| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #include "bvh_collider.h" |
| 5 | #include "../geometry/triangle_triangle_intersector.h" |
| 6 | |
| 7 | namespace embree |
| 8 | { |
| 9 | namespace isa |
| 10 | { |
| 11 | #define CSTAT(x) |
| 12 | |
| 13 | size_t parallel_depth_threshold = 3; |
| 14 | CSTAT(std::atomic<size_t> bvh_collide_traversal_steps(0)); |
| 15 | CSTAT(std::atomic<size_t> bvh_collide_leaf_pairs(0)); |
| 16 | CSTAT(std::atomic<size_t> bvh_collide_leaf_iterations(0)); |
| 17 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections1(0)); |
| 18 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections2(0)); |
| 19 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections3(0)); |
| 20 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections4(0)); |
| 21 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections5(0)); |
| 22 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections(0)); |
| 23 | |
| 24 | struct Collision |
| 25 | { |
| 26 | __forceinline Collision() {} |
| 27 | |
| 28 | __forceinline Collision (unsigned geomID0, unsigned primID0, unsigned geomID1, unsigned primID1) |
| 29 | : geomID0(geomID0), primID0(primID0), geomID1(geomID1), primID1(primID1) {} |
| 30 | |
| 31 | unsigned geomID0; |
| 32 | unsigned primID0; |
| 33 | unsigned geomID1; |
| 34 | unsigned primID1; |
| 35 | }; |
| 36 | |
| 37 | template<int N> |
| 38 | __forceinline size_t overlap(const BBox3fa& box0, const typename BVHN<N>::AABBNode& node1) |
| 39 | { |
| 40 | const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),node1.lower_x); |
| 41 | const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),node1.lower_y); |
| 42 | const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),node1.lower_z); |
| 43 | const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),node1.upper_x); |
| 44 | const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),node1.upper_y); |
| 45 | const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),node1.upper_z); |
| 46 | return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z)); |
| 47 | } |
| 48 | |
| 49 | template<int N> |
| 50 | __forceinline size_t overlap(const BBox3fa& box0, const BBox<Vec3<vfloat<N>>>& box1) |
| 51 | { |
| 52 | const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),box1.lower.x); |
| 53 | const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),box1.lower.y); |
| 54 | const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),box1.lower.z); |
| 55 | const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),box1.upper.x); |
| 56 | const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),box1.upper.y); |
| 57 | const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),box1.upper.z); |
| 58 | return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z)); |
| 59 | } |
| 60 | |
| 61 | template<int N> |
| 62 | __forceinline size_t overlap(const BBox<Vec3<vfloat<N>>>& box0, size_t i, const BBox<Vec3<vfloat<N>>>& box1) |
| 63 | { |
| 64 | const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x[i]),box1.lower.x); |
| 65 | const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y[i]),box1.lower.y); |
| 66 | const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z[i]),box1.lower.z); |
| 67 | const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x[i]),box1.upper.x); |
| 68 | const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y[i]),box1.upper.y); |
| 69 | const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z[i]),box1.upper.z); |
| 70 | return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z)); |
| 71 | } |
| 72 | |
| 73 | bool intersect_triangle_triangle (Scene* scene0, unsigned geomID0, unsigned primID0, Scene* scene1, unsigned geomID1, unsigned primID1) |
| 74 | { |
| 75 | CSTAT(bvh_collide_prim_intersections1++); |
| 76 | const TriangleMesh* mesh0 = scene0->get<TriangleMesh>(geomID0); |
| 77 | const TriangleMesh* mesh1 = scene1->get<TriangleMesh>(geomID1); |
| 78 | const TriangleMesh::Triangle& tri0 = mesh0->triangle(primID0); |
| 79 | const TriangleMesh::Triangle& tri1 = mesh1->triangle(primID1); |
