| 1 | /* |
| 2 | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Collision/Shapes/b2PolygonShape.h> |
| 20 | #include <new> |
| 21 | |
| 22 | b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const |
| 23 | { |
| 24 | void* mem = allocator->Allocate(sizeof(b2PolygonShape)); |
| 25 | b2PolygonShape* clone = new (mem) b2PolygonShape; |
| 26 | *clone = *this; |
| 27 | return clone; |
| 28 | } |
| 29 | |
| 30 | void b2PolygonShape::SetAsBox(float32 hx, float32 hy) |
| 31 | { |
| 32 | m_count = 4; |
| 33 | m_vertices[0].Set(-hx, -hy); |
| 34 | m_vertices[1].Set( hx, -hy); |
| 35 | m_vertices[2].Set( hx, hy); |
| 36 | m_vertices[3].Set(-hx, hy); |
| 37 | m_normals[0].Set(0.0f, -1.0f); |
| 38 | m_normals[1].Set(1.0f, 0.0f); |
| 39 | m_normals[2].Set(0.0f, 1.0f); |
| 40 | m_normals[3].Set(-1.0f, 0.0f); |
| 41 | m_centroid.SetZero(); |
| 42 | } |
| 43 | |
| 44 | void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) |
| 45 | { |
| 46 | m_count = 4; |
| 47 | m_vertices[0].Set(-hx, -hy); |
| 48 | m_vertices[1].Set( hx, -hy); |
| 49 | m_vertices[2].Set( hx, hy); |
| 50 | m_vertices[3].Set(-hx, hy); |
| 51 | m_normals[0].Set(0.0f, -1.0f); |
| 52 | m_normals[1].Set(1.0f, 0.0f); |
| 53 | m_normals[2].Set(0.0f, 1.0f); |
| 54 | m_normals[3].Set(-1.0f, 0.0f); |
| 55 | m_centroid = center; |
| 56 | |
| 57 | b2Transform xf; |
| 58 | xf.p = center; |
| 59 | xf.q.Set(angle); |
| 60 | |
| 61 | // Transform vertices and normals. |
| 62 | for (int32 i = 0; i < m_count; ++i) |
| 63 | { |
| 64 | m_vertices[i] = b2Mul(xf, m_vertices[i]); |
| 65 | m_normals[i] = b2Mul(xf.q, m_normals[i]); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | int32 b2PolygonShape::GetChildCount() const |
| 70 | { |
| 71 | return 1; |
| 72 | } |
| 73 | |
| 74 | static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) |
| 75 | { |
| 76 | b2Assert(count >= 3); |
| 77 | |
| 78 | b2Vec2 c; c.Set(0.0f, 0.0f); |
| 79 | float32 area = 0.0f; |
| 80 | |
| 81 | // pRef is the reference point for forming triangles. |
| 82 | // It's location doesn't change the result (except for rounding error). |
| 83 | b2Vec2 pRef(0.0f, 0.0f); |
| 84 | #if 0 |
| 85 | // This code would put the reference point inside the polygon. |
| 86 | for (int32 i = 0; i < count; ++i) |
| 87 | { |
| 88 | pRef += vs[i]; |
| 89 | } |
| 90 | pRef *= 1.0f / count; |
| 91 | #endif |
| 92 | |
| 93 | const float32 inv3 = 1.0f / 3.0f; |
| 94 | |
| 95 | for (int32 i = 0; i < count; ++i) |
| 96 | { |
| 97 | // Triangle vertices. |
| 98 | b2Vec2 p1 = pRef; |
| 99 | b2Vec2 p2 = vs[i]; |
| 100 | b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; |
| 101 | |
| 102 | b2Vec2 e1 = p2 - p1; |
| 103 | b2Vec2 e2 = p3 - p1; |
| 104 | |
| 105 | float32 D = b2Cross(e1, e2); |
| 106 | |
| 107 | float32 triangleArea = 0.5f * D; |
| 108 | area += triangleArea; |
| 109 | |
| 110 | // Area weighted centroid |
| 111 | c += triangleArea * inv3 * (p1 + p2 + p3); |
| 112 | } |
| 113 | |
| 114 | // Centroid |
| 115 | b2Assert(area > b2_epsilon); |
| 116 | c *= 1.0f / area; |
| 117 | return c; |
| 118 | } |
| 119 | |
| 120 | void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) |
| 121 | { |
| 122 | b2Assert(3 <= count && count <= b2_maxPolygonVertices); |
| 123 | if (count < 3) |
| 124 | { |
| 125 | SetAsBox(1.0f, 1.0f); |
| 126 | return; |
| 127 | } |
| 128 | |
| 129 | int32 n = b2Min(count, b2_maxPolygonVertices); |
