| 742 | { |
| 743 | const Vector3 ba = b->w - a->w; |
| 744 | const Vector3 n_ab = vec3_cross(ba, face->n); // Outward facing edge normal direction, on triangle plane |
| 745 | const real_t a_dot_nab = vec3_dot(a->w, n_ab); // Only care about the sign to determine inside/outside, so not normalization required |
| 746 | |
| 747 | if (a_dot_nab < 0) { |
| 748 | // Outside of edge a->b |
| 749 | const real_t ba_l2 = ba.length_squared(); |
| 750 | const real_t a_dot_ba = vec3_dot(a->w, ba); |
| 751 | const real_t b_dot_ba = vec3_dot(b->w, ba); |
| 752 | |
| 753 | if (a_dot_ba > 0) { |
| 754 | // Pick distance vertex a |
| 755 | dist = a->w.length(); |
| 756 | } else if (b_dot_ba < 0) { |
| 757 | // Pick distance vertex b |
| 758 | dist = b->w.length(); |
| 759 | } else { |
| 760 | // Pick distance to edge a->b |
| 761 | const real_t a_dot_b = vec3_dot(a->w, b->w); |
| 762 | dist = Math::sqrt(MAX((a->w.length_squared() * b->w.length_squared() - a_dot_b * a_dot_b) / ba_l2, 0.0)); |
| 763 | } |
| 764 | |
| 765 | return true; |
| 766 | } |
| 767 | |
| 768 | return false; |
| 769 | } |
| 770 | |
| 771 | sFace* newface(sSV* a,sSV* b,sSV* c,bool forced) |
| 772 | { |
| 773 | if (m_stock.root) { |
| 774 | sFace* face=m_stock.root; |
| 775 | remove(m_stock,face); |
| 776 | append(m_hull,face); |
| 777 | face->pass = 0; |
| 778 | face->c[0] = a; |
| 779 | face->c[1] = b; |
| 780 | face->c[2] = c; |
| 781 | face->n = vec3_cross(b->w-a->w,c->w-a->w); |
| 782 | const real_t l=face->n.length(); |
| 783 | const bool v=l>EPA_ACCURACY; |
| 784 | if (v) { |
| 785 | if (!(getedgedist(face, a, b, face->d) || |
| 786 | getedgedist(face, b, c, face->d) || |
| 787 | getedgedist(face, c, a, face->d))) { |
| 788 | // Origin projects to the interior of the triangle |
| 789 | // Use distance to triangle plane |
| 790 | face->d = vec3_dot(a->w, face->n) / l; |
| 791 | } |
| 792 | face->n /= l; |
| 793 | if (forced||(face->d>=-EPA_PLANE_EPS)) { |
| 794 | return(face); |
| 795 | } else { |
| 796 | m_status=eStatus::NonConvex; |
| 797 | } |
| 798 | } else { |
| 799 | m_status=eStatus::Degenerated; |
| 800 | } |
| 801 | remove(m_hull,face); |
| 802 | append(m_stock,face); |
| 803 | return(nullptr); |
| 804 | } |
| 805 | // -- GODOT start -- |
| 806 | //m_status=m_stock.root?eStatus::OutOfVertices:eStatus::OutOfFaces; |
| 807 | m_status=eStatus::OutOfFaces; |
| 808 | // -- GODOT end -- |
| 809 | return(nullptr); |
| 810 | } |
| 811 | sFace* findbest() |
| 812 | { |
| 813 | sFace* minf=m_hull.root; |
| 814 | real_t mind=minf->d*minf->d; |
| 815 | for(sFace* f=minf->l[1];f;f=f->l[1]) |
| 816 | { |
| 817 | const real_t sqd=f->d*f->d; |
| 818 | if(sqd<mind) |
| 819 | { |
| 820 | minf=f; |
| 821 | mind=sqd; |
| 822 | } |
| 823 | } |
| 824 | return(minf); |
| 825 | } |
| 826 | bool expand(U pass,sSV* w,sFace* f,U e,sHorizon& horizon) |
| 827 | { |
| 828 | static const U i1m3[]={1,2,0}; |
| 829 | static const U i2m3[]={2,0,1}; |
| 830 | if(f->pass!=pass) |
| 831 | { |
| 832 | const U e1=i1m3[e]; |
| 833 | if((vec3_dot(f->n,w->w)-f->d)<-EPA_PLANE_EPS) |
| 834 | { |
| 835 | sFace* nf=newface(f->c[e1],f->c[e],w,false); |