| 80 | |
| 81 | /* special culling for scene intersection with itself */ |
| 82 | if (scene0 == scene1 && geomID0 == geomID1) |
| 83 | { |
| 84 | /* ignore self intersections */ |
| 85 | if (primID0 == primID1) |
| 86 | return false; |
| 87 | } |
| 88 | CSTAT(bvh_collide_prim_intersections2++); |
| 89 | |
| 90 | if (scene0 == scene1 && geomID0 == geomID1) |
| 91 | { |
| 92 | /* ignore intersection with topological neighbors */ |
| 93 | const vint4 t0(tri0.v[0],tri0.v[1],tri0.v[2],tri0.v[2]); |
| 94 | if (any(vint4(tri1.v[0]) == t0)) return false; |
| 95 | if (any(vint4(tri1.v[1]) == t0)) return false; |
| 96 | if (any(vint4(tri1.v[2]) == t0)) return false; |
| 97 | } |
| 98 | CSTAT(bvh_collide_prim_intersections3++); |
| 99 | |
| 100 | const Vec3fa a0 = mesh0->vertex(tri0.v[0]); |
| 101 | const Vec3fa a1 = mesh0->vertex(tri0.v[1]); |
| 102 | const Vec3fa a2 = mesh0->vertex(tri0.v[2]); |
| 103 | const Vec3fa b0 = mesh1->vertex(tri1.v[0]); |
| 104 | const Vec3fa b1 = mesh1->vertex(tri1.v[1]); |
| 105 | const Vec3fa b2 = mesh1->vertex(tri1.v[2]); |
| 106 | |
| 107 | return TriangleTriangleIntersector::intersect_triangle_triangle(a0,a1,a2,b0,b1,b2); |
| 108 | } |
| 109 | |
| 110 | template<int N> |
| 111 | __forceinline void BVHNColliderUserGeom<N>::processLeaf(NodeRef node0, NodeRef node1) |
| 112 | { |
| 113 | Collision collisions[16]; |
| 114 | size_t num_collisions = 0; |
| 115 | |
| 116 | size_t N0; Object* leaf0 = (Object*) node0.leaf(N0); |
| 117 | size_t N1; Object* leaf1 = (Object*) node1.leaf(N1); |
| 118 | for (size_t i=0; i<N0; i++) { |
| 119 | for (size_t j=0; j<N1; j++) { |
| 120 | const unsigned geomID0 = leaf0[i].geomID(); |
| 121 | const unsigned primID0 = leaf0[i].primID(); |
| 122 | const unsigned geomID1 = leaf1[j].geomID(); |
| 123 | const unsigned primID1 = leaf1[j].primID(); |
| 124 | if (this->scene0 == this->scene1 && geomID0 == geomID1 && primID0 == primID1) continue; |
| 125 | collisions[num_collisions++] = Collision(geomID0,primID0,geomID1,primID1); |
| 126 | if (num_collisions == 16) { |
| 127 | this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions); |
| 128 | num_collisions = 0; |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | if (num_collisions) |
| 133 | this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions); |
| 134 | } |
| 135 | |
| 136 | template<int N> |
| 137 | void BVHNCollider<N>::collide_recurse(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1, size_t depth0, size_t depth1) |
| 138 | { |
| 139 | CSTAT(bvh_collide_traversal_steps++); |
| 140 | if (unlikely(ref0.isLeaf())) { |
| 141 | if (unlikely(ref1.isLeaf())) { |
| 142 | CSTAT(bvh_collide_leaf_pairs++); |
| 143 | processLeaf(ref0,ref1); |
| 144 | return; |
| 145 | } else goto recurse_node1; |
| 146 | |
| 147 | } else { |
| 148 | if (unlikely(ref1.isLeaf())) { |
| 149 | goto recurse_node0; |
| 150 | } else { |
| 151 | if (area(bounds0) > area(bounds1)) { |
| 152 | goto recurse_node0; |
| 153 | } |
| 154 | else { |
| 155 | goto recurse_node1; |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | { |
| 161 | recurse_node0: |
| 162 | AABBNode* node0 = ref0.getAABBNode(); |
| 163 | size_t mask = overlap<N>(bounds1,*node0); |
| 164 | //for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
| 165 | //for (size_t i=0; i<N; i++) { |
| 166 | #if 0 |
| 167 | if (depth0 < parallel_depth_threshold) |
| 168 | { |
| 169 | parallel_for(size_t(N), [&] ( size_t i ) { |
| 170 | if (mask & ( 1 << i)) { |
| 171 | BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE); |
| 172 | collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1); |
| 173 | } |
| 174 | }); |
| 175 | } |
| 176 | else |
| 177 | #endif |
| 178 | { |
| 179 | for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
| 180 | BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE); |
| 181 | collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1); |
| 182 | } |
| 183 | } |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | { |
| 188 | recurse_node1: |
| 189 | AABBNode* node1 = ref1.getAABBNode(); |