| 130 | |
| 131 | // Perform welding and copy vertices into local buffer. |
| 132 | b2Vec2 ps[b2_maxPolygonVertices]; |
| 133 | int32 tempCount = 0; |
| 134 | for (int32 i = 0; i < n; ++i) |
| 135 | { |
| 136 | b2Vec2 v = vertices[i]; |
| 137 | |
| 138 | bool unique = true; |
| 139 | for (int32 j = 0; j < tempCount; ++j) |
| 140 | { |
| 141 | if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop))) |
| 142 | { |
| 143 | unique = false; |
| 144 | break; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | if (unique) |
| 149 | { |
| 150 | ps[tempCount++] = v; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | n = tempCount; |
| 155 | if (n < 3) |
| 156 | { |
| 157 | // Polygon is degenerate. |
| 158 | b2Assert(false); |
| 159 | SetAsBox(1.0f, 1.0f); |
| 160 | return; |
| 161 | } |
| 162 | |
| 163 | // Create the convex hull using the Gift wrapping algorithm |
| 164 | // http://en.wikipedia.org/wiki/Gift_wrapping_algorithm |
| 165 | |
| 166 | // Find the right most point on the hull |
| 167 | int32 i0 = 0; |
| 168 | float32 x0 = ps[0].x; |
| 169 | for (int32 i = 1; i < n; ++i) |
| 170 | { |
| 171 | float32 x = ps[i].x; |
| 172 | if (x > x0 || (x == x0 && ps[i].y < ps[i0].y)) |
| 173 | { |
| 174 | i0 = i; |
| 175 | x0 = x; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | int32 hull[b2_maxPolygonVertices]; |
| 180 | int32 m = 0; |
| 181 | int32 ih = i0; |
| 182 | |
| 183 | for (;;) |
| 184 | { |
| 185 | hull[m] = ih; |
| 186 | |
| 187 | int32 ie = 0; |
| 188 | for (int32 j = 1; j < n; ++j) |
| 189 | { |
| 190 | if (ie == ih) |
| 191 | { |
| 192 | ie = j; |
| 193 | continue; |
| 194 | } |
| 195 | |
| 196 | b2Vec2 r = ps[ie] - ps[hull[m]]; |
| 197 | b2Vec2 v = ps[j] - ps[hull[m]]; |
| 198 | float32 c = b2Cross(r, v); |
| 199 | if (c < 0.0f) |
| 200 | { |
| 201 | ie = j; |
| 202 | } |
| 203 | |
| 204 | // Collinearity check |
| 205 | if (c == 0.0f && v.LengthSquared() > r.LengthSquared()) |
| 206 | { |
| 207 | ie = j; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | ++m; |
| 212 | ih = ie; |
| 213 | |
| 214 | if (ie == i0) |
| 215 | { |
| 216 | break; |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | if (m < 3) |
| 221 | { |
| 222 | // Polygon is degenerate. |
| 223 | b2Assert(false); |
| 224 | SetAsBox(1.0f, 1.0f); |
| 225 | return; |
| 226 | } |
| 227 | |
| 228 | m_count = m; |
| 229 | |
| 230 | // Copy vertices. |
| 231 | for (int32 i = 0; i < m; ++i) |
| 232 | { |
| 233 | m_vertices[i] = ps[hull[i]]; |
| 234 | } |
| 235 | |
| 236 | // Compute normals. Ensure the edges have non-zero length. |
| 237 | for (int32 i = 0; i < m; ++i) |
| 238 | { |
| 239 | int32 i1 = i; |
| 240 | int32 i2 = i + 1 < m ? i + 1 : 0; |
| 241 | b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; |
| 242 | b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); |
| 243 | m_normals[i] = b2Cross(edge, 1.0f); |
| 244 | m_normals[i].Normalize(); |
| 245 | } |
| 246 | |
| 247 | // Compute the polygon centroid. |
| 248 | m_centroid = ComputeCentroid(m_vertices, m); |
| 249 | } |
| 250 | |
| 251 | bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const |
| 252 | { |
| 253 | b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); |
| 254 | |
| 255 | for (int32 i = 0; i < m_count; ++i) |
| 256 | { |
| 257 | float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); |
| 258 | if (dot > 0.0f) |
| 259 | { |