| 836 | if(nf) |
| 837 | { |
| 838 | bind(nf,0,f,e); |
| 839 | if(horizon.cf) { bind(horizon.cf,1,nf,2); } else { horizon.ff=nf; |
| 840 | } |
| 841 | horizon.cf=nf; |
| 842 | ++horizon.nf; |
| 843 | return(true); |
| 844 | } |
| 845 | } |
| 846 | else |
| 847 | { |
| 848 | const U e2=i2m3[e]; |
| 849 | f->pass = (U1)pass; |
| 850 | if( expand(pass,w,f->f[e1],f->e[e1],horizon)&& |
| 851 | expand(pass,w,f->f[e2],f->e[e2],horizon)) |
| 852 | { |
| 853 | remove(m_hull,f); |
| 854 | append(m_stock,f); |
| 855 | return(true); |
| 856 | } |
| 857 | } |
| 858 | } |
| 859 | return(false); |
| 860 | } |
| 861 | |
| 862 | }; |
| 863 | |
| 864 | // |
| 865 | static void Initialize( const GodotShape3D* shape0, const Transform3D& wtrs0, real_t margin0, |
| 866 | const GodotShape3D* shape1, const Transform3D& wtrs1, real_t margin1, |
| 867 | sResults& results, |
| 868 | tShape& shape) |
| 869 | { |
| 870 | /* Results */ |
| 871 | results.witnesses[0] = Vector3(0,0,0); |
| 872 | results.witnesses[1] = Vector3(0,0,0); |
| 873 | results.status = sResults::Separated; |
| 874 | /* Shape */ |
| 875 | shape.Initialize(shape0, wtrs0, margin0, shape1, wtrs1, margin1); |
| 876 | } |
| 877 | |
| 878 | |
| 879 | |
| 880 | // |
| 881 | // Api |
| 882 | // |
| 883 | |
| 884 | // |
| 885 | |
| 886 | // |
| 887 | bool Distance( const GodotShape3D* shape0, |
| 888 | const Transform3D& wtrs0, |
| 889 | real_t margin0, |
| 890 | const GodotShape3D* shape1, |
| 891 | const Transform3D& wtrs1, |
| 892 | real_t margin1, |
| 893 | const Vector3& guess, |
| 894 | sResults& results) |
| 895 | { |
| 896 | tShape shape; |
| 897 | Initialize(shape0, wtrs0, margin0, shape1, wtrs1, margin1, results, shape); |
| 898 | GJK gjk; |
| 899 | GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,guess); |
| 900 | if(gjk_status==GJK::eStatus::Valid) |
| 901 | { |
| 902 | Vector3 w0=Vector3(0,0,0); |
| 903 | Vector3 w1=Vector3(0,0,0); |
| 904 | for(U i=0;i<gjk.m_simplex->rank;++i) |
| 905 | { |
| 906 | const real_t p=gjk.m_simplex->p[i]; |
| 907 | w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p; |
| 908 | w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p; |
| 909 | } |
| 910 | results.witnesses[0] = w0; |
| 911 | results.witnesses[1] = w1; |
| 912 | results.normal = w0-w1; |
| 913 | results.distance = results.normal.length(); |
| 914 | results.normal /= results.distance>GJK_MIN_DISTANCE?results.distance:1; |
| 915 | return(true); |
| 916 | } |
| 917 | else |
| 918 | { |
| 919 | results.status = gjk_status==GJK::eStatus::Inside? |
| 920 | sResults::Penetrating : |
| 921 | sResults::GJK_Failed; |
| 922 | return(false); |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | |
| 927 | // |
| 928 | bool Penetration( const GodotShape3D* shape0, |
| 929 | const Transform3D& wtrs0, |
| 930 | real_t margin0, |
| 931 | const GodotShape3D* shape1, |
| 932 | const Transform3D& wtrs1, |
| 933 | real_t margin1, |
| 934 | const Vector3& guess, |
| 935 | sResults& results |
| 936 | ) |
| 937 | { |
| 938 | tShape shape; |
| 939 | Initialize(shape0, wtrs0, margin0, shape1, wtrs1, margin1, results, shape); |