| 190 | size_t mask = overlap<N>(bounds0,*node1); |
| 191 | //for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
| 192 | //for (size_t i=0; i<N; i++) { |
| 193 | #if 0 |
| 194 | if (depth1 < parallel_depth_threshold) |
| 195 | { |
| 196 | parallel_for(size_t(N), [&] ( size_t i ) { |
| 197 | if (mask & ( 1 << i)) { |
| 198 | BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE); |
| 199 | collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1); |
| 200 | } |
| 201 | }); |
| 202 | } |
| 203 | else |
| 204 | #endif |
| 205 | { |
| 206 | for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
| 207 | BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE); |
| 208 | collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1); |
| 209 | } |
| 210 | } |
| 211 | return; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | template<int N> |
| 216 | void BVHNCollider<N>::split(const CollideJob& job, jobvector& jobs) |
| 217 | { |
| 218 | if (unlikely(job.ref0.isLeaf())) { |
| 219 | if (unlikely(job.ref1.isLeaf())) { |
| 220 | jobs.push_back(job); |
| 221 | return; |
| 222 | } else goto recurse_node1; |
| 223 | } else { |
| 224 | if (unlikely(job.ref1.isLeaf())) { |
| 225 | goto recurse_node0; |
| 226 | } else { |
| 227 | if (area(job.bounds0) > area(job.bounds1)) { |
| 228 | goto recurse_node0; |
| 229 | } |
| 230 | else { |
| 231 | goto recurse_node1; |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | { |
| 237 | recurse_node0: |
| 238 | const AABBNode* node0 = job.ref0.getAABBNode(); |
| 239 | size_t mask = overlap<N>(job.bounds1,*node0); |
| 240 | for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
| 241 | jobs.push_back(CollideJob(node0->child(i),node0->bounds(i),job.depth0+1,job.ref1,job.bounds1,job.depth1)); |
| 242 | } |
| 243 | return; |
| 244 | } |
| 245 | |
| 246 | { |
| 247 | recurse_node1: |
| 248 | const AABBNode* node1 = job.ref1.getAABBNode(); |
| 249 | size_t mask = overlap<N>(job.bounds0,*node1); |
| 250 | for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
| 251 | jobs.push_back(CollideJob(job.ref0,job.bounds0,job.depth0,node1->child(i),node1->bounds(i),job.depth1+1)); |
| 252 | } |
| 253 | return; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | template<int N> |
| 258 | void BVHNCollider<N>::collide_recurse_entry(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1) |
| 259 | { |
| 260 | CSTAT(bvh_collide_traversal_steps = 0); |
| 261 | CSTAT(bvh_collide_leaf_pairs = 0); |
| 262 | CSTAT(bvh_collide_leaf_iterations = 0); |
| 263 | CSTAT(bvh_collide_prim_intersections1 = 0); |
| 264 | CSTAT(bvh_collide_prim_intersections2 = 0); |
| 265 | CSTAT(bvh_collide_prim_intersections3 = 0); |
| 266 | CSTAT(bvh_collide_prim_intersections4 = 0); |
| 267 | CSTAT(bvh_collide_prim_intersections5 = 0); |
| 268 | CSTAT(bvh_collide_prim_intersections = 0); |
| 269 | #if 0 |
| 270 | collide_recurse(ref0,bounds0,ref1,bounds1,0,0); |
| 271 | #else |
| 272 | const int M = 2048; |
| 273 | jobvector jobs[2]; |
| 274 | jobs[0].reserve(M); |
| 275 | jobs[1].reserve(M); |
| 276 | jobs[0].push_back(CollideJob(ref0,bounds0,0,ref1,bounds1,0)); |
| 277 | int source = 0; |
| 278 | int target = 1; |
| 279 | |
| 280 | /* try to split job until job list is full */ |
| 281 | while (jobs[source].size()+8 <= M) |
| 282 | { |
| 283 | for (size_t i=0; i<jobs[source].size(); i++) |
| 284 | { |
| 285 | const CollideJob& job = jobs[source][i]; |
| 286 | size_t remaining = jobs[source].size()-i; |
| 287 | if (jobs[target].size()+remaining+8 > M) { |
| 288 | jobs[target].push_back(job); |
| 289 | } else { |
| 290 | split(job,jobs[target]); |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /* stop splitting jobs if we reached only leaves and cannot make progress anymore */ |
| 295 | if (jobs[target].size() == jobs[source].size()) |
| 296 | break; |
| 297 | |
| 298 | jobs[source].resize(0); |
| 299 | std::swap(source,target); |
| 300 | } |
| 301 | |
| 302 | /* parallel processing of all jobs */ |
| 303 | parallel_for(size_t(jobs[source].size()), [&] ( size_t i ) { |
| 304 | CollideJob& j = jobs[source][i]; |
