1 | /* |
2 | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #include <Box2D/Collision/Shapes/b2PolygonShape.h> |
20 | #include <new> |
21 | |
22 | b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const |
23 | { |
24 | void* mem = allocator->Allocate(sizeof(b2PolygonShape)); |
25 | b2PolygonShape* clone = new (mem) b2PolygonShape; |
26 | *clone = *this; |
27 | return clone; |
28 | } |
29 | |
30 | void b2PolygonShape::SetAsBox(float32 hx, float32 hy) |
31 | { |
32 | m_count = 4; |
33 | m_vertices[0].Set(-hx, -hy); |
34 | m_vertices[1].Set( hx, -hy); |
35 | m_vertices[2].Set( hx, hy); |
36 | m_vertices[3].Set(-hx, hy); |
37 | m_normals[0].Set(0.0f, -1.0f); |
38 | m_normals[1].Set(1.0f, 0.0f); |
39 | m_normals[2].Set(0.0f, 1.0f); |
40 | m_normals[3].Set(-1.0f, 0.0f); |
41 | m_centroid.SetZero(); |
42 | } |
43 | |
44 | void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) |
45 | { |
46 | m_count = 4; |
47 | m_vertices[0].Set(-hx, -hy); |
48 | m_vertices[1].Set( hx, -hy); |
49 | m_vertices[2].Set( hx, hy); |
50 | m_vertices[3].Set(-hx, hy); |
51 | m_normals[0].Set(0.0f, -1.0f); |
52 | m_normals[1].Set(1.0f, 0.0f); |
53 | m_normals[2].Set(0.0f, 1.0f); |
54 | m_normals[3].Set(-1.0f, 0.0f); |
55 | m_centroid = center; |
56 | |
57 | b2Transform xf; |
58 | xf.p = center; |
59 | xf.q.Set(angle); |
60 | |
61 | // Transform vertices and normals. |
62 | for (int32 i = 0; i < m_count; ++i) |
63 | { |
64 | m_vertices[i] = b2Mul(xf, m_vertices[i]); |
65 | m_normals[i] = b2Mul(xf.q, m_normals[i]); |
66 | } |
67 | } |
68 | |
69 | int32 b2PolygonShape::GetChildCount() const |
70 | { |
71 | return 1; |
72 | } |
73 | |
74 | static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) |
75 | { |
76 | b2Assert(count >= 3); |
77 | |
78 | b2Vec2 c; c.Set(0.0f, 0.0f); |
79 | float32 area = 0.0f; |
80 | |
81 | // pRef is the reference point for forming triangles. |
82 | // It's location doesn't change the result (except for rounding error). |
83 | b2Vec2 pRef(0.0f, 0.0f); |
84 | #if 0 |
85 | // This code would put the reference point inside the polygon. |
86 | for (int32 i = 0; i < count; ++i) |
87 | { |
88 | pRef += vs[i]; |
89 | } |
90 | pRef *= 1.0f / count; |
91 | #endif |
92 | |
93 | const float32 inv3 = 1.0f / 3.0f; |
94 | |
95 | for (int32 i = 0; i < count; ++i) |
96 | { |
97 | // Triangle vertices. |
98 | b2Vec2 p1 = pRef; |
99 | b2Vec2 p2 = vs[i]; |
100 | b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; |
101 | |
102 | b2Vec2 e1 = p2 - p1; |
103 | b2Vec2 e2 = p3 - p1; |
104 | |
105 | float32 D = b2Cross(e1, e2); |
106 | |
107 | float32 triangleArea = 0.5f * D; |
108 | area += triangleArea; |
109 | |
110 | // Area weighted centroid |
111 | c += triangleArea * inv3 * (p1 + p2 + p3); |
112 | } |
113 | |
114 | // Centroid |
115 | b2Assert(area > b2_epsilon); |
116 | c *= 1.0f / area; |
117 | return c; |
118 | } |
119 | |
120 | void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) |
121 | { |
122 | b2Assert(3 <= count && count <= b2_maxPolygonVertices); |
123 | if (count < 3) |
124 | { |
125 | SetAsBox(1.0f, 1.0f); |
126 | return; |
127 | } |
128 | |
129 | int32 n = b2Min(count, b2_maxPolygonVertices); |