| 260 | return false; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | return true; |
| 265 | } |
| 266 | |
| 267 | bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, |
| 268 | const b2Transform& xf, int32 childIndex) const |
| 269 | { |
| 270 | B2_NOT_USED(childIndex); |
| 271 | |
| 272 | // Put the ray into the polygon's frame of reference. |
| 273 | b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); |
| 274 | b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); |
| 275 | b2Vec2 d = p2 - p1; |
| 276 | |
| 277 | float32 lower = 0.0f, upper = input.maxFraction; |
| 278 | |
| 279 | int32 index = -1; |
| 280 | |
| 281 | for (int32 i = 0; i < m_count; ++i) |
| 282 | { |
| 283 | // p = p1 + a * d |
| 284 | // dot(normal, p - v) = 0 |
| 285 | // dot(normal, p1 - v) + a * dot(normal, d) = 0 |
| 286 | float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); |
| 287 | float32 denominator = b2Dot(m_normals[i], d); |
| 288 | |
| 289 | if (denominator == 0.0f) |
| 290 | { |
| 291 | if (numerator < 0.0f) |
| 292 | { |
| 293 | return false; |
| 294 | } |
| 295 | } |
| 296 | else |
| 297 | { |
| 298 | // Note: we want this predicate without division: |
| 299 | // lower < numerator / denominator, where denominator < 0 |
| 300 | // Since denominator < 0, we have to flip the inequality: |
| 301 | // lower < numerator / denominator <==> denominator * lower > numerator. |
| 302 | if (denominator < 0.0f && numerator < lower * denominator) |
| 303 | { |
| 304 | // Increase lower. |
| 305 | // The segment enters this half-space. |
| 306 | lower = numerator / denominator; |
| 307 | index = i; |
| 308 | } |
| 309 | else if (denominator > 0.0f && numerator < upper * denominator) |
| 310 | { |
| 311 | // Decrease upper. |
| 312 | // The segment exits this half-space. |
| 313 | upper = numerator / denominator; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | // The use of epsilon here causes the assert on lower to trip |
| 318 | // in some cases. Apparently the use of epsilon was to make edge |
| 319 | // shapes work, but now those are handled separately. |
| 320 | //if (upper < lower - b2_epsilon) |
| 321 | if (upper < lower) |
| 322 | { |
| 323 | return false; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | b2Assert(0.0f <= lower && lower <= input.maxFraction); |
| 328 | |
| 329 | if (index >= 0) |
| 330 | { |
| 331 | output->fraction = lower; |
| 332 | output->normal = b2Mul(xf.q, m_normals[index]); |
| 333 | return true; |
| 334 | } |
| 335 | |
| 336 | return false; |
| 337 | } |
| 338 | |
| 339 | void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const |
| 340 | { |
| 341 | B2_NOT_USED(childIndex); |
| 342 | |
| 343 | b2Vec2 lower = b2Mul(xf, m_vertices[0]); |
| 344 | b2Vec2 upper = lower; |
| 345 | |
| 346 | for (int32 i = 1; i < m_count; ++i) |
| 347 | { |
| 348 | b2Vec2 v = b2Mul(xf, m_vertices[i]); |
| 349 | lower = b2Min(lower, v); |
| 350 | upper = b2Max(upper, v); |
| 351 | } |
| 352 | |
| 353 | b2Vec2 r(m_radius, m_radius); |
| 354 | aabb->lowerBound = lower - r; |
| 355 | aabb->upperBound = upper + r; |
| 356 | } |
| 357 | |
| 358 | void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const |
| 359 | { |
| 360 | // Polygon mass, centroid, and inertia. |
| 361 | // Let rho be the polygon density in mass per unit area. |
| 362 | // Then: |
| 363 | // mass = rho * int(dA) |
| 364 | // centroid.x = (1/mass) * rho * int(x * dA) |