| 305 | collide_recurse(j.ref0,j.bounds0,j.ref1,j.bounds1,j.depth0,j.depth1); |
| 306 | }); |
| 307 | |
| 308 | |
| 309 | #endif |
| 310 | CSTAT(PRINT(bvh_collide_traversal_steps)); |
| 311 | CSTAT(PRINT(bvh_collide_leaf_pairs)); |
| 312 | CSTAT(PRINT(bvh_collide_leaf_iterations)); |
| 313 | CSTAT(PRINT(bvh_collide_prim_intersections1)); |
| 314 | CSTAT(PRINT(bvh_collide_prim_intersections2)); |
| 315 | CSTAT(PRINT(bvh_collide_prim_intersections3)); |
| 316 | CSTAT(PRINT(bvh_collide_prim_intersections4)); |
| 317 | CSTAT(PRINT(bvh_collide_prim_intersections5)); |
| 318 | CSTAT(PRINT(bvh_collide_prim_intersections)); |
| 319 | } |
| 320 | |
| 321 | template<int N> |
| 322 | void BVHNColliderUserGeom<N>::collide(BVH* __restrict__ bvh0, BVH* __restrict__ bvh1, RTCCollideFunc callback, void* userPtr) |
| 323 | { |
| 324 | BVHNColliderUserGeom<N>(bvh0->scene,bvh1->scene,callback,userPtr). |
| 325 | collide_recurse_entry(bvh0->root,bvh0->bounds.bounds(),bvh1->root,bvh1->bounds.bounds()); |
| 326 | } |
| 327 | |
| 328 | #if defined (EMBREE_LOWEST_ISA) |
| 329 | struct collision_regression_test : public RegressionTest |
| 330 | { |
| 331 | collision_regression_test(const char* name) : RegressionTest(name) { |
| 332 | registerRegressionTest(this); |
| 333 | } |
| 334 | |
| 335 | bool run () |
| 336 | { |
| 337 | bool passed = true; |
| 338 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(-0.008815f, 0.041848f, -2.49875e-06f), Vec3fa(-0.008276f, 0.053318f, -2.49875e-06f), Vec3fa(0.003023f, 0.048969f, -2.49875e-06f), |
| 339 | Vec3fa(0.00245f, 0.037612f, -2.49875e-06f), Vec3fa(0.01434f, 0.042634f, -2.49875e-06f), Vec3fa(0.013499f, 0.031309f, -2.49875e-06f)) == false; |
| 340 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true; |
| 341 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,1),Vec3fa(1,0,1),Vec3fa(0,1,1)) == false; |
| 342 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,1),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true; |
| 343 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true; |
| 344 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true; |
| 345 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,-0.1f),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true; |
| 346 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true; |
| 347 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(0.5f,0,0),Vec3fa(0,0.5f,0)) == true; |
| 348 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(0.5f,0,0),Vec3fa(0,0.5f,0)) == true; |
| 349 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true; |
| 350 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,-0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true; |
| 351 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(-0.1f,0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true; |
| 352 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), |
| 353 | Vec3fa(-1,1,0) + Vec3fa(0,0,0),Vec3fa(-1,1,0) + Vec3fa(0.1f,0,0),Vec3fa(-1,1,0) + Vec3fa(0,0.1f,0)) == false; |
| 354 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), |
| 355 | Vec3fa( 2,0.5f,0) + Vec3fa(0,0,0),Vec3fa( 2,0.5f,0) + Vec3fa(0.1f,0,0),Vec3fa( 2,0.5f,0) + Vec3fa(0,0.1f,0)) == false; |
| 356 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), |
| 357 | Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0,0),Vec3fa(0.5f,-2.0f,0) + Vec3fa(0.1f,0,0),Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0.1f,0)) == false; |
| 358 | return passed; |
| 359 | } |
| 360 | }; |
| 361 | |
| 362 | collision_regression_test collision_regression("collision_regression_test" ); |
| 363 | #endif |
| 364 | |
| 365 | //////////////////////////////////////////////////////////////////////////////// |
| 366 | /// Collider Definitions |
| 367 | //////////////////////////////////////////////////////////////////////////////// |
| 368 | |
| 369 | DEFINE_COLLIDER(BVH4ColliderUserGeom,BVHNColliderUserGeom<4>); |
| 370 | |
| 371 | #if defined(__AVX__) |
| 372 | DEFINE_COLLIDER(BVH8ColliderUserGeom,BVHNColliderUserGeom<8>); |
| 373 | #endif |
| 374 | } |
| 375 | } |
| 376 | |