130 | |
131 | // Perform welding and copy vertices into local buffer. |
132 | b2Vec2 ps[b2_maxPolygonVertices]; |
133 | int32 tempCount = 0; |
134 | for (int32 i = 0; i < n; ++i) |
135 | { |
136 | b2Vec2 v = vertices[i]; |
137 | |
138 | bool unique = true; |
139 | for (int32 j = 0; j < tempCount; ++j) |
140 | { |
141 | if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop))) |
142 | { |
143 | unique = false; |
144 | break; |
145 | } |
146 | } |
147 | |
148 | if (unique) |
149 | { |
150 | ps[tempCount++] = v; |
151 | } |
152 | } |
153 | |
154 | n = tempCount; |
155 | if (n < 3) |
156 | { |
157 | // Polygon is degenerate. |
158 | b2Assert(false); |
159 | SetAsBox(1.0f, 1.0f); |
160 | return; |
161 | } |
162 | |
163 | // Create the convex hull using the Gift wrapping algorithm |
164 | // http://en.wikipedia.org/wiki/Gift_wrapping_algorithm |
165 | |
166 | // Find the right most point on the hull |
167 | int32 i0 = 0; |
168 | float32 x0 = ps[0].x; |
169 | for (int32 i = 1; i < n; ++i) |
170 | { |
171 | float32 x = ps[i].x; |
172 | if (x > x0 || (x == x0 && ps[i].y < ps[i0].y)) |
173 | { |
174 | i0 = i; |
175 | x0 = x; |
176 | } |
177 | } |
178 | |
179 | int32 hull[b2_maxPolygonVertices]; |
180 | int32 m = 0; |
181 | int32 ih = i0; |
182 | |
183 | for (;;) |
184 | { |
185 | hull[m] = ih; |
186 | |
187 | int32 ie = 0; |
188 | for (int32 j = 1; j < n; ++j) |
189 | { |
190 | if (ie == ih) |
191 | { |
192 | ie = j; |
193 | continue; |
194 | } |
195 | |
196 | b2Vec2 r = ps[ie] - ps[hull[m]]; |
197 | b2Vec2 v = ps[j] - ps[hull[m]]; |
198 | float32 c = b2Cross(r, v); |
199 | if (c < 0.0f) |
200 | { |
201 | ie = j; |
202 | } |
203 | |
204 | // Collinearity check |
205 | if (c == 0.0f && v.LengthSquared() > r.LengthSquared()) |
206 | { |
207 | ie = j; |
208 | } |
209 | } |
210 | |
211 | ++m; |
212 | ih = ie; |
213 | |
214 | if (ie == i0) |
215 | { |
216 | break; |
217 | } |
218 | } |
219 | |
220 | if (m < 3) |
221 | { |
222 | // Polygon is degenerate. |
223 | b2Assert(false); |
224 | SetAsBox(1.0f, 1.0f); |
225 | return; |
226 | } |
227 | |
228 | m_count = m; |
229 | |
230 | // Copy vertices. |
231 | for (int32 i = 0; i < m; ++i) |
232 | { |
233 | m_vertices[i] = ps[hull[i]]; |
234 | } |
235 | |
236 | // Compute normals. Ensure the edges have non-zero length. |
237 | for (int32 i = 0; i < m; ++i) |
238 | { |
239 | int32 i1 = i; |
240 | int32 i2 = i + 1 < m ? i + 1 : 0; |
241 | b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; |
242 | b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); |
243 | m_normals[i] = b2Cross(edge, 1.0f); |
244 | m_normals[i].Normalize(); |
245 | } |
246 | |
247 | // Compute the polygon centroid. |
248 | m_centroid = ComputeCentroid(m_vertices, m); |
249 | } |
250 | |
251 | bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const |
252 | { |
253 | b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); |
254 | |
255 | for (int32 i = 0; i < m_count; ++i) |
256 | { |
257 | float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); |
258 | if (dot > 0.0f) |
259 | { |
260 | return false; |
261 | } |
262 | } |
263 | |
264 | return true; |
265 | } |