| 365 | // centroid.y = (1/mass) * rho * int(y * dA) |
| 366 | // I = rho * int((x*x + y*y) * dA) |
| 367 | // |
| 368 | // We can compute these integrals by summing all the integrals |
| 369 | // for each triangle of the polygon. To evaluate the integral |
| 370 | // for a single triangle, we make a change of variables to |
| 371 | // the (u,v) coordinates of the triangle: |
| 372 | // x = x0 + e1x * u + e2x * v |
| 373 | // y = y0 + e1y * u + e2y * v |
| 374 | // where 0 <= u && 0 <= v && u + v <= 1. |
| 375 | // |
| 376 | // We integrate u from [0,1-v] and then v from [0,1]. |
| 377 | // We also need to use the Jacobian of the transformation: |
| 378 | // D = cross(e1, e2) |
| 379 | // |
| 380 | // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) |
| 381 | // |
| 382 | // The rest of the derivation is handled by computer algebra. |
| 383 | |
| 384 | b2Assert(m_count >= 3); |
| 385 | |
| 386 | b2Vec2 center; center.Set(0.0f, 0.0f); |
| 387 | float32 area = 0.0f; |
| 388 | float32 I = 0.0f; |
| 389 | |
| 390 | // s is the reference point for forming triangles. |
| 391 | // It's location doesn't change the result (except for rounding error). |
| 392 | b2Vec2 s(0.0f, 0.0f); |
| 393 | |
| 394 | // This code would put the reference point inside the polygon. |
| 395 | for (int32 i = 0; i < m_count; ++i) |
| 396 | { |
| 397 | s += m_vertices[i]; |
| 398 | } |
| 399 | s *= 1.0f / m_count; |
| 400 | |
| 401 | const float32 k_inv3 = 1.0f / 3.0f; |
| 402 | |
| 403 | for (int32 i = 0; i < m_count; ++i) |
| 404 | { |
| 405 | // Triangle vertices. |
| 406 | b2Vec2 e1 = m_vertices[i] - s; |
| 407 | b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; |
| 408 | |
| 409 | float32 D = b2Cross(e1, e2); |
| 410 | |
| 411 | float32 triangleArea = 0.5f * D; |
| 412 | area += triangleArea; |
| 413 | |
| 414 | // Area weighted centroid |
| 415 | center += triangleArea * k_inv3 * (e1 + e2); |
| 416 | |
| 417 | float32 ex1 = e1.x, ey1 = e1.y; |
| 418 | float32 ex2 = e2.x, ey2 = e2.y; |
| 419 | |
| 420 | float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; |
| 421 | float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; |
| 422 | |
| 423 | I += (0.25f * k_inv3 * D) * (intx2 + inty2); |
| 424 | } |
| 425 | |
| 426 | // Total mass |
| 427 | massData->mass = density * area; |
| 428 | |
| 429 | // Center of mass |
| 430 | b2Assert(area > b2_epsilon); |
| 431 | center *= 1.0f / area; |
| 432 | massData->center = center + s; |
| 433 | |
| 434 | // Inertia tensor relative to the local origin (point s). |
| 435 | massData->I = density * I; |
| 436 | |
| 437 | // Shift to center of mass then to original body origin. |
| 438 | massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); |
| 439 | } |
| 440 | |
| 441 | bool b2PolygonShape::Validate() const |
| 442 | { |
| 443 | for (int32 i = 0; i < m_count; ++i) |
| 444 | { |
| 445 | int32 i1 = i; |
| 446 | int32 i2 = i < m_count - 1 ? i1 + 1 : 0; |
| 447 | b2Vec2 p = m_vertices[i1]; |
| 448 | b2Vec2 e = m_vertices[i2] - p; |
| 449 | |
| 450 | for (int32 j = 0; j < m_count; ++j) |
| 451 | { |
| 452 | if (j == i1 || j == i2) |
| 453 | { |
| 454 | continue; |
| 455 | } |
| 456 | |
| 457 | b2Vec2 v = m_vertices[j] - p; |
| 458 | float32 c = b2Cross(e, v); |
| 459 | if (c < 0.0f) |
| 460 | { |
| 461 | return false; |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | return true; |
| 467 | } |
| 468 | |