| 940 | GJK gjk; |
| 941 | GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,-guess); |
| 942 | switch(gjk_status) |
| 943 | { |
| 944 | case GJK::eStatus::Inside: |
| 945 | { |
| 946 | EPA epa; |
| 947 | EPA::eStatus::_ epa_status=epa.Evaluate(gjk,-guess); |
| 948 | if(epa_status!=EPA::eStatus::Failed) |
| 949 | { |
| 950 | Vector3 w0=Vector3(0,0,0); |
| 951 | for(U i=0;i<epa.m_result.rank;++i) |
| 952 | { |
| 953 | w0+=shape.Support(epa.m_result.c[i]->d,0)*epa.m_result.p[i]; |
| 954 | } |
| 955 | results.status = sResults::Penetrating; |
| 956 | results.witnesses[0] = w0; |
| 957 | results.witnesses[1] = w0-epa.m_normal*epa.m_depth; |
| 958 | results.normal = -epa.m_normal; |
| 959 | results.distance = -epa.m_depth; |
| 960 | return(true); |
| 961 | } else { results.status=sResults::EPA_Failed; |
| 962 | } |
| 963 | } |
| 964 | break; |
| 965 | case GJK::eStatus::Failed: |
| 966 | results.status=sResults::GJK_Failed; |
| 967 | break; |
| 968 | default: {} |
| 969 | } |
| 970 | return(false); |
| 971 | } |
| 972 | |
| 973 | |
| 974 | |
| 975 | /* Symbols cleanup */ |
| 976 | |
| 977 | #undef GJK_MAX_ITERATIONS |
| 978 | #undef GJK_ACCURARY |
| 979 | #undef GJK_MIN_DISTANCE |
| 980 | #undef GJK_DUPLICATED_EPS |
| 981 | #undef GJK_SIMPLEX2_EPS |
| 982 | #undef GJK_SIMPLEX3_EPS |
| 983 | #undef GJK_SIMPLEX4_EPS |
| 984 | |
| 985 | #undef EPA_MAX_VERTICES |
| 986 | #undef EPA_MAX_FACES |
| 987 | #undef EPA_MAX_ITERATIONS |
| 988 | #undef EPA_ACCURACY |
| 989 | #undef EPA_FALLBACK |
| 990 | #undef EPA_PLANE_EPS |
| 991 | #undef EPA_INSIDE_EPS |
| 992 | } // end of namespace |
| 993 | |
| 994 | /* clang-format on */ |
| 995 | |
| 996 | bool gjk_epa_calculate_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_result_A, Vector3 &r_result_B) { |
| 997 | GjkEpa2::sResults res; |
| 998 | |
| 999 | if (GjkEpa2::Distance(p_shape_A, p_transform_A, 0.0, p_shape_B, p_transform_B, 0.0, p_transform_B.origin - p_transform_A.origin, res)) { |
| 1000 | r_result_A = res.witnesses[0]; |
| 1001 | r_result_B = res.witnesses[1]; |
| 1002 | return true; |
| 1003 | } |
| 1004 | |
| 1005 | return false; |
| 1006 | } |
| 1007 | |
| 1008 | bool gjk_epa_calculate_penetration(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, GodotCollisionSolver3D::CallbackResult p_result_callback, void *p_userdata, bool p_swap, real_t p_margin_A, real_t p_margin_B) { |
| 1009 | GjkEpa2::sResults res; |
| 1010 | |
| 1011 | if (GjkEpa2::Penetration(p_shape_A, p_transform_A, p_margin_A, p_shape_B, p_transform_B, p_margin_B, p_transform_B.origin - p_transform_A.origin, res)) { |
| 1012 | if (p_result_callback) { |
| 1013 | if (p_swap) { |
| 1014 | Vector3 normal = (res.witnesses[1] - res.witnesses[0]).normalized(); |
| 1015 | p_result_callback(res.witnesses[1], 0, res.witnesses[0], 0, normal, p_userdata); |
| 1016 | } else { |
| 1017 | Vector3 normal = (res.witnesses[0] - res.witnesses[1]).normalized(); |
| 1018 | p_result_callback(res.witnesses[0], 0, res.witnesses[1], 0, normal, p_userdata); |
| 1019 | } |
| 1020 | } |
| 1021 | return true; |
| 1022 | } |
| 1023 | |
| 1024 | return false; |
| 1025 | } |
| 1026 | |