266 | |
267 | bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, |
268 | const b2Transform& xf, int32 childIndex) const |
269 | { |
270 | B2_NOT_USED(childIndex); |
271 | |
272 | // Put the ray into the polygon's frame of reference. |
273 | b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); |
274 | b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); |
275 | b2Vec2 d = p2 - p1; |
276 | |
277 | float32 lower = 0.0f, upper = input.maxFraction; |
278 | |
279 | int32 index = -1; |
280 | |
281 | for (int32 i = 0; i < m_count; ++i) |
282 | { |
283 | // p = p1 + a * d |
284 | // dot(normal, p - v) = 0 |
285 | // dot(normal, p1 - v) + a * dot(normal, d) = 0 |
286 | float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); |
287 | float32 denominator = b2Dot(m_normals[i], d); |
288 | |
289 | if (denominator == 0.0f) |
290 | { |
291 | if (numerator < 0.0f) |
292 | { |
293 | return false; |
294 | } |
295 | } |
296 | else |
297 | { |
298 | // Note: we want this predicate without division: |
299 | // lower < numerator / denominator, where denominator < 0 |
300 | // Since denominator < 0, we have to flip the inequality: |
301 | // lower < numerator / denominator <==> denominator * lower > numerator. |
302 | if (denominator < 0.0f && numerator < lower * denominator) |
303 | { |
304 | // Increase lower. |
305 | // The segment enters this half-space. |
306 | lower = numerator / denominator; |
307 | index = i; |
308 | } |
309 | else if (denominator > 0.0f && numerator < upper * denominator) |
310 | { |
311 | // Decrease upper. |
312 | // The segment exits this half-space. |
313 | upper = numerator / denominator; |
314 | } |
315 | } |
316 | |
317 | // The use of epsilon here causes the assert on lower to trip |
318 | // in some cases. Apparently the use of epsilon was to make edge |
319 | // shapes work, but now those are handled separately. |
320 | //if (upper < lower - b2_epsilon) |
321 | if (upper < lower) |
322 | { |
323 | return false; |
324 | } |
325 | } |
326 | |
327 | b2Assert(0.0f <= lower && lower <= input.maxFraction); |
328 | |
329 | if (index >= 0) |
330 | { |
331 | output->fraction = lower; |
332 | output->normal = b2Mul(xf.q, m_normals[index]); |
333 | return true; |
334 | } |
335 | |
336 | return false; |
337 | } |
338 | |
339 | void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const |
340 | { |
341 | B2_NOT_USED(childIndex); |
342 | |
343 | b2Vec2 lower = b2Mul(xf, m_vertices[0]); |
344 | b2Vec2 upper = lower; |
345 | |
346 | for (int32 i = 1; i < m_count; ++i) |
347 | { |
348 | b2Vec2 v = b2Mul(xf, m_vertices[i]); |
349 | lower = b2Min(lower, v); |
350 | upper = b2Max(upper, v); |
351 | } |
352 | |
353 | b2Vec2 r(m_radius, m_radius); |
354 | aabb->lowerBound = lower - r; |
355 | aabb->upperBound = upper + r; |
356 | } |
357 | |
358 | void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const |
359 | { |
360 | // Polygon mass, centroid, and inertia. |
361 | // Let rho be the polygon density in mass per unit area. |
362 | // Then: |
363 | // mass = rho * int(dA) |
364 | // centroid.x = (1/mass) * rho * int(x * dA) |
365 | // centroid.y = (1/mass) * rho * int(y * dA) |
366 | // I = rho * int((x*x + y*y) * dA) |
367 | // |
368 | // We can compute these integrals by summing all the integrals |
369 | // for each triangle of the polygon. To evaluate the integral |
370 | // for a single triangle, we make a change of variables to |
371 | // the (u,v) coordinates of the triangle: |
372 | // x = x0 + e1x * u + e2x * v |
373 | // y = y0 + e1y * u + e2y * v |
374 | // where 0 <= u && 0 <= v && u + v <= 1. |
375 | // |
376 | // We integrate u from [0,1-v] and then v from [0,1]. |
377 | // We also need to use the Jacobian of the transformation: |
378 | // D = cross(e1, e2) |
379 | // |
380 | // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) |
381 | // |
382 | // The rest of the derivation is handled by computer algebra. |
383 | |
384 | b2Assert(m_count >= 3); |
385 | |
386 | b2Vec2 center; center.Set(0.0f, 0.0f); |
387 | float32 area = 0.0f; |
388 | float32 I = 0.0f; |
389 | |
390 | // s is the reference point for forming triangles. |
391 | // It's location doesn't change the result (except for rounding error). |
392 | b2Vec2 s(0.0f, 0.0f); |
393 | |
394 | // This code would put the reference point inside the polygon. |
395 | for (int32 i = 0; i < m_count; ++i) |
396 | { |
397 | s += m_vertices[i]; |
398 | } |
399 | s *= 1.0f / m_count; |
400 | |
401 | const float32 k_inv3 = 1.0f / 3.0f; |
402 | |
403 | for (int32 i = 0; i < m_count; ++i) |
404 | { |
405 | // Triangle vertices. |
406 | b2Vec2 e1 = m_vertices[i] - s; |
407 | b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; |
408 | |
409 | float32 D = b2Cross(e1, e2); |
410 | |
411 | float32 triangleArea = 0.5f * D; |
412 | area += triangleArea; |
413 | |
414 | // Area weighted centroid |
415 | center += triangleArea * k_inv3 * (e1 + e2); |
416 | |
417 | float32 ex1 = e1.x, ey1 = e1.y; |
418 | float32 ex2 = e2.x, ey2 = e2.y; |
419 | |
420 | float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; |
421 | float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; |
422 | |
423 | I += (0.25f * k_inv3 * D) * (intx2 + inty2); |
424 | } |
425 | |
426 | // Total mass |
427 | massData->mass = density * area; |
428 | |
429 | // Center of mass |
430 | b2Assert(area > b2_epsilon); |
431 | center *= 1.0f / area; |
432 | massData->center = center + s; |
433 | |
434 | // Inertia tensor relative to the local origin (point s). |
435 | massData->I = density * I; |
436 | |
437 | // Shift to center of mass then to original body origin. |
438 | massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); |
439 | } |
440 | |
441 | bool b2PolygonShape::Validate() const |
442 | { |
443 | for (int32 i = 0; i < m_count; ++i) |
444 | { |
445 | int32 i1 = i; |
446 | int32 i2 = i < m_count - 1 ? i1 + 1 : 0; |
447 | b2Vec2 p = m_vertices[i1]; |
448 | b2Vec2 e = m_vertices[i2] - p; |
449 | |
450 | for (int32 j = 0; j < m_count; ++j) |
451 | { |
452 | if (j == i1 || j == i2) |
453 | { |
454 | continue; |
455 | } |
456 | |
457 | b2Vec2 v = m_vertices[j] - p; |
458 | float32 c = b2Cross(e, v); |
459 | if (c < 0.0f) |
460 | { |
461 | return false; |
462 | } |
463 | } |
464 | } |
465 | |
466 | return true; |
467 | } |
468